Sample records for equilibrium climate sensitivity

  1. Equilibrium and Effective Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Rugenstein, M.; Bloch-Johnson, J.

    2016-12-01

    Atmosphere-ocean general circulation models, as well as the real world, take thousands of years to equilibrate to CO2 induced radiative perturbations. Equilibrium climate sensitivity - a fully equilibrated 2xCO2 perturbation - has been used for decades as a benchmark in model intercomparisons, as a test of our understanding of the climate system and paleo proxies, and to predict or project future climate change. Computational costs and limited time lead to the widespread practice of extrapolating equilibrium conditions from just a few decades of coupled simulations. The most common workaround is the "effective climate sensitivity" - defined through an extrapolation of a 150 year abrupt2xCO2 simulation, including the assumption of linear climate feedbacks. The definitions of effective and equilibrium climate sensitivity are often mixed up and used equivalently, and it is argued that "transient climate sensitivity" is the more relevant measure for predicting the next decades. We present an ongoing model intercomparison, the "LongRunMIP", to study century and millennia time scales of AOGCM equilibration and the linearity assumptions around feedback analysis. As a true ensemble of opportunity, there is no protocol and the only condition to participate is a coupled model simulation of any stabilizing scenario simulating more than 1000 years. Many of the submitted simulations took several years to conduct. As of July 2016 the contribution comprises 27 scenario simulations of 13 different models originating from 7 modeling centers, each between 1000 and 6000 years. To contribute, please contact the authors as soon as possible We present preliminary results, discussing differences between effective and equilibrium climate sensitivity, the usefulness of transient climate sensitivity, extrapolation methods, and the state of the coupled climate system close to equilibrium. Caption for the Figure below: Evolution of temperature anomaly and radiative imbalance of 22 simulations with 12 models (color indicates the model). 20 year moving average.

  2. Making Sense of Palaeoclimate Sensitivity

    NASA Technical Reports Server (NTRS)

    Rohling, E. J.; Sluijs, A.; DeConto, R.; Drijfhout, S. S.; Fedorov, A.; Foster, G. L.; Ganopolski, A.; Hansen, J.; Honisch, B.; Hooghiemstra, H.; hide

    2012-01-01

    Many palaeoclimate studies have quantified pre-anthropogenic climate change to calculate climate sensitivity (equilibrium temperature change in response to radiative forcing change), but a lack of consistent methodologies produces a wide range of estimates and hinders comparability of results. Here we present a stricter approach, to improve intercomparison of palaeoclimate sensitivity estimates in a manner compatible with equilibrium projections for future climate change. Over the past 65 million years, this reveals a climate sensitivity (in K W-1 m2) of 0.3-1.9 or 0.6-1.3 at 95% or 68% probability, respectively. The latter implies a warming of 2.2-4.8 K per doubling of atmospheric CO2, which agrees with IPCC estimates.

  3. Beyond equilibrium climate sensitivity

    NASA Astrophysics Data System (ADS)

    Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.

    2017-10-01

    Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.

  4. Time variation of effective climate sensitivity in GCMs

    NASA Astrophysics Data System (ADS)

    Williams, K. D.; Ingram, W. J.; Gregory, J. M.

    2009-04-01

    Effective climate sensitivity is often assumed to be constant (if uncertain), but some previous studies of General Circulation Model (GCM) simulations have found it varying as the simulation progresses. This complicates the fitting of simple models to such simulations, as well as having implications for the estimation of climate sensitivity from observations. This study examines the evolution of the feedbacks determining the climate sensitivity in GCMs submitted to the Coupled Model Intercomparison Project. Apparent centennial-timescale variations of effective climate sensitivity during stabilisation to a forcing can be considered an artefact of using conventional forcings which only allow for instantaneous effects and stratospheric adjustment. If the forcing is adjusted for processes occurring on timescales which are short compared to the climate stabilisation timescale then there is little centennial timescale evolution of effective climate sensitivity in any of the GCMs. We suggest that much of the apparent variation in effective climate sensitivity identified in previous studies is actually due to the comparatively fast forcing adjustment. Persistent differences are found in the strength of the feedbacks between the coupled atmosphere - ocean (AO) versions and their atmosphere - mixed-layer ocean (AML) counterparts, (the latter are often assumed to give the equilibrium climate sensitivity of the AOGCM). The AML model can typically only estimate the equilibrium climate sensitivity of the parallel AO version to within about 0.5K. The adjustment to the forcing to account for comparatively fast processes varies in magnitude and sign between GCMs, as well as differing between AO and AML versions of the same model. There is evidence from one AOGCM that the forcing adjustment may take a couple of decades, with implications for observationally based estimates of equilibrium climate sensitivity. We suggest that at least some of the spread in 21st century global temperature predictions between GCMs is due to differing adjustment processes, hence work to understand these differences should be a priority.

  5. Implications for Climate Sensitivity from the Response to Individual Forcings

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Schmidt, Gavin A.; Miller, Ron L.; Nazarenko, Larissa

    2015-01-01

    Climate sensitivity to doubled CO2 is a widely-used metric of the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that riseat 1 per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational datasets have been used to constrain these values, including temperature trends over the recent past 16, inferences from paleo-climate and process-based constraints from the modern satellite eras. However, as the IPCC recently reported different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upward compared to previous studies, improving the consistency with independent constraints.

  6. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records

    NASA Astrophysics Data System (ADS)

    Martínez-Botí, M. A.; Foster, G. L.; Chalk, T. B.; Rohling, E. J.; Sexton, P. F.; Lunt, D. J.; Pancost, R. D.; Badger, M. P. S.; Schmidt, D. N.

    2015-02-01

    Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.

  7. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records.

    PubMed

    Martínez-Botí, M A; Foster, G L; Chalk, T B; Rohling, E J; Sexton, P F; Lunt, D J; Pancost, R D; Badger, M P S; Schmidt, D N

    2015-02-05

    Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.

  8. Climate and the equilibrium state of land surface hydrology parameterizations

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    For given climatic rates of precipitation and potential evaporation, the land surface hydrology parameterizations of atmospheric general circulation models will maintain soil-water storage conditions that balance the moisture input and output. The surface relative soil saturation for such climatic conditions serves as a measure of the land surface parameterization state under a given forcing. The equilibrium value of this variable for alternate parameterizations of land surface hydrology are determined as a function of climate and the sensitivity of the surface to shifts and changes in climatic forcing are estimated.

  9. Observational constraints on mixed-phase clouds imply higher climate sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D.

    Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO 2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here, in this paper, we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. Finally, wemore » point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.« less

  10. Observational constraints on mixed-phase clouds imply higher climate sensitivity

    DOE PAGES

    Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D.

    2016-04-08

    Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO 2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here, in this paper, we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. Finally, wemore » point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.« less

  11. Observational constraints on mixed-phase clouds imply higher climate sensitivity.

    PubMed

    Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D

    2016-04-08

    Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback. Copyright © 2016, American Association for the Advancement of Science.

  12. Radiative-convective equilibrium model intercomparison project

    NASA Astrophysics Data System (ADS)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  13. Climate Sensitivity of the Community Climate System Model, Version 4

    DOE PAGES

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; ...

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These twomore » warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.« less

  14. Climate simulations and projections with a super-parameterized climate model

    DOE PAGES

    Stan, Cristiana; Xu, Li

    2014-07-01

    The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less

  15. Using the Mount Pinatubo Volcanic Eruption to Determine Climate Sensitivity: Comments on "Climate Forcing by the Volcanic Eruption of Mount Pinatubo" by David H. Douglass and Robert S. Knox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigley, T L; Ammann, C M; Santer, B D

    2005-04-22

    [1] Douglass and Knox [2005], hereafter referred to as DK, present an analysis of the observed cooling following the 1991 Mt. Pinatubo eruption and claim that these data imply a very low value for the climate sensitivity (equivalent to 0.6 C equilibrium warming for a CO{sub 2} doubling). We show here that their analysis is flawed and their results are incorrect.

  16. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

    DOE PAGES

    Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...

    2012-05-15

    We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less

  17. Development of a system emulating the global carbon cycle in Earth system models

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.

    2010-08-01

    Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K) version of MIROC3.2. By tuning of the physical and biogeochemical parameters it was possible to reasonably reproduce the bulk physical and biogeochemical properties of previously published CO2 stabilisation scenarios for that model. As an example of an application of the LCM, the behavior of the high sensitivity version of MIROC3.2 (with a 6.3 K equilibrium climate sensitivity) is also demonstrated. Given the highly adjustable nature of the model, we believe that the LCM should be a very useful tool for studying uncertainty in global climate change, and we have named the model, JUMP-LCM, after the name of our research group (Japan Uncertainty Modelling Project).

  18. An early warning system for high climate sensitivity? (Invited)

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2010-12-01

    The scientific case for the clear and present danger of global warming has been unassailable at least since the release of the Charney Report more than thirty years ago, if not longer. While prompt action to begin decarbonizing energy systems could still head off much of the potential warming, it is distinctly possible that emissions will continue unabated in the coming decades, leading to a doubling or more of pre-industrial carbon dioxide concentrations. At present, we are in the unenviable position of not even knowing how bad things will get if this scenario comes to pass, because of the uncertainty in climate sensitivity. If climate sensitivity is high, then the consequences will be dire, perhaps even catastrophic. As the world continues to warm in response to continued carbon dioxide emissions, will we at least be able to monitor the climate and provide an early warning that the planet is on a high-sensitivity track, if such turns out to be the case? At what point will we actually know the climate sensitivity? It has long been recognized that the prime contributor to uncertainty in climate sensitivity is uncertainty in cloud feedbacks. Study of paleoclimate and climate of the past century has not been able to resolve which models do cloud feedback most correctly, because of uncertainties in radiative forcing. In this talk, I will discuss monitoring requirements, and analysis techniques, that might have the potential to determine which climate models most faithfully represent climate feedbacks, and thus determine which models provide the best estimate of climate sensitivity. The endeavor is complicated by the distinction between transient climate response and equilibrium climate sensitivity. I will discuss the particular challenges posed by this issue, particularly in light of recent indications that the pattern of ocean heat storage may lead to different cloud feedbacks in the transient warming stage than apply once the system has reached equilibrium. Apart from this problem, the transient nature of climate response driven by increasing CO2 requires careful monitoring of ocean heat storage as well as top-of-atmosphere radiative budgets, if climate sensitivity is to be estimated. Water vapor feedback is not considered as uncertain as cloud feedback, but there is still a considerable potential for surprises. I will discuss microwave monitoring requirements for tracking water vapor feedback. At the other extreme, the longer term feedbacks that contribute to Earth System Sensitivity are even more uncertain than cloud feedbacks, particularly with regard to the terrestrial carbon cycle. Prospects for obtaining an early warning of a PETM-type organic carbon release seem bleak. Finally, I will discuss the particular challenge of obtaining an early warning of high climate sensitivity in the case that the climate system has a bifurcation.

  19. The role of sea ice dynamics in global climate change

    NASA Technical Reports Server (NTRS)

    Hibler, William D., III

    1992-01-01

    The topics covered include the following: general characteristics of sea ice drift; sea ice rheology; ice thickness distribution; sea ice thermodynamic models; equilibrium thermodynamic models; effect of internal brine pockets and snow cover; model simulations of Arctic Sea ice; and sensitivity of sea ice models to climate change.

  20. Emergent constraint on equilibrium climate sensitivity from global temperature variability.

    PubMed

    Cox, Peter M; Huntingford, Chris; Williamson, Mark S

    2018-01-17

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  1. Emergent constraint on equilibrium climate sensitivity from global temperature variability

    NASA Astrophysics Data System (ADS)

    Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.

    2018-01-01

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  2. On the Emergent Constraints of Climate Sensitivity [On proposed emergent constraints of climate sensitivity

    DOE PAGES

    Qu, Xin; Hall, Alex; DeAngelis, Anthony M.; ...

    2018-01-11

    Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable tomore » a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. Additionally, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.« less

  3. On the Emergent Constraints of Climate Sensitivity [On proposed emergent constraints of climate sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Xin; Hall, Alex; DeAngelis, Anthony M.

    Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable tomore » a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. Additionally, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.« less

  4. Evaluating Emergent Constraints for Equilibrium Climate Sensitivity

    DOE PAGES

    Caldwell, Peter M.; Zelinka, Mark D.; Klein, Stephen A.

    2018-04-23

    Emergent constraints are quantities that are observable from current measurements and have skill predicting future climate. Here, this study explores 19 previously proposed emergent constraints related to equilibrium climate sensitivity (ECS; the global-average equilibrium surface temperature response to CO 2 doubling). Several constraints are shown to be closely related, emphasizing the importance for careful understanding of proposed constraints. A new method is presented for decomposing correlation between an emergent constraint and ECS into terms related to physical processes and geographical regions. Using this decomposition, one can determine whether the processes and regions explaining correlation with ECS correspond to the physicalmore » explanation offered for the constraint. Shortwave cloud feedback is generally found to be the dominant contributor to correlations with ECS because it is the largest source of intermodel spread in ECS. In all cases, correlation results from interaction between a variety of terms, reflecting the complex nature of ECS and the fact that feedback terms and forcing are themselves correlated with each other. For 4 of the 19 constraints, the originally proposed explanation for correlation is borne out by our analysis. These four constraints all predict relatively high climate sensitivity. The credibility of six other constraints is called into question owing to correlation with ECS coming mainly from unexpected sources and/or lack of robustness to changes in ensembles. Another six constraints lack a testable explanation and hence cannot be confirmed. Lastly, the fact that this study casts doubt upon more constraints than it confirms highlights the need for caution when identifying emergent constraints from small ensembles.« less

  5. Evaluating Emergent Constraints for Equilibrium Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Peter M.; Zelinka, Mark D.; Klein, Stephen A.

    Emergent constraints are quantities that are observable from current measurements and have skill predicting future climate. Here, this study explores 19 previously proposed emergent constraints related to equilibrium climate sensitivity (ECS; the global-average equilibrium surface temperature response to CO 2 doubling). Several constraints are shown to be closely related, emphasizing the importance for careful understanding of proposed constraints. A new method is presented for decomposing correlation between an emergent constraint and ECS into terms related to physical processes and geographical regions. Using this decomposition, one can determine whether the processes and regions explaining correlation with ECS correspond to the physicalmore » explanation offered for the constraint. Shortwave cloud feedback is generally found to be the dominant contributor to correlations with ECS because it is the largest source of intermodel spread in ECS. In all cases, correlation results from interaction between a variety of terms, reflecting the complex nature of ECS and the fact that feedback terms and forcing are themselves correlated with each other. For 4 of the 19 constraints, the originally proposed explanation for correlation is borne out by our analysis. These four constraints all predict relatively high climate sensitivity. The credibility of six other constraints is called into question owing to correlation with ECS coming mainly from unexpected sources and/or lack of robustness to changes in ensembles. Another six constraints lack a testable explanation and hence cannot be confirmed. Lastly, the fact that this study casts doubt upon more constraints than it confirms highlights the need for caution when identifying emergent constraints from small ensembles.« less

  6. Equilibrium Climate Sensitivity Obtained From Multimillennial Runs of Two GFDL Climate Models

    NASA Astrophysics Data System (ADS)

    Paynter, D.; Frölicher, T. L.; Horowitz, L. W.; Silvers, L. G.

    2018-02-01

    Equilibrium climate sensitivity (ECS), defined as the long-term change in global mean surface air temperature in response to doubling atmospheric CO2, is usually computed from short atmospheric simulations over a mixed layer ocean, or inferred using a linear regression over a short-time period of adjustment. We report the actual ECS from multimillenial simulations of two Geophysical Fluid Dynamics Laboratory (GFDL) general circulation models (GCMs), ESM2M, and CM3 of 3.3 K and 4.8 K, respectively. Both values are 1 K higher than estimates for the same models reported in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change obtained by regressing the Earth's energy imbalance against temperature. This underestimate is mainly due to changes in the climate feedback parameter (-α) within the first century after atmospheric CO2 has stabilized. For both GCMs it is possible to estimate ECS with linear regression to within 0.3 K by increasing CO2 at 1% per year to doubling and using years 51-350 after CO2 is constant. We show that changes in -α differ between the two GCMs and are strongly tied to the changes in both vertical velocity at 500 hPa (ω500) and estimated inversion strength that the GCMs experience during the progression toward the equilibrium. This suggests that while cloud physics parametrizations are important for determining the strength of -α, the substantially different atmospheric state resulting from a changed sea surface temperature pattern may be of equal importance.

  7. Nonlinear climate sensitivity and its implications for future greenhouse warming.

    PubMed

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-11-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing-referred to as specific equilibrium climate sensitivity ( S )-is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth's future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.

  8. Nonlinear climate sensitivity and its implications for future greenhouse warming

    PubMed Central

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-01-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections. PMID:28861462

  9. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  10. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity

    NASA Astrophysics Data System (ADS)

    Frey, William R.; Kay, Jennifer E.

    2018-04-01

    Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.

  11. Climate system properties determining the social cost of carbon

    NASA Astrophysics Data System (ADS)

    Otto, Alexander; Todd, Benjamin J.; Bowerman, Niel; Frame, David J.; Allen, Myles R.

    2013-06-01

    The choice of an appropriate scientific target to guide global mitigation efforts is complicated by uncertainties in the temperature response to greenhouse gas emissions. Much climate policy discourse has been based on the equilibrium global mean temperature increase following a concentration stabilization scenario. This is determined by the equilibrium climate sensitivity (ECS) which, in many studies, shows persistent, fat-tailed uncertainty. However, for many purposes, the equilibrium response is less relevant than the transient response. Here, we show that one prominent policy variable, the social cost of carbon (SCC), is generally better constrained by the transient climate response (TCR) than by the ECS. Simple analytic expressions show the SCC to be directly proportional to the TCR under idealized assumptions when the rate at which we discount future damage equals 2.8%. Using ensemble simulations of a simple climate model we find that knowing the true value of the TCR can reduce the relative uncertainty in the SCC substantially more, up to a factor of 3, than knowing the ECS under typical discounting assumptions. We conclude that the TCR, which is better constrained by observations, less subject to fat-tailed uncertainty and more directly related to the SCC, is generally preferable to the ECS as a single proxy for the climate response in SCC calculations.

  12. Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Stone, P. H.

    1980-01-01

    The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.

  13. How well do simulated last glacial maximum tropical temperatures constrain equilibrium climate sensitivity?

    NASA Astrophysics Data System (ADS)

    Hopcroft, Peter O.; Valdes, Paul J.

    2015-07-01

    Previous work demonstrated a significant correlation between tropical surface air temperature and equilibrium climate sensitivity (ECS) in PMIP (Paleoclimate Modelling Intercomparison Project) phase 2 model simulations of the last glacial maximum (LGM). This implies that reconstructed LGM cooling in this region could provide information about the climate system ECS value. We analyze results from new simulations of the LGM performed as part of Coupled Model Intercomparison Project (CMIP5) and PMIP phase 3. These results show no consistent relationship between the LGM tropical cooling and ECS. A radiative forcing and feedback analysis shows that a number of factors are responsible for this decoupling, some of which are related to vegetation and aerosol feedbacks. While several of the processes identified are LGM specific and do not impact on elevated CO2 simulations, this analysis demonstrates one area where the newer CMIP5 models behave in a qualitatively different manner compared with the older ensemble. The results imply that so-called Earth System components such as vegetation and aerosols can have a significant impact on the climate response in LGM simulations, and this should be taken into account in future analyses.

  14. Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    Dyck, K. A.; Ravelo, A. C.

    2011-12-01

    How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons. First, models may not be adequately representing long-term deep ocean feedbacks. Second, models may incorrectly parameterize tropical cloud (or other short-term) feedback processes. Lastly, either paleo-temperature or radiative forcing may have been incorrectly estimated (e.g. through calibration of paleoclimate evidence for temperature change). Since theory suggests that surface temperature in the high latitudes is more sensitive to radiative forcing changes than surface temperature in the tropics, the results of this study also imply that globally averaged Earth system sensitivity to greenhouse gas concentrations may be higher than most climate models predict.

  15. Exploring the Mass Balance and Sea Level Contribution of Global Glaciers During the Last Interglaciation and Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Smith, S.; Ullman, D. J.; He, F.; Carlson, A. E.; Marzeion, B.; Maussion, F.

    2017-12-01

    Understanding the behavior of the world's glaciers during previous interglaciations is key to interpreting the sensitivity and behavior of the cryosphere under scenarios of future anthropogenic warming. Previous studies of the Last Interglaciation (LIG, 130 ka to 116 ka) indicate elevated global temperatures and higher sea levels than the Holocene, but most assessments of the impact on the cryosphere have focused on the mass balance and volume change of polar ice sheets. In assessing sea-level sources, most studies assume complete deglacation of global glaciers, but this has yet to be tested. In addition, the significant changes in orbital forcing during the LIG and the associated impacts on climate seasonality and variability may have led to unique glacier evolution.Here, we explore the effect of LIG climate on the global glacier budget. We employ the Open Global Glacier Model (OGGM), forced by simulated LIG equilibrium climate anomalies (127 ka) from the Community Climate System Model Version 3 (CCSM3). OGGM is a glacier mass balance and dynamics model, specifically designed to reconstruct global glacier volume change. Our simulations have been conducted in an equilibrium state to determine the effect of the prolonged climate forcing of the LIG. Due to unknown flow characteristics of glaciers during the LIG, we explore the parametric uncertainty in the mass balance and flow sensitivity parameters. As a point of comparison, we also conduct a series of simulations using forcing anomalies from the CCSM3 mid-Holocene (6 ka) experiment. Results from both experiments show that glacier mass balance is highly sensitive to these sensitivity parameters, pointing at the need for glacier margin calibration for OGGM in paleoclimate applications.

  16. Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity from Observations

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.

    2018-01-01

    An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2-radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.

  17. Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations

    NASA Astrophysics Data System (ADS)

    Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.

    2018-02-01

    An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.

  18. Climate Sensitivity in the Anthropocene

    NASA Technical Reports Server (NTRS)

    Previdi, M.; Liepert, B. G.; Peteet, Dorothy M.; Hansen, J.; Beerling, D. J.; Broccoli, A. J.; Frolking, S.; Galloway, J. N.; Heimann, M.; LeQuere, C.; hide

    2014-01-01

    Climate sensitivity in its most basic form is defined as the equilibrium change in global surface temperature that occurs in response to a climate forcing, or externally imposed perturbation of the planetary energy balance. Within this general definition, several specific forms of climate sensitivity exist that differ in terms of the types of climate feedbacks they include. Based on evidence from Earth's history, we suggest here that the relevant form of climate sensitivity in the Anthropocene (e.g. from which to base future greenhouse gas (GHG) stabilization targets) is the Earth system sensitivity including fast feedbacks from changes in water vapour, natural aerosols, clouds and sea ice, slower surface albedo feedbacks from changes in continental ice sheets and vegetation, and climate-GHG feedbacks from changes in natural (land and ocean) carbon sinks. Traditionally, only fast feedbacks have been considered (with the other feedbacks either ignored or treated as forcing), which has led to estimates of the climate sensitivity for doubled CO2 concentrations of about 3 C. The 2×CO2 Earth system sensitivity is higher than this, being approx. 4-6 C if the ice sheet/vegetation albedo feedback is included in addition to the fast feedbacks, and higher still if climate-GHG feedbacks are also included. The inclusion of climate-GHG feedbacks due to changes in the natural carbon sinks has the advantage of more directly linking anthropogenic GHG emissions with the ensuing global temperature increase, thus providing a truer indication of the climate sensitivity to human perturbations. The Earth system climate sensitivity is difficult to quantify due to the lack of palaeo-analogues for the present-day anthropogenic forcing, and the fact that ice sheet and climate-GHG feedbacks have yet to become globally significant in the Anthropocene. Furthermore, current models are unable to adequately simulate the physics of ice sheet decay and certain aspects of the natural carbon and nitrogen cycles. Obtaining quantitative estimates of the Earth system sensitivity is therefore a high priority for future work.

  19. Carbon Climate Feedbacks and Climate Sensitivity (Invited)

    NASA Astrophysics Data System (ADS)

    Fung, I.

    2009-12-01

    The Charney report (22 pages including bibliography and appendices) was written when atmospheric CO2 was 334 ppmv (1979). It estimates a climate sensitivity of 3 +/- 1.5C for a doubling of CO2, and points out the warming delay due to the slow penetration of heat into intermediate depths in the oceans and the decreasing capacity of the oceans to serve a CO2 sink. “We may not be given a warning until the CO2 loading is such that an appreciable climate change is inevitable. The equilibrium warming will eventually occur; it will merely have been postponed.” CO2 exceeded 385 ppmv in 2008, and the warning signs are now abundantly evident. One of the “slow” feedbacks not included in the Charney Report involves the interaction between the land carbon cycle and climate change. The carbon cycle on land is coupled to the water and energy cycles. This paper reviews positive and negative carbon-climate feedbacks associated with changes in the function and distribution of land ecosystems. These feedbacks, once in gear, will magnify climate sensitivity and accelerate global warming.

  20. Attribution of glacier fluctuations to climate change

    NASA Astrophysics Data System (ADS)

    Oerlemans, J.

    2012-04-01

    Glacier retreat is a worlwide phenomenon, which started around the middle of the 19th century. During the period 1800-1850 the number of retreating and advancing glaciers was roughly equal (based on 42 records from different continents). During the period 1850-1900 about 92% of all mountain glaciers became shorter (based on 65 records). After this, the percentage of shrinking glaciers has been around 90% until the present time. The glacier signal is rather coherent over the globe, especially when surging and calving glaciers are not considered (for such glaciers the response to climate change is often masked by length changes related to internal dynamics). From theoretical studies as well as extensive meteorological work on glaciers, the processes that control the response of glaciers to climate change are now basically understood. It is useful to make a difference between geometric factors (e.g. slope, altitudinal range, hypsometry) and climatic setting (e.g. seasonal cycle, precipitation). The most sensitive glaciers appear to be flat glaciers in a maritime climate. Characterizing the dynamic properties of a glacier requires at least two quantities: the climate sensitivity, expressing how the equilibrium glacier state depends on the climatic conditions, and the response time, indicating how fast a glacier approaches a new equilibrium state after a stepwise change in the climatic forcing. These quantities can be estimated from relatively simple theory, showing that differences among glaciers are substantial. For larger glaciers, climate sensitivities (in terms of glacier length) vary from 1 to 8 km per 100 m change in the equilibrium-line altitude. Response times are mainly in the range of 20 to 200 years, with most values between 30 and 80 years. Changes in the equilibrium-line altitude or net mass balance of a glacier are mainly driven by fluctuations in air temperature, precipitation, and global radiation. Energy-balance modelling for many glaciers shows that, globally speaking, a 1 K temperature increase has the same effect as a ~25% decrease in precipitation, or a ~15% increase in global radiation. However, the relative importance of these drivers depends significantly on the climatic setting (notably continentality). In this contribution I will give a brief survey of glacier fluctuations over the past few centuries, and provide arguments that on the worldwide scale air temperature must have been the main driver of these fluctuations. A history of global mean temperature that explains the observed glacier fluctuations best will be discussed. On smaller spatial (regional) and temporal (decades) scales, changes in precipitation become important. Both with respect to the attribution problem (what caused the glacier fluctuations in the past?) and the projection issue (what will happen in the next 100 years?), it is important that many more glaciers are explicitly studied with numerical models. I will argue that for non-calving glaciers these models can be relatively simple.

  1. Earth system sensitivity inferred from Pliocene modelling and data

    USGS Publications Warehouse

    Lunt, D.J.; Haywood, A.M.; Schmidt, G.A.; Salzmann, U.; Valdes, P.J.; Dowsett, H.J.

    2010-01-01

    Quantifying the equilibrium response of global temperatures to an increase in atmospheric carbon dioxide concentrations is one of the cornerstones of climate research. Components of the Earths climate system that vary over long timescales, such as ice sheets and vegetation, could have an important effect on this temperature sensitivity, but have often been neglected. Here we use a coupled atmosphere-ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30-50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse-gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  2. Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.

    This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less

  3. Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity

    DOE PAGES

    Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.; ...

    2016-01-07

    This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less

  4. Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region

    USGS Publications Warehouse

    Diffenbaugh, N.S.; Sloan, L.C.; Snyder, M.A.; Bell, J.L.; Kaplan, J.; Shafer, S.L.; Bartlein, P.J.

    2003-01-01

    Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO2-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO2 concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO2 concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO2 on vegetation were tested in combination with the indirect effects of CO2-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO2 levels.

  5. What Climate Sensitivity Index Is Most Useful for Projections?

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Gregory, Jonathan; Colman, Robert; Andrews, Timothy

    2018-02-01

    Transient climate response (TCR), transient response at 140 years (T140), and equilibrium climate sensitivity (ECS) indices are intended as benchmarks for comparing the magnitude of climate response projected by climate models. It is generally assumed that TCR or T140 would explain more variability between models than ECS for temperature change over the 21st century, since this timescale is the realm of transient climate change. Here we find that TCR explains more variability across Coupled Model Intercomparison Project phase 5 than ECS for global temperature change since preindustrial, for 50 or 100 year global trends up to the present, and for projected change under representative concentration pathways in regions of delayed warming such as the Southern Ocean. However, unexpectedly, we find that ECS correlates higher than TCR for projected change from the present in the global mean and in most regions. This higher correlation does not relate to aerosol forcing, and the physical cause requires further investigation.

  6. High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land

    PubMed Central

    Huntingford, Chris; Mercado, Lina M.

    2016-01-01

    The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or “committed” warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state. PMID:27461560

  7. High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land

    NASA Astrophysics Data System (ADS)

    Huntingford, Chris; Mercado, Lina M.

    2016-07-01

    The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or “committed” warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.

  8. High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land.

    PubMed

    Huntingford, Chris; Mercado, Lina M

    2016-07-27

    The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or "committed" warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.

  9. Objectively combining AR5 instrumental period and paleoclimate climate sensitivity evidence

    NASA Astrophysics Data System (ADS)

    Lewis, Nicholas; Grünwald, Peter

    2018-03-01

    Combining instrumental period evidence regarding equilibrium climate sensitivity with largely independent paleoclimate proxy evidence should enable a more constrained sensitivity estimate to be obtained. Previous, subjective Bayesian approaches involved selection of a prior probability distribution reflecting the investigators' beliefs about climate sensitivity. Here a recently developed approach employing two different statistical methods—objective Bayesian and frequentist likelihood-ratio—is used to combine instrumental period and paleoclimate evidence based on data presented and assessments made in the IPCC Fifth Assessment Report. Probabilistic estimates from each source of evidence are represented by posterior probability density functions (PDFs) of physically-appropriate form that can be uniquely factored into a likelihood function and a noninformative prior distribution. The three-parameter form is shown accurately to fit a wide range of estimated climate sensitivity PDFs. The likelihood functions relating to the probabilistic estimates from the two sources are multiplicatively combined and a prior is derived that is noninformative for inference from the combined evidence. A posterior PDF that incorporates the evidence from both sources is produced using a single-step approach, which avoids the order-dependency that would arise if Bayesian updating were used. Results are compared with an alternative approach using the frequentist signed root likelihood ratio method. Results from these two methods are effectively identical, and provide a 5-95% range for climate sensitivity of 1.1-4.05 K (median 1.87 K).

  10. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    NASA Astrophysics Data System (ADS)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.

  11. Linkages between ocean circulation, heat uptake and transient warming: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik; Stocker, Thomas

    2016-04-01

    Transient global warming due to greenhouse gas radiative forcing is substantially reduced by ocean heat uptake (OHU). However, the fraction of equilibrium warming that is realized in transient climate model simulations differs strongly between models (Frölicher and Paynter 2015). It has been shown that this difference is not only related to the magnitude of OHU, but also to the radiative response the OHU causes, measured by the OHU efficacy (Winton et al., 2010). This efficacy is strongly influenced by the spatial pattern of the OHU and its changes (Rose et al. 2014, Winton et al. 2013), predominantly caused by changes in the Atlantic meridional overturning circulation (AMOC). Even in absence of external greenhouse gas forcing, an AMOC weakening causes a radiative imbalance at the top of the atmosphere (Peltier and Vettoretti, 2014), inducing in a net warming of the Earth System. We investigate linkages between those findings by performing both freshwater and greenhouse gas experiments in an Earth System Model of Intermediate Complexity. To assess the sensitivity of the results to ocean and atmospheric transport as well as climate sensitivity, we use an ensemble of model versions, systematically varying key parameters. We analyze circulation changes and radiative adjustments in conjunction with traditional warming metrics such as the transient climate response and the equilibrium climate sensitivity. This aims to improve the understanding of the influence of ocean circulation and OHU on transient climate change, and of the relevance of different metrics for describing this influence. References: Frölicher, T. L. and D.J. Paynter (2015), Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales, Environ. Res. Lett., 10, 075022 Peltier, W. R., and G. Vettoretti (2014), Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res. Lett., 41, 7306-7313 Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll (2014), The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake, Geophys. Res. Lett., 41, 1071-1078 Winton M., K. Takahashi and I. M. Held (2010), Importance of ocean heat uptake efficacy to transient climate change, J. Clim., 23, 2333-44 Winton, M., S. M. Griffies, B. Samuels, J. L. Sarmiento and T. L. Frölicher (2013) Connecting changing ocean circulation with changing climate, J. Clim., 26, 2268-78

  12. A Scaling Model for the Anthropocene Climate Variability with Projections to 2100

    NASA Astrophysics Data System (ADS)

    Hébert, Raphael; Lovejoy, Shaun

    2017-04-01

    The determination of the climate sensitivity to radiative forcing is a fundamental climate science problem with important policy implications. We use a scaling model, with a limited set of parameters, which can directly calculate the forced globally-average surface air temperature response to anthropogenic and natural forcings. At timescales larger than an inner scale τ, which we determine as the ocean-atmosphere coupling scale at around 2 years, the global system responds, approximately, linearly, so that the variability may be decomposed into additive forced and internal components. The Ruelle response theory extends the classical linear response theory for small perturbations to systems far from equilibrium. Our model thus relates radiative forcings to a forced temperature response by convolution with a suitable Green's function, or climate response function. Motivated by scaling symmetries which allow for long range dependence, we assume a general scaling form, a scaling climate response function (SCRF) which is able to produce a wide range of responses: a power-law truncated at τ. This allows us to analytically calculate the climate sensitivity at different time scales, yielding a one-to-one relation from the transient climate response to the equilibrium climate sensitivity which are estimated, respectively, as 1.6+0.3-0.2K and 2.4+1.3-0.6K at the 90 % confidence level. The model parameters are estimated within a Bayesian framework, with a fractional Gaussian noise error model as the internal variability, from forcing series, instrumental surface temperature datasets and CMIP5 GCMs Representative Concentration Pathways (RCP) scenario runs. This observation based model is robust and projections for the coming century are made following the RCP scenario 2.6, 4.5 and 8.5, yielding in the year 2100, respectively : 1.5 +0.3)_{-0.2K, 2.3 ± 0.4 K and 4.0 ± 0.6 K at the 90 % confidence level. For comparison, the associated projections from a CMIP5 multi-model ensemble(MME) (32 models) are: 1.7 ± 0.8 K, 2.6 ± 0.8 K and 4.8 ± 1.3 K. Therefore, our projection uncertainty is less than half the structural uncertainty of this CMIP5 MME.

  13. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  14. Why Hasn't Earth Warmed as Much as Expected?

    NASA Technical Reports Server (NTRS)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph A.; Ogren, John A.; Rodhe, Henning

    2010-01-01

    The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15 %. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluated by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.

  15. A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series

    NASA Astrophysics Data System (ADS)

    Skeie, R. B.; Berntsen, T.; Aldrin, M.; Holden, M.; Myhre, G.

    2012-04-01

    A key question in climate science is to quantify the sensitivity of the climate system to perturbation in the radiative forcing (RF). This sensitivity is often represented by the equilibrium climate sensitivity, but this quantity is poorly constrained with significant probabilities for high values. In this work the equilibrium climate sensitivity (ECS) is estimated based on observed near-surface temperature change from the instrumental record, changes in ocean heat content and detailed RF time series. RF time series from pre-industrial times to 2010 for all main anthropogenic and natural forcing mechanisms are estimated and the cloud lifetime effect and the semi-direct effect, which are not RF mechanisms in a strict sense, are included in the analysis. The RF time series are linked to the observations of ocean heat content and temperature change through an energy balance model and a stochastic model, using a Bayesian approach to estimate the ECS from the data. The posterior mean of the ECS is 1.9˚C with 90% credible interval (C.I.) ranging from 1.2 to 2.9˚C, which is tighter than previously published estimates. Observational data up to and including year 2010 are used in this study. This is at least ten additional years compared to the majority of previously published studies that have used the instrumental record in attempts to constrain the ECS. We show that the additional 10 years of data, and especially 10 years of additional ocean heat content data, have significantly narrowed the probability density function of the ECS. If only data up to and including year 2000 are used in the analysis, the 90% C.I. is 1.4 to 10.6˚C with a pronounced heavy tail in line with previous estimates of ECS constrained by observations in the 20th century. Also the transient climate response (TCR) is estimated in this study. Using observational data up to and including year 2010 gives a 90% C.I. of 1.0 to 2.1˚C, while the 90% C.I. is significantly broader ranging from 1.1 to 3.4 ˚C if only data up to and including year 2000 is used.

  16. Mountain Plant Community Sentinels: AWOL

    NASA Astrophysics Data System (ADS)

    Malanson, G. P.

    2017-12-01

    Mountain plant communities are thought to be sensitive to climate change. Because climatic gradients are steep on mountain slopes, the spatial response of plant communities to climate change should be compressed and easier to detect. These expectations have led to identifying mountain plant communities as sentinels for climate change. This idea has, however, been criticized. Two critiques, for alpine treeline and alpine tundra, are rehearsed and supplemented. The critique of alpine treeline as sentinel is bolstered with new model results on the confounding role of dispersal mechanisms and sensitivity to climatic volatility. In alpine tundra, for which background turnover rates have yet to be established, community composition may reflect environmental gradients only for extremes where effects of climate are most indirect. Both plant communities, while primarily determined by energy at broad scales, may respond to water as a proximate driver at local scales. These plant communities may not be in equilibrium with climate, and differently scaled time lags may mean that ongoing vegetation change may not signal ongoing climate change (or lack thereof). In both cases a double-whammy is created by scale dependence for time lags and for drivers leading to confusion, but these cases present opportunities for insights into basic ecology.

  17. Climate sensitivity uncertainty: when is good news bad?

    PubMed

    Freeman, Mark C; Wagner, Gernot; Zeckhauser, Richard J

    2015-11-28

    Climate change is real and dangerous. Exactly how bad it will get, however, is uncertain. Uncertainty is particularly relevant for estimates of one of the key parameters: equilibrium climate sensitivity--how eventual temperatures will react as atmospheric carbon dioxide concentrations double. Despite significant advances in climate science and increased confidence in the accuracy of the range itself, the 'likely' range has been 1.5-4.5°C for over three decades. In 2007, the Intergovernmental Panel on Climate Change (IPCC) narrowed it to 2-4.5°C, only to reverse its decision in 2013, reinstating the prior range. In addition, the 2013 IPCC report removed prior mention of 3°C as the 'best estimate'. We interpret the implications of the 2013 IPCC decision to lower the bottom of the range and excise a best estimate. Intuitively, it might seem that a lower bottom would be good news. Here we ask: when might apparently good news about climate sensitivity in fact be bad news in the sense that it lowers societal well-being? The lowered bottom value also implies higher uncertainty about the temperature increase, definitely bad news. Under reasonable assumptions, both the lowering of the lower bound and the removal of the 'best estimate' may well be bad news. © 2015 The Author(s).

  18. Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models

    PubMed Central

    Knight, Christopher G.; Knight, Sylvia H. E.; Massey, Neil; Aina, Tolu; Christensen, Carl; Frame, Dave J.; Kettleborough, Jamie A.; Martin, Andrew; Pascoe, Stephen; Sanderson, Ben; Stainforth, David A.; Allen, Myles R.

    2007-01-01

    In complex spatial models, as used to predict the climate response to greenhouse gas emissions, parameter variation within plausible bounds has major effects on model behavior of interest. Here, we present an unprecedentedly large ensemble of >57,000 climate model runs in which 10 parameters, initial conditions, hardware, and software used to run the model all have been varied. We relate information about the model runs to large-scale model behavior (equilibrium sensitivity of global mean temperature to a doubling of carbon dioxide). We demonstrate that effects of parameter, hardware, and software variation are detectable, complex, and interacting. However, we find most of the effects of parameter variation are caused by a small subset of parameters. Notably, the entrainment coefficient in clouds is associated with 30% of the variation seen in climate sensitivity, although both low and high values can give high climate sensitivity. We demonstrate that the effect of hardware and software is small relative to the effect of parameter variation and, over the wide range of systems tested, may be treated as equivalent to that caused by changes in initial conditions. We discuss the significance of these results in relation to the design and interpretation of climate modeling experiments and large-scale modeling more generally. PMID:17640921

  19. Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Stevens, Bjorn

    2015-05-01

    Equilibrium climate sensitivity to a doubling of CO2 falls between 2.0 and 4.6 K in current climate models, and they suggest a weak increase in global mean precipitation. Inferences from the observational record, however, place climate sensitivity near the lower end of this range and indicate that models underestimate some of the changes in the hydrological cycle. These discrepancies raise the possibility that important feedbacks are missing from the models. A controversial hypothesis suggests that the dry and clear regions of the tropical atmosphere expand in a warming climate and thereby allow more infrared radiation to escape to space. This so-called iris effect could constitute a negative feedback that is not included in climate models. We find that inclusion of such an effect in a climate model moves the simulated responses of both temperature and the hydrological cycle to rising atmospheric greenhouse gas concentrations closer to observations. Alternative suggestions for shortcomings of models -- such as aerosol cooling, volcanic eruptions or insufficient ocean heat uptake -- may explain a slow observed transient warming relative to models, but not the observed enhancement of the hydrological cycle. We propose that, if precipitating convective clouds are more likely to cluster into larger clouds as temperatures rise, this process could constitute a plausible physical mechanism for an iris effect.

  20. A revised energy-balance framework for the Earth

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.

    2017-12-01

    Some of the most important conclusions of climate science are based on energy balance calculations, in which solar energy absorbed by the Earth system is set equal to infrared energy radiated to space. Traditionally, energy radiated to space is assumed to be proportional to surface temperature. We show here problems with this framework, including potential biases in estimates of climate sensitivity based on the 20th-century historical record. This could potentially explain why estimates of equilibrium climate sensitivity (ECS) using observations over the 20th century yield values lower than other estimates. We then present a modified version of the energy balance framework in which energy radiated to space is assumed to be proportional to tropical atmospheric temperature. We use this new framework to estimate ECS and obtain an estimate of 3°C, with a likely range (66% confidence interval) of 2.2-4.1°C.

  1. A Simple Climate Model Program for High School Education

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2012-04-01

    The future climate change projections of the IPCC AR4 are based on GCM simulations, which give a distinct global warming pattern, with an arctic winter amplification, an equilibrium land sea contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the IPCC predictions, the conceptual understanding of these predicted structures of climate change are very difficult to reach if only based on these highly complex GCM simulations and they are not accessible for ordinary people. In this study presented here we will introduce a very simple gridded globally resolved energy balance model based on strongly simplified physical processes, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the 1-dimensional energy balance models and the fully coupled 4-dimensional complex GCMs. It runs on standard PC computers computing globally resolved climate simulation with 2yrs per second or 100,000yrs per day. The program can compute typical global warming scenarios in a few minutes on a standard PC. The computer code is only 730 line long with very simple formulations that high school students should be able to understand. The simple model's climate sensitivity and the spatial structure of the warming pattern is within the uncertainties of the IPCC AR4 models simulations. It is capable of simulating the arctic winter amplification, the equilibrium land sea contrast and the inter-hemispheric warming gradient with good agreement to the IPCC AR4 models in amplitude and structure. The program can be used to do sensitivity studies in which students can change something (e.g. reduce the solar radiation, take away the clouds or make snow black) and see how it effects the climate or the climate response to changes in greenhouse gases. This program is available for every one and could be the basis for high school education. Partners for a high school project are wanted!

  2. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  3. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE PAGES

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; ...

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  4. Soil life in reconstructed ecosystems: initial soil food web responses after rebuilding a forest soil profile for a climate change experiment

    Treesearch

    Paul T. Rygiewicz; Vicente J. Monleon; Elaine R. Ingham; Kendall J. Martin; Mark G. Johnson

    2010-01-01

    Disrupting ecosystem components, while transferring and reconstructing them for experiments can produce myriad responses. Establishing the extent of these biological responses as the system approaches a new equilibrium allows us more reliably to emulate comparable native systems. That is, the sensitivity of analyzing ecosystem processes in a reconstructed system is...

  5. Assessment of bias correction under transient climate change

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2015-04-01

    Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.

  6. Quantifying Tropical Glacier Mass Balance Sensitivity to Climate Change Through Regional-Scale Modeling and The Randolph Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Malone, A.

    2017-12-01

    Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.

  7. A dynamical stabilizer in the climate system: a mechanism suggested by a simple model

    NASA Astrophysics Data System (ADS)

    Bates, J. R.

    1999-05-01

    A simple zonally averaged hemispheric model of the climate system is constructed, based on energy equations for two ocean basins separated at 30° latitude with the surface fluxes calculated explicitly. A combination of empirical input and theoretical calculation is used to determine an annual mean equilibrium climate for the model and to study its stability with respect to small perturbations. The insolation, the mean albedos and the equilibrium temperatures for the two model zones are prescribed from observation. The principal agent of interaction between the zones is the vertically integrated poleward transport of atmospheric angular momentum across their common boundary. This is parameterized using an empirical formula derived from a multiyear atmospheric data set. The surface winds are derived from the angular momentum transport assuming the atmosphere to be in a state of dynamic balance on the climatic timescales of interest. A further assumption that the air sea temperature difference and low level relative humidity remain fixed at their mean observed values then allows the surface fluxes of latent and sensible heat to be calculated. Results from a radiative model, which show a positive lower tropospheric water vapour/infrared radiative feedback on SST perturbations in both zones, are used to calculate the net upward infrared radiative fluxes at the surface. In the model's equilibrium climate, the principal processes balancing the solar radiation absorbed at the surface are evaporation in the tropical zone and net infrared radiation in the extratropical zone. The stability of small perturbations about the equilibrium is studied using a linearized form of the ocean energy equations. Ice-albedo and cloud feedbacks are omitted and attention is focussed on the competing effects of the water vapour/infrared radiative feedback and the turbulent surface flux and oceanic heat transport feedbacks associated with the angular momentum cycle. The perturbation equations involve inter-zone coupling and have coefficients dependent on the values of the equilibrium fluxes and the sensitivity of the angular momentum transport. Analytical solutions for the perturbations are obtained. These provide criteria for the stability of the equilibrium climate. If the evaporative feedback on SST perturbations is omitted, the equilibrium climate is unstable due to the influence of the water vapour/infrared radiative feedback, which dominates over the effects of the sensible heat and ocean heat transport feedbacks. The inclusion of evaporation gives a negative feedback which is of sufficient strength to stabilize the system. The stabilizing mechanism involves wind and humidity factors in the evaporative fluxes that are of comparable magnitude. Both factors involve the angular momentum transport. In including angular momentum and calculating the surface fluxes explicitly, the model presented here differs from the many simple climate models based on the Budyko Sellers formulation. In that formulation, an atmospheric energy balance equation is used to eliminate surface fluxes in favour of top-of-the-atmosphere radiative fluxes and meridional atmospheric energy transports. In the resulting models, infrared radiation appears as a stabilizing influence on SST perturbations and the dynamical stabilizing mechanism found here cannot be identified.

  8. Observation-based Estimate of Climate Sensitivity with a Scaling Climate Response Function

    NASA Astrophysics Data System (ADS)

    Hébert, Raphael; Lovejoy, Shaun

    2016-04-01

    To properly adress the anthropogenic impacts upon the earth system, an estimate of the climate sensitivity to radiative forcing is essential. Observation-based estimates of climate sensitivity are often limited by their ability to take into account the slower response of the climate system imparted mainly by the large thermal inertia of oceans, they are nevertheless essential to provide an alternative to estimates from global circulation models and increase our confidence in estimates of climate sensitivity by the multiplicity of approaches. It is straightforward to calculate the Effective Climate Sensitivity(EffCS) as the ratio of temperature change to the change in radiative forcing; the result is almost identical to the Transient Climate Response(TCR), but it underestimates the Equilibrium Climate Sensitivity(ECS). A study of global mean temperature is thus presented assuming a Scaling Climate Response Function to deterministic radiative forcing. This general form is justified as there exists a scaling symmetry respected by the dynamics, and boundary conditions, over a wide range of scales and it allows for long-range dependencies while retaining only 3 parameter which are estimated empirically. The range of memory is modulated by the scaling exponent H. We can calculate, analytically, a one-to-one relation between the scaling exponent H and the ratio of EffCS to TCR and EffCS to ECS. The scaling exponent of the power law is estimated by a regression of temperature as a function of forcing. We consider for the analysis 4 different datasets of historical global mean temperature and 100 scenario runs of the Coupled Model Intercomparison Project Phase 5 distributed among the 4 Representative Concentration Pathways(RCP) scenarios. We find that the error function for the estimate on historical temperature is very wide and thus, many scaling exponent can be used without meaningful changes in the fit residuals of historical temperatures; their response in the year 2100 on the other hand, is very broad, especially for a low-emission scenario such as RCP 2.6. CMIP5 scenario runs thus allow for a narrower estimate of H which can then be used to estimate the ECS and TCR from the EffCS estimated from the historical data.

  9. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  10. Population-level consequences of herbivory, changing climate, and source-sink dynamics on a long-lived invasive shrub.

    PubMed

    van Klinken, R D; Pichancourt, J B

    2015-12-01

    Long-lived plant species are highly valued environmentally, economically, and socially, but can also cause substantial harm as invaders. Realistic demographic predictions can guide management decisions, and are particularly valuable for long-lived species where population response times can be long. Long-lived species are also challenging, given population dynamics can be affected by factors as diverse as herbivory, climate, and dispersal. We developed a matrix model to evaluate the effects of herbivory by a leaf-feeding biological control agent released in Australia against a long-lived invasive shrub (mesquite, Leguminoseae: Prosopis spp.). The stage-structured, density-dependent model used an annual time step and 10 climatically diverse years of field data. Mesquite population demography is sensitive to source-sink dynamics as most seeds are consumed and redistributed spatially by livestock. In addition, individual mesquite plants, because they are long lived, experience natural climate variation that cycles over decadal scales, as well as anthropogenic climate change. The model therefore explicitly considered the effects of both net dispersal and climate variation. Herbivory strongly regulated mesquite populations through reduced growth and fertility, but additional mortality of older plants will be required to reach management goals within a reasonable time frame. Growth and survival of seeds and seedlings were correlated with daily soil moisture. As a result, population dynamics were sensitive to rainfall scenario, but population response times were typically slow (20-800 years to reach equilibrium or extinction) due to adult longevity. Equilibrium population densities were expected to remain 5% higher, and be more dynamic, if historical multi-decadal climate patterns persist, the effect being dampened by herbivory suppressing seed production irrespective of preceding rainfall. Dense infestations were unlikely to form under a drier climate, and required net dispersal under the current climate. Seed input wasn't required to form dense infestations under a wetter climate. Each factor we considered (ongoing herbivory, changing climate, and source-sink dynamics) has a strong bearing on how this invasive species should be managed, highlighting the need for considering both ecological context (in this case, source-sink dynamics) and the effect of climate variability at relevant temporal scales (daily, multi-decadal, and anthropogenic) when deriving management recommendations for long-lived species.

  11. Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets

    NASA Astrophysics Data System (ADS)

    Battaglia, Gianna; Joos, Fortunat

    2018-06-01

    Ocean deoxygenation is recognized as key ecosystem stressor of the future ocean and associated climate-related ocean risks are relevant for current policy decisions. In particular, benefits of reaching the ambitious 1.5 °C warming target mentioned by the Paris Agreement compared to higher temperature targets are of high interest. Here, we model oceanic oxygen, warming and their compound hazard in terms of metabolic conditions on multi-millennial timescales for a range of equilibrium temperature targets. Scenarios where radiative forcing is stabilized by 2300 are used in ensemble simulations with the Bern3D Earth System Model of Intermediate Complexity. Transiently, the global mean ocean oxygen concentration decreases by a few percent under low forcing and by 40 % under high forcing. Deoxygenation peaks about a thousand years after stabilization of radiative forcing and new steady-state conditions are established after AD 8000 in our model. Hypoxic waters expand over the next millennium and recovery is slow and remains incomplete under high forcing. Largest transient decreases in oxygen are projected for the deep sea. Distinct and near-linear relationships between the equilibrium temperature response and marine O2 loss emerge. These point to the effectiveness of the Paris climate target in reducing marine hazards and risks. Mitigation measures are projected to reduce peak decreases in oceanic oxygen inventory by 4.4 % °C-1 of avoided equilibrium warming. In the upper ocean, the decline of a metabolic index, quantified by the ratio of O2 supply to an organism's O2 demand, is reduced by 6.2 % °C-1 of avoided equilibrium warming. Definitions of peak hypoxia demonstrate strong sensitivity to additional warming. Volumes of water with less than 50 mmol O2 m-3, for instance, increase between 36 % and 76 % °C-1 of equilibrium temperature response. Our results show that millennial-scale responses should be considered in assessments of ocean deoxygenation and associated climate-related ocean risks. Peak hazards occur long after stabilization of radiative forcing and new steady-state conditions establish after AD 8000.

  12. Contributions of Uncertainty in Droplet Nucleation to the Indirect Effect in Global Models

    NASA Astrophysics Data System (ADS)

    Rothenberg, D. A.; Wang, C.; Avramov, A.

    2016-12-01

    Anthropogenic aerosol perturbations to clouds and climate (the indirect effect, or AIE) contribute significant uncertainty towards understanding contemporary climate change. Despite refinements over the past two decades, modern global aerosol-climate models widely disagree on the magnitude of AIE, and wholly disagree with satellite estimates. Part of the spread in estimates of AIE arises from a lack of constraints on what exactly comprised the pre-industrial atmospheric aerosol burden, but another component is attributable to inter-model differences in simulating the chain of aerosol-cloud-precipitation processes which ultimately produce the indirect effect. Thus, one way to help constrain AIE is to thoroughly investigate the differences in aerosol-cloud processes and interactions occurring in these models. We have configured one model, the CESM/MARC, with a suite of parameterizations affecting droplet activation. Each configuration produces similar climatologies with respect to precipitation and cloud macrophysics, but shows different sensitivies to aerosol perturbation - up to 1 W/m^2 differences in AIE. Regional differences in simulated aerosol-cloud interactions, especially in marine regions with little anthropogenic pollution, contribute to the spread in these AIE estimates. The baseline pre-industrial droplet number concentration in marine regions dominated by natural aerosol strongly predicts the magnitude of each model's AIE, suggesting that targeted observations of cloud microphysical properties across different cloud regimes and their sensitivity to aerosol influences could help provide firm constraints and targets for models. Additionally, we have performed supplemental fully-coupled (atmosphere/ocean) simulations with each model configuration, allowing the model to relax to equilibrium following a change in aerosol emissions. These simulations allow us to assess the slower-timescale responses to aerosol perturbations. The spread in fast model responses (which produce the noted changes in indirect effect or forcing) gives rise to large differences in the equilibrium climate state of each configuration. We show that these changes in equilibrium climate state have implications for AIE estimates from model configurations tuned to the present-day climate.

  13. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin D.; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri; Prentice, Iain Colin

    2013-07-01

    Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4-0.5°C by AD 2300; on top of 0.8-1.0°C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22-27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

  14. Transient Simulation of Last Deglaciation with a New Mechanism for B lling-Aller d Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, David J

    2009-01-01

    We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Boelling-Alleroed (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition ismore » caused by the superposition of climatic responses to the transient CO{sub 2} forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.« less

  15. Sensitivity of glaciation in the arid subtropical Andes to changes in temperature, precipitation, and solar radiation

    NASA Astrophysics Data System (ADS)

    Vargo, L. J.; Galewsky, J.; Rupper, S.; Ward, D. J.

