NASA Astrophysics Data System (ADS)
Wu, Lingling; Druschel, Greg; Findlay, Alyssa; Beard, Brian L.; Johnson, Clark M.
2012-07-01
The Fe isotope fractionation factors among aqueous ferrous iron (
Saini, Komal; Singh, Parminder; Singh, Prabhjot; Bajwa, B S; Sahoo, B K
2017-02-01
A survey was conducted to estimate equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab state, India. Pin hole based twin cup dosimeters and direct progeny sensor techniques have been utilized for estimation of concentration level of radon, thoron and their progenies. Equilibrium factor calculated from radon, thoron and their progenies concentration has been found to vary from 0.15 to 0.80 and 0.008 to 0.101 with an average value of 0.44 and 0.036 for radon and thoron respectively. Equilibrium factor for radon has found to be highest in winter season and lowest in summer season whereas for thoron highest value is observed in winter and rainy season and lowest in summer. Unattached fractions of radon and thoron have been found to vary from 0.022 to 0.205 and 0.013 to 0.212 with an average value of 0.099 and 0.071 respectively. Unattached fractions have found to be highest in winter season and lowest in rainy and summer season. Copyright © 2016 Elsevier Ltd. All rights reserved.
Behaviours and influence factors of radon progeny in three typical dwellings.
Li, Hongzhao; Zhang, Lei; Guo, Qiuju
2011-03-01
To investigate the behaviours and influence factors of radon progeny in rural dwellings in China, site measurements of radon equilibrium factor, unattached fraction and some important indoor environmental factors, such as aerosol concentration, aerosol size distribution and ventilation rate, were carried out in three typical types of dwellings, and a theoretical study was also performed synchronously. Good consistency between the results of site measurements and the theoretical calculation on equilibrium factor F and unattached fraction f(p) was achieved. Lower equilibrium factor and higher unattached fraction in mud or cave houses were found compared to those in brick houses, and it was suggested by the theoretical study that the smaller aerosol size distribution in mud or cave houses might be the main reason for what was observed. The dose conversion factor in the mud houses and the cave houses may be higher than that in brick houses.
NASA Astrophysics Data System (ADS)
Qi, Y.; Liu, X.; Kang, J.; He, L.
2017-12-01
Equilibrium isotope fractionation factors are essential for using stable isotope data to study many geosciences processes such as planetary differentiation and mantle evolution. The mass-dependent equilibrium isotope fractionation is primarily controlled by the difference in bond energies triggered by the isotope substitution. With the recent advances in computational capabilities, first-principles calculation has become a reliable tool to investigate equilibrium isotopic fractionations, greatly improving our understanding of the factors controlling isotope fractionations. It is important to understand the isotope fractionation between melts and minerals because magmatism is critical for creating and shaping the Earth. However, because isotope fractionation between melts and minerals is small at high temperature, it is difficult to experimentally calibrate such small signature. Due to the disordered and dynamic character of melts, calculations of equilibrium isotope fractionation of melts are more challenging than that for gaseous molecules or minerals. Here, we apply first-principles molecular dynamics method to calculate equilibrium Ca, Mg, Si, and O isotope fractionations between silicate melts and minerals. Our results show that equilibrium Mg, Si, and O isotope fractionations between olivine and pure Mg2SiO4 melt are close to zero at high temperature (e.g. δ26Mgmelt-ol = 0.03 ± 0.04‰, δ30Simelt-ol = -0.06 ± 0.07‰, δ18Omelt-ol = 0.07‰ ± 0.08 at 1500 K). Equilibrium Ca, Mg, Si, and O isotope fractionations between diopside and basalt melt (67% CaMgSi2O6 + 33% CaAl2Si2O8) are also negligible at high temperature (e.g. δ44/40Camelt-cpx = -0.01 ± 0.02‰, δ26Mgmelt-cpx = -0.05 ± 0.14‰, δ30Simelt-cpx = 0.04 ± 0.04‰, δ18Omelt-cpx = 0.03 ± 0.07‰ at 1500 K). These results are consistent with the observations in natural samples that there is no significant Ca, Mg, Si, and O isotope fractionation during mantle partial melting, demonstrating the reliability of our methods. Thus, our results can be used to understand stable isotope fractionation during partial melting of mantle peridotite or fractional crystallization during magmatic differentiation. The first-principles molecular dynamics method is a promising tool to obtain equilibrium fractionation of more isotope systems for complicate liquids.
Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics
NASA Astrophysics Data System (ADS)
Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Ferlat, Guillaume; Vuilleumier, Rodolphe; Mauri, Francesco
2014-06-01
The equilibrium fractionation factor between two phases is of importance for the understanding of many planetary and environmental processes. Although thermodynamic equilibrium can be achieved between minerals at high temperature, many natural processes involve reactions between liquids or aqueous solutions and solids. For crystals, the fractionation factor α can be theoretically determined using a statistical thermodynamic approach based on the vibrational properties of the phases. These calculations are mostly performed in the harmonic approximation, using empirical or ab-initio force fields. In the case of aperiodic and dynamic systems such as liquids or solutions, similar calculations can be done using finite-size molecular clusters or snapshots obtained from molecular dynamics (MD) runs. It is however difficult to assess the effect of these approximate models on the isotopic fractionation properties. In this work we present a systematic study of the calculation of the D/H and 18O/16O equilibrium fractionation factors in water for the liquid/vapour and ice/vapour phases using several levels of theory within the simulations. Namely, we use a thermodynamic integration approach based on Path Integral MD calculations (PIMD) and an empirical potential model of water. Compared with standard MD, PIMD takes into account quantum effects in the thermodynamic modeling of systems and the exact fractionation factor for a given potential can be obtained. We compare these exact results with those of modeling strategies usually used, which involve the mapping of the quantum system on its harmonic counterpart. The results show the importance of including configurational disorder for the estimation of isotope fractionation in liquid phases. In addition, the convergence of the fractionation factor as a function of parameters such as the size of the simulated system and multiple isotope substitution is analyzed, showing that isotope fractionation is essentially a local effect in the investigated system.
Bullen, Thomas D.; White, Arthur F.; Childs, Cyril W.
2003-01-01
In a recent contribution [1], Johnson et al. reported the equilibrium isotope fractionation factor between dissolved Fe(II) and Fe(III) in aqueous solutions at pH=2.5 and 5.5. They suggest that because the iron isotope fractionation observed in their experiments spans virtually the entire range observed in sedimentary rocks, Fe(II)–Fe(III) aqueous speciation may play a major role in determining iron isotope variations in nature where Fe(II) and Fe(III) can become physically separated. They discounted earlier conclusions by us and others [2] ; [3] that significant equilibrium fractionation between specific coexisting Fe(II)- or Fe(III)-aqueous complexes (e.g., between aqueous Fe(II)(OH)x(aq)and Fe(II)(aq) ion) is capable of producing iron isotope contrasts that can be preserved in nature. This is an important contribution not only because the authors recognize the importance of abiotic equilibrium iron isotope fractionation in nature in contrast to previous assertions [4], but also because it will help to focus discussion on the development and evaluation of experimental approaches that can reveal abiotic fractionation mechanisms. However, in this Comment we propose that the experiments presented in this paper cannot be interpreted as straightforwardly as Johnson et al. contend. In particular, we show that in one of their critical experiments attainment of either isotope mass balance or equilibrium was not demonstrated, and thus the results of that experiment cannot be used to calculate an Fe(II)–Fe(III) equilibrium fractionation factor.
NASA Astrophysics Data System (ADS)
Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme
2018-02-01
The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at investigating the kinetics of equilibration of boron environment and isotopic composition are therefore required to refine our understanding of boron coprecipitation in carbonates and thus the theory behind the use of boron isotopes as an ocean pH proxy.
Calculation of individual isotope equilibrium constants for implementation in geochemical models
Thorstenson, Donald C.; Parkhurst, David L.
2002-01-01
Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.
NASA Astrophysics Data System (ADS)
Zhang, S.; Zhang, H.; Huang, F.
2017-12-01
Equilibrium fractionation factors of stable isotopes between metal and silicate melt are of vital importance for understanding the isotope variations within meteorites and planetary bodies. The V isotope composition (reported as δ51V = 1000 × [(51V/50Vsample/51V/50VAA)-1] ) of the bulk silicate Earth (BSE) has been estimated as δ51V = -0.7 ± 0.2‰ (2sd) [1], which is significantly heavier than most meteorites by 1‰ [2]. Such isotopic offset may provide insights for the core formation and core-mantle segregation. Therefore, it is important to understand V isotope equilibrium fractionation factor between silicate melt and metal. Nielsen et al. (2014) [2] had performed 3 experiments using starting materials of pure Fe metal and An50Di28Fo22 composition, revealing no resolvable V isotope fractionation. However, it is not clear whether chemical compositions in the melts can affect V isotope fractionations. Therefore, we experimentally calibrated equilibrium V isotope fractionation between Fe metallic and basaltic melt, with particular focus on the effect of Ni and other light elements. Experiments were performed at 1 GPa and 1600 oC using a 3/4″ end-loaded piston cylinder. The starting materials consisted of 1:1 mixture of pure Fe metal and basaltic composition [3]. The isotope equilibrium was assessed using time series experiments combined with the reverse reaction method. Carbon saturation and C-free experiments were achieved by using graphite and silica capsules, respectively. The Ni series experiments were doped with 6 wt% Ni into the starting Fe metal. The metal and silicate phases of samples were mechanically separated, V was purified using a chromatographic technique, and V isotope ratios were measured using MC-ICP-MS [4]. Carbon saturation, C-free experiments and Ni series experiment all show non-resolvable V isotope fractionation between metal and basaltic melt, which indicates that the presence of C and Ni could not affect V isotope fractionation during core formation. More experiments will be performed to explore the effect of Si and S in the metal on V isotope fractionation between metal and silicate melt.References: [1] Prytulak et al. (2013) EPSL 365, 177-189 [2] Nielsen et al. (2014) EPSL 389, 167-175 [3] Cottrell et al. (2009) CG 268, 167-179 [4] Wu et al. (2016) CG 421, 17-25
NASA Astrophysics Data System (ADS)
Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.
2016-08-01
Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium Si isotope fractionation for Fe-Si gel systems is significantly larger in magnitude than estimates of a near-zero solid-aqueous fractionation factor between pure Si gel and aqueous Si, indicating a major influence of Fe atoms on Si-O bonds, and hence the isotopic properties, of Fe-Si gel. Larger Si isotope fractionation in the Fe(II)-bearing systems may be caused by incorporation of Fe(II) into the solid structure, which may further weaken Fe-Si bonds and thus change the Si isotope fractionation factor. The relatively large Si isotope fractionation for Fe-Si gel, relative to pure Si gel, provides a new explanation for the observed contrast in δ30Si values in the Precambrian BIFs and cherts, as well as an explanation for the relatively negative δ30Si values in BIFs, in contrast to previous proposals that the more negative δ30Si values in BIFs reflect hydrothermal sources of Si or sorption to Fe oxides/hydroxides.
Höhener, Patrick; Yu, Xianjing
2012-03-15
Linear free energy relationships (LFERs) were established which relate equilibrium vapor-liquid isotope effects to stable carbon and hydrogen isotope enrichment factors for equilibrium sorption to geosorbents. The LFERs were established for normal, cyclic or branched alkanes, monoaromatic hydrocarbons, and chloroethenes. These LFERs predict that isotopic light compounds sorb more strongly than their heavy counterparts. Defining fractionation as in classical literature by "heavy divided by light", carbon enrichment factors for equilibrium sorption were derived which ranged from -0.13±0.04‰ (benzene) to -0.52±0.19‰ (trichloroethene at 5-15 °C). Hydrogen enrichment factors for sorption of 14 different compounds were between -2.4 and -9.2‰. For perdeuterated hydrocarbons the predicted enrichment factors ranged from -19±5.4‰ (benzene) to -64±30‰ (cyclohexane). Equilibrium sorption experiments with a soil and activated carbon as sorbents were performed in the laboratory for perdeuterocyclohexane and perdeuterotoluene. The measured D/H enrichments agreed with the LFER prediction for both compounds and both sorbents within the uncertainty estimate of the prediction. The results of this work suggest that equilibrium sorption does create only very small isotope shifts for (13)C in groundwater pollutants in aquifers. It is also suggested that deuterium shifts are expected to be higher, especially for strongly sorbing pollutants. Copyright © 2011 Elsevier B.V. All rights reserved.
First-principles investigation of vanadium isotope fractionation in solution and during adsorption
NASA Astrophysics Data System (ADS)
Wu, Fei; Qin, Tian; Li, Xuefang; Liu, Yun; Huang, Jen-How; Wu, Zhongqing; Huang, Fang
2015-09-01
Equilibrium fractionation factors of vanadium (V) isotopes among tri- (V(III)), tetra- (V(IV)) and penta-valent (V(V)) inorganic V species in aqueous system and during adsorption of V(V) to goethite are estimated using first-principles calculation. Our results highlight the dependence of V isotope fractionation on valence states and the chemical binding environment. The heavy V isotope (51V) is enriched in the main V species following a sequence of V(III) < V(IV) < V(V). According to our calculations, at 25 °C, the equilibrium isotope fractionation factor between [V5+O2(OH)2]- and [V4+O(H2O)5]2+ (ln α V (V)- V (IV)) is 3.9‰, and the equilibrium isotope fractionation factor between [V5+O2(OH)2]- and [V3+(OH)3(H2O)3] (ln α V (V)- V (III)) is 6.4‰. In addition, isotope fractionation between +5 valence species [V5+O2(OH)2]- and [V5+O2(H2O)4]+ is 1.5‰ at 25 °C, which is caused by their different bond lengths and coordination numbers (CN). Theoretical calculations also show that light V isotope (50V) is preferentially adsorbed on the surface of goethite. Our work reveals that V isotopes can be significantly fractionated in the Earth's surface environments due to redox reaction and mineral adsorption, indicating that V isotope data can be used to monitor toxic V(V) attenuation processes through reduction or adsorption in natural water systems. In addition, a simple mass balance model suggests that V isotope composition of seawater might vary with change of ambient oxygen levels. Thus our theoretical investigations imply a promising future for V isotopes as a potential new paleo-redox tracer.
Soil tension mediates isotope fractionation during soil water evaporation
NASA Astrophysics Data System (ADS)
Gaj, Marcel; McDonnell, Jeffrey
2017-04-01
Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have implications for plant water uptake studies since plant root water uptake imparts tension to extract water from the soil matrix. Since this is the same physical force as soil water potential, root water uptake at high soil water potential might cause fractionation of soil water. Our work is ongoing to examine these knock-on effects.
Vaupotič, J; Streil, T; Tokonami, S; Žunic, Z S
2013-12-01
In Niška Banja, a spa town in a radon-prone area in southern Serbia, radon ((222)Rn) and thoron ((220)Rn) activity concentrations were measured continuously for one day in indoor air of 10 dwellings with a SARAD RTM 2010-2 Radon/Thoron Monitor, and equilibrium factor between radon and its decay products and the fraction of unattached radon decay products with a SARAD EQF 3020-2 Equilibrium Factor Monitor. Radon concentration in winter time ranged from 26 to 73 100 Bq m(-3) and that of thoron, from 10 to 8650 Bq m(-3). In the same period, equilibrium factor and the unattached fraction varied in the range of 0.08 to 0.90 and 0.01 to 0.27, respectively. One-day effective doses were calculated and were in winter conditions from 4 to 2599 μSv d(-1) for radon and from 0.2 to 73 μSv d(-1) for thoron.