    2018-04-01

    The subtropical Andes (18.5-27 °S) have been glaciated in the past, but are presently glacier-free. We use idealized model experiments to quantify glacier sensitivity to changes in climate in order to investigate the climatic drivers of past glaciations. We quantify the equilibrium line altitude (ELA) sensitivity (the change in ELA per change in climate) to temperature, precipitation, and shortwave radiation for three distinct climatic regions in the subtropical Andes. We find that in the western cordillera, where conditions are hyper-arid with the highest solar radiation on Earth, ELA sensitivity is as high as 34 m per % increase in precipitation, and 70 m per % decrease in shortwave radiation. This is compared with the eastern cordillera, where precipitation is the highest of the three regions, and ELA sensitivity is only 10 m per % increase in precipitation, and 25 m per % decrease in shortwave radiation. The high ELA sensitivity to shortwave radiation highlights the influence of radiation on mass balance of high elevation and low-latitude glaciers. We also consider these quantified ELA sensitivities in context of previously dated glacial deposits from the regions. Our results suggest that glaciation of the humid eastern cordillera was driven primarily by lower temperatures, while glaciations of the arid Altiplano and western cordillera were also influenced by increases in precipitation and decreases in shortwave radiation. Using paleoclimate records from the timing of glaciation, we find that glaciation of the hyper-arid western cordillera can be explained by precipitation increases of 90-160% (1.9-2.6× higher than modern), in conjunction with associated decreases in shortwave radiation of 7-12% and in temperature of 3.5 °C.

  16. A Note on the Relationship between Temperature and Water Vapor in Quasi-Equilibrium and Climate States

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.

    2005-01-01

    An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, q (mm), and temperature, T (K), fields obtained from a series of quasi-equilibrium (long-term) simulations for the Tropics using the two-dimensional Goddard Cumulus Ensemble (GCE) model. Earlier model work showed that the forced maintenance of two different wind profiles in the Tropics leads to two different equilibrium states. Investigating this finding required investigation of the slope of the moisture-temperature relations, which turns out to be linear in the Tropics. The extra-tropical climate equilibriums become more complex, but insight on modeling sensitivity can be obtained by linear stepwise regression of the integrated temperature and humidity. A globally curvilinear moisture-temperature distribution, similar to the famous Clausius-Clapeyron curve (i.e., saturated water vapor pressure versus temperature), is then found in this study. Such a genuine finding clarifies that the dynamics are crucial to the climate (shown in the earlier work) but the thermodynamics adjust. The range of validity of this result is further examined herein. The GCE-modeled tropical domain-averaged q and T fields form a linearly-regressed "q-T" slope that genuinely resides within an ideal range of slopes obtained from the aforementioned formulation. A quantity (denoted as dC2/dC1) representing the derivative between the static energy densities due to temperature (C2) and water vapor (C1) for various quasi-equilibrium states can also be obtained. A dC2/dC1 value near unity obtained for the GCE-modeled tropical simulations implies that the static energy densities due to moisture and temperature only differ by a pure constant for various equilibrium states. An overall q-T relation also including extra-tropical regions is, however, found to have a curvilinear relationship. Accordingly, warm/moist regions favor change in water vapor faster than temperature, while cold/dry regions favor an increase in temperature quicker than water vapor.

  17. A Synthesis of Equilibrium and Historical Models of Landform Development.

    ERIC Educational Resources Information Center

    Renwick, William H.

    1985-01-01

    The synthesis of two approaches that can be used in teaching geomorphology is described. The equilibrium approach explains landforms and landform change in terms of equilibrium between landforms and controlling processes. The historical approach draws on climatic geomorphology to describe the effects of Quaternary climatic and tectonic events on…

  18. Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing

    NASA Astrophysics Data System (ADS)

    Kvale, Karin F.; Meissner, Katrin J.

    2017-10-01

    Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with some models moving towards more complex parameterisations. We conduct a simple sensitivity study of a typical, highly simplified parameterisation. In our study, we vary the phytoplankton light attenuation parameter over a range constrained by data during both pre-industrial equilibrated and future climate scenario RCP8.5. In equilibrium, lower light attenuation parameters (weaker self-shading) shift net primary production (NPP) towards the high latitudes, while higher values of light attenuation (stronger shelf-shading) shift NPP towards the low latitudes. Climate forcing magnifies this relationship through changes in the distribution of nutrients both within and between ocean regions. Where and how NPP responds to climate forcing can determine the magnitude and sign of global NPP trends in this high CO2 future scenario. Ocean oxygen is particularly sensitive to parameter choice. Under higher CO2 concentrations, two simulations establish a strong biogeochemical feedback between the Southern Ocean and low-latitude Pacific that highlights the potential for regional teleconnection. Our simulations serve as a reminder that shifts in fundamental properties (e.g. light attenuation by phytoplankton) over deep time have the potential to alter global biogeochemistry.

  19. Equilibrium of Global Amphibian Species Distributions with Climate

    PubMed Central

    Munguía, Mariana; Rahbek, Carsten; Rangel, Thiago F.; Diniz-Filho, Jose Alexandre F.; Araújo, Miguel B.

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions. PMID:22511938

  20. Malaria and global change: Insights, uncertainties and possible surprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.H.; Steel, A.

    Malaria may change with global change. Indeed, global change may affect malaria risk and malaria epidemiology. Malaria risk may change in response to a greenhouse warming; malaria epidemiology, in response to the social, economic, and political developments which a greenhouse warming may trigger. To date, malaria receptivity and epidemiology futures have been explored within the context of equilibrium studies. Equilibrium studies of climate change postulate an equilibrium present climate (the starting point) and a doubled-carbon dioxide climate (the end point), simulate conditions in both instances, and compare the two. What happens while climate changes, i.e., between the starting point andmore » the end point, is ignored. The present paper focuses on malaria receptivity and addresses what equilibrium studies miss, namely transient malaria dynamics.« less

  1. Role of Climate Change in Global Predictions of Future Tropospheric Ozone and Aerosols

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Chen, Wei-Ting; Seinfeld, John H.

    2006-01-01

    A unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies general circulation model II is applied to simulate an equilibrium CO2-forced climate in the year 2100 to examine the effects of climate change on global distributions of tropospheric ozone and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols. The year 2100 CO2 concentration as well as the anthropogenic emissions of ozone precursors and aerosols/aerosol precursors are based on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A2. Year 2100 global O3 and aerosol burdens predicted with changes in both climate and emissions are generally 5-20% lower than those simulated with changes in emissions alone; as exceptions, the nitrate burden is 38% lower, and the secondary organic aerosol burden is 17% higher. Although the CO2-driven climate change alone is predicted to reduce the global O3 concentrations over or near populated and biomass burning areas because of slower transport, enhanced biogenic hydrocarbon emissions, decomposition of peroxyacetyl nitrate at higher temperatures, and the increase of O3 production by increased water vapor at high NOx levels. The warmer climate influences aerosol burdens by increasing aerosol wet deposition, altering climate-sensitive emissions, and shifting aerosol thermodynamic equilibrium. Climate change affects the estimates of the year 2100 direct radiative forcing as a result of the climate-induced changes in burdens and different climatological conditions; with full gas-aerosol coupling and accounting for ozone and direct radiative forcings by the O2, sulfate, nitrate, black carbon, and organic carbon are predicted to be +0.93, -0.72, -1.0, +1.26, and -0.56 W m(exp -2), respectively, using present-day climate and year 2100 emissions, while they are predicted to be +0.76, -0.72, 0.74, +0.97, and -0.58 W m(exp -2), respectively, with year 2100 climate and emissions.

  2. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia

    PubMed Central

    Herzschuh, Ulrike; Birks, H. John B.; Laepple, Thomas; Andreev, Andrei; Melles, Martin; Brigham-Grette, Julie

    2016-01-01

    Broad-scale climate control of vegetation is widely assumed. Vegetation-climate lags are generally thought to have lasted no more than a few centuries. Here our palaeoecological study challenges this concept over glacial–interglacial timescales. Through multivariate analyses of pollen assemblages from Lake El'gygytgyn, Russian Far East and other data we show that interglacial vegetation during the Plio-Pleistocene transition mainly reflects conditions of the preceding glacial instead of contemporary interglacial climate. Vegetation–climate disequilibrium may persist for several millennia, related to the combined effects of permafrost persistence, distant glacial refugia and fire. In contrast, no effects from the preceding interglacial on glacial vegetation are detected. We propose that disequilibrium was stronger during the Plio-Pleistocene transition than during the Mid-Pliocene Warm Period when, in addition to climate, herbivory was important. By analogy to the past, we suggest today's widespread larch ecosystem on permafrost is not in climate equilibrium. Vegetation-based reconstructions of interglacial climates used to assess atmospheric CO2–temperature relationships may thus yield misleading simulations of past global climate sensitivity. PMID:27338025

  3. Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models

    NASA Astrophysics Data System (ADS)

    Mauritsen, T.; Stevens, B. B.

    2015-12-01

    Current climate models exhibit equilibrium climate sensitivities to a doubling of CO2 of 2.0-4.6 K and a weak increase of global mean precipitation. But inferences from the observational record place climate sensitivity near the lower end of the range, and indicate that models underestimate changes in certain aspects of the hydrological cycle under warming. Here we show that both these discrepancies can be explained by a controversial hypothesis of missing negative tropical feedbacks in climate models, known as the iris-effect: Expanding dry and clear regions in a warming climate yield a negative feedback as more infrared radiation can escape to space through this metaphorical opening iris. At the same time the additional infrared cooling of the atmosphere must be balanced by latent heat release thereby accelerating the hydrological cycle. Alternative suggestions of too little aerosol cooling, missing volcanic eruptions, or insufficient ocean heat uptake in models may explain a slow observed transient warming, but are not able to explain the observed enhanced hydrological cycle. We propose that a temperature-dependency of the extent to which precipitating convective clouds cluster or aggregate into larger clouds constitutes a plausible physical mechanism for the iris-effect. On a large scale, organized convective states are dryer than disorganized convection and therefore radiate more in the longwave to space. Thus, if a warmer atmosphere can host more organized convection, then this represents one possible mechanism for an iris-effect. The challenges in modeling, understanding and possibly quantifying a temperature-dependency of convection are, however, substantial.

  4. Improving Constraints on Climate System Properties withAdditional Data and New Statistical and Sampling Methods

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Libardoni, A. G.; Sokolov, A. P.; Monier, E.

    2017-12-01

    We use the updated MIT Earth System Model (MESM) to derive the joint probability distribution function for Equilibrium Climate sensitivity (S), an effective heat diffusivity (Kv), and the net aerosol forcing (Faer). Using a new 1800-member ensemble of MESM runs, we derive PDFs by comparing model outputs against historical observations of surface temperature and global mean ocean heat content. We focus on how changes in (i) the MESM model, (ii) recent surface temperature and ocean heat content observations, and (iii) estimates of internal climate variability will all contribute to uncertainties. We show that estimates of S increase and Faer is less negative. These shifts result partly from new model forcing inputs but also from including recent temperature records that lead to higher values of S and Kv. We show that the parameter distributions are sensitive to the internal variability in the climate system. When considering these factors, we derive our best estimate for the joint probability distribution for the climate system properties. We estimate the 90-percent confidence intervals for climate sensitivity as 2.7-5.4 oC with a mode of 3.5 oC, for Kv as 1.9-23.0 cm2 s-1 with a mode of 4.41 cm2 s-1, and for Faer as -0.4 - -0.04 Wm-2 with a mode of -0.25 Wm-2. Lastly, we estimate TCR to be between 1.4 and 2.1 oC with a mode of 1.8 oC.

  5. Correcting anthropogenic ocean heat uptake estimates for the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey

    2017-04-01

    Estimates of anthropogenic ocean heat uptake typically assume that the ocean was in equilibrium during the pre-industrial era. Recent reconstructions of the Common Era, however, show a multi-century surface cooling trend before the Industrial Revolution. Using a time-evolving state estimation method, we find that the 1750 C.E. ocean must have been out of equilibrium in order to fit the H.M.S. Challenger, WOCE, and Argo hydrographic data. When the disequilibrated ocean conditions are taken into account, the inferred ocean heat uptake from 1750-2014 C.E. is revised due to the deep ocean memory of Little Ice Age surface forcing. These effects of ocean disequilibrium should also be considered when interpreting climate sensitivity estimates.

  6. SEEPLUS: A SIMPLE ONLINE CLIMATE MODEL

    NASA Astrophysics Data System (ADS)

    Tsutsui, Junichi

    A web application for a simple climate model - SEEPLUS (a Simple climate model to Examine Emission Pathways Leading to Updated Scenarios) - has been developed. SEEPLUS consists of carbon-cycle and climate-change modules, through which it provides the information infrastructure required to perform climate-change experiments, even on a millennial-timescale. The main objective of this application is to share the latest scientific knowledge acquired from climate modeling studies among the different stakeholders involved in climate-change issues. Both the carbon-cycle and climate-change modules employ impulse response functions (IRFs) for their key processes, thereby enabling the model to integrate the outcome from an ensemble of complex climate models. The current IRF parameters and forcing manipulation are basically consistent with, or within an uncertainty range of, the understanding of certain key aspects such as the equivalent climate sensitivity and ocean CO2 uptake data documented in representative literature. The carbon-cycle module enables inverse calculation to determine the emission pathway required in order to attain a given concentration pathway, thereby providing a flexible way to compare the module with more advanced modeling studies. The module also enables analytical evaluation of its equilibrium states, thereby facilitating the long-term planning of global warming mitigation.

  7. On the icy edge at Louth and Korolev craters

    NASA Astrophysics Data System (ADS)

    Bapst, Jonathan; Byrne, Shane; Brown, Adrian J.

    2018-07-01

    The modern climate of Mars has been well characterized from over a decade of orbiting spacecraft, in situ measurements via landers/rovers, and theoretical advances in climate modeling. Nonetheless, important questions remain unanswered, including the present-day mass balance of the north polar residual cap and its icy outliers. Exposed water-ice mounds are found in craters, and extend as far equatorward as 70.2°N. Due to their southerly location, these ice mounds are likely more sensitive to ongoing changes in climate. We analyze high-resolution images of the Louth crater ice mound, and employ a coupled 1-D thermal and atmospheric model to estimate annual mass balance of both Louth and Korolev water ice. We incorporate the effects of shallowly-sloping surfaces and seasonally-dependent water ice albedo. No clear trend in the advance or retreat of Louth crater water ice is observed in over 4 Mars years of repeat, high-resolution images. Secular changes are either sufficiently small as to not be detected, or the ice is in equilibrium. Modeled mass balance ranges from -6 to +2 mm of water ice per Mars year at both sites, with nominal cases being in near-equilibrium (<0.5 mm of ice loss per Mars year).

  8. The proportionality of global warming to cumulative carbon emissions.

    PubMed

    Matthews, H Damon; Gillett, Nathan P; Stott, Peter A; Zickfeld, Kirsten

    2009-06-11

    The global temperature response to increasing atmospheric CO(2) is often quantified by metrics such as equilibrium climate sensitivity and transient climate response. These approaches, however, do not account for carbon cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO(2) emissions. Climate-carbon modelling experiments have shown that: (1) the warming per unit CO(2) emitted does not depend on the background CO(2) concentration; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions; and (3) the temperature response to a pulse of CO(2) is approximately constant on timescales of decades to centuries. Here we generalize these results and show that the carbon-climate response (CCR), defined as the ratio of temperature change to cumulative carbon emissions, is approximately independent of both the atmospheric CO(2) concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0-2.1 degrees C per trillion tonnes of carbon (Tt C) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate-carbon models. Uncertainty in land-use CO(2) emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate-carbon models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and carbon cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, carbon sinks and climate-carbon feedbacks into a single quantity, the CCR allows CO(2)-induced global mean temperature change to be inferred directly from cumulative carbon emissions.

  9. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.

    2016-09-01

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reverse on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.

  10. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevellec, Florian; Fedorov, Alexey V.

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less

  11. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    DOE PAGES

    Sevellec, Florian; Fedorov, Alexey V.

    2016-01-04

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less

  12. Are there pre-Quaternary geological analogues for a future greenhouse warming?

    USGS Publications Warehouse

    Haywood, A.M.; Ridgwell, A.; Lunt, D.J.; Hill, D.J.; Pound, M.J.; Dowsett, H.J.; Dolan, A.M.; Francis, J.E.; Williams, M.

    2011-01-01

    Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO2 forcing-whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate-or the sensitivity of the climate system itself to CO2 was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO2) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO2 concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO2 thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate. ?? 2011 The Royal Society.

  13. Are there pre-Quaternary geological analogues for a future greenhouse warming?

    PubMed

    Haywood, Alan M; Ridgwell, Andy; Lunt, Daniel J; Hill, Daniel J; Pound, Matthew J; Dowsett, Harry J; Dolan, Aisling M; Francis, Jane E; Williams, Mark

    2011-03-13

    Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO(2) forcing--whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate--or the sensitivity of the climate system itself to CO(2) was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO(2)) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO(2) concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO(2) thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate.

  14. Transitions between multiple equilibria of paleo climate: a glimpse in to the dynamics of abrupt climate change

    NASA Astrophysics Data System (ADS)

    Ferreira, David; Marshall, John; Ito, Takamitsu; McGee, David; Moreno-Chamarro, Eduardo

    2017-04-01

    The dynamics regulating large climatic transitions such as glacial-interglacial cycles or DO events remains a puzzle. Forcings behind these transitions are not robustly identified and potential candidates (e.g. Milankovitch cycles, freshwater perturbations) often appear too weak to explain such dramatic transitions. A potential solution to this long-standing puzzle is that Earth's climate is endowed with multiple equilibrium states of global extent. Such states are commonly found in low-order or conceptual climate models, but it is unclear whether a system as complex as Earth's climate can sustain multiple equilibrium states. Here we report that multiple equilibrium states of the climate system are also possible in a complex, fully dynamical coupled ocean-atmosphere-sea ice GCM with idealized Earth-like geometry, resolved weather systems and a hydrological cycle. In our model, two equilibrium states coexist for the same parameters and external forcings: a Warm climate with a small Northern hemisphere sea ice cap and a large southern one and a Cold climate with large ice caps at both poles. The dynamical states of the Warm and Cold solutions exhibit striking similarities with our present-day climate and the climate of the Last Glacial Maximum, respectively. A carbon cycle model driven by the two dynamical states produces an atmospheric pCO2 draw-down of about 110 pm between the Warm and Cold states, close to Glacial-Interglacial differences found in ice cores. Mechanism controlling the existence of the multiple states and changes in the atmospheric CO2 will be briefly presented. Finally we willdescribe transition experiments from the Cold to the Warm state, focusing on the lead-lags in the system, notably between the Northern and Southern Hemispheres climates.

  15. Hydrographic biases in global coupled climate models and their relation to the meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Plancherel, Yves

    2015-01-01

    Comparison of the volumetric θ/S distribution of models participating in the Climate Model Intercomparison Project 3 (CMIP3) indicates that these models differ widely in their ability to represent the thermohaline properties of water masses. Relationships between features of the quasi-equilibrium hydrographic mean state of these models and aspects of their overturning circulations are investigated. This is achieved quantitatively with the help of seven diagnostic hydrographic stations. These few stations were specifically selected to provide a minimalist schematic of the global water mass system. Relationships between hydrographic conditions in the North Atlantic measured with a subset of these stations suggest that hydrographic properties in the subpolar North Atlantic are set by the circulation field of each model, pointing towards deficiencies in the models ability to resolve the Gulf Stream-North Atlantic Current system as a major limitation. Since diapycnal mixing and viscosity parameterizations differ across CMIP3 models and exert a strong control on the overturning, it is likely that these architectural differences ultimately explain the main across-model differences in overturning circulation, temperature and salinity in the North Atlantic. The analysis of properties across the quasi-equilibrium states of the CMIP3 models agrees with previously reported relationships between meridional steric height gradients or horizontal density contrasts at depth and the strength of the deep water cell. Robust relationships are also found in the Southern Ocean linking measures of vertical stratification with the strength of the abyssal circulations across the CMIP3 models. Consistent correlations between aspects of the quasi-equilibrium hydrography in the Southern Ocean and the sensitivity of the abyssal cell to increasing radiative forcing by 2100 were found. Using these relations in conjunction with modern hydrographic observations to interpolate the fate of the abyssal cell suggests that the Southern abyssal cell may decrease by roughly 20 % by the end of the century. Similar systematic relationships between the quasi-equilibrium hydrographic states of the models and the sensitivity of their Atlantic deep water cell could not be found.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bony, Sandrine; Stevens, Bjorn; Coppin, David

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less

  17. State-Dependence of the Climate Sensitivity in Earth System Models of Intermediate Complexity

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik L.; Stocker, Thomas F.

    2017-10-01

    Growing evidence from general circulation models (GCMs) indicates that the equilibrium climate sensitivity (ECS) depends on the magnitude of forcing, which is commonly referred to as state-dependence. We present a comprehensive assessment of ECS state-dependence in Earth system models of intermediate complexity (EMICs) by analyzing millennial simulations with sustained 2×CO2 and 4×CO2 forcings. We compare different extrapolation methods and show that ECS is smaller in the higher-forcing scenario in 12 out of 15 EMICs, in contrast to the opposite behavior reported from GCMs. In one such EMIC, the Bern3D-LPX model, this state-dependence is mainly due to the weakening sea ice-albedo feedback in the Southern Ocean, which depends on model configuration. Due to ocean-mixing adjustments, state-dependence is only detected hundreds of years after the abrupt forcing, highlighting the need for long model integrations. Adjustments to feedback parametrizations of EMICs may be necessary if GCM intercomparisons confirm an opposite state-dependence.

  18. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    NASA Astrophysics Data System (ADS)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are consistently in good agreement with values of ICS inferred from global energy budget constraints. This suggests that the current generation of coupled climate models are not overly sensitive. However, since global energy budget observations do not constrain ECS, it is less certain whether model ECS values are realistic.

  19. SST Patterns, Atmospheric Variability, and Inferred Sensitivities in the CMIP5 Model Archive

    NASA Astrophysics Data System (ADS)

    Marvel, K.; Pincus, R.; Schmidt, G. A.

    2017-12-01

    An emerging consensus suggests that global mean feedbacks to increasing temperature are not constant in time. If feedbacks become more positive in the future, the equilibrium climate sensitivity (ECS) inferred from recent observed global energy budget constraints is likely to be biased low. Time-varying feedbacks are largely tied to evolving sea-surface temperature patterns. In particular, recent anomalously cool conditions in the tropical Pacific may have triggered feedbacks that are not reproduced in equilibrium simulations where the tropical Pacific and Southern Ocean have had time to warm. Here, we use AMIP and CMIP5 historical simulations to explore the ECS that may be inferred over the recent historical period. We find that in all but one CMIP5 model, the feedbacks triggered by observed SST patterns are significantly less positive than those arising from historical simulations in which SST patterns are allowed to evolve unconstrained. However, there are substantial variations in feedbacks even when the SST pattern is held fixed, suggesting that atmospheric and land variability contribute to uncertainty in the estimates of ECS obtained from recent observations of the global energy budget.

  20. Effects of nontropical forest cover on climate

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Chou, M.-D.; Arking, A.

    1984-01-01

    The albedo of a forest with snow on the ground is much less than that of snow-covered low vegetation such as tundra. As a result, simulation of the Northern Hemisphere climate, when fully forested south of a suitably chosen taiga/tundra boundary (ecocline), produces a hemispheric surface air temperature 1.9 K higher than that of an earth devoid of trees. Using variations of the solar constant to force climate changes in the GLAS Multi-Layer Energy Balance Model, the role of snow-albedo feedback in increasing the climate sensitivity to external perturbations is reexamined. The effect of snow-albedo feedback is found to be significantly reduced when a low albedo is used for snow over taiga, south of the fixed latitude of the ecocline. If the ecocline shifts to maintain equilibrium with the new climate - which is presumed to occur in a prolonged perturbation when time is sufficient for trees to grow or die and fall - the feedback is stronger than for a fixed ecocline, especially at high latitudes. However, this snow/vegetation-albedo feedback is still essentially weaker than the snow-albedo feedback in the forest-free case. The loss of forest to agriculture and other land-use would put the present climate further away from that associated with the fully forested earth south of the ecocline and closer to the forest-free case. Thus, the decrease in nontropical forest cover since prehistoric times has probably affected the climate by reducing the temperatures and by increasing the sensitivity to perturbations, with both effects more pronounced at high latitudes.

  1. The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity

    NASA Astrophysics Data System (ADS)

    Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn

    2018-04-01

    Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.

  2. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    NASA Astrophysics Data System (ADS)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be reached as the climate is further warmed. Finally, we suggest novel model validation techniques based upon comparing the characteristics of FY and MY ice within models to observations. We propose that keeping an account of FY and MY ice area within sea ice models offers a powerful new way to evaluate model projections of sea ice in a greenhouse warming climate.

  3. Sensitivity of glacier mass balance and equilibrium line altitude to climatic change on King George Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Falk, Ulrike; Lopez, Damian; Silva-Busso, Adrian

    2017-04-01

    The South Shetland Islands are located at the northern tip of the Antarctic Peninsula which is among the fastest warming regions on Earth. Surface air temperature increases (ca. 3 K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K/100 m), and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns especially during winter glacial mass accumulation periods. The increased mesocyclonic activity during the winter time in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. The impact on winter accumulation results in even more negative mass balance estimates. Six years of glaciological measurements on mass balance stake transects are used with a glacier melt model to assess changes in melt water input to the coastal waters, glacier surface mass balance and the equilibrium line altitude. The average equilibrium line altitude (ELA) calculated from own glaciological observations for KGI over the time period 2010 - 2015 amounts to ELA=330±100 m. Published studies suggest rather stable condition slightly negative glacier mass balance until the mid 80's with an ELA of approx. 150 m. The calculated accumulation area ratio suggests rather dramatic changes in extension of the inland ice cap for the South Shetland Islands until an equilibrium with concurrent climate conditions is reached.

  4. The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability

    NASA Technical Reports Server (NTRS)

    Zhou, Shuntai; Stone, Peter H.

    1993-01-01

    Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.

  5. The PMIP4 contribution to CMIP6 - Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations

    NASA Astrophysics Data System (ADS)

    Otto-Bliesner, Bette L.; Braconnot, Pascale; Harrison, Sandy P.; Lunt, Daniel J.; Abe-Ouchi, Ayako; Albani, Samuel; Bartlein, Patrick J.; Capron, Emilie; Carlson, Anders E.; Dutton, Andrea; Fischer, Hubertus; Goelzer, Heiko; Govin, Aline; Haywood, Alan; Joos, Fortunat; LeGrande, Allegra N.; Lipscomb, William H.; Lohmann, Gerrit; Mahowald, Natalie; Nehrbass-Ahles, Christoph; Pausata, Francesco S. R.; Peterschmitt, Jean-Yves; Phipps, Steven J.; Renssen, Hans; Zhang, Qiong

    2017-11-01

    Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.

  6. US Drought-Heat Wave Relationships in Past Versus Current Climates

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.

    2017-12-01

    This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.

  7. How Continuous Observations of Shortwave Reflectance Spectra Can Narrow the Range of Shortwave Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Feldman, D.; Collins, W. D.; Wielicki, B. A.; Shea, Y.; Mlynczak, M. G.; Kuo, C.; Nguyen, N.

    2017-12-01

    Shortwave feedbacks are a persistent source of uncertainty for climate models and a large contributor to the diagnosed range of equilibrium climate sensitivity (ECS) for the international multi-model ensemble. The processes that contribute to these feedbacks affect top-of-atmosphere energetics and produce spectral signatures that may be time-evolving. We explore the value of such spectral signatures for providing an observational constraint on model ECS by simulating top-of-atmosphere shortwave reflectance spectra across much of the energetically-relevant shortwave bandpass (300 to 2500 nm). We present centennial-length shortwave hyperspectral simulations from low, medium and high ECS models that reported to the CMIP5 archive as part of an Observing System Simulation Experiment (OSSE) in support of the CLimate Absolute Radiance and Refractivity Observatory (CLARREO). Our framework interfaces with CMIP5 archive results and is agnostic to the choice of model. We simulated spectra from the INM-CM4 model (ECS of 2.08 °K/2xCO2), the MIROC5 model (ECS of 2.70 °K/2xCO2), and the CSIRO Mk3-6-0 (ECS of 4.08 °K/2xCO2) based on those models' integrations of the RCP8.5 scenario for the 21st Century. This approach allows us to explore how perfect data records can exclude models of lower or higher climate sensitivity. We find that spectral channels covering visible and near-infrared water-vapor overtone bands can potentially exclude a low or high sensitivity model with under 15 years' of absolutely-calibrated data. These different spectral channels are sensitive to model cloud radiative effect and cloud height changes, respectively. These unprecedented calculations lay the groundwork for spectral simulations of perturbed-physics ensembles in order to identify those shortwave observations that can help narrow the range in shortwave model feedbacks and ultimately help reduce the stubbornly-large range in model ECS.

  8. Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds

    NASA Astrophysics Data System (ADS)

    Siler, Nicholas; Po-Chedley, Stephen; Bretherton, Christopher S.

    2018-02-01

    Despite the increasing sophistication of climate models, the amount of surface warming expected from a doubling of atmospheric CO_2 (equilibrium climate sensitivity) remains stubbornly uncertain, in part because of differences in how models simulate the change in global albedo due to clouds (the shortwave cloud feedback). Here, model differences in the shortwave cloud feedback are found to be closely related to the spatial pattern of the cloud contribution to albedo (α) in simulations of the current climate: high-feedback models exhibit lower (higher) α in regions of warm (cool) sea-surface temperatures, and therefore predict a larger reduction in global-mean α as temperatures rise and warm regions expand. The spatial pattern of α is found to be strongly predictive (r=0.84) of a model's global cloud feedback, with satellite observations indicating a most-likely value of 0.58± 0.31 Wm^{-2} K^{-1} (90% confidence). This estimate is higher than the model-average cloud feedback of 0.43 Wm^{-2} K^{-1}, with half the range of uncertainty. The observational constraint on climate sensitivity is weaker but still significant, suggesting a likely value of 3.68 ± 1.30 K (90% confidence), which also favors the upper range of model estimates. These results suggest that uncertainty in model estimates of the global cloud feedback may be substantially reduced by ensuring a realistic distribution of clouds between regions of warm and cool SSTs in simulations of the current climate.

  9. Fine-scale modeling of bristlecone pine treeline position in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Bruening, Jamis M.; Tran, Tyler J.; Bunn, Andrew G.; Weiss, Stuart B.; Salzer, Matthew W.

    2017-01-01

    Great Basin bristlecone pine (Pinus longaeva) and foxtail pine (Pinus balfouriana) are valuable paleoclimate resources due to their longevity and climatic sensitivity of their annually-resolved rings. Treeline research has shown that growing season temperatures limit tree growth at and just below the upper treeline. In the Great Basin, the presence of precisely dated remnant wood above modern treeline shows that the treeline ecotone shifts at centennial timescales tracking long-term changes in climate; in some areas during the Holocene climatic optimum treeline was 100 meters higher than at present. Regional treeline position models built exclusively from climate data may identify characteristics specific to Great Basin treelines and inform future physiological studies, providing a measure of climate sensitivity specific to bristlecone and foxtail pine treelines. This study implements a topoclimatic analysis—using topographic variables to explain patterns in surface temperatures across diverse mountainous terrain—to model the treeline position of three semi-arid bristlecone and/or foxtail pine treelines in the Great Basin as a function of growing season length and mean temperature calculated from in situ measurements. Results indicate: (1) the treeline sites used in this study are similar to other treelines globally, and require a growing season length of between 147-153 days and average temperature ranging from 5.5°C-7.2°C, (2) site-specific treeline position models may be improved through topoclimatic analysis and (3) treeline position in the Great Basin is likely out of equilibrium with the current climate, indicating a possible future upslope shift in treeline position.

  10. Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)

    DOE PAGES

    Sakaguchi, K.; Zeng, X.; Leung, L. R.; ...

    2016-12-21

    Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less

  11. Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, K.; Zeng, X.; Leung, L. R.

    Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less

  12. On Budyko curve as a consequence of climate-soil-vegetation equilibrium hypothesis

    NASA Astrophysics Data System (ADS)

    Pande, S.

    2012-04-01

    A hypothesis that Budyko curve is a consequence of stable equilibriums of climate-soil-vegetation co-evolution is tested at biome scale. We assume that i) distribution of vegetation, soil and climate within a biome is a distribution of equilibriums of similar soil-vegetation dynamics and that this dynamics is different across different biomes and ii) soil and vegetation are in dynamic equilibrium with climate while in static equilibrium with each other. In order to test the hypothesis, a two stage regression is considered using MOPEX/Hydrologic Synthesis Project dataset for basins in eastern United States. In the first stage, multivariate regression (Seemingly Unrelated Regression) is performed for each biome with soil (estimated porosity and slope of soil water retention curve) and vegetation characteristics (5-week NDVI gradient) as dependent variables and aridity index, vegetation and soil characteristics as independent variables for respective dependent variables. The regression residuals of the first stage along with aridity index then serve as second stage independent variables while actual vaporization to precipitation ratio (vapor index) serving as dependent variable. Insignificance, if revealed, of a first stage parameter allows us to reject the role of corresponding soil or vegetation characteristics in the co-evolution hypothesis. Meanwhile the significance of second stage regression parameter corresponding to a first stage residual allow us to reject the hypothesis that Budyko curve is a locus "solely" of climate-soil-vegetation co-evolution equilibrium points. Results suggest lack of evidence for soil-vegetation co-evolution in Prairies and Mixed/SouthEast Forests (unlike in Deciduous Forests) though climate plays a dominant role in explaining within biome soil and vegetation characteristics across all the biomes. Preliminary results indicate absence of effects beyond climate-soil-vegetation co-evolution in explaining the ratio of annual total minimum monthly flows to precipitation in Deciduous Forests though other three biome types show presence of effects beyond co-evolutionary. Such an analysis can yield insights into the nature of hydrologic change when assessed along the Budyko curve as well as non co-evolutionary effects such as anthropogenic effects on basin scale annual water balances.

  13. Exploring Resilience of Canadian Rivers to Climate Change

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Paltsev, A.; Accatino, F.; Aldred, D. A.; Guo, J.; Lehner, B.; Ouellet Dallaire, C. O.

    2015-12-01

    Climate change is leading to a hydrological intensification (i.e., wet areas and periods are becoming wetter; dry areas and periods are becoming drier). Impacts of climate change across Canada will vary, and Canadians would benefit from insights as to where these impacts will occur and what these impacts will be in order to be in a position to effectively respond to these changes. Resilience is a term that is often used - and occasionally misused. We make the distinction between engineering resilience and ecological resilience. Engineering resilience assumes that a system may exist in only one stable equilibrium state, and measures the system's resistance to change. In contrast, ecological resilience assumes that a system may exist in multiple equilibrium states and measures the magnitude of change a system can absorb before shifting from one equilibrium state to another. We adopt the concept of engineering resilience and explore the ability of riverscapes (rivers and their watersheds) to maintain or quickly return to an equilibrium state in response to changing climatic conditions. We use the Budyko curve to examine interactions of climate and water yield in riverscapes across Canada. The Budyko curve describes the relationship between a riverscape's potential evapotranspiration (PET) and its actual evapotranspiration (AET) both normalized by precipitation (P) - i.e., the curve describes AET/P as a function of PET/P. We define elasticity is a measure of a system's ability to maintain this relationship consistent with the Budyko curve as climate changes (ratio of range of PET/P to range of AET/P between different climate periods). We classify each riverscape as resilient (elasticity > 1) or non-resilient (elasticity ≤ 1) in response to climate change - exploring both past and future climate change scenarios. This Budyko approach enables us to characterize the resilience of riverscapes, predict their vulnerability to climate change, and propose management measures that will enable societies to adapt to climate change.

  14. Spatial variability and trends in Younger Dryas equilibrium line altitudes across the European Alps using a hypsometrically based ELA model: results and implications

    NASA Astrophysics Data System (ADS)

    Keeler, D. G.; Rupper, S.; Schaefer, J. M.; Finkel, R. C.; Maurer, J. M.

    2016-12-01

    Alpine glaciers constitute an important component of terrestrial paleoclimate records due to, among other characteristics, their high sensitivity to climate change, near global extent, and their integration of myriad climate variables into a single, easily detected signal. Because the glacier equilibrium line altitude (ELA) provides a more explicit representation of climate than many other glacier properties, ELA methods allow for more direct comparisons of multiple glaciers within or between regions. Such comparisons allow for more complete investigations of the ultimate causes of mountain glaciation during specific events. Many studies however tend to focus on a limited number of sites, and employ a large variety of different techniques for ELA reconstruction between studies, making wider climate implications more tenuous. Methods of ELA reconstruction that can be rapidly and consistently applied to an arbitrary number of paleo-glaciers would provide a more accurate portrayal of the changes in climate across a given region. Here we present ELA reconstructions from Egesen Stadial moraines across the European Alps using an ELA model accounting for differences in glacier width, glacier shape, bed topography, ice thickness, and glacier length, including several glaciers constrained to the Younger Dryas using surface exposure dating techniques. We compare reconstructed Younger Dryas ELA values to modern ELA values using the same model, or using end of summer snowline estimates where no glacier is currently present. We further provide uncertainty estimates on the ΔELA using bootstrapped Monte Carlo simulations for the various input parameters. Preliminary results compare favorably to previous glacier studies of the European Younger Dryas, but provide greater context from many glaciers across the region as a whole. Such results allow for a more thorough investigation of the spatial variability and trends in climate during the Younger Dryas across the European Alps, and comparisons of other regions in the future.

  15. Evaluation of diffusivity in the anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    PubMed

    Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M

    2014-01-01

    3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P < .0001), confirming the accuracy of the ADC measurement with the diffusion-sensitized driven-equilibrium sequence. The ADCs in the normal pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P < .01). We demonstrated that diffusion-sensitized driven-equilibrium turbo field echo is feasible in assessing ADC in the pituitary gland.

  16. Paleogeographic Controls on Climate Sensitivity and Feedback Strength and their Impacts on Snowball Earth Initiation

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.

    2013-12-01

    The enigmatic Neoproterozoic geological record suggests the potential for a fully glaciated 'Snowball Earth.' Low-latitude continental position has been invoked as a potential Snowball Earth trigger by increasing surface albedo and decreasing atmospheric CO2 concentrations through increased silicate weathering. Herein, climate response to reduction of total solar irradiance (TSI) and CO2 concentration is tested using four different land configurations (aquaplanet, modern, Neoproterozoic, and low-latitude supercontinent) with uniform topography in the NCAR Community Atmosphere Model (CAM, version 3.1) GCM with a mixed-layer ocean. Despite a lower global mean surface albedo at 100% TSI for the aquaplanet scenario, the threshold for global glaciation decreases from 92% TSI in the aquaplanet configuration to 85% TSI with a low-latitude supercontinent. Climate sensitivity, as measured by the equilibrium temperature response to TSI and CO2 changes, varied across all four geographies at each forcing pair. The range of sensitivities observed suggests that climate feedback strengths are strongly dependent on both paleogeography and forcing. To identify the mechanisms responsible for the observed breadth in climate sensitivities, we calculate radiative kernels for four different TSI and CO2 forcing pairs in order to assess the strengths of the water vapor, albedo, lapse rate, Planck, and cloud feedbacks and how they vary with both forcing and paleogeography. Radiative kernels are calculated using an uncoupled version of the CAM3.1 radiation code and then perturbing climate fields of interest (surface albedo, specific humidity, and temperature) by a standard amount. No cloud kernels are calculated; instead, the cloud feedback is calculated by correcting the change in cloud radiative forcing to account for cloud masking. We find that paleogeography strongly controls how the water vapor and lapse rate feedbacks respond to different forcings. In particular, low latitude continents diminish the change in water vapor feedback strengths resulting from changes in forcing. Continental heating intensifies the Walker circulation, enhancing surface evaporation and moistening the marine troposphere. Additionally, dehumidification of the troposphere over large tropical continents in CAM3.1 increases direct heating by decreasing cloud cover. As a result, in the absence of potential silicate weathering feedbacks, large tropical landmasses raise the barrier to initiation of Snowball events. More generally, these simulations demonstrate the substantial influence of geography on climate sensitivity and climate feedback mechanisms, and challenge the notion that reduced continental area early in Earth history might provide a solution to the Faint Young Sun Paradox.

  17. Stronger Ocean Meridinal Heat Transport with a Weaker Atlantic Meridional Overturning Circulation?

    NASA Astrophysics Data System (ADS)

    Sevellec, F.; Fedorov, A. V.

    2014-12-01

    It is typically assumed that oceanic heat transport is well and positively correlated with the Atlantic Meridional Ocean Circulation (AMOC). In numerical "water-hosing" experiments, for example, imposing an anomalous freshwater flux in the northern hemisphere leads to a slow-down of the AMOC and a corresponding reduction of the northward heat transport. Here, we study the sensitivity of the heat transport to surface freshwater fluxes using a generalized stability analysis and find that, while the direct relationship between the AMOC and heat transport holds on shorter time scales, it completely reverses on timescales longer than ~500 yr. That is, a reduction in the AMOC volume transport can actually lead to a stronger heat transport on those long timescales, which results from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistically equilibrium) in ocean and climate GCM as well as various paleoclimate problems such as millennial climate variability and the maintenance of equable climate states.

  18. Thermodynamic control of anvil cloud amount

    PubMed Central

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko

    2016-01-01

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863

  19. Thermodynamic control of anvil cloud amount

    DOE PAGES

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; ...

    2016-07-13

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less

  20. Hydroclimatic trends in simulations over the CORDEX North America region

    NASA Astrophysics Data System (ADS)

    Arritt, Raymond; Groisman, Pavel; Daniel, Ariele; Schillerberg, Tayler

    2015-04-01

    An increase in the occurrence of heavy precipitation has been one of the most pronounced climate change signals for the central United States. We study this trend by using the RegCM4 regional climate model to dynamically downscale CMIP5 global projections for 1950-2099 over the CORDEX North America domain. We examine the robustness of the results by driving the regional model with two different global models, by performing simulations at both 50 km and 25 km grid spacing, and by using different convective parameterizations in RegCM4. The global models sample the range of climate sensitivity in CMIP5: HadGEM2-ES has the highest equilibrium climate sensitivity of the CMIP5 models, while GFDL-ESM2M has one of the lowest sensitivities. RegCM4 results show increases in heavy precipitation (> 50 mm/day) over the central United States for the period 1951-2005 similar to observed trends. This trend is predicted to accelerate so that by the end of the 21st century incidence of heavy precipitation increases by a factor of 2 to 3. The trend is robust in that it is produced regardless of the driving global model or the configuration of the regional model. Results also show a modest increase in the number of dry days and a marked increase in the number of long runs of dry days (16 or more consecutive dry days). The combination of heavier events and longer runs of dry days has implications for sectors such as agriculture and water quality. This research was sponsored by USDA NIFA under the Earth System Modeling program and as part of a regional collaborative project.

  1. Eocene climate and Arctic paleobathymetry: A tectonic sensitivity study using GISS ModelE-R

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2009-12-01

    The early Paleogene (65-45 million years ago, Ma) was a ‘greenhouse’ interval with global temperatures warmer than any other time in the last 65 Ma. This period was characterized by high levels of CO2, warm high-latitudes, warm surface-and-deep oceans, and an intensified hydrological cycle. Sediments from the Arctic suggest that the Eocene surface Arctic Ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions remain uncertain. We present equilibrium climate conditions derived from a fully-coupled, water-isotope enabled, general circulation model (GISS ModelE-R) configured for the early Eocene. We also present model-data comparison plots for key climatic variables (SST and δ18O) and analyses of the leading modes of variability in the tropical Pacific and North Atlantic regions. Our tectonic sensitivity study indicates that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the seaways connecting the Arctic to the Atlantic and Tethys. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~6 psu and warming of sea-surface temperatures by 2°C in the North Atlantic and 5-10°C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We also suggest that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates in the Atlantic.

  2. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony

    1999-01-01

    The uncertainty in the global climate sensitivity to an equilibrium doubling of carbon dioxide is often stated to be 1.5-4.5 K, largely due to uncertainties in cloud feedbacks. The lower end of this range is based on the assumption or prediction in some GCMs that cloud liquid water behaves adiabatically, thus implying that cloud optical thickness will increase in a warming climate if the physical thickness of clouds is invariant. Satellite observations of low-level cloud optical thickness and liquid water path have challenged this assumption, however, at low and middle latitudes. We attempt to explain the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurements (ARM) Cloud And Radiation Testbed (CART) site in the Southern Great Plains. We find that low cloud liquid water path is insensitive to temperature in winter but strongly decreases with temperature in summer. The latter occurs because surface relative humidity decreases with warming, causing cloud base to rise and clouds to geometrically thin. Meanwhile, inferred liquid water contents hardly vary with temperature, suggesting entrainment depletion. Physically, the temperature dependence appears to represent a transition from higher probabilities of stratified boundary layers at cold temperatures to a higher incidence of convective boundary layers at warm temperatures. The combination of our results and the earlier satellite findings imply that the minimum climate sensitivity should be revised upward from 1.5 K.

  3. Sensitivity of soil moisture initialization for decadal predictions under different regional climatic conditions in Europe

    NASA Astrophysics Data System (ADS)

    Khodayar, S.; Sehlinger, A.; Feldmann, H.; Kottmeier, C.

    2015-12-01

    The impact of soil initialization is investigated through perturbation simulations with the regional climate model COSMO-CLM. The focus of the investigation is to assess the sensitivity of simulated extreme periods, dry and wet, to soil moisture initialization in different climatic regions over Europe and to establish the necessary spin up time within the framework of decadal predictions for these regions. Sensitivity experiments consisted of a reference simulation from 1968 to 1999 and 5 simulations from 1972 to 1983. The Effective Drought Index (EDI) is used to select and quantify drought status in the reference run to establish the simulation time period for the sensitivity experiments. Different soil initialization procedures are investigated. The sensitivity of the decadal predictions to soil moisture initial conditions is investigated through the analysis of water cycle components' (WCC) variability. In an episodic time scale the local effects of soil moisture on the boundary-layer and the propagated effects on the large-scale dynamics are analysed. The results show: (a) COSMO-CLM reproduces the observed features of the drought index. (b) Soil moisture initialization exerts a relevant impact on WCC, e.g., precipitation distribution and intensity. (c) Regional characteristics strongly impact the response of the WCC. Precipitation and evapotranspiration deviations are larger for humid regions. (d) The initial soil conditions (wet/dry), the regional characteristics (humid/dry) and the annual period (wet/dry) play a key role in the time that soil needs to restore quasi-equilibrium and the impact on the atmospheric conditions. Humid areas, and for all regions, a humid initialization, exhibit shorter spin up times, also soil reacts more sensitive when initialised during dry periods. (e) The initial soil perturbation may markedly modify atmospheric pressure field, wind circulation systems and atmospheric water vapour distribution affecting atmospheric stability conditions, thus modifying precipitation intensity and distribution even several years after the initialization.

  4. Equilibrium theory of island biogeography: A review

    Treesearch

    Angela D. Yu; Simon A. Lei

    2001-01-01

    The topography, climatic pattern, location, and origin of islands generate unique patterns of species distribution. The equilibrium theory of island biogeography creates a general framework in which the study of taxon distribution and broad island trends may be conducted. Critical components of the equilibrium theory include the species-area relationship, island-...

  5. A hybrid formalism of aerosol gas phase interaction for 3-D global models

    NASA Astrophysics Data System (ADS)

    Benduhn, F.

    2009-04-01

    Aerosol chemical composition is a relevant factor to the global climate system with respect to both atmospheric chemistry and the aerosol direct and indirect effects. Aerosol chemical composition determines the capacity of aerosol particles to act as cloud condensation nuclei both explicitly via particle size and implicitly via the aerosol hygroscopic property. Due to the primary role of clouds in the climate system and the sensitivity of cloud formation and radiative properties to the cloud droplet number it is necessary to determine with accuracy the chemical composition of the aerosol. Dissolution, although a formally fairly well known process, may be subject to numerically prohibitive properties that result from the chemical interaction of the species engaged. So-far approaches to model the dissolution of inorganics into the aerosol liquid phase in the framework of a 3-D global model were based on an equilibrium, transient or hybrid equilibrium-transient approach. All of these methods present the disadvantage of a priori assumptions with respect to the mechanism and/or are numerically not manageable in the context of a global climate system model. In this paper a new hybrid formalism to aerosol gas phase interaction is presented within the framework of the H2SO4/HNO3/HCl/NH3 system and a modal approach of aerosol size discretisation. The formalism is distinct from prior hybrid approaches in as much as no a priori assumption on the nature of the regime a particular aerosol mode is in is made. Whether a particular mode is set to be in the equilibrium or the transitory regime is continuously determined during each time increment against relevant criteria considering the estimated equilibration time interval and the interdependence of the aerosol modes relative to the partitioning of the dissolving species. Doing this the aerosol composition range of numerical stiffness due to species interaction during transient dissolution is effectively eluded, and the numerical expense of dissolution in the transient regime is reduced through the minimisation of the number of modes in this regime and a larger time step. Containment of the numerical expense of the modes in the equilibrium regime is ensured through the usage of either an analytical equilibrium solver that requires iteration among the equilibrium modes, or a simple numerical solver based on a differential approach that requires iteration among the chemical species. Both equilibrium solvers require iteration over the water content and the activity coefficients. Decision for using either one or the other solver is made upon the consideration of the actual equilibrating mechanism, either chemical interaction or gas phase partial pressure variation, respectively. The formalism should thus ally appropriate process simplification resulting in reasonable computation time to a high degree of real process conformity as it is ensured by a transitory representation of dissolution. The resulting effectiveness and limits of the formalism are illustrated with numerical examples.

  6. Updated estimates of the climate response to emissions and their policy implications (Invited)

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Otto, A.; Stocker, T. F.; Frame, D. J.

    2013-12-01

    We review the implications of observations of the global energy budget over recent decades, particularly the 'warming hiatus' period over the 2000s, for key climate system properties including equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient climate response to cumulative carbon emissions (TCRE). We show how estimates of the upper bound of ECS remain, as ever, sensitive to prior assumptions and also how ECS, even if it were better constrained, would provide much less information about the social cost of carbon than TCR or TCRE. Hence the excitement over recent, apparently conflicting, estimates of ECS, is almost entirely misplaced. Of greater potential policy significance is the fact that recent observations imply a modest (of order 25%) downward revision in the upper bound and most likely values of TCR and TCRE, as compared to some, but not all, of the estimates published in the mid-2000s. This is partly due to the recent reduced rate of warming, and partly due to revisions in estimates of total anthropogenic forcing to date. Both of these developments may turn out to be short-lived, so the policy implications of this modest revision in TCR/TCRE should not be over-sold: nevertheless, it is interesting to explore what they are. The implications for climate change adaptation of a 25% downward revision in TCR and TCRE are minimal, being overshadowed by uncertainty due to internal variability and non-CO2 climate forcings over typical timescales for adaptation planning. We introduce a simple framework for assessing the implications for mitigation in terms of timing of peak emissions average rates of emission reduction required to avoid specific levels of peak warming. We show that, as long as emissions continue to increase approximately exponentially, the implications for mitigation of any revisions in the climate response are surprisingly small.

  7. Archaeobotanical evidence for climate as a driver of ecological community change across the anthropocene boundary.

    PubMed

    Ellis, Christopher J; Yahr, Rebecca; Belinchón, Rocío; Coppins, Brian J

    2014-07-01

    The biodiversity response to climate change is a major focus in conservation research and policy. Predictive models that are used to project the impact of climate change scenarios - such as bioclimatic envelope models - are widely applied and have come under severe scrutiny. Criticisms of such models have focussed on at least two problems. First, there is an assumption that climate is the primary driver of observed species distributions ('climatic equilibrium'), when other biogeographical controls are often reliably established. Second, a species' sensitivity to macroclimate may become less relevant when impacts are down-scaled to a local level, incorporating a modifying effect of species interactions structuring communities. This article examines the role of different drivers (climate, pollution and landscape habitat structure) in explaining spatial community variation for a widely applied bioindicator group: lichen epiphytes. To provide an analysis free of 'legacy effects' (e.g. formerly higher pollution loads), the study focused on hazel stems as a relatively short-lived and recently colonized substratum. For communities during the present day, climate is shown to interact with stem size/age as the most likely explanation of community composition, thus coupling a macroclimatic and community-scale effect. The position of present-day communities was projected into ordination space for eight sites in England and compared to the position of historical epiphyte communities from the same sites, reconstructed using preserved hazel wattles dating mainly to the 16th Century. This comparison of community structure for the late- to post-Mediaeval period, with the post-Industrial period, demonstrated a consistent shift among independent sites towards warmer and drier conditions, concurrent with the end of the Little Ice Age. Long-term temporal sensitivity of epiphyte communities to climate variation thus complements spatial community patterns. If more widely applied, preserved lichen epiphytes have potential to generate new baseline conditions of environment and biodiversity for preindustrial lowland Europe. © 2014 John Wiley & Sons Ltd.

  8. Multiple greenhouse gas feedbacks from the land biosphere under future climate change scenarios

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri, Xu-Ri; Prentice, Colin

    2013-04-01

    Atmospheric concentrations of the three important greenhouse gases (GHG) CO2, CH4, and N2O are mediated by processes in the terrestrial biosphere. The sensitivity of terrestrial GHG emissions to climate and CO2 contributed to the sharp rise in atmospheric GHG concentrations since preindustrial times and leads to multiple feedbacks between the terrestrial biosphere and the climate system. The strength of these feedbacks is determined by (i) the sensitivity of terrestrial GHG emissions to climate and CO2 and (ii) the greenhouse warming potential of the respective gas. Here, we quantify feedbacks from CO2, CH4, N2O, and land surface albedo in a consistent and comprehensive framework based on a large set of simulations conducted with an Earth System Model of Intermediate Complexity. The modeled sensitivities of CH4 and N2O emissions are tested, demonstrating that independent data for non-land (anthropogenic, oceanic, etc.) GHG emissions, combined with simulated emissions from natural and agricultural land reproduces historical atmospheric budgets within their uncertainties. 21st-century scenarios for climate, land use change and reactive nitrogen inputs (Nr) are applied to investigate future GHG emissions. Results suggest that in a business-as-usual scenario, terrestrial N2O emissions increase from 9.0 by today to 9.8-11.1 (RCP 2.6) and 14.2-17.0 TgN2O-N/yr by 2100 (RCP 8.5). Without anthropogenic Nr inputs, the amplification is reduced by 24-32%. Soil CH4 emissions increase from 221 at present to 228-245 in RCP 2.6 and to 303-343 TgCH4/yr in RCP 8.5, and the land becomes a net source of C by 2100 AD. Feedbacks from land imply an additional warming of 1.3-1.5°C by 2300 in RCP 8.5, 0.4-0.5°C of which are due to N2O and CH4. The combined effect of multiple GHGs and albedo represents an increasingly positive total feedback to anthropogenic climate change with positive individual feedbacks from CH4, N2O, and albedo outweighing the diminishing negative feedback from CO2 fertilisation of terrestrial C storage. This positive feedback from terrestrial biogeochemistry amplifies the traditionally defined physical equilibrium climate sensitivity by 23-28%, Strong mitigation, reducing Nr inputs and preserving natural vegetation limits the amplification of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier of anthropogenic climate change.

  9. Soil Moisture and the Persistence of North American Drought.

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.; Erickson, David J., III

    1989-11-01

    We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.

  10. Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming?

    NASA Astrophysics Data System (ADS)

    Frey, W. R.; Maroon, E. A.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Cloud phase improvements in a state-of-the-art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean-state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.

  11. Climatic controls of western U.S. glaciers at the last glacial maximum

    USGS Publications Warehouse

    Hostetler, S.W.; Clark, P.U.

    1997-01-01

    We use a nested atmospheric modeling strategy to simulate precipitation and temperature of the western United States 18,000 years ago (18 ka). The high resolution of the nested model allows us to isolate the regional structure of summer temperature and winter precipitation that is crucial to determination of the net mass balance of late-Pleistocene mountain glaciers in this region of diverse topography and climate. Modeling results suggest that climatic controls of these glaciers varied significantly over the western U.S. Glaciers in the northern Rocky Mountains existed under relatively cold July temperatures and low winter accumulation, reflecting anticyclonic, easterly wind flow off the Laurentide Ice Sheet. In contrast, glaciers that existed under relatively warmer and wetter conditions are located along the Pacific coast south of Oregon, where enhanced westerlies delivered higher precipitation than at present. Between these two groupings lie glaciers that were controlled by a mix of cold and wet conditions attributed to the convergence of cold air from the ice sheet and moisture derived from the westerlies. Sensitivity tests suggest that, for our simulated 18 ka climate, many of the glaciers exhibit a variable response to climate but were generally more sensitive to changes in temperature than to changes in precipitation, particularly those glaciers in central Idaho and the Yellowstone Plateau. Our results support arguments that temperature depression generally played a larger role in lowering equilibrium line altitudes in the western U.S. during the last glacial maximum than did increased precipitation, although the magnitude of temperature depression required for steady-state mass balance varied from 8-18??C. Only the Sierra Nevada glaciers required a substantial increase in precipitation to achieve steady-state mass balance, while glaciers in the Cascade Range existed with decreased precipitation.