NASA Astrophysics Data System (ADS)
Roskosz, M.; Amet, Q.; Fitoussi, C.; Laporte, D.; Hu, M. Y.; Alp, E. E.
2016-12-01
Metal-silicate differentiation was recently addressed through the insight of the isotopic composition of siderophile elements (mainly Fe, Si and Cr isotopes) of planetary and extraterrestrial bodies. A key limitation of this approach is however the knowledge of equilibrium fractionation factors between coexisting phases (metal alloys, silicates and sulfides) used to interpret data on natural samples. These properties are difficult to determine experimentally. In this context, tin is generally classified as a chalcophile element but it is also siderophile and volatile. We applied a synchrotron-based method to circumvent difficulties related to determination of equilibrium isotope fractionation. The nuclear resonant inelastic x-ray scattering (NRIXS) was used to measure the phonon excitation spectrum and then to derive the force constant and finally the fractionation factors of Sn-bearing geomaterials. Spectroscopic measurements were carried out at room pressure at Sector 30-ID (APS, USA). A range of Fe-Ni alloys, rhyolitic and basaltic glasses and iron sulfides containing isotopically enriched 119Sn were synthesized. The tin content and the redox conditions prevailing during the synthesis were varied. The data evaluation was carried out using PHOENIX and SciPhon programs. A strong effect of both the redox state and the tin content was measured. In addition, the composition of the silicate glasses was found to be another important factor determining the tin isotope metal-silicate-sulfide fractionation factors. Our results are consistent with trends previously observed in the case of iron isotopes [1,2]. We will discuss the implications of our experimental results in terms of tin isotope planetary signatures. References: [1] Dauphas et al. (2014), EPSL, 398, 127-140; [2] Roskosz et al. (2015), GCA, 169, 184-199.
Cao, Zheng; Bowie, James U
2014-01-01
Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roskosz, Mathieu; Sio, Corliss K. I.; Dauphas, Nicolas
2015-11-15
Eight spinel-group minerals were synthesized by a flux-growth method producing spinels with varying composition and Fe3+/Fe-tot ratios. The mean force constants of iron bonds in these minerals were determined by synchrotron nuclear resonant inelastic X-ray scattering (NRIXS) in order to determine the reduced isotopic partition function ratios (beta-factors) of these spinels. The mean force constants are strongly dependent on the Fe3+/Fe-tot of the spinel but are independent, or weakly dependent on other structural and compositional parameters. From our spectroscopic data, it is found that a single redox-dependent calibration line accounts for the effects of Fe3+/Fe-tot on the beta-factors of spinels.more » This calibration successfully describes the equilibrium Fe isotopes fractionation factors between spinels and silicates (olivine and pyroxenes). Our predictions are in excellent agreement with independent determinations for the equilibrium Fe isotopic fractionations for the magnetite- fayalite and the magnetite-hedenbergite couples. Our calibration applies to the entire range of Fe3+/Fe-tot ratios found in natural spinels and provides a basis for interpreting iron isotopic variations documented in mantle peridotites. Except for a few exceptions, most of the samples measured so far are in isotopic disequilibrium, reflecting metasomatism and partial melting processes.« less
NASA Astrophysics Data System (ADS)
Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.
2017-12-01
Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.
Calculation of individual isotope equilibrium constants for geochemical reactions
Thorstenson, D.C.; Parkhurst, D.L.
2004-01-01
Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. The derivations can be extended to calculation of individual isotope equilibrium constants for ion pairs and equilibrium constants for isotopic species of other chemical elements. The individual isotope approach calculates the same phase isotopic compositions as existing methods, but also provides concentrations of individual species, which are needed in calculations of mass-dependent effects in transport processes. The equilibrium constants derived in this paper are used to calculate the example of gas-water equilibrium for CO2 in an acidic aqueous solution. ?? 2004 Elsevier Ltd.
Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons
NASA Astrophysics Data System (ADS)
Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A.
2013-04-01
Quantitative interpretation of stable hydrogen isotope ratios (2H/1H) in organic compounds is greatly aided by knowledge of the relevant equilibrium fractionation factors (ɛeq). Previous efforts have combined experimental measurements and hybrid Density Functional Theory (DFT) calculations to accurately predict equilibrium fractionations in linear (acyclic) organic molecules (Wang et al., 2009a,b), but the calibration produced by that study is not applicable to cyclic compounds. Here we report experimental measurements of equilibrium 2H/1H fractionation in six cyclic ketones, and use those data to evaluate DFT calculations of fractionation in diverse monocyclic and polycyclic compounds commonly found in sedimentary organic matter and petroleum. At 25, 50, and 75 °C, the experimentally measured ɛeq values for secondary and tertiary Hα in isotopic equilibrium with water are in the ranges of -130‰ to -150‰ and +10‰ to -40‰ respectively. Measured data are similar to DFT calculations of ɛeq for axial Hα but not equatorial Hα. In tertiary Cα positions with methyl substituents, this can be understood as a result of the methyl group forcing Hα atoms into a dominantly axial position. For secondary Cα positions containing both axial and equatorial Hα atoms, we propose that axial Hα exchanges with water significantly faster than the equatorial Hα does, due to the hyperconjugation-stabilized transition state. Interconversion of axial and equatorial positions via ring flipping is much faster than isotopic exchange at either position, and as a result the steady-state isotopic composition of both H's is strongly weighted toward that of axial Hα. Based on comparison with measured ɛeq values, a total uncertainty of 10-30‰ remains for theoretical ɛeq values. Using DFT, we systematically estimated the ɛeq values for individual H positions in various cyclic structures. By summing over all individual H positions, the molecular equilibrium fractionation was estimated to be -75‰ to -95‰ for steroids, -90‰ to -105‰ for hopanoids, and -65‰ to -100‰ for typical cycloparaffins between 0 and 100 °C relative to water. These are distinct from the typical biosynthetic fractionations of -150‰ to -300‰, but are similar to equilibrium fractionations for linear hydrocarbons (Wang et al., 2009b). Thus post-burial H exchange will generally remove the ˜50-100‰ biosynthetic fractionations between cyclic isoprenoid and n-alkyl lipid molecules, which can be used to evaluate the extent of H exchange in sedimentary organic matter and oils.
Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Beard, Brian L.; Rosso, Kevin M.
2015-07-01
The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Femore » isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II) aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II) aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II) aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous solutions, but presents a challenge for utilizing such an approach to determine equilibrium isotope fractionation factors. Despite the uncertainty from extrapolation, there is consistency in goethite-water fractionation factors for our reversal approach to equilibrium, with final weighted average fractionation factor values of Δ¹⁸O Gth-wate r = 0.2 (±0.9‰) and 3.0 (±2.5‰) at 22 °C and -1.6 (±0.8‰) and 1.9 (±1.5‰) at 50 °C for micron-sized and nano-particulate goethite, respectively (errors at 2σ level). Reaction of ferrihydrite with Fe(II) aq in two distinct waters resulted in a quantitative conversion to goethite and complete O isotope exchange in each case, and similar fractionation factors were observed for experiments using the two waters. Comparison of our results with previous studies of O isotope fractionation between goethite and water suggests that particle size may be a contributing factor to the disparity among experimental studies.« less
Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium
NASA Astrophysics Data System (ADS)
Mavromatis, Vasileios; van Zuilen, Kirsten; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin
2016-10-01
This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04‰, 2 sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (∼7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.
Iron Isotopic Fractionation in Igneous Systems: Looking for Anharmonicity
NASA Astrophysics Data System (ADS)
Dauphas, N.; Roskosz, M.; Hu, M. Y.; Neuville, D. R.; Alp, E. E.; Hu, J.; Heard, A.; Zhao, J.
2017-12-01
Igneous rocks display variations in their Fe isotopic compositions that can be used to trace partial melting, magma differentiation, the origin of mineral zoning, and metasomatic processes. While tremendous progress has been made in our understanding of how iron isotopes can be fractionated at equilibrium or during diffusion, significant work remains to be done to establish equilibrium fractionation factors between phases relevant to igneous petrology. A virtue of iron isotope systematics is that iron possesses a Mössbauer isotope, 57Fe, and one can use the method of NRIXS to measure the force constant of iron bonds, from which beta-factors can be calculated. These measurements are done at a few synchrotron beamlines around the world, such as sector 3ID of the APS (Argonne). Tremendous insights have already been gained by applying this technique to Earth science materials. It was shown for instance that significant equilibrium fractionation exists between Fe2+ and Fe3+ at magmatic temperature, that the iron isotopic fractionation resulting from core formation must be small, and that iron isotopic fractionation is influenced by the polymerization of the melt. Combining NRIXS and ab initio studies, there are approximately 130 geologically-relevant solids and aqueous species for which beta-factors have been reported. A potential limitation of applying published NRIXS data to igneous petrology is that all the force constants have been measured at room temperature and the beta-factors are extrapolated to magmatic temperatures assuming that the systems are harmonic, which has never been demonstrated. One way to test this critical assumption is to measure the apparent force constant of iron bonds at various temperatures, so that the interatomic potential of iron bonds can be probed. A further virtue of NRIXS is that the data also allows us to derive the mean square displacement. If significant anharmonicity is present, it should be manifested as a decrease in the apparent force constant with increasing temperature and increasing mean square displacement. We have measured the Fe force constant of basalt glass and olivine using a wire furnace. At the conference, we will report on these experiments and will discuss some implications for igneous petrology.
NASA Astrophysics Data System (ADS)
Gibbons, J. A.; Sharp, Z. D.; Atudorei, V.
2017-12-01
The calcite-water triple oxygen isotope fractionation is used to determine isotopic equilibrium and ancient ocean oxygen isotopic values and temperatures. Unlike conventional δ18O analysis where the formation water's isotopic value is assumed, paired δ17O-δ18O measurements allow for the water's isotopic composition to be calculated because there is only one unique solution for equilibrium fractionation using Δ17O-δ18O values (where Δ17O=δ17O-0.528δ18O). To a first approximation, the calcite-water equilibrium fractionation factor, θ (where θ=ln17α/ln18α), varies with temperature by 0.00001/°. The calcite-water equilibrium fractionation line was determined at two temperatures, 30° and 0°, by using modern carbonate samples that formed in ocean water with a δ18O value of 0‰. The θ values for the 30° and 0° samples are 0.52515 and 0.52486, respectively. Oxygen values were measured using complete fluorination in nickel tubes with BrF5 as the reaction reagent. We calibrated all oxygen values to the SMOW-SLAP scale by measuring SMOW, SLAP, San Carlos olivine, NBS-18, NBS-19, and PDB. The triple oxygen isotope calcite-water equilibrium fractionation line was applied to well preserved Early Triassic ammonite shells from the Western United States. Based on paired δ17O-δ18O measurements, the samples did not form in equilibrium with an ice-free ocean with an oxygen isotopic value of -1‰ or the modern ocean value of 0‰. Assuming the calcite is still primary and formed in equilibrium with the ocean water, our data indicate that the δ18O value of the ocean in the early Triassic was 3-5‰ lower than modern. Samples from the Smithian thermal maximum formed in water 10° warmer than samples from after the thermal maximum. Paired δ17O-δ18O measurements of pristine ancient carbonates may provide a better understanding of past ocean conditions during climate change events.
Long-term aging behaviors in a model soft colloidal system.
Li, Qi; Peng, Xiaoguang; McKenna, Gregory B
2017-02-15
Colloidal and molecular systems share similar behaviors near to the glass transition volume fraction or temperature. Here, aging behaviors after volume fraction up-jump (induced by performing temperature down-jumps) conditions for a PS-PNIPAM/AA soft colloidal system were investigated using light scattering (diffusing wave spectroscopy, DWS). Both aging responses and equilibrium dynamics were investigated. For the aging responses, long-term experiments (100 000 s) were performed, and both equilibrium and non-equilibrium behaviors of the system were obtained. In the equilibrium state, as effective volume fraction increases (or temperature decreases), the colloidal dispersion displays a transition from the liquid to a glassy state. The equilibrium α-relaxation dynamics strongly depend on both the effective volume fraction and the initial mass concentration for the studied colloidal systems. Compared with prior results from our lab [X. Di, X. Peng and G. B. McKenna, J. Chem. Phys., 2014, 140, 054903], the effective volume fractions investigated spanned a wider range, to deeper into the glassy domain. The results show that the α-relaxation time τ α of the samples aged into equilibrium deviate from the classical Vogel-Fulcher-Tammann (VFT)-type expectations and the super-Arrhenius signature disappears above the glass transition volume fraction. The non-equilibrium aging response shows that the time for the structural evolution into equilibrium and the α-relaxation time are decoupled. The DWS investigation of the aging behavior after different volume fraction jumps reveals a different non-equilibrium or aging behavior for the considered colloidal systems compared with either molecular glasses or the macroscopic rheology of a similar colloidal dispersions.
NASA Astrophysics Data System (ADS)
Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.
2007-01-01
In this paper we are concerned with the fractional-order predator-prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.
Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.
2008-01-01
Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).
Silicon isotope fractionations in pure Si and Fe-Si systems and their geological implications
NASA Astrophysics Data System (ADS)
Zheng, X. Y.; Beard, B. L.; Reddy, T. R.; Roden, E. E.; Johnson, C.
2016-12-01
Amorphous Si or Si-bearing materials are ubiquitous in nature, and are likely precursors to various rock types, such as cherts and banded iron formations (BIFs). Si isotope exchange kinetics and fractionation factors between these materials and aqueous Si, however, are poorly constrained, preventing a mechanistic or quantitative understanding of geological δ30Si records. A series of laboratory experiments were conducted to provide better estimates on Si isotope exchange kinetics and fractionation factors. Equilibrium Si isotope fractionation factors between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aq) in artificial Archean seawater (AAS), determined by a three-isotope method with a 29Si tracer, are -2.3‰ where Fe2+ is absent from the solution, and -3.2‰ where Fe2+ is present in the solution[1]. Aqueous Fe2+ catalyzes Si isotope exchange, and causes larger Si isotope fractionation due to incorporation into the solid that may have changed Si bonding. In contrast, our preliminary results show that Δ30Sigel-aq between pure Si gel and aqueous Si at equilibrium is -0.13‰. Ongoing experiments are intended to approach the isotope equilibrium from multiple directions to resolve potential kinetic effects, and to explore temperature dependence. Nonetheless, the contrast in Δ30Sigel-aq between Fe-Si and pure Si systems highlights a significant impact of Fe on Si isotope fractionations. These results have important implications for Si isotopes in Precambrian cherts and BIFs, as well as in weathering systems in general. Silicon isotope fractionation was also studied in experiments that involved dissimilatory iron reduction of Fe(III)-Si gel by Desulfuromonas acetoxidans in AAS[2], and was found to become larger with progression of Fe reduction. A Δ30Sigel-aq of -3.5‰ was observed at 32% reduction of Fe3+. This result explains lower δ30Si values in magnetite-associated quartz that those in hematite-associated quartz in some BIFs. The large Si isotope fractionation produced in the microbial experiment, even larger than that seen in our Fe(II)-bearing abiologic experiments, suggests that δ30Si can be a potential tracer for magnetite of a microbial origin, or, vice versa, for microbial activities in magnetite. [1] Zheng et al., 2016, GCA 187, 102-122. [2] Reddy et al., 2016, GCA 190, 85-99.
Equilibrium lithium isotope fractionation in Li-rich minerals
NASA Astrophysics Data System (ADS)
Liu, S.; Li, Y.; Liu, J.