  12. Impacts of Climate Policy on Regional Air Quality, Health, and Air Quality Regulatory Procedures

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2011-12-01

    Both the changing climate, and the policy implemented to address climate change can impact regional air quality. We evaluate the impacts of potential selected climate policies on modeled regional air quality with respect to national pollution standards, human health and the sensitivity of health uncertainty ranges. To assess changes in air quality due to climate policy, we couple output from a regional computable general equilibrium economic model (the US Regional Energy Policy [USREP] model), with a regional air quality model (the Comprehensive Air Quality Model with Extensions [CAMx]). USREP uses economic variables to determine how potential future U.S. climate policy would change emissions of regional pollutants (CO, VOC, NOx, SO2, NH3, black carbon, and organic carbon) from ten emissions-heavy sectors of the economy (electricity, coal, gas, crude oil, refined oil, energy intensive industry, other industry, service, agriculture, and transportation [light duty and heavy duty]). Changes in emissions are then modeled using CAMx to determine the impact on air quality in several cities in the Northeast US. We first calculate the impact of climate policy by using regulatory procedures used to show attainment with National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter. Building on previous work, we compare those results with the calculated results and uncertainties associated with human health impacts due to climate policy. This work addresses a potential disconnect between NAAQS regulatory procedures and the cost/benefit analysis required for and by the Clean Air Act.

  13. Challenges and approaches to projecting changes in forest distributions in complex mountain landscape

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Molotch, N. P.; Meromy, L.; Moyes, A. B.; Conlisk, E.; Castanha, C.

    2015-12-01

    The extent and density of forest trees in mountain landscapes is a first order control on watershed function, affecting patterns of snow accumulation, timing of snowmelt, and amount and quality of run-off, through alterations of surface energy and water fluxes and wind. Climate change is increasingly affecting the density and distribution of mature forests through changes to disturbance regimes, increases in physiological stress and increases in mortality due to warmer temperatures. In addition, climate change is likely altering patterns of regeneration and driving establishment of trees in high elevation meadows and alpine tundra. Though hard to detect in current forestry datasets, changes in tree establishment are critical to the future of forests. Experimental approaches, such as our climate warming experiment in the Colorado Front Range, can provide valuable data regarding seedling sensitivity to climate variability and change across important landscape positions. We've found that warming enhances negative effects of water stress across forest, treeline and alpine sites, reducing recruitment in the absence of additional summer moisture. At the lowest elevation, reductions with warming have reduced Engelmann spruce recruitment to zero. Species differ in their responses to warming in the alpine, but together confirm the importance of seed dispersal to upward forest shifts. The presence of trees or other vegetation can facilitate tree establishment by modifying microclimates, especially at and above treeline. Ultimately, these ecological and demographic processes govern the timescales of tree and forest responses to climate variability and change. For the long-lived species that dominate high elevation watersheds, these processes can take decades or centuries to play out, meaning many tree populations are and will continue to be out of equilibrium with a rapidly changing climate. Projecting changes in tree distributions and abundances across mountain landscapes requires integration of changes in hydroclimatic conditions across diverse topoclimatic settings; the sensitivity of recruitment, growth and mortality to climate; and feedbacks between trees and microclimate into modeling tools that represent time-explicit ecological and demographic processes.

  14. A hierarchical perspective of plant diversity

    USGS Publications Warehouse

    Sarr, Daniel; Hibbs, D.E.; Huston, M.

    2005-01-01

    Predictive models of plant diversity have typically focused on either a landscapea??s capacity for richness (equilibrium models), or on the processes that regulate competitive exclusion, and thus allow species to coexist (nonequilibrium models). Here, we review the concepts and purposes of a hierarchical, multiscale model of the controls of plant diversity that incorporates the equilibrium model of climatic favorability at macroscales, nonequilibrium models of competition at microscales, and a mixed model emphasizing environmental heterogeneity at mesoscales. We evaluate the conceptual model using published data from three spatially nested datasets: (1) a macroscale analysis of ecoregions in the continental and western U.S.; (2) a mesoscale study in California; and (3) a microscale study in the Siskiyou Mountains of Oregon and California. At the macroscale (areas from 3889 km2 to 638,300 km2), climate (actual evaporation) was a strong predictor of tree diversity (R2 = 0.80), as predicted by the conceptual model, but area was a better predictor for vascular plant diversity overall (R2 = 0.38), which suggests different types of plants differ in their sensitivity to climatic controls. At mesoscales (areas from 1111 km2 to 15,833 km2 ), climate was still an important predictor of richness (R2 = 0.52), but, as expected, topographic heterogeneity explained an important share of the variance (R2 = 0.19), showed positive correlations with diversity of trees, shrubs, and annual and perennial herbs, and was the primary predictor of shrub and annual plant species richness. At microscales (0.1 ha plots), spatial patterns of diversity showed a clear unimodal pattern along a climatea??driven productivity gradient and a negative relationship with soil fertility. The strong decline in understory and total diversity at the most productive sites suggests that competitive controls, as predicted, can override climatic controls at this scale. We conclude that this hierarchical, multiscale model provides a sound basis to understand and analyze plant species diversity. Specifically, future research should employ the principles in this paper to explore climatic controls on species richness of different life forms, better quantify environmental heterogeneity in landscapes, and analyze how these largea??scale factors interact with local nonequilibrium dynamics to maintain plant diversity.

  15. Perturbation analysis for patch occupancy dynamics

    USGS Publications Warehouse

    Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.

    2009-01-01

    Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.

  16. Hypsometric control on glacier mass balance sensitivity in Alaska and northwest Canada

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Sass, L.; O'Neel, S.; Arendt, A.; Kienholz, C.

    2017-03-01

    Glacier hypsometry provides a first-order approach for assessing a glacier's response to climate forcings. We couple the Randolph Glacier Inventory to a suite of in situ observations and climate model output to examine potential change for the ˜27,000 glaciers in Alaska and northwest Canada through the end of the 21st century. By 2100, based on Representative Concentration Pathways (RCPs) 4.5-8.5 forcings, summer temperatures are predicted to increase between +2.1 and +4.6°C, while solid precipitation (snow) is predicted to decrease by -6 to -11%, despite a +9 to +21% increase in total precipitation. Snow is predicted to undergo a pronounced decrease in the fall, shifting the start of the accumulation season back by ˜1 month. In response to these forcings, the regional equilibrium line altitude (ELA) may increase by +105 to +225 m by 2100. The mass balance sensitivity to this increase is highly variable, with the most substantive impact for glaciers with either limited elevation ranges (often small (<1 km2) glaciers, which account for 80% of glaciers in the region) or those with top-heavy geometries, like icefields. For more than 20% of glaciers, future ELAs, given RCP 6.0 forcings, will exceed the maximum elevation of the glacier, resulting in their eventual demise, while for others, accumulation area ratios will decrease by >60%. Our results highlight the first-order control of hypsometry on individual glacier response to climate change, and the variability that hypsometry introduces to a regional response to a coherent climate perturbation.

  17. Noise-induced transitions and shifts in a climate-vegetation feedback model.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-04-01

    Motivated by the extremely important role of the Earth's vegetation dynamics in climate changes, we study the stochastic variability of a simple climate-vegetation system. In the case of deterministic dynamics, the system has one stable equilibrium and limit cycle or two stable equilibria corresponding to two opposite (cold and warm) climate-vegetation states. These states are divided by a separatrix going across a point of unstable equilibrium. Some possible stochastic scenarios caused by different externally induced natural and anthropogenic processes inherit properties of deterministic behaviour and drastically change the system dynamics. We demonstrate that the system transitions across its separatrix occur with increasing noise intensity. The climate-vegetation system therewith fluctuates, transits and localizes in the vicinity of its attractor. We show that this phenomenon occurs within some critical range of noise intensities. A noise-induced shift into the range of smaller global average temperatures corresponding to substantial oscillations of the Earth's vegetation cover is revealed. Our analysis demonstrates that the climate-vegetation interactions essentially contribute to climate dynamics and should be taken into account in more precise and complex models of climate variability.

  18. Temporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard)

    PubMed Central

    Möller, Marco; Schneider, Christoph

    2015-01-01

    Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21st century for all RCPs considered. Glacier-wide mass-balance rates will drop down to −4 m a−1 w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario. PMID:25628045

  19. A Multi-Scale Energy Food Systems Modeling Framework For Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Siddiqui, S.; Bakker, C.; Zaitchik, B. F.; Hobbs, B. F.; Broaddus, E.; Neff, R.; Haskett, J.; Parker, C.

    2016-12-01

    Our goal is to understand coupled system dynamics across scales in a manner that allows us to quantify the sensitivity of critical human outcomes (nutritional satisfaction, household economic well-being) to development strategies and to climate or market induced shocks in sub-Saharan Africa. We adopt both bottom-up and top-down multi-scale modeling approaches focusing our efforts on food, energy, water (FEW) dynamics to define, parameterize, and evaluate modeled processes nationally as well as across climate zones and communities. Our framework comprises three complementary modeling techniques spanning local, sub-national and national scales to capture interdependencies between sectors, across time scales, and on multiple levels of geographic aggregation. At the center is a multi-player micro-economic (MME) partial equilibrium model for the production, consumption, storage, and transportation of food, energy, and fuels, which is the focus of this presentation. We show why such models can be very useful for linking and integrating across time and spatial scales, as well as a wide variety of models including an agent-based model applied to rural villages and larger population centers, an optimization-based electricity infrastructure model at a regional scale, and a computable general equilibrium model, which is applied to understand FEW resources and economic patterns at national scale. The MME is based on aggregating individual optimization problems for relevant players in an energy, electricity, or food market and captures important food supply chain components of trade and food distribution accounting for infrastructure and geography. Second, our model considers food access and utilization by modeling food waste and disaggregating consumption by income and age. Third, the model is set up to evaluate the effects of seasonality and system shocks on supply, demand, infrastructure, and transportation in both energy and food.

  20. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    NASA Technical Reports Server (NTRS)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  1. Climatic niche conservatism and biogeographical non-equilibrium in Eschscholzia californica (Papaveraceae), an invasive plant in the Chilean Mediterranean region.

    PubMed

    Peña-Gómez, Francisco T; Guerrero, Pablo C; Bizama, Gustavo; Duarte, Milén; Bustamante, Ramiro O

    2014-01-01

    Species climate requirements are useful for predicting their geographic distribution. It is often assumed that the niche requirements for invasive plants are conserved during invasion, especially when the invaded regions share similar climate conditions. California and central Chile have a remarkable degree of convergence in their vegetation structure, and a similar Mediterranean climate. Such similarities make these geographic areas an interesting natural experiment for testing climatic niche dynamics and the equilibrium of invasive species in a new environment. We tested to see if the climatic niche of Eschscholzia californica is conserved in the invaded range (central Chile), and we assessed whether the invasion process has reached a biogeographical equilibrium, i.e., occupy all the suitable geographic locations that have suitable conditions under native niche requirements. We compared the climatic niche in the native and invaded ranges as well as the projected potential geographic distribution in the invaded range. In order to compare climatic niches, we conducted a Principal Component Analysis (PCA) and Species Distribution Models (SDMs), to estimate E. californica's potential geographic distribution. We also used SDMs to predict altitudinal distribution limits in central Chile. Our results indicated that the climatic niche occupied by E. californica in the invaded range is firmly conserved, occupying a subset of the native climatic niche but leaving a substantial fraction of it unfilled. Comparisons of projected SDMs for central Chile indicate a similarity, yet the projection from native range predicted a larger geographic distribution in central Chile compared to the prediction of the model constructed for central Chile. The projected niche occupancy profile from California predicted a higher mean elevation than that projected from central Chile. We concluded that the invasion process of E. californica in central Chile is consistent with climatic niche conservatism but there is potential for further expansion in Chile.

  2. Reliability of the North America CORDEX and NARCCAP simulations in the context of uncertainty in regional climate change projections

    NASA Astrophysics Data System (ADS)

    Karmalkar, A.

    2017-12-01

    Ensembles of dynamically downscaled climate change simulations are routinely used to capture uncertainty in projections at regional scales. I assess the reliability of two such ensembles for North America - NARCCAP and NA-CORDEX - by investigating the impact of model selection on representing uncertainty in regional projections, and the ability of the regional climate models (RCMs) to provide reliable information. These aspects - discussed for the six regions used in the US National Climate Assessment - provide an important perspective on the interpretation of downscaled results. I show that selecting general circulation models for downscaling based on their equilibrium climate sensitivities is a reasonable choice, but the six models chosen for NA-CORDEX do a poor job at representing uncertainty in winter temperature and precipitation projections in many parts of the eastern US, which lead to overconfident projections. The RCM performance is highly variable across models, regions, and seasons and the ability of the RCMs to provide improved seasonal mean performance relative to their parent GCMs seems limited in both RCM ensembles. Additionally, the ability of the RCMs to simulate historical climates is not strongly related to their ability to simulate climate change across the ensemble. This finding suggests limited use of models' historical performance to constrain their projections. Given these challenges in dynamical downscaling, the RCM results should not be used in isolation. Information on how well the RCM ensembles represent known uncertainties in regional climate change projections discussed here needs to be communicated clearly to inform maagement decisions.

  3. Niche tracking and rapid establishment of distributional equilibrium in the house sparrow show potential responsiveness of species to climate change.

    PubMed

    Monahan, William B; Tingley, Morgan W

    2012-01-01

    The ability of species to respond to novel future climates is determined in part by their physiological capacity to tolerate climate change and the degree to which they have reached and continue to maintain distributional equilibrium with the environment. While broad-scale correlative climatic measurements of a species' niche are often described as estimating the fundamental niche, it is unclear how well these occupied portions actually approximate the fundamental niche per se, versus the fundamental niche that exists in environmental space, and what fitness values bounding the niche are necessary to maintain distributional equilibrium. Here, we investigate these questions by comparing physiological and correlative estimates of the thermal niche in the introduced North American house sparrow (Passer domesticus). Our results indicate that occupied portions of the fundamental niche derived from temperature correlations closely approximate the centroid of the existing fundamental niche calculated on a fitness threshold of 50% population mortality. Using these niche measures, a 75-year time series analysis (1930-2004) further shows that: (i) existing fundamental and occupied niche centroids did not undergo directional change, (ii) interannual changes in the two niche centroids were correlated, (iii) temperatures in North America moved through niche space in a net centripetal fashion, and consequently, (iv) most areas throughout the range of the house sparrow tracked the existing fundamental niche centroid with respect to at least one temperature gradient. Following introduction to a new continent, the house sparrow rapidly tracked its thermal niche and established continent-wide distributional equilibrium with respect to major temperature gradients. These dynamics were mediated in large part by the species' broad thermal physiological tolerances, high dispersal potential, competitive advantage in human-dominated landscapes, and climatically induced changes to the realized environmental space. Such insights may be used to conceptualize mechanistic climatic niche models in birds and other taxa.

  4. Exploring sensitivity of a multistate occupancy model to inform management decisions

    USGS Publications Warehouse

    Green, A.W.; Bailey, L.L.; Nichols, J.D.

    2011-01-01

    Dynamic occupancy models are often used to investigate questions regarding the processes that influence patch occupancy and are prominent in the fields of population and community ecology and conservation biology. Recently, multistate occupancy models have been developed to investigate dynamic systems involving more than one occupied state, including reproductive states, relative abundance states and joint habitat-occupancy states. Here we investigate the sensitivities of the equilibrium-state distribution of multistate occupancy models to changes in transition rates. We develop equilibrium occupancy expressions and their associated sensitivity metrics for dynamic multistate occupancy models. To illustrate our approach, we use two examples that represent common multistate occupancy systems. The first example involves a three-state dynamic model involving occupied states with and without successful reproduction (California spotted owl Strix occidentalis occidentalis), and the second involves a novel way of using a multistate occupancy approach to accommodate second-order Markov processes (wood frog Lithobates sylvatica breeding and metamorphosis). In many ways, multistate sensitivity metrics behave in similar ways as standard occupancy sensitivities. When equilibrium occupancy rates are low, sensitivity to parameters related to colonisation is high, while sensitivity to persistence parameters is greater when equilibrium occupancy rates are high. Sensitivities can also provide guidance for managers when estimates of transition probabilities are not available. Synthesis and applications. Multistate models provide practitioners a flexible framework to define multiple, distinct occupied states and the ability to choose which state, or combination of states, is most relevant to questions and decisions about their own systems. In addition to standard multistate occupancy models, we provide an example of how a second-order Markov process can be modified to fit a multistate framework. Assuming the system is near equilibrium, our sensitivity analyses illustrate how to investigate the sensitivity of the system-specific equilibrium state(s) to changes in transition rates. Because management will typically act on these transition rates, sensitivity analyses can provide valuable information about the potential influence of different actions and when it may be prudent to shift the focus of management among the various transition rates. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.

  5. Impact of Geoengineering Schemes on the Global Hydrological Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Duffy, P; Taylor, K

    2007-12-07

    The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changesmore » in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.« less

  6. Simulated and Inferred LAI, NPP, and Biomes in North America Since the Last Glacial Maximum.

    NASA Astrophysics Data System (ADS)

    Zajac, L. M.; Williams, J. W.; Kaplan, J.

    2004-12-01

    Vegetation structure and productivity are sensitive to climate change and are an important source of feedbacks to the climate system. Here we employ multiple lines of evidence to reconstruct variations in leaf area index (LAI), net primary productivity (NPP), and biomes. LAI determines the total canopy surface area available for light interception, gas exchange, and water loss, and NPP, the increase in plant carbon per unit area, measures the flux of carbon into the terrestrial biosphere. BIOME4, an equilibrium biogeography and biogeochemistry vegetation model, is used to simulate LAI, NPP, and biome distributions in North America for the past 21,000 years at 1,000-year time-steps. BIOME4 was coupled asynchronously to the Hadley Center Unified Model with a mixed-layer ocean model forced by variations in orbital boundary conditions, physiography, and atmospheric CO2 concentration (Kaplan et al. 2002). BIOME4 models LAI as a trade-off between maximizing light interception and minimizing water loss and assigns the LAI that maximizes NPP. Past LAI's and biomes, independently estimated from fossil pollen assemblages using the modern analogue technique, are compared to model results. In unglaciated eastern North America, canopy closure of the full-glacial conifer forests and woodlands in response to ameliorating climatic conditions resulted in a 80% increase in LAI's between 21 ka and 11 ka. After 8 ka, large areas of tundra and forest-tundra developed in deglaciated regions. The BIOME4 simulations show good agreement with the LAI's and biome distribution inferred from fossil pollen records. Sensitivity analyses with BIOME4 indicate that both climate and CO2 played important roles in regulating vegetation structure and productivity.

  7. Multiple states in the late Eocene ocean circulation

    NASA Astrophysics Data System (ADS)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  8. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection capabilities of existing sensors.

  9. Predictions and Tests of the "Late Noachian Icy Highlands" Climate Model: Can Evidence for Fluvial/Lacustrine Systems Be Reconciled?

    NASA Astrophysics Data System (ADS)

    Head, J. W., III

    2016-12-01

    Improved 3D global simulations (GCMs) of the early martian climate have found that for atmospheric pressures greater than a fraction of a bar, atmospheric-surface thermal coupling occurs and the adiabatic cooling effect (ACE) causes temperatures in the southern uplands to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of obliquities. Conditions are too cold (MAT 225 K) to permit the presence of long-term surface liquid water, including streams, lakes and oceans. The LNIH equilibrium state predicts: 1) a global permafrost layer, 2) a horizontally stratified hydrological cycle/system, 3) thick ice deposits in the southern uplands, 4) an extended water ice cap on the southern pole, and 5) no rainfall, streams lakes or oceans. The majority of these predictions are in direct conflict with the observed fluvial/lacustrine geologic record. Can non-equilibrium conditions in a LNIH scenario explain these conflicts by transient heating and melting of the LNIH? As steps in the comprehensive testing of this "Late Noachian Icy Highlands" (LNIH) model we explore the predictions for geologic settings and processes in both equilibrium and non-equilibrium climate states. We assess the following sources of disequilibrium: 1) Top-down heating and melting: a) impact cratering, b) extrusive/explosive volcanism, and c) short-term emission of greenhouse gases. 2) Bottom up heating and melting: a) enhanced regional-global geothermal gradients, and b) thick ice accumulation to cause/sustain basal melting, wet-based glaciation and runoff. We assess these disequilibrium mechanisms in terms of: 1) the altitude dependence of melting, 2) melting duration, 3) volumes of meltwater produced, 4) predicted locations of meltwater production, and 6) comparison to the distribution of fluvial/lacustrine features. We find that the Late Noachian Icy Highlands climate model cannot be reconciled with observations unless punctuated non-equilibrium conditions occur. We show that the best candidates for LNIH disequilibrium conditions involve top-down heating and melting conditions chronologically summing in duration to more than tens of thousands to millions of years.

  10. The Impacts and Economic Costs of Climate Change in Agriculture and the Costs and Benefits of Adaptation

    NASA Astrophysics Data System (ADS)

    Iglesias, A.; Quiroga, S.; Garrote, L.; Cunningham, R.

    2012-04-01

    This paper provides monetary estimates of the effects of agricultural adaptation to climate change in Europe. The model computes spatial crop productivity changes as a response to climate change linking biophysical and socioeconomic components. It combines available data sets of crop productivity changes under climate change (Iglesias et al 2011, Ciscar et al 2011), statistical functions of productivity response to water and nitrogen inputs, catchment level water availability, and environmental policy scenarios. Future global change scenarios are derived from several socio-economic futures of representative concentration pathways and regional climate models. The economic valuation is conducted by using GTAP general equilibrium model. The marginal productivity changes has been used as an input for the economic general equilibrium model in order to analyse the economic impact of the agricultural changes induced by climate change in the world. The study also includes the analysis of an adaptive capacity index computed by using the socio-economic results of GTAP. The results are combined to prioritize agricultural adaptation policy needs in Europe.

  11. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave's ophthalmopathy using turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    PubMed

    Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H

    2018-03-20

    The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.

  12. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGES

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; ...

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  13. Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales

    NASA Astrophysics Data System (ADS)

    Kurowski, M.; Smolarkiewicz, P. K.; Grabowski, W.

    2015-12-01

    Moist anelastic and compressible numerical solutions to the planetary baroclinic instability and climate benchmarks are compared. The solutions are obtained applying a consistent numerical framework for dis- crete integrations of the various nonhydrostatic flow equations. Moist extension of the baroclinic instability benchmark is formulated as an analog of the dry case. Flow patterns, surface vertical vorticity and pressure, total kinetic energy, power spectra, and total amount of condensed water are analyzed. The climate bench- mark extends the baroclinic instability study by addressing long-term statistics of an idealized planetary equilibrium and associated meridional transports. Short-term deterministic anelastic and compressible so- lutions differ significantly. In particular, anelastic baroclinic eddies propagate faster and develop slower owing to, respectively, modified dispersion relation and abbreviated baroclinic vorticity production. These eddies also carry less kinetic energy, and the onset of their rapid growth occurs later than for the compressible solutions. The observed differences between the two solutions are sensitive to initial conditions as they di- minish for large-amplitude excitations of the instability. In particular, on the climatic time scales, the anelastic and compressible solutions evince similar zonally averaged flow patterns with the matching meridional transports of entropy, momentum, and moisture.

  14. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  15. The dynamics of climate-induced deglacial ice stream acceleration

    NASA Astrophysics Data System (ADS)

    Robel, A.; Tziperman, E.

    2015-12-01

    Geological observations indicate that ice streams were a significant contributor to ice flow in the Laurentide Ice Sheet during the Last Glacial Maximum. Conceptual and simple model studies have also argued that the gradual development of ice streams increases the sensitivity of large ice sheets to weak climate forcing. In this study, we use an idealized configuration of the Parallel Ice Sheet Model to explore the role of ice streams in rapid deglaciation. In a growing ice sheet, ice streams develop gradually as the bed warms and the margin expands outward onto the continental shelf. Then, a weak change in equilibrium line altitude commensurate with Milankovitch forcing results in a rapid deglacial response, as ice stream acceleration leads to enhanced calving and surface melting at low elevations. We explain the dynamical mechanism that drives this ice stream acceleration and its broader applicability as a feedback for enhancing ice sheet decay in response to climate forcing. We show how our idealized ice sheet simulations match geomorphological observations of deglacial ice stream variability and previous model-data analyses. We conclude with observations on the potential for interaction between ice streams and other feedback mechanisms within the earth system.

  16. MODELING DYNAMIC VEGETATION RESPONSE TO RAPID CLIMATE CHANGE USING BIOCLIMATIC CLASSIFICATION

    EPA Science Inventory

    Modeling potential global redistribution of terrestrial vegetation frequently is based on bioclimatic classifications which relate static regional vegetation zones (biomes) to a set of static climate parameters. The equilibrium character of the relationships limits our confidence...

  17. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    1990-01-01

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  18. Climate change in Brazil: perspective on the biogeochemistry of inland waters.

    PubMed

    Roland, F; Huszar, V L M; Farjalla, Vf; Enrich-Prast, A; Amado, A M; Ometto, J P H B

    2012-08-01

    Although only a small amount of the Earth's water exists as continental surface water bodies, this compartment plays an important role in the biogeochemical cycles connecting the land to the atmosphere. The territory of Brazil encompasses a dense river net and enormous number of shallow lakes. Human actions have been heavily influenced by the inland waters across the country. Both biodiversity and processes in the water are strongly driven by seasonal fluvial forces and/or precipitation. These macro drivers are sensitive to climate changes. In addition to their crucial importance to humans, inland waters are extremely rich ecosystems, harboring high biodiversity, promoting landscape equilibrium (connecting ecosystems, maintaining animal and plant flows in the landscape, and transferring mass, nutrients and inocula), and controlling regional climates through hydrological-cycle feedback. In this contribution, we describe the aquatic ecological responses to climate change in a conceptual perspective, and we then analyze the possible climate-change scenarios in different regions in Brazil. We also indentify some potential biogeochemical signals in running waters, natural lakes and man-made impoundments. The possible future changes in climate and aquatic ecosystems in Brazil are highly uncertain. Inland waters are pressured by local environmental changes because of land uses, landscape fragmentation, damming and diversion of water bodies, urbanization, wastewater load, and level of pollutants can alter biogeochemical patterns in inland waters over a shorter term than can climate changes. In fact, many intense environmental changes may enhance the effects of changes in climate. Therefore, the maintenance of key elements within the landscape and avoiding extreme perturbation in the systems are urgent to maintain the sustainability of Brazilian inland waters, in order to prevent more catastrophic future events.

  19. Venus climate stability and volcanic resurfacing rates

    NASA Technical Reports Server (NTRS)

    Bullock, M. A.; Grinspoon, D. H.; Pollack, J. B.

    1994-01-01

    The climate of Venus is to a large degree controlled by the radiative properties of its massive atmosphere. In addition, outgassing due to volcanic activity, exospheric escape processes, and surface/atmosphere interactions may all be important in moderating the abundances of atmospheric CO2 and other volatiles. We have developed an evolutionary climate model for Venus using a systems approach that emphasizes feedbacks between elements in the climate system. Modules for atmospheric radiative transfer, surface/atmosphere interactions, tropospheric chemistry, and exospheric escape processes have so far been developed. Climate feedback loops result from interconnections between modules, in the form of the environmental parameters pressure, temperature, and atmospheric mixing ratios. The radiative transfer module has been implemented by using Rosseland mean opacities in a one dimensional grey radiative-convective model. The model has been solved for the static (time independent) case to determine climate equilibrium points. The dynamics of the model have also been explored by employing reaction/diffusion kinetics for possible surface atmosphere heterogeneous reactions over geologic timescales. It was found that under current conditions, the model predicts that the climate of Venus is at or near an unstable equilibrium point. The effects of constant rate volcanism and corresponding exsolution of volatiles on the stability of the climate model were also explored.

  20. Studies of climate dynamics with innovative global-model simulations

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoming

    Climate simulations with different degrees of idealization are essential for the development of our understanding of the climate system. Studies in this dissertation employ carefully designed global-model simulations for the goal of gaining theoretical and conceptual insights into some problems of climate dynamics. Firstly, global warming-induced changes in extreme precipitation are investigated using a global climate model with idealized geography. The precipitation changes over an idealized north-south mid-latitude mountain barrier at the western margin of an otherwise flat continent are studied. The intensity of the 40 most intense events on the western slopes increases by about ~4°C of surface warming. In contrast, the intensity of the top 40 events on the eastern mountain slopes increases at about ~6°C. This higher sensitivity is due to enhanced ascent during the eastern-slope events, which can be explained in terms of linear mountain-wave theory relating to global warming-induced changes in the upper-tropospheric static stability and the tropopause level. Dominated by different dynamical factors, changes in the intensity of extreme precipitation events over plains and oceans might differ from changes over mountains. So the response of extreme precipitation over mountains and flat areas are further compared using larger data sets of simulated extreme events over the two types of surfaces. It is found that the sensitivity of extreme precipitation to increases in global mean surface temperature is 3% per °C lower over mountains than over the oceans or the plains. The difference in sensitivity among these regions is not due to thermodynamic effects, but rather to differences between the gravity-wave dynamics governing vertical velocities over the mountains and the cyclone dynamics governing vertical motions over the oceans and plains. The strengthening of latent heating in the storms over oceans and plains leads to stronger ascent in the warming climate. Motivated by the fact that natural variability of the atmosphere could obscure the signal of anthropogenic warming on time scales of years to decades, the large scale variability of the atmosphere is also studied. Analysis using simulations in the Community Earth System Model Large Ensemble project reveals that the Northern Annular Mode (NAM) does not have a stable spatial pattern when 50-year long segments of data are used to calculate it. Some segments of data result in NAM-like variability with a very strong North Pacific center of action, while in some others it exhibits a more symmetric structure, with North Pacific and Euro-Atlantic centers of comparable strength. Perhaps somewhat puzzling, the NAM's North Pacific center of action is found to have a strengthening trend under anthropogenic warming. Lastly, the large-scale character of an atmosphere in rotating Radiative-Convective Equilibrium (RCE) is studied, using a global atmospheric model with prescribed globally uniform sea surface temperature and no insolation. In such an equilibrium state, numerous tropical cyclone-like vortices develop in the extratropics, which move slowly poleward and westward. The typical spacing of simulated tropical cyclone-like vortices is comparable to the Rossby radius of deformation, while the production of available potential energy is at a scale slightly smaller than that of the vortices. It is hypothesized that the growth of tropical cyclone-like vortices is driven by the self-aggregation of convection, while baroclinic instability destabilizes any vortices that grow significantly larger than the deformation radius. A weak Hadley circulation dominates in the deep tropics, and an eastward-propagating wavenumber one MJO-like mode with a period of 30 to 40 days develops along the equator.

  1. Tropical climate at the last glacial maximum inferred from glacier mass-balance modeling

    USGS Publications Warehouse

    Hostetler, S.W.; Clark, P.U.

    2000-01-01

    Model-derived equilibrium line altitudes (ELAs) of former tropical glaciers support arguments, based on other paleoclimate data, for both the magnitude and spatial pattern of terrestrial cooling in the tropics at the last glacial maximum (LGM). Relative to the present, LGM ELAs were maintained by air temperatures that were 3.5??to 6.6 ??C lower and precipitation that ranged from 63% wetter in Hawaii to 25% drier on Mt. Kenya, Africa. Our results imply the need for a ~3 ??C cooling of LGM sea surface temperatures in the western Pacific warm pool. Sensitivity tests suggest that LGM ELAs could have persisted until 16,000 years before the present in the Peruvian Andes and on Papua, New Guinea.

  2. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Weaver, Christopher P.; Walko, Robert; Robock, Alan

    2007-05-01

    Soil moisture is a key participant in land-atmosphere interactions and an important determinant of terrestrial climate. In regions where the water table is shallow, soil moisture is coupled to the water table. This paper is the first of a two-part study to quantify this coupling and explore its implications in the context of climate modeling. We examine the observed water table depth in the lower 48 states of the United States in search of salient spatial and temporal features that are relevant to climate dynamics. As a means to interpolate and synthesize the scattered observations, we use a simple two-dimensional groundwater flow model to construct an equilibrium water table as a result of long-term climatic and geologic forcing. Model simulations suggest that the water table depth exhibits spatial organization at watershed, regional, and continental scales, which may have implications for the spatial organization of soil moisture at similar scales. The observations suggest that water table depth varies at diurnal, event, seasonal, and interannual scales, which may have implications for soil moisture memory at these scales.

  3. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  4. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

    NASA Astrophysics Data System (ADS)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-04-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  5. Committed warming inferred from observations

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  6. The response of glaciers to climate change

    NASA Astrophysics Data System (ADS)

    Klok, Elisabeth Jantina

    2003-12-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the glacier albedo from satellite images, (2) investigating the spatial distribution of the surface energy and mass balance of a glacier, and (3) investigating the sensitivity of the mass balance to climate change. All of these studies are focused on Morteratschgletscher in Switzerland. The second aspect is the climatic interpretation of glacier length fluctuations. This was studied by developing a model that calculates historical mass balance records from global glacier length fluctuations. To increase our understanding of the variations in glacier albedo, we derived surface albedos from 12 Landsat images. This constituted a stringent test for the retrieval methodology applied because Morteratschgletscher is very steep and rugged, which strongly influences the satellite signal. We aimed to retrieve surface albedos while taking into account all important processes that influence the relationship between the satellite signal and the surface albedo, e.g. the topographic effects on incoming solar radiation, and the anisotropic nature of the reflection pattern of ice and snow surfaces. We then analysed the spatial and temporal pattern of the surface albedo. We developed a two-dimensional mass balance model based on the surface energy balance to study the spatial distribution of the energy and mass balance fluxes of Morteratschgletscher. Meteorological data from weather stations in the vicinity of Morteratschgletscher serve as input for the model. We corrected incoming solar radiation for shading, aspect, slope, reflection from surrounding slopes, and obstruction of the sky. Ignoring these effects results in an increase in solar radiation of 37%, causing a decrease in the mass balance of 0.34 m w.e. We modelled the mass balance for 1999 and 2000 and analysed the spatial distribution. We then ran the model for a period of 23 years and calculated the mass balance sensitivity to climate change by perturbing air temperature and precipitation. The mass balance sensitivity to temperature and precipitation are ˜0.59 m w.e. a-1 K-1 and 0.17 m w.e. a-1 per 10 percent respectively. We also used three other albedo parameterisations to calculate the mass balance sensitivity since albedo parameterisations are often regarded as a main source of error in mass balance models. We concluded that an accurate estimate of the mass balance sensitivity requires a parameterisation that captures the process of a decreasing snow albedo when a snow pack gets older or thinner. To extract a climate signal from worldwide glacier length fluctuations, we developed a simple model. The climate signal is represented as a reconstruction of the mass balance and the equilibrium line altitude (ELA). The model was tested on seventeen European glacier length records and then applied to nineteen glacier length records from different parts of the world. Between 1910 and 1959, the average increase in the reconstructed ELAs is 33 m. This implies that during the first half of the twentieth century, the climate was warmer or drier than before. The reconstructed ELAs decrease to lower elevations after 1960 and up till 1980, when most of the reconstructions end. The results can be translated into a global temperature increase of about 0.8 K for the period 1910-1959

  7. Critique and sensitivity analysis of the compensation function used in the LMS Hudson River striped bass models. Environmental Sciences Division publication No. 944

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Winkle, W.; Christensen, S.W.; Kauffman, G.

    1976-12-01

    The description and justification for the compensation function developed and used by Lawler, Matusky and Skelly Engineers (LMS) (under contract to Consolidated Edison Company of New York) in their Hudson River striped bass models are presented. A sensitivity analysis of this compensation function is reported, based on computer runs with a modified version of the LMS completely mixed (spatially homogeneous) model. Two types of sensitivity analysis were performed: a parametric study involving at least five levels for each of the three parameters in the compensation function, and a study of the form of the compensation function itself, involving comparison ofmore » the LMS function with functions having no compensation at standing crops either less than or greater than the equilibrium standing crops. For the range of parameter values used in this study, estimates of percent reduction are least sensitive to changes in YS, the equilibrium standing crop, and most sensitive to changes in KXO, the minimum mortality rate coefficient. Eliminating compensation at standing crops either less than or greater than the equilibrium standing crops results in higher estimates of percent reduction. For all values of KXO and for values of YS and KX at and above the baseline values, eliminating compensation at standing crops less than the equilibrium standing crops results in a greater increase in percent reduction than eliminating compensation at standing crops greater than the equilibrium standing crops.« less

  8. Ecological optimality in water-limited natural soil-vegetation systems. I - Theory and hypothesis

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1982-01-01

    The solution space of an approximate statistical-dynamic model of the average annual water balance is explored with respect to the hydrologic parameters of both soil and vegetation. Within the accuracy of this model it is shown that water-limited natural vegetation systems are in stable equilibrium with their climatic and pedologic environments when the canopy density and species act to minimize average water demand stress. Theory shows a climatic limit to this equilibrium above which it is hypothesized that ecological pressure is toward maximization of biomass productivity. It is further hypothesized that natural soil-vegetation systems will develop gradually and synergistically, through vegetation-induced changes in soil structure, toward a set of hydraulic soil properties for which the minimum stress canopy density of a given species is maximum in a given climate. Using these hypotheses, only the soil effective porosity need be known to determine the optimum soil and vegetation parameters in a given climate.

  9. Balanced MR cholangiopancreatography with motion-sensitized driven-equilibrium (MSDE) preparation: Feasibility and optimization of imaging parameters.

    PubMed

    Nakayama, Tomohiro; Nishie, Akihiro; Yoshiura, Takashi; Asayama, Yoshiki; Ishigami, Kousei; Kakihara, Daisuke; Obara, Makoto; Honda, Hiroshi

    2015-12-01

    To show the feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography and to determine the optimal velocity encoding (VENC) value. Sixteen healthy volunteers underwent MRI study using a 1.5-T clinical unit and a 32-channel body array coil. For each volunteer, images were obtained using the following seven respiratory-triggered sequences: (1) balanced magnetic resonance cholangiopancreatography without motion-sensitized driven-equilibrium, and (2)-(7) balanced magnetic resonance cholangiopancreatography with motion-sensitized driven-equilibrium, with VENC=1, 3, 5, 7, 9 and ∞cm/s for the x-, y-, and z-directions, respectively. Quantitative evaluation was obtained by measuring the maximum signal intensity of the common hepatic duct, portal vein, liver tissue including visible peripheral vessels, and liver tissue excluding visible peripheral vessels that were evaluated. We compared the contrast ratios of portal vein/common hepatic duct, liver tissue including visible peripheral vessels/common hepatic duct and liver tissue excluding visible peripheral vessels/common hepatic duct among the five finite sequences (VENC=1, 3, 5, 7, and 9cm/s). Statistical comparisons were performed using the t-test for paired data with the Bonferroni correction. Suppression of blood vessel signals was achieved with motion-sensitized driven-equilibrium sequences. We found the optimal VENC values to be either 3 or 5cm/s with the best suppression of relative vessel signals to bile ducts. At a lower VENC value (1cm/s), the bile duct signal was reduced, presumably due to minimal biliary flow. The feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography was suggested. The optimal VENC value was considered to be either 3 or 5cm/s. The clinical usefulness of this new magnetic resonance cholangiopancreatography sequence needs to be verified by further studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    The emissions of reactive gases and aerosols can affect climate through the burdens of ozone, methane and aerosols, having both cooling and warming effects. These species are generally referred to near-term climate forcers (NTCFs) or short-lived climate pollutants (SLCPs), because of their short atmospheric residence time. The mitigation of these would be attractive for both air quality and climate on a 30-year timescale, provided it is not at the expense of CO2 mitigation. In this study we examine the climate effects of the emissions of NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon - BC) and 4 ozone precursors (methane, reactive nitrogen oxides - NOx, volatile organic compounds VOC, and carbon monoxide - CO). For the aerosols the global warming potentials (GWPs) and global temperature change potentials (GTPs) are simply time-dependent scaling of the equilibrium radiative forcing, with the GTPs decreasing more rapidly with time than the GWPs. While the aerosol climate metrics have only a modest dependence on emission region, emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other northern hemisphere regions. On regional basis, the northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions. We also found that temperatures in the Arctic latitudes appear to be particularly sensitive to black carbon emissions from South Asia.

  11. Earth system responses to cumulative carbon emissions

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2015-07-01

    Information on the relationship between cumulative fossil carbon emissions and multiple climate targets are essential to design emission mitigation and climate adaptation strategies. In this study, the transient responses in different climate variables are quantified for a large set of multi-forcing scenarios extended to year 2300 towards stabilization and in idealized experiments using the Bern3D-LPJ carbon-climate model. The model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte-Carlo type framework. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.88 °C (68 % confidence interval (c.i.): 1.28 to 2.69 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and in steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic Meridional Overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The slopes of the relationships change when CO2 is stabilized. The Transient Climate Response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the Equilibrium Climate Sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models, but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  12. Ocean Drilling Program Records of the Last Five Million Years: A View of the Ocean and Climate System During a Warm Period and a Major Climate Transition

    NASA Astrophysics Data System (ADS)

    Ravelo, A. C.

    2003-12-01

    The warm Pliocene (4.7 to 3.0 Ma), the most recent period in Earth's history when global equilibrium climate was warmer than today, provides the opportunity to understand what role the components of the climate system that have a long timescale of response (cryosphere and ocean) play in determining globally warm conditions, and in forcing the major global climate cooling after 3.0 Ma. Because sediments of this age are well preserved in many locations in the world's oceans, we can potentially study this warm period in detail. One major accomplishment of the Ocean Drilling Program is the recovery of long continuous sediment sequences from all ocean basins that span the last 5.0 Ma. Dozens of paleoceanographers have generated climate records from these sediments. I will present a synthesis of these data to provide a global picture of the Pliocene warm period, the transition to the cold Pleistocene period, and changes in climate sensitivity related to this transition. In the Pliocene warm period, tropical sea surface temperature (SST) and global climate patterns suggest average conditions that resemble modern El Ni¤os, and deep ocean reconstructions indicate enhanced thermohaline overturning and reduced density and nutrient stratification. The data indicate that the warm conditions were not related to tectonic changes in ocean basin shape compared to today, rather they reflect the long term adjustment of the climate system to stronger than modern radiative forcing. The warm Pliocene to cold Pleistocene transition provides an opportunity to study the feedbacks of various components of the climate system. The marked onset of significant Northern hemisphere glaciation (NHG) at 2.75 Ma occurred in concert with a reduction in deep ocean ventilation, but cooling in subtropical and tropical regions was more gradual until Walker circulation was established in a major step at 2.0 Ma. Thus, regional high latitude ice albedo feedbacks, rather than low latitude processes, must have been primarily responsible for NHG at 2.75 Ma. And, regional air-sea feedbacks in the tropics, rather than ice sheet expansion, must have been primarily responsible for the marked increase in Walker circulation at 2.0 Ma. Finally, the detailed timing of events from different regions suggests that a tectonic `threshold' cannot explain the warm to cold climate transition. Studies of the last 5.0 Ma can also be used to understand how climate responds to changes in the Earth's radiative budget because seasonal and latitudinal variations in solar forcing are extremely well known, and many of the records that have been generated have the resolution and age control appropriate for the study of the climate response to these variations (Milankovitch cycles). In particular, how feedbacks operate when the mean climate state is warm versus cold can be studied. There is clear evidence that the amplitude of the climate response to solar forcing depends on the background mean state. In other words, the sensitivity of the climate to small perturbations in solar forcing has changed with time, and the balance of evidence indicates that tropical conditions, not high latitude conditions (such as ice sheet size) control this sensitivity. In sum, the Ocean Drilling Program has provided scientists with a window into the Pliocene warm period, and an opportunity to understand the workings of the ocean-climate system

  13. Estimating Irrigation Water Requirements using MODIS Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Harriss, Robert; Harriss, Robert; Wells, Gordon; Glantz, Michael; Dukhovny, Victor A.; Orlovsky, Leah

    2007-01-01

    An inverse process approach using satellite-driven (MODIS) biophysical modeling was used to quantitatively assess water resource demand in semi-arid and arid agricultural lands by comparing the carbon and water flux modeled under both equilibrium (in balance with prevailing climate) and non-equilibrium (irrigated) conditions. Since satellite observations of irrigated areas show higher leaf area indices (LAI) than is supportable by local precipitation, we postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. For an observation year we used MODIS vegetation indices, local climate data, and the SiB2 photosynthesis-conductance model to examine the relationship between climate and the water stress function for a given grid-cell and observed leaf area. To estimate the minimum amount of supplemental water required for an observed cell, we added enough precipitation to the prevailing climatology at each time step to minimize the water stress function and bring the soil to field capacity. The experiment was conducted on irrigated lands on the U.S. Mexico border and Central Asia and compared to estimates of irrigation water used.

  14. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    NASA Astrophysics Data System (ADS)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.

  15. Modeling the intersections of Food, Energy, and Water in climate-vulnerable Ethiopia with an application to small-scale irrigation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sankaranarayanan, S.; Zaitchik, B. F.; Siddiqui, S.

    2017-12-01

    Africa is home to some of the most climate vulnerable populations in the world. Energy and agricultural development have diverse impacts on the region's food security and economic well-being from the household to the national level, particularly considering climate variability and change. Our ultimate goal is to understand coupled Food-Energy-Water (FEW) dynamics across spatial scales in order to quantify the sensitivity of critical human outcomes to FEW development strategies in Ethiopia. We are developing bottom-up and top-down multi-scale models, spanning local, sub-national and national scales to capture the FEW linkages across communities and climatic adaptation zones. The focus of this presentation is the sub-national scale multi-player micro-economic (MME) partial-equilibrium model with coupled food and energy sector for Ethiopia. With fixed large-scale economic, demographic, and resource factors from the national scale computable general equilibrium (CGE) model and inferences of behavior parameters from the local scale agent-based model (ABM), the MME studies how shocks such as drought (crop failure) and development of resilience technologies would influence FEW system at a sub-national scale. The MME model is based on aggregating individual optimization problems for relevant players. It includes production, storage, and consumption of food and energy at spatially disaggregated zones, and transportation in between with endogenously modeled infrastructure. The aggregated players for each zone have different roles such as crop producers, storage managers, and distributors, who make decisions according to their own but interdependent objective functions. The food and energy supply chain across zones is therefore captured. Ethiopia is dominated by rain-fed agriculture with only 2% irrigated farmland. Small-scale irrigation has been promoted as a resilience technology that could potentially play a critical role in food security and economic well-being in Ethiopia, but that also intersects with energy and water consumption. Here, we focus on the energy usage for small-scale irrigation and the collective impact on crop production and water resources across zones in the MME model.

  16. Equilibrium Line Altitude fluctuations at HualcaHualca volcano (southern Peru).

    NASA Astrophysics Data System (ADS)

    Alcalá, Jesus; Palacios, David; Juan Zamorano, Jose

    2015-04-01

    Interest in Andean glaciers has substantially increased during the last decades, due to its high sensitivity to climate fluctuations. In this sense, Equilibrium Line Altitude (ELA) is a reliable indicator of climate variability that has been frequently used to reconstruct palaeoenvironmental conditions at different temporal and spatial scales. However, the number of sites with ELA reconstructions is still insufficient to determine patterns in tropical climate or estimations of atmospheric cooling since the Last Glacial Maximum. The main purpose of this study is to contribute in resolving tropical climate evolution through ELA calculations on HualcaHualca (15° 43' S; 71° 52' W; 6,025 masl), a large andesitic stratovolcano located in the south-western Peruvian Andes approximately 70 km north-west of Arequipa. We applied Terminus Headwall Altitude Ratio (THAR) with 0.2; 0.4; 0.5; 0.57 ratios, Accumulation Area Ratio (AAR) and Accumulation Area Balance Ratio (AABR) methods in four valleys of HualcaHualca volcano: Huayuray (north side), Pujro Huayjo (southwest side), Mollebaya (east side) and Mucurca (west side). To estimate ELA depression, we calculated the difference between the ELA on 1955 with its position in the Maximum Glacier Extent (MGE), Tardiglacial phases, little Ice Age (LIA) and 2000. Paleotemperature reconstructions derived from vertical temperature gradient 6.5° C / 1 km, based on GODDARD global observation system considered the most appropriate model for arid Andes. During MGE, the ELA was located between 5,005 (AABR) and 5,215 (AAR 0.67) masl. But in 1955, ELA rose to 5,685 (AABR) - 5,775 (AAR 0.67) masl. The ELA depression between those two phases is 560 - 680 m that implies a temperature decrease of 3.5° - 4.4° C. The experimental process based in the use and contrast of different ELA reconstruction techniques applied in this study suggests that THAR (0.57), AAR (0.67) or AABR are the most consistent procedures for HualcaHualca glaciers, while THAR with ratios 0.2; 0.4 and 0.5 tend to underestimate it's position. Research funded by Cryocrisis project (CGL2012-35858), Government of Spain.

  17. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    NASA Astrophysics Data System (ADS)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  18. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip; Katavouta, Anna; Roussenov, Vassil M.; Foster, Gavin L.; Rohling, Eelco J.; Williams, Richard G.

    2018-02-01

    To restrict global warming to below the agreed targets requires limiting carbon emissions, the principal driver of anthropogenic warming. However, there is significant uncertainty in projecting the amount of carbon that can be emitted, in part due to the limited number of Earth system model simulations and their discrepancies with present-day observations. Here we demonstrate a novel approach to reduce the uncertainty of climate projections; using theory and geological evidence we generate a very large ensemble (3 × 104) of projections that closely match records for nine key climate metrics, which include warming and ocean heat content. Our analysis narrows the uncertainty in surface-warming projections and reduces the range in equilibrium climate sensitivity. We find that a warming target of 1.5 °C above the pre-industrial level requires the total emitted carbon from the start of year 2017 to be less than 195-205 PgC (in over 66% of the simulations), whereas a warming target of 2 °C is only likely if the emitted carbon remains less than 395-455 PgC. At the current emission rates, these warming targets are reached in 17-18 years and 35-41 years, respectively, so that there is a limited window to develop a more carbon-efficient future.

  19. VULNERABILITY OF ECOSYSTEMS OF THE MID-ATLANTIC REGION, USA, TO CLIMATIC CHANGE

    EPA Science Inventory

    Changes in the distribution of vegetation in the mid-Atlantic region of the United States were explored for two climate-change scenarios. The equilibrium vegetation ecology (EVE) model was used to project the distribution of life forms and to combine these into biomes for a doubl...

  20. Separating sensitivity from exposure in assessing extinction risk from climate change.

    PubMed

    Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M

    2014-11-04

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.

  1. Separating sensitivity from exposure in assessing extinction risk from climate change

    PubMed Central

    Dickinson, Maria G.; Orme, C. David L.; Suttle, K. Blake; Mace, Georgina M.

    2014-01-01

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk. PMID:25367429

  2. Control of stochastic sensitivity in a stabilization problem for gas discharge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkirtseva, Irina

    2015-11-30

    We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.

  3. The potential negative impacts of global climate change on tropical montane cloud forests

    NASA Astrophysics Data System (ADS)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient cycles of the cloud forest and are especially sensitive to atmospheric climate change, especially humidity, as the epiphytes can occupy incredibly small eco-niches from the canopy to crooks to trunks. Even slight shifts in climate can cause wilting or death to the epiphyte community. Similarly, recent cloud forest animal redistributions, notably frog and lizard disappearances, may be driven by climate changes. Death of animals or epiphytes may have cascading effects on the cloud forest web of life. Aside from changes in temperature, precipitation, and cloudiness, other climate changes may include increasing dry seasons, droughts, hurricanes and intense rain storms, all of which might increase damage to the cloud forest. Because cloud forest species occupy such small areas and tight ecological niches, they are not likely to colonize damaged regions. Fire, drought and plant invasions (especially non-native plants) are likely to increase the effects of any climate change damage in the cloud forest. As has frequently been suggested in the literature, all of the above factors combine to make the cloud forest a likely site for observing climate change effects in the near future.

  4. Monte Carlo calculations of LR115 detector response to 222Rn in the presence of 220Rn.

    PubMed

    Nikezić, D; Yu, K N

    2000-04-01

    The sensitivities (in m) of bare LR115 detectors and detectors in diffusion chambers to 222Rn and 220Rn chains are calculated by the Monte Carlo method. The partial sensitivities of bare detectors to the 222Rn chain are larger than those to the 220Rn chain, which is due to the higher energies of alpha particles in the 220Rn chain and the upper energy limit for detection for the LR115 detector. However, the total sensitivities are approximately equal because 220Rn is always in equilibrium with its first progeny, which is not the case for the 222Rn chain. The total sensitivity of bare LR115 detectors to 222Rn chain depends linearly on the equilibrium factor. The overestimation in 222Rn measurements with bare detectors caused by 220Rn in air can reach 10% in normal environmental conditions. An analytical relationship between the equilibrium factor and the ratio between track densities on the bare detector and the detector enclosed in chamber is given in the last part of the paper. This ratio is also affected by 220Rn, which can disturb the determination of the equilibrium factor.

  5. Regional Climate Change Impact on Agricultural Land Use in West Africa

    NASA Astrophysics Data System (ADS)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes in land use pattern are robust.

  6. How does the sensitivity of climate affect stratospheric solar radiation management?

    NASA Astrophysics Data System (ADS)

    Ricke, K.; Rowlands, D. J.; Ingram, W.; Keith, D.; Morgan, M. G.

    2011-12-01

    If implementation of proposals to engineer the climate through solar radiation management (SRM) ever occurs, it is likely to be contingent upon climate sensitivity. Despite this, no modeling studies have examined how the effectiveness of SRM forcings differs between the typical Atmosphere-Ocean General Circulation Models (AOGCMs) with climate sensitivities close to the Coupled Model Intercomparison Project (CMIP) mean and ones with high climate sensitivities. Here, we use a perturbed physics ensemble modeling experiment to examine variations in the response of climate to SRM under different climate sensitivities. When SRM is used as a substitute for mitigation its ability to maintain the current climate state gets worse with increased climate sensitivity and with increased concentrations of greenhouse gases. However, our results also demonstrate that the potential of SRM to slow climate change, even at the regional level, grows with climate sensitivity. On average, SRM reduces regional rates of temperature change by more than 90 percent and rates of precipitation change by more than 50 percent in these higher sensitivity model configurations. To investigate how SRM might behave in models with high climate sensitivity that are also consistent with recent observed climate change we perform a "perturbed physics" ensemble (PPE) modelling experiment with the climateprediction.net (cpdn) version of the HadCM3L AOGCM. Like other perturbed physics climate modelling experiments, we simulate past and future climate scenarios using a wide range of model parameter combinations that both reproduce past climate within a specified level of accuracy and simulate future climates with a wide range of climate sensitivities. We chose 43 members ("model versions") from a subset of the 1,550 from the British Broadcasting Corporation (BBC) climateprediction.net project that have data that allow restarts. We use our results to explore how much assessments of SRM that use best-estimate models, and so near-median climate sensitivity, may be ignoring important contingencies associated with implementing SRM in reality. A primary motivation for studying SRM via the injection of aerosols in the stratosphere is to evaluate its potential effectiveness as "insurance" in the case of higher-than-expected climate response to global warming. We find that this is precisely when SRM appears to be least effective in returning regional climates to their baseline states and reducing regional rates of precipitation change. On the other hand, given the very high regional temperature anomalies associated with rising greenhouse gas concentrations in high sensitivity models, it is also where SRM is most effective in reducing rates of change relative to a no SRM alternative.

  7. The representation of non-equilibrium soil types in earth system models and its impact on carbon cycle projections

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Ahlström, A.; Canadell, J.; Koven, C. D.; Jackson, R. B.; Luo, Y.

    2016-12-01

    Soils hold the largest reactive pool of carbon (C) on earth. Global soil organic C stocks (0-200 cm depth plus full peatland depth) are estimated to 2200 Pg C (adapted from Hugelius et al., 2014, Köchy et al., 2015 and Batjes, 2016). Soil C stocks in Earth system models (ESMs) can be generated by running the model over a longer time period until soil C pools are in or near steady-state. Inherent in this concept is the idea that soil C stocks are in (quasi)equilibrium as determined by the balance of net ecosystem input to soil organic matter and its turnover. The rate of turnover is sometimes subdivided into several pools and the rates are affected by various environmental factors. Here we break down the empirically based estimates of global soil C pools into equilibrium-type soils which current (Coupled Model Intercomparison Project, phase 5; CMIP5) generation ESMs are set-up to represent and non-equilibrium type soils which are generally not represented in current ESMs. We define equilibrium soils as those where pedogenesis (and associated soil C formation) is not significantly limited by the environmental factors perennial soil freezing, waterlogging/anoxia or limited unconsolidated soil substrate. This is essentially all permafrost-free mineral soils that are not in a wetland or alpine setting. On the other hand, non-equlibrium soils are defined as permafrost soils, peatlands and alpine soils with a limited fine-soil matrix. Based on geospatial analyses of state-of-the-art datasets on soil C stocks, we estimate that the global soil C pool is divided roughly equally between equilibrium and non-equlibrium type soils. We discuss the ways in which this result affects C cycling in ESMs and projections of soil C sensitivity under a changing climate. ReferencesBatjes N.H. (2016) Geoderma, 269, 61-68, doi: 10.1016/j.geoderma.2016.01.034 Hugelius G. et al. (2014) Biogeosciences, 11, 6573-6593, doi:10.5194/bg-11-6573-2014 Köchy M. et al. (2015) Soil 1, 351-365. DOI: doi:10.5194/soil-1-351-2015

  8. Testing for effects of climate change on competitive relationships and coexistence between two bird species.

    PubMed

    Stenseth, Nils Chr; Durant, Joël M; Fowler, Mike S; Matthysen, Erik; Adriaensen, Frank; Jonzén, Niclas; Chan, Kung-Sik; Liu, Hai; De Laet, Jenny; Sheldon, Ben C; Visser, Marcel E; Dhondt, André A

    2015-05-22

    Climate change is expected to have profound ecological effects, yet shifts in competitive abilities among species are rarely studied in this context. Blue tits (Cyanistes caeruleus) and great tits (Parus major) compete for food and roosting sites, yet coexist across much of their range. Climate change might thus change the competitive relationships and coexistence between these two species. Analysing four of the highest-quality, long-term datasets available on these species across Europe, we extend the textbook example of coexistence between competing species to include the dynamic effects of long-term climate variation. Using threshold time-series statistical modelling, we demonstrate that long-term climate variation affects species demography through different influences on density-dependent and density-independent processes. The competitive interaction between blue tits and great tits has shifted in one of the studied sites, creating conditions that alter the relative equilibrium densities between the two species, potentially disrupting long-term coexistence. Our analyses show that long-term climate change can, but does not always, generate local differences in the equilibrium conditions of spatially structured species assemblages. We demonstrate how long-term data can be used to better understand whether (and how), for instance, climate change might change the relationships between coexisting species. However, the studied populations are rather robust against competitive exclusion. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew H.; Knutti, Reto

    2016-04-01

    The soils of the northern hemispheric permafrost region are estimated to contain 1100 to 1500 Pg of carbon. A substantial fraction of this carbon has been frozen and therefore protected from microbial decay for millennia. As anthropogenic climate warming progresses much of this permafrost is expected to thaw. Here we conduct perturbed model experiments on a climate model of intermediate complexity, with an improved permafrost carbon module, to estimate with formal uncertainty bounds the release of carbon from permafrost soils by the year 2100 and 2300 CE. We estimate that by year 2100 the permafrost region may release between 56 (13 to 118) Pg C under Representative Concentration Pathway (RCP) 2.6 and 102 (27 to 199) Pg C under RCP 8.5, with substantially more to be released under each scenario by the year 2300. Our analysis suggests that the two parameters that contribute most to the uncertainty in the release of carbon from permafrost soils are the size of the non-passive fraction of the permafrost carbon pool and the equilibrium climate sensitivity. A subset of 25 model variants are integrated 8000 years into the future under continued RCP forcing. Under the moderate RCP 4.5 forcing a remnant near-surface permafrost region persists in the high Arctic, eventually developing a new permafrost carbon pool. Overall our simulations suggest that the permafrost carbon cycle feedback to climate change will make a significant contribution to climate change over the next centuries and millennia, releasing a quantity of carbon 3 to 54 % of the cumulative anthropogenic total.

  10. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Sagredo, Esteban A.; Kaplan, Michael R.; Araya, Paola S.; Lowell, Thomas V.; Aravena, Juan C.; Moreno, Patricio I.; Kelly, Meredith A.; Schaefer, Joerg M.

    2018-05-01

    Elucidating the timing and regional extent of abrupt climate events during the last glacial-interglacial transition (∼18-11.5 ka) is critical for identifying spatial patterns and mechanisms responsible for large-magnitude climate events. The record of climate change in the Southern Hemisphere during this time period, however, remains scarce and unevenly distributed. We present new geomorphic, chronological, and equilibrium line altitude (ELA) data from a climatically sensitive mountain glacier at Monte San Lorenzo (47°S), Central Patagonia. Twenty-four new cosmogenic 10Be exposure ages from moraines provide a comprehensive glacial record in the mid-latitudes of South America, which constrain the timing, spatial extent and magnitude of glacial fluctuations during the Antarctic Cold Reversal (ACR, ∼14.5-12.9 ka). Río Tranquilo glacier advanced and reached a maximum extent at 13.9 ± 0.7 ka. Three additional inboard moraines afford statistically similar ages, indicating repeated glacier expansions or marginal fluctuations over the ACR. Our record represents the northernmost robust evidence of glacial fluctuations during the ACR in southern South America, documenting not only the timing of the ACR maximum, but also the sequence of glacier changes within this climate event. Based on ELA reconstructions, we estimate a cooling of >1.6-1.8 °C at the peak of the ACR. The Río Tranquilo record along with existing glacial reconstructions from New Zealand (43°S) and paleovegetation records from northwestern (41°S) and central-west (45°S) Patagonia, suggest an uniform trans-Pacific glacier-climate response to an ACR trigger across the southern mid-latitudes. We posit that the equatorial migration of the southern westerly winds provides an adequate mechanism to propagate a common ACR signal across the Southern Hemisphere.

  11. Estimating glacier response times and disequilibrium in a changing climate

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Koutnik, M.; Roe, G.

    2017-12-01

    Glaciers respond to climate variations according to a characteristic timescale that, for most mountain glaciers, is on the order of 10—100 years. An important consequence of this multi-decadal memory is that a glacier's transient response to a climate trend exhibits a persistent lag behind the equilibrium response. In the context of anthropogenic warming, this means that most glaciers are currently well out of equilibrium, and that a substantial amount of retreat is committed even without further warming. The degree of disequilibrium depends fundamentally on the glacier response timescale, making it an important parameter to constrain. A common and robust metric for the response timescale is τ=H/bt, where H and bt are characteristic values for ice thickness and the terminus mass-balance rate, respectively. However, sparse observations, climate variability, and glacier disequilibrium make it difficult to define these characteristic values. We compare several sources of uncertainty that will affect estimates of the response timescale and thus the degree of disequilibrium. Ice thickness is poorly constrained for many glaciers, which bears directly on estimates of the response timescale. However, errors may also arise from estimating thickness and mass-balance rates in a variable climate. We assess how noisy mass balance and observed terminus fluctuations introduce sampling errors into estimates of the glacier's response timescale and the expected equilibrium response to a climate change. Additionally, the instantaneous value of τ evolves during sustained warming as the glacier thins and retreats. Perhaps counterintuitively, τ can increase if retreat into higher elevations exceeds thinning. This has implications for estimating the timescale based on currently observed geometry and mass balance. We use shallow-ice and 3-stage linear models to explore these effects with synthetic glacier geometries and climate forcings. In this way, we can diagnose the geometric and climatic sources of uncertainty in glacier response timescales and degrees of disequilibrium. Estimating these metrics from existing datasets is necessary to relate mass balance to glacier state and to anticipate future responses; our analyses will help constrain such estimates and improve understanding of their limitations.

  12. A method for screening climate change-sensitive infectious diseases.

    PubMed

    Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin

    2015-01-14

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change.

  13. A Method for Screening Climate Change-Sensitive Infectious Diseases

    PubMed Central

    Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin

    2015-01-01

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change. PMID:25594780

  14. Inhomogeneous Forcing and Transient Climate Sensitivity

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2014-01-01

    Understanding climate sensitivity is critical to projecting climate change in response to a given forcing scenario. Recent analyses have suggested that transient climate sensitivity is at the low end of the present model range taking into account the reduced warming rates during the past 10-15 years during which forcing has increased markedly. In contrast, comparisons of modelled feedback processes with observations indicate that the most realistic models have higher sensitivities. Here I analyse results from recent climate modelling intercomparison projects to demonstrate that transient climate sensitivity to historical aerosols and ozone is substantially greater than the transient climate sensitivity to CO2. This enhanced sensitivity is primarily caused by more of the forcing being located at Northern Hemisphere middle to high latitudes where it triggers more rapid land responses and stronger feedbacks. I find that accounting for this enhancement largely reconciles the two sets of results, and I conclude that the lowest end of the range of transient climate response to CO2 in present models and assessments (less than 1.3 C) is very unlikely.

  15. Uncertainty Quantification of Equilibrium Climate Sensitivity in CCSM4

    NASA Astrophysics Data System (ADS)

    Covey, C. C.; Lucas, D. D.; Tannahill, J.; Klein, R.

    2013-12-01

    Uncertainty in the global mean equilibrium surface warming due to doubled atmospheric CO2, as computed by a "slab ocean" configuration of the Community Climate System Model version 4 (CCSM4), is quantified using 1,039 perturbed-input-parameter simulations. The slab ocean configuration reduces the model's e-folding time when approaching an equilibrium state to ~5 years. This time is much less than for the full ocean configuration, consistent with the shallow depth of the upper well-mixed layer of the ocean represented by the "slab." Adoption of the slab ocean configuration requires the assumption of preset values for the convergence of ocean heat transport beneath the upper well-mixed layer. A standard procedure for choosing these values maximizes agreement with the full ocean version's simulation of the present-day climate when input parameters assume their default values. For each new set of input parameter values, we computed the change in ocean heat transport implied by a "Phase 1" model run in which sea surface temperatures and sea ice concentrations were set equal to present-day values. The resulting total ocean heat transport (= standard value + change implied by Phase 1 run) was then input into "Phase 2" slab ocean runs with varying values of atmospheric CO2. Our uncertainty estimate is based on Latin Hypercube sampling over expert-provided uncertainty ranges of N = 36 adjustable parameters in the atmosphere (CAM4) and sea ice (CICE4) components of CCSM4. Two-dimensional projections of our sampling distribution for the N(N-1)/2 possible pairs of input parameters indicate full coverage of the N-dimensional parameter space, including edges. We used a machine learning-based support vector regression (SVR) statistical model to estimate the probability density function (PDF) of equilibrium warming. This fitting procedure produces a PDF that is qualitatively consistent with the raw histogram of our CCSM4 results. Most of the values from the SVR statistical model are within ~0.1 K of the raw results, well below the inter-decile range inferred below. Independent validation of the fit indicates residual errors that are distributed about zero with a standard deviation of 0.17 K. Analysis of variance shows that the equilibrium warming in CCSM4 is mainly linear in parameter changes. Thus, in accord with the Central Limit Theorem of statistics, the PDF of the warming is approximately Gaussian, i.e. symmetric about its mean value (3.0 K). Since SVR allows for highly nonlinear fits, the symmetry is not an artifact of the fitting procedure. The 10-90 percentile range of the PDF is 2.6-3.4 K, consistent with earlier estimates from CCSM4 but narrower than estimates from other models, which sometimes produce a high-temperature asymmetric tail in the PDF. This work was performed under auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and was funded by LLNL's Uncertainty Quantification Strategic Initiative (Laboratory Directed Research and Development Project 10-SI-013).

  16. Battle for Climate and Scarcity Rents: Beyond the Linear-Quadratic Case.

    PubMed

    Kagan, Mark; van der Ploeg, Frederick; Withagen, Cees

    Industria imports oil, produces final goods and wishes to mitigate global warming. Oilrabia exports oil and buys final goods from the other country. Industria uses the carbon tax to impose an import tariff on oil and steal some of Oilrabia's scarcity rent. Conversely, Oilrabia has monopoly power and sets the oil price to steal some of Industria's climate rent. We analyze the relative speeds of oil extraction and carbon accumulation under these strategic interactions for various production function specifications and compare these with the efficient and competitive outcomes. We prove that for the class of HARA production functions, the oil price is initially higher and subsequently lower in the open-loop Nash equilibrium than in the efficient outcome. The oil extraction rate is thus initially too low and in later stages too high. The HARA class includes linear, loglinear and semi-loglinear demand functions as special cases. For non-HARA production functions, Oilrabia may in the open-loop Nash equilibrium initially price oil lower than the efficient level, thus resulting in more oil extraction and climate damages. We also contrast the open-loop Nash and efficient outcomes numerically with the feedback Nash outcomes. We find that the optimal carbon tax path in the feedback Nash equilibrium is flatter than in the open-loop Nash equilibrium. It turns out that for certain demand functions using the carbon tax as an import tariff may hurt consumers' welfare as the resulting user cost of oil is so high that the fall in welfare wipes out the gain from higher tariff revenues.

  17. Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  18. Phenological sensitivity to climate across taxa and trophic levels.

    PubMed

    Thackeray, Stephen J; Henrys, Peter A; Hemming, Deborah; Bell, James R; Botham, Marc S; Burthe, Sarah; Helaouet, Pierre; Johns, David G; Jones, Ian D; Leech, David I; Mackay, Eleanor B; Massimino, Dario; Atkinson, Sian; Bacon, Philip J; Brereton, Tom M; Carvalho, Laurence; Clutton-Brock, Tim H; Duck, Callan; Edwards, Martin; Elliott, J Malcolm; Hall, Stephen J G; Harrington, Richard; Pearce-Higgins, James W; Høye, Toke T; Kruuk, Loeske E B; Pemberton, Josephine M; Sparks, Tim H; Thompson, Paul M; White, Ian; Winfield, Ian J; Wanless, Sarah

    2016-07-14

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).

  19. The Effects of Climate Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Katherine V.; Bond-Lamberty, Benjamin; Edmonds, James A.

    2015-07-01

    Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect of climate change on the carbon cycle, the uncertainty in climate outcomes inherent in any given policy target, and the economic implications. We examine three policy scenarios—a no policy “Reference” (REF) scenario, and two policies that limit total radiative forcing—with four climate sensitivities using a coupled integrated assessment model. Like previous work, we find that, within a given scenario,more » there is a wide range of temperature change and sea level rise depending on the realized climate sensitivity. We expand on this previous work to show that temperature-related feedbacks on the carbon cycle result in more mitigation required as climate sensitivity increases. Thus, achieving a particular radiative forcing target becomes increasingly expensive as climate sensitivity increases.« less

  20. Glacier fluctuations in the Kenai Fjords, Alaska, U.S.A.: An evaluation of controls on Iceberg-calving glaciers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, G.C.; Calkin, P.E.; Post, A.

    The histories of four iceberg-calving outlet-glacier systems in the Kenai Fjords National Park underscore the importance of fiord depth, sediment supply, and fiord geometry on glacier stability. These parameters, in turn, limit the reliability of calving glacier chronologies as records of climatic change. Tree-ring analysis together with radiocarbon dating show that the Northwestern and McCarty glaciers, with large drainage basins, were advancing in concert with nearby land-terminating glaciers about A.D. 600. After an interval of retreat and possible nonclimatically induced extension during the Medieval Warm Period, these ice margins advanced again through the Little Ice Age and then retreated synchronouslymore » with the surrounding land-terminating glaciers about A.D. 1900. In contrast, Holgate and Aialik glaciers, with deeper fiords and smaller basins, retreated about 300 yr earlier. Reconstructions of Little Ice Age glaciers suggest that equilibrium-line altitudes of Northwestern and McCarty glaciers were, respectively, 270 and 500 m lower than now. Furthermore, the reconstructions show that these two glaciers were climatically sensitive when at their terminal moranies. However, with ice margins at their present recessional positions and accumulation area ratios between 0.8 and 0.9, only McCarty Glacier shows evidence of advance. Aialik and Holgate glaciers were climatically insensitive during the Little Ice Age maxima and remain insensitive to climate. 40 refs., 7 figs., 2 tabs.« less

  1. Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate

    NASA Technical Reports Server (NTRS)

    Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.

    2014-01-01

    Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates, with implications for estimating climate sensitivity to greenhouse gas forcing utilizing past climate states.

  2. Remnant Geometric Hall Response in a Quantum Quench.

    PubMed

    Wilson, Justin H; Song, Justin C W; Refael, Gil

    2016-12-02

    Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current-a remnant Hall response-even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, the remnant Hall response arises from the coherent dynamics of the wave function that retain a remnant of its quantum geometry postquench, and can be traced to processes beyond linear response. Quenches in two-band Dirac systems are natural venues for realizing remnant Hall currents, which exist when either mirror or time-reversal symmetry are broken (before or after the quench). Its long time persistence, sensitivity to symmetry breaking, and decoherence-type relaxation processes allow it to be used as a sensitive diagnostic of the complex out-of-equilibrium dynamics readily controlled and probed in cold-atomic optical lattice experiments.

  3. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.

  4. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions

    PubMed Central

    Zeebe, Richard E.

    2013-01-01

    Climate sensitivity measures the response of Earth’s surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth’s climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000–165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene–Eocene Thermal Maximum. PMID:23918402

  5. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    PubMed

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  6. Climate sensitivity, sea level and atmospheric carbon dioxide

    PubMed Central

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3±1°C for a 4 W m−2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3–4°C for a 4 W m−2 CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change. PMID:24043864

  7. Climate sensitivity, sea level and atmospheric carbon dioxide.

    PubMed

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-10-28

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3±1(°)C for a 4 W m(-2) CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4(°)C for a 4 W m(-2) CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  8. State-dependent climate sensitivity in past warm climates and its implications for future climate projections.

    PubMed

    Caballero, Rodrigo; Huber, Matthew

    2013-08-27

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow "Earth system" feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or "Charney" climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature.

  9. Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Willeit, M.; Ganopolski, A.

    2015-09-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  10. Examining the sensitivity of modelled evapotranspiration to vegetation structural characteristics within boreal peatlands, riparian ecosystems and upland mixedwood forest

    NASA Astrophysics Data System (ADS)

    Petrone, R. M.; Chasmer, L. E.; Brown, S. M.; Mendoza, C. A.; Diiwu, J.; Quinton, W. L.; Hopkinson, C.; Devito, K. J.

    2010-12-01

    The Western Boreal Plain (WBP) of northern Alberta is comprised of a complex mosaic of small ponds, riparian buffer zones, and upland aspen dominated mixedwood forests surrounded by low-lying peatlands. The hydrology of the WBP is strongly influenced by climatic drivers and geology, whereby water budgets are often controlled by vertical fluxes. During most years, potential evapotranspiration (PET) exceeds precipitation (P), and changes in P as a result of climatic change will likely alter actual evapotranspiration (AET) and regional water balances. In recent years, the WBP has also undergone intense anthropogenic disturbance via oil and gas exploration and extraction, and silvicultural and forest harvesting activities. The extent to which changes in land cover types/characteristics affect estimates of PET and AET is currently unknown. This study examines the sensitivity of PET using a simple estimate of equilibrium ET (Priestley-Taylor) and AET (Penman-Monteith variant) to variability in canopy structural and ground surface characteristics at 12 sites throughout the 2008 growing season (June, July, August). Energy balance meteorological stations are deployed within four peatland ecosystems, four riparian buffer zones, two regenerating upland mixedwood forests and two mature upland mixedwood forests. Airborne Light Detection and Ranging (LiDAR) is used to derive metrics of canopy height, leaf area index (LAI), uplands and lowlands, elevation, zero plane displacement, roughness length governing momentum, roughness length governing heat and vapour, and understory vegetation characteristics. LiDAR land surface metrics and energy balance measurements are used to model evapotranspiration for classified land cover types throughout the larger basin. Sensitivity of potential and actual estimates to changes in land cover characteristics within each of the three land cover types (peatland, riparian and upland) is quantified.

  11. Hypsometric control on glacier mass balance sensitivity in Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Sass, L.; Arendt, A. A.; O'Neel, S.; Kienholz, C.; Larsen, C.; Burgess, E. W.

    2015-12-01

    Mass loss from glaciers in Alaska is dominated by strongly negative surface balances, particularly on small, continental glaciers but can be highly variable from glacier to glacier. Glacier hypsometry can exert significant control on mass balance sensitivity, particularly if the equilibrium line altitude (ELA) is in a broad area of low surface slope. In this study, we explore the spatial variability in glacier response to future climate forcings on the basis of hypsometry. We first derive mass balance sensitivities (30-70 m ELA / 1° C and 40-90 m ELA / 50% decrease in snow accumulation) from the ~50-year USGS Benchmark glaciers mass balance record. We subsequently assess mean climate fields in 2090-2100 derived from the IPCC AR5/CMIP5 RCP 6.0 5-model mean. Over glaciers in Alaska, we find 2-4° C warming and 10-20% increase in precipitation relative to 2006-2015, but a corresponding 0-50% decrease in snow accumulation due to rising temperatures. We assess changes in accumulation area ratios (AAR) to a rising ELA using binned individual glacier hypsometries. For an ELA increase of 150 m, the mean statewide AAR drops by 0.45, representing a 70% reduction in accumulation area on an individual glacier basis. Small, interior glaciers are the primary drivers of this reduction and for nearly 25% of all glaciers, the new ELA exceeds the glacier's maximum elevation, portending eventual loss. The loss of small glaciers, particularly in the drier interior of Alaska will significantly modify streamflow properties (flashy hydrographs, earlier and reduced peak flows, increased interannual variability, warmer temperatures) with poorly understood downstream ecosystem and oceanographic impacts.

  12. Disentangling residence time and temperature sensitivity of microbial decomposition in a global soil carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.

    2014-12-01

    Recent studies have identified the first-order representation of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of current state-of-the-art models of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitivity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C, which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitude carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers, it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon and how soil carbon responds to climate change should be more constrained by available data sets of carbon stocks.

  13. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms

    PubMed Central

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-01-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities. PMID:25535553

  14. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms.

    PubMed

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-09-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.

  15. Southern Ocean carbon-wind stress feedback

    NASA Astrophysics Data System (ADS)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  16. Glaciological and hydrological sensitivities in the Hindu Kush - Himalaya

    NASA Astrophysics Data System (ADS)

    Shea, Joseph; Immerzeel, Walter

    2016-04-01

    Glacier responses to future climate change will affect hydrology at subbasin-scales. The main goal of this study is to assess glaciological and hydrological sensitivities of sub-basins throughout the Hindu Kush - Himalaya (HKH) region. We use a simple geometrical analysis based on a full glacier inventory and digital elevation model (DEM) to estimate sub-basin equilibrium line altitudes (ELA) from assumptions of steady-state accumulation area ratios (AARs). The ELA response to an increase in temperature is expressed as a function of mean annual precipitation, derived from a range of high-altitude studies. Changes in glacier contributions to streamflow in response to increased temperatures are examined for scenarios of both static and adjusted glacier geometries. On average, glacier contributions to streamflow increase by approximately 50% for a +1K warming based on a static geometry. Large decreases (-60% on average) occur in all basins when glacier geometries are instantaneously adjusted to reflect the new ELA. Finally, we provide estimates of sub-basin glacier response times that suggest a majority of basins will experience declining glacier contributions by the year 2100.

  17. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Treesearch

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  18. Excessive Afforestation and Soil Drying on China's Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Shuilei; Yang, Dawen; Yang, Yuting; Piao, Shilong; Yang, Hanbo; Lei, Huimin; Fu, Bojie

    2018-03-01

    Afforestation and deforestation as human disturbances to vegetation have profound impacts on ecohydrological processes influencing both water and carbon cycles and ecosystem sustainability. Since 1999, large-scale revegetation activities such as "Grain-to-Green Program" have been implemented across China's Loess Plateau. However, negative ecohydrological consequences, including streamflow decline and soil drying have emerged. Here we estimate the equilibrium vegetation cover over the Loess Plateau based on an ecohydrological model and assess the water balance under the equilibrium and actual vegetation cover over the past decade. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined equilibrium vegetation cover (0.43 on average) in many parts of the Loess Plateau, especially in the middle-to-east regions. This indicates a widespread overplanting, which is found to primarily responsible for soil drying in the area. Additionally, both the equilibrium vegetation cover and soil moisture tend to decrease under future (i.e., 2011-2050) climate scenarios due to declined atmospheric water supply (i.e., precipitation) and increased atmospheric water demand (i.e., potential evapotranspiration). Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable ecohydrological environment in the region, a revegetation threshold is urgently needed to guide future revegetation activities.

  19. State-dependent climate sensitivity in past warm climates and its implications for future climate projections

    PubMed Central

    Caballero, Rodrigo; Huber, Matthew

    2013-01-01

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397

  20. Debris-Covered Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstructions

    USGS Publications Warehouse

    Clark, D.H.; Clark, M.M.; Gillespie, A.R.

    1994-01-01

    Ice-walled melt ponds on the surfaces of active valley-floor rock glaciers and Matthes (Little Ice Age) moraines in the southern Sierra Nevada indicate that most of these landforms consist of glacier ice under thin (ca. 1 - 10 m) but continuous covers of rock-fall-generated debris. These debris blankets effectively insulate the underlying ice and greatly reduce rates of ablation relative to that of uncovered ice. Such insulation explains the observations that ice-cored rock glaciers in the Sierra, actually debris-covered glaciers, are apparently less sensitive to climatic warming and commonly advance to lower altitudes than do adjacent bare-ice glaciers. Accumulation-area ratios and toe-to-headwall-altitude ratios used to estimate equilibrium-line altitudes (ELAs) of former glaciers may therefore yield incorrect results for cirque glaciers subject to abundant rockfall. Inadvertent lumping of deposits from former debris-covered and bare-ice glaciers partially explains an apparently anomalous regional ELA gradient reported for the pre-Matthes Recess Peak Neoglacial advance. Distinguishing such deposits may be important to studies that rely on paleo-ELA estimates. Moreover, Matthes and Recess Peak ELA gradients along the crest evidently depend strongly on local orographic effects rather than latitudinal climatic trends, indicating that simple linear projections and regional climatic interpretations of ELA gradients of small glaciers may be unreliable.

  1. Climatic Change, Conflict and Peace in Transboundary River Basins - A Theoretical Perspective

    NASA Astrophysics Data System (ADS)

    Siegfried, T. U.; Beck, L.; Koubi, V.; Bernauer, T.

    2011-12-01

    Recent research shows that one of the most significant risk for societal development pertains to water availability and that the greatest risks for unrest stemming from economic deprivation and the erosion of livelihoods is found in transboundary river basins in poor and politically unstable parts of the world. While until now, historic linkages between water scarcity and conflict were weak at best, there is growing fear that environmental change will increasingly lead to an entanglement of conflict and resources dynamics in the future. Where resources are not jointly managed in a cooperative way and resources sharing mechanisms not legislated by sound international institutions and were significant impacts from environmental change are expected, these developments give rise to concern. To study environmental change and conflict interlinkages, we develop a formal hydro-climatological model for transboundary freshwater resources and investigate theoretically how climate change translates into potential for conflict and peace, contingent on configurations of power between riparians. The model accounts for how upstream countries exercise power by using water whereas downstream countries use power to obtain water. We show that equilibrium water allocation outcomes are biased towards the more powerful riparian, and that absolute upstream or downstream river basin dominance are limiting cases of our general model. Our model suggests that the basin-wide conflict potential is always more sensitive to changes in relative power between riparian states than to impacts from climatic changes.

  2. Hydrologic impacts of changes in climate and glacier extent in the Gulf of Alaska watershed

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; McGrath, D.; Arendt, A.; Kienholz, C.

    2017-09-01

    High-resolution regional-scale hydrologic models were used to quantify the response of late 21st century runoff from the Gulf of Alaska (GOA) watershed to changes in regional climate and glacier extent. NCEP Climate Forecast System Reanalysis data were combined with five Coupled Model Intercomparison Project Phase 5 general circulation models (GCMs) for two representative concentration pathway (RCP) scenarios (4.5 and 8.5) to develop meteorological forcing for the period 2070-2099. A hypsographic model was used to estimate future glacier extent given assumed equilibrium line altitude (ELA) increases of 200 and 400 m. GCM predictions show an increase in annual precipitation of 12% for RCP 4.5 and 21% for RCP 8.5, and an increase in annual temperature of 2.5°C for RCP 4.5 and 4.3°C for RCP 8.5, averaged across the GOA. Scenarios with perturbed climate and glaciers predict annual GOA-wide runoff to increase by 9% for RCP4.5/ELA200 case and 14% for the RCP8.5/ELA400 case. The glacier runoff decreased by 14% for RCP4.5/ELA200 and by 34% for the RCP8.5/ELA400 case. Intermodel variability in annual runoff was found to be approximately twice the variability in precipitation input. Additionally, there are significant changes in runoff partitioning and increases in snowpack runoff are dominated by increases in rain-on-snow events. We present results aggregated across the entire GOA and also for individual watersheds to illustrate the range in hydrologic regime changes and explore the sensitivities of these results by independently perturbing only climate forcings and only glacier cover.

  3. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M.M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, reactive nitrogen oxides (NOx), volatile organic compounds and carbon monoxide). We calculate the global climate metrics: global warming potentials (GWPs) and global temperature change potentials (GTPs). For the aerosols these metrics are simply time-dependent scalings of the equilibrium radiative forcings. The GTPs decrease more rapidly with time than the GWPs. The aerosol forcings and hence climate metrics have only a modest dependence on emission region. The metrics for ozone precursors include the effects on the methane lifetime. The impacts via methane are particularly important for the 20 yr GTPs. Emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other Northern Hemisphere regions. The analysis is further extended by examining the temperature-change impacts in 4 latitude bands, and calculating absolute regional temperature-change potentials (ARTPs). The latitudinal pattern of the temperature response does not directly follow the pattern of the diagnosed radiative forcing. We find that temperatures in the Arctic latitudes appear to be particularly sensitive to BC emissions from South Asia. The northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions.

  4. Linking environmental filtering and disequilibrium to biogeography with a community climate framework.

    PubMed

    Blonder, Benjamin; Nogués-Bravo, David; Borregaard, Michael K; Donoghue, John C; Jørgensen, Peter M; Kraft, Nathan J B; Lessard, Jean-Philippe; Morueta-Holme, Naia; Sandel, Brody; Svenning, Jens-Christian; Violle, Cyrille; Rahbek, Carsten; Enquist, Brian J

    2015-04-01

    We present a framework to measure the strength of environmental filtering and disequilibrium of the species composition of a local community across time, relative to past, current, and future climates. We demonstrate the framework by measuring the impact of climate change on New World forests, integrating data for climate niches of more than 14000 species, community composition of 471 New World forest plots, and observed climate across the most recent glacial-interglacial interval. We show that a majority of communities have species compositions that are strongly filtered and are more in equilibrium with current climate than random samples from the regional pool. Variation in the level of current community disequilibrium can be predicted from Last Glacial Maximum climate and will increase with near-future climate change.

  5. Significance of dissolved methane in effluents of anaerobically ...

    EPA Pesticide Factsheets

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  6. Chinese insurance agents in "bad barrels": a multilevel analysis of the relationship between ethical leadership, ethical climate and business ethical sensitivity.

    PubMed

    Zhang, Na; Zhang, Jian

    2016-01-01

    The moral hazards and poor public image of the insurance industry, arising from insurance agents' unethical behavior, affect both the normal operation of an insurance company and decrease applicants' confidence in the company. Contrarily, these scandals may demonstrate that the organizations were "bad barrels" in which insurance agents' unethical decisions were supported or encouraged by the organization's leadership or climate. The present study brings two organization-level factors (ethical leadership and ethical climate) together and explores the role of ethical climate on the relationship between the ethical leadership and business ethical sensitivity of Chinese insurance agents. Through the multilevel analysis of 502 insurance agents from 56 organizations, it is found that organizational ethical leadership is positively related to the organizational ethical climate; organizational ethical climate is positively related to business ethical sensitivity, and organizational ethical climate fully mediates the relationship between organizational ethical leadership and business ethical sensitivity. Organizational ethical climate plays a completely mediating role in the relationship between organizational ethical leadership and business ethical sensitivity. The integrated model of ethical leadership, ethical climate and business ethical sensitivity makes several contributions to ethics theory, research and management.

  7. Assessing the ability of plants to respond to climatic change through distribution shifts

    Treesearch

    Mark W. Schwartz

    1996-01-01

    Predictions of future global warming suggest northward shifts of up to 800 km in the equilibrium distributions of plant species. Historical data estimating the maximum rate of tree distribution shifts (migration) suggest that most species will not keep pace with future rates of human-induced climatic change. Previous plant migrations have occurred at rates typically...

  8. Climatic implications of reconstructed early - Mid Pliocene equilibrium-line altitudes in the McMurdo Dry Valleys, Antarctica

    USGS Publications Warehouse

    Krusic, A.G.; Prentice, M.L.; Licciardi, J.M.

    2009-01-01

    Early-mid Pliocene moraines in the McMurdo Dry Valleys, Antarctica, are more extensive than the present alpine glaciers in this region, indicating substantial climatic differences between the early-mid Pliocene and the present. To quantify this difference in the glacier-climate regime, we estimated the equilibrium-line altitude (ELA) change since the early-mid Pliocene by calculating the modern ELA and reconstructing the ELAs of four alpine glaciers in Wright and Taylor Valleys at their early-mid Pliocene maxima. The area-altitude balance ratio method was used on modern and reconstructed early-mid Pliocene hypsometry. In Wright and Victoria Valleys, mass-balance data identify present-day ELAs of 800-1600 m a.s.l. and an average balance ratio of 1.1. The estimated ELAs of the much larger early-mid Pliocene glaciers in Wright and Taylor Valleys range from 600 to 950 ?? 170 m a.s.l., and thus are 250-600 ??170 m lower than modern ELAs in these valleys. The depressed ELAs during the early-mid-Pliocene most likely indicate a wetter and therefore warmer climate in the Dry Valleys during this period than previous studies have recognized.

  9. Tropical Convection and Climate Processes in a Cumulus Ensemble Model

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung

    1999-01-01

    Local convective-radiative equilibrium states of the tropical atmosphere are determined by the following external forcing: 1) Insolation, 2) Surface heat and moisture exchanges (primarily radiation and evaporation), 3) Heating and moistening induced by large-scale circulation. Understanding the equilibrium states of the tropical atmosphere in different external forcing conditions is of vital importance for studying cumulus parameterization, climate feedbacks, and climate changes. We extend our previous study using the Goddard Cumulus Ensemble (GCE) Model which resolves convective-radiative processes more explicitly than global climate models do. Several experiments are carried out under fixed insolation and sea surface temperature. The prescribed SST consists of a uniform warm pool (29C) surrounded by uniform cold SST (26C). The model produces "Walker"-type circulation with the ascending branch of the model atmosphere more humid than the descending part, but the vertically integrated temperature does not show a horizontal gradient. The results are compared with satellite measured moisture by SSM/I (Special Sensor Microwave/Imager) and temperature by MSU in the ascending and descending tropical atmosphere. The vertically integrated temperature and humidity in the two model regimes are comparable to the observed values in the tropics.

  10. General equilibrium effects of a supply side GHG mitigation option under the Clean Development Mechanism.

    PubMed

    Timilsina, Govinda R; Shrestha, Ram M

    2006-09-01

    The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.

  11. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions

    PubMed Central

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2016-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long-lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. PMID:27633953

  12. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.

    PubMed

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. © 2016 John Wiley & Sons Ltd.

  13. LSENS, The NASA Lewis Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    2000-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS (the NASA Lewis kinetics and sensitivity analysis code), are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include: static system; steady, one-dimensional, inviscid flow; incident-shock initiated reaction in a shock tube; and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method (LSODE, the Livermore Solver for Ordinary Differential Equations), which works efficiently for the extremes of very fast and very slow reactions, is used to solve the "stiff" ordinary differential equation systems that arise in chemical kinetics. For static reactions, the code uses the decoupled direct method to calculate sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters. Solution methods for the equilibrium and post-shock conditions and for perfectly stirred reactor problems are either adapted from or based on the procedures built into the NASA code CEA (Chemical Equilibrium and Applications).

  14. INVENTORY AND ASSESSMENT OF CLIMATE SENSITIVE DECISIONS

    EPA Science Inventory

    The project will create a pilot inventory of climate-sensitive resource managment decision. The project will develop and demonstrate a new approach to collecting systematic information about the context and characteristics of climate-sensitive decisions and using this informatio...

  15. Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Kiemle, Christoph; Lebsock, Mathew D.; Kirchengast, Gottfried; Buehler, Stefan A.; Löhnert, Ulrich; Liu, Cong-Liang; Hargrave, Peter C.; Barrera-Verdejo, Maria; Winker, David M.

    2017-11-01

    A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

  16. The transient response of ice-shelf melting to ocean change

    NASA Astrophysics Data System (ADS)

    Holland, P.

    2017-12-01

    Idealised modelling studies show that the melting of ice shelves varies as a quadratic function of ocean temperature. This means that warm-water ice shelves have higher melt rates and are also more sensitive to ocean warming. However, this result is the equilibrium response, derived from a set of ice—ocean simulations subjected to a fixed ocean forcing and run until steady. This study considers instead the transient response of melting, using unsteady simulations subjected to forcing conditions that are oscillated in time with a range of periods. The results show that when the ocean forcing is varied slowly, the melt rates follow the equililbrium response. However, for rapid ocean change melting deviates from the equilibrium response in interesting ways. The residence time of water in the sub-ice cavity offers a critical timescale. When the forcing varies slowly (period of oscillation >> residence time), the cavity is fully-flushed with forcing anomalies at all stages of the cycle and melting follows the equilibrium response. When the forcing varies rapidly (period ≤ residence time), multiple cold and warm anomalies coexist in the cavity, cancelling each other in the spatial mean and thus inducing a relatively steady melt rate. This implies that all ice shelves have a maximum frequency of ocean variability that can be manifested in melting. The results also show that ice shelves forced by warm water have high melt rates, high equilibrium sensitivity, and short residence times, hence a short timescale over which the equilibrium sensitivity is manifest. The most rapid melting adjustment is induced by warm anomalies that are also saline. Thus, ice shelves in the Amundsen and Bellingshausen seas, Antarctica, are highly sensitive to ocean change.

  17. Forecasting Glacier Evolution and Hindcasting Paleoclimates In Light of Mass Balance Nonlinearities

    NASA Astrophysics Data System (ADS)

    Malone, A.; Doughty, A. M.; MacAyeal, D. R.

    2016-12-01

    Glaciers are commonly used barometers of present and past climate change, with their variations often being linked to shifts in the mean climate. Climate variability within a unchanging mean state, however, can produce short term mass balance and glacier length anomalies, complicating this linkage. Also, the mass balance response to this variability can be nonlinear, possibly impacting the longer term state of the glacier. We propose a conceptual model to understand these nonlinearities and quantify their impacts on the longer term mass balance and glacier length. The relationship between mass balance and elevation, i.e. the vertical balance profile (VBP), illuminates these nonlinearities (Figure A). The VBP, given here for a wet tropical glacier, is piecewise, which can lead to different mass balance responses to climate anomalies of similar magnitude but opposite sign. We simulate the mass balance response to climate variability by vertically (temperature anomalies) and horizontally (precipitation anomalies) transposing the VBP for the mean climate (Figure A). The resulting anomalous VBP is the superposition of the two translations. We drive a 1-D flowline model with 10,000 years of anomalous VBPs. The aggregate VBP for the mean climate including variability differs from the VBP for the mean climate excluding variability, having a higher equilibrium line altitude (ELA) and a negative mass balance (Figure B). Accordingly, the glacier retreats, and the equilibrium glacier length for the aggregate VBP is the same as the mean length from the 10,000 year flowline simulation (Figure C). The magnitude of the VBP shift and glacier retreat increases with greater temperature variability and larger discontinuities in the VBP slope. These results highlight the importance of both the climate mean and variability in determining the longer term state of the glacier. Thus, forecasting glacier evolution or hindcasting past climates should also include representation of climate variability.

  18. Obliquity variation in a Mars climate evolution model

    NASA Technical Reports Server (NTRS)

    Tyler, D.; Haberle, Robert M.

    1993-01-01

    The existence of layered terrain in both polar regions of Mars is strong evidence supporting a cyclic variation in climate. It has been suggested that periods of net deposition have alternated with periods of net erosion in creating the layered structure that is seen today. The cause for this cyclic climatic behavior is variation in the annually averaged latitudinal distribution of solar insolation in response to obliquity cycles. For Mars, obliquity variation leads to major climatological excursion due to the condensation and sublimation of the major atmospheric constituent, CO2. The atmosphere will collapse into the polar caps, or existing caps will rapidly sublimate into the atmosphere, dependent upon the polar surface heat balance and the direction of the change in obliquity. It has been argued that variations in the obliquity of Mars cause substantial departures from the current climatological values of the surface pressure and the amount of CO2 stored in both the planetary regolith and polar caps. In this new work we have modified the Haberle et al. model to incorporate variable obliquity by allowing the polar and equatorial insolation to become functions of obliquity, which we assume to vary sinusoidally in time. As obliquity varies in the model, there can be discontinuities in the time evolution of the model equilibrium values for surface pressure, regolith, and polar cap storage. The time constant, tau r, for the regolith to find equilibrium with the climate is estimated--depending on the depth, thermal conductivity, and porosity of the regolith--between 10(exp 4) and 10(exp 6) yr. Thus, using 2000-yr timesteps to move smoothly through the 0.1250 m.y. obliquity cycles, we have an atmosphere/regolith system that cannot be assumed in equilibrium. We have dealt with this problem by limiting the rate at which CO2, can move between the atmosphere and regolith, mimicking the diffusive nature and effects of the temperature and pressure waves, by setting the time rate of change of regolith storage proportional to the difference between equilibrium storage and current storage.

  19. Simulated precipitation diurnal cycles over East Asia using different CAPE-based convective closure schemes in WRF model

    NASA Astrophysics Data System (ADS)

    Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun

    2018-03-01

    Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.

  20. Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.

    2017-05-01

    The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.

  1. Climate sensitivity of DSSAT under different agriculture practice scenarios in China

    NASA Astrophysics Data System (ADS)

    Xia, L.; Robock, A.

    2014-12-01

    Crop yields are sensitive to both agricultural practice and climate changes. Under different agricultural practice scenarios, crop yield may have different climate sensitivities. Since it is important to understand how future climate changes affect agriculture productivity and what the potential adaptation strategies would be to compensate for possible negative impacts on crop production, we performed experiments to study climate sensitivity under different agricultural practice scenarios for rice, maize and wheat in the top four production provinces in China using the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. The agricultural practice scenarios include four categories: different amounts of nitrogen fertilizer or no nitrogen stress; irrigation turned on or off, or no water stress; all possible seeds in the DSSAT cultivar data base; and different planting dates. For the climate sensitivity test, the control climate is from 1998 to 2007, and we individually modify four climate variables: daily maximum and minimum temperature by +2 °C and -2 °C, daily precipitation by +20% and -20%, and daily solar radiation by + 20% and -20%. With more nitrogen fertilizer applied, crops are more sensitive to temperature changes as well as precipitation changes because of their release from nitrogen limitation. With irrigation turned on, crop yield sensitivity to temperature decreases in most of the regions depending on the amount of the local precipitation, since more water is available and soil temperature varies less with higher soil moisture. Those results indicate that there could be possible agriculture adaptation strategies under certain future climate scenarios. For example, increasing nitrogen fertilizer usage by a certain amount might compensate for the negative impact on crop yield from climate changes. However, since crops are more sensitive to climate changes when there is more nitrogen fertilizer applied, if the climate changes are unfavorable to crop yields, increasing nitrogen fertilizer usage at certain levels might enhance the negative climate change impact. Enhanced nitrogen fertilizer use might have additional negative impacts on climate because of nitrogen emissions to the atmosphere, but those effects were not studied here.

  2. Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Voisin, Nathalie; Leng, Guoyong

    Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less

  3. A Heuristic Approach to Examining Volatile Equilibrium at Titan's Surface

    NASA Technical Reports Server (NTRS)

    Samuelson, Robert E.

    1999-01-01

    R. D. Lorenz, J. I. Lunine, and C. P. McKay have shown in a manuscript accepted for publication that, for a given ethane abundance and surface temperature, the nitrogen and methane abundances in Titan's atmosphere can be calculated, yielding a surface pressure that can be compared with the observed value. This is potentially a very valuable tool for examining the evolution of Titan's climatology. Its validity does depend on two important assumptions, however: 1) that the atmosphere of Titan is in global radiative equilibrium, and 2) that volatiles present are in vapor equilibrium with the surface. The former assumption has been shown to be likely, but the latter has not. Water vapor in the Earth's atmosphere, in fact, is generally not very close to equilibrium in a global sense. In the present work a heuristic approach is used to examine the likelihood that methane vapor is in equilibrium with Titan's surface. Plausible climate scenerios are examined that are consistent with methane vapor abundances derived from Voyager IRIS data. Simple precipitation and surface diffusion models are incorporated into the analysis. It is tentatively inferred that methane may be in surface equilibrium near the poles, but that equilibrium at low latitudes is more difficult to establish.

  4. Fast, high sensitivity dewpoint hygrometer

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    1998-01-01

    A dewpoint/frostpoint hygrometer that uses a surface moisture-sensitive sensor as part of an RF oscillator circuit with feedback control of the sensor temperature to maintain equilibrium at the sensor surface between ambient water vapor and condensed water/ice. The invention is preferably implemented using a surface acoustic wave (SAW) device in an RF oscillator circuit configured to generate a condensation-dependent output signal, a temperature sensor to measure the temperature of the SAW device and to distinguish between condensation-dependent and temperature-dependent signals, a temperature regulating device to control the temperature of the SAW device, and a feedback control system configured to keep the condensation-dependent signal nearly constant over time in the presence of time-varying humidity, corrected for temperature. The effect of this response is to heat or cool the surface moisture-sensitive device, which shifts the equilibrium with respect to evaporation and condensation at the surface of the device. The equilibrium temperature under feedback control is a measure of dewpoint or frostpoint.

  5. Polar Amplification of Global Warming in Models Without Ice-Albedo Feedbacks

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Langen, P. L.

    2004-12-01

    Non-ice-albedo feedback mechanisms leading to polar amplification, as reported by Alexeev (2003), are explored in three aquaplanet climate model systems of different complexity. We analyze this pattern using three different "ghost forcing" experiments (Hansen et al, 1997). In the first one we uniformly add 4W/m2 to the oceanic mixed layer in order to roughly simulate a 2xCO2 forcing at the surface. The second forcing, of the same magnitude, is applied only within the tropics and the third forcing is applied only polewards of 30 degrees (north and south). It turns out that our systems' equilibrium responses are linear with respect to these forcings. Surprisingly, the response to the tropical-only forcing is essentially non-local with quite significant warming at higher latitudes. The response to the high-latitude-only forcing is more local and has higher amplitude near the poles. Our explanation of the polar amplification obtained in the uniform forcing experiment is therefore two-fold. Firstly, the tropics are much more difficult to warm because of the higher sensitivity of the surface budget to SST changes at higher temperatures. Secondly, any extra heat deposited in the tropics is not easily radiated to outer space because of the high opaqueness of the tropical atmosphere. The energy, most of which is latent, needs to be redistributed by transports to the extra-tropics. Consequently, the tropical "ghost forcing" results in an essentially non-local response, while the extra-tropical one yields a more localized response, because the energy in the atmosphere cannot propagate effectively equator-wards from high latitudes. The paper deals with these mechanisms in three climate model systems with no ice-albedo feedbacks - an EBM and two different GCMs - one with cloud feedbacks and the other with cloud feedbacks excluded. References. Alexeev, V.A., (2003) Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: a linear analysis. Climate Dynamics, 20: p.775-787. Hansen, J., Sato M, and R. Ruedy, (1997) Radiative forcing and climate response, JGR, 102, No. D6, 6831-6864.

  6. Analysis of the polar amplification pattern of global warming on an aquaplanet in "ghost forcing" experiments with no ice-albedo feedbacks

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Langen, P. L.

    2004-05-01

    Non-ice-albedo feedback mechanisms leading to polar amplification, as reported by Alexeev (2003), are explored in three aquaplanet climate model systems of different complexity. We analyze this pattern using three different "ghost forcing" experiments (Hansen et al, 1997). In the first one we uniformly add 4W/m2 to the oceanic mixed layer in order to roughly simulate a 2xCO2 forcing at the surface. The second forcing, of the same magnitude, is applied only within the tropics and the third forcing is applied only polewards of 30 degrees (north and south). It turns out that our systems' equilibrium responses are linear with respect to these forcings. Surprisingly, the response to the tropical-only forcing is essentially non-local with quite significant warming at higher latitudes. The response to the high-latitude-only forcing is more local and has higher amplitude near the poles. Our explanation of the polar amplification obtained in the uniform forcing experiment is therefore two-fold. Firstly, the tropics are much more difficult to warm because of the higher sensitivity of the surface budget to SST changes at higher temperatures. Secondly, any extra heat deposited in the tropics is not easily radiated to outer space because of the high opaqueness of the tropical atmosphere. The energy, most of which is latent, needs to be redistributed by transports to the extra-tropics. Consequently, the tropical "ghost forcing" results in an essentially non-local response, while the extra-tropical one yields a more localized response, because the energy in the atmosphere cannot propagate effectively equator-wards from high latitudes. The paper deals with these mechanisms in three climate model systems with no ice-albedo feedback - an EBM and two different GCMs - one with cloud feedbacks and the other with cloud feedbacks excluded. References. Alexeev, V.A., (2003) Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: a linear analysis. Climate Dynamics, 20: p.775-787. Hansen, J., Sato M, and R. Ruedy, (1997) Radiative forcing and climate response, JGR, 102, No. D6, 6831-6864.

  7. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.

  8. Comparing impacts of climate change and mitigation on global agriculture by 2050

    NASA Astrophysics Data System (ADS)

    van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan

    2018-06-01

    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.

  9. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the Tropics and high latitudes, are consistent with predictions of a number of previous GCM studies. Finally, direct radiative forcing of anthropogenic aerosols is predicted to induce strong regional cooling over East and South Asia. Wintertime rainfall over southeastern China and the Indian subcontinent is predicted to decrease because of the increased atmospheric stability and decreased surface evaporation, while the geographic distribution of precipitation is also predicted to be altered as a result of aerosol-induced changes in wind flow.

  10. Timing and paleoclimatic significance of Holocene glacier fluctuations in the Cordillera Vilcabamba of southern Peru

    NASA Astrophysics Data System (ADS)

    Licciardi, J. M.; Taggart, J. R.; Schaefer, J. M.; Lund, D. C.

    2009-12-01

    Past fluctuations in climatically sensitive tropical glaciers provide important insight into regional paleoclimatic trends and forcings, but well-dated chronologies are scarce, particularly during the Holocene. We have established precise cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba (13°20’S latitude), located in the outer tropics of southern Peru. Results indicate the dominance of two major glacial culminations and associated climatic shifts in the Vilcabamba, including an early Holocene glacial interval and a somewhat less extensive glaciation late in the ‘Little Ice Age’ (LIA) period. Lichenometric measurements on the youngest moraines support the 10Be ages, but uncertainties in the lichen ages arise from the lack of a local lichen growth curve. The Peruvian glacier chronologies differ from a recently-developed New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region. For the latest Holocene, our leading hypothesis is that climate forcings involving southward migration of the Atlantic Intertropical Convergence Zone can explain concurrent glaciations in tropical South America and northern high latitudes, but the influence of other climate drivers such as the El Niño/Southern Oscillation may have also played a role. Estimated differences between equilibrium-line altitudes (ELAs) on modern glaciers and those inferred for expanded latest Holocene glaciers reveal an ELA rise of 165-200 m since the LIA, suggesting that temperatures 1.1-1.3°C cooler than present could have sustained glaciers at their LIA maximum positions if temperature was the only control, and thus providing an upper bound on temperature depression during the LIA. However, further work is required to constrain the likely role of precipitation changes. These new Peruvian glacier chronologies and ELA reconstructions complement ice core and lacustrine paleoclimate records in the vicinity, thereby increasing spatial and temporal coverage for identifying patterns of climate change in the tropical Andes during the Holocene.

  11. Bio-physical vs. Economic Uncertainty in the Analysis of Climate Change Impacts on World Agriculture

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Lobell, D. B.

    2010-12-01

    Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. The recent paper by Hertel, Burke and Lobell (GEC, 2010) considers three scenarios of agricultural impacts of climate change, corresponding to the fifth, fiftieth, and ninety fifth percentiles of projected yield distributions for the world’s crops in 2030. They evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, their low productivity scenario reveals the potential for much larger food price changes than reported in recent studies which have hitherto focused on the most likely outcomes. The poverty impacts of price changes under the extremely adverse scenario are quite heterogeneous and very significant in some population strata. They conclude that it is critical to look beyond central case climate shocks and beyond a simple focus on yields and highly aggregated poverty impacts. In this paper, we conduct a more formal, systematic sensitivity analysis (SSA) with respect to uncertainty in the biophysical impacts of climate change on agriculture, by explicitly specifying joint distributions for global yield changes - this time focusing on 2050. This permits us to place confidence intervals on the resulting price impacts and poverty results which reflect the uncertainty inherited from the biophysical side of the analysis. We contrast this with the economic uncertainty inherited from the global general equilibrium model (GTAP), by undertaking SSA with respect to the behavioral parameters in that model. This permits us to assess which type of uncertainty is more important for regional price and poverty outcomes. Finally, we undertake a combined SSA, wherein climate change-induced productivity shocks are permitted to interact with the uncertain economic parameters. This permits us to examine potential interactions between the two sources of uncertainty.

  12. AEDT: A new concept for ecological dynamics in the ever-changing world.

    PubMed

    Chesson, Peter

    2017-05-01

    The important concept of equilibrium has always been controversial in ecology, but a new, more general concept, an asymptotic environmentally determined trajectory (AEDT), overcomes many concerns with equilibrium by realistically incorporating long-term climate change while retaining much of the predictive power of a stable equilibrium. A population or ecological community is predicted to approach its AEDT, which is a function of time reflecting environmental history and biology. The AEDT invokes familiar questions and predictions but in a more realistic context in which consideration of past environments and a future changing profoundly due to human influence becomes possible. Strong applications are also predicted in population genetics, evolution, earth sciences, and economics.