2017-12-01
Lithium is the lightest alkali metal, and only exhibits +1 valence state in minerals. It is widely distributed on the Earth, and usually substitutes for Mg in silicate minerals. Li has two stable isotopes, 6Li and 7Li, with the relative abundances of 7.52% and 92.48%, respectively. The large mass difference between 6Li and 7Li could induce significant isotope fractionation in minerals. Li isotopes can provide an important geochemical tracer for mantle processes. However, the fractionation factors for Li in most minerals remain poorly known, which makes the geochemical implications of Li isotope fractionations in minerals difficult to assess. Here, we try to use the vibrational frequencies obtained by the first-principles methods based on density-functional theory to calculate the Li isotope fractionation parameters for amblygonite (LiAlPO4F), bikitaite (LiSi2AlO7H2), eucryptite (LiAlSiO4), lithiophilite (LiMnPO4), lithiophosphate (Li3PO4), montebrasite (LiAlPO5H), and spodumene (LiAlSi2O6) in the temperature range of 0-1200 ºC. For forsterite (Mg2SiO4) and diopside (CaMgSi2O6) in which Li takes the place of Mg, the equilibrium Li isotope fractionation between them also be studied. Our preliminary calculations show that the coordination number of Li seems to play an important role in controlling Li isotope fractionation in these minerals, and concentration of Li in forsterite and diopside seems to have great effects on Li isotope fractionation factors of them.
Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.
He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming
2018-02-28
Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.
Calcium Isotope Geochemistry: Research Horizons and Nanoscale Fractionation Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, W; Simon, J I; DePaolo, D J
Interest in studies of calcium isotope variations in nature continues to increase. Investigations span human biology, plants and soils, oceanography and paleoclimate, early solar system processes, aqueous geochemistry, and silicate liquid structure. Variations in the 44Ca/40Ca ratio are generally small, about 5 {per_thousand}, but gradual small improvements in analytical capability now yield 0.05 to 0.1 {per_thousand} resolution. The field is still plagued by a lack of universal standards for isotope ratios and data representation, but these are secondary issues. Traditional isotopic systems have been based in equilibrium thermodynamics, which can explain the magnitude and sign of observed mass-dependent fractionation behavior.more » For Ca isotopes this is not the case. There is still no reliable way to estimate the equilibrium free energy associated with isotopic exchange between most phases of interest. Experiments are difficult to interpret because it is almost impossible to precipitate minerals from aqueous solution at equilibrium at low temperature. Some studies suggest that, for example, there is no equilibrium isotopic fractionation between calcite and dissolved aqueous Ca. There is good evidence that most Ca isotopic fractionation is caused by kinetic effects. The details of the controlling processes are still missing, and without this mechanistic understanding it is difficult to fully understand the implications of natural isotopic variations. Recent work on dissolved Ca, calcite, and sulfates in both laboratory and natural settings is shedding light on where the fractionation may arise. There is emerging evidence for mass dependent fractionation associated with aqueous diffusion, but probably the primary source of the effects is in the details of precipitation of minerals from solution. This makes the fractionation potentially dependent on a number of factors, including solution composition and mineral growth rate. The next challenge is to develop appropriate experimental tests and combine them with micro- and nano-scale characterization, and to capture the critical processes in mathematical models. Some of the largest fractionation effects have been observed for silicate liquids, where both chemical and thermal diffusion generate large isotopic variations. Intake and transport of Ca in plants is also associated with substantial fractionation. Continuing work is beginning to place the fractionation into the context of global Ca cycles.« less
NASA Astrophysics Data System (ADS)
Mavromatis, Vasileios; Harrison, Anna L.; Eisenhauer, Anton; Dietzel, Martin
2017-12-01
In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 0.01 M NaCl solutions wherein the pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - δ88/86Srfluid = -0.05 ± 0.01‰. On the other hand, during strontianite precipitation, an enrichment of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid and fluid is calculated to be 0.99985 ± 0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. The obtained results further support that under chemical equilibrium conditions between solid and fluid a continuous exchange of isotopes occurs until the system approaches isotopic equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite crystal, but extends to ∼7-8 unit cells below the crystal surface. The behavior of Sr isotopes in this study is in excellent agreement with the concept of dynamic equilibrium and it suggests that the time needed for achievement of chemical equilibrium is generally shorter compared to that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an isotopic change may still occur close to thermodynamic equilibrium, despite no observable change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be considered in order to use Sr isotopes as environmental proxies in aquatic environments.
Assessment of Stable Isotope Distribution in Complex Systems
NASA Astrophysics Data System (ADS)
He, Y.; Cao, X.; Wang, J.; Bao, H.
2017-12-01
Biomolecules in living organisms have the potential to approach chemical steady state and even apparent isotope equilibrium because enzymatic reactions are intrinsically reversible. If an apparent local equilibrium can be identified, enzymatic reversibility and its controlling factors may be quantified, which helps to understand complex biochemical processes. Earlier research on isotope fractionation tends to focus on specific process and compare mostly two different chemical species. Using linear regression, "Thermodynamic order", which refers to correlated δ13C and 13β values, has been proposed to be present among many biomolecules by Galimov et al. However, the concept "thermodynamic order" they proposed and the approach they used has been questioned. Here, we propose that the deviation of a complex system from its equilibrium state can be rigorously described as a graph problem as is applied in discrete mathematics. The deviation of isotope distribution from equilibrium state and apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference matrix (|Δα|). Applying the |Δα| matrix analysis to earlier published data of amino acids, we show the existence of apparent local equilibrium among different amino acids in potato and a kind of green alga. The existence of apparent local equilibrium is in turn consistent with the notion that enzymatic reactions can be reversible even in living systems. The result also implies that previous emphasis on external carbon source intake may be misplaced when studying isotope distribution in physiology. In addition to the identification of local equilibrium among biomolecules, the difference matrix approach has the potential to explore chemical or isotope equilibrium state in extraterrestrial bodies, to distinguish living from non-living systems, and to classify living species. This approach will benefit from large numbers of systematic data and advanced pattern recognition techniques.
Radon Dose Determination for Cave Guides in Czech Republic
NASA Astrophysics Data System (ADS)
Thinova, Lenka; Rovenska, Katerina
2008-08-01
According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the "cave factor" 1.5. The value of "cave factor" which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of "radon pockets" with very high radon concentration, and enable study of the location of the radon supply and its transfer among individual areas of the cave. Most of the results show the equilibrium factor around F = 0.2-0.7 and the unattached fraction around 2%-30%. One of the most important question remains: how accurately was the unattached fraction measured? Part of this project was to verify the influence of etched track detector position in the cave.
Oxygen isotope fractionation in divalent metal carbonates
O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.
1969-01-01
Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.
Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes
NASA Astrophysics Data System (ADS)
Cao, Xiaobin; Liu, Yun
2011-12-01
With a growing interest in small 17O-anomaly, there is a pressing need for the precise ratio, ln 17α/ln 18α, for a particular mass-dependent fractionation process (MDFP) (e.g., for an equilibrium isotope exchange reaction). This ratio (also denoted as " θ") can be determined experimentally, however, such efforts suffer from the demand of well-defined process or a set of processes in addition to high precision analytical capabilities. Here, we present a theoretical approach from which high-precision ratios for MDFPs can be obtained. This approach will complement and serve as a benchmark for experimental studies. We use oxygen isotope exchanges in equilibrium processes as an example. We propose that the ratio at equilibrium, θE ≡ ln 17α/ln 18α, can be calculated through the equation below: θa-bE=κa+(κa-κb){ln18βb}/{ln18α} where 18βb is the fractionation factor between a compound "b" and the mono-atomic ideal reference material "O", 18αa-b is the fractionation factor between a and b and it equals to 18βa/ 18βb and κ is a new concept defined in this study as κ ≡ ln 17β/ln 18β. The relationship between θ and κ is similar to that between α and β. The advantages of using κ include the convenience in documenting a large number of θ values for MDFPs and in estimating any θ values using a small data set due to the fact that κ values are similar among O-bearing compounds with similar chemical groups. Frequency scaling factor, anharmonic corrections and clumped isotope effects are found insignificant to the κ value calculation. However, the employment of the rule of geometric mean (RGM) can significantly affect the κ value. There are only small differences in κ values among carbonates and the structural effect is smaller than that of chemical compositions. We provide κ values for most O-bearing compounds, and we argue that κ values for Mg-bearing and S-bearing compounds should be close to their high temperature limitation (i.e., 0.5210 for Mg and 0.5159 for S). We also provide θ values for CO 2(g)-water, quartz-water and calcite-water oxygen isotope exchange reactions at temperature from 0 to 100 °C.
NASA Astrophysics Data System (ADS)
Eldridge, D. L.; Guo, W.; Farquhar, J.
2016-12-01
We present theoretical calculations for all three isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) at the B3LYP/6-31+G(d,p) level of theory for aqueous sulfur compounds modeled in 30-40H2O clusters spanning the range of sulfur oxidation state (Sn, n = -2 to +6) for estimating equilibrium fractionation factors in aqueous systems. Computed 34β values based on major isotope (34S/32S) reduced partition function ratios (RPFRs) scale to a first order with sulfur oxidation state and coordination, where 34β generally increase with higher oxidation state and increasing coordination of the sulfur atom. Exponents defining mass dependent relationships based on β values (x/34κ = ln(xβ)/ln(34β), x = 33 or 36) conform to tight ranges over a wide range of temperature for all aqueous compounds (33/34κ ≈ 0.5148-0.5159, 36/34κ ≈ 1.89-1.90 from T ⩾ 0 °C). The exponents converge near a singular value for all compounds at the high temperature limit (33/34κT→∞ = 0.51587 ± 0.00003 and 36/34κT→∞ = 1.8905 ± 0.0002; 1 s.d. of all computed compounds), and typically follow trends based on oxidation state and coordination similar to those seen in 34β values at lower temperatures. Theoretical equilibrium fractionation factors computed from these β-values are compared to experimental constraints for HSO3-T(aq)/SO2(g, aq), SO2(aq)/SO2(g), H2S(aq)/H2S(g), H2S(aq)/HS-(aq), SO42-(aq)/H2ST(aq), S2O32-(aq) (intramolecular), and S2O32-(aq)/H2ST(aq), and generally agree within a reasonable estimation of uncertainties. We make predictions of fractionation factors where other constraints are unavailable. Isotope partitioning of the isomers of protonated compounds in the sulfite and sulfoxylate systems depend strongly on whether protons are bound to either sulfur or oxygen atoms. The magnitude of the HSO3-T/SO32- major isotope (34S/32S) fractionation factor is predicted to increase with temperature from 0 to 70 °C due to the combined effects of the large magnitude (HS)O3-/SO32- fractionation factor (1000ln34α(HS)bisulfite-sulfite = 19.9‰, 25 °C) relative to the (HO)SO2-/SO32- fractionation factor (1000ln34α(HO)bisulfite-sulfite = -2.2‰, 25 °C), and the increased stability of the (HS)O3- isomer with increasing temperature. We argue that isomerization phenomenon should be considered in models of the sulfur cycle, including models that describe the overall sulfur isotope fractionations associated with microbial metabolism (e.g., microbial sulfate reduction).
The sensitivity of tokamak magnetohydrodynamics stability on the edge equilibrium
NASA Astrophysics Data System (ADS)
Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.
2017-10-01
Due to the X-point singularity, the safety factor tends to infinity as approaching to the last closed flux surface. The numerical treatments of the near X-point behavior become challenging both for equilibrium and stability. The usual solution is to cut off a small fraction of edge region for system stability evaluation or simply use an up-down symmetric equilibrium without X-point as an approximation. In this work, we assess the sensitivity of this type of equilibrium treatments on the stability calculation. It is found that the system stability can depend strongly on the safety factor value (qa) at the edge after the cutting-off. When the edge safety factor value falls in the vicinity of a rational mode number (referred to as the resonant gap), the system becomes quite unstable due to the excitation of the peeling type modes. Instead, when the edge safety factor is outside the resonant gaps, the system is much more stable and the predominant modes become the usual external kink (or ballooning and infernal) type. It is also found that the resonant gaps become smaller and smaller as qa increases. The ideal magnetohydrodynamic peeling ballooning stability diagram is widely used to explain the experimental observations, and the current results indicate that the conventional peeling ballooning stability diagram based on the simplified equilibrium needs to be reexamined.
NASA Astrophysics Data System (ADS)
Domagal-Goldman, S.; Kubicki, J. D.
2006-05-01
Fe Isotopes have been proposed as a useful tracer of biological and geochemical processes. Key to understanding the effects these various processes have on Fe isotopes is accurate modeling of the reactions responsible for the isotope fractionations. In this study, we examined the theoretical basis for the claims that Fe isotopes can be used as a biomarker. This was done by using molecular orbital/density functional theory (MO/DFT) calculations to predict the equilibrium fractionation of Fe isotopes due to changes in the redox state and the bonding environment of Fe. Specifically, we predicted vibrational frequencies for iron desferrioxamine (Fe-DFOB), iron triscatechol (Fe(cat)3), iron trisoxalate (Fe(ox)3), and hexaaquo iron (Fe(H2O)6) for complexes containing both ferrous (Fe2+) and ferric (Fe3+) iron. Using these vibrational frequencies, we then predicted fractionation factors between these six complexes. The predicted fractionation factors resulting from changes in the redox state of Fe fell in the range 2.5- 3.5‰. The fractionation factors resulting from changes in the bonding environment of Fe ranged from 0.2 to 1.4‰. These results indicate that changes in the bonding strength of Fe ligands are less important to Fe isotope fractionation processes than are changes to the redox state of Fe. The implications for use of Fe as a tracer of biological processes is clear: abiological redox changes must be ruled out in a sample before Fe isotopes are considered as a potential biomarker. Furthermore, the use of Fe isotopes to measure the redox state of the Earths surface environment through time is supported by this work, since changes in the redox state of Fe appear to be the more important driver of isotopic fractionations. In addition to the large differences between redox-driven fractionations and ligand-driven fractionations, we will also show general trends in the demand for heavy Fe isotopes as a function of properties of the bound ligand. This will help the future analysis of Fe isotope fractionation. Future directions in the theoretical study of metal isotope fractionations will also be discussed, including the modeling of reactions on mineral surfaces.
Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates
NASA Technical Reports Server (NTRS)
Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.
2004-01-01
Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.
Chemical and isotopic fractionations by evaporation and their cosmochemical implications
NASA Astrophysics Data System (ADS)
Ozawa, Kazuhito; Nagahara, Hiroko
2001-07-01
A kinetic model for evaporation of a multi-component condensed phase with a fixed rate constant of the reaction is developed. A binary system with two isotopes for one of the components undergoing simple thermal histories (e.g., isothermal heating) is investigated in order to evaluate the extent of isotopic and chemical fractionations during evaporation. Diffusion in the condensed phase and the effect of back reaction from ambient gas are taken into consideration. Chemical and isotopic fractionation factors and the Péclet number for evaporation are the three main parameters that control the fractionation. Dust enrichment factor (η), the ratio of the initial dust quantity to that required for attainment of gas-dust equilibrium, is critical when back reactions become significant. Dust does not reach equilibrium with gas at η < 1. Notable chemical and isotopic fractionations usually take place under these conditions. There are two circumstances in which isotopic fractionation of a very volatile element does not accompany chemical fractionation during isothermal heating. One is free evaporation when diffusion in the condensed phase is very slow (η = 0), and the other is evaporation in the presence of ambient gas (η > 0). In the former case, a quasi-steady state in the diffusion boundary layer is maintained for isotopic fractionation but not for chemical fractionation. In the latter case, the back reaction brings the strong isotopic fractionation generated in the earlier stage of evaporation back to a negligibly small value in the later stage before complete evaporation. The model results are applied to cosmochemical fractionation of volatile elements during evaporation from a condensed phase that can be regarded as a binary solution phase. The wide range of potassium depletion without isotopic fractionation in various types of chondrules (Alexander et al., 2000) is explained by instantaneous heating followed by cooling in a closed system with various degrees of dust enrichment (η = 0.001-10) and cooling rates of less than ˜5°C/min. The extent of decoupling between isotopic and chemical fractionations of various elements in chondrules and matrix minerals may constrain the time scale and the conditions of heating and cooling processes in the early solar nebula.