  13. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-07-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of Global Climate Model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity) were highly varied. Sensitivity was governed by soil type (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  14. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-12-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  15. Vegetation/Ecosystem Modeling and Analysis Project:Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling

    NASA Astrophysics Data System (ADS)

    1995-12-01

    We compare the simulations of three biogeography models (BIOME2, Dynamic Global Phytogeography Model (DOLY), and Mapped Atmosphere-Plant Soil System (MAPSS)) and three biogeochemistry models (BIOME-BGC (BioGeochemistry Cycles), CENTURY, and Terrestrial Ecosystem Model (TEM)) for the conterminous United States under contemporary conditions of atmospheric CO2 and climate. We also compare the simulations of these models under doubled CO2 and a range of climate scenarios. For contemporary conditions, the biogeography models successfully simulate the geographic distribution of major vegetation types and have similar estimates of area for forests (42 to 46% of the conterminous United States), grasslands (17 to 27%), savannas (15 to 25%), and shrublands (14 to 18%). The biogeochemistry models estimate similar continental-scale net primary production (NPP; 3125 to 3772 × 1012 gC yr-1) and total carbon storage (108 to 118 × 1015 gC) for contemporary conditions. Among the scenarios of doubled CO2 and associated equilibrium climates produced by the three general circulation models (Oregon State University (OSU), Geophysical Fluid Dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO)), all three biogeography models show both gains and losses of total forest area depending on the scenario (between 38 and 53% of conterminous United States area). The only consistent gains in forest area with all three models (BIOME2, DOLY, and MAPSS) were under the GFDL scenario due to large increases in precipitation. MAPSS lost forest area under UKMO, DOLY under OSU, and BIOME2 under both UKMO and OSU. The variability in forest area estimates occurs because the hydrologic cycles of the biogeography models have different sensitivities to increases in temperature and CO2. However, in general, the biogeography models produced broadly similar results when incorporating both climate change and elevated CO2 concentrations. For these scenarios, the NPP estimated by the biogeochemistry models increases between 2% (BIOME-BGC with UKMO climate) and 35% (TEM with UKMO climate). Changes in total carbon storage range from losses of 33% (BIOME-BGC with UKMO climate) to gains of 16% (TEM with OSU climate). The CENTURY responses of NPP and carbon storage are positive and intermediate to the responses of BIOME-BGC and TEM. The variability in carbon cycle responses occurs because the hydrologic and nitrogen cycles of the biogeochemistry models have different sensitivities to increases in temperature and CO2. When the biogeochemistry models are run with the vegetation distributions of the biogeography models, NPP ranges from no response (BIOME-BGC with all three biogeography model vegetations for UKMO climate) to increases of 40% (TEM with MAPSS vegetation for OSU climate). The total carbon storage response ranges from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to an increase of 32% (TEM with MAPSS vegetation for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are primarily caused by decreases in forested area and temperature-induced water stress. The OSU and GFDL responses of TEM with MAPSS vegetations are primarily caused by forest expansion and temperature-enhanced nitrogen cycling.

  16. Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling

    NASA Astrophysics Data System (ADS)

    Melillo, J. M.; Borchers, J.; Chaney, J.; Fisher, H.; Fox, S.; Haxeltine, A.; Janetos, A.; Kicklighter, D. W.; Kittel, T. G. F.; McGuire, A. D.; McKeown, R.; Neilson, R.; Nemani, R.; Ojima, D. S.; Painter, T.

    1995-12-01

    We compare the simulations of three biogeography models (BIOME2, Dynamic Global Phytogeography Model (DOLY), and Mapped Atmosphere-Plant Soil System (MAPSS)) and three biogeochemistry models (BIOME-BGC (BioGeochemistry Cycles), CENTURY, and Terrestrial Ecosystem Model (TEM)) for the conterminous United States under contemporary conditions of atmospheric CO2 and climate. We also compare the simulations of these models under doubled CO2 and a range of climate scenarios. For contemporary conditions, the biogeography models successfully simulate the geographic distribution of major vegetation types and have similar estimates of area for forests (42 to 46% of the conterminous United States), grasslands (17 to 27%), savannas (15 to 25%), and shrublands (14 to 18%). The biogeochemistry models estimate similar continental-scale net primary production (NPP; 3125 to 3772×1012 gCyr-1) and total carbon storage (108 to 118×1015 gC) for contemporary conditions. Among the scenarios of doubled CO2 and associated equilibrium climates produced by the three general circulation models (Oregon State University (OSU), Geophysical Fluid Dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO)), all three biogeography models show both gains and losses of total forest area depending on the scenario (between 38 and 53% of conterminous United States area). The only consistent gains in forest area with all three models (BIOME2, DOLY, and MAPSS) were under the GFDL scenario due to large increases in precipitation. MAPSS lost forest area under UKMO, DOLY under OSU, and BIOME2 under both UKMO and OSU. The variability in forest area estimates occurs because the hydrologic cycles of the biogeography models have different sensitivities to increases in temperature and CO2. However, in general, the biogeography models produced broadly similar results when incorporating both climate change and elevated CO2 concentrations. For these scenarios, the NPP estimated by the biogeochemistry models increases between 2% (BIOME-BGC with UKMO climate) and 35% (TEM with UKMO climate). Changes in total carbon storage range from losses of 33% (BIOME-BGC with UKMO climate) to gains of 16% (TEM with OSU climate). The CENTURY responses of NPP and carbon storage are positive and intermediate to the responses of BIOME-BGC and TEM. The variability in carbon cycle responses occurs because the hydrologic and nitrogen cycles of the biogeochemistry models have different sensitivities to increases in temperature and CO2. When the biogeochemistry models are run with the vegetation distributions of the biogeography models, NPP ranges from no response (BIOME-BGC with all three biogeography model vegetations for UKMO climate) to increases of 40% (TEM with MAPSS vegetation for OSU climate). The total carbon storage response ranges from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to an increase of 32% (TEM with MAPSS vegetation for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are primarily caused by decreases in forested area and temperature-induced water stress. The OSU and GFDL responses of TEM with MAPSS vegetations are primarily caused by forest expansion and temperature-enhanced nitrogen cycling.

  17. Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2016-02-01

    Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An ˜ 1000-member ensemble of the Bern3D-LPJ carbon-climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  18. Can We Use Single-Column Models for Understanding the Boundary Layer Cloud-Climate Feedback?

    NASA Astrophysics Data System (ADS)

    Dal Gesso, S.; Neggers, R. A. J.

    2018-02-01

    This study explores how to drive Single-Column Models (SCMs) with existing data sets of General Circulation Model (GCM) outputs, with the aim of studying the boundary layer cloud response to climate change in the marine subtropical trade wind regime. The EC-EARTH SCM is driven with the large-scale tendencies and boundary conditions as derived from two different data sets, consisting of high-frequency outputs of GCM simulations. SCM simulations are performed near Barbados Cloud Observatory in the dry season (January-April), when fair-weather cumulus is the dominant low-cloud regime. This climate regime is characterized by a near equilibrium in the free troposphere between the long-wave radiative cooling and the large-scale advection of warm air. In the SCM, this equilibrium is ensured by scaling the monthly mean dynamical tendency of temperature and humidity such that it balances that of the model physics in the free troposphere. In this setup, the high-frequency variability in the forcing is maintained, and the boundary layer physics acts freely. This technique yields representative cloud amount and structure in the SCM for the current climate. Furthermore, the cloud response to a sea surface warming of 4 K as produced by the SCM is consistent with that of the forcing GCM.

  19. Application of optimal control strategies to HIV-malaria co-infection dynamics

    NASA Astrophysics Data System (ADS)

    Fatmawati; Windarto; Hanif, Lathifah

    2018-03-01

    This paper presents a mathematical model of HIV and malaria co-infection transmission dynamics. Optimal control strategies such as malaria preventive, anti-malaria and antiretroviral (ARV) treatments are considered into the model to reduce the co-infection. First, we studied the existence and stability of equilibria of the presented model without control variables. The model has four equilibria, namely the disease-free equilibrium, the HIV endemic equilibrium, the malaria endemic equilibrium, and the co-infection equilibrium. We also obtain two basic reproduction ratios corresponding to the diseases. It was found that the disease-free equilibrium is locally asymptotically stable whenever their respective basic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. sic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. Then, the optimal control theory for the model was derived analytically by using Pontryagin Maximum Principle. Numerical simulations of the optimal control strategies are also performed to illustrate the results. From the numerical results, we conclude that the best strategy is to combine the malaria prevention and ARV treatments in order to reduce malaria and HIV co-infection populations.

  20. Thinning increases climatic resilience of red pine

    USGS Publications Warehouse

    Magruder, Matthew; Chhin, Sophan; Palik, Brian; Bradford, John B.

    2013-01-01

    Forest management techniques such as intermediate stand-tending practices (e.g., thinning) can promote climatic resiliency in forest stands by moderating tree competition. Residual trees gain increased access to environmental resources (i.e., soil moisture, light), which in turn has the potential to buffer trees from stressful climatic conditions. The influences of climate (temperature and precipitation) and forest management (thinning method and intensity) on the productivity of red pine (Pinus resinosa Ait.) in Michigan were examined to assess whether repeated thinning treatments were able to increase climatic resiliency (i.e., maintaining productivity and reduced sensitivity to climatic stress). The cumulative productivity of each thinning treatment was determined, and it was found that thinning from below to a residual basal area of 14 m2·ha−1 produced the largest average tree size but also the second lowest overall biomass per acre. On the other hand, the uncut control and the thinning from above to a residual basal area of 28 m2·ha−1 produced the smallest average tree size but also the greatest overall biomass per acre. Dendrochronological methods were used to quantify sensitivity of annual radial growth to monthly and seasonal climatic factors for each thinning treatment type. Climatic sensitivity was influenced by thinning method (i.e., thinning from below decreased sensitivity to climatic stress more than thinning from above) and by thinning intensity (i.e., more intense thinning led to a lower climatic sensitivity). Overall, thinning from below to a residual basal area of 21 m2·ha−1 represented a potentially beneficial compromise to maximize tree size, biomass per acre, and reduced sensitivity to climatic stress, and, thus, the highest level of climatic resilience.

  1. Dynamic Equilibrium of Cardiac Troponin C's Hydrophobic Cleft and Its Modulation by Ca2+ Sensitizers and a Ca2+ Sensitivity Blunting Phosphomimic, cTnT(T204E).

    PubMed

    Schlecht, William; Dong, Wen-Ji

    2017-10-18

    Several studies have suggested that conformational dynamics are important in the regulation of thin filament activation in cardiac troponin C (cTnC); however, little direct evidence has been offered to support these claims. In this study, a dye homodimerization approach is developed and implemented that allows the determination of the dynamic equilibrium between open and closed conformations in cTnC's hydrophobic cleft. Modulation of this equilibrium by Ca 2+ , cardiac troponin I (cTnI), cardiac troponin T (cTnT), Ca 2+ -sensitizers, and a Ca 2+ -desensitizing phosphomimic of cTnT (cTnT(T204E) is characterized. Isolated cTnC contained a small open conformation population in the absence of Ca 2+ that increased significantly upon the addition of saturating levels of Ca 2+ . This suggests that the Ca 2+ -induced activation of thin filament arises from an increase in the probability of hydrophobic cleft opening. The inclusion of cTnI increased the population of open cTnC, and the inclusion of cTnT had the opposite effect. Samples containing Ca 2+ -desensitizing cTnT(T204E) showed a slight but insignificant decrease in open conformation probability compared to samples with cardiac troponin T, wild type [cTnT(wt)], while Ca 2+ sensitizer treated samples generally increased open conformation probability. These findings show that an equilibrium between the open and closed conformations of cTnC's hydrophobic cleft play a significant role in tuning the Ca 2+ sensitivity of the heart.

  2. Climate change and children.

    PubMed

    Ebi, Kristie L; Paulson, Jerome A

    2007-04-01

    Climate change is increasing the burden of climate-sensitive health determinants and outcomes worldwide. Acting through increasing temperature, changes in the hydrologic cycle, and sea level rise, climate change is projected to increase the frequency and intensity of heat events and extreme events (floods and droughts), change the geographic range and incidence of climate-sensitive vector-, food-, and waterborne diseases, and increase diseases associated with air pollution and aeroallergens. Children are particularly vulnerable to these health outcomes because of their potentially greater exposures, greater sensitivity to certain exposures, and their dependence on caregivers.

  3. Proglacial River Reveals Substantial Greenland Ice Sheet Climate Sensitivity and Meltwater Routing Delays

    NASA Astrophysics Data System (ADS)

    van As, D.; Mikkelsen, A. B.; Holtegaard Nielsen, M.; Claesson Liljedahl, L.; Lindback, K.; Pitcher, L. H.; Hasholt, B.

    2016-12-01

    A 12.000 km2 area of the Greenland ice sheet discharges meltwater via the proglacial Watson River in west Greenland. In a ten-year time span of continuous monitoring (2006-2015), the river discharged 3.8 km3 to 11.2 km3 yr-1. The large interannual variability is for an important part explained by hypsometric amplification: the flattening of the ice sheet with elevation adds 70% meltwater discharge sensitivity to atmospheric temperature. Comparing river discharge with ice sheet surface meltwater production from an observation-based surface mass balance model we quantify multiple-day routing delays for meltwater transit through the supra-, en-, sub- and proglacial system. This delay increases with ice sheet surface elevation: on average five days for surface water at the previous-known equilibrium line altitude (ELA) of ca. 1550 m, and seven days at the 2009-2015 ELA of ca. 1800 m above sea level. A flooding of the Kangerlussuaq bridge as in July 2012 thus requires a multi-day high-melt episode and can therefore be anticipated by in-situ monitoring of ice sheet melt. No evidence of significant en- or subglacial meltwater retention is found.

  4. Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics

    USGS Publications Warehouse

    Milly, P.C.D.

    1997-01-01

    A possible consequence of increased concentrations of greenhouse gases in Earth's atmosphere is "summer dryness," a decrease of summer plant-available soil water in middle latitudes, caused by increased availability of energy to drive evapotranspiration. Results from a numerical climate model indicate that summer dryness and related changes of land-surface water balances are highly sensitive to possible concomitant changes of plant-available water-holding capacity of soil, which depends on plant rooting depth and density. The model suggests that a 14% decrease of the soil volume whose water is accessible to plant roots would generate the same summer dryness, by one measure, as an equilibrium doubling of atmospheric carbon dioxide. Conversely, a 14% increase of that soil volume would be sufficient to offset the summer dryness associated with carbon-dioxide doubling. Global and regional changes in rooting depth and density may result from (1) plant and plant-community responses to greenhouse warming, to carbon-dioxide fertilization, and to associated changes in the water balance and (2) anthropogenic deforestation and desertification. Given their apparently critical role, heretofore ignored, in global hydroclimatic change, such changes of rooting characteristics should be carefully evaluated using ecosystem observations, theory, and models.

  5. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  6. Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Saltzman, Barry

    1990-01-01

    The equilibrium response of surface temperature to atmospheric CO2 concentration, for six values between 100 and 1000 ppm, is calculated from a series of GCM experiments. This response is nonlinear, showing greater sensitivity for lower values of CO2 than for the higher values. It is suggested that changes in CO2 concentration of a given magnitude (e.g., 100 ppm) played a larger role in the Pleistocene ice-age-type temperature variations than in causing global temperature changes due to anthropogenic increases.

  7. Biological forcing controls the chemistry of the coral exoskeleton

    NASA Astrophysics Data System (ADS)

    Meibom, A.; Mostefaoui, S.; Cuif, J.; Yurimoto, H.; Dauphin, Y.; Houlbreque, F.; Dunbar, R.; Constantz, B.

    2006-12-01

    A multitude of marine organisms produce calcium carbonate skeletons that are used extensively to reconstruct water temperature variability of the tropical and subtropical oceans - a key parameter in global climate-change models. Such paleo-climate reconstructions are based on the notion that skeletal oxygen isotopic composition and certain trace-element abundances (e.g., Sr/Ca and Mg/Ca ratios) vary in response to changes in the water temperature. However, it is a fundamental problem that poorly understood biological processes introduce large compositional deviations from thermodynamic equilibrium and hinder precise calibrations of many paleo-climate proxies. Indeed, the role of water temperature in controlling the composition of the skeleton is far from understood. We have studied trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate and non-zooxanthellate corals at ultra-structural, i.e. micrometer to sub-micrometer length scales. From this body of work we draw the following, generalized conclusions: 1) Centers of calcification (COC) are not in equilibrium with seawater. Notably, the Sr/Ca ratio is higher than expected for aragonite equilibrium with seawater at the temperature at which the skeleton was formed. Furthermore, the COC are further away from equilibrium with seawater than fibrous skeleton in terms of stable isotope composition. 2) COC are dramatically different from the fibrous aragonite skeleton in terms of trace element composition. 3) Neither trace element nor stable isotope variations in the fibrous (bulk) part of the skeleton are directly related to changes in SST. In fact, changes in SST can have very little to do with the observed compositional variations. 4) Trace element variations in the fibrous (bulk) part of the skeleton are not related to the activity of zooxanthellae. These observations are directly relevant to the issue of biological versus non-biological control over skeleton composition and will be discussed.

  8. Local Colonization-Extinction Dynamics Generate Lags in the Response to Climate Change in Eastern North American Forests

    NASA Astrophysics Data System (ADS)

    Talluto, M. V.; Boulangeat, I.; Vissault, S.; Gravel, D.

    2015-12-01

    Climate change is likely to push many species to the limits of their ecological niches and lead to mismatches between species ranges and local environmental conditions. Forested ecosystems in particular may have difficulty tracking climate change due to slow growth and dispersal rates. Correlative species distribution models (SDMs), commonly used to predict the response of species distributions to climate change, relate species occurrences to climate to describe the present niche; however they often project into the future without accounting for slow processes that might produce lags in the response to climate change. An alternative type of model that analyzes patch-scale colonization and extinction (C-E) rates along an environmental gradient has been successful in describing species range limits in theoretical studies. Because the model is stochastic and dynamic, it is more robust to changes in the environmental gradient than static SDMs. We applied such a model to 40 of the most abundant trees in eastern North American forests, using repeated observations across multiple decades to parameterize the C-E rates. We show that C-E rates for many species respond to climate in a manner that generates predicted range limits when the species is at equilibrium with the environment. Moreover, current distributions of many species are significantly out of equilibrium with the present climate, with predicted range limits shifted 10s to 100s of km northward from the present distribution. These results suggest that present warming has already exceeded the thermal tolerance at the southern range limits for the dominant trees of eastern North American forests, producing millions of ha of newly suitable areas north of the present distribution of these species that have not yet been colonized, as well as large southern regions where species are present but expected to be lost in the long-term as dead trees are not replaced, even if no further climate warming occurs.

  9. The sensitivity of current and future forest managers to climate-induced changes in ecological processes.

    PubMed

    Seidl, Rupert; Aggestam, Filip; Rammer, Werner; Blennow, Kristina; Wolfslehner, Bernhard

    2016-05-01

    Climate vulnerability of managed forest ecosystems is not only determined by ecological processes but also influenced by the adaptive capacity of forest managers. To better understand adaptive behaviour, we conducted a questionnaire study among current and future forest managers (i.e. active managers and forestry students) in Austria. We found widespread belief in climate change (94.7 % of respondents), and no significant difference between current and future managers. Based on intended responses to climate-induced ecosystem changes, we distinguished four groups: highly sensitive managers (27.7 %), those mainly sensitive to changes in growth and regeneration processes (46.7 %), managers primarily sensitive to regeneration changes (11.2 %), and insensitive managers (14.4 %). Experiences and beliefs with regard to disturbance-related tree mortality were found to particularly influence a manager's sensitivity to climate change. Our findings underline the importance of the social dimension of climate change adaptation, and suggest potentially strong adaptive feedbacks between ecosystems and their managers.

  10. Historical Change of Equilibrium Water Temperature in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e.g., northern parts of Japan show the temperature fall in spring and the temperature rise in autumn, while the urbanized regions along the Pacific coastline indicate the temperature rise in all the four seasons.

  11. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.

    2014-12-01

    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  12. On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead.

    PubMed

    Ramanathan, V; Feng, Y

    2008-09-23

    The observed increase in the concentration of greenhouse gases (GHGs) since the preindustrial era has most likely committed the world to a warming of 2.4 degrees C (1.4 degrees C to 4.3 degrees C) above the preindustrial surface temperatures. The committed warming is inferred from the most recent Intergovernmental Panel on Climate Change (IPCC) estimates of the greenhouse forcing and climate sensitivity. The estimated warming of 2.4 degrees C is the equilibrium warming above preindustrial temperatures that the world will observe even if GHG concentrations are held fixed at their 2005 concentration levels but without any other anthropogenic forcing such as the cooling effect of aerosols. The range of 1.4 degrees C to 4.3 degrees C in the committed warming overlaps and surpasses the currently perceived threshold range of 1 degrees C to 3 degrees C for dangerous anthropogenic interference with many of the climate-tipping elements such as the summer arctic sea ice, Himalayan-Tibetan glaciers, and the Greenland Ice Sheet. IPCC models suggest that approximately 25% (0.6 degrees C) of the committed warming has been realized as of now. About 90% or more of the rest of the committed warming of 1.6 degrees C will unfold during the 21st century, determined by the rate of the unmasking of the aerosol cooling effect by air pollution abatement laws and by the rate of release of the GHGs-forcing stored in the oceans. The accompanying sea-level rise can continue for more than several centuries. Lastly, even the most aggressive CO(2) mitigation steps as envisioned now can only limit further additions to the committed warming, but not reduce the already committed GHGs warming of 2.4 degrees C.

  13. On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead

    PubMed Central

    Ramanathan, V.; Feng, Y.

    2008-01-01

    The observed increase in the concentration of greenhouse gases (GHGs) since the preindustrial era has most likely committed the world to a warming of 2.4°C (1.4°C to 4.3°C) above the preindustrial surface temperatures. The committed warming is inferred from the most recent Intergovernmental Panel on Climate Change (IPCC) estimates of the greenhouse forcing and climate sensitivity. The estimated warming of 2.4°C is the equilibrium warming above preindustrial temperatures that the world will observe even if GHG concentrations are held fixed at their 2005 concentration levels but without any other anthropogenic forcing such as the cooling effect of aerosols. The range of 1.4°C to 4.3°C in the committed warming overlaps and surpasses the currently perceived threshold range of 1°C to 3°C for dangerous anthropogenic interference with many of the climate-tipping elements such as the summer arctic sea ice, Himalayan–Tibetan glaciers, and the Greenland Ice Sheet. IPCC models suggest that ≈25% (0.6°C) of the committed warming has been realized as of now. About 90% or more of the rest of the committed warming of 1.6°C will unfold during the 21st century, determined by the rate of the unmasking of the aerosol cooling effect by air pollution abatement laws and by the rate of release of the GHGs-forcing stored in the oceans. The accompanying sea-level rise can continue for more than several centuries. Lastly, even the most aggressive CO2 mitigation steps as envisioned now can only limit further additions to the committed warming, but not reduce the already committed GHGs warming of 2.4°C. PMID:18799733

  14. The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard glacier

    NASA Astrophysics Data System (ADS)

    Van Pelt, Ward; Pohjola, Veijo; Reijmer, Carleen

    2016-11-01

    Glacier surface melt and runoff depend strongly on seasonal and perennial snow (firn) conditions. Not only does the presence of snow and firn directly affect melt rates by reflecting solar radiation, it may also act as a buffer against mass loss by storing melt water in refrozen or liquid form. In Svalbard, ongoing and projected amplified climate change with respect to the global mean change has severe implications for the state of snow and firn and its impact on glacier mass loss. Model experiments with a coupled surface energy balance - firn model were done to investigate the surface mass balance and the changing role of snow and firn conditions for an idealized Svalbard glacier. A climate forcing for the past, present and future (1984-2104) is constructed, based on observational data from Svalbard Airport and a seasonally dependent projection scenario. Results illustrate ongoing and future firn degradation in response to an elevational retreat of the equilibrium line altitude (ELA) of 31 m decade-1. The temperate firn zone is found to retreat and expand, while cold ice in the ablation zone warms considerably. In response to pronounced winter warming and an associated increase in winter rainfall, the current prevalence of refreezing during the melt season gradually shifts to the winter season in a future climate. Sensitivity tests reveal that in a present and future climate the density and thermodynamic structure of Svalbard glaciers are heavily influenced by refreezing. Refreezing acts as a net buffer against mass loss. However, the net mass balance change after refreezing is substantially smaller than the amount of refreezing itself, which can be ascribed to melt-enhancing effects after refreezing, which partly offset the primary mass-retaining effect of refreezing.

  15. Phoenix model

    EPA Science Inventory

    Phoenix (formerly referred to as the Second Generation Model or SGM) is a global general equilibrium model designed to analyze energy-economy-climate related questions and policy implications in the medium- to long-term. This model disaggregates the global economy into 26 industr...

  16. Sensitivity of ground - water recharge estimates to climate variability and change, Columbia Plateau, Washington

    USGS Publications Warehouse

    Vaccaro, John J.

    1992-01-01

    The sensitivity of groundwater recharge estimates was investigated for the semiarid Ellensburg basin, located on the Columbia Plateau, Washington, to historic and projected climatic regimes. Recharge was estimated for predevelopment and current (1980s) land use conditions using a daily energy-soil-water balance model. A synthetic daily weather generator was used to simulate lengthy sequences with parameters estimated from subsets of the historical record that were unusually wet and unusually dry. Comparison of recharge estimates corresponding to relatively wet and dry periods showed that recharge for predevelopment land use varies considerably within the range of climatic conditions observed in the 87-year historical observation period. Recharge variations for present land use conditions were less sensitive to the same range of historical climatic conditions because of irrigation. The estimated recharge based on the 87-year historical climatology was compared with adjustments to the historical precipitation and temperature records for the same record to reflect CO2-doubling climates as projected by general circulation models (GCMs). Two GCM scenarios were considered: an average of conditions for three different GCMs with CO2 doubling, and a most severe “maximum” case. For the average GCM scenario, predevelopment recharge increased, and current recharge decreased. Also considered was the sensitivity of recharge to the variability of climate within the historical and adjusted historical records. Predevelopment and current recharge were less and more sensitive, respectively, to the climate variability for the average GCM scenario as compared to the variability within the historical record. For the maximum GCM scenario, recharge for both predevelopment and current land use decreased, and the sensitivity to the CO2-related climate change was larger than sensitivity to the variability in the historical and adjusted historical climate records.

  17. Temperature Rise and Allowable Carbon Emissions for the RCP2.6 Scenario

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Huntingford, C.; Kawamiya, M.

    2012-12-01

    Climate research centres are running Earth System Models (ESMs) forced by Representative Concentration Pathway (RCP) scenarios. While these GCM studies increase process based knowledge, the number of simulations is small, making it difficult to interpret the resulting distribution of responses in a probabilistic way. We use a probabilistic framework to estimate the range of future temperature change and allowable emissions for a low mitigation CO2 concentration pathway RCP 2.6. Uncertainty is initially estimated by allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within widely accepted ranges. Results are then further constrained by extensive use of contemporary measurements. Despite this, the resulting range of temperatures for RCP 2.6 remains large. The predicted peak global temperature increase, reached around 2100, from pre-industrial is 0.8 - 1.9 K and 1.0 - 1.9 K (95% range) for the unconstrained and the constrained cases, respectively. Allowable emissions at the time of peak emission period is projected as 6.0 - 10.8 PgC yr-1 and 7.4 - 10.2 PgC yr-1 for each case. After year 2100, negative net emissions are required with a probability of some 84 %, and related uncertainty in cumulative emissions is large.

  18. Committed warming inferred from observations and an energy balance model

    NASA Astrophysics Data System (ADS)

    Pincus, R.; Mauritsen, T.

    2017-12-01

    Due to the lifetime of CO2 and thermal inertia of the ocean, the Earth's climate is not equilibrated with anthropogenic forcing. As a result, even if fossil fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently-improved estimates of Earth's energy imbalance, and estimates of radiative forcing from the fifth IPCC assessment report. Compared to pre-industrial levels, we find a committed warming of 1.5K [0.9-3.6, 5-95 percentile] at equilibrium, and of 1.3K [0.9-2.3] within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1K [0.7-1.8]. Conservatively, there is a 32% risk that committed warming already exceeds the 1.5K target set in Paris, and that this will likely be crossed prior to 2053. Regular updates of these observationally-constrained committed warming estimates, though simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and understanding the limitations of the framework is advanced.

  19. Drought sensitivity changes over the last century at the North American savanna-forest boundary

    NASA Astrophysics Data System (ADS)

    Heilman, K.; McLachlan, J. S.

    2017-12-01

    Future environmental changes can affect the sensitivity of tree growth to climate. Theses changes are of particular concern at biome boundaries where tree distribution could shift as a result of changes in both drought and drought sensitivity. One such region is the North American savanna-forest boundary, where increased CO2 and droughts could alter savanna and forest ecosystem distributions in two contrasting ways: 1). More severe droughts may increase drought sensitivity, favoring open savanna ecosystems or, 2). Increases in water use efficiency resulting from higher atmospheric CO2 may decrease drought sensitivity, promoting forest expansion. This study sought to understand whether the past 100 years of climate and CO2 changes have impacted regional tree growth-climate sensitivity. To test for these climate sensitivity changes, we measured the sensitivity of Quercus spp. radial growth to Palmer Drought Severity Index (PDSI). Tree growth sensitivity to climate can vary according to many factors, including: stand structure, available moisture, and tree age. To control for these factors, we sampled tree growth-climate responses at sites in both open and closed forests, and at both low and high annual precipitation. Within each site, we compared growth responses to climate between trees established under high CO2 conditions after 1950 (high CO2 young), and tree established before 1950 under low CO2 levels (low CO2 young). At most sites, low CO2 young have a higher drought sensitivity than higher CO2 young. These changes in the sensitivity to drought are consistent with CO2 enhancement of water use efficiency. Furthermore, these differences in drought sensitivity are higher at sites with high temperature and low precipitation, suggesting that the alleviation of drought is more likely in hot and dry regions. Thus, if CO2 enhancement is indeed occurring in these systems, lower growth sensitivity to drought in hot and dry regions could favor increased forest growth. If changes in drought sensitivity scale to ecosystem level, decreased drought sensitivity may have helped promote regional forest expansion.

  20. The magnesium isotope record of cave carbonate archives

    NASA Astrophysics Data System (ADS)

    Riechelmann, S.; Buhl, D.; Schröder-Ritzrau, A.; Riechelmann, D. F. C.; Richter, D. K.; Vonhof, H. B.; Wassenburg, J. A.; Geske, A.; Spötl, C.; Immenhauser, A.

    2012-05-01

    Here we explore the potential of time-series magnesium (δ26Mg) isotope data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are placed against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and non-equilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rain water or snow as well as soil and hostrock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: -4.26 ± 0.07 ‰ and HK3: -4.17 ± 0.15 ‰) and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value (NC-A and NC-B δ26Mg: -3.96 ± 0.04 ‰) but only minor variations in Mg-isotope composition, which is in concert with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: -4.01 ± 0.07 ‰; BU 4 mean δ26Mg: -4.20 ± 0.10 ‰) record changes in outside air temperature as driving factor rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: -3.00 ± 0.73 ‰; SPA 59: -3.70 ± 0.43 ‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several data points in the Austrian and two data points in the German speleothems are shifted to higher values due to sampling in detrital layers (Mg-bearing clay minerals) of the speleothems. The data and their interpretation shown here highlight the potential but also the limitations of the magnesium isotope proxy applied in continental climate research. An obvious potential lies in its sensitivity for even subtle changes in soil-zone parameters, a hitherto rather poorly understood but extremely important component in cave archive research. Limitations are most obvious in the low resolution and high sample amount needed for analysis. Future research should focus on experimental and conceptual aspects including quantitative and well calibrated leaching and precipitation experiments.

  1. Sensitivity of Ocean Chemistry and Oxygen Change to the Uncertainty in Climate Change

    NASA Astrophysics Data System (ADS)

    Cao, L.; Wang, S.; Zheng, M.; Zhang, H.

    2014-12-01

    With increasing atmospheric CO2 and climate change, global ocean is undergoing substantial physical and biogeochemical changes. In particular, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would affect the projection of ocean oxygen and carbonate chemistry. To examine the effect of climate change on ocean oxygen and carbonate chemistry, we used an Earth system model of intermediate complexity to perform simulations that are driven by atmospheric CO2 concentration pathway of RCP 8.5 with climate sensitivity varying from 0.0°C to 4.5 °C. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. Our simulations show that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude, to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.

  2. On the classification of exoplanets according to Safronov number

    NASA Astrophysics Data System (ADS)

    Öztürk, O.; Erdem, A.

    2018-02-01

    We reexamine the classification of transiting exoplanets proposed by Hansen & Barman (2007) based on equilibrium temperatures and Safronov numbers. We used more sensitive data, namely, photometric and spectroscopic orbital solutions, of 263 well-known planets given in The Exoplanet Data Explorer, while Hansen & Barman (2007) used data on 18 transiting planets. Diagrams of the planet gravity vs. orbital period, planet gravity vs. equilibrium temperature, and Safronov number vs. equilibrium temperature of the 263 transiting planets show that the division of planets into two classes is indistinct.

  3. Vulnerability of the global terrestrial ecosystems to climate change.

    PubMed

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. © 2018 John Wiley & Sons Ltd.

  4. Autogenic and Allogenic: Emergent Coastline Patterns Interact With Forcing Variations

    NASA Astrophysics Data System (ADS)

    Murray, A. B.; Alvarez Antolinez, J. A.; Mendez, F. J.; Moore, L. J.; Wood, J.; Farley, G.

    2017-12-01

    A range of coastline shapes can emerge from large-scale morphodynamic interactions. Coastline shape determines local wave influences. Local wave influences (fluxes of alongshore momentum), determine sediment fluxes, and gradients in these sediment fluxes, in turn, alter coastline shape. Modeling studies show that such feedbacks lead to an instability, and to subsequent finite-amplitude interactions, producing self-organized patterns and emergent structures including sandwaves, capes, and spits (e.g. Ashton and Murray, 2006; Ashton et al., 2015); spiral bays on rocky coastlines (e.g. Barkwith et al., 2014); and convex, spit-bounded coastlines (Ells et al., in prep.). Coastline shapes depend sensitively on wave climate, defined as the angular distribution of wave influences on alongshore sediment transport. Therefore, shifts in wave climate arising from shifts in storms (decadal scale fluctuations or longer-term trends) will tend to change coastline shape. Previous efforts have detected changing coastline shape, likely related to changing influence from hurricane-generated waves, as expressed in changes in the location and intensity of coastal erosion zones along the cuspate capes in North Carolina, USA (Moore et al., 2013). These efforts involved the assumption that coastline response to changing forcing occurs in a quasi-equilibrium manner. However, in some cases coastline responses can exhibit long-term memory and path dependence (Thomas et al., 2016). Recently, we have hindcast the wave climate affecting the North Carolina coast since 1870, using a series of statistical analyses to downscale from basin-scale surface pressure fields to regional deep-water wave climate, and then a numerical transformation to local offshore wave climate. We used this wave climate as input for the Coastline Evolution Model (CEM). The results show that the emergent coastline features respond to decadal-scale shifts in wave climate, but with time lags that complicate the relationship between forcing and coastline shape. Comparisons between model predictions and observed shoreline-change patterns support the suggestion that the relationship between emergent coastline behaviours (autogenic processes) and external influences (autogenic forcing) involves such memory effects (Antolinez et al., in revision).

  5. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs.

    PubMed

    Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane

    2017-08-01

    Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key consideration for the success of future dendroclimatological studies on shrubs. © 2017 John Wiley & Sons Ltd.

  6. Sensitivity of water resources in the Delaware River basin to climate variability and change

    USGS Publications Warehouse

    Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.

    1994-01-01

    Because of the greenhouse effect, projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climate change; and presents the results of sensitivity analyses of how climate change might affect water resources in the Delaware River basin. Sensitivity analyses suggest that potentially serious shortfalls of certain water resources in the basin could result if some scenarios for climate change come true . The results of model simulations of the basin streamflow demonstrate the difficulty in distinguishing the effects that climate change versus natural climate variability have on streamflow and water supply . The future direction of basin changes in most water resources, furthermore, cannot be precisely determined because of uncertainty in current projections of regional temperature and precipitation . This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant . The sensitivity analyses could be useful in developing contingency plans for evaluating and responding to changes, should they occur.

  7. Palaeoclimatic insights into future climate challenges.

    PubMed

    Alley, Richard B

    2003-09-15

    Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.

  8. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-10-20

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  9. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  10. Equilibrium line altitudes and climate during the Late Holocene glacial maximum in the Andes

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Lowell, T. V.; Kelly, M. A.; Aravena, J.

    2012-12-01

    Documenting the spatial and temporal pattern of climate change associated with widespread glacial fluctuations during Late Holocene time is critical for understanding the mechanisms underlying these climatic/glacial events. Here, we estimate the change in equilibrium line altitudes (ELAs) associated with the most prominent glacial advance during the last millennium for four alpine glaciers in different climatic regimes in the Andes. We reconstruct scenarios of the climatic conditions (temperature and precipitation anomalies) that accommodate the ELA depressions. The glaciers studied are an unnamed glacier in the Cordillera Vilcanota (13°S), Tapado glacier (30°S), Cipreses glacier (34°S) and Tranquilo glacier (47°S). Results from the combined geomorphic analysis and application of a surface energy and mass balance model suggest that there is not a unique combination of temperature and precipitation conditions that accommodates the ELA change recorded since the Late Holocene maximum at the four sites. Assuming no change in precipitation, the ELA depressions could be explained by a cooling (with respect to present-day values) of at least -0.7°C at Cordillera Vilcanota, -1.0°C at Tapado glacier, -0.5°C at Cipreses glacier and -1.3°C at Tranquilo glacier. In contrast, assuming no change in temperature, the ELA depressions could be explained by an increase in the precipitation of at least 0.51 m (63% of the annual precipitation) at Cordillera Vilcanota, 0.33 m (95%) at Tapado glacier, 0.17 m (21%) at Cipreses glacier and 0.68 m (62%) at Tranquilo glacier. Our results serve as targets to test predictions from models of global climate dynamics for the last millennium and contribute to the understanding of the mechanisms underlying the Late Holocene glacial fluctuations.

  11. Sensitivity and rapidity of vegetational response to abrupt climate change

    NASA Technical Reports Server (NTRS)

    Peteet, D.

    2000-01-01

    Rapid climate change characterizes numerous terrestrial sediment records during and since the last glaciation. Vegetational response is best expressed in terrestrial records near ecotones, where sensitivity to climate change is greatest, and response times are as short as decades.

  12. National Forest management options in response to climate change

    Treesearch

    Forest Service U.S. Department of Agriculture

    2009-01-01

    The effect of climate change on ecosystem structure, function, and services will depend on the ecosystem's degree of sensitivity to climate change, the natural ability of plants and animals to adapt, and the availability of effective management options. Sensitivity to climate change is a function of ecosystem health and environmental stresses such as air pollution...

  13. Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA

    Treesearch

    Heather T. Root; Bruce McCune; Sarah Jovan

    2014-01-01

    Because of their unique physiology, lichen communities are highly sensitive to climatic conditions,making them ideal bioindicators for climate change. Southeast and south-central Alaska host diverse and abundant lichen communities and are faced with a more rapidly changing climate than many more southerly latitudes. We develop sensitive lichen-based indicators for...

  14. Applied Dynamic Analysis of the Global Economy (ADAGE)

    EPA Science Inventory

    ADAGE is a dynamic computable general equilibrium (CGE) model capable of examining many types of economic, energy, environmental, climate change mitigation, and trade policies at the international, national, U.S. regional, and U.S. state levels. To investigate proposed policy eff...

  15. Implications of climate change damage for agriculture: sectoral evidence from Pakistan.

    PubMed

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2016-10-01

    This paper gives a projection of the possible damage of climate change on the agriculture sector of Pakistan for the period 2012-2037, based on a dynamic approach, using an environment-related applied computable general equilibrium model (CGE). Climate damage projections depict an upward trend for the period of review and are found to be higher than the global average. Further, the damage to the agricultural sector exceeds that for the overall economy. By sector, climatic damage disproportionately affects the major and minor crops, livestock and fisheries. The largest losses following climate change, relative to the other agricultural sectors, are expected for livestock. The reason for this is the orthodox system of production for livestock, with a low adaptability to negative shocks of climate change. Overall, the findings reveal the high exposure of the agriculture sector to climate damage. In this regard, policymakers in Pakistan should take seriously the effects of climate change on agriculture and consider suitable technology to mitigate those damages.

  16. Using simple chaotic models to interpret climate under climate change: Implications for probabilistic climate prediction

    NASA Astrophysics Data System (ADS)

    Daron, Joseph

    2010-05-01

    Exploring the reliability of model based projections is an important pre-cursor to evaluating their societal relevance. In order to better inform decisions concerning adaptation (and mitigation) to climate change, we must investigate whether or not our models are capable of replicating the dynamic nature of the climate system. Whilst uncertainty is inherent within climate prediction, establishing and communicating what is plausible as opposed to what is likely is the first step to ensuring that climate sensitive systems are robust to climate change. Climate prediction centers are moving towards probabilistic projections of climate change at regional and local scales (Murphy et al., 2009). It is therefore important to understand what a probabilistic forecast means for a chaotic nonlinear dynamic system that is subject to changing forcings. It is in this context that we present the results of experiments using simple models that can be considered analogous to the more complex climate system, namely the Lorenz 1963 and Lorenz 1984 models (Lorenz, 1963; Lorenz, 1984). Whilst the search for a low-dimensional climate attractor remains illusive (Fraedrich, 1986; Sahay and Sreenivasan, 1996) the characterization of the climate system in such terms can be useful for conceptual and computational simplicity. Recognising that a change in climate is manifest in a change in the distribution of a particular climate variable (Stainforth et al., 2007), we first establish the equilibrium distributions of the Lorenz systems for certain parameter settings. Allowing the parameters to vary in time, we investigate the dependency of such distributions to initial conditions and discuss the implications for climate prediction. We argue that the role of chaos and nonlinear dynamic behaviour ought to have more prominence in the discussion of the forecasting capabilities in climate prediction. References: Fraedrich, K. Estimating the dimensions of weather and climate attractors. J. Atmos. Sci, 43, 419-432, 1986. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141, 1963. Lorenz, E. N. Irregularity: a fundamental property of the atmosphere. Tellus, 36A, 98-110, 1984. Murphy, J. M., D. M. H. Sexton, G. J. Jenkins, B. B. B. Booth, C. C. Brown, R. T. Clark, M. Collins, G. R. Harris, E. J. Kendon, R. A. Betts, S. J. Brown, P. Boorman, T. P. Howard, K. A. Humphrey, M. P. McCarthy, R. E. McDonald, A. Stephens, C. Wallace, R. Warren, R. Wilby, and R. A. Wood. Uk climate projections science report: Climate change projections. 2009. Sahay, A. and K. R. Sreenivasan. The search for a low-dimensional characterization of a local climate system. Phil. Trans. R. Soc. A., 354, 1715-1750, 1996. Stainforth, D. A., M. R. Allen, E. R. Tredger, and L. A. Smith. Confidence, uncertainty and decision-support relevance in climate predictions. Phil. Trans. R. Soc. A, 365, 2145-2161, 2007.

  17. Projected Impacts of 21st Century Climate Change on Potential Habitat for Vegetation and Forest Types in Russia

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Tchebakova, N. M.; Parfenova, E. I.; Cantin, A.; Conard, S. G.

    2015-12-01

    Global GCMs have demonstrated profound potential for projections to affect the distribution of terrestrial ecosystems and individual species at all hierarchical levels. We modeled progression of potential Russian ecotones and forest-forming species as the climate changes. Large-scale bioclimatic models were developed to predict Russian zonal vegetation (RuBCliM) and forest types (ForCliM) from three bioclimatic indices (1) growing degree-days above 5 degrees C; (2) negative degree-days below 0 C ; and (3) an annual moisture index (ratio of growing degree days to annual precipitation). The presence or absence of continuous permafrost was explicitly included in the models as limiting the forests and tree species distribution. All simulations to predict vegetation change across Russia were run by coupling our bioclimatic models with bioclimatic indices and the permafrost distribution for the baseline period and for the future 2020, 2050 and 2100 simulated by 3 GCMs (CGCM3.1, HadCM3 and IPSLCM4) and 3 climate change scenarios (A1B, A2 and B1). Under these climate scenarios, it is projected the zonobiomes will shift far northward to reach equilibrium with the change in climate. Under the warmer and drier projected future climate, about half of Russia would be suitable for the forest-steppe ecotone and grasslands, rather than for forests. Water stress tolerant light-needled taiga would have an increased advantage over water-loving dark-needled taiga. Permafrost-tolerant L. dahurica taiga would remain the dominant forest across permafrost. Increases in severe fire weather would lead to increases in large, high-severity fires, especially at boundaries between forest ecotones, which can be expected to facilitate a more rapid progression of vegetation towards a new equilibrium with the climate. Adaptation to climate change may be facilitated by: assisting migration of forests by seed transfers to establish genotypes that may be more ecologically suited as climate changes; and the introduction of suitable agricultural crops that may be potentially adapted to a warmer climate in the expected steppe and forest-steppe.

  18. Thermodynamic model effects on the design and optimization of natural gas plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, S.; Zabaloy, M.; Brignole, E.A.

    1999-07-01

    The design and optimization of natural gas plants is carried out on the basis of process simulators. The physical property package is generally based on cubic equations of state. By rigorous thermodynamics phase equilibrium conditions, thermodynamic functions, equilibrium phase separations, work and heat are computed. The aim of this work is to analyze the NGL turboexpansion process and identify possible process computations that are more sensitive to model predictions accuracy. Three equations of state, PR, SRK and Peneloux modification, are used to study the effect of property predictions on process calculations and plant optimization. It is shown that turboexpander plantsmore » have moderate sensitivity with respect to phase equilibrium computations, but higher accuracy is required for the prediction of enthalpy and turboexpansion work. The effect of modeling CO{sub 2} solubility is also critical in mixtures with high CO{sub 2} content in the feed.« less

  19. Equilibrium-line altitude during the Antarctic Cold Reversal at Río Tranquilo glacier (47°S), Central Patagonia

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Ward, D.; Gonzalez, M. A.; Lowell, T. V.; Kelly, M. A.; Aravena, J. C.

    2013-12-01

    Documenting the magnitude of former glacial fluctuations is critical for understanding the mechanisms and climate signals underlying these glacial events. Here, we estimate the equilibrium line altitudes (ELA) associated with the most prominent glacial advance occurred during the Last Glacial Termination (T1) at Tranquilo glacier (47°S). Geomorphic evidence suggest that, following the Last Glacial Maximum, several small glaciers, which today occupy the headwalls of Río Tranquilo valley, expanded and coalesced, forming the extended version of the Tranquilo glacier at least three different times. 10Be ages suggest that the most prominent of these glacial advances occurred ~13 kyr BP, at the end of the Antarctic Cold Reversal (ACR). Based on glacial geomorphic mapping and the application of a glaciological model (GC2D), we reconstruct the former glacial surface at Tranquilo glacier and estimate the ELA for this major glacial advance. Preliminary data show that the equilibrium line altitude at Tranquilo glacier during the ACR could have been up to 500 m lower than the present. This study represents the first effort to quantify the ELA during the Antarctic Cold Reversal in Patagonia, and provides a baseline to decipher the climatic signals driving this glacial event.

  20. Increased Carbon Throughput But No Net Soil Carbon Loss in Field Warming Experiments: Combining Data Assimilation and Meta-Analyses

    NASA Astrophysics Data System (ADS)

    van Gestel, N.; Shi, Z.; van Groenigen, K. J.; Osenberg, C. W.; Andresen, L. C.; Dukes, J. S.; Hovenden, M. J.; Michelsen, A.; Pendall, E.; Reich, P.; Schuur, E.; Hungate, B. A.

    2017-12-01

    Minor changes in soil C dynamics in response to warming can strongly modulate climate change. Approaches to estimate long-term changes in soil carbon stocks from shorter-term warming experiments should consider temporal trends in soil carbon dynamics. Here we used data assimilation to take into account the soil carbon time series data collected from the upper soil layer (<15 cm) in 70 field warming experiments located worldwide. We used a soil carbon model with two pools, representing fast- and slow-decaying materials. We show that on average experimental warming enhanced fluxes of incoming and outgoing carbon with no change in predicted equilibrium stocks of carbon. Experimental warming increased the decomposition rates of the fast soil carbon pools by 10.7% on average, but also increased soil carbon input by 8.1%. When projecting the carbon pools to equilibrium stocks we found that warming decreased the size of the fast pool (-3.7%), but did not affect the slow or total carbon pools. We demonstrate that warming increases carbon throughput without an overall effect on total equilibrium carbon stocks. Hence, our findings do not support a generalizable soil carbon-climate feedback for soil carbon in the upper soil layer.

  1. Disentangling residence time and temperature sensitivity of microbial decomposition in a global soil carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.

    2014-03-01

    Recent studies have identified the first-order parameterization of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of the current state-of-the-art parameterization of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitvity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project. This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitudes carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon, and how soil carbon responds to climate change should be constrained by available observational data sets.

  2. Partitioning the Water Budget in a Glacierized Basin

    NASA Astrophysics Data System (ADS)

    O'Neel, S.; Sass, L.; McGrath, D.; McNeil, C.; Myers, K. F.; Bergstrom, A.; Koch, J. C.; Ostman, J. S.; Arendt, A. A.; LeWinter, A.; Larsen, C. F.; Marshall, H. P.

    2017-12-01

    Glaciers couple to the ecosystems in which they reside through their mass balance and subsequent runoff. The unique timing and composition of glacier runoff notably impacts ecological and socio-economically important processes, including thermal modulation of streams, nearshore primary production, and groundwater exchange. Predicting how these linkages will evolve as glaciers continue to retreat requires a better understanding of basin- to region-scale water budgets. Here we develop a partitioned water balance for Alaska's Wolverine Glacier basin for 2016. Our presentation will highlight mass-balance forcing and sensitivity, as well as analyses of hydrometric and geochemical partitioning. These observations provide constraints for hypsometry-based regional projections of glacier change, which form the basis of future biogeochemical scenarios. Local climate records show relatively minor warming and drying over the 1967 -2016 interval, yet the impact on the glacier was substantial; the average annual balance rate over the study interval is -0.5 m/yr. We performed a sensitivity experiment that suggests that elevation-independent processes drive first-order variability in glacier-wide mass balance solutions Analysis of runoff and precipitation data suggest that previously ignored components of the hydrologic cycle (groundwater, evapotranspiration, off-glacier snowpack storage, and snow redistribution) may substantially contribute to the basin wide water budget. Initial geochemical assessments (carbon, water isotopes, major ions) highlight unique source signatures (glacier-derived, snow-melt, groundwater), which will be further explored using a mixing model approach. Applying a range of climate forcings over centennial time-scales suggests the regional equilibrium line altitude is likely to increase by more than 100 m, which will result in extensive glacier area losses. Such changes will likely modify the runoff from this basin by increasing inter-annual streamflow variability and increasing the fraction of runoff delivered early in the melt season.

  3. Anthropogenic range contractions bias species climate change forecasts

    NASA Astrophysics Data System (ADS)

    Faurby, Søren; Araújo, Miguel B.

    2018-03-01

    Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.

  4. A new framework for climate sensitivity and prediction: a modelling perspective

    NASA Astrophysics Data System (ADS)

    Ragone, Francesco; Lucarini, Valerio; Lunkeit, Frank

    2016-03-01

    The sensitivity of climate models to increasing CO2 concentration and the climate response at decadal time-scales are still major factors of uncertainty for the assessment of the long and short term effects of anthropogenic climate change. While the relative slow progress on these issues is partly due to the inherent inaccuracies of numerical climate models, this also hints at the need for stronger theoretical foundations to the problem of studying climate sensitivity and performing climate change predictions with numerical models. Here we demonstrate that it is possible to use Ruelle's response theory to predict the impact of an arbitrary CO2 forcing scenario on the global surface temperature of a general circulation model. Response theory puts the concept of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of predictability at different time-scales. Conceptually, these results show that performing climate change experiments with general circulation models is a well defined problem from a physical and mathematical point of view. Practically, these results show that considering one single CO2 forcing scenario is enough to construct operators able to predict the response of climatic observables to any other CO2 forcing scenario, without the need to perform additional numerical simulations. We also introduce a general relationship between climate sensitivity and climate response at different time scales, thus providing an explicit definition of the inertia of the system at different time scales. This technique allows also for studying systematically, for a large variety of forcing scenarios, the time horizon at which the climate change signal (in an ensemble sense) becomes statistically significant. While what we report here refers to the linear response, the general theory allows for treating nonlinear effects as well. These results pave the way for redesigning and interpreting climate change experiments from a radically new perspective.