Characterization of calcium isotopes in natural and synthetic barite
Griffith, E.M.; Schauble, E.A.; Bullen, T.D.; Paytan, A.
2008-01-01
The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (??44/40Ca = -2.01 ?? 0.15???) but are different from hydrothermal and cold seep barite samples (??44/40Ca = -4.13 to -2.72???). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, ??44/40Ca = -3.42 to -2.40???. Temperature, saturation state, a Ba2 + / a SO42 -, and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by -9??? at 0 ??C and -8??? at 25 ??C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower ??44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals. ?? 2008 Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Johnston, Christopher O.; Thompson, Richard A.
2009-01-01
A description of models and boundary conditions required for coupling radiation and ablation physics to a hypersonic flow simulation is provided. Chemical equilibrium routines for varying elemental mass fraction are required in the flow solver to integrate with the equilibrium chemistry assumption employed in the ablation models. The capability also enables an equilibrium catalytic wall boundary condition in the non-ablating case. The paper focuses on numerical implementation issues using FIRE II, Mars return, and Apollo 4 applications to provide context for discussion. Variable relaxation factors applied to the Jacobian elements of partial equilibrium relations required for convergence are defined. Challenges of strong radiation coupling in a shock capturing algorithm are addressed. Results are presented to show how the current suite of models responds to a wide variety of conditions involving coupled radiation and ablation.
Mass fractionation processes of transition metal isotopes
NASA Astrophysics Data System (ADS)
Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.
2002-06-01
Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.
Condition of Mechanical Equilibrium at the Phase Interface with Arbitrary Geometry
NASA Astrophysics Data System (ADS)
Zubkov, V. V.; Zubkova, A. V.
2017-09-01
The authors produced an expression for the mechanical equilibrium condition at the phase interface within the force definition of surface tension. This equilibrium condition is the most general one from the mathematical standpoint and takes into account the three-dimensional aspect of surface tension. Furthermore, the formula produced allows describing equilibrium on the fractal surface of the interface. The authors used the fractional integral model of fractal distribution and took the fractional order integrals over Euclidean space instead of integrating over the fractal set.
Radon Dose Determination for Cave Guides in Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thinova, Lenka; Rovenska, Katerina
2008-08-07
According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the 'cave factor' 1.5. The value of 'cave factor' which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5more » for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free {sup 218}Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of 'radon pockets' with very high radon concentration, and enable study of the location of the radon supply and its transfer among individual areas of the cave. Most of the results show the equilibrium factor around F = 0.2-0.7 and the unattached fraction around 2%-30%. One of the most important question remains: how accurately was the unattached fraction measured? Part of this project was to verify the influence of etched track detector position in the cave.« less
Bethe lattice approach and relaxation dynamics study of spin-crossover materials
NASA Astrophysics Data System (ADS)
Oke, Toussaint Djidjoho; Hontinfinde, Félix; Boukheddaden, Kamel
2015-07-01
Dynamical properties of Prussian blue analogs and spin-crossover materials are investigated in the framework of a Blume-Emery-Griffiths (BEG) spin-1 model, where states ±1 and 0 represent the high-spin (HS) state and the low-spin state, respectively. The quadrupolar interaction depends on the temperature in the form . Magnetic interactions are controlled by a factor such that for (), magnetic ordering is not expected. The model is exactly solved using the Bethe lattice approach for the equilibrium properties. The results are closer to those calculated by numerical simulations with suitable Arrhenius-type transition rates. The study of relaxation processes of non-equilibrium HS states revealed one-step nonlinear sigmoidal relaxation curves of the HS fraction at low temperatures. We found that increasing the magnetic interactions leads to the appearance of a plateau in the thermal hysteresis as well as in the relaxation curves of the HS fraction at low temperature.
How to explain Si isotopes of chert?
NASA Astrophysics Data System (ADS)
Liu, Y.
2016-12-01
The variations of d30Si values in diagenetic chert and chert- associated BIFs over time can be used to reconstruct the environmental conditions of the early Earth, and become a hot topic in the Si isotope society. However, there are several different views of explaining the variation of d30Si values over time. Moreover, there are disputes in explaining the distribution of Si isotope in several main reservoirs in surface systems. Those disagreements are caused by lacking key Si isotope fractionation factors associated with the formation processes of chert and its altered products. There are many unexplained observations about Si isotope distributions in Earth's surface systems (Opfergelt and Delmelle, 2012). For example, the deduced Si isotope equilibrium fractionation factors by Rayleigh model at ambient temperature between clay and the solution D30Siclay-solution = -1.5 ‰ and -2.05 ‰ (Hughes et al., 2013) obviously disagree with common sense, which dictates that stiffer chemical bonds will enrich heavier isotopes, i.e., the precipitated minerals will preferentially incorporate heavy isotopes relative to aqueous H4SiO4 due to their shorter Si-O bonds. Another similar case is the fractionation between quartz and solution. Most field observations suggested that solution will be enriched with heavier Si isotope compared to quartz, conflicting to the fact that quartz is the one with much shorter Si-O bonds than aqueous H4SiO4 (ca. 1.610Å vs. 1.639Å). Here we provide equilibrium and kinetic Si isotope fractionation factors associated with the formation of amorphous quartz and other secondary minerals in polymerization, co-precipitation and adsorption processes. The adsorption processes of silica gel to Fe-hydroxides have been carefully examined. The Si isotope fractionations due to the formation of mono-dentate to quadru-dentate adsorbed Fe-Si complexes have been calculated. These data can explain well the experimental observations (e.g., Zheng et al., 2016) and provide further insights into such processes. With the knowledge of Si isotope fractionations of those processes, we can quantitatively evaluate the net Si isotope fractionation during the chert formation processes and can link the Si isotope composition of chert to that of seawater from now to early Archean.
NASA Astrophysics Data System (ADS)
Keatings, K. W.; Heaton, T. H. E.; Holmes, J. A.
2002-05-01
Carbon and oxygen isotope analysis of ostracods living in the near-constant conditions of spring-fed ponds in southern England allowed accurate determination of the ostracod's calcite-water 13C/12C and 18O/16O fractionations. The 13C/12C fractionations of two species, Candona candida and Pseudocandona rostrata, correspond to values expected for isotopic equilibrium with the pond's dissolved inorganic carbon at the measured temperature (11°C) and pH (6.9), whilst those of a third species, Herpetocypris reptans, would represent equilibrium at a slightly higher pH (7.1). The 18O/16O fractionations confirm two previous studies in being larger, by up to 3‰, than those 'traditionally' regarded as representing equilibrium. When the measured fractionations are considered in the context of more recent work, however, they can be explained in terms of equilibrium if the process of calcite formation at the ostracod lamella occurs at a relatively low pH (≤7) irrespective of the pH of the surrounding water. The pH of calcite formation, and therefore the calcite-water 18O/16O fractionation, may be species and stage (adult versus juvenile) specific, and related to the rate of calcification.
Oxygen isotope fractionation in the siderite-water system between 8.5 and 62 °C
NASA Astrophysics Data System (ADS)
van Dijk, Joep; Fernandez, Alvaro; Müller, Inigo A.; Lever, Mark; Bernasconi, Stefano M.
2018-01-01
The oxygen isotope composition of siderites can be used to deduce the temperature and/or oxygen isotope composition of the fluids from which they precipitated. Previous siderite-water oxygen isotope fractionation calibrations are not well constrained at temperatures below 33 °C where most of the siderite forms at the Earth's surface. Moreover, the few experimental low temperature calibration points available are possibly inaccurate as the corresponding siderites may not have formed in equilibrium with the solution. In this study, we synthesized siderite in the laboratory from 8.5 to 62 °C, using both active-degassing experiments and microbial cultures. We used the enzyme carbonic anhydrase, which significantly reduces the equilibration time of oxygen isotopes among all dissolved inorganic carbon (DIC) species and water to minimize siderite formation out of equilibrium. Our calibration is based on many more data points than previous calibrations and significantly reduces the uncertainty in siderite-water oxygen isotope fractionation in natural siderites formed at low temperatures. The best fit equation is 1000 * ln α = 19.67 ± 0.42(103/T) -36.27 ± 1.34 where α (1000+δ18Osiderite/1000+δ18Owater) is the fractionation factor and T is the temperature in Kelvin.
NASA Astrophysics Data System (ADS)
Hin, Remco C.; Schmidt, Max W.; Bourdon, Bernard
2012-09-01
Iron isotope fractionation during metal-silicate differentiation has been proposed as a cause for differences in iron isotope compositions of chondrites, iron meteorites and the bulk silicate Earth. Stable isotope fractionation, however, rapidly decreases with increasing temperature. We have thus performed liquid metal-liquid silicate equilibration experiments at 1250-1300 °C and 1 GPa to address whether Fe isotope fractionation is resolvable at the lowest possible temperatures for magmatic metal-silicate differentiation. A centrifuging piston cylinder apparatus enabled quantitative metal-silicate segregation. Elemental tin or sulphur was used in the synthetic metal-oxide mixtures to lower the melting temperature of the metal. The analyses demonstrate that eight of the 10 experimental systems equilibrated in a closed isotopic system, as was assessed by varying run durations and starting Fe isotope compositions. Statistically significant iron isotope fractionation between quenched metals and silicates was absent in nine of the 10 experiments and all 10 experiments yield an average metal-silicate fractionation factor of 0.01 ± 0.04‰, independent of whether graphite or silica glass capsules were used. This implies that Fe isotopes do not fractionate during low pressure metal-silicate segregation under magmatic conditions. In large bodies such as the Earth, fractionation between metal and high pressure (>20 GPa) silicate phases may still be a possible process for equilibrium fractionation during metal-silicate differentiation. However, the 0.07 ± 0.02‰ heavier composition of bulk magmatic iron meteorites relative to the average of bulk ordinary/carbonaceous chondrites cannot result from equilibrium Fe isotope fractionation during core segregation. The up to 0.5‰ lighter sulphide than metal fraction in iron meteorites and in one ordinary chondrite can only be explained by fractionation during subsolidus processes.
Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; ...
2015-12-01
The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up tomore » 235 μm thick were precipitated in silica–H 2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα 30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα 18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα 30Si(Qtz–fluid) = (0.15 ± 0.03) * 10 6/T 2 and 1000lnα 18O(Qtz–fluid) = (2.91 ± 0.04) * 10 6/T 2 when extended to zero fractionation at infinite temperature. Values of δ 30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ 18O and δ 30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.« less
Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 °C
NASA Astrophysics Data System (ADS)
Deng, Yuying; Li, Yingzhou; Li, Long
2018-04-01
Ammonia degassing is a common process in natural alkaline waters and in the atmosphere. To quantitatively assess the nitrogen cycle in these systems, the essential parameter of nitrogen isotope fractionation factors associated with ammonia degassing is required, but still not constrained yet. In this study, we carried out laboratory experiments to examine the nitrogen isotope behavior during ammonia degassing in alkaline conditions. The experiments started with ammonium sulfate solution with excess sodium hydroxide. The reaction can be described as: NH4+ + OH- (excess) → NH3·nH2O → NH3 (g)↑. Two sets of experiments, one with ammonia degassing under static conditions and the other with ammonia degassing by bubbling of N2 gas, were carried out at 2, 21, 50, and 70 °C. The results indicate that kinetic isotopic effects are dominated during efficient degassing of ammonia in the bubbling experiments, which yielded kinetic nitrogen isotope fractionation factors αNH3(g)-NH3(aq) of 0.9898 at 2 °C, 0.9918 at 21 °C, 0.9935 at 50 °C and 0.9948 at 70 °C. These values show a good relationship with temperature as 103lnαNH3(g)-NH3(aq) = 14.6 - 6.8 × 1000/T. In contrast, isotopic effects during less efficient degassing of ammonia in the static experiments are more complicated. The results do not match either kinetic isotope fractionation or equilibrium isotope fractionation but sit between these two. The most likely cause is that back dissolution of the degassed ammonia occurred in these experiments and consequently shifted kinetic isotope fractionation toward equilibrium isotope fractionation. Our experimental results highlight complicated isotopic effects may occur in natural environments, and need to be fully considered in the interpretation of field data.
Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun
2008-01-01
An Escherichia coli galactose kinase gene knockout (ΔgalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the ΔgalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37°C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A ΔmglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions. PMID:18263746
Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun
2008-04-01
An Escherichia coli galactose kinase gene knockout (DeltagalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the DeltagalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37 degrees C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A DeltamglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions.
Non-equilibrium effects in steady relativistic e^+e^-gamma winds
NASA Astrophysics Data System (ADS)
Grimsrud, Ole M.; Wasserman, Ira
1998-11-01
We consider an ultrarelativistic wind consisting of electron-positron pairs and photons with the principal goal of finding the asymptotic Lorentz factor gamma_∞ for zero baryon number. The wind is assumed to originate at radius r_i where it has a Lorentz factor gamma_i and a temperature T_i sufficiently high to maintain pair equilibrium. As r increases, T decreases and becomes less than the temperature corresponding to the electron mass m_e, after which non-equilibrium effects become important. The pairs, which carry only a small fraction of the total energy, may be accelerated by the photons until tau falls below ~2x10^-5gamma^3/4_i. Radiative transfer calculations show that only at this point do the radiation flux and pressure start to deviate significantly from their blackbody values. The acceleration of the pairs increases gamma by a factor ~45 compared with its value at the photosphere; it is shown to approach gamma_∞~1.4x10^3(r^6_i/10cm)^1/4gamma^{3/4}_iT_i/m_e. The limit of zero baryon number is a good approximation when the mass injection rate Msolar in the flow is below a critical value corresponding to (Esolar/MsolarM)_c,0~5x10^7(r^6_i/10cm)T_i/m_e for fixed energy injection rate E/E. For large baryon loading, (Esolar/Msolar<~Esolar/Msolar)_c,M~350(r_i/10^6cm)^1/4gamma^3/4_iT_i/ m_e, the asymptotic Lorentz factor is gamma_∞~Esolar/Msolar. Surprisingly, increasing Esolar/Msolar from (Esolar/Msolar)_c,M to ∞ only increases gamma_∞ by a factor ~(m_p/m_e)^1/4~6.5, less than an order of magnitude. As Esolar/Msolar increases, the fraction of the energy carried by pairs decreases, reaching ~10^-5gamma^3/4_i as Esolar/Msolar to ∞.
Population annealing simulations of a binary hard-sphere mixture
NASA Astrophysics Data System (ADS)
Callaham, Jared; Machta, Jonathan
2017-06-01
Population annealing is a sequential Monte Carlo scheme well suited to simulating equilibrium states of systems with rough free energy landscapes. Here we use population annealing to study a binary mixture of hard spheres. Population annealing is a parallel version of simulated annealing with an extra resampling step that ensures that a population of replicas of the system represents the equilibrium ensemble at every packing fraction in an annealing schedule. The algorithm and its equilibration properties are described, and results are presented for a glass-forming fluid composed of a 50/50 mixture of hard spheres with diameter ratio of 1.4:1. For this system, we obtain precise results for the equation of state in the glassy regime up to packing fractions φ ≈0.60 and study deviations from the Boublik-Mansoori-Carnahan-Starling-Leland equation of state. For higher packing fractions, the algorithm falls out of equilibrium and a free volume fit predicts jamming at packing fraction φ ≈0.667 . We conclude that population annealing is an effective tool for studying equilibrium glassy fluids and the jamming transition.
Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation
Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.
2006-01-01
Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments revealed that 56Fe/54Fe ratios of Fe(III)aq were generally equal to or greater than those of Fe(III)ppt, and isotopic fractionation between these phases decreased with increasing precipitation rate and decreasing grain size. Considered together, the data confirm that the iron isotope variations observed in our microbial experiments are primarily controlled by non-biological equilibrium and kinetic factors, a result that aids our ability to interpret present-day iron cycling processes but further complicates our ability to use iron isotopes alone to identify biological processing in the rock record. ?? 2005 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kumar, A.; Graves, R. A., Jr.; Weilmuenster, K. J.
1980-01-01
A vectorized code, EQUIL, was developed for calculating the equilibrium chemistry of a reacting gas mixture on the Control Data STAR-100 computer. The code provides species mole fractions, mass fractions, and thermodynamic and transport properties of the mixture for given temperature, pressure, and elemental mass fractions. The code is set up for the electrons H, He, C, O, N system of elements. In all, 24 chemical species are included.
NASA Astrophysics Data System (ADS)
Bielecki, J.; Rata, A. D.; Börjesson, L.
2014-01-01
We present results on the temperature dependence of ultrafast electron and lattice dynamics, measured with pump-probe transient reflectivity experiments, of an epitaxially grown LaCoO3 thin film under tensile strain. Probing spin-polarized transitions into the antibonding eg band provides a measure of the low-spin fraction, both as a function of temperature and time after photoexcitation. It is observed that femtosecond laser pulses destabilize the constant low-spin fraction (˜63%-64%) in equilibrium into a thermally activated state, driven by a subpicosecond change in spin gap Δ. From the time evolution of the low-spin fraction, it is possible to disentangle the thermal and lattice contributions to the spin state. A lattice mediated spin repulsion, identified as the governing factor determining the equilibrium spin state in thin-film LaCoO3, is observed. These results suggests that time-resolved spectroscopy is a sensitive probe of the spin state in LaCoO3 thin films, with the potential to bring forward quantitative insight into the complicated interplay between structure and spin state in LaCoO3.
NASA Astrophysics Data System (ADS)
Eldridge, D. L.; Farquhar, J.; Guo, W.
2015-12-01
Sulfite (sensu lato), an intermediate in a variety sulfur redox processes, plays a particularly important role in microbial sulfate reduction. It exists intracellularly as multiple species between sets of enzymatic reactions that transform sulfate to sulfide, with the exact speciation depending on pH, T, and ionic strength. However, the complex speciation of sulfite is ignored in current isotope partitioning models of microbial sulfate reduction and simplified solely to the pyramidal SO32- (sulfite sensu stricto), due to a lack of appropriate constraints. We theoretically estimated the equilibrium sulfur isotope fractionations (33S/32S, 34S/32S, 36S/32S) among all documented sulfite species in aqueous solution, including sulfite (SO32-), bisulfite isomers and dimers ((HS)O3-, (HO)SO2-, S2O52-), and SO2(aq), through first principles quantum mechanical calculations. The calculations were performed at B3LYP/6-31+G(d,p) level using cluster models with 30-40 water molecules surrounding the solute. Our calculated equilibrium fractionation factors compare well to the available experimental constraints and suggest that the minor and often-ignored tetrahedral (HS)O3- isomer of bisulfite strongly influences isotope partitioning behavior in the sulfite system under most environmentally relevant conditions, particularly fractionation magnitudes and unusual temperature dependence. For example, we predict that sulfur isotope fractionation between sulfite and bulk bisulfite in solution should have an apparent inverse temperature dependence due to the influence of (HS)O3- and its increased stability at higher temperatures. Our findings highlight the need to appropriately account for speciation/isomerization of sulfur species in sulfur isotope studies. We will also present similar calculation results of other aqueous sulfur compounds (e.g., H2S/HS-, SO42-, S2O32-, S3O62-, and poorly documented SO22- species), and discuss the implication of our results for microbial sulfate reduction models and other sulfur-redox processes in nature.
Analytical Phase Equilibrium Function for Mixtures Obeying Raoult's and Henry's Laws
NASA Astrophysics Data System (ADS)
Hayes, Robert
When a mixture of two substances exists in both the liquid and gas phase at equilibrium, Raoults and Henry's laws (ideal solution and ideal dilute solution approximations) can be used to estimate the gas and liquid mole fractions at the extremes of either very little solute or solvent. By assuming that a cubic polynomial can reasonably approximate the intermediate values to these extremes as a function of mole fraction, the cubic polynomial is solved and presented. A closed form equation approximating the pressure dependence on mole fraction of the constituents is thereby obtained. As a first approximation, this is a very simple and potentially useful means to estimate gas and liquid mole fractions of equilibrium mixtures. Mixtures with an azeotrope require additional attention if this type of approach is to be utilized. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.
Leong, Hui Sun; Chong, Fui Teen; Sew, Pui Hoon; Lau, Dawn P; Wong, Bernice H; Teh, Bin-Tean; Tan, Daniel S W; Iyer, N Gopalakrishna
2014-09-01
Emerging data suggest that cancer stem cells (CSCs) exist in equilibrium with differentiated cells and that stochastic transitions between these states can account for tumor heterogeneity and drug resistance. The aim of this study was to establish an in vitro system that recapitulates stem cell plasticity in head and neck squamous cell cancers (HNSCCs) and identify the factors that play a role in the maintenance and repopulation of CSCs. Tumor spheres were established using patient-derived cell lines via anchorage-independent cell culture techniques. These tumor spheres were found to have higher aldehyde dehydrogenase (ALD) cell fractions and increased expression of Kruppel-like factor 4, SRY (sex determining region Y)-box 2, and Nanog and were resistant to γ-radiation, 5-fluorouracil, cisplatin, and etoposide treatment compared with monolayer culture cells. Monolayer cultures were subject to single cell cloning to generate clones with high and low ALD fractions. ALDHigh clones showed higher expression of stem cell and epithelial-mesenchymal transition markers compared with ALDLow clones. ALD fractions, representing stem cell fractions, fluctuated with serial passaging, equilibrating at a level specific to each cell line, and could be augmented by the addition of epidermal growth factor (EGF) and/or insulin. ALDHigh clones showed increased EGF receptor (EGFR) and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation, with increased activation of downstream pathways compared with ALDLow clones. Importantly, blocking these pathways using specific inhibitors against EGFR and IGF-1R reduced stem cell fractions drastically. Taken together, these results show that HNSCC CSCs exhibit plasticity, with the maintenance of the stem cell fraction dependent on the EGFR and IGF-1R pathways and potentially amenable to targeted therapeutics. ©AlphaMed Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.
1999-07-01
The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral contentmore » can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.« less
Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids
NASA Astrophysics Data System (ADS)
Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.
2011-12-01
The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed before chemical purification. Initial results provide an equilibrium 98Mo/95Mo isotope fractionation factor between metal and silicate liquids of -0.18±0.10% (2σ) at 1400°C and 1 GPa. Although the relative mass difference of these Mo isotopes is smaller than for Fe isotopes, this result implies that metal-silicate segregation may have led to mass-dependent stable Mo isotope fractionation, as opposed to Fe isotopes. A possible explanation is that the bonding environment of Mo may counterbalance its relatively small mass separation. At reducing conditions, Mo occurs in 4+ valence state in silicates [4] and thus its bond strength difference between metal and silicate may be more similar to that of Si than Fe. Stable Mo isotopes may thus become an important tool for constraining the conditions of core formation in asteroids and terrestrial planets. [1] Rubie et al. (2011) EPSL 301, 31-42. [2] Shahar et al. (2009) EPSL 288, 228-234. [3] Poitrasson et al. (2009) EPSL 278, 376-385. [4] Farges et al. (2006) Can. Min. 44, 731-753.
Equilibrium stable-isotope fractionation of thallium and mercury
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2005-12-01
In this study first-principles quantum mechanical and empirical force-field models are used to estimate equilibrium mass-dependent isotopic fractionations among a variety of thallium and mercury compounds. High-precision MC-ICP-MS measurements have recently uncovered evidence of stable isotope fractionation for many elements, including 2-4‰ variability in the isotopic compositions of thallium[1] (atomic no. 81) and mercury[2] (atomic no. 80). The observed thallium- and mercury-isotope fractionations are remarkable, given that the magnitude of isotopic fractionation typically decreases as atomic number increases[3]. Stable isotope measurements could improve our understanding of geochemical and biogeochemical cycling of both elements, but little is known about the mechanisms driving these fractionations. A better understanding of the chemical processes controlling stable isotope compositions could help maximize the utility of these new geochemical tracers. Standard equilibrium stable isotope fractionation theory holds that the energy driving fractionation comes from isotopic effects on vibrational frequencies, which have generally not been measured. In the present study both quantum-mechanical and empirical force fields are used to estimate unknown frequencies. Results suggest that thallium and mercury fractionations of ≥ 0.5‰ are likely during the relevant redox reactions Tl+ ↔ Tl3+ and HgO ↔ Hg2+. Methyl-mercury and mercury-halide compounds like CH3HgCl will have ~ 1‰ higher 202Hg/198Hg than atomic vapor at room temperature. Fractionations between coexisting Hg2+ species appear to be much smaller, however. 205Tl/203Tl in Tl(H2O)_63+ is predicted to be ~0.5‰ higher than in coexisting Tl+-bearing substances. This result is in qualitative agreement with data from ferromanganese crusts [1], suggesting that Tl3+ in manganese-oxides will have higher 205Tl/203Tl than aqueous Tl+. Equilibrium fractionations for both elements are much smaller than the observed range of isotopic fractionations, however, which could point to a major role for kinetic-fractionation or Rayleigh-like distillation processes. Refs.: [1] Rehämper et al. (2002) EPSL 197:65. [2] Xie et al. (2005) J. Anal. Atomic Spectrom. 20:515. [3] Bigeleisen and Mayer (1947) J. Chem. Phys. 15:261.
NASA Astrophysics Data System (ADS)
Mac Low, Mordecai-Mark; Glover, Simon C. O.
2012-02-01
Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H2 from cold atomic gas. The formation timescale for H2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H2. The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.
NASA Astrophysics Data System (ADS)
Fu, Qi; Socki, Richard A.; Niles, Paul B.
2015-04-01
Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic compounds is critical for understanding deep subsurface ecosystems and the origin of organic compounds on Mars and other planets.
Effect of amino acids on the precipitation kinetics and Ca isotopic composition of gypsum
NASA Astrophysics Data System (ADS)
Harouaka, Khadouja; Kubicki, James D.; Fantle, Matthew S.
2017-12-01
Stirred gypsum (CaSO4 · 2H2O) precipitation experiments (initial Ωgypsum = 2.4 ± 0.14, duration ≈ 1.0-1.5 h) were conducted in the presence of the amino acids glycine (190 μM), L-alanine (190 μM), D- and L-arginine (45 μM), and L-tyrosine (200 μM) to investigate the effect of simple organic compounds on both the precipitation kinetics and Ca isotopic composition of gypsum. Relative to abiotic controls, glycine, tyrosine, and alanine inhibited precipitation rates by ∼22%, 27%, and 29%, respectively, while L- and D-arginine accelerated crystal growth by ∼8% and 48%, respectively. With the exception of tyrosine, amino acid induced inhibition resulted in fractionation factors (αs-f) associated with precipitation that were no more than 0.3‰ lower than amino acid-free controls. In contrast, the tyrosine and D- and L-arginine experiments had αs-f values associated with precipitation that were similar to the controls. Our experimental results indicate that Ca isotopic fractionation associated with gypsum precipitation is impacted by growth inhibition in the presence of amino acids. Specifically, we propose that the surface-specific binding of amino acids to gypsum can change the equilibrium fractionation factor of the bulk mineral. We investigate the hypothesis that amino acids can influence the growth of gypsum at specific crystal faces via adsorption and that different faces have distinct fractionation factors (αface-fluid). Accordingly, preferential sorption of amino acids at particular faces changes the relative, face-specific mass fluxes of Ca during growth, which influences the bulk isotopic composition of the mineral. Density functional theory (DFT) calculations suggest that the energetic favorability of glycine sorption onto gypsum crystal faces occurs in the order: (1 1 0) > (0 1 0) > (1 2 0) > (0 1 1), while glycine sorption onto the (-1 1 1) face was found to be energetically unfavorable. Face-specific fractionation factors constrained by frequency calculations of clusters derived from DFT structures vary by as much as 1.4‰. This suggests that the equilibrium fractionation factor for the bulk crystal can vary substantially, and that surface sorption can induce changes in αeq associated with gypsum precipitation. While we do not rule out the influence of kinetic isotope effects, our results clearly demonstrate that the mode of crystal growth can have a sizeable effect on the bulk fractionation factor (αs-f). Ultimately, our results suggest that the same mechanism by which organic molecules affect the morphology of a mineral can also impact the isotopic composition of the mineral. The results of our study provide valuable insight into the mechanism of Ca isotopic fractionation during gypsum precipitation. Our results are also important for establishing a framework for accurate interpretations of mineral-hosted Ca isotope records of the past, as we demonstrate a mechanistic pathway by which the biological and chemical environment can impact Ca isotopic fractionation during mineral precipitation.
Variation of the unattached fraction of radon progeny and its contribution to radon exposure.
Guo, Lu; Zhang, Lei; Guo, Qiuju
2016-06-01
The unattached fraction of radon progeny is one of the most important factors for radon exposure evaluation through the dosimetric approach. To better understand its level and variation in the real environment, a series of field measurements were carried out indoors and outdoors, and radon equilibrium equivalent concentration was also measured. The dose contribution of unattached radon progeny was evaluated in addition. The results show that no clear variation trend of the unattached fraction of radon progeny is observed in an indoor or outdoor environment. The average unattached fraction of radon progeny for the indoors and outdoors are (8.7 ± 1.6)% and (9.7 ± 2.1)%, respectively. The dose contribution of unattached radon progeny to total radon exposure is some 38.8% in an indoor environment, suggesting the importance of the evaluation on unattached radon progeny.
Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks
NASA Astrophysics Data System (ADS)
Huo, Jingjing; Zhao, Hongyong
2016-04-01
In this paper, a fractional SIR model with birth and death rates on heterogeneous complex networks is proposed. Firstly, we obtain a threshold value R0 based on the existence of endemic equilibrium point E∗, which completely determines the dynamics of the model. Secondly, by using Lyapunov function and Kirchhoff's matrix tree theorem, the globally asymptotical stability of the disease-free equilibrium point E0 and the endemic equilibrium point E∗ of the model are investigated. That is, when R0 < 1, the disease-free equilibrium point E0 is globally asymptotically stable and the disease always dies out; when R0 > 1, the disease-free equilibrium point E0 becomes unstable and in the meantime there exists a unique endemic equilibrium point E∗, which is globally asymptotically stable and the disease is uniformly persistent. Finally, the effects of various immunization schemes are studied and compared. Numerical simulations are given to demonstrate the main results.
Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble
2017-01-01
A new formulation of the Reaction Ensemble Monte Carlo technique (RxMC) combined with the Continuous Fractional Component Monte Carlo method is presented. This method is denoted by serial Rx/CFC. The key ingredient is that fractional molecules of either reactants or reaction products are present and that chemical reactions always involve fractional molecules. Serial Rx/CFC has the following advantages compared to other approaches: (1) One directly obtains chemical potentials of all reactants and reaction products. Obtained chemical potentials can be used directly as an independent check to ensure that chemical equilibrium is achieved. (2) Independent biasing is applied to the fractional molecules of reactants and reaction products. Therefore, the efficiency of the algorithm is significantly increased, compared to the other approaches. (3) Changes in the maximum scaling parameter of intermolecular interactions can be chosen differently for reactants and reaction products. (4) The number of fractional molecules is reduced. As a proof of principle, our method is tested for Lennard-Jones systems at various pressures and for various chemical reactions. Excellent agreement was found both for average densities and equilibrium mixture compositions computed using serial Rx/CFC, RxMC/CFCMC previously introduced by Rosch and Maginn (Journal of Chemical Theory and Computation, 2011, 7, 269–279), and the conventional RxMC approach. The serial Rx/CFC approach is also tested for the reaction of ammonia synthesis at various temperatures and pressures. Excellent agreement was found between results obtained from serial Rx/CFC, experimental results from literature, and thermodynamic modeling using the Peng–Robinson equation of state. The efficiency of reaction trial moves is improved by a factor of 2 to 3 (depending on the system) compared to the RxMC/CFCMC formulation by Rosch and Maginn. PMID:28737933
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, John W.
We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions
USDA-ARS?s Scientific Manuscript database
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...
Some comments on thermodynamic consistency for equilibrium mixture equations of state
Grove, John W.
2018-03-28
We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.
NASA Astrophysics Data System (ADS)
Dütsch, Marina; Pfahl, Stephan; Sodemann, Harald
2017-12-01
The deuterium excess (d) is a useful measure for nonequilibrium effects of isotopic fractionation and can therefore provide information about the meteorological conditions in evaporation regions or during ice cloud formation. In addition to nonequilibrium fractionation, two other effects can change d during phase transitions. The first is the dependence of the equilibrium fractionation factors on temperature, and the second is the nonlinearity of the δ scale on which d is defined. The second effect can be avoided by using an alternative definition that is based on the logarithmic scale. However, in this case d is not conserved when air parcels mix, which can lead to changes without phase transitions. Here we provide a systematic analysis of the benefits and limitations of both deuterium excess definitions by separately quantifying the impact of the nonequilibrium effect, the temperature effect, the δ-scale effect, and the mixing effect in a simple Rayleigh model simulating the isotopic composition of air parcels during moist adiabatic ascent. The δ-scale effect is important in depleted air parcels, for which it can change the sign of the traditional deuterium excess in the remaining vapor from negative to positive. The alternative definition mainly reflects the nonequilibrium and temperature effect, while the mixing effect is about 2 orders of magnitude smaller. Thus, the alternative deuterium excess definition appears to be a more accurate measure for nonequilibrium effects in situations where moisture is depleted and the δ-scale effect is large, for instance, at high latitudes or altitudes.
NASA Astrophysics Data System (ADS)
Carder, E. A.; Galy, A.; McKenzie, J. A.; Vasconcelos, C.; Elderfield, H.
2005-12-01
The enigma surrounding the `Dolomite Problem' is the relative abundance of dolomite in the geological record versus its very rare occurrence on the surface of the modern Earth despite a particularly favourable modern seawater chemistry. Recent studies of modern dolomite from hypersaline coastal lagoons in Brazil and Pleistocene dolomite from ODP cores collected during ODP Leg 201 on the Peru Margin suggest microbial mediation is an important factor [1]. Indeed, cultures of sulfate-reducing bacteria isolated from the lagoons mediate dolomite precipitation in the laboratory [2, 3]. In this study we report magnesium isotopic analyses of these modern microbial associated dolomites and ancient dolomites of a range of geological ages and environments. The application of stable magnesium isotopes to study dolomite formation and the nature of the processes involved represents a new frontier in isotope geochemistry. Highly accurate determination of the magnesium isotopic composition allows us to distinguish between kinetic and equilibrium isotope fractionation on the basis of the excess of 25Mg. A significant kinetic isotope fractionation is observed in laboratory cultures and surfical microbial mats from the Brazilian lagoons. Older dolomites (<3000 yrs.) taken from cores recovered from the lagoon are much closer to equilibrium. We interpret our data as evidencing an initial microbial mediated nucleation of dolomite that is a kinetic process and a subsequent inorganic addition of dolomite overprinting an equilibrium signature. This is in agreement with a previous major element and crystallographic study of the Brazilian dolomites [1]. The ancient dolomites analysed range in age from Neoproterozoic to Pleistocene and come from diverse geological environments including submarine diagenetic zones, platform carbonates and lagoonal environments. Magnesium isotopic analysis shows evidence of a varying component of kinetic fractionation, smaller than the kinetic end member as typified by the laboratory cultures. The ancient dolomites appear to evidence the same initial kinetic nucleation and subsequent equilibrium growth as the modern. In contrast, hydrothermal dolomite exhibits only equilibrium fractionation. Taken together, our results argue for a strong biological role in magnesium fixation into sedimentary dolomite in both the ancient and modern and suggest microbial processes are important in resolving the `Dolomite Problem'. References [1] Vasconcelos, C. and McKenzie, J.A., (1997), J. Sed. Res., 67, 378-390. [2] Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D. and Tien, A.J., (1995), Nature 377, 220-222. [3] Warthmann R., van Lith Y., Vasconcelos C., McKenzie J.A. and Karpoff A.M., (2000), Geology 28, 1091-1094.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrifvars, B.J.; Blomquist, J.P.; Hupa, M.
1998-12-31
Previous work at Aabo Akademi University has focused on identification and quantification of various sintering mechanisms which are relevant for problematic ash behavior during biomass combustion in fluidized bed combustion conditions, and on multi-component multi-phase thermodynamic phase equilibrium calculations of ash chemistry in these conditions. In both areas new information has been developed and useful modeling capabilities have been created. Based on the previous work, the authors now present a novel approach of using a combination of an advanced fuel analysis method and thermodynamic phase equilibrium calculations to predict the chemical and thermal behavior of the ash when firing biomass.more » Four different fuels [coal, forest residues, wood chips, and a mixture of forest residue and wood chips] were analyzed using the chemical fractionation analysis technique. Based on the results from these analyses, the authors formed two different ash fractions, (1) one fine sized fraction consisting of those elements found in the water and weak acid leach, and (2) a coarse ash particle fraction consisting of those elements found in the strong acid leach and non-leachable rest. The small sized ash fraction was then assumed to be carried up with the flue gases and consequently formed the base for any ash related problems in the flue gas channel. This fraction was therefore analyzed on its chemical and thermal behavior using multi-component multi-phase equilibrium calculations, by which the composition and the melting behavior was estimated as a function of the temperature. The amount of melt, which has earlier been found to be strongly related to problematic ash behavior, was finally expressed as a function of the temperature for the fraction. The coarse fraction was treated separately. Here the authors estimate the composition only. The paper discusses the results and their relevance to full scale combustion.« less
NASA Astrophysics Data System (ADS)
Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.
This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.
Sircar, S; Aisenbrey, E; Bryant, S J; Bortz, D M
2015-01-07
We present an experimentally guided, multi-phase, multi-species polyelectrolyte gel model to make qualitative predictions on the equilibrium electro-chemical properties of articular cartilage. The mixture theory consists of two different types of polymers: poly(ethylene gylcol) (PEG), chondrotin sulfate (ChS), water (acting as solvent) and several different ions: H(+), Na(+), Cl(-). The polymer chains have covalent cross-links whose effect on the swelling kinetics is modeled via Doi rubber elasticity theory. Numerical studies on equilibrium polymer volume fraction and net osmolarity (difference in the solute concentration across the gel) show a complex interplay between ionic bath concentrations, pH, cross-link fraction and the average charge per monomer. Generally speaking, swelling is aided due to a higher average charge per monomer (or a higher particle fraction of ChS, the charged component of the polymer), low solute concentration in the bath, a high pH or a low cross-link fraction. A peculiar case arises at higher values of cross-link fraction, where it is observed that increasing the average charge per monomer leads to gel deswelling. Copyright © 2014 Elsevier Ltd. All rights reserved.
First-principles Calculations of Equilibrium Calcium Isotope Fractionation among Ca-bearing Minerals
NASA Astrophysics Data System (ADS)
Zhou, C.; Wang, W.; Kang, J.; Wu, Z.; Huang, F.
2016-12-01
Calcium isotope fractionation factors of Ca-bearing minerals are investigated with the first principle calculations based on density functional theory (DFT). The sequence of heavy Ca isotope enrichment is forsterite > grossular > butschliite > lime > fluorite > tremolite diopside > anhydrite dolomite titanite > anorthite > perovskite gehlenite aragonite richterite > akermanite > oldhamite. This order is consistent with variation of Ca-O bond lengths, indicating that Ca-O bond energy plays an overwhelming role on the fractionations of Ca isotopes. Our study provides important insights into the Ca isotopic data of meteorites. Our calculation predicts that oldhamites (CaS) are enriched in light Ca isotopes relative to silicate phase if they are in equilibrium, contrast with the observations in Valdes et al (2014). Therefore, oldhamite and silicate phase in the meteorites should be in disequilibrium for Ca isotopes. Our results can also be used to understand Ca isotopic composition of the Moon. Δ44/40Ca between olivine (with CaO content of 2.48 wt%) and diopside is up to 0.41‰ and Δ44/40Cagrossular-diopside is 0.26‰ at 1500K. Feng et al. (2014) calculated that Δ44/40Ca between opx with CaO content of 1.74 wt% and cpx is about 0.27‰ at 1500 K. According to the Lunar Magma Ocean (LMO) model, the modern Moon is chemically stratified (Snyder et al., 1992; Elardo et al., 2011). Assuming that the lower cumulate and upper residual melt are in isotopic equilibrium during the evolution of Lunar Magma Ocean where the cumulate may be mainly composed of olivine and orthopyroxene or garnet/spinel, δ44/40Ca of the Moon could be underestimated by 0.05‰ to 0.25‰ if the shallow lunar samples are used to represent the bulk Moon.
Using chromium stable isotope ratios to quantify Cr(VI) reduction: Lack of sorption effects
Ellis, A.S.; Johnson, T.M.; Bullen, T.D.
2004-01-01
Chromium stable isotope values can be effectively used to monitor reduction of Cr(VI) in natural waters. We investigate effects of sorption during transport of Cr(VI) which may also shift Cr isotopes values, complicating efforts to quantify reduction. This study shows that Cr stable isotope fractionation caused by sorption is negligible. Equilibrium fractionation of Cr stable isotopes between dissolved Cr-(VI) and Cr(VI) adsorbed onto ??-Al2O3 and goethite is less than 0.04???. (53Cr/52Cr) under environmentally relevant pH conditions. Batch experiments at pH 4.0 and pH 6.0 were conducted in series to sequentially magnify small isotope fractionations. A simple transport model suggests that adsorption may cause amplification of a small isotope fractionation along extreme fringes of a plume, leading to shifts in 53Cr/52Cr values. We therefore suggest that isotope values at extreme fringes of Cr plumes be critically evaluated for sorption effects. A kinetic effect was observed in experiments with goethite at pH 4 where apparently lighter isotopes diffuse into goethite clumps at a faster rate before eventually reaching equilibrium. This observed kinetic effect may be important in a natural system that has not attained equilibrium and is in need of further study. Cr isotope fractionation caused by speciation of Cr(VI) between HCrO4- and CrO42- was also examined, and we conclude that it is not measurable. In the absence of isotope fractionation caused by equilibrium speciation and sorption, most of the variation in ??53 Cr values may be attributed to reduction, and reliable estimates of Cr reduction can be made.
Krop, H B; van Noort, P C; Govers, H A
2001-01-01
Literature on the equilibrium constant for distribution between dissolved organic carbon (DOC) (Kdoc) data of strongly hydrophobic organic contaminants were collected and critically analyzed. About 900 Kdoc entries for experimental values were retrieved and tabulated, including those factors that can influence them. In addition, quantitative structure-activity relationship (QSAR) prediction equations were retrieved and tabulated. Whether a partition or association process between the contaminant and DOC takes place could not be fully established, but indications toward an association process are strong in several cases. Equilibrium between a contaminant and DOC in solution was shown to be achieved within a minute. When the equilibrium shifts in time, this was caused by either a physical or chemical change of the DOC, affecting the lighter fractions most. Adsorption isotherms turned out to be linear in the contaminant concentration for the relevant DOC concentration up to 100 mg of C/L. Eighteen experimental methods have been developed for the determination of the pertinent distribution constant. Experimental Kdoc values revealed the expected high correlation with partition coefficients over n-octanol and water (Kow) for all experimental methods, except for the HPLC and apparent solubility (AS) method. Only fluorescence quenching (FQ) and solid-phase microextraction (SPME) methods could quantify fast equilibration. Only 21% of the experimental values had a 95% confidence interval, which was statistically significantly different from zero. Variation in Kdoc values was shown to be high, caused mainly by the large variation of DOC in water samples. Even DOC from one sample gave different equilibrium constants for different DOC fractions. Measured Kdoc values should, therefore, be regarded as average values. Kdoc was shown to increase on increasing molecular mass, indicating that the molecular mass distribution is a proper normalization function for the average Kdoc at the current state of knowledge. The weakly bound fraction could easily be desorbed when other adsorbing media, such as a SepPak column or living organism, are present. The amount that moves from the DOC to the other medium will depend, among other reasons, on the size of the labile DOC fraction and the equilibrium constant of the other medium. Variation of Kdoc with temperature turned out to be small, probably caused by a small enthalpy of transfer from water to DOC. Ionic strength turned out to be more important, leading to changes of a factor of 2-5. The direction of this effect depends on the type of ion. With respect to QSAR relationships between Kdoc and macroscopic or molecular descriptors, it was concluded that only a small number of equations are available in the literature, for apolar compounds only, and with poor statistics and predictive power. Therefore, a first requirement is the improvement of the availability and quality of experimental data. Along with this, theoretical (mechanistic) models for the relationship between DOC plus contaminant descriptors on the one side and Kdoc on the other should be further developed. Correlations between Kdoc and Kow and those between the soil-water partition constant (Koc) and Kow were significantly different only in the case of natural aquatic DOC, pointing at substantial differences between these two types of organic material and at a high correspondence for other types of commercial and natural DOC.
Para hydrogen equilibration in the atmospheres of the outer planets
NASA Technical Reports Server (NTRS)
Conrath, Barney J.
1986-01-01
The thermodynamic behavior of the atmospheres of the Jovian planets is strongly dependent on the extent to which local thermal equilibration of the ortho and para states of molecular hydrogen is achieved. Voyager IRIS data from Jupiter imply substantial departures of the para hydrogen fraction from equilibrium in the upper troposphere at low latitudes, but with values approaching equilibrium at higher latitudes. Data from Saturn are less sensitive to the orth-para ratio, but suggest para hydrogen fractions near the equilibrium value. Above approximately the 200 K temperature level, para hydrogen conversion can enhance the efficiency of convection, resulting in a substantial increase in overturning times on all of the outer planets. Currently available data cannot definitively establish the ortho-para ratios in the atmospheres of Uranus and Neptune, but suggest values closer to local equilibrium than to the 3.1 normal ratio. Modeling of sub-millimeter wavelength measurements of these planets suggest thermal structures with frozen equilibrium lapse rates in their convective regions.