  5. Convective aggregation in realistic convective-scale simulations

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather forecasters and climate scientists. Over the last 20 years, idealized models of the tropical atmosphere have shown that tropical rainstorms can spontaneously clump together. These studies have linked this spontaneous organization to processes related to the interaction between the rainstorms, atmospheric water vapor, clouds, radiation, surface evaporation, and circulations. The present study shows that there are some similarities in how organization of rainfall in more realistic computer model simulations interacts with these processes (particularly radiation). This provides some evidence that the work in the idealized model studies is relevant to the organization of tropical rainstorms in the real world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1029408','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1029408"><span>Climate Risk Assessment: Technical Guidance Manual for DoD Installations and Built Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-09-06</p> <p>climate change risks to DoD installations and the built environment. The approach, which we call “decision-scaling,” reveals the core sensitivity of...DoD installations to climate change . It is designed to illuminate the sensitivity of installations and their supporting infrastructure systems...including water and energy, to climate changes and other uncertainties without dependence on climate change projections. In this way the analysis and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890064717&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890064717&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange"><span>Effects of cumulus entrainment and multiple cloud types on a January global climate model simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yao, Mao-Sung; Del Genio, Anthony D.</p> <p>1989-01-01</p> <p>An improved version of the GISS Model II cumulus parameterization designed for long-term climate integrations is used to study the effects of entrainment and multiple cloud types on the January climate simulation. Instead of prescribing convective mass as a fixed fraction of the cloud base grid-box mass, it is calculated based on the closure assumption that the cumulus convection restores the atmosphere to a neutral moist convective state at cloud base. This change alone significantly improves the distribution of precipitation, convective mass exchanges, and frequencies in the January climate. The vertical structure of the tropical atmosphere exhibits quasi-equilibrium behavior when this closure is used, even though there is no explicit constraint applied above cloud base.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.U53C0072M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.U53C0072M"><span>Socio-climatic Exposure of an Afghan Poppy Farmer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mankin, J. S.; Diffenbaugh, N. S.</p> <p>2011-12-01</p> <p>Many posit that climate impacts from anthropogenic greenhouse gas emissions will have consequences for the natural and agricultural systems on which humans rely for food, energy, and livelihoods, and therefore, on stability and human security. However, many of the potential mechanisms of action in climate impacts and human systems response, as well as the differential vulnerabilities of such systems, remain underexplored and unquantified. Here I present two initial steps necessary to characterize and quantify the consequences of climate change for farmer livelihood in Afghanistan, given both climate impacts and farmer vulnerabilities. The first is a conceptual model mapping the potential relationships between Afghanistan's climate, the winter agricultural season, and the country's political economy of violence and instability. The second is a utility-based decision model for assessing farmer response sensitivity to various climate impacts based on crop sensitivities. A farmer's winter planting decision can be modeled roughly as a tradeoff between cultivating the two crops that dominate the winter growing season-opium poppy (a climate tolerant cash crop) and wheat (a climatically vulnerable crop grown for household consumption). Early sensitivity analysis results suggest that wheat yield dominates farmer decision making variability; however, such initial results may dependent on the relative parameter ranges of wheat and poppy yields. Importantly though, the variance in Afghanistan's winter harvest yields of poppy and wheat is tightly linked to household livelihood and thus, is indirectly connected to the wider instability and insecurity within the country. This initial analysis motivates my focused research on the sensitivity of these crops to climate variability in order to project farmer well-being and decision sensitivity in a warmer world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=eccentricity&pg=2&id=EJ933759','ERIC'); return false;" href="https://eric.ed.gov/?q=eccentricity&pg=2&id=EJ933759"><span>Is This Object Balanced or Unbalanced? Judgments Are on the Safe Side</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Samuel, Francoise; Kerzel, Dirk</p> <p>2011-01-01</p> <p>Do we perceive correctly whether a 2-D object is balanced or unbalanced? What would be the cause of biased equilibrium judgments? In two psychometric studies, we varied independently the characteristics of the objects and the equilibrium states. First, we observed that observers were excessively sensitive to the eccentricity of the object top.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatCC...5..887M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatCC...5..887M"><span>Climate sensitivity of shrub growth across the tundra biome</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S. A.; Wilmking, Martin; Hallinger, Martin; Blok, Daan; Tape, Ken D.; Rayback, Shelly A.; Macias-Fauria, Marc; Forbes, Bruce C.; Speed, James D. M.; Boulanger-Lapointe, Noémie; Rixen, Christian; Lévesque, Esther; Schmidt, Niels Martin; Baittinger, Claudia; Trant, Andrew J.; Hermanutz, Luise; Collier, Laura Siegwart; Dawes, Melissa A.; Lantz, Trevor C.; Weijers, Stef; Jørgensen, Rasmus Halfdan; Buchwal, Agata; Buras, Allan; Naito, Adam T.; Ravolainen, Virve; Schaepman-Strub, Gabriela; Wheeler, Julia A.; Wipf, Sonja; Guay, Kevin C.; Hik, David S.; Vellend, Mark</p> <p>2015-09-01</p> <p>Rapid climate warming in the tundra biome has been linked to increasing shrub dominance. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual shrub growth provide an underused resource to explore climate-growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and ~42,000 annual growth records from 1,821 individuals. Our analyses demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern or upper elevational range edges. Across latitude, climate sensitivity of growth was greatest at the boundary between the Low and High Arctic, where permafrost is thawing and most of the global permafrost soil carbon pool is stored. The observed variation in climate-shrub growth relationships should be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27417487','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27417487"><span>Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Swaminathan, Ashwin; Lucas, Robyn M; Harley, David; McMichael, Anthony J</p> <p>2014-11-11</p> <p>The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations-particularly for children-to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1436990-atmospheric-updrafts-key-unlocking-climate-forcing-sensitivity','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1436990-atmospheric-updrafts-key-unlocking-climate-forcing-sensitivity"><span>Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...</p> <p>2016-06-08</p> <p>Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B13I..05Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B13I..05Q"><span>Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quetin, G. R.; Swann, A. L. S.</p> <p>2017-12-01</p> <p>Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26886790','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26886790"><span>Sensitivity of global terrestrial ecosystems to climate variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J</p> <p>2016-03-10</p> <p>The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Natur.531..229S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Natur.531..229S"><span>Sensitivity of global terrestrial ecosystems to climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.</p> <p>2016-03-01</p> <p>The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1992/0052/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1992/0052/report.pdf"><span>Sensitivity of water resources in the Delaware River basin to climate variability and change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.</p> <p>1993-01-01</p> <p>Because of the "greenhouse effect," projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climatic change, and presents the results of sensitivity-analysis studies of the potential effects of climate change on water resources in the Delaware River basin. On the basis of sensitivity analyses, potentially serious shortfalls of certain water resources in the basin could result if some climatic-change scenarios become true. The results of basin streamflow-model simulations in this study demonstrate the difficulty in distinguishing effects of climatic change on streamflow and water supply from effects of natural variability in current climate. The future direction of basin changes in most water resources, furthermore, cannot be determined precisely because of uncertainty in current projections of regional temperature and precipitation. This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant. The sensitivity analyses could be useful in developing contingency plans on how to evaluate and respond to changes, should they occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP21A2208H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP21A2208H"><span>Triple oxygen isotopes and clumped isotopes in modern vertebrate and dinosaur biominerals: Records of paleoecology, paleoaridity, and paleo-carbon-cycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, H.; Passey, B. H.; Lehmann, S. B.; Levin, N. E.; Montanari, S.; Chin, K.; Johnson, B. J.</p> <p>2015-12-01</p> <p>The parameter Δ17O describes the departure of δ17O from an expected equilibrium relationship with δ18O, which can be caused by factors such as evaporation of parent waters, and photochemical reactions among oxygen-bearing gases in stratosphere. Hence, the Δ17O of water records information about environmental aridity, and the Δ17O of atmospheric O2 is related to atmospheric concentrations of CO2 and O2, and gross primary productivity (GPP). Vertebrates incorporate Δ17O signals of input water (e.g. drinking water and free food water) and atmospheric O2 into body water through respiration, and biominerals forming in equilibrium with body water can preserve this signal over geological timescales. The preservation of fossil biominerals can be evaluated by clumped isotopes as they record the temperature of mineralization, be it primary mineralization in the living animal (at body temperature), or secondary mineralization during diagenesis. We can distinguish the alteration of samples from the deviation between observed clumped isotope temperatures and plausible body temperatures. Meanwhile, diagenesis tends to moderate Δ17O of biominerals towards Δ17O of meteoric waters, such that measured Δ17O values reflect the minimum anomaly in fossil samples. Thus, preservation of anomalous Δ17O indicates at least partial preservation of the original signal. We present Δ17O data from both modern vertebrate and fossil dinosaur biominerals. We use a 17O-enabled body water model to explore the influence of aridity and dietary ecology on animal Δ17O, and to predict the degree of dilution of the atmospheric O2 Δ17O signal by other sources of oxygen to the animal. We observe: 1) animals consuming more leaf water than drinking water are "evaporation sensitive" (ES) animals, and have lower Δ17O relative to "evaporation insensitive" animals in the same climates; 2) ES animals from arid climates have lower Δ17O values compared to ES animals from humid climates, which forms the basis of a paleoaridity proxy; and 3) anomalously low body water Δ17O values are observed for some of the dinosaur samples, indicating a significantly different carbon cycle during that time, with pCO2 up to 3250±1250 ppm during late Jurassic assuming present day GPP and pO2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20049116','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20049116"><span>Environmental health indicators of climate change for the United States: findings from the State Environmental Health Indicator Collaborative.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>English, Paul B; Sinclair, Amber H; Ross, Zev; Anderson, Henry; Boothe, Vicki; Davis, Christine; Ebi, Kristie; Kagey, Betsy; Malecki, Kristen; Shultz, Rebecca; Simms, Erin</p> <p>2009-11-01</p> <p>To develop public health adaptation strategies and to project the impacts of climate change on human health, indicators of vulnerability and preparedness along with accurate surveillance data on climate-sensitive health outcomes are needed. We researched and developed environmental health indicators for inputs into human health vulnerability assessments for climate change and to propose public health preventative actions. We conducted a review of the scientific literature to identify outcomes and actions that were related to climate change. Data sources included governmental and nongovernmental agencies and the published literature. Sources were identified and assessed for completeness, usability, and accuracy. Priority was then given to identifying longitudinal data sets that were applicable at the state and community level. We present a list of surveillance indicators for practitioners and policy makers that include climate-sensitive health outcomes and environmental and vulnerability indicators, as well as mitigation, adaptation, and policy indicators of climate change. A review of environmental health indicators for climate change shows that data exist for many of these measures, but more evaluation of their sensitivity and usefulness is needed. Further attention is necessary to increase data quality and availability and to develop new surveillance databases, especially for climate-sensitive morbidity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2801164','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2801164"><span>Environmental Health Indicators of Climate Change for the United States: Findings from the State Environmental Health Indicator Collaborative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>English, Paul B.; Sinclair, Amber H.; Ross, Zev; Anderson, Henry; Boothe, Vicki; Davis, Christine; Ebi, Kristie; Kagey, Betsy; Malecki, Kristen; Shultz, Rebecca; Simms, Erin</p> <p>2009-01-01</p> <p>Objective To develop public health adaptation strategies and to project the impacts of climate change on human health, indicators of vulnerability and preparedness along with accurate surveillance data on climate-sensitive health outcomes are needed. We researched and developed environmental health indicators for inputs into human health vulnerability assessments for climate change and to propose public health preventative actions. Data sources We conducted a review of the scientific literature to identify outcomes and actions that were related to climate change. Data sources included governmental and nongovernmental agencies and the published literature. Data extraction Sources were identified and assessed for completeness, usability, and accuracy. Priority was then given to identifying longitudinal data sets that were applicable at the state and community level. Data synthesis We present a list of surveillance indicators for practitioners and policy makers that include climate-sensitive health outcomes and environmental and vulnerability indicators, as well as mitigation, adaptation, and policy indicators of climate change. Conclusions A review of environmental health indicators for climate change shows that data exist for many of these measures, but more evaluation of their sensitivity and usefulness is needed. Further attention is necessary to increase data quality and availability and to develop new surveillance databases, especially for climate-sensitive morbidity. PMID:20049116</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=32804&Lab=NHEERL&keyword=humus&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=32804&Lab=NHEERL&keyword=humus&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CARBON BALANCE OF THE CONTINUOUS PERMAFROST ZONE OF RUSSIA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>An increase in the atmospheric concentration of CO2 is projected to cause climate warming. arming of the permafrost environment could change the balance between carbon accumulation and decomposition processes and substantially disrupt the equilibrium of the carbon cycle. arming m...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..674Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..674Z"><span>Clearing clouds of uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zelinka, Mark D.; Randall, David A.; Webb, Mark J.; Klein, Stephen A.</p> <p>2017-10-01</p> <p>Since 1990, the wide range in model-based estimates of equilibrium climate warming has been attributed to disparate cloud responses to warming. However, major progress in our ability to understand, observe, and simulate clouds has led to the conclusion that global cloud feedback is likely positive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002122','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002122"><span>Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150002122'); toggleEditAbsImage('author_20150002122_show'); toggleEditAbsImage('author_20150002122_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150002122_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150002122_hide"></p> <p>2013-01-01</p> <p>Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAMES...5..146S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAMES...5..146S"><span>Atmospheric component of the MPI-M Earth System Model: ECHAM6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stevens, Bjorn; Giorgetta, Marco; Esch, Monika; Mauritsen, Thorsten; Crueger, Traute; Rast, Sebastian; Salzmann, Marc; Schmidt, Hauke; Bader, Jürgen; Block, Karoline; Brokopf, Renate; Fast, Irina; Kinne, Stefan; Kornblueh, Luis; Lohmann, Ulrike; Pincus, Robert; Reichler, Thomas; Roeckner, Erich</p> <p>2013-06-01</p> <p>ECHAM6, the sixth generation of the atmospheric general circulation model ECHAM, is described. Major changes with respect to its predecessor affect the representation of shortwave radiative transfer, the height of the model top. Minor changes have been made to model tuning and convective triggering. Several model configurations, differing in horizontal and vertical resolution, are compared. As horizontal resolution is increased beyond T63, the simulated climate improves but changes are incremental; major biases appear to be limited by the parameterization of small-scale physical processes, such as clouds and convection. Higher vertical resolution in the middle atmosphere leads to a systematic reduction in temperature biases in the upper troposphere, and a better representation of the middle atmosphere and its modes of variability. ECHAM6 represents the present climate as well as, or better than, its predecessor. The most marked improvements are evident in the circulation of the extratropics. ECHAM6 continues to have a good representation of tropical variability. A number of biases, however, remain. These include a poor representation of low-level clouds, systematic shifts in major precipitation features, biases in the partitioning of precipitation between land and sea (particularly in the tropics), and midlatitude jets that appear to be insufficiently poleward. The response of ECHAM6 to increasing concentrations of greenhouse gases is similar to that of ECHAM5. The equilibrium climate sensitivity of the mixed-resolution (T63L95) configuration is between 2.9 and 3.4 K and is somewhat larger for the 47 level model. Cloud feedbacks and adjustments contribute positively to warming from increasing greenhouse gases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.3540O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.3540O"><span>Do planetary seasons play a role in attaining stable climates?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olsen, Kasper Wibeck; Bohr, Jakob</p> <p>2018-05-01</p> <p>A simple phenomenological account for planetary climate instabilities is presented. The description is based on the standard model where the balance of incoming stellar radiation and outward thermal radiation is described by the effective planet temperature. Often, it is found to have three different points, or temperatures, where the influx of radiation is balanced with the out-flux, even with conserved boundary conditions. Two of these points are relatively long-term stable, namely the point corresponding to a cold climate and the point corresponding to a hot climate. In a classical sense these points are equilibrium balance points. The hypothesis promoted in this paper is the possibility that the intermediate third point can become long-term stable by being driven dynamically. The initially unstable point is made relatively stable over a long period by the presence of seasonal climate variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996NucFu..36.1133B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996NucFu..36.1133B"><span>Sensitivity of equilibrium profile reconstruction to motional Stark effect measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batha, S. H.; Levinton, F. M.; Hirshman, S. P.; Bell, M. G.; Wieland, R. M.</p> <p>1996-09-01</p> <p>The magnetic-field pitch-angle profile, gamma p(R) identical to tan-1(Bpol/Btor), is measured on TFTR using a motional Stark effect (MSE) polarimeter. Measured pitch angle profiles, along with kinetic profiles and external magnetic measurements, are used to compute a self-consistent equilibrium using the free-boundary variational moments equilibrium code VMEC. Uncertainties in the q profile due to uncertainties in gamma P(R), magnetic measurements and kinetic measurements are found to be small. Subsequent uncertainties in the VMEC-calculated current density and shear profiles are also small</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.119...35F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.119...35F"><span>Application of a fast Newton-Krylov solver for equilibrium simulations of phosphorus and oxygen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Weiwei; Primeau, François</p> <p>2017-11-01</p> <p>Model drift due to inadequate spinup is a serious problem that complicates the interpretation of climate change simulations. Even after a 300 year spinup we show that solutions are not only still drifting but often drifting away from their eventual equilibrium over large parts of the ocean. Here we present a Newton-Krylov solver for computing cyclostationary equilibrium solutions of a biogeochemical model for the cycling of phosphorus and oxygen. In addition to using previously developed preconditioning strategies - time-averaging and coarse-graining the Jacobian matrix - we also introduce a new strategy: the adiabatic elimination of a fast variable (particulate organic phosphorus) by slaving it to a slow variable (dissolved inorganic phosphorus). We use transport matrices derived from the Community Earth System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels to implement and test the solver. We find that the new solver obtains seasonally-varying equilibrium solutions with no visible drift using no more than 80 simulation years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ERL.....9f4005C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ERL.....9f4005C"><span>Sensitivity of ocean acidification and oxygen to the uncertainty in climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han</p> <p>2014-05-01</p> <p>Due to increasing atmospheric CO2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO2 and those which involve CO2-induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H34F..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H34F..06M"><span>A Data-Driven Assessment of the Sensitivity of Global Ecosystems to Climate Anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miralles, D. G.; Papagiannopoulou, C.; Demuzere, M.; Decubber, S.; Waegeman, W.; Verhoest, N.; Dorigo, W.</p> <p>2017-12-01</p> <p>Vegetation is a central player in the climate system, constraining atmospheric conditions through a series of feedbacks. This fundamental role highlights the importance of understanding regional drivers of ecological sensitivity and the response of vegetation to climatic changes. While nutrient availability and short-term disturbances can be crucial for vegetation at various spatiotemporal scales, natural vegetation dynamics are overall driven by climate. At monthly scales, the interactions between vegetation and climate become complex: some vegetation types react preferentially to specific climatic changes, with different levels of intensity, resilience and lagged response. For our current Earth System Models (ESMs) being able to capture this complexity is crucial but extremely challenging. This adds uncertainty to our projections of future climate and the fate of global ecosystems. Here, following a Granger causality framework based on a non-linear random forest predictive model, we exploit the current wealth of satellite data records to uncover the main climatic drivers of monthly vegetation variability globally. Results based on three decades of satellite data indicate that water availability is the most dominant factor driving vegetation in over 60% of the vegetated land. This overall dependency of ecosystems on water availability is larger than previously reported, partly owed to the ability of our machine-learning framework to disentangle the co-linearites between climatic drivers, and to quantify non-linear impacts of climate on vegetation. Our observation-based results are then used to benchmark ESMs on their representation of vegetation sensitivity to climate and climatic extremes. Our findings indicate that the sensitivity of vegetation to climatic anomalies is ill-reproduced by some widely-used ESMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990024954','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990024954"><span>Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990040408','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990040408"><span>Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p>This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.2481R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.2481R"><span>How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin</p> <p>2018-04-01</p> <p>The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as <q>inter-annual climate sensitivity</q>. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25801187','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25801187"><span>Increased sensitivity to climate change in disturbed ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kröel-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel; Beier, Claus; De Angelis, Paolo; de Dato, Giovanbattista; Dukes, Jeffrey S; Emmett, Bridget; Estiarte, Marc; Garadnai, János; Kongstad, Jane; Kovács-Láng, Edit; Larsen, Klaus Steenberg; Liberati, Dario; Ogaya, Romà; Riis-Nielsen, Torben; Smith, Andrew R; Sowerby, Alwyn; Tietema, Albert; Penuelas, Josep</p> <p>2015-03-24</p> <p>Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917983C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917983C"><span>Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing</p> <p>2017-04-01</p> <p>A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM) ''hot spots'', it is generally admitted that the variability of the surface temperature is explained by the soil moisture trough its control on the evaporation. This work suggests that the impact of the soil moisture on the temperature through its impact on the thermal inertia can be as important as its direct impact on the evaporation. Contrarily to the evaporation related soil-moisture temperature negative feedback, the thermal inertia soil-moisture related feedback newly identified by this work is a positive feedback which limits the cooling when the soil moisture increases. These results suggest that uncertainties in the representation of the soil and snow thermal properties can be responsible of significant biases in numerical simulations and emphasize the need to carefully document and evaluate these quantities in the Land Surface Modules implemented in the climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42..871D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42..871D"><span>Impact of Greenland orography on the Atlantic Meridional Overturning Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davini, P.; Hardenberg, J.; Filippi, L.; Provenzale, A.</p> <p>2015-02-01</p> <p>We show that the absence of the Greenland ice sheet would have important consequences on the North Atlantic Ocean circulation, even without taking into account the effect of the freshwater input to the ocean from ice melting. These effects are investigated in a 600year long coupled ocean-atmosphere simulation with the high-resolution global climate model EC-Earth 3.0.1. Once a new equilibrium is established, a cooling of Eurasia and of the North Atlantic and a poleward shift of the subtropical jet are observed. These hemispheric changes are ascribed to a weakening of the Atlantic Meridional Overturning Circulation (AMOC) by about 12%. We attribute this slowdown to a reduction in salinity of the Arctic basin and to the related change of the mass and salt transport through the Fram Strait—a consequence of the new surface wind pattern over the lower orography. This idealized experiment illustrates the sensitivity of the AMOC to local surface winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12g4006L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12g4006L"><span>Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>López-Moreno, J. I.; Gascoin, S.; Herrero, J.; Sproles, E. A.; Pons, M.; Alonso-González, E.; Hanich, L.; Boudhar, A.; Musselman, K. N.; Molotch, N. P.; Sickman, J.; Pomeroy, J.</p> <p>2017-07-01</p> <p>In this study we quantified the sensitivity of snow to climate warming in selected mountain sites having a Mediterranean climate, including the Pyrenees in Spain and Andorra, the Sierra Nevada in Spain and California (USA), the Atlas in Morocco, and the Andes in Chile. Meteorological observations from high elevations were used to simulate the snow energy and mass balance (SEMB) and calculate its sensitivity to climate. Very different climate sensitivities were evident amongst the various sites. For example, reductions of 9%-19% and 6-28 days in the mean snow water equivalent (SWE) and snow duration, respectively, were found per °C increase. Simulated changes in precipitation (±20%) did not affect the sensitivities. The Andes and Atlas Mountains have a shallow and cold snowpack, and net radiation dominates the SEMB; and explains their relatively low sensitivity to climate warming. The Pyrenees and USA Sierra Nevada have a deeper and warmer snowpack, and sensible heat flux is more important in the SEMB; this explains the much greater sensitivities of these regions. Differences in sensitivity help explain why, in regions where climate models project relatively greater temperature increases and drier conditions by 2050 (such as the Spanish Sierra Nevada and the Moroccan Atlas Mountains), the decline in snow accumulation and duration is similar to other sites (such as the Pyrenees and the USA Sierra Nevada), where models project stable precipitation and more attenuated warming. The snowpack in the Andes (Chile) exhibited the lowest sensitivity to warming, and is expected to undergo only moderate change (a decrease of <12% in mean SWE, and a reduction of < 7 days in snow duration under RCP 4.5). Snow accumulation and duration in the other regions are projected to decrease substantially (a minimum of 40% in mean SWE and 15 days in snow duration) by 2050.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009784','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009784"><span>A first-order global model of Late Cenozoic climatic change: Orbital forcing as a pacemaker of the ice ages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saltzman, Barry</p> <p>1992-01-01</p> <p>The development of a theory of the evolution of the climate of the earth over millions of years can be subdivided into three fundamental, nested, problems: (1) to establish by equilibrium climate models (e.g., general circulation models) the diagnostic relations, valid at any time, between the fast-response climate variables (i.e., the 'weather statistics') and both the prescribed external radiative forcing and the prescribed distribution of the slow response variables (e.g., the ice sheets and shelves, the deep ocean state, and the atmospheric CO2 concentration); (2) to construct, by an essentially inductive process, a model of the time-dependent evolution of the slow-response climatic variables over time scales longer than the damping times of these variables but shorter than the time scale of tectonic changes in the boundary conditions (e.g., altered geography and elevation of the continents, slow outgassing, and weathering) and ultra-slow astronomical changes such as in the solar radiative output; and (3) to determine the nature of these ultra-slow processes and their effects on the evolution of the equilibrium state of the climatic system about which the above time-dependent variations occur. All three problems are discussed in the context of the theory of the Quaternary climate, which will be incomplete unless it is embedded in a more general theory for the fuller Cenozoic that can accommodate the onset of the ice-age fluctuations. We construct a simple mathematical model for the Late Cenozoic climatic changes based on the hypothesis that forced and free variations of the concentration of atmospheric greenhouse gases (notably CO2), coupled with changes in the deep ocean state and ice mass, under the additional 'pacemaking' influence of earth-orbital forcing, are primary determinants of the climate state over this period. Our goal is to illustrate how a single model governing both very long term variations and higher frequency oscillatory variations in the Pleistocene can be formulated with relatively few adjustable parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050175768','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050175768"><span>Critical Climate-Sensitive and Important Grain-Producing Regions: Grain Production/Yield Variations Due to Climate Fluctuations. Volume 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Welker, J. E.</p> <p>2004-01-01</p> <p>Ideally, the Crop Country Inventory, CCI, is a methodology for the pre-harvest prediction of large variations in a country s crop production. This is accomplished by monitoring the historical climatic fluctuations, especially during the crop calendar period, in a climate sensitive large crop production region or sub-country, rather than the entire country. The argument can be made that the climatic fluctuations in the climatic sensitive region are responsible for the major annual crop country variations and that the remainder of the country, without major climatic fluctuations for a given year, can be assumed to be a steady-state crop producer. The principal data set that has been used is the Global Climate Mode (GCM) data from the National Center for Environmental Prediction (NCEP), taken over the last half century. As a test of its accuracy, GCM data can and has been correlated with the actual meteorological station data at the station site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP31C2267K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP31C2267K"><span>Climate Reconstructions of the Younger Dryas: An ELA Model Investigating Variability in ELA Depressions, Temperature, and Precipitation Changes for the Graubϋnden Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keeler, D. G.; Rupper, S.; Schaefer, J. M.; Finkel, R. C.</p> <p>2015-12-01</p> <p>The high sensitivity of mountain glaciers to even small perturbations in climate, combined with a near global distribution, make alpine glaciers an important target for terrestrial paleoclimate reconstructions. The geomorphic remnant of past glaciers can yield important insights into past climate, particularly in regions where other methods of reconstruction are not possible. The quantitative conversion of these changes in geomorphology to a climate signal, however, presents a significant challenge. A particular need exists for a versatile climate reconstruction method applicable to diverse glacierized regions around the globe. Because the glacier equilibrium line altitude (ELA) provides a more explicit comparison of climate than properties such as glacier length or area, ELA methods lend themselves well to such a need, and allow for a more direct investigation of the primary drivers of mountain glaciations during specific events. Here, we present an ELA model for quantifying changes in climate based on changes in glacier extent, while accounting for differences in glacier width, glacier shape, bed topography, ice thickness, and glacier length. The model furthermore provides bounds on the ΔELA using Monte Carlo simulations. These methods are validated using published mass balances and ELA measurements from 4 modern glaciers in the European Alps. We then use this ELA model, combined with a surface mass and energy balance model, to estimate the changes in temperature/precipitation between the Younger Dryas (constrained by 10Be surface exposure ages) and the present day for three glacier systems in the Graubϋnden Alps. Our results indicate an ELA depression in this area of 257 m ±45 m during the Younger Dryas (YD) relative to today. This corresponds to a 1.3 °C ±0.36 °C decrease in temperature or a 156% ±30% increase in precipitation relative to today. These results indicate the likelihood of a predominantly temperature-driven change rather than a strong dependence on precipitation. We apply these same methods to additional areas around the globe to obtain preliminary, self-consistent estimates of temperature/precipitation for multiple regions. These methods and results enhance our understanding of the global and regional patterns in the climate system during the YD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24j2503Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24j2503Z"><span>The sensitivity of tokamak magnetohydrodynamics stability on the edge equilibrium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.</p> <p>2017-10-01</p> <p>Due to the X-point singularity, the safety factor tends to infinity as approaching to the last closed flux surface. The numerical treatments of the near X-point behavior become challenging both for equilibrium and stability. The usual solution is to cut off a small fraction of edge region for system stability evaluation or simply use an up-down symmetric equilibrium without X-point as an approximation. In this work, we assess the sensitivity of this type of equilibrium treatments on the stability calculation. It is found that the system stability can depend strongly on the safety factor value (qa) at the edge after the cutting-off. When the edge safety factor value falls in the vicinity of a rational mode number (referred to as the resonant gap), the system becomes quite unstable due to the excitation of the peeling type modes. Instead, when the edge safety factor is outside the resonant gaps, the system is much more stable and the predominant modes become the usual external kink (or ballooning and infernal) type. It is also found that the resonant gaps become smaller and smaller as qa increases. The ideal magnetohydrodynamic peeling ballooning stability diagram is widely used to explain the experimental observations, and the current results indicate that the conventional peeling ballooning stability diagram based on the simplified equilibrium needs to be reexamined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335467&keyword=Wrf&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335467&keyword=Wrf&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Sensitivity of WRF Regional Climate Simulations to Choice of Land Use Dataset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The goal of this study is to assess the sensitivity of regional climate simulations run with the Weather Research and Forecasting (WRF) model to the choice of datasets representing land use and land cover (LULC). Within a regional climate modeling application, an accurate repres...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=252230&Lab=OAP&keyword=cycles&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=252230&Lab=OAP&keyword=cycles&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>The effects of climate sensitivity and carbon cycle interactions on mitigation policy stringency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect o...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70048483','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70048483"><span>Validating predictions from climate envelope models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.</p> <p>2013-01-01</p> <p>Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31A1357L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31A1357L"><span>Climate response to the meltwater runoff from Greenland Ice Sheet: evolving sensitivity to discharging locations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Y.; Hallberg, R.; Sergienko, O. V.; Samuels, B.; Harrison, M.; Oppenheimer, M.</p> <p>2017-12-01</p> <p>Greenland Ice Sheet (GIS) might have lost a large amount of its volume during the last interglacial and may do so again in the future due to climate warming. In this study, we show that the climate response to the GIS meltwater is sensitive to its discharging location initially but become insensitive after two to three hundred years. Two fully coupled atmosphere-ocean general circulation models, CM2G and CM2M, are employed to do the test. They differ in only their ocean components, one with isopycnal coordinate and the other with z-coordinate. The ocean components of both model are run at the nominal 1° horizontal resolution. In each experiment, a prescribed freshwater flux of 0.1 Sv is discharged into a single gridbox near one of the four locations around Greenland - Petermann, 79 North, Jacobshavn and Helheim glaciers. The results from both models show that the climate impact during the first two to three hundred years, in terms of AMOC and sea ice extent, is 15% (CM2G) and 31% (CM2M) stronger when the freshwater is discharged from the northern GIS (Petermann and 79 North) than when it is discharged from the southern GIS (Jacobshavn and Helheim). This is due to easier access of the freshwater from northern GIS to the deepwater formation site in the Nordic Seas. In the long term (>300 year), however, the climate impacts become similar for freshwater discharged from all locations of the GIS. The East Greenland current accelerates with time and becomes significantly faster when the freshwater is discharged from the north than from the south. Therefore, freshwater from the north is transported efficiently towards the south first and then circulates back to the the Nordic Seas, making its impact to the deepwater formation there similar to the freshwater discharged from the south. Our study demonstrates that if freshwater is injected into the ocean in a very localized form as in the real world, its ability to impact the deepwater formation evolves with time. At equilibrium state, the impact of freshwater from upstream of deepwater formation site is not necessarily larger than that from other locations, as obtained by relatively low-resolution models. This may have implication on the deglacial phase of glacial cycles, during which freshwater discharge often lasts for many hundreds of years, and often studied with low-resolution models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B21B0439W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B21B0439W"><span>Climate data induced uncertainty in model based estimations of terrestrial primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Z.; Ahlström, A.; Smith, B.; Ardö, J.; Eklundh, L.; Fensholt, R.; Lehsten, V.</p> <p>2016-12-01</p> <p>Models used to project global vegetation and carbon cycle differ in their estimates of historical fluxes and pools. These differences arise not only from differences between models but also from differences in the environmental and climatic data that forces the models. Here we investigate the role of uncertainties in historical climate data, encapsulated by a set of six historical climate datasets. We focus on terrestrial gross primary productivity (GPP) and analyze the results from a dynamic process-based vegetation model (LPJ-GUESS) forced by six different climate datasets and two empirical datasets of GPP (derived from flux towers and remote sensing). We find that the climate induced uncertainty, defined as the difference among historical simulations in GPP when forcing the model with the different climate datasets, can be as high as 33 Pg C yr-1 globally (19% of mean GPP). The uncertainty is partitioned into the three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we illustrate how the uncertainty due to a given climate driver depends both on the magnitude of the forcing data uncertainty (the data range) and the sensitivity of the modeled GPP to the driver (the ecosystem sensitivity). The analysis is performed globally and stratified into five land cover classes. We find that the dynamic vegetation model overestimates GPP, compared to empirically based GPP data over most areas, except for the tropical region. Both the simulations and empirical estimates agree that the tropical region is a disproportionate source of uncertainty in GPP estimation. This is mainly caused by uncertainties in shortwave radiation forcing, of which climate data range contributes slightly higher uncertainty than ecosystem sensitivity to shortwave radiation. We also find that precipitation dominated the climate induced uncertainty over nearly half of terrestrial vegetated surfaces, which is mainly due to large ecosystem sensitivity to precipitation. Overall, climate data ranges are found to contribute more to the climate induced uncertainty than ecosystem sensitivity. Our study highlights the need to better constrain tropical climate and demonstrate that uncertainty caused by climatic forcing data must be considered when comparing and evaluating model results and empirical datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1410034-clearing-clouds-uncertainty','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1410034-clearing-clouds-uncertainty"><span>Clearing clouds of uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zelinka, Mark D.; Randall, David A.; Webb, Mark J.; ...</p> <p>2017-09-29</p> <p>We report that since 1990, the wide range in model-based estimates of equilibrium climate warming has been attributed to disparate cloud responses to warming. However, major progress in our ability to understand, observe, and simulate clouds has led to the conclusion that global cloud feedback is likely positive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870056085&hterms=oceans+climate+changes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Doceans%2Bclimate%2Bchanges','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870056085&hterms=oceans+climate+changes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Doceans%2Bclimate%2Bchanges"><span>Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Peng; Chou, Ming-Dah; Arking, Albert</p> <p>1987-01-01</p> <p>The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22559004','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22559004"><span>Thermodynamic analysis of the interaction of factor VIII with von Willebrand factor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dimitrov, Jordan D; Christophe, Olivier D; Kang, Jonghoon; Repessé, Yohann; Delignat, Sandrine; Kaveri, Srinivas V; Lacroix-Desmazes, Sébastien</p> <p>2012-05-22</p> <p>Factor VIII (FVIII) is a glycoprotein that plays an important role in the intrinsic pathway of coagulation. In circulation, FVIII is protected upon binding to von Willebrand factor (VWF), a chaperone molecule that regulates its half-life, distribution, and activity. Despite the biological significance of this interaction, its molecular mechanisms are not fully characterized. We determined the equilibrium and activation thermodynamics of the interaction between FVIII and VWF. The equilibrium affinity determined by surface plasmon resonance was temperature-dependent with a value of 0.8 nM at 35 °C. The FVIII-VWF interaction was characterized by very fast association (8.56 × 10(6) M(-1) s(-1)) and fast dissociation (6.89 × 10(-3) s(-1)) rates. Both the equilibrium association and association rate constants, but not the dissociation rate constant, were dependent on temperature. Binding of FVIII to VWF was characterized by favorable changes in the equilibrium and activation entropy (TΔS° = 89.4 kJ/mol, and -TΔS(++) = -8.9 kJ/mol) and unfavorable changes in the equilibrium and activation enthalpy (ΔH° = 39.1 kJ/mol, and ΔH(++) = 44.1 kJ/mol), yielding a negative change in the equilibrium Gibbs energy. Binding of FVIII to VWF in solid-phase assays demonstrated a high sensitivity to acidic pH and a sensitivity to ionic strength. Our data indicate that the interaction between FVIII and VWF is mediated mainly by electrostatic forces, and that it is not accompanied by entropic constraints, suggesting the absence of conformational adaptation but the presence of rigid "pre-optimized" binding surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12f4013W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12f4013W"><span>Climate data induced uncertainty in model-based estimations of terrestrial primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Zhendong; Ahlström, Anders; Smith, Benjamin; Ardö, Jonas; Eklundh, Lars; Fensholt, Rasmus; Lehsten, Veiko</p> <p>2017-06-01</p> <p>Model-based estimations of historical fluxes and pools of the terrestrial biosphere differ substantially. These differences arise not only from differences between models but also from differences in the environmental and climatic data used as input to the models. Here we investigate the role of uncertainties in historical climate data by performing simulations of terrestrial gross primary productivity (GPP) using a process-based dynamic vegetation model (LPJ-GUESS) forced by six different climate datasets. We find that the climate induced uncertainty, defined as the range among historical simulations in GPP when forcing the model with the different climate datasets, can be as high as 11 Pg C yr-1 globally (9% of mean GPP). We also assessed a hypothetical maximum climate data induced uncertainty by combining climate variables from different datasets, which resulted in significantly larger uncertainties of 41 Pg C yr-1 globally or 32% of mean GPP. The uncertainty is partitioned into components associated to the three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we illustrate how the uncertainty due to a given climate driver depends both on the magnitude of the forcing data uncertainty (climate data range) and the apparent sensitivity of the modeled GPP to the driver (apparent model sensitivity). We find that LPJ-GUESS overestimates GPP compared to empirically based GPP data product in all land cover classes except for tropical forests. Tropical forests emerge as a disproportionate source of uncertainty in GPP estimation both in the simulations and empirical data products. The tropical forest uncertainty is most strongly associated with shortwave radiation and precipitation forcing, of which climate data range contributes higher to overall uncertainty than apparent model sensitivity to forcing. Globally, precipitation dominates the climate induced uncertainty over nearly half of the vegetated land area, which is mainly due to climate data range and less so due to the apparent model sensitivity. Overall, climate data ranges are found to contribute more to the climate induced uncertainty than apparent model sensitivity to forcing. Our study highlights the need to better constrain tropical climate, and demonstrates that uncertainty caused by climatic forcing data must be considered when comparing and evaluating carbon cycle model results and empirical datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24680541','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24680541"><span>Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mondal, Pinki; Jain, Meha; DeFries, Ruth S; Galford, Gillian L; Small, Christopher</p> <p>2015-01-15</p> <p>Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM - precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS - temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from -25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21937157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21937157"><span>Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Van den Berge, Joke; Naudts, Kim; Janssens, Ivan A; Ceulemans, Reinhart; Nijs, Ivan</p> <p>2011-12-01</p> <p>Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg(-1) dry soil, under a current climate and a future climate (elevated CO2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO2 assimilation rate (A(sat)) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of A(sat) in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000033275','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000033275"><span>Comments on "The Sensitivity Study of Radiative-Convective Equilibrium in the Tropics with a Convective Resolving Model"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, W.-K.; Shie, C.-L.; Simpson, J.</p> <p>2000-01-01</p> <p>In general, there are two broad scientific objectives when using cloud resolving models (CRMs or cloud ensemble models-CEMs) to study tropical convection. The first one is to use them as a physics resolving models to understand the dynamic and microphysical processes associated with the tropical water and energy cycles and their role in the climate system. The second approach is to use the CRMs to improve the representation of moist processes and their interaction with radiation in large-scale models. In order to improve the credibility of the CRMs and achieve the above goals, CRMs using identical initial conditions and large-scale influences need to produce very similar results. Two CRMs produced different statistical equilibrium (SE) states even though both used the same initial thermodynamic and wind conditions. Sensitivity tests to identify the major physical processes that determine the SE states for the different CRM simulations were performed. Their results indicated that atmospheric horizontal wind is treated quite differently in these two CRMs. The model that had stronger surface winds and consequently larger latent and sensible heat fluxes from the ocean produced a warmer and more humid modeled thermodynamic SE state. In addition, the domain mean thermodynamic state is more unstable for those experiments that produced a warmer and more humid SE state. Their simulated wet (warm and humid) SE states are thermally more stable in the lower troposphere (from the surface to 4-5 km in altitude). The large-scale horizontal advective effects on temperature and water vapor mixing ratio are needed when using CRMs to perform long-term integrations to study convective feedback under specified large-scale environments. In addition, it is suggested that the dry and cold SE state simulated was caused by enhanced precipitation but not enough surface evaporation. We find some problems with the interpretation of these three phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4823651','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4823651"><span>A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing</p> <p>2016-01-01</p> <p>Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100015392','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100015392"><span>Contributions to Future Stratospheric Climate Change: An Idealized Chemistry-Climate Model Sensitivity Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.</p> <p>2010-01-01</p> <p>Within the framework of an idealized model sensitivity study, three of the main contributors to future stratospheric climate change are evaluated: increases in greenhouse gas concentrations, ozone recovery, and changing sea surface temperatures (SSTs). These three contributors are explored in combination and separately, to test the interactions between ozone and climate; the linearity of their contributions to stratospheric climate change is also assessed. In a simplified chemistry-climate model, stratospheric global mean temperature is most sensitive to CO2 doubling, followed by ozone depletion, then by increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is more sensitive to changes in CO2, SSTs and O3 than is the Southern Hemisphere (SH); the opposing responses to ozone depletion under low or high background CO2 concentrations, as seen with present-day SSTs, are much weaker and are not statistically significant under enhanced SSTs. Consistent with previous studies, the strength of the Brewer-Dobson circulation is found to increase in an idealized future climate; SSTs contribute most to this increase in the upper troposphere/lower stratosphere (UT/LS) region, while CO2 and ozone changes contribute most in the stratosphere and mesosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28261861','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28261861"><span>Orthogonally combined motion- and diffusion-sensitized driven equilibrium (OC-MDSDE) preparation for vessel signal suppression in 3D turbo spin echo imaging of peripheral nerves in the extremities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cervantes, Barbara; Kirschke, Jan S; Klupp, Elizabeth; Kooijman, Hendrik; Börnert, Peter; Haase, Axel; Rummeny, Ernst J; Karampinos, Dimitrios C</p> <p>2018-01-01</p> <p>To design a preparation module for vessel signal suppression in MR neurography of the extremities, which causes minimal attenuation of nerve signal and is highly insensitive to eddy currents and motion. The orthogonally combined motion- and diffusion-sensitized driven equilibrium (OC-MDSDE) preparation was proposed, based on the improved motion- and diffusion-sensitized driven equilibrium methods (iMSDE and FC-DSDE, respectively), with specific gradient design and orientation. OC-MDSDE was desensitized against eddy currents using appropriately designed gradient prepulses. The motion sensitivity and vessel signal suppression capability of OC-MDSDE and its components were assessed in vivo in the knee using 3D turbo spin echo (TSE). Nerve-to-vessel signal ratios were measured for iMSDE and OC-MDSDE in 7 subjects. iMSDE was shown to be highly sensitive to motion with increasing flow sensitization. FC-DSDE showed robustness against motion, but resulted in strong nerve signal loss with diffusion gradients oriented parallel to the nerve. OC-MDSDE showed superior vessel suppression compared to iMSDE and FC-DSDE and maintained high nerve signal. Mean nerve-to-vessel signal ratios in 7 subjects were 0.40 ± 0.17 for iMSDE and 0.63 ± 0.37 for OC-MDSDE. OC-MDSDE combined with 3D TSE in the extremities allows high-near-isotropic-resolution imaging of peripheral nerves with reduced vessel contamination and high nerve signal. Magn Reson Med 79:407-415, 2018. © 2017 Wiley Periodicals, Inc. © 2017 International Society for Magnetic Resonance in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030709','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030709"><span>GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; Durachta, J.W.; Findell, K.L.; Ginoux, P.; Gnanadesikan, A.; Gordon, C.T.; Griffies, S.M.; Gudgel, R.; Harrison, M.J.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhorst, A.R.; Lee, H.-C.; Lin, S.-J.; Lu, J.; Malyshev, S.L.; Milly, P.C.D.; Ramaswamy, V.; Russell, J.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Spelman, M.J.; Stern, W.F.; Winton, M.; Wittenberg, A.T.; Wyman, B.; Zeng, F.; Zhang, R.</p> <p>2006-01-01</p> <p>The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Tw o versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2?? latitude ?? 2.5?? longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1?? in latitude and longitude, with meridional resolution equatorward of 30?? becoming progressively finer, such that the meridional resolution is 1/3?? at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments. The co ntrol simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic. Both models have be en used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/). ?? 2006 American Meteorological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.6545A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.6545A"><span>Site-specific climate analysis elucidates revegetation challenges for post-mining landscapes in eastern Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Audet, P.; Arnold, S.; Lechner, A. M.; Baumgartl, T.</p> <p>2013-10-01</p> <p>In eastern Australia, the availability of water is critical for the successful rehabilitation of post-mining landscapes and climatic characteristics of this diverse geographical region are closely defined by factors such as erratic rainfall and periods of drought and flooding. Despite this, specific metrics of climate patterning are seldom incorporated into the initial design of current post-mining land rehabilitation strategies. Our study proposes that a few common rainfall parameters can be combined and rated using arbitrary rainfall thresholds to characterise bioregional climate sensitivity relevant to the rehabilitation these landscapes. This approach included assessments of annual rainfall depth, average recurrence interval of prolonged low intensity rainfall, average recurrence intervals of short or prolonged high intensity events, median period without rain (or water-deficit) and standard deviation for this period in order to address climatic factors such as total water availability, seasonality and intensity - which were selected as potential proxies of both short- and long-term biological sensitivity to climate within the context of post-disturbance ecological development and recovery. Following our survey of available climate data, we derived site "climate sensitivity" indexes and compared the performance of 9 ongoing mine sites: Weipa, Mt. Isa and Cloncurry, Eromanga, Kidston, the Bowen Basin (Curragh), Tarong, North Stradbroke Island, and the Newnes Plateau. The sites were then ranked from most-to-least sensitive and compared with natural bioregional patterns of vegetation density using mean NDVI. It was determined that regular rainfall and relatively short periods of water-deficit were key characteristics of sites having less sensitivity to climate - as found among the relatively more temperate inland mining locations. Whereas, high rainfall variability, frequently occurring high intensity events, and (or) prolonged seasonal drought were primary indicators of sites having greater sensitivity to climate - as found among the semi-arid central-inland sites. Overall, the manner in which these climatic factors are identified and ultimately addressed by land managers and rehabilitation practitioners could be a key determinant of achievable success at given locations at the planning stages of rehabilitation design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45784','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45784"><span>Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Charles Luce; Brian Staab; Marc Kramer; Seth Wenger; Dan Isaak; Callie McConnell</p> <p>2014-01-01</p> <p>Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090026582&hterms=imbalance&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dimbalance','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090026582&hterms=imbalance&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dimbalance"><span>Monitoring Top-of-Atmosphere Radiative Energy Imbalance for Climate Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, Bing; Chambers, Lin H.; Stackhouse, Paul W., Jr.; Minnis, Patrick</p> <p>2009-01-01</p> <p>Large climate feedback uncertainties limit the prediction accuracy of the Earth s future climate with an increased CO2 atmosphere. One potential to reduce the feedback uncertainties using satellite observations of top-of-atmosphere (TOA) radiative energy imbalance is explored. Instead of solving the initial condition problem in previous energy balance analysis, current study focuses on the boundary condition problem with further considerations on climate system memory and deep ocean heat transport, which is more applicable for the climate. Along with surface temperature measurements of the present climate, the climate feedbacks are obtained based on the constraints of the TOA radiation imbalance. Comparing to the feedback factor of 3.3 W/sq m/K of the neutral climate system, the estimated feedback factor for the current climate system ranges from -1.3 to -1.0 W/sq m/K with an uncertainty of +/-0.26 W/sq m/K. That is, a positive climate feedback is found because of the measured TOA net radiative heating (0.85 W/sq m) to the climate system. The uncertainty is caused by the uncertainties in the climate memory length. The estimated time constant of the climate is large (70 to approx. 120 years), implying that the climate is not in an equilibrium state under the increasing CO2 forcing in the last century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=332455','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=332455"><span>Managing for forage and grazingland resilience to maintain enterprise resilience in the Northern Great Plains of the US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Maintaining grazingland and enterprise resilience under changing climatic and economic conditions requires novel, resilience based, management strategies. State and Transition models provide a solid foundation and framework for management of grazinglands using non-equilibrium dynamics. These models ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70039007','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70039007"><span>General methods for sensitivity analysis of equilibrium dynamics in patch occupancy models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, David A.W.</p> <p>2012-01-01</p> <p>Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC11D1035K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC11D1035K"><span>Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.</p> <p>2013-12-01</p> <p>The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC11C1051T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC11C1051T"><span>Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.</p> <p>2015-12-01</p> <p>Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33750','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33750"><span>Can increasing carbon dioxide cause climate change?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lindzen, Richard S.</p> <p>1997-01-01</p> <p>The realistic physical functioning of the greenhouse effect is reviewed, and the role of dynamic transport and water vapor is identified. Model errors and uncertainties are quantitatively compared with the forcing due to doubling CO2, and they are shown to be too large for reliable model evaluations of climate sensitivities. The possibility of directly measuring climate sensitivity is reviewed. A direct approach using satellite data to relate changes in globally averaged radiative flux changes at the top of the atmosphere to naturally occurring changes in global mean temperature is described. Indirect approaches to evaluating climate sensitivity involving the response to volcanic eruptions and Eocene climate change are also described. Finally, it is explained how, in principle, a climate that is insensitive to gross radiative forcing as produced by doubling CO2 might still be able to undergo major changes of the sort associated with ice ages and equable climates. PMID:11607742</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5824514-rapid-changes-range-limits-scots-pine-years-ago','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5824514-rapid-changes-range-limits-scots-pine-years-ago"><span>Rapid changes in the range limits of Scots pine 4000 years ago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gear, A.J.; Huntley, B.</p> <p></p> <p>Paleoecological data provide estimates of response rates to past climate changes. Fossil Pinus sylvestris stumps in far northern Scotland demonstrate former presence of pine trees where conventional pollen evidence of pine forests is lacking. Radiocarbon, dendrochronological, and fine temporal-resolution palynological data show that pine forest were present for about four centuries some 4,000 years ago; the forests expanded and then retreated rapidly some 70 to 80 kilometers. Despite the rapidity of this response to climate change, it occurred at rates slower by an order of magnitude than those necessary to maintain equilibrium with forecast climate changes attributed to the greenhousemore » effect.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820003763','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820003763"><span>Effects of aircraft noise on the equilibrium of airport residents: Testing and utilization of a new methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Francois, J.</p> <p>1981-01-01</p> <p>The focus of the investigation is centered around two main themes: an analysis of the effects of aircraft noise on the psychological and physiological equilibrium of airport residents; and an analysis of the sources of variability of sensitivity to noise. The methodology used is presented. Nine statistical tables are included, along with a set of conclusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25982547','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25982547"><span>Pollutant threshold concentration determination in marine ecosystems using an ecological interaction endpoint.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Changyou; Liang, Shengkang; Guo, Wenting; Yu, Hua; Xing, Wenhui</p> <p>2015-09-01</p> <p>The threshold concentrations of pollutants are determined by extrapolating single-species effect data to community-level effects. This assumes the most sensitive endpoint of the life cycle of individuals and the species sensitivity distribution from single-species toxic effect tests, thus, ignoring the ecological interactions. The uncertainties due to this extrapolation can be partially overcome using the equilibrium point of a customized ecosystem. This method incorporates ecological interactions and integrates the effects on growth, survival, and ingestion into a single effect measure, the equilibrium point excursion in the customized ecosystem, in order to describe the toxic effects on plankton. A case study showed that the threshold concentration of copper calculated with the endpoint of the equilibrium point was 10 μg L(-1), which is significantly different from the threshold calculated with a single-species endpoint. The endpoint calculated using this method provides a more relevant measure of the ecological impact than any single individual-level endpoint. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170008486&hterms=trees&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtrees','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170008486&hterms=trees&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtrees"><span>Converging Climate Sensitivities of European Forests Between Observed Radial Tree Growth and Vegetation Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Zhen; Babst, Flurin; Bellassen, Valentin; Frank, David; Launois, Thomas; Tan, Kun; Ciais, Philippe; Poulter, Benjamin</p> <p>2017-01-01</p> <p>The impacts of climate variability and trends on European forests are unevenly distributed across different bioclimatic zones and species. Extreme climate events are also becoming more frequent and it is unknown how they will affect feed backs of CO2 between forest ecosystems and the atmosphere. An improved understanding of species differences at the regional scale of the response of forest productivity to climate variation and extremes is thus important for forecasting forest dynamics. In this study, we evaluate the climate sensitivity of above ground net primary production (NPP) simulated by two dynamic global vegetation models (DGVM; ORCHIDEE and LPJ-wsl) against tree ring width (TRW) observations from about1000 sites distributed across Europe. In both the model simulations and the TRW observations, forests in northern Europe and the Alps respond positively to warmer spring and summer temperature, and their overall temperature sensitivity is larger than that of the soil-moisture-limited forests in central Europe and Mediterranean regions. Compared with TRW observations, simulated NPP from ORCHIDEE and LPJ-wsl appear to be overly sensitive to climatic factors. Our results indicate that the models lack biological processes that control time lags, such as carbohydrate storage and remobilization, that delay the effects of radial growth dynamics to climate. Our study highlights the need for re-evaluating the physiological controls on the climate sensitivity of NPP simulated by DGVMs. In particular, DGVMs could be further enhanced by a more detailed representation of carbon reserves and allocation that control year-to year variation in plant growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21839679','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21839679"><span>Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis</p> <p>2012-05-01</p> <p>Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H12D..05H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H12D..05H"><span>Characterizing the Sensitivity of Groundwater Storage to Climate variation in the Indus Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, L.; Sabo, J. L.</p> <p>2017-12-01</p> <p>Indus Basin represents an extensive groundwater aquifer facing the challenge of effective management of limited water resources. Groundwater storage is one of the most important variables of water balance, yet its sensitivity to climate change has rarely been explored. To better estimate present and future groundwater storage and its sensitivity to climate change in the Indus Basin, we analyzed groundwater recharge/discharge and their historical evolution in this basin. Several methods are applied to specify the aquifer system including: water level change and storativity estimates, gravity estimates (GRACE), flow model (MODFLOW), water budget analysis and extrapolation. In addition, all of the socioeconomic and engineering aspects are represented in the hydrological system through the change of temporal and spatial distributions of recharge and discharge (e.g., land use, crop structure, water allocation, etc.). Our results demonstrate that the direct impacts of climate change will result in unevenly distributed but increasing groundwater storage in the short term through groundwater recharge. In contrast, long term groundwater storage will decrease as a result of combined indirect and direct impacts of climate change (e.g. recharge/discharge and human activities). The sensitivity of groundwater storage to climate variation is characterized by topography, aquifer specifics and land use. Furthermore, by comparing possible outcomes of different human interventions scenarios, our study reveals human activities play an important role in affecting the sensitivity of groundwater storage to climate variation. Over all, this study presents the feasibility and value of using integrated hydrological methods to support sustainable water resource management under climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B33H0573M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B33H0573M"><span>Unexpected patterns of vegetation distribution response and climate change velocities in cold ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macias-Fauria, M.; Johnson, E. A.; Forbes, B. C.; Willis, K. J.</p> <p>2013-12-01</p> <p>In cold ecosystems such as sub-alpine forests and forest-tundra, vegetation geographical ranges are expected to expand upward/northward in a warmer world. Such moving fronts have been predicted to 1) decrease the remaining alpine area in mountain systems, increasing fragmentation and extinction risk of many alpine taxa, and 2) fundamentally modify the energy budget of newly afforested areas, enhancing further regional warming due to a reduction in albedo. The latter is particularly significant in the forest-tundra, where changes over large regions can have regional-to-global effects on climate. An integral part of the expected range shifts is their velocity. Whereas range shifts across thermal gradients can theoretically be fast in an elevation gradient relative to climate velocity (i.e. rate of climate change) due to the short distances involved, large lags are expected over the flat forest-tundra. Mountain regions have thus been identified as buffer areas where species can track climate change, in opposition to flat terrain where climate velocity is faster. Thus, much shorter time-to-equilibrium are expected for advancing upslope sub-alpine forest than for advancing northern boreal forest. We contribute to this discussion by showing two mechanisms that might largely alter the above predictions in opposite directions: 1) In mountain regions, terrain heterogeneity not only allows for slower climate velocities, but slope processes largely affect the advance of vegetation. Indeed, such mechanisms can potentially reduce the climatic signal in vegetation distribution limits (e.g. treeline), precluding it from migrating to climatically favourable areas - since these areas occur in geologically unfavourable ones. Such seemingly local control to species range shifts was found to reduce the climate-sensitive treeline areas in the sub-alpine forest of the Canadian Rocky Mountains to ~5% at a landscape scale, fundamentally altering the predictions of vegetation response to climate warming in the region (Macias-Fauria & Johnson 20013, PNAS). 2) In the low arctic tundra, un-treed to treed landscapes have sprouted in several parts of the tundra in a matter of decades, as opposed to the previously predicted response times of several centuries for boreal forest to advance to its new climate optimum (migrational lags). This takes place not through very rapid moving fronts, but through phenotypic responses of extant vegetation with highly flexible life forms, such as woody deciduous shrubs (Salix, Alnus, Betula). The resulting vegetation response creates strong energy feedbacks while at the same time potentially further reduces the speed of northward displacement of the boreal forest, that has to compete with a new treed ecosystem (Macias-Fauria et al. 2012, Nature Climate Change). In conclusion, control of rates of migration by factors other than climate in mountain systems can largely reduce the ability of vegetation to track climate change, and emergence of structurally novel ecosystems in low arctic tundra might largely alter current predictions based on climate response of vegetation, by accelerating ecosystem change and reducing migrational rates simultaneously.