Xu, Xiaohui Sophia; Rose, Anne; Demers, Roger; Eley, Timothy; Ryan, John; Stouffer, Bruce; Cojocaru, Laura; Arnold, Mark
2014-01-01
The determination of drug-protein binding is important in the pharmaceutical development process because of the impact of protein binding on both the pharmacokinetics and pharmacodynamics of drugs. Equilibrium dialysis is the preferred method to measure the free drug fraction because it is considered to be more accurate. The throughput of equilibrium dialysis has recently been improved by implementing a 96-well format plate. Results/methodology: This manuscript illustrates the successful application of a 96-well rapid equilibrium dialysis (RED) device in the determination of atazanavir plasma-protein binding. This RED method of measuring free fraction was successfully validated and then applied to the analysis of clinical plasma samples taken from HIV-infected pregnant women administered atazanavir. Combined with LC-MS/MS detection, the 96-well format equilibrium dialysis device was suitable for measuring the free and bound concentration of pharmaceutical molecules in a high-throughput mode.
NASA Astrophysics Data System (ADS)
Kueter, N.; Schmidt, M. W.; Lilley, M. D.; Bernasconi, S. M.
2017-12-01
The understanding of deep-earth carbon fluxes depends greatly on the investigation of carbon isotope systematics in C-O-H-fluids and carbon minerals, such as graphite and diamond (C0). The isotope fractionation factors between the different C-phases and species (in e.g. a fluid) thus govern the observed isotope fractionation patterns. C-isotope fractionation factors relevant for high temperatures are mainly derived from theoretical calculations [e.g. 1,2,3] and, with few exceptions, lack experimental determinations [e.g. 4]. Hundreds of own experiments aimed at equilibrating elemental carbon (C0, graphite/diamond) with C-O-H-fluids demonstrate that kinetics reigns as no system would be closed for H on time scales and temperatures allowing for graphite to equilibrate. To overcome this problem, we performed two studies to determine the C-isotope fractionation in 1) the CO2-CO-CH4 system and 2) the carbonate-melt - graphite system. Equilibrium C-isotope fractionation factors were obtained for CO2 - CO and CH4 - CO pairs (600 - 1200°C) and graphite - Na2CO3/CaCO3melt (900 - 1500°C). Combined with the already available fractionation data for the CaCO3-CO2 pair (400-950°C) from Chacko et al. [4], we determined experimentally based C-isotope fractionation factors for C0 - CH4 and CO2 - C0 pairs by 1) Δ13CCO2-graphite = Δ13CCO2-carbonate + Δ13CCarbonate-graphite and 2) Δ13Cgraphite-CH4 = Δ13CCO2-CH4 - Δ13CCO2-graphite . Current calculated fractionation factors relevant for mantle temperatures (1100 - 1500°C) suggest C-isotope partitioning in the CO2 - C0 pair on the order of 4.2 to 2.4‰, about 2‰ less than predicted by theoretically derived factors [3]. In contrast, our calculations suggest fractionation of about 1.4 to 1.1‰ for the C0 - CH4 pair, about 1‰ higher than expected by theory [3]. [1] Richet et al. (1977) Ann. Rev. Earth Planet. Sci.; [2] Polyakov & Kharlashina (1995) GCA; [3] Bottinga (1969) GCA; [4] Chacko et al. (2001) Rev Mineral Geochem
NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se
The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamicmore » equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.« less
Zhou, Ping; Bai, Rongji
2014-01-01
Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1 < q < 2, one adaptive synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order 1 < q < 2 is considered. Numerical simulations show the validity and feasibility of the proposed scheme. PMID:25247207
Phase equilibrium of methane and nitrogen at low temperatures - Application to Titan
NASA Technical Reports Server (NTRS)
Kouvaris, Louis C.; Flasar, F. M.
1991-01-01
Since the vapor phase composition of Titan's methane-nitrogen lower atmosphere is uniquely determined as a function of the Gibbs phase rule, these data are presently computed via integration of the Gibbs-Duhem equation. The thermodynamic consistency of published measurements and calculations of the vapor phase composition is then examined, and the saturated mole fraction of gaseous methane is computed as a function of altitude up to the 700-mbar level. The mole fraction is found to lie approximately halfway between that computed from Raoult's law, for a gas in equilibrium with an ideal solution of liquid nitrogen and methane, and that for a gas in equilibrium with pure liquid methane.
Wu, Xiongwu; Brooks, Bernard R.
2015-01-01
Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. PMID:26506245
Wu, Xiongwu; Brooks, Bernard R
2015-10-01
Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.
Pasta Nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium
NASA Astrophysics Data System (ADS)
Caplan, Matthew; Horowitz, Charles; da Silva Schneider, Andre; Berry, Donald
2014-09-01
We simulate the decompression of cold dense nuclear matter, near the nuclear saturation density, in order to study the role of nuclear pasta in r-process nucleosynthesis in neutron star mergers. Our simulations are performed using a classical molecular dynamics model with 51 200 and 409 600 nucleons, and are run on GPUs. We expand our simulation region to decompress systems from initial densities of 0.080 fm-3 down to 0.00125 fm-3. We study proton fractions of YP = 0.05, 0.10, 0.20, 0.30, and 0.40 at T = 0.5, 0.75, and 1 MeV. We calculate the composition of the resulting systems using a cluster algorithm. This composition is in good agreement with nuclear statistical equilibrium models for temperatures of 0.75 and 1 MeV. However, for proton fractions greater than YP = 0.2 at a temperature of T = 0.5 MeV, the MD simulations produce non-equilibrium results with large rod-like nuclei. Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.
Bandula, Steve; White, Steven K; Flett, Andrew S; Lawrence, David; Pugliese, Francesca; Ashworth, Michael T; Punwani, Shonit; Taylor, Stuart A; Moon, James C
2013-11-01
To develop and validate equilibrium contrast material-enhanced computed tomography (CT) to measure myocardial extracellular volume (ECV) fraction by using a histologic reference standard and to compare equilibrium CT with equilibrium contrast-enhanced magnetic resonance (MR) imaging. A local ethics committee approved the study, and all subjects gave fully informed written consent. An equilibrium CT protocol was developed using iohexol at 300 mg of iodine per milliliter (bolus of 1 mg per kilogram of body weight administered at a rate of 3 mL/sec, followed immediately by an infusion of 1.88 mL/kg per hour with CT imaging before and at 25 minutes after injection of bolus of contrast agent) and ECV within the myocardial septum measured using both equilibrium CT and equilibrium MR imaging in patients with severe aortic stenosis. Biopsy samples of the myocardial septum collected during valve replacement surgery were used for histologic quantification of extracellular fibrosis with picrosirius red staining. Equilibrium CT- and equilibrium MR imaging-derived ECV measurements were compared with histologically quantified fibrosis by using Pearson correlation. Agreement between equilibrium CT and equilibrium MR imaging was assessed by using Bland-Altman comparison. Twenty-three patients (16 male, seven female; mean age, 70.8 years; standard deviation, 8.3) were recruited. The mean percentage of histologic fibrosis was 18% (intersubject range, 5%-40%). There was a significant correlation between both equilibrium CT- and equilibrium MR imaging-derived ECV and percentage of histologic fibrosis (r = 0.71 [P < .001] and r = 0.84 [P < .0001], respectively). Equilibrium CT-derived ECV was significantly correlated to equilibrium MR imaging-derived ECV (r = 0.73). ECV measured by using equilibrium CT in patients with aortic stenosis correlates with histologic quantification of myocardial fibrosis and with ECV derived by using equilibrium MR imaging. RSNA, 2013
Phase and vacancy behaviour of hard "slanted" cubes
NASA Astrophysics Data System (ADS)
van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.
2017-09-01
We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the "slant" angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.
2010-10-01
Zea mays L .). Can J Soil Sci 75:361-367. Zhang, T. Q., A. F. MacKenzie, B. C. Liang, and C. F. Drury. 2004. Soil test phosphorus and phosphorus...particulate exchangeable P fractions (as a fractional percentage), respectively, Cs is the suspended sediment concentration (M L -3), and Kd is the...groundwater) amended with P to a concentration of 0.120 mg L -1 to maintain in situ P equilibrium conditions (reported in James and Larson 2008
NASA Astrophysics Data System (ADS)
Sherman, David M.
2013-10-01
Copper exists as two isotopes: 65Cu (∼30.85%) and 63Cu (∼69.15%). The isotopic composition of copper in secondary minerals, surface waters and oxic groundwaters is 1-12‰ heavier than that of copper in primary sulfides. Changes in oxidation state and complexation should yield substantial isotopic fractionation between copper species but it is unclear to what extent the observed Cu isotopic variations reflect equilibrium fractionation. Here, I calculate the reduced partition function ratios for chalcopyrite (CuFeS2), cuprite (Cu2O), tenorite (CuO) and aqueous Cu+, Cu+2 complexes using periodic and molecular hybrid density functional theory to predict the equilibrium isotopic fractionation of Cu resulting from oxidation of Cu+ to Cu+2 and by complexation of dissolved Cu. Among the various copper(II) complexes in aqueous environments, there is a significant (1.3‰) range in the reduced partition function ratios. Oxidation and congruent dissolution of chalcopyrite (CuFeS2) to dissolved Cu+2 (as Cu(H2O)5+2) yields 65-63δ(Cu+2-CuFeS2) = 3.1‰ at 25 °C; however, chalcopyrite oxidation/dissolution is incongruent so that the observed isotopic fractionation will be less. Secondary precipitation of cuprite (Cu2O) would yield further enrichment of dissolved 65Cu since 65-63δ(Cu+2-Cu2O) is 1.2‰ at 25 °C. However, precipitation of tenorite (CuO) will favor the heavy isotope by +1.0‰ making dissolved Cu isotopically lighter. These are upper-limit estimates for equilibrium fractionation. Therefore, the extremely large (9‰) fractionations between dissolved Cu+2 (or Cu+2 minerals) and primary Cu+ sulfides observed in supergene environments must reflect Rayleigh (open-system) or kinetic fractionation. Finally the previously proposed (Asael et al., 2009) use of δ65Cu in chalcopyrite to estimate the oxidation state of fluids that transported Cu in stratiform sediment-hosted copper deposits is refined.
ERIC Educational Resources Information Center
Pearce, Thomas H.
1983-01-01
Describes interactive computer program (listing available from author) which simulates olivine fractionation from basaltic/ultrabasic liquid. The menu-driven nature of the program (for Apple II microcomputer) allows students to select ideal Rayleigh fractionation or equilibrium crystallization. (JN)
Johnson, Perry; Bahadori, Amir; Eckerman, Keith; Lee, Choonsik; Bolch, Wesley E.
2014-01-01
A comprehensive set of photon fluence-to-dose response functions (DRFs) are presented for two radiosensitive skeletal tissues – active and total shallow marrow – within 15 and 32 bones sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon microCT images of trabecular spongiosa taken from a 40-year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, as well as a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In the present study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma factors for active marrow, inactive marrow, trabecular bone, and spongiosa at higher energies are calculated using the DRF algorithm setting the electron absorbed fraction for self-irradiation to unity. By comparing kerma factors and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites PMID:21427484
NASA Astrophysics Data System (ADS)
Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.
2017-01-01
Banded iron formations (BIFs) contain appreciable amounts of ferric iron (Fe3+). The mechanism by which ferrous iron (Fe2+) was oxidized into Fe3+ in an atmosphere that was globally anoxic is highly debated. Of the three scenarios that have been proposed to explain BIF formation, photo-oxidation by UV photons is the only one that does not involve life (the other two are oxidation by O2 produced by photosynthesis, and anoxygenic photosynthesis whereby Fe2+ is directly used as electron donor in place of water). We experimentally investigated iron and oxygen isotope fractionation imparted by iron photo-oxidation at a pH of 7.3. The iron isotope fractionation between precipitated Fe3+-bearing lepidocrocite and dissolved Fe2+ follows a Rayleigh distillation with an instantaneous 56Fe/54Fe fractionation factor of + 1.2 ‰. Such enrichment in the heavy isotopes of iron is consistent with the values measured in BIFs. We also investigated the nature of the mass-fractionation law that governs iron isotope fractionation in the photo-oxidation experiments (i.e., the slope of the δ56Fe-δ57Fe relationship). The experimental run products follow a mass-dependent law corresponding to the high-T equilibrium limit. The fact that a ∼3.8 Gyr old BIF sample (IF-G) from Isua (Greenland) falls on the same fractionation line confirms that iron photo-oxidation in the surface layers of the oceans was a viable pathway to BIF formation in the Archean, when the atmosphere was largely transparent to UV photons. Our experiments allow us to estimate the quantum yield of the photo-oxidation process (∼0.07 iron atom oxidized per photon absorbed). This yield is used to model iron oxidation on early Mars. As the photo-oxidation proceeds, the aqueous medium becomes more acidic, which slows down the reaction by changing the speciation of iron to species that are less efficient at absorbing UV-photons. Iron photo-oxidation in centimeter to meter-deep water ponds would take months to years to complete. Oxidation by O2 in acidic conditions would be slower. Iron photo-oxidation is thus likely responsible for the formation of jarosite-hematite deposits on Mars, provided that shallow standing water bodies could persist for extended periods of time. The oxygen isotopic composition of lepidocrocite precipitated from the photo-oxidation experiment was measured and it is related to the composition of water by mass-dependent fractionation. The precipitate-fluid 18O/16O isotope fractionation of ∼ + 6 ‰ is consistent with previous determinations of oxygen equilibrium fraction factors between iron oxyhydroxides and water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adatepe, M.H.; Nichols, K.; Powell, O.M.
1984-01-01
The authors determined the first third filling fraction (1/3 FF), the maximum filling rate (1/3 FR) and the mean filling rate (1/3 MFR) for the first third diastolic filling period of the left ventricle in patients with coronary artery disease (CAD), valvular heart disease (VHD), pericardial effusion (PE), cardiomyopathies (CM), chronic obstructive lung disease (COPD) and in 5 normals-all from resting gated equilibrium studies. Parameters are calculated from the third order Fourier fit to the LV volume curve and its derivative. 1/3 FF% = 1/3 diastolic count - end systolic count / 1/3 diastolic count x 100. Patients with CADmore » are divided into two groups: Group I with normal ejection fraction (EF) and wall motion (WM); Group II with abnormal EF and WM. Results are shown in the table. Abnormal filling parameters are found not only in CAD but in VHD, PE and CM. The authors conclude that the first third LV filling parameters are sensitive but non-specific indicators of filling abnormalities caused by diverse etiologic factors. Abnormal first third filling parameters may occur in the presence of a normal resting EF and WM in CAD.« less
The Effect of Post-heat Treatment on the Microstructures of Single Crystal DD6 Superalloy
NASA Astrophysics Data System (ADS)
Li, Dongfan; Gao, Hangshan; Wen, Zhixun; Li, Zhenwei; Yue, Zhufeng
2016-09-01
Various thermal cycles at the end of solution heat treatment and their influences on microstructure of single crystal superalloy DD6 were studied by experiments. During various thermal cycles, the qualitative and quantitative microstructure of samples quenched of the transformations is microscopically characterized. This completely includes the large changes in volume fraction, size distribution and morphology of gamma prime precipitate experienced in the upper temperature transformation. Noticeable deviation from the equilibrium volume fraction of γ' phase is detected in both the dissolution and precipitation processes above 1,120°C for both moderate cooling and heating rate; differences were mainly attributed to the unsteady nature of the turbulent flow. The growth and alignment of the γ' precipitates are deeply influenced by several factors, e.g. ageing time, cooling rate and quenching temperature. In addition, interesting findings such as "labyrinth" and "cluster" morphologies were observed by scanning electron microscope. During precipitation processes, the complicated microstructure evolution is illustrated by considering the consecutive equilibrium shapes of a coherent precipitate, which grows under the interaction with its neighbors and the coherency of the precipitates improves their potential to resist dissolution.