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24605700','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24605700"><span>Climate change and nutrition: creating a climate for nutrition security.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A</p> <p>2013-12-01</p> <p>Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC), and policies and actions formulated by the UN Framework Convention on Climate Change (UNFCCC). Improved multi-sectoral coordination and political will is required to integrate nutrition-sensitive actions into climate-resilient sustainable development efforts in the UNFCCC work and in the post 2015 development agenda. Placing human rights at the center of strategies to mitigate and adapt to the impacts of climate change and international solidarity is essential to advance sustainable development and to create a climate for nutrition security.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=212211&Lab=NHEERL&keyword=work+AND+related+AND+stress&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=212211&Lab=NHEERL&keyword=work+AND+related+AND+stress&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Soil life in reconstructed ecosystems: Initial soil food web responses after rebuilding a forest soil profile for a climate change experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Disrupting ecosystem components, while transferring and reconstructing them for experiments can produce myriad responses. Establishing the extent of these biological responses as the system approaches a new equilibrium allows us more reliably to emulate comparable native systems....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28725092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28725092"><span>Special Interests and the Media: Theory and an Application to Climate Change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shapiro, Jesse M</p> <p>2016-12-01</p> <p>A journalist reports to a voter on an unknown, policy-relevant state. Competing special interests can make claims that contradict the facts but seem credible to the voter. A reputational incentive to avoid taking sides leads the journalist to report special interests' claims to the voter. In equilibrium, the voter can remain uninformed even when the journalist is perfectly informed. Communication is improved if the journalist discloses her partisan leanings. The model provides an account of persistent public ignorance on climate change that is consistent with narrative and quantitative evidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018164','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018164"><span>Chronology for fluctuations in late Pleistocene Sierra Nevada glaciers and lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phillips, F.M.; Zreda, M.G.; Benson, L.V.; Plummer, M.A.; Elmore, D.; Sharma, Prakash</p> <p>1996-01-01</p> <p>Mountain glaciers, because of their small size, are usually close to equilibrium with the local climate and thus should provide a test of whether temperature oscillations in Greenland late in the last glacial period are part of global-scale climate variability or are restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from nearby Owens Lake shows that Sierra Nevada glacial advances were associated with Heinrich events 5, 3, 2, and 1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA11D..08W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA11D..08W"><span>Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.</p> <p>2016-12-01</p> <p>Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a larger increase in accuracy for SW cloud radiative forcing vs temperature, and from a lower confounding noise from natural variability in the cloud radiative forcing variable compared to temperature. In particular, global average temperature is much more sensitive to the climate noise of ENSO cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900048091&hterms=pollution+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dpollution%2Bclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900048091&hterms=pollution+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dpollution%2Bclimate%2Bchange"><span>Global climate change and US agriculture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.</p> <p>1990-01-01</p> <p>Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..526...42V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..526...42V"><span>Contribution of precipitation and reference evapotranspiration to drought indices under different climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vicente-Serrano, Sergio M.; Van der Schrier, Gerard; Beguería, Santiago; Azorin-Molina, Cesar; Lopez-Moreno, Juan-I.</p> <p>2015-07-01</p> <p>In this study we analyzed the sensitivity of four drought indices to precipitation (P) and reference evapotranspiration (ETo) inputs. The four drought indices are the Palmer Drought Severity Index (PDSI), the Reconnaissance Drought Index (RDI), the Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Palmer Drought Index (SPDI). The analysis uses long-term simulated series with varying averages and variances, as well as global observational data to assess the sensitivity to real climatic conditions in different regions of the World. The results show differences in the sensitivity to ETo and P among the four drought indices. The PDSI shows the lowest sensitivity to variation in their climate inputs, probably as a consequence of the standardization procedure of soil water budget anomalies. The RDI is only sensitive to the variance but not to the average of P and ETo. The SPEI shows the largest sensitivity to ETo variation, with clear geographic patterns mainly controlled by aridity. The low sensitivity of the PDSI to ETo makes the PDSI perhaps less apt as the suitable drought index in applications in which the changes in ETo are most relevant. On the contrary, the SPEI shows equal sensitivity to P and ETo. It works as a perfect supply and demand system modulated by the average and standard deviation of each series and combines the sensitivity of the series to changes in magnitude and variance. Our results are a robust assessment of the sensitivity of drought indices to P and ETo variation, and provide advice on the use of drought indices to detect climate change impacts on drought severity under a wide variety of climatic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24701387','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24701387"><span>Sensitivity of the reference evapotranspiration to key climatic variables during the growing season in the Ejina oasis northwest China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hou, Lan-Gong; Zou, Song-Bing; Xiao, Hong-Lang; Yang, Yong-Gang</p> <p>2013-01-01</p> <p>The standardized FAO56 Penman-Monteith model, which has been the most reasonable method in both humid and arid climatic conditions, provides reference evapotranspiration (ETo) estimates for planning and efficient use of agricultural water resources. And sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration. In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETo to perturbations of four climatic variables in the Ejina oasis northwest China. A 20-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration in the Ejina oasis was used in the analysis. Results have shown that daily sensitivity coefficients exhibited large fluctuations during the growing season, and shortwave radiation was the most sensitive variable in general for the Ejina oasis, followed by air temperature, wind speed and relative humidity. According to this study, the response of ETo can be preferably predicted under perturbation of air temperature, wind speed, relative humidity and shortwave radiation by their sensitivity coefficients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1436990','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1436990"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel</p> <p></p> <p>Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.2831R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.2831R"><span>Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rieger, Vanessa S.; Dietmüller, Simone; Ponater, Michael</p> <p>2017-10-01</p> <p>Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ensure the additivity of feedbacks and to yield a closed forcing-feedback-balance at top of the atmosphere. For a set of CO2-forced simulations, the climate sensitivity changes with increasing forcing. The albedo, cloud and combined water vapour and lapse rate feedback are found to be responsible for the variations in the climate sensitivity. An O3-forced simulation (induced by enhanced NOx and CO surface emissions) causes a smaller efficacy than a CO2-forced simulation with a similar magnitude of forcing. We find that the Planck, albedo and most likely the cloud feedback are responsible for this effect. Reducing the radiative forcing impedes the statistical separability of feedbacks. We additionally discuss formal inconsistencies between the common ways of comparing climate sensitivities and feedbacks. Moreover, methodical recommendations for future work are given.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H42D..08J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H42D..08J"><span>Investigating the Sensitivity of Streamflow and Water Quality to Climate Change and Urbanization in 20 U.S. Watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, T. E.; Weaver, C. P.; Butcher, J.; Parker, A.</p> <p>2011-12-01</p> <p>Watershed modeling was conducted in 20 large (15,000-60,000 km2), U.S. watersheds to address gaps in our knowledge of the sensitivity of U.S. streamflow, nutrient (N and P) and sediment loading to potential future climate change, and methodological challenges associated with integrating existing tools (e.g., climate models, watershed models) and datasets to address these questions. Climate change scenarios are based on dynamically downscaled (50x50 km2) output from four of the GCMs used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report for the period 2041-2070 archived by the North American Regional Climate Change Assessment Program (NARCCAP). To explore the potential interaction of climate change and urbanization, model simulations also include urban and residential development scenarios for each of the 20 study watersheds. Urban and residential development scenarios were acquired from EPA's national-scale Integrated Climate and Land Use Scenarios (ICLUS) project. Watershed modeling was conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil and Water Assessment Tool (SWAT) models. Here we present a summary of results for 5 of the study watersheds; the Minnesota River, the Susquehanna River, the Apalachicola-Chattahoochee-Flint, the Salt/Verde/San Pedro, and the Willamette River Basins. This set of results provide an overview of the response to climate change in different regions of the U.S., the different sensitivities of different streamflow and water quality endpoints, and illustrate a number of methodological issues including the sensitivities and uncertainties associated with use of different watershed models, approaches for downscaling climate change projections, and interaction between climate change and other forcing factors, specifically urbanization and changes in atmospheric CO2 concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B23C0559P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B23C0559P"><span>A collaborative characterization of North American grasslands and rangelands: climate, ecohydrology and carbon sink-source dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.</p> <p>2013-12-01</p> <p>Grassland and rangeland ecoregions extend across the North American continent and exhibit diversity in climate, ecosystem services, and biophysical processes. In many grasslands and rangelands, the potential for reductions in ecosystem services and for large-scale ecosystem state change may increase under future climate scenarios. Climate change projections for North America vary, however, and the way changing climate will influence specific ecoregions is largely unknown. To better understand the regional effects of climate change on grasslands and rangelands, it is important to better understand the biophysical characteristics of these systems locally, and to identify the sensitivity of these characteristics to observed climate variation. In our study, we propose to use eddy covariance, soil moisture and precipitation data to identify how the grasslands and rangelands of North America differ in their responses to climate variability through time, with specific focus on the active growing season. Our primary goal is to determine the sensitivity of ecosystem Net Primary Productivity [NPP] to variation in temperature and precipitation patterns, and classify North American grasslands and rangelands by these sensitivities in addition to more standard climate and productivity variables. Our preliminary analyses in mesic, semiarid and arid grasslands in Kansas, Colorado and New Mexico show significant (P < 0.05) differences in climate, carbon sink strength and growing season length, and suggest that patterns of seasonal productivity and precipitation sensitivity may elucidate important grassland and rangeland responses to changing climate. Using change in Gross Primary Productivity (GPP) as an indicator of the onset of photosynthesis in spring and of senescense in the fall, grassland and rangeland ecosystems in Kansas (top and bottom left panels) and New Mexico (bottom right panel) display differing patterns of activity throughout the year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1377574-lability-secondary-organic-particulate-matter','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1377574-lability-secondary-organic-particulate-matter"><span>Lability of Secondary Organic Particulate Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liu, Pengfei; Li, Yong Jie; Wang, Yan; ...</p> <p>2016-10-24</p> <p>Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM,more » no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1312907','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1312907"><span>Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.</p> <p></p> <p>Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1312907-do-land-surface-models-need-include-differential-plant-species-responses-drought-examining-model-predictions-across-mesic-xeric-gradient-europe','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1312907-do-land-surface-models-need-include-differential-plant-species-responses-drought-examining-model-predictions-across-mesic-xeric-gradient-europe"><span>Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.; ...</p> <p>2015-12-21</p> <p>Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4410583S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4410583S"><span>Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, H. A.; Rasch, P. J.; Rose, B. E. J.</p> <p>2017-10-01</p> <p>We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2 doubling impact high-latitude climate. With CO2 doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high latitudes warm, while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar midtroposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021055"><span>Interactions of Mean Climate Change and Climate Variability on Food Security Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.</p> <p>2015-01-01</p> <p>Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40064','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40064"><span>A sensitive slope: estimating landscape patterns of forest resilience in a changing climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jill F. Johnstone; Eliot J.B. McIntire; Eric J. Pedersen; Gregory King; Michael J.F. Pisaric</p> <p>2010-01-01</p> <p>Changes in Earth's environment are expected to stimulate changes in the composition and structure of ecosystems, but it is still unclear how the dynamics of these responses will play out over time. In long-lived forest systems, communities of established individuals may be resistant to respond to directional climate change, but may be highly sensitive to climate...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20438098','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20438098"><span>Basicity of pyridine and some substituted pyridines in ionic liquids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Angelini, Guido; De Maria, Paolo; Chiappe, Cinzia; Fontana, Antonella; Pierini, Marco; Siani, Gabriella</p> <p>2010-06-04</p> <p>The equilibrium constants for ion pair formation of some pyridines have been evaluated by spectrophotometric titration with trifluoroacetic acid in different ionic liquids. The basicity order is the same in ionic liquids and in water. The substituent effect on the equilibrium constant has been discussed in terms of the Hammett equation. Pyridine basicity appears to be less sensitive to the substituent effect in ionic liquids than in water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP52A..04A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP52A..04A"><span>How and when to terminate the Pleistocene ice ages?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Takahashi, K.; Raymo, M. E.; Okuno, J.; Blatter, H.</p> <p>2015-12-01</p> <p>Climate change with wax and wane of large Northern Hemisphere ice sheet occurred in the past 800 thousand years characterized by 100 thousand year cycle with a large amplitude of sawtooth pattern, following a transition from a period of 40 thousand years cycle with small amplitude of ice sheet change at about 1 million years ago. Although the importance of insolation as the ultimate driver is now appreciated, the mechanism what determines timing and strength of terminations are far from clearly understood. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. We discuss further the mechanism which determine the timing of ice age terminations by examining the role of astronomical forcing and change of atmospheric carbon dioxide contents through sensitivity experiments and comparison of several ice age cycles with different settings of astronomical forcings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5245811','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5245811"><span>Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bianchi, Daniele; Galbraith, Eric D.</p> <p>2017-01-01</p> <p>Human exploitation of marine resources is profoundly altering marine ecosystems, while climate change is expected to further impact commercially-harvested fish and other species. Although the global fishery is a highly complex system with many unpredictable aspects, the bioenergetic limits on fish production and the response of fishing effort to profit are both relatively tractable, and are sure to play important roles. Here we describe a generalized, coupled biological-economic model of the global marine fishery that represents both of these aspects in a unified framework, the BiOeconomic mArine Trophic Size-spectrum (BOATS) model. BOATS predicts fish production according to size spectra as a function of net primary production and temperature, and dynamically determines harvest spectra from the biomass density and interactive, prognostic fishing effort. Within this framework, the equilibrium fish biomass is determined by the economic forcings of catchability, ex-vessel price and cost per unit effort, while the peak harvest depends on the ecosystem parameters. Comparison of a large ensemble of idealized simulations with observational databases, focusing on historical biomass and peak harvests, allows us to narrow the range of several uncertain ecosystem parameters, rule out most parameter combinations, and select an optimal ensemble of model variants. Compared to the prior distributions, model variants with lower values of the mortality rate, trophic efficiency, and allometric constant agree better with observations. For most acceptable parameter combinations, natural mortality rates are more strongly affected by temperature than growth rates, suggesting different sensitivities of these processes to climate change. These results highlight the utility of adopting large-scale, aggregated data constraints to reduce model parameter uncertainties and to better predict the response of fisheries to human behaviour and climate change. PMID:28103280</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28103280','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28103280"><span>Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carozza, David A; Bianchi, Daniele; Galbraith, Eric D</p> <p>2017-01-01</p> <p>Human exploitation of marine resources is profoundly altering marine ecosystems, while climate change is expected to further impact commercially-harvested fish and other species. Although the global fishery is a highly complex system with many unpredictable aspects, the bioenergetic limits on fish production and the response of fishing effort to profit are both relatively tractable, and are sure to play important roles. Here we describe a generalized, coupled biological-economic model of the global marine fishery that represents both of these aspects in a unified framework, the BiOeconomic mArine Trophic Size-spectrum (BOATS) model. BOATS predicts fish production according to size spectra as a function of net primary production and temperature, and dynamically determines harvest spectra from the biomass density and interactive, prognostic fishing effort. Within this framework, the equilibrium fish biomass is determined by the economic forcings of catchability, ex-vessel price and cost per unit effort, while the peak harvest depends on the ecosystem parameters. Comparison of a large ensemble of idealized simulations with observational databases, focusing on historical biomass and peak harvests, allows us to narrow the range of several uncertain ecosystem parameters, rule out most parameter combinations, and select an optimal ensemble of model variants. Compared to the prior distributions, model variants with lower values of the mortality rate, trophic efficiency, and allometric constant agree better with observations. For most acceptable parameter combinations, natural mortality rates are more strongly affected by temperature than growth rates, suggesting different sensitivities of these processes to climate change. These results highlight the utility of adopting large-scale, aggregated data constraints to reduce model parameter uncertainties and to better predict the response of fisheries to human behaviour and climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511464K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511464K"><span>Changing Climate Drives Lagging and Accelerating Glacier Responses and Accelerating Adjustments of the Hazard Regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kargel, Jeffrey</p> <p>2013-04-01</p> <p>It is virtually universally recognized among climate and cryospheric scientists that climate and greenhouse gas abundances are closely correlated. Disagreements mainly pertain to the fundamental triggers for large fluctuations in climate and greenhouse gases during the pre-industrial era, and exactly how coupling is achieved amongst the dynamic solid Earth, the Sun, orbital and rotational dynamics, greenhouse gas abundances, and climate. Also unsettled is the climate sensitivity defined as the absolute linkage between the magnitude of climate warming/cooling and greenhouse gas increase/decrease. Important questions concern lagging responses (either greenhouse gases lagging climate fluctuations, or vice versa) and the causes of the lags. In terms of glacier and ice sheet responses to climate change, there also exist several processes causing lagging responses to climate change inputs. The simplest parameterization giving a glacier's lagging response time, τ, is that given by Jóhanneson et al. (1989), modified slightly here as τ = b/h, where b is a measure of ablation rate and h is a measure of glacier thickness. The exact definitions of τ, b, and h are subject to some interpretive license, but for a back-of-the-envelope approximation, we may take b as the magnitude of the mean ablation rate over the whole ablation area, and h as the mean glacier thickness in the glacier ablation zone. τ remains a bit ambiguous but may be considered as an exponential time scale for a decreasing response of b to a climatic step change. For some climate changes, b and h can be taken as the values prior to the climate change, but for large climatic shifts, this parameterization must be iterated. The actual response of a glacier at any time is the sum of exponentially decreasing responses from past changes. (Several aspects of glacier dynamics cause various glacier responses to differ from this idealized glacier-response theory.) Some important details relating to the retreat (or advances) of glaciers due to historic and future anthropogenic and longer term climate change relate to a changing glacier hazard regime. Climate change is connected to changes in the geographic distribution and magnitudes of potentially hazardous glacier lakes, large rock and ice avalanches, ice-dammed rivers, and surges. I shall consider these changes in hazard environment in relation to response-time theory and dynamical divergences from idealized response-time theory. Case histories of certain hazard-prone regions, including developments in fast-response-type glaciers and slow-response glaciers and ice sheets will also be discussed. In short, there will be a strong tendency of the hazard regimes of glacierized regions to shift far more rapidly in the 21st century than they did in the 20th century. The magnitude of the shifts will be more dramatic than any simple linear scaling to climate warming would suggest; this is largely because, due to lagging responses, glaciers are still trying to catch up to a new equilibrium for 20th century climate, while climate change remains a moving target that will drive accelerating glacier responses (including responses in hazard environments) in most glacierized regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187427','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187427"><span>Designing ecological climate change impact assessments to reflect key climatic drivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.</p> <p>2017-01-01</p> <p>Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28173628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28173628"><span>Designing ecological climate change impact assessments to reflect key climatic drivers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T</p> <p>2017-07-01</p> <p>Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918904Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918904Z"><span>Statistical structure of intrinsic climate variability under global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Xiuhua; Bye, John; Fraedrich, Klaus</p> <p>2017-04-01</p> <p>Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the dependence between the mean and variability is rarely discussed. We propose a new climate metric to measure the relationship between means and standard deviations of annual surface temperature computed over non-overlapping 100-year segments. This metric is analyzed based on equilibrium simulations of the Max Planck Institute-Earth System Model (MPI-ESM): the last millennium climate (800-1799), the future climate projection following the A1B scenario (2100-2199), and the 3100-year unforced control simulation. A linear relationship is globally observed in the control simulation and thus termed intrinsic climate variability, which is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes and associates fluctuating climate means with increase or decrease in intensity and occurrence of both El Niño and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate variability and climate change signals in the past and the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25679634','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25679634"><span>Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza</p> <p>2015-01-01</p> <p>A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP53B1132M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP53B1132M"><span>The importance of geomorphic and hydrologic factors in shaping the sensitivity of alpine/subalpine lake volumes to shifts in climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercer, J.; Liefert, D. T.; Shuman, B. N.; Befus, K. M.; Williams, D. G.; Kraushaar, B.</p> <p>2017-12-01</p> <p>Alpine and subalpine lakes are important components of the hydrologic cycle in mountain ecosystems. These lakes are also highly sensitive to small shifts in temperature and precipitation. Mountain lake volumes and their contributions to mountain hydrology may change in response to even minor declines in snowpack or increases in temperature. However, it is still not clear to what degree non-climatic factors, such as geomorphic setting and lake geometry, play in shaping the sensitivity of high elevation lakes to climate change. We investigated the importance of lake geometry and groundwater connectivity to mountain lakes in the Snowy Range, Wyoming using a combination of hydrophysical and hydrochemical methods, including stable water isotopes, to better understand the role these factors play in controlling lake volume. Water isotope values in open lakes were less sensitive to evaporation compared to those in closed basin lakes. Lake geometry played an important role, with wider, shallower lakes being more sensitive to evaporation over time. Groundwater contributions appear to play only a minor role in buffering volumetric changes to lakes over the growing season. These results confirm that mountain lakes are sensitive to climate factors, but also highlight a significant amount of variability in that sensitivity. This research has implications for water resource managers concerned with downstream water quantity and quality from mountain ecosystems, biologists interested in maintaining aquatic biodiversity, and paleoclimatologists interested in using lake sedimentary information to infer past climate regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..558....9V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..558....9V"><span>Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Uytven, E.; Willems, P.</p> <p>2018-03-01</p> <p>Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1338608','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1338608"><span>CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning</p> <p></p> <p>We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1338608-cgils-phase-les-intercomparison-response-subtropical-marine-low-cloud-regimes-co-quadrupling-cmip3-composite-forcing-change-large-eddy-simulation-cloud-feedbacks','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1338608-cgils-phase-les-intercomparison-response-subtropical-marine-low-cloud-regimes-co-quadrupling-cmip3-composite-forcing-change-large-eddy-simulation-cloud-feedbacks"><span>CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning; ...</p> <p>2016-10-27</p> <p>We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H31D1441N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H31D1441N"><span>Evolution of Root Zone Storage after Land Use Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nijzink, R.; Hutton, C.; Capell, R.; Pechlivanidis, I.; Hrachowitz, M.; Savenije, H.</p> <p>2015-12-01</p> <p>It has been acknowledged for some time that a coupling exists between vegetation, climate and hydrological processes (e.g. Eagleson, 1982a, Rodriguez-Iturbe,2001 ). Recently, Gao et al.(2014) demonstrated that one of the core parameters of hydrological functioning, the catchment-scale root zone water storage capacity, can be estimated based on climate data alone. It was shown that ecosystems develop root zone storage capacities that allow vegetation to bridge droughts with return periods of about 20 years. As a consequence, assuming that the evaporative demand determines the root zone storage capacity, land use changes, such as deforestation, should have an effect on the development of this capacity . In this study it was tested to which extent deforestation affects root zone storage capacities. To do so, four different hydrological models were calibrated in a moving window approach after deforestation occurred. In this way, model based estimates of the storage capacity in time were obtained. This was compared with short term estimates of root zone storage capacities based on a climate based method similar to Gao et al.(2014). In addition, the equilibrium root zone storage capacity was determined with the total time series of an unaffected control catchment. Preliminary results indicate that models tend to adjust their storage capacity to the values found by the climate based method. This is strong evidence that the root zone storage is determined by the evaporative demand of vegetation. Besides, root zones storage capacities develop towards an equilibrium value where the ecosystem is in balance, further highlighting the evolving, time dynamic character of hydrological systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646790','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646790"><span>Individualistic sensitivities and exposure to climate change explain variation in species’ distribution and abundance changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Palmer, Georgina; Hill, Jane K.; Brereton, Tom M.; Brooks, David R.; Chapman, Jason W.; Fox, Richard; Oliver, Tom H.; Thomas, Chris D.</p> <p>2015-01-01</p> <p>The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population “forcing” (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species’ responses to recent climate change may be more predictable than previously recognized. PMID:26601276</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22353368','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22353368"><span>Geobiological constraints on Earth system sensitivity to CO₂ during the Cretaceous and Cenozoic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Royer, D L; Pagani, M; Beerling, D J</p> <p>2012-07-01</p> <p>Earth system climate sensitivity (ESS) is the long-term (>10³ year) response of global surface temperature to doubled CO₂ that integrates fast and slow climate feedbacks. ESS has energy policy implications because global temperatures are not expected to decline appreciably for at least 10³ year, even if anthropogenic greenhouse gas emissions drop to zero. We report provisional ESS estimates of 3 °C or higher for some of the Cretaceous and Cenozoic based on paleo-reconstructions of CO₂ and temperature. These estimates are generally higher than climate sensitivities simulated from global climate models for the same ancient periods (approximately 3 °C). Climate models probably do not capture the full suite of positive climate feedbacks that amplify global temperatures during some globally warm periods, as well as other characteristic features of warm climates such as low meridional temperature gradients. These absent feedbacks may be related to clouds, trace greenhouse gases (GHGs), seasonal snow cover, and/or vegetation, especially in polar regions. Better characterization and quantification of these feedbacks is a priority given the current accumulation of atmospheric GHGs. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1410623-global-sensitivity-simulated-water-balance-indicators-under-future-climate-change-colorado-basin','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1410623-global-sensitivity-simulated-water-balance-indicators-under-future-climate-change-colorado-basin"><span>Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra; ...</p> <p>2017-11-20</p> <p>The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1410623-global-sensitivity-simulated-water-balance-indicators-under-future-climate-change-colorado-basin','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1410623-global-sensitivity-simulated-water-balance-indicators-under-future-climate-change-colorado-basin"><span>Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra</p> <p></p> <p>The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24357518','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24357518"><span>The influence of local spring temperature variance on temperature sensitivity of spring phenology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Tao; Ottlé, Catherine; Peng, Shushi; Janssens, Ivan A; Lin, Xin; Poulter, Benjamin; Yue, Chao; Ciais, Philippe</p> <p>2014-05-01</p> <p>The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground-based long-term (20-50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies. © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685260','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685260"><span>Sensitivity of proxies on non-linear interactions in the climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schultz, Johannes A.; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas</p> <p>2015-01-01</p> <p>Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics. PMID:26686001</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28684889','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28684889"><span>Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seidl, Rupert; Rammer, Werner</p> <p>2017-07-01</p> <p>Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown. Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances. We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination. iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime. Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170000986&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DChange%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170000986&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DChange%2Bclimate"><span>Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170000986'); toggleEditAbsImage('author_20170000986_show'); toggleEditAbsImage('author_20170000986_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170000986_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170000986_hide"></p> <p>2017-01-01</p> <p>Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC31C1132O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC31C1132O"><span>Demographic Responses To Climate Manipulations Across a Species Range</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oldfather, M. F.</p> <p>2016-12-01</p> <p>Species biogeographic responses to climate change will occur through the local extinction and establishment of populations. The overall performance of populations across a species range is shaped by the idiosyncratic sensitivities of demographic rates to the changing climate conditions. Heterogeneous topography partially decouples temperature and soil moisture presenting an opportunity to disentangle demographic sensitivity to multiple local climate variables and refine range shift predictions in response to complex climate change. Since 2013, I have monitored 16 populations of a long-lived alpine plant, Ivesia lycopodioides var. scandularis (Rosaceae) across the entirety of its altitudinal range in the arid White Mountains, CA (3350 - 4420m). I quantified microclimatic soil moisture and temperature, and the demographic rates of over 4,000 individuals. Demographic rates exhibited sensitivity to accumulated degree-days (ex. reproduction), soil volumetric water content (ex. germination), or the interaction between these climate variables (ex. survival). These observations motivated an experimental test of the relationship between demography and local climate with manipulations of increased summertime temperature and precipitation in nine populations. All demographic rates were sensitive to the climate manipulations and the magnitude of the demographic response depended on the population's location within the range. However, the modeled population growth rate was only minimally affected by the manipulations in most populations. The inverse responses of many of the demographic rates may allow populations to demographically buffer against the climate manipulations. However, in one low elevation edge population the negative effect of heating on survival overwhelmed the positive effect on germination, indicating that the capacity of populations to demographically buffer may have a limit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA042326','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA042326"><span>Wind Shear Modeling for Aircraft Hazard Definition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1977-03-01</p> <p>Fichtl, "Rough to Smooth Transition of an Equilibrium Neutral Constant Stress Layer," NASA TM X-3322, (1975). 5-36 Geiger, Rudolf , The Climate Near the...Roy Steiner , and K. G. Pratt. "Dynamic Response of Airplanes to Atmospheric Turbulence Including Flight Data on Input and Response," NASA TR R-199</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1422910','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1422910"><span>Uncertainty, Sensitivity Analysis, and Causal Identification in the Arctic using a Perturbed Parameter Ensemble of the HiLAT Climate Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark</p> <p></p> <p>Coupled climate models have a large number of input parameters that can affect output uncertainty. We conducted a sensitivity analysis of sea ice proper:es and Arc:c related climate variables to 5 parameters in the HiLAT climate model: air-ocean turbulent exchange parameter (C), conversion of water vapor to clouds (cldfrc_rhminl) and of ice crystals to snow (micro_mg_dcs), snow thermal conduc:vity (ksno), and maximum snow grain size (rsnw_mlt). We used an elementary effect (EE) approach to rank their importance for output uncertainty. EE is an extension of one-at-a-time sensitivity analyses, but it is more efficient in sampling multi-dimensional parameter spaces. We lookedmore » for emerging relationships among climate variables across the model ensemble, and used causal discovery algorithms to establish potential pathways for those relationships.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HESSD...810825R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HESSD...810825R"><span>Applying a simple water-energy balance framework to predict the climate sensitivity of streamflow over the continental United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renner, M.; Bernhofer, C.</p> <p>2011-12-01</p> <p>The prediction of climate effects on terrestrial ecosystems and water resources is one of the major research questions in hydrology. Conceptual water-energy balance models can be used to gain a first order estimate of how long-term average streamflow is changing with a change in water and energy supply. A common framework for investigation of this question is based on the Budyko hypothesis, which links hydrological response to aridity. Recently, Renner et al. (2011) introduced the CCUW hypothesis, which is based on the assumption that the total efficiency of the catchment ecosystem to use the available water and energy for actual evapotranspiration remains constant even under climate changes. Here, we confront the climate sensitivity approaches (including several versions of Budyko's approach and the CCUW) with data of more than 400 basins distributed over the continental United States. We first map an estimate of the sensitivity of streamflow to changes in precipitation using long-term average data of the period 1949-2003. This provides a hydro-climatic status of the respective basins as well as their expected proportional effect on changes in climate. Next, by splitting the data in two periods, we (i) analyse the long-term average changes in hydro-climatolgy, we (ii) use the different climate sensitivity methods to predict the change in streamflow given the observed changes in water and energy supply and (iii) we apply a quantitative approach to separate the impacts of changes in the long-term average climate from basin characteristics change on streamflow. This allows us to evaluate the observed changes in streamflow as well as to evaluate the impact of basin changes on the validity of climate sensitivity approaches. The apparent increase of streamflow in the majority of basins in the US is dominated by a climate trend towards increased humidity. It is further evident that impacts of changes in basin characteristics appear in parallel with climate changes. There are coherent spatial patterns with basins of increasing catchment efficiency being dominant in the western and central parts of the US. A hot spot of decreasing efficiency is found within the US Midwest. The impact of basin changes on the prediction is large and can be twice as the observed change signal. However, we find that both, the CCUW hypothesis and the approaches using the Budyko hypothesis, show minimal deviations between observed and predicted changes in streamflow for basins where a dominance of climatic changes and low influences of basin changes have been found. Thus, climate sensitivity methods can be regarded as valid tools if we expect climate changes only and neglect any direct anthropogenic influences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1241953-emergent-constraints-cloud-feedbacks-climate-sensitivity','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1241953-emergent-constraints-cloud-feedbacks-climate-sensitivity"><span>Emergent Constraints for Cloud Feedbacks and Climate Sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Klein, Stephen A.; Hall, Alex</p> <p>2015-10-26</p> <p>Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model errormore » that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4329S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4329S"><span>Climate Sensitivity Controls Uncertainty in Future Terrestrial Carbon Sink</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schurgers, Guy; Ahlström, Anders; Arneth, Almut; Pugh, Thomas A. M.; Smith, Benjamin</p> <p>2018-05-01</p> <p>For the 21st century, carbon cycle models typically project an increase of terrestrial carbon with increasing atmospheric CO2 and a decrease with the accompanying climate change. However, these estimates are poorly constrained, primarily because they typically rely on a limited number of emission and climate scenarios. Here we explore a wide range of combinations of CO2 rise and climate change and assess their likelihood with the climate change responses obtained from climate models. Our results demonstrate that the terrestrial carbon uptake depends critically on the climate sensitivity of individual climate models, representing a large uncertainty of model estimates. In our simulations, the terrestrial biosphere is unlikely to become a strong source of carbon with any likely combination of CO2 and climate change in the absence of land use change, but the fraction of the emissions taken up by the terrestrial biosphere will decrease drastically with higher emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7004S"><span>Adapting wheat to uncertain future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semenov, Mikhail; Stratonovitch, Pierre</p> <p>2015-04-01</p> <p>This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 RCPs, RCP4.5 and RCP8.5, were integrated with LARS-WG. Climate sensitivity indexes for temperature and precipitation were computed for all GCMs and for 21 regions in the world. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM × RCP, climate sensitivity indexes could be used to select a subset of GCMs from CMIP5 with contrasting climate sensitivity. This would allow to quantify uncertainty in impacts resulting from the CMIP5 ensemble by conducting fewer simulation experiments. As an example, an in silico design of wheat ideotype optimised for future climate scenarios in Europe was described. Two contrasting GCMs were selected for the analysis, "hot" HadGEM2-ES and "cool" GISS-E2-R-CC, along with 2 RCPs. Despite large uncertainty in climate projections, several wheat traits were identified as beneficial for the high-yielding wheat ideotypes that could be used as targets for wheat improvement by breeders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP43C2338F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP43C2338F"><span>Paleogeographic Control on Climate Sensitivity of the Cretaceous-Palaeogene-Eocene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farnsworth, A.; Lunt, D. J.; Robinson, S.; O'Brien, C. L.; Pancost, R.</p> <p>2016-12-01</p> <p>Just how sensitive are warm climates of the past (Cretaceous-Eocene-Palaeogene (CPE)) to atmospheric carbon dioxide (pCO2) concentrations. We present an ensemble [1] of 21 climate model simulations spanning the CPE at both 560ppm and 1120ppm using state of the art paleogeographies (GETECH Plc. [1]), to ascertain how sensitive warm climates of the past are to pCO2. We find depending on the time period in the CPE, a doubling of pCO2results in a 2-3°C increase in SST and a 3-5°C increase in surface air temperature. We analyse the reasons behind the varying climate sensitivity, and the geographical distribution of warming, including some of the periods with regions of cooling (figure 1) and how this may help inform future climate change. Further to this we construct a model derived CO2 curve through the CPE based on avaliable proxy-data. Figure 1 - Mean surface annual surface temperature (°C) anomaly (4 x Pre-Industrial pCO2 (1120ppm) minus 2 x Pre-Industrial pCO2(560ppm)) in the Ypresian ( 52 Myr). [1] Lunt, D. J., Farnsworth, A., Loptson, C., Foster, G. L., Markwick, P., O'Brien, C. L., Pancost, R. D., Robinson, S. A., and Wrobel, N.: Palaeogeographic controls on climate and proxy interpretation, Clim. Past Discuss., 11, 5683-5725, doi:10.5194/cpd-11-5683-2015, 2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23671087','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23671087"><span>High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eagle, Robert A; Risi, Camille; Mitchell, Jonathan L; Eiler, John M; Seibt, Ulrike; Neelin, J David; Li, Gaojun; Tripati, Aradhna K</p> <p>2013-05-28</p> <p>The East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6-7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1254901','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1254901"><span>Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.</p> <p></p> <p>The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NucFu..56e6001P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NucFu..56e6001P"><span>Equilibrium drives of the low and high field side n  =  2 plasma response and impact on global confinement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.</p> <p>2016-05-01</p> <p>The nature of the multi-modal n  =  2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (Δ {φ\\text{UL}} ) between upper and lower in-vessel coils demonstrates that different n  =  2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same Δ {φ\\text{UL}} dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the Δ {φ\\text{UL}} dependence of both the global confinement and the n  =  2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same Δ {φ\\text{UL}} dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1254901-equilibrium-drives-low-high-field-side-plasma-response-impact-global-confinement','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1254901-equilibrium-drives-low-high-field-side-plasma-response-impact-global-confinement"><span>Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; ...</p> <p>2016-03-31</p> <p>The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/24498','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/24498"><span>Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Mike D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot</p> <p>2006-01-01</p> <p>The purpose of this study was to compare the sensitivity of nlodelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/23714','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/23714"><span>Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Michael D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot</p> <p>2006-01-01</p> <p>The purpose of this study was to compare the sensitivity of modelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..11711102D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..11711102D"><span>Hydrological projections of climate change scenarios over the 3H region of China: A VIC model assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dan, Li; Ji, Jinjun; Xie, Zhenghui; Chen, Feng; Wen, Gang; Richey, Jeffrey E.</p> <p>2012-06-01</p> <p>To examine the potential sensitivity of the Huang-Huai-Hai Plain (3H) region of China to potential changes in future precipitation and temperature, a hydrological evaluation using the VIC hydrological model under different climate scenarios was carried out. The broader perspective is providing a scientific background for the adaptation in water resource management and rural development to climate change. Twelve climate scenarios were designed to account for possible variations in the future with respect to the baseline of historic climate patterns. Results from the six representative types of climate scenarios (+2°C and +5°C warming, and 0%, +15%, -15% change in precipitation) show that rising temperatures for normal precipitation and for wet scenarios (+15% precipitation) yield greater increased evapotranspiration in the south than in the north, which is confirmed by the remaining six scenarios described below. For a 15% change in precipitation, the largest increase or decrease of evapotranspiration occurs between 33 and 36°N and west of 118°E, a region where evapotranspiration is sensitive to precipitation variation and is affected by the amount of water available for evaporation. Rising temperatures can lead to a south-to-north decreasing gradient of surface runoff. The six scenarios yield a large variation of runoff in the southern end of the 3H, which means that this zone is sensitive to climate change through surface runoff change. The Jiangsu province in the southeastern part of the 3H region shows an obvious sensitivity in soil moisture to climate change. On a regional mean scale, the hydrological change induced by the increasing precipitation from 15% to 30% is more obvious than that induced by greater warming of +5°C relative to +2°C. These simulations identify key regions of sensitivity in hydrological variation to climate change in the provinces of 3H, which can be used as guides in implementing adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195385','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195385"><span>Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.</p> <p>2018-01-01</p> <p>Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4482696','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4482696"><span>A Geographic Mosaic of Climate Change Impacts on Terrestrial Vegetation: Which Areas Are Most at Risk?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ackerly, David D.; Cornwell, William K.; Weiss, Stuart B.; Flint, Lorraine E.; Flint, Alan L.</p> <p>2015-01-01</p> <p>Changes in climate projected for the 21st century are expected to trigger widespread and pervasive biotic impacts. Forecasting these changes and their implications for ecosystem services is a major research goal. Much of the research on biotic responses to climate change has focused on either projected shifts in individual species distributions or broad-scale changes in biome distributions. Here, we introduce a novel application of multinomial logistic regression as a powerful approach to model vegetation distributions and potential responses to 21st century climate change. We modeled the distribution of 22 major vegetation types, most defined by a single dominant woody species, across the San Francisco Bay Area. Predictor variables included climate and topographic variables. The novel aspect of our model is the output: a vector of relative probabilities for each vegetation type in each location within the study domain. The model was then projected for 54 future climate scenarios, spanning a representative range of temperature and precipitation projections from the CMIP3 and CMIP5 ensembles. We found that sensitivity of vegetation to climate change is highly heterogeneous across the region. Surprisingly, sensitivity to climate change is higher closer to the coast, on lower insolation, north-facing slopes and in areas of higher precipitation. While such sites may provide refugia for mesic and cool-adapted vegetation in the face of a warming climate, the model suggests they will still be highly dynamic and relatively sensitive to climate-driven vegetation transitions. The greater sensitivity of moist and low insolation sites is an unexpected outcome that challenges views on the location and stability of climate refugia. Projections provide a foundation for conservation planning and land management, and highlight the need for a greater understanding of the mechanisms and time scales of potential climate-driven vegetation transitions. PMID:26115485</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870008166','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870008166"><span>Para hydrogen equilibration in the atmospheres of the outer planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Conrath, Barney J.</p> <p>1986-01-01</p> <p>The thermodynamic behavior of the atmospheres of the Jovian planets is strongly dependent on the extent to which local thermal equilibration of the ortho and para states of molecular hydrogen is achieved. Voyager IRIS data from Jupiter imply substantial departures of the para hydrogen fraction from equilibrium in the upper troposphere at low latitudes, but with values approaching equilibrium at higher latitudes. Data from Saturn are less sensitive to the orth-para ratio, but suggest para hydrogen fractions near the equilibrium value. Above approximately the 200 K temperature level, para hydrogen conversion can enhance the efficiency of convection, resulting in a substantial increase in overturning times on all of the outer planets. Currently available data cannot definitively establish the ortho-para ratios in the atmospheres of Uranus and Neptune, but suggest values closer to local equilibrium than to the 3.1 normal ratio. Modeling of sub-millimeter wavelength measurements of these planets suggest thermal structures with frozen equilibrium lapse rates in their convective regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016547','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016547"><span>Large-Scale Features of Pliocene Climate: Results from the Pliocene Model Intercomparison Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Haywood, A. M.; Hill, D.J.; Dolan, A. M.; Otto-Bliesner, B. L.; Bragg, F.; Chan, W.-L.; Chandler, M. A.; Contoux, C.; Dowsett, H. J.; Jost, A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140016547'); toggleEditAbsImage('author_20140016547_show'); toggleEditAbsImage('author_20140016547_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140016547_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140016547_hide"></p> <p>2013-01-01</p> <p>Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied.Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-mode data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54..132B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54..132B"><span>Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.</p> <p>2018-01-01</p> <p>The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..168..137C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..168..137C"><span>Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capron, E.; Govin, A.; Feng, R.; Otto-Bliesner, B. L.; Wolff, E. W.</p> <p>2017-07-01</p> <p>The Last Interglacial (LIG, ∼129-116 thousand years ago, ka) represents an excellent case study to investigate the response of sensitive components of the Earth System and mechanisms of high-latitude amplification to a climate warmer than present-day. The Paleoclimate Model Intercomparison Project (Phase 4, hereafter referred as PMIP4) and the Coupled Model Intercomparison Project (Phase 6, hereafter referred as CMIP6) are coordinating the design of (1) a LIG Tier 1 equilibrium simulation to simulate the climate response at 127 ka, a time interval associated with a strong orbital forcing and greenhouse gas concentrations close to preindustrial levels and (2) associated Tier 2 sensitivity experiments to examine the role of the ocean, vegetation and dust feedbacks in modulating the response to this orbital forcing. Evaluating the capability of the CMIP6/PMIP4 models to reproduce the 127 ka polar and sub-polar climate will require appropriate data-based benchmarks which are currently missing. Based on a recent data synthesis that offers the first spatio-temporal representation of high-latitude (i.e. poleward of 40°N and 40°S) surface temperature evolution during the LIG, we produce a new 126-128 ka time slab, hereafter named 127 ka time slice. This 127 ka time slice represents surface temperature anomalies relative to preindustrial and is associated with quantitative estimates of the uncertainties related to relative dating and surface temperature reconstruction methods. It illustrates warmer-than-preindustrial conditions in the high-latitude regions of both hemispheres. In particular, summer sea surface temperatures (SST) in the North Atlantic region were on average 1.1 °C (with a standard error of the mean of 0.7 °C) warmer relative to preindustrial and 1.8 °C (with a standard error of the mean of 0.8 °C) in the Southern Ocean. In Antarctica, average 127 ka annual surface air temperature was 2.2 °C (with a standard error of the mean of 1.4 °C) warmer compared to preindustrial. We provide a critical evaluation of the latest LIG surface climate compilations that are available for evaluating LIG climate model experiments. We discuss in particular our new 127 ka time-slice in the context of existing LIG surface temperature time-slices. We also compare the 127 ka time slice with the ones published for the 125 and 130 ka time intervals and we discuss the potential and limits of a data-based time slice at 127 ka in the context of the upcoming coordinated modeling exercise. Finally we provide guidance on the use of the available LIG climate compilations for future model-data comparison exercises in the framework of the upcoming CMIP6/PMIP4 127 ka experiments. We do not recommend the use of LIG peak warmth-centered syntheses. Instead we promote the use of the most recent syntheses that are based on coherent chronologies between paleoclimatic records and provide spatio-temporal reconstruction of the LIG climate. In particular, we recommend using our new 127 ka data-based time slice in model-data comparison studies with a focus on the high-latitude climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMPP21C1698F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMPP21C1698F"><span>A Tale of Two Limpets (Patella vulgata and Patella stellaeformis): Evaluating a New Proxy for Late Holocene Climate Change in Coastal Areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fenger, T. L.; Surge, D. M.; Schoene, B. R.; Carter, J. G.; Milner, N.</p> <p>2006-12-01</p> <p>Shells of the European limpet, Patella vulgata, from Late Holocene archaeological deposits potentially contain critical information about climate change in coastal areas. Before deciphering climate information preserved in these zooarchaeological records, we studied the controls on oxygen isotope ratios (δ18O) in modern specimens. We tested the hypothesis that P. vulgata precipitates its shell in isotopic equilibrium with ambient water by comparing δ18OSHELL with expected values. Expected δ18OSHELL was constructed using the calcite-water fractionation equation, observed sea surface temperature (SST), and assuming δ18OWATER is +0.10‰ (VSMOW). Comparison between expected and measured δ18OSHELL revealed a +1.51±0.21‰ (VPDB) offset from expected values. Consequently, estimated SST calculated from δ18OSHELL was 6.50±2.45°C lower than observed SST. However, because the offset was relatively uniform, an adjustment can be made to account for this predictable vital effect and past SST can be reliably reconstructed. To further investigate the source of offset in this genus, we analyzed a fully marine tropical species (Patella stellaeformis) to minimize seasonal variation in environmental factors that influence δ18OSHELL. P. stellaeformis was evaluated to determine whether it has a similar offset from equilibrium as P. vulgata. We tested the hypotheses that: (1) δ18OSHELL in tropical species also displays vital effects; and (2) the offset from equilibrium (if any) would be constant and predictable. Our results indicated: (1) aragonite comprises most of P. stellaeformis' shell; and (2) δ18OSHELL is statistically indistinguishable from expected values calculated using the aragonite-water fractionation equation (Kolmogorov-Smirnov test statistic=0.61, D0.05[56, 57]=1.36) in contrast with our observations in P. vulgata. Differences in mineralogy or growth rates at different latitudes may play a role in mechanisms that influence vital effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21332497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21332497"><span>Climate change and game theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wood, Peter John</p> <p>2011-02-01</p> <p>This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely. © 2011 New York Academy of Sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1411911-increased-ocean-heat-convergence-high-latitudes-co-doubling-enhances-polar-amplified-warming-ocean-heat-polar-warming','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1411911-increased-ocean-heat-convergence-high-latitudes-co-doubling-enhances-polar-amplified-warming-ocean-heat-polar-warming"><span>Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Singh, H. A.; Rasch, P. J.; Rose, B. E. J.</p> <p></p> <p>We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at highmore » latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990113122','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990113122"><span>A Process-based, Climate-Sensitive Model to Derive Methane Emissions from Natural Wetlands: Application to 5 Wetland Sites, Sensitivity to Model Parameters and Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walter, Bernadette P.; Heimann, Martin</p> <p>1999-01-01</p> <p>Methane emissions from natural wetlands constitutes the largest methane source at present and depends highly on the climate. In order to investigate the response of methane emissions from natural wetlands to climate variations, a 1-dimensional process-based climate-sensitive model to derive methane emissions from natural wetlands is developed. In the model the processes leading to methane emission are simulated within a 1-dimensional soil column and the three different transport mechanisms diffusion, plant-mediated transport and ebullition are modeled explicitly. The model forcing consists of daily values of soil temperature, water table and Net Primary Productivity, and at permafrost sites the thaw depth is included. The methane model is tested using observational data obtained at 5 wetland sites located in North America, Europe and Central America, representing a large variety of environmental conditions. It can be shown that in most cases seasonal variations in methane emissions can be explained by the combined effect of changes in soil temperature and the position of the water table. Our results also show that a process-based approach is needed, because there is no simple relationship between these controlling factors and methane emissions that applies to a variety of wetland sites. The sensitivity of the model to the choice of key model parameters is tested and further sensitivity tests are performed to demonstrate how methane emissions from wetlands respond to climate variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP53C0634N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP53C0634N"><span>GEOMORPHIC AND HYDROLOGIC INTERACTIONS IN THE DETERMINATION OF EQUILIBRIUM SOIL DEPTH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicotina, L.; Rinaldo, A.; Tarboton, D. G.</p> <p>2009-12-01</p> <p>In this work we propose numerical studies of the interactions between hydrology and geomorphology in the formation of the actual soil depth that drives ecologic and hydrologic processes. Sediment transport and geomorphic landscape evolution processes (i.e. erosion/deposition vs. soil production) strongly influence hydrology, carbon sequestration, soil formation and stream water chemistry. The process of rock conversion into soil originates a strong hydrologic control through the formation of the soil depth that participates to hydrologic processes, influence vegetation type and patterns and actively participate in the co-evolution mechanisms that shape the landscape. The description of spatial patterns in hydrology is usually constrained by the availability of field data, especially when dealing with quantities that are not easily measurable. In these circumstances it is deemed fundamental the capability of deriving hydrologic boundary conditions from physically based approaches. Here we aim, in a general framework, at the formulation of an integrated approach for the prediction of soil depth by mean of i) soil production models and ii) geomorphic transport laws. The processes that take place in the critical zone are driven by the extension of it and have foundamental importance over short time scales as well as on geologic time scales (i.e. as biota affects climate that drives hydrology and thus contributes on shaping the landscape). Our study aims at the investigation of the relationships between soil depth, topography and runoff production, we also address the mechanisms that bring to the development of actual patterns of soil depths which at the same time influence runoff. We use a schematic representation of the hydrologic processes that relies on the description of the topography (throuh a topographic wetness index) and the spatially variable soil depths. Such a model is applied in order to investigate the development of equilibrium soil depth patterns under different hydrologic regimes and under two different hypothesis for the dynamic equilibrium (local or topographic dynamic equilibrium) of soils as well as the temporal scales associated to them. The obtained results are tested against a field survey of soil depths carried out in the Dry Creek catchment located in southern Idaho, near Boise (USA). The develped approach results to be suitable for the problem at hand as the hydrologic model results to be sensitive to the soil depths distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4326S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4326S"><span>Disentangling Aerosol Cooling and Greenhouse Warming to Reveal Earth's Climate Sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Storelvmo, Trude; Leirvik, Thomas; Phillips, Petter; Lohmann, Ulrike; Wild, Martin</p> <p>2015-04-01</p> <p>Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present a study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A44A..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A44A..03S"><span>Disentangling Greenhouse Warming and Aerosol Cooling to Reveal Earth's Transient Climate Sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Storelvmo, T.</p> <p>2015-12-01</p> <p>Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present an observation-based study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816439C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816439C"><span>Multi-millennia simulation of Greenland deglaciation from the Max-Plank-Institute Model (MPI-ISM) 2xCO2 simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cabot, Vincent; Vizcaino, Miren; Mikolajewicz, Uwe</p> <p>2016-04-01</p> <p>Long-term ice sheet and climate coupled simulations are of great interest since they assess how the Greenland Ice Sheet (GrIS) will respond to global warming and how GrIS changes will impact on the climate system. We have run the Max-Plank-Institute Earth System Model coupled with an Ice Sheet Model (SICOPOLIS) over a time period of 10500 years under two times CO2 forcing. This is a coupled atmosphere (ECHAM5T31), ocean (MPI-OM), dynamic vegetation (LPJ), and ice sheet (SICOPOLIS, 10 km horizontal resolution) model. Given the multi-millennia simulation, the horizontal spatial resolution of the atmospheric component is relatively coarse (3.75°). A time-saving technique (asynchronous coupling) is used once the global climate reaches quasi-equilibrium. In our doubling-CO2 simulation, the GrIS is expected to break up into two pieces (one ice cap in the far north on one ice sheet in the south and east) after 3000 years. During the first 500 simulation years, the GrIS climate and surface mass balance (SMB) are mainly affected by the greenhouse effect-forced climate change. After the simulated year 500, the global climate reaches quasi-equilibrium. Henceforth Greenland climate change is mainly due to ice sheet decay. GrIS albedo reduction enhances melt and acts as a powerful feedback for deglaciation. Due to increased cloudiness in the Arctic region as a result of global climate change, summer incoming shortwave radiation is substantially reduced over Greenland, reducing deglaciation rates. At the end of the simulation, Greenland becomes green with forest growing over the newly deglaciated regions. References: Helsen, M. M., van de Berg, W. J., van de Wal, R. S. W., van den Broeke, M. R., and Oerlemans, J. (2013), Coupled regional climate-ice-sheet simulation shows limited Greenland ice loss during the Eemian, Climate of the Past, 9, 1773-1788, doi: 10.5194/cp-9-1773-2013 Helsen, M. M., van de Wal, R. S. W., van den Broeke, M. R., van de Berg, W. J., and Oerlemans, J. (2015), Coupling of climate models and ice sheet models by the surface mass balance gradients: application to the Greenland Ice Sheet, The Cryosphere, 6, 255-272, doi: 10.5194/tc-6-255-2012 Robinson, A., Calov, R., and Ganopolski, A. (2011), Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial, Climate of the Past, 7, 381-396, doi: 10.5194/cp-7-381-2011 Vizcaino, M., Mikolajewicz, U., Ziemen, F., Rodehacke, C. B., Greve, R., and van den Broeke, M. R. (2015), Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300, Geophysical Research Letters, 42, doi: 10.1002/2014GL061142</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1782d0002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1782d0002A"><span>Dynamics of climate-based malaria transmission model with age-structured human population</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Addawe, Joel; Pajimola, Aprimelle Kris</p> <p>2016-10-01</p> <p>In this paper, we proposed to study the dynamics of malaria transmission with periodic birth rate of the vector and an age-structure for the human population. The human population is divided into two compartments: pre-school (0-5 years) and the rest of the human population. We showed the existence of a disease-free equilibrium point. Using published epidemiological parameters, we use numerical simulations to show potential effect of climate change in the dynamics of age-structured malaria transmission. Numerical simulations suggest that there exists an asymptotically attractive solution that is positive and periodic.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010096159','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010096159"><span>Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)</p> <p>2001-01-01</p> <p>Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24623389','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24623389"><span>Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kimberly, David A; Salice, Christopher J</p> <p>2014-07-01</p> <p>The Intergovernmental Panel on Climate Change projects that global climate change will have significant impacts on environmental conditions including potential effects on sensitivity of organisms to environmental contaminants. The objective of this study was to test the climate-induced toxicant sensitivity (CITS) hypothesis in which acclimation to altered climate parameters increases toxicant sensitivity. Adult Physa pomilia snails were acclimated to a near optimal 22 °C or a high-normal 28 °C for 28 days. After 28 days, snails from each temperature group were challenged with either low (150 μg/L) or high (300 μg/L) cadmium at each temperature (28 or 22 °C). In contrast to the CITS hypothesis, we found that acclimation temperature did not have a strong influence on cadmium sensitivity except at the high cadmium test concentration where snails acclimated to 28 °C were more cadmium tolerant. However, snails that experienced a switch in temperature for the cadmium challenge, regardless of the switch direction, were the most sensitive to cadmium. Within the snails that were switched between temperatures, snails acclimated at 28 °C and then exposed to high cadmium at 22 °C exhibited significantly greater mortality than those snails acclimated to 22 °C and then exposed to cadmium at 28 °C. Our results point to the importance of temperature variability in increasing toxicant sensitivity but also suggest a potentially complex cost of temperature acclimation. Broadly, the type of temporal stressor exposures we simulated may reduce overall plasticity in responses to stress ultimately rendering populations more vulnerable to adverse effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22988975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22988975"><span>A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edlund, Stefan; Davis, Matthew; Douglas, Judith V; Kershenbaum, Arik; Waraporn, Narongrit; Lessler, Justin; Kaufman, James H</p> <p>2012-09-18</p> <p>The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence) built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data). The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation's Spatiotemporal Epidemiological Modeller (STEM). Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS) error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166-2 national subdivisions and with monthly time sampling. The high spatial resolution possible with state-of-the-art numerical models can identify regions most likely to require intervention due to climate changes. Higher-resolution surveillance data can provide a better understanding of how climate fluctuations affect malaria incidence and improve predictions. An open-source modelling framework, such as STEM, can be a valuable tool for the scientific community and provide a collaborative platform for developing such models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26057725','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26057725"><span>An economic evaluation of solar radiation management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aaheim, Asbjørn; Romstad, Bård; Wei, Taoyuan; Kristjánsson, Jón Egill; Muri, Helene; Niemeier, Ulrike; Schmidt, Hauke</p> <p>2015-11-01</p> <p>Economic evaluations of solar radiation management (SRM) usually assume that the temperature will be stabilized, with no economic impacts of climate change, but with possible side-effects. We know from experiments with climate models, however, that unlike emission control the spatial and temporal distributions of temperature, precipitation and wind conditions will change. Hence, SRM may have economic consequences under a stabilization of global mean temperature even if side-effects other than those related to the climatic responses are disregarded. This paper addresses the economic impacts of implementing two SRM technologies; stratospheric sulfur injection and marine cloud brightening. By the use of a computable general equilibrium model, we estimate the economic impacts of climatic responses based on the results from two earth system models, MPI-ESM and NorESM. We find that under a moderately increasing greenhouse-gas concentration path, RCP4.5, the economic benefits of implementing climate engineering are small, and may become negative. Global GDP increases in three of the four experiments and all experiments include regions where the benefits from climate engineering are negative. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatCC...4..442S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatCC...4..442S"><span>A bargaining game analysis of international climate negotiations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smead, Rory; Sandler, Ronald L.; Forber, Patrick; Basl, John</p> <p>2014-06-01</p> <p>Climate negotiations under the United Nations Framework Convention on Climate Change have so far failed to achieve a robust international agreement to reduce greenhouse gas emissions. Game theory has been used to investigate possible climate negotiation solutions and strategies for accomplishing them. Negotiations have been primarily modelled as public goods games such as the Prisoner's Dilemma, though coordination games or games of conflict have also been used. Many of these models have solutions, in the form of equilibria, corresponding to possible positive outcomes--that is, agreements with the requisite emissions reduction commitments. Other work on large-scale social dilemmas suggests that it should be possible to resolve the climate problem. It therefore seems that equilibrium selection may be a barrier to successful negotiations. Here we use an N-player bargaining game in an agent-based model with learning dynamics to examine the past failures of and future prospects for a robust international climate agreement. The model suggests reasons why the desirable solutions identified in previous game-theoretic models have not yet been accomplished in practice and what mechanisms might be used to achieve these solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28727210','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28727210"><span>Thermal affinity as the dominant factor changing Mediterranean fish abundances.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Givan, Or; Edelist, Dor; Sonin, Oren; Belmaker, Jonathan</p> <p>2018-01-01</p> <p>Recent decades have seen profound changes in species abundance and community composition. In the marine environment, the major anthropogenic drivers of change comprise exploitation, invasion by nonindigenous species, and climate change. However, the magnitude of these stressors has been widely debated and we lack empirical estimates of their relative importance. In this study, we focused on Eastern Mediterranean, a region exposed to an invasion of species of Red Sea origin, extreme climate change, and high fishing pressure. We estimated changes in fish abundance using two fish trawl surveys spanning a 20-year period, and correlated these changes with estimated sensitivity of species to the different stressors. We estimated sensitivity to invasion using the trait similarity between indigenous and nonindigenous species; sensitivity to fishing using a published composite index based on the species' life-history; and sensitivity to climate change using species climatic affinity based on occurrence data. Using both a meta-analytical method and random forest analysis, we found that for shallow-water species the most important driver of population size changes is sensitivity to climate change. Species with an affinity to warm climates increased in relative abundance and species with an affinity to cold climates decreased suggesting a strong response to warming local sea temperatures over recent decades. This decrease in the abundance of cold-water-associated species at the trailing "warm" end of their distribution has been rarely documented. Despite the immense biomass of nonindigenous species and the presumed high fishing pressure, these two latter factors seem to have only a minor role in explaining abundance changes. The decline in abundance of indigenous species of cold-water origin indicates a future major restructuring of fish communities in the Mediterranean in response to the ongoing warming, with unknown impacts on ecosystem function. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC14B..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC14B..03P"><span>Heterogeneous Sensitivity of Tropical Precipitation Extremes during Growth and Mature Phases of Atmospheric Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parhi, P.; Giannini, A.; Lall, U.; Gentine, P.</p> <p>2016-12-01</p> <p>Assessing and managing risks posed by climate variability and change is challenging in the tropics, from both a socio-economic and a scientific perspective. Most of the vulnerable countries with a limited climate adaptation capability are in the tropics. However, climate projections, particularly of extreme precipitation, are highly uncertain there. The CMIP5 (Coupled Model Inter- comparison Project - Phase 5) inter-model range of extreme precipitation sensitivity to the global temperature under climate change is much larger in the tropics as compared to the extra-tropics. It ranges from nearly 0% to greater than 30% across models (O'Gorman 2012). The uncertainty is also large in historical gauge or satellite based observational records. These large uncertainties in the sensitivity of tropical precipitation extremes highlight the need to better understand how tropical precipitation extremes respond to warming. We hypothesize that one of the factors explaining the large uncertainty is due to differing sensitivities during different phases of warming. We consider the `growth' and `mature' phases of warming under climate variability case- typically associated with an El Niño event. In the remote tropics (away from tropical Pacific Ocean), the response of the precipitation extremes during the two phases can be through different pathways: i) a direct and fast changing radiative forcing in an atmospheric column, acting top-down due to the tropospheric warming, and/or ii) an indirect effect via changes in surface temperatures, acting bottom-up through surface water and energy fluxes. We also speculate that the insights gained here might be useful in interpreting the large sensitivity under climate change scenarios, since the physical mechanisms during the two warming phases under climate variability case, have some correspondence with an increasing and stabilized green house gas emission scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC42B..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC42B..03C"><span>Variability in soybean yield in Brazil stemming from the interaction of heterogeneous management and climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cohn, A.; Bragança, A.; Jeffries, G. R.</p> <p>2017-12-01</p> <p>An increasing share of global agricultural production can be found in the humid tropics. Therefore, an improved understanding of the mechanisms governing variability in the output of tropical agricultural systems is of increasing importance for food security including through climate change adaptation. Yet, the long window over which many tropical crops can be sown, the diversity of crop varieties and management practices combine to challenge inference into climate risk to cropping output in analyses of tropical crop-climate sensitivity employing administrative data. In this paper, we leverage a newly developed spatially explicit dataset of soybean yields in Brazil to combat this problem. The dataset was built by training a model of remotely-sensed vegetation index data and land cover classification data using a rich in situ dataset of soybean yield and management variables collected over the period 2006 to 2016. The dataset contains soybean yields by plant date, cropping frequency, and maturity group for each 5km grid cell in Brazil. We model variation in these yields using an approach enabling the estimation of the influence of management factors on the sensitivity of soybean yields to variability in: cumulative solar radiation, extreme degree days, growing degree days, flooding rain in the harvest period, and dry spells in the rainy season. We find strong variation in climate sensitivity by management class. Planting date and maturity group each explained a great deal more variation in yield sensitivity than did cropping frequency. Brazil collects comparatively fine spatial resolution yield data. But, our attempt to replicate our results using administrative soy yield data revealed substantially lesser crop-climate sensitivity; suggesting that previous analyses employing administrative data may have underestimated climate risk to tropical soy production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JESS..121.1105D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JESS..121.1105D"><span>Glacier fluctuation using Satellite Data in Beas basin, 1972-2006, Himachal Pradesh, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dutta, Shruti; Ramanathan, A. L.; Linda, Anurag</p> <p>2012-10-01</p> <p>Glaciers are widely recognized as sensitive indicators for regional climate change. Very few studies have been conducted to investigate the long term deglaciation status in the Himalaya. In the present study, glaciers in the Beas basin, Himachal Pradesh, India were mapped by interpretation of various glacio-morphological features using the Landsat and IRS images. The mapping of 224 glaciers during the period 1972-2006 reveals that the glacier cover reduced from 419 to 371 km2, witnessing approximately 11.6% deglaciation in the Beas basin. A higher rate of retreat of the glaciers was observed during 1989-2006 as compared to the retreat during 1972-1989. Also, the loss has been more prominent in the glaciers with an areal extent of 2-5 km2. The number of glaciers increased from 224 to 236 due to fragmentation in this period. The average elevation of the ablation zone basin showed an upward shift from 3898 m (1972) to 4171 m (2006) which may be a consequence of a shift in Equilibrium Line Altitude (ELA) reflecting imbalance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.A53B1156M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.A53B1156M"><span>Investigation of the Factors Influencing Volatile Chemical Fate During Steady-state Accretion on Wet-growing Hail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michael, R. A.; Stuart, A. L.</p> <p>2007-12-01</p> <p>Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..890C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..890C"><span>Deep oceans may acidify faster than anticipated due to global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Chen-Tung Arthur; Lui, Hon-Kit; Hsieh, Chia-Han; Yanagi, Tetsuo; Kosugi, Naohiro; Ishii, Masao; Gong, Gwo-Ching</p> <p>2017-12-01</p> <p>Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1-4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air-sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP21B1902J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP21B1902J"><span>The Once and Future North Atlantic: How the Mid-Pliocene Warm Period Can Increase Stakeholder Preparedness in a Warming World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobs, P.; de Mutsert, K.</p> <p>2013-12-01</p> <p>Paleoclimatic reconstructions, particularly from periods that may serve as an analog to the present and future greenhouse-driven warming, are increasingly being used to validate climate models as well as to provide constraints on broad impacts such as global temperature and sea level change. However, paleoclimatic data remains under-utilized in decision-making processes by stakeholders, who typically rely on scenarios produced by computer models or naive extrapolation of present trends. We hope to increase the information available to stakeholders by incorporating paleoclimatic data from the mid-Pliocene Warm Period (mPWP, ~3ma) into a fisheries model of the North Atlantic. North Atlantic fisheries are economically important and are expected to be sensitive to climatic change. State of the art climate models remain unable to realistically simulate the North Atlantic, both over the observational record as well as during times in the geologic past such as the mPWP. Given that the mPWP shares many of the same boundary conditions as those likely to be seen in the near future, we seek to answer the question 'What if the climate of the future looks more like the climate of the past?' relative to what state of the art computer models currently project. To that end we have created a suite of future North Atlantic Ocean scenarios using output from the CMIP3 and CMIP5 modeling experiments, as well as the PRISM group's Mid-Pliocene ocean reconstruction. We use these scenarios to drive an ecosystem-based fisheries model using the Ecopath with Ecosim (EwE) software to identify differences between the scenarios as the North Atlantic Ocean changes through time. Additionally, we examine the spatial component of these differences by using the Ecospace module of EwE. Whereas the Ecosim realizations are intended to capture the dynamic response to changing oceanographic parameters (SST, SSS, DO) over time, the Ecospace experiments are intended to explore the impact of different equilibrium conditions on fish community longer-term spatial redistribution. By making use not only of climate model output but also paleoclimatic data from a period that closely resembles our near future, stakeholders can make decisions informed by a more robust range of potential outcomes as greenhouse emissions warm the planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5541541','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5541541"><span>Synchronous population dynamics in California butterflies explained by climatic forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shapiro, Arthur M.</p> <p>2017-01-01</p> <p>A long-standing challenge for population biology has been to understand why some species are characterized by populations that fluctuate in size independently, while populations of other species fluctuate synchronously across space. The effects of climatic variation and dispersal have been invoked to explain synchronous population dynamics, however an understanding of the relative influence of these drivers in natural populations is lacking. Here we compare support for dispersal- versus climate-driven models of interspecific variation in synchrony using 27 years of observations of 65 butterfly species at 10 sites spanning 2750 m of elevation in Northern California. The degree of spatial synchrony exhibited by each butterfly species was used as a response in a unique approach that allowed us to investigate whether interspecific variation in response to climate or dispersal propensity was most predictive of interspecific variation in synchrony. We report that variation in sensitivity to climate explained 50% of interspecific variation in synchrony, whereas variation in dispersal propensity explained 23%. Sensitivity to the El Niño Southern Oscillation, a primary driver of regional climate, was the best predictor of synchrony. Combining sensitivity to climate and dispersal propensity into a single model did not greatly increase model performance, confirming the primacy of climatic sensitivity for driving spatial synchrony in butterflies. Finally, we uncovered a relationship between spatial synchrony and population decline that is consistent with theory, but small in magnitude, which suggests that the degree to which populations fluctuate in synchrony is of limited use for understanding the ongoing decline of the Northern California butterfly fauna. PMID:28791146</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24945154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24945154"><span>Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A</p> <p>2014-01-01</p> <p>In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-03-01/pdf/2013-04807.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-03-01/pdf/2013-04807.pdf"><span>78 FR 13874 - Watershed Modeling To Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-03-01</p> <p>... an improved understanding of methodological challenges associated with integrating existing tools and... methodological challenges associated with integrating existing tools (e.g., climate models, downscaling... sensitivity to methodological choices such as different approaches for downscaling global climate change...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12j4012K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12j4012K"><span>Influence of watershed topographic and socio-economic attributes on the climate sensitivity of global river water quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, Afed U.; Jiang, Jiping; Wang, Peng; Zheng, Yi</p> <p>2017-10-01</p> <p>Surface waters exhibit regionalization due to various climatic conditions and anthropogenic activities. Here we assess the impact of topographic and socio-economic factors on the climate sensitivity of surface water quality, estimated using an elasticity approach (climate elasticity of water quality (CEWQ)), and identify potential risks of instability in different regions and climatic conditions. Large global datasets were used for 12 main water quality parameters from 43 water quality monitoring stations located at large major rivers. The results demonstrated that precipitation elasticity shows higher sensitivity to topographic and socio-economic determinants as compared to temperature elasticity. In tropical climate class (A), gross domestic product (GDP) played an important role in stabilizing the CEWQ. In temperate climate class (C), GDP played the same role in stability, while the runoff coefficient, slope, and population density fuelled the risk of instability. The results implied that watersheds with lower runoff coefficient, thick population density, over fertilization and manure application face a higher risk of instability. We discuss the socio-economic and topographic factors that cause instability of CEWQ parameters and conclude with some suggestions for watershed managers to bring sustainability in freshwater bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28924606','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28924606"><span>Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H</p> <p>2017-09-01</p> <p>An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp..102G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp..102G"><span>Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of late Cenozoic ice ages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galbraith, Eric; de Lavergne, Casimir</p> <p>2018-03-01</p> <p>Over the past few million years, the Earth descended from the relatively warm and stable climate of the Pliocene into the increasingly dramatic ice age cycles of the Pleistocene. The influences of orbital forcing and atmospheric CO2 on land-based ice sheets have long been considered as the key drivers of the ice ages, but less attention has been paid to their direct influences on the circulation of the deep ocean. Here we provide a broad view on the influences of CO2, orbital forcing and ice sheet size according to a comprehensive Earth system model, by integrating the model to equilibrium under 40 different combinations of the three external forcings. We find that the volume contribution of Antarctic (AABW) vs. North Atlantic (NADW) waters to the deep ocean varies widely among the simulations, and can be predicted from the difference between the surface densities at AABW and NADW deep water formation sites. Minima of both the AABW-NADW density difference and the AABW volume occur near interglacial CO2 (270-400 ppm). At low CO2, abundant formation and northward export of sea ice in the Southern Ocean contributes to very salty and dense Antarctic waters that dominate the global deep ocean. Furthermore, when the Earth is cold, low obliquity (i.e. a reduced tilt of Earth's rotational axis) enhances the Antarctic water volume by expanding sea ice further. At high CO2, AABW dominance is favoured due to relatively warm subpolar North Atlantic waters, with more dependence on precession. Meanwhile, a large Laurentide ice sheet steers atmospheric circulation as to strengthen the Atlantic Meridional Overturning Circulation, but cools the Southern Ocean remotely, enhancing Antarctic sea ice export and leading to very salty and expanded AABW. Together, these results suggest that a `sweet spot' of low CO2, low obliquity and relatively small ice sheets would have poised the AMOC for interruption, promoting Dansgaard-Oeschger-type abrupt change. The deep ocean temperature and salinity simulated under the most representative `glacial' state agree very well with reconstructions from the Last Glacial Maximum (LGM), which lends confidence in the ability of the model to estimate large-scale changes in water-mass geometry. The model also simulates a circulation-driven increase of preformed radiocarbon reservoir age, which could explain most of the reconstructed LGM-preindustrial ocean radiocarbon change. However, the radiocarbon content of the simulated glacial ocean is still higher than reconstructed for the LGM, and the model does not reproduce reconstructed LGM deep ocean oxygen depletions. These ventilation-related disagreements probably reflect unresolved physical aspects of ventilation and ecosystem processes, but also raise the possibility that the LGM ocean circulation was not in equilibrium. Finally, the simulations display an increased sensitivity of both surface air temperature and AABW volume to orbital forcing under low CO2. We suggest that this enhanced orbital sensitivity contributed to the development of the ice age cycles by amplifying the responses of climate and the carbon cycle to orbital forcing, following a gradual downward trend of CO2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B54C..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B54C..01K"><span>Climatological temperature senstivity of soil carbon turnover: Observations, simple scaling models, and ESMs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koven, C. D.; Hugelius, G.; Lawrence, D. M.; Wieder, W. R.</p> <p>2016-12-01</p> <p>The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models. To assess the likely long-term response of soils to climate change, spatial gradients in soil carbon turnover times can identify broad-scale and long-term controls on the rate of carbon cycling as a function of climate and other factors. Here we show that the climatological temperature control on carbon turnover in the top meter of global soils is more sensitive in cold climates than in warm ones. We present a simplified model that explains the high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Critically, current Earth system models (ESMs) fail to capture this pattern, however it emerges from an ESM that explicitly resolves vertical gradients in soil climate and turnover. The weak tropical temperature sensitivity emerges from a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong future carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28733860','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28733860"><span>Climate threats on growth of rear-edge European beech peripheral populations in Spain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dorado-Liñán, I; Akhmetzyanov, L; Menzel, A</p> <p>2017-12-01</p> <p>European beech (Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJBm...61.2097D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJBm...61.2097D"><span>Climate threats on growth of rear-edge European beech peripheral populations in Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dorado-Liñán, I.; Akhmetzyanov, L.; Menzel, A.</p> <p>2017-12-01</p> <p>European beech ( Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=48191&Lab=NHEERL&keyword=economic+AND+stability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=48191&Lab=NHEERL&keyword=economic+AND+stability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CLIMATE CHANGE IN THAILAND AND ITS POTENTIAL IMPACT ON RICE YIELD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Because of the uncertainties surrounding prediction of climate change, it is common to employ climate scenarios to estimate its impacts on a system. Climate scenarios are sets of climatic perturbations used with models to test system sensitivity to projected changes. In this stud...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790012522','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790012522"><span>Incorporation of surface albedo-temperature feedback in a one-dimensional radiative-connective climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, W. C.; Stone, P. H.</p> <p>1979-01-01</p> <p>The feedback between ice snow albedo and temperature is included in a one dimensional radiative convective climate model. The effect of this feedback on sensitivity to changes in solar constant is studied for the current values of the solar constant and cloud characteristics. The ice snow albedo feedback amplifies global climate sensitivity by 33% and 50%, respectively, for assumptions of constant cloud altitude and constant cloud temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H34B..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H34B..06S"><span>An Integrated Hydrologic-Economic Modeling Tool for Evaluating Water Management Responses to Climate Change in the Boise River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.</p> <p>2009-12-01</p> <p>A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions incorporating crop distribution, evapotranspiration rates, irrigation efficiencies, and crop prices are used to develop water demand-price functions for agricultural water users. Demand functions for municipal and industrial water users are also developed. Recent applications of the integrated model have focused on the hydrologic and economic impacts of demand management alternatives, including large-scale canal lining conservation measures, and market-based water trading between canal diverters and groundwater pumpers. A supply management alternative being investigated involves revising reservoir rule curves to compensate for climate change impacts on timing of reservoir filling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22883730','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22883730"><span>[Study on sensitivity of climatic factors on influenza A (H1N1) based on classification and regression tree and wavelet analysis].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiao, Hong; Lin, Xiao-ling; Dai, Xiang-yu; Gao, Li-dong; Chen, Bi-yun; Zhang, Xi-xing; Zhu, Pei-juan; Tian, Huai-yu</p> <p>2012-05-01</p> <p>To analyze the periodicity of pandemic influenza A (H1N1) in Changsha in year 2009 and its correlation with sensitive climatic factors. The information of 5439 cases of influenza A (H1N1) and synchronous meteorological data during the period between May 22th and December 31st in year 2009 (223 days in total) in Changsha city were collected. The classification and regression tree (CART) was employed to screen the sensitive climatic factors on influenza A (H1N1); meanwhile, cross wavelet transform and wavelet coherence analysis were applied to assess and compare the periodicity of the pandemic disease and its association with the time-lag phase features of the sensitive climatic factors. The results of CART indicated that the daily minimum temperature and daily absolute humidity were the sensitive climatic factors for the popularity of influenza A (H1N1) in Changsha. The peak of the incidence of influenza A (H1N1) was in the period between October and December (Median (M) = 44.00 cases per day), simultaneously the daily minimum temperature (M = 13°C) and daily absolute humidity (M = 6.69 g/m(3)) were relatively low. The results of wavelet analysis demonstrated that a period of 16 days was found in the epidemic threshold in Changsha, while the daily minimum temperature and daily absolute humidity were the relatively sensitive climatic factors. The number of daily reported patients was statistically relevant to the daily minimum temperature and daily absolute humidity. The frequency domain was mostly in the period of (16 ± 2) days. In the initial stage of the disease (from August 9th and September 8th), a 6-day lag was found between the incidence and the daily minimum temperature. In the peak period of the disease, the daily minimum temperature and daily absolute humidity were negatively relevant to the incidence of the disease. In the pandemic period, the incidence of influenza A (H1N1) showed periodic features; and the sensitive climatic factors did have a "driving effect" on the incidence of influenza A (H1N1).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197394','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197394"><span>Adaptive population divergence and directional gene flow across steep elevational gradients in a climate‐sensitive mammal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waterhouse, Matthew D.; Erb, Liesl P.; Beever, Erik; Russello, Michael A.</p> <p>2018-01-01</p> <p>The American pika is a thermally sensitive, alpine lagomorph species. Recent climate-associated population extirpations and genetic signatures of reduced population sizes range-wide indicate the viability of this species is sensitive to climate change. To test for potential adaptive responses to climate stress, we sampled pikas along two elevational gradients (each ~470 to 1640 m) and employed three outlier detection methods, BAYESCAN, LFMM, and BAYPASS, to scan for genotype-environment associations in samples genotyped at 30,763 SNP loci. We resolved 173 loci with robust evidence of natural selection detected by either two independent analyses or replicated in both transects. A BLASTN search of these outlier loci revealed several genes associated with metabolic function and oxygen transport, indicating natural selection from thermal stress and hypoxia. We also found evidence of directional gene flow primarily downslope from large high-elevation populations and reduced gene flow at outlier loci, a pattern suggesting potential impediments to the upward elevational movement of adaptive alleles in response to contemporary climate change. Finally, we documented evidence of reduced genetic diversity associated the south-facing transect and an increase in corticosterone stress levels associated with inbreeding. This study suggests the American pika is already undergoing climate-associated natural selection at multiple genomic regions. Further analysis is needed to determine if the rate of climate adaptation in the American pika and other thermally sensitive species will be able to keep pace with rapidly changing climate conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4575741','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4575741"><span>Central Sensitization and Perceived Indoor Climate among Workers with Chronic Upper-Limb Pain: Cross-Sectional Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jakobsen, Markus D.; Jay, Kenneth; Persson, Roger; Andersen, Lars L.</p> <p>2015-01-01</p> <p>Monitoring of indoor climate is an essential part of occupational health and safety. While questionnaires are commonly used for surveillance, not all workers may perceive an identical indoor climate similarly. The aim of this study was to evaluate perceived indoor climate among workers with chronic pain compared with pain-free colleagues and to determine the influence of central sensitization on this perception. Eighty-two male slaughterhouse workers, 49 with upper-limb chronic pain and 33 pain-free controls, replied to a questionnaire with 13 items of indoor climate complaints. Pressure pain threshold (PPT) was measured in muscles of the arm, shoulder, and lower leg. Cross-sectional associations were determined using general linear models controlled for age, smoking, and job position. The number of indoor climate complaints was twice as high among workers with chronic pain compared with pain-free controls (1.8 [95% CI: 1.3–2.3] versus 0.9 [0.4–1.5], resp.). PPT of the nonpainful leg muscle was negatively associated with the number of complaints. Workers with chronic pain reported more indoor climate complaints than pain-free controls despite similar actual indoor climate. Previous studies that did not account for musculoskeletal pain in questionnaire assessment of indoor climate may be biased. Central sensitization likely explains the present findings. PMID:26425368</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC22C..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC22C..08M"><span>The MIT IGSM-CAM framework for uncertainty studies in global and regional climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.</p> <p>2011-12-01</p> <p>The MIT Integrated Global System Model (IGSM) version 2.3 is an intermediate complexity fully coupled earth system model that allows simulation of critical feedbacks among its various components, including the atmosphere, ocean, land, urban processes and human activities. A fundamental feature of the IGSM2.3 is the ability to modify its climate parameters: climate sensitivity, net aerosol forcing and ocean heat uptake rate. As such, the IGSM2.3 provides an efficient tool for generating probabilistic distribution functions of climate parameters using optimal fingerprint diagnostics. A limitation of the IGSM2.3 is its zonal-mean atmosphere model that does not permit regional climate studies. For this reason, the MIT IGSM2.3 was linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) version 3 and new modules were developed and implemented in CAM in order to modify its climate sensitivity and net aerosol forcing to match that of the IGSM. The IGSM-CAM provides an efficient and innovative framework to study regional climate change where climate parameters can be modified to span the range of uncertainty and various emissions scenarios can be tested. This paper presents results from the cloud radiative adjustment method used to modify CAM's climate sensitivity. We also show results from 21st century simulations based on two emissions scenarios (a median "business as usual" scenario where no policy is implemented after 2012 and a policy scenario where greenhouse-gas are stabilized at 660 ppm CO2-equivalent concentrations by 2100) and three sets of climate parameters. The three values of climate sensitivity chosen are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the observed 20th century climate change with simulations by the IGSM with a wide range of climate parameters values. The associated aerosol forcing values were chosen to ensure a good agreement of the simulations with the observed climate change over the 20th century. Because the concentrations of sulfate aerosols significantly decrease over the 21st century in both emissions scenarios, climate changes obtained in these six simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC21A0852S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC21A0852S"><span>Glacier Sensitivity Across the Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sagredo, E. A.; Lowell, T. V.; Rupper, S.</p> <p>2010-12-01</p> <p>Most of the research on causes driving former glacial fluctuations, and the climatic signals involved, has focused on the comparisons of sequences of glacial events in separate regions of the world and their temporal-phasing relationship with terrestrial or extraterrestrial climate-forcing mechanisms. Nevertheless the climatic signals related with these glacial advances are still under debate. This impossibility to resolve these questions satisfactorily have been generally attributed to the insufficiently precise chronologies and unevenly distributed records. However, behind these ideas lies the implicit assumption that glaciers situated in different climate regimes respond uniformly to similar climatic perturbations. This ongoing research is aimed to explore the climate-glacier relationship at regional scale, through the analysis of the spatial variability of glacier sensitivity to climatic change. By applying a Surface Energy Mass Balance model (SEMB) developed by Rupper and Roe (2008) to glaciers located in different climatic regimes, we analyzed the spatial variability of mass balance changes under different baseline conditions and under different scenarios of climatic change. For the sake of this research, the analysis is being focused on the Andes, which in its 9,000 km along the western margin of South America offers an unparalleled climatic diversity. Preliminary results suggest that above some threshold of climate change (a hypothetical uniform perturbation), all the glaciers across the Andes would respond in the “same direction” (advancing or retreating). Below that threshold, glaciers located in some climatic regimes may be insensitive to the specific perturbation. On the other hand, glaciers located in different climatic regimes may exhibit a “different magnitude” of change under a uniform climatic perturbation. Thus, glaciers located in the dry Andes of Perú, Chile and Argentina are more sensitive to precipitation changes than variations in temperatures, while glaciers located in the wet Patagonian Andes seem to exhibit an opposite behavior. In an intermediate position are those glaciers located in the Tropical Andes, and Tierra del Fuego, which even though still more sensitive to temperature, they can be affected by temperature changes as well. With this regional approach towards the comprehension of climate-glacial dynamic interaction, we expect to contribute to the understanding the causes and mechanism driving former episodes of glacial fluctuations, and in turn, to the development of future scenarios of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6709836-reconstruction-mass-balance-variations-franz-josef-glacier-new-zealand','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6709836-reconstruction-mass-balance-variations-franz-josef-glacier-new-zealand"><span>Reconstruction of mass balance variations for Franz Josef Glacier, New Zealand, 1913 to 1989</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Woo, Mingko Woo; Fitzharris, B.B.</p> <p>1992-11-01</p> <p>A model of mass balance is constructed for the Franz Josef Glacier on the west coast of New Zealand. It uses daily data from a nearby, but short-record climate station. The model is extended back to 1913 by creating hybrid climate data from a long-record, but more distant, climate station. Its monthly data provide long-term temperature and precipitation trends, and daily fluctuations are simulated using a stochastic approach that is tuned to the characteristics of the short-record station. The glacier model provides estimates of equilibrium-line altitudes which are in reasonable agreement with those observed, and variations of cumulative mass balancemore » that correspond with patterns of advance and retreat of the glacier terminus.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESS...18.3693S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESS...18.3693S"><span>A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safeeq, M.; Grant, G. E.; Lewis, S. L.; Kramer, M. G.; Staab, B.</p> <p>2014-09-01</p> <p>Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most regional-scale assessments of climate change impacts on streamflow use downscaled temperature and precipitation projections from general circulation models (GCMs) coupled with large-scale hydrologic models. Here we develop and apply an analytical hydrogeologic framework for characterizing summer streamflow sensitivity to a change in the timing and magnitude of recharge in a spatially explicit fashion. In particular, we incorporate the role of deep groundwater, which large-scale hydrologic models generally fail to capture, into streamflow sensitivity assessments. We validate our analytical streamflow sensitivities against two empirical measures of sensitivity derived using historical observations of temperature, precipitation, and streamflow from 217 watersheds. In general, empirically and analytically derived streamflow sensitivity values correspond. Although the selected watersheds cover a range of hydrologic regimes (e.g., rain-dominated, mixture of rain and snow, and snow-dominated), sensitivity validation was primarily driven by the snow-dominated watersheds, which are subjected to a wider range of change in recharge timing and magnitude as a result of increased temperature. Overall, two patterns emerge from this analysis: first, areas with high streamflow sensitivity also have higher summer streamflows as compared to low-sensitivity areas. Second, the level of sensitivity and spatial extent of highly sensitive areas diminishes over time as the summer progresses. Results of this analysis point to a robust, practical, and scalable approach that can help assess risk at the landscape scale, complement the downscaling approach, be applied to any climate scenario of interest, and provide a framework to assist land and water managers in adapting to an uncertain and potentially challenging future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9633F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9633F"><span>Climatic implications of glacial evolution in the Tröllaskagi peninsula (northern Iceland) since the Little Ice Age maximum. The cases of the Gljúfurárjökull and Tungnahryggsjökull glaciers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernández-Fernández, José M.; Andrés, Nuria; Brynjólfsson, Skafti; Sæmundsson, Þorsteinn; Palacios, David</p> <p>2017-04-01</p> <p>The Tröllaskagi peninsula is located in northern Iceland, between meridians 19°30'W and 18°10'W, jutting out into the North Atlantic to latitude 66°12'N and joining the central highlands to the south. About 150 glaciers located on the Tröllaskagi peninsula reached their Holocene maximum extent during the Little Ice Age (LIA) maximum at the end of the 19th century. The sudden warming at the turn of the 20th century triggered a continuous retreat from the LIA maximum positions, interrupted by a reversal trend during the mid-seventies and eighties in response to a brief period of climate cooling. The aim of this paper is to analyze the relationships between glacial and climatic evolution since the LIA maximum. For this reason, we selected three small debris-free glaciers: Gljúfurárjökull, and western and eastern Tungnahryggsjökull, at the headwalls of Skíðadalur and Kolbeinsdalur, as their absence of debris cover makes them sensitive to climatic fluctuations. To achieve this purpose, we used ArcGIS to map the glacier extent during the LIA maximum and several dates over four georeferenced aerial photos (1946, 1985, 1994 and 2000), as well as a 2005 SPOT satellite image. Then, the Equilibrium-Line Altitude (ELA) was calculated by applying the Accumulation Area Ratio (AAR) and Area Altitude Balance Ratio (AABR) approaches. Climatological data series from the nearby weather stations were used in order to analyze climate development and to estimate precipitation at the ELA with different numerical models. Our results show considerable changes of the three debris-free glaciers and demonstrates their sensitivity to climatic fluctuations. As a result of the abrupt climatic transition of the 20th century, the following warm 25-year period and the warming started in the late eighties, the three glaciers retreated by ca. 990-1330 m from the LIA maximum to 2005, supported by a 40-metre ELA rise and a reduction of their area and volume of 25% and 33% on average, respectively. The 1.5 °C warming recorded at the city of Akureyri from late 19th century to 2005 does not agree with the 0.3 °C value obtained from the ELA rise and lapse rate. On the contrary it demonstrates that other factors - for example, precipitation and wind - have been decisive in the evolution of the glaciers. All the models applied suggest a precipitation increase of 700 mm water equivalent at the mean ELA since the LIA maximum, and higher and lower values depending on warm and cold periods respectively. The overall increase in precipitation is compatible with the increase in the surface temperature of the North Atlantic and a possible negative-to-positive shift in North Atlantic Oscillation (NAO) mode. However, the link between winter accumulation and prevailing wind directions recorded at nearby weather stations remains unclear. Research funded by Deglaciation project (CGL2015-65813-R), Government of Spain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.974a2035M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.974a2035M"><span>Mathematical model for HIV spreads control program with ART treatment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maimunah; Aldila, Dipo</p> <p>2018-03-01</p> <p>In this article, using a deterministic approach in a seven-dimensional nonlinear ordinary differential equation, we establish a mathematical model for the spread of HIV with an ART treatment intervention. In a simplified model, when no ART treatment is implemented, disease-free and the endemic equilibrium points were established analytically along with the basic reproduction number. The local stability criteria of disease-free equilibrium and the existing criteria of endemic equilibrium were analyzed. We find that endemic equilibrium exists when the basic reproduction number is larger than one. From the sensitivity analysis of the basic reproduction number of the complete model (with ART treatment), we find that the increased number of infected humans who follow the ART treatment program will reduce the basic reproduction number. We simulate this result also in the numerical experiment of the autonomous system to show how treatment intervention impacts the reduction of the infected population during the intervention time period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27665444','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27665444"><span>Sensitivity of health sector indicators' response to climate change in Ghana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dovie, Delali B K; Dzodzomenyo, Mawuli; Ogunseitan, Oladele A</p> <p>2017-01-01</p> <p>There is accumulating evidence that the emerging burden of global climate change threatens the fidelity of routine indicators for disease detection and management of risks to public health. The threat partially reflects the conservative character of the health sector and the reluctance to adopt new indicators, despite the growing awareness that existing environmental health indicators were developed to respond to risks that may no longer be relevant, and are too simplistic to also act as indicators for newer global-scale risk factors. This study sought to understand the scope of existing health indicators, while aiming to discover new indicators for building resilience against three climate sensitive diseases (cerebro spinal meningitis, malaria and diarrhea). Therefore, new potential indicators derived from human and biophysical origins were developed to complement existing health indicators, thereby creating climate-sensitive battery of robust composite indices of resilience in health planning. Using Ghana's health sector as a case study systematic international literature review, national expert consultation, and focus group outcomes yielded insights into the relevance, sensitivity and impacts of 45 indicators in 11 categories in responding to climate change. In total, 65% of the indicators were sensitive to health impacts of climate change; 24% acted directly; 31% synergistically; and 45% indirectly, with indicator relevance strongly associated with type of health response. Epidemiological indicators (e.g. morbidity) and health demographic indicators (e.g. population structure) require adjustments with external indicators (e.g. biophysical, policy) to be resilient to climate change. Therefore, selective integration of social and ecological indicators with existing public health indicators improves the fidelity of the health sector to adopt more robust planning of interdependent systems to build resilience. The study highlights growing uncertainties in translating research into protective policies when new indicators associated with non-health sources are needed to complement existing health indicators that are expected to respond to climate change. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873155','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873155"><span>Hydrocarbon sensors and materials therefor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Pham, Ai Quoc; Glass, Robert S.</p> <p>2000-01-01</p> <p>An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28676721','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28676721"><span>Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lo, Li; Chang, Sheng-Pu; Wei, Kuo-Yen; Lee, Shih-Yu; Ou, Tsong-Hua; Chen, Yi-Chi; Chuang, Chih-Kai; Mii, Horng-Sheng; Burr, George S; Chen, Min-Te; Tung, Ying-Hung; Tsai, Meng-Chieh; Hodell, David A; Shen, Chuan-Chou</p> <p>2017-07-04</p> <p>The paleoclimatic sensitivity to atmospheric greenhouse gases (GHGs) has recently been suggested to be nonlinear, however a GHG threshold value associated with deglaciation remains uncertain. Here, we combine a new sea surface temperature record spanning the last 360,000 years from the southern Western Pacific Warm Pool with records from five previous studies in the equatorial Pacific to document the nonlinear relationship between climatic sensitivity and GHG levels over the past four glacial/interglacial cycles. The sensitivity of the responses to GHG concentrations rises dramatically by a factor of 2-4 at atmospheric CO 2 levels of >220 ppm. Our results suggest that the equatorial Pacific acts as a nonlinear amplifier that allows global climate to transition from deglacial to full interglacial conditions once atmospheric CO 2 levels reach threshold levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26598689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26598689"><span>Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gulick, Sean P S; Jaeger, John M; Mix, Alan C; Asahi, Hirofumi; Bahlburg, Heinrich; Belanger, Christina L; Berbel, Glaucia B B; Childress, Laurel; Cowan, Ellen; Drab, Laureen; Forwick, Matthias; Fukumura, Akemi; Ge, Shulan; Gupta, Shyam; Kioka, Arata; Konno, Susumu; LeVay, Leah J; März, Christian; Matsuzaki, Kenji M; McClymont, Erin L; Moy, Chris; Müller, Juliane; Nakamura, Atsunori; Ojima, Takanori; Ribeiro, Fabiana R; Ridgway, Kenneth D; Romero, Oscar E; Slagle, Angela L; Stoner, Joseph S; St-Onge, Guillaume; Suto, Itsuki; Walczak, Maureen D; Worthington, Lindsay L; Bailey, Ian; Enkelmann, Eva; Reece, Robert; Swartz, John M</p> <p>2015-12-08</p> <p>Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼ 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼ 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26309047','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26309047"><span>Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sánchez, Joan-Pau; McInnes, Colin R</p> <p>2015-01-01</p> <p>Within the context of anthropogenic climate change, but also considering the Earth's natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth's radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth's climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4550401','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4550401"><span>Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sánchez, Joan-Pau; McInnes, Colin R.</p> <p>2015-01-01</p> <p>Within the context of anthropogenic climate change, but also considering the Earth’s natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth’s radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth’s climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes. PMID:26309047</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4679047','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4679047"><span>Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jaeger, John M.; Mix, Alan C.; Asahi, Hirofumi; Bahlburg, Heinrich; Belanger, Christina L.; Berbel, Glaucia B. B.; Childress, Laurel; Cowan, Ellen; Drab, Laureen; Forwick, Matthias; Fukumura, Akemi; Ge, Shulan; Gupta, Shyam; Konno, Susumu; LeVay, Leah J.; März, Christian; McClymont, Erin L.; Moy, Chris; Müller, Juliane; Nakamura, Atsunori; Ojima, Takanori; Ribeiro, Fabiana R.; Ridgway, Kenneth D.; Romero, Oscar E.; Slagle, Angela L.; Stoner, Joseph S.; St-Onge, Guillaume; Suto, Itsuki; Walczak, Maureen D.; Worthington, Lindsay L.; Bailey, Ian; Enkelmann, Eva; Reece, Robert; Swartz, John M.</p> <p>2015-01-01</p> <p>Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8–1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale. PMID:26598689</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24776719','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24776719"><span>Climate services to improve public health.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jancloes, Michel; Thomson, Madeleine; Costa, María Mánez; Hewitt, Chris; Corvalan, Carlos; Dinku, Tufa; Lowe, Rachel; Hayden, Mary</p> <p>2014-04-25</p> <p>A high level expert panel discussed how climate and health services could best collaborate to improve public health. This was on the agenda of the recent Third International Climate Services Conference, held in Montego Bay, Jamaica, 4-6 December 2013. Issues and challenges concerning a demand led approach to serve the health sector needs, were identified and analysed. Important recommendations emerged to ensure that innovative collaboration between climate and health services assist decision-making processes and the management of climate-sensitive health risk. Key recommendations included: a move from risk assessment towards risk management; the engagement of the public health community with both the climate sector and development sectors, whose decisions impact on health, particularly the most vulnerable; to increase operational research on the use of policy-relevant climate information to manage climate- sensitive health risks; and to develop in-country capacities to improve local knowledge (including collection of epidemiological, climate and socio-economic data), along with institutional interaction with policy makers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..395S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..395S"><span>Forest disturbances under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.</p> <p>2017-06-01</p> <p>Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5572641','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5572641"><span>Forest disturbances under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.</p> <p>2017-01-01</p> <p>Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests. PMID:28861124</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13E..05P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13E..05P"><span>Interactions between tectonics, silicate weathering, and climate explored with carbon cycle modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Penman, D. E.; Caves Rugenstein, J. K.; Ibarra, D. E.; Winnick, M.</p> <p>2017-12-01</p> <p>Earth's long-term carbon cycle is thought to benefit from a stabilizing negative feedback in the form of CO2 consumption by the chemical weathering of silicate minerals: during periods of elevated atmospheric pCO2, chemical weathering rates increase, thus consuming more atmospheric CO2 and cooling global climate, whereas during periods of low pCO2, weathering rates decrease, allowing buildup of CO2 in the atmosphere and warming. At equilibrium, CO2 consumption by silicate weathering balances volcanic CO2 degassing at a specific atmospheric pCO2 dictated by the relationship between total silicate weathering rate and pCO2: Earth's "weathering curve." We use numerical carbon cycle modeling to demonstrate that the shape and slope of the weathering curve is crucial to understanding proposed tectonic controls on pCO2 and climate. First, the shape of the weathering curve dictates the equilibrium response of the carbon cycle to changes in the rate of background volcanic/solid Earth CO2 degassing, which has been suggested to vary significantly with plate tectonic reorganizations over geologic timescales. Second, we demonstrate that if tectonic events can significantly change the weathering curve, this can act as an effective driver of pCO2 and climate on tectonic timescales by changing the atmospheric pCO2 at which silicate weathering balances a constant volcanic/solid Earth degassing rate. Finally, we review the complex interplay of environmental factors that affect modern weathering rates in the field and highlight how the resulting uncertainty surrounding the shape of Earth's weathering curve significantly hampers our ability to quantitatively predict the response of pCO2 and climate to tectonic forcing, and thus represents a substantial knowledge gap in Earth science. We conclude with strategies for closing this knowledge gap by using precise paleoclimatic reconstructions of intervals with known tectonic forcings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912909P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912909P"><span>Climatic vs. tectonic control on glacial relief</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prasicek, Günther; Herman, Frederic; Robl, Jörg</p> <p>2017-04-01</p> <p>The limiting effect of a climatically-induced glacial buzz-saw on the height of mountain ranges has been extensively discussed in the geosciences. The buzz-saw concept assumes that solely climate controls the amount of topography present above the equilibrium line altitude (ELA), while the rock uplift rate plays no relevant role. This view is supported by analyses of hypsometric patterns in orogens worldwide. Furthermore, numerical landscape evolution models show that glacial erosion modifies the hypsometry and reduces the overall relief of mountain landscapes. However, such models often do not incorporate tectonic uplift and can only simulate glacial erosion over a limited amount of time, typically one or several glacial cycles. Constraints on glacial end-member landscapes from analytical, time-independent models are widely lacking. Here we present a steady-state solution for a glacier equilibrium profile in an active orogen modified from the mathematical conception presented by Headley et al. (2012). Our approach combines a glacial erosion law with the shallow ice approximation, specifically the formulations of ice sliding and deformation velocities and ice flux, to calculate ice surface and bed topography from prescribed specific mass balance and rock uplift rate. This solution allows the application of both linear and non-linear erosion laws and can be iteratively fitted to a predefined gradient of specific mass balance with elevation. We tested the influence of climate (fixed rock uplift rate, different ELAs) and tectonic forcing (fixed ELA, different rock uplift rates) on steady-state relief. Our results show that, similar to fluvial orogens, both climate and rock uplift rate exert a strong influence on glacial relief and that the relation among rock uplift rate and relief is governed by the glacial erosion law. This finding can provide an explanation for the presence of high relief in high latitudes. Headley, R.M., Roe, G., Hallet, B., 2012. Glacier longitudinal profiles in regions of active uplift. Earth and Planetary Science Letters, 317-318, 354-362.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/52194','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/52194"><span>Assessing the sensitivity of avian species abundance to land cover and climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jaymi J. LeBrun; Wayne E. Thogmartin; Frank R. Thompson; William D. Dijak; Joshua J. Millspaugh</p> <p>2016-01-01</p> <p>Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13A2062N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13A2062N"><span>Floating like a cork: The importance of glacial isostasy in the deglaciation progress in Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Norddahl, H.; Ingolfsson, O.</p> <p>2016-12-01</p> <p>Being positioned on top of a hotspot and between two spreading ocean plates explains rheological structure of Iceland and the properties of a 30-35 km thick lithosphere, possibly with high proportion of partial melt, on top of a low viscous asthenosphere below Iceland, in the middle of the North Atlantic Ocean. Rapid variations in glacier loading on the Iceland crust have been proved to generate more or less an instantaneous depression or uplift of the crust and, thus, uphold both temporal and spacial glacio-isostatic equilibrium. Formation of a shoreline requires at least temporal equilibrium between glacial isostasy and eustasy. Eminent raised shorelines - found throughout Iceland - were formed during two separate but consecutive culmination of climatically induced glacier re-advance and consequent transgression of relative sea-level in Younger Dryas and Preboreal times (12.0 and 11.3 kcal BP). A Marine Limit shoreline in W Iceland was formed at 14.7 kcal BP, subsequent to a collapse-like retreat of the marine based part of the Icelandic Ice Sheet (IIS) and just prior to the onset of the Bølling warming, i.e. during a period of anticipated rapid isostatic uplift. A temporary glacio-isostatic equilibrium at that time is best explained by changes in the mode of deglaciation generating dynamic changes within the Ice Sheet itself, changes that resulted in reduced rates of mass-loss and glacio-isostatic uplift to such a degree that a temporal quasi-equilibrium between eustatic rise and isostatic uplift was established. Formation of well-developed raised shoreline is generally regarded as a deglaciation proxy signaling large ice volume changes. Formation of the ML shoreline in W Iceland during the rapid climatic improvement at the beginning of the Bølling/Allerød Interstadial underlines the importance of, beside the geological data, also to take into consideration physical properties of both the lithosphere and asthenosphere in each location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5821336','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5821336"><span>High intra-specific variation in avian body condition responses to climate limits generalisation across species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>van der Jeugd, Henk P.; van de Pol, Martijn</p> <p>2018-01-01</p> <p>It is generally assumed that populations of a species will have similar responses to climate change, and thereby that a single value of sensitivity will reflect species-specific responses. However, this assumption is rarely systematically tested. High intraspecific variation will have consequences for identifying species- or population-level traits that can predict differences in sensitivity, which in turn can affect the reliability of projections of future climate change impacts. We investigate avian body condition responses to changes in six climatic variables and how consistent and generalisable these responses are both across and within species, using 21 years of data from 46 common passerines across 80 Dutch sites. We show that body condition decreases with warmer spring/early summer temperatures and increases with higher humidity, but other climate variables do not show consistent trends across species. In the future, body condition is projected to decrease by 2050, mainly driven by temperature effects. Strikingly, populations of the same species generally responded just as differently as populations of different species implying that a single species signal is not meaningful. Consequently, species-level traits did not explain interspecific differences in sensitivities, rather population-level traits were more important. The absence of a clear species signal in body condition responses implies that generalisation and identifying species for conservation prioritisation is problematic, which sharply contrasts conclusions of previous studies on the climate sensitivity of phenology. PMID:29466460</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39635','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39635"><span>Climate sensitivity of thinleaf alder growth on an interior Alaska floodplain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Dana R. Nossov; Roger W. Ruess; Teresa N. Hollingsworth</p> <p>2010-01-01</p> <p>This study examined the climate sensitivity of the growth of riparian Alnus incana ssp. tenuifolia (thinleaf alder), a keystone nitrogen-fixer, on the Tanana River floodplain of interior Alaska. We investigated correlations between alder radial growth and inter-annual variation in monthly meteorology and hydrology, spatial...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7267695','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7267695"><span>Liquid chromatographic determination of water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fortier, N.E.; Fritz, J.S.</p> <p>1990-11-13</p> <p>A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..496..446L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..496..446L"><span>Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xia; Zhang, Tonghua; Meng, Xinzhu; Zhang, Tongqian</p> <p>2018-04-01</p> <p>In this paper, we propose a predator-prey model with herd behavior and prey-taxis. Then, we analyze the stability and bifurcation of the positive equilibrium of the model subject to the homogeneous Neumann boundary condition. By using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of stable nonconstant solutions bifurcating from the positive equilibrium. Our results show that prey-taxis can yield the occurrence of spatial patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867604','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867604"><span>Liquid chromatographic determination of water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fortier, Nancy E.; Fritz, James S.</p> <p>1990-11-13</p> <p>A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29547592','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29547592"><span>Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Banwell, Nicola; Rutherford, Shannon; Mackey, Brendan; Street, Roger; Chu, Cordia</p> <p>2018-03-16</p> <p>Disasters and climate change have significant implications for human health worldwide. Both climate change and the climate-sensitive hazards that result in disasters, are discussed in terms of direct and indirect impacts on health. A growing body of literature has argued for the need to link disaster risk reduction and climate change adaptation. However, there is limited articulation of the commonalities between these health impacts. Understanding the shared risk pathways is an important starting point for developing joint strategies for adapting to, and reducing, health risks. Therefore, this article discusses the common aspects of direct and indirect health risks of climate change and climate-sensitive disasters. Based on this discussion a theoretical framework is presented for understanding these commonalities. As such, this article hopes to extend the current health impact frameworks and provide a platform for further research exploring opportunities for linked adaptation and risk reduction strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5877083','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5877083"><span>Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Banwell, Nicola; Rutherford, Shannon; Mackey, Brendan; Street, Roger; Chu, Cordia</p> <p>2018-01-01</p> <p>Disasters and climate change have significant implications for human health worldwide. Both climate change and the climate-sensitive hazards that result in disasters, are discussed in terms of direct and indirect impacts on health. A growing body of literature has argued for the need to link disaster risk reduction and climate change adaptation. However, there is limited articulation of the commonalities between these health impacts. Understanding the shared risk pathways is an important starting point for developing joint strategies for adapting to, and reducing, health risks. Therefore, this article discusses the common aspects of direct and indirect health risks of climate change and climate-sensitive disasters. Based on this discussion a theoretical framework is presented for understanding these commonalities. As such, this article hopes to extend the current health impact frameworks and provide a platform for further research exploring opportunities for linked adaptation and risk reduction strategies. PMID:29547592</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28952024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28952024"><span>Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing</p> <p>2017-12-01</p> <p>It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of the impacts of climate change and the need to incorporate extreme conditions in managing water environment and developing climate change adaptation and mitigation strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A51C0131M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A51C0131M"><span>Modification of cirrus clouds to reduce global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchell, D. L.</p> <p>2009-12-01</p> <p>Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths < 3.6 cover 13% of the globe and have a net warming effect on climate, with the coldest cirrus having the strongest warming effect. Roughly 2/3 of predicted global warming is due to the feedback effect of water vapor and clouds from an initial greenhouse gas forcing, and a recent study indicates water vapor and clouds in the upper troposphere (UT) have the greatest impact on climate sensitivity (the equilibrium response of global-mean surface temperature to a CO2 doubling). Thus altering UT water vapor and cirrus may be a good strategy for climate engineering. Cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous freezing nucleation dominates). Weather modification research has developed ice nucleating substances that are extremely effective at these cold temperatures, are non-toxic and are relatively inexpensive. The seeding material could be released in both clear and cloudy conditions to build up a background concentration of efficient ice nuclei so that non-contrail cirrus will experience these nuclei and grow larger ice crystals. Flight corridors are denser in the high- and mid-latitudes where global warming is more severe. A risk with any geoengineering experiment is that it could affect climate in unforeseen ways, causing more harm than good. Since seeding aerosol residence times in the troposphere are 1-2 weeks, the climate might return back to its normal state within a few months after stopping the geoengineering. A drawback to this approach is that it would not stop ocean acidification. It may not have many of the draw-backs that stratospheric injection of sulfur species has, such as ozone destruction, decreased solar radiation possibly altering the hydrological cycle with more frequent droughts, greater expense, the creation of a white sky and less solar energy. In addition, modeling studies indicate it would take at least 3 years for the climate system to return to “normal” upon termination of stratospheric geoengineering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23389447','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23389447"><span>Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cox, Peter M; Pearson, David; Booth, Ben B; Friedlingstein, Pierre; Huntingford, Chris; Jones, Chris D; Luke, Catherine M</p> <p>2013-02-21</p> <p>The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28857057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28857057"><span>Health-sector responses to address the impacts of climate change in Nepal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dhimal, Meghnath; Dhimal, Mandira Lamichhane; Pote-Shrestha, Raja Ram; Groneberg, David A; Kuch, Ulrich</p> <p>2017-09-01</p> <p>Nepal is highly vulnerable to global climate change, despite its negligible emission of global greenhouse gases. The vulnerable climate-sensitive sectors identified in Nepal's National Adaptation Programme of Action (NAPA) to Climate Change 2010 include agriculture, forestry, water, energy, public health, urbanization and infrastructure, and climate-induced disasters. In addition, analyses carried out as part of the NAPA process have indicated that the impacts of climate change in Nepal are not gender neutral. Vector-borne diseases, diarrhoeal diseases including cholera, malnutrition, cardiorespiratory diseases, psychological stress, and health effects and injuries related to extreme weather are major climate-sensitive health risks in the country. In recent years, research has been done in Nepal in order to understand the changing epidemiology of diseases and generate evidence for decision-making. Based on this evidence, the experience of programme managers, and regular surveillance data, the Government of Nepal has mainstreamed issues related to climate change in development plans, policies and programmes. In particular, the Government of Nepal has addressed climate-sensitive health risks. In addition to the NAPA report, several policy documents have been launched, including the Climate Change Policy 2011; the Nepal Health Sector Programme - Implementation Plan II (NHSP-IP 2) 2010-2015; the National Health Policy 2014; the National Health Sector Strategy 2015-2020 and its implementation plan (2016-2021); and the Health National Adaptation Plan (H-NAP): climate change and health strategy and action plan (2016-2020). However, the translation of these policies and plans of action into tangible action on the ground is still in its infancy in Nepal. Despite this, the health sector's response to addressing the impact of climate change in Nepal may be taken as a good example for other low- and middle-income countries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17924388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17924388"><span>Economic impacts of bio-refinery and resource cascading systems: an applied general equilibrium analysis for Poland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ignaciuk, Adriana M; Sanders, Johan</p> <p>2007-12-01</p> <p>Due to more stringent energy and climate policies, it is expected that many traditional chemicals will be replaced by their biomass-based substitutes, bio-chemicals. These innovations, however, can influence land allocation since the demand for land dedicated to specific crops might increase. Moreover, it can have an influence on traditional agricultural production. In this paper, we use an applied general equilibrium framework, in which we include two different bio-refinery processes and incorporate so-called cascading mechanisms. The bio-refinery processes use grass, as one of the major inputs, to produce bio-nylon and propane-diol (1,3PDO) to substitute currently produced fossil fuel-based nylon and ethane-diol. We examine the impact of specific climate policies on the bioelectricity share in total electricity production, land allocation, and production quantities and prices of selected commodities. The novel technologies become competitive, with an increased stringency of climate policies. This switch, however, does not induce a higher share of bioelectricity. The cascade does stimulate the production of bioelectricity, but it induces more of a shift in inputs in the bioelectricity sector (from biomass to the cascaded bio-nylon and 1, 3PDO) than an increase in production level of bioelectricity. We conclude that dedicated biomass crops will remain the main option for bioelectricity production: the contribution of the biomass systems remains limited. Moreover, the bioelectricity sector looses a competition for land for biomass production with bio-refineries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B33B0470K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B33B0470K"><span>Regression tree modeling of forest NPP using site conditions and climate variables across eastern USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwon, Y.</p> <p>2013-12-01</p> <p>As evidence of global warming continue to increase, being able to predict forest response to climate changes, such as expected rise of temperature and precipitation, will be vital for maintaining the sustainability and productivity of forests. To map forest species redistribution by climate change scenario has been successful, however, most species redistribution maps lack mechanistic understanding to explain why trees grow under the novel conditions of chaining climate. Distributional map is only capable of predicting under the equilibrium assumption that the communities would exist following a prolonged period under the new climate. In this context, forest NPP as a surrogate for growth rate, the most important facet that determines stand dynamics, can lead to valid prediction on the transition stage to new vegetation-climate equilibrium as it represents changes in structure of forest reflecting site conditions and climate factors. The objective of this study is to develop forest growth map using regression tree analysis by extracting large-scale non-linear structures from both field-based FIA and remotely sensed MODIS data set. The major issue addressed in this approach is non-linear spatial patterns of forest attributes. Forest inventory data showed complex spatial patterns that reflect environmental states and processes that originate at different spatial scales. At broad scales, non-linear spatial trends in forest attributes and mixture of continuous and discrete types of environmental variables make traditional statistical (multivariate regression) and geostatistical (kriging) models inefficient. It calls into question some traditional underlying assumptions of spatial trends that uncritically accepted in forest data. To solve the controversy surrounding the suitability of forest data, regression tree analysis are performed using Software See5 and Cubist. Four publicly available data sets were obtained: First, field-based Forest Inventory and Analysis (USDA, Forest Service) data set for the 31 eastern most United States. Second, 8-day composite of MODIS Land Cover, FPAR, LAI and GPP/NPP data were obtained from Jan 2001 to Dec 2004 (total 182 composite) and each product were filtered by pixel-level quality assurance data to select best quality pixels. Third, 30-year averaged climate data were collected from National Oceanic and Atmospheric Administration (NOAA) and five climatic variables were obtained: Monthly temperature, precipitation, annual heating and cooling days, and annual frost-free days. Forth, topographic data were obtained from digital elevation model (1km by 1km). This research will provide a better understanding of large-scale forest responses to environmental factors that will be beneficial for the development of important forest management applications.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>