NASA Astrophysics Data System (ADS)
Lin, Ying; Horita, Juske; Abe, Osamu
2018-02-01
Soil water dynamics within a vadose (unsaturated) zone is a key component in the hydrologic cycle, especially in arid regions. In applying the Craig-Gordon evaporation model to obtain isotopic compositions of soil water and the evaporated vapor in land-surface models (LSMs), it has been assumed that the equilibrium isotope fractionation factors between soil water and water vapor, α(2H) and α(18O), are identical to those between liquid and vapor of bulk water. Isotope effects in water condensation arise from intermolecular hydrogen bonding in the condensed phase and the appearance of hindered rotation/translation. Hydrogen bonding between water molecules and pore surface hydroxyl groups influences adsorption isotope effects. To test whether equilibrium fractionation factors between soil water and water vapor are identical to those between liquid and vapor of bulk water and to evaluate the influence of pore size and chemical composition upon adsorption isotope effects, we extended our previous experiments of a mesoporous silica (15 nm) to two other mesoporous materials, a silica (6 nm) and an alumina (5.8 nm). Our results demonstrated that α(2H) and α(18O) between adsorbed water and water vapor are 1.057 and 1.0086 for silica (6 nm) and 1.041 and 1.0063 for alumina (5.8 nm), respectively, at saturation pressure (po), which are smaller than 1.075 and 1.0089, respectively, between liquid and vapor phases of free water at 30 °C and that the differences exaggerate at low water contents. However, the profiles of α values with relative pressures (p/po) for these three materials differ due to the differences in chemical compositions and pore sizes. Empirical formula relating α(2H) and α(18O) values to the proportions of filled pores (f) are developed for potential applications to natural soils. Our results from triple oxygen isotope analyses demonstrated that the isotope fractionation does not follow a canonical law. For the silica (15 nm), fractionation exponents (17θ) are 0.5361 ± 0.0018 and 0.5389 ± 0.0016 at p/po = 0.72 and 0.77, respectively. For the silica (6 nm), 17θ values are 0.5330 ± 0.0011 at p/po = 0.65 and 0.5278 ± 0.0010 at p/po = 0.81. For the alumina (5.8 nm), 17θ value is 0.5316 ± 0.0015 at p/po = 0.78. These values are greater than or equal to that of liquid-vapor equilibrium of bulk water (0.529 ± 0.001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryerson, F J
The oxygen isotopic compositions of the world's oldest mineral grains, zircon, have recently been used to infer the compositions of the rocks from which they crystallized. The results appear to require a source that had once experienced isotopic fractionation between clay minerals and liquid water, thereby implying the presence of liquid water at the Earth's surface prior to 4.4 billion years ago, less than 2 million years after accretion. This observation has important implications for the development of the Earth's continental crust. The inferred composition of the zircon source rock is directly dependent upon the oxygen isotopic fractionation between zirconmore » and melt, and zircon and water. These fractionation factors have not been determined experimentally, however, constituting the weak link in this argument. A series of experiments to measure these fractionation factors has been conducted. The experiments consist of finely powdered quartz, a polished single crystal of zircon and isotopically-enriched or isotopically normal water to provide a range of isotopic compositions. The experiments will be run until quartz is in isotopic equilibrium with water. Zircon was expected to partially equilibrate producing an oxygen isotopic diffusion profile perpendicular to the surface. Ion probe spot analysis of quartz and depth profiling of zircon will determine the bulk and surface isotopic compositions of the phases, respectively. The well-known quartz-water isotopic fractionation factors can be used to calculate the oxygen isotopic composition of the fluid, and with the zircon surface composition, the zircon-water fractionation factor. Run at temperatures up to 1000 C for as long as 500 hours have not produced diffusion profiles longer than 50 nm. The steep isotopic gradient at the samples surface precludes use of the diffusion profile for estimation on the surface isotopic composition. The short profiles may be the result of surface dissolution, although such dissolution cannot be resolved in SEM images. The sluggish nature of diffusion in zircon may require that fractionation factors be determined by direct hydrothermal synthesis of zircon rather than by mineral-fluid exchange.« less
Chemical equilibrium of ablation materials including condensed species
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Brinkley, K. L.
1975-01-01
Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.
Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites
Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.
2016-01-01
The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315
Fractionation in the solar nebula - Condensation of yttrium and the rare earth elements
NASA Technical Reports Server (NTRS)
Boynton, W. V.
1975-01-01
The condensation of Y and the rare earth elements (REE) from the solar nebula may be controlled by thermodynamic equilibrium between gas and condensed solids. Highly fractionated REE patterns may result if condensates are removed from the gas before condensation is complete. It is found that the fractionation is not a smooth function of REE ionic radius but varies in an extremely irregular pattern. Both Yb and Eu are predicted to be extremely depleted in the early condensate without the requirement of condensation in the divalent state. The model is discussed with respect to a highly fractionated pattern observed by Tanaka and Masuda (1973), in a pink Ca-Al-rich inclusion from the Allende meteorite and can account for the abundances of each REE determined. According to the model this inclusion represents a condensate from a previously fractionated gas rather than from a gas of solar composition. Before the condensation of this inclusion, an earlier condensate was formed and was removed from equilibrium with the gas.
NASA Astrophysics Data System (ADS)
Young, E. D.
2017-12-01
Recent advances in our ability to measure stable isotope ratios of light, rock-forming elements, including those for Zn, K, Fe, Si, and Mg, among others, has resulted in an emerging hypothesis that collisions among rocky planetesimals, planetary embryos, and/or proto-planets caused losses of moderately volatile elements (e.g., K) and "common" or moderately refractory elements (e.g., Mg and Si). The primary evidence is in the form of heavy isotope enrichments in rock-forming elements relative to the chondrite groups that are thought to be representative of planetary precursors. Equilibrium volatility-controlled isotope fractionation for planetesimal magma oceans might have occurred for bodies larger than 0.1% of an Earth mass (½ the mass of Pluto) as these bodies had sufficient gravity to overpower the escape velocities of hot gas at 2000K. Both Jean's escape and viscous drag hydrodynamic escape can obviate the escape velocity limit but will fractionate by mass, not by volatility. Equilibrium vapor/melt fractionation is qualitatively consistent with the greater disparity in 29Si/28Si between Earth and chondrites than in 25Mg/24Mg. However, losses of large masses of vapor are required to record the fractionation in the melts. We consider that if Earth was derived from E chondrite-like materials, the bulk composition of the Earth, assuming refractory Ca was retained, requires > 60% loss of Mg. This is a lot of vapor loss for a process relying on at least intermittent equilibrium, although it comports with the isotopic lever-rule requirements. Paradoxically, the alternative of evaporative loss of rock-forming elements requires less total mass loss. For example, the calculated Mg and Si isotopic compositions of residues resulting from evaporation of chondritic melts can fit the Mg and Si isotopic compositions of Earth, Mars, and angrites with varying background pressures and with total mass losses of near 5% or less. These mass losses are closer to, and even lower than, those suggested by Ca concentrations relative to CI chondrite. Equilibrium models achieve greater Si than Mg isotope fractionation by large mass losses while evaporation models produce this effect for small mass losses. Additional constraints involving other isotope systems as well as models for vapor loss can distinguish between the two scenarios.
NASA Technical Reports Server (NTRS)
Socki, Richard; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K.
2013-01-01
The geologic history of water on the planet Mars is intimately connected to the formation of carbonate minerals through atmospheric CO2 and its control of the climate history of Mars. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms readily when a rise in pH occurs as a result of carbon dioxide degassing quickly from freezing Ca-bicarbonate-rich water solutions. This is a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lakebeds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. We report here the results of a series of laboratory experiments that were conducted to simulate potential cryogenic carbonate formation on the planet Mars. These results indicate that carbonates grown under martian conditions (controlled atmospheric pressure and temperature) show enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values with average delta13C(DIC-CARB) values of 20.5%0 which exceed the expected equilibrium fractionation factor of [10(sup 3) ln alpha = 13%0] at 0 degC. Oxygen isotopes showed a smaller enrichment with delta18O(H2O-CARB) values of 35.5%0, slightly exceeding the equilibrium fractionation factor of [10(sup 3) ln alpha = 34%0 ] at 0degC. Large kinetic carbon isotope effects during carbonate precipitation could substantially affect the carbon isotope evolution of CO2 on Mars allowing for more efficient removal of 13C from the Noachian atmosphere enriched by atmospheric loss. This mechanism would be consistent with the observations of large carbon isotope variations in martian materials despite the relative paucity of carbonate minerals in the martian crust.
NASA Astrophysics Data System (ADS)
Duan, Deng-Fei; Jiang, Shao-Yong
2017-05-01
The Tonglvshan deposit is the largest Cu-Fe (Au) skarn deposit in the Edong district, which is located in the westernmost part of the Middle and Lower Yangtze River metallogenic belt, China. In this study, we performed a detailed in situ analysis of major and trace elements in amphiboles from the ore-related Tonglvshan quartz monzodiorite porphyry using electron microprobe (EMPA) analysis and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Two distinct populations of amphiboles, which can be distinguished by their aluminum content, are found in the quartz monzodiorite porphyry. The low-aluminum (Low-Al) amphiboles are subhedral or anhedral and formed at 46.3-73.5 MPa and 713-763 °C. In contrast, the high-aluminum (High-Al) amphiboles are euhedral and formed at 88-165 MPa and 778-854 °C. Some euhedral amphiboles are partially or completely replaced by Low-Al amphibole. The compositions of parental melts in equilibrium with the High-Al amphibole ( Melt 1) and Low-Al amphibole ( Melt 2) were computed by applying solid/liquid partition coefficients. This modeling shows that magma in equilibrium with High-Al amphibole ( Melt 1) underwent 40% fractional crystallization of amphibole, plagioclase and apatite at a depth of 5 km to evolve to magma in equilibrium with Low-Al amphibole ( Melt 2). Copper enrichment occurred in the magma after undergoing fractional crystallization. The magma had a high oxygen fugacity, increasing from NNO + 1 ( Melt 1) through NNO + 2 to HM ( Melt 2), which could have prevented the loss of Cu (and possibly Au) to sulfide minerals during crystallization. Finally, the evolved magma intruded to shallower depths, where it presumably exsolved aqueous ore-forming fluids. Therefore, the large Cu-Fe-Au reserves of the Tonglvshan deposit can likely be attributed to a combination of controlling factors, including high oxygen fugacity, fractional crystallization, fluid exsolution, and a shallow emplacement depth.
Experimental evidence for Mo isotope fractionation between metal and silicate liquids
NASA Astrophysics Data System (ADS)
Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten
2013-10-01
Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to <1400 °C, while variable Fe-oxide contents were used to vary oxygen fugacity in graphite and MgO capsules. Isotopic analyses were performed using a double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.
Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.
2013-01-01
Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.
A New Chaotic Flow with Hidden Attractor: The First Hyperjerk System with No Equilibrium
NASA Astrophysics Data System (ADS)
Ren, Shuili; Panahi, Shirin; Rajagopal, Karthikeyan; Akgul, Akif; Pham, Viet-Thanh; Jafari, Sajad
2018-02-01
Discovering unknown aspects of non-equilibrium systems with hidden strange attractors is an attractive research topic. A novel quadratic hyperjerk system is introduced in this paper. It is noteworthy that this non-equilibrium system can generate hidden chaotic attractors. The essential properties of such systems are investigated by means of equilibrium points, phase portrait, bifurcation diagram, and Lyapunov exponents. In addition, a fractional-order differential equation of this new system is presented. Moreover, an electronic circuit is also designed and implemented to verify the feasibility of the theoretical model.
Balaji, Sayee Prasaad; Gangarapu, Satesh; Ramdin, Mahinder; Torres-Knoop, Ariana; Zuilhof, Han; Goetheer, Earl L V; Dubbeldam, David; Vlugt, Thijs J H
2015-06-09
Molecular simulations were used to compute the equilibrium concentrations of the different species in CO2/monoethanolamine solutions for different CO2 loadings. Simulations were performed in the Reaction Ensemble using the continuous fractional component Monte Carlo method at temperatures of 293, 333, and 353 K. The resulting computed equilibrium concentrations are in excellent agreement with experimental data. The effect of different reaction pathways was investigated. For a complete understanding of the equilibrium speciation, it is essential to take all elementary reactions into account because considering only the overall reaction of CO2 with MEA is insufficient. The effects of electrostatics and intermolecular van der Waals interactions were also studied, clearly showing that solvation of reactants and products is essential for the reaction. The Reaction Ensemble Monte Carlo using the continuous fractional component method opens the possibility of investigating the effects of the solvent on CO2 chemisorption by eliminating the need to study different reaction pathways and concentrate only on the thermodynamics of the system.
Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo
2009-04-03
An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLC-GCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phase's chemical composition (in terms of the 79 fractions defined) are then calculated using Raoult's law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.
2016-05-01
We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.
Wang, P.; Roberts, R. C.; Ngan, A. H. W.
2016-01-01
An efficient technique for writing 2D oxide patterns on conductive substrates is proposed and demonstrated in this paper. The technique concerns a novel concept for selective electrodeposition, in which a minimum quantity of liquid electrolyte, through an extrusion nozzle, is delivered and manipulated into the desired shape on the substrate, meanwhile being electrodeposited into the product by an applied voltage across the nozzle and substrate. Patterns of primarily Cu2O with 80~90% molar fraction are successfully fabricated on stainless steel substrates using this method. A key factor that allows the solid product to be primarily oxide Cu2O instead of metal Cu – the product predicted by the equilibrium Pourbaix diagram given the unusually large absolute deposition voltage used in this method, is the non-equilibrium condition involved in the process due to the short deposition time. Other factors including the motion of the extrusion nozzle relative to the substrate and the surface profile of the substrate that influence the electrodeposition performance are also discussed. PMID:27255188
Kim, Seung Kyu; Lee, Dong Soo; Oh, Jae Ryong
2002-04-01
The trophic transfer of polychlorinated biphenyls (PCBs) was characterized for zooplankton (primarily Paracalanus spp. and Acartia spp.), pacific oyster (Crassostrea gigas), shore crab (Hemigrapsus penicillatus), and goby (Acanthogobius hasta) in the aquatic system of Incheon North Harbor, Korea. The congener pattern in the species was clearly divided by the main PCB uptake route. Compared with zooplankton and oyster, the fraction of heavier homologues increased in crab and goby that take PCBs from food. Linear relationships were observed between log (fugacity in lipid/fugacity in seawater) and log Kow for all the species. For zooplankton and oyster, such an observation should not be regarded as a true absence of superhydrophobicity, because establishment of equilibrium with seawater was not evident. For crab and goby, the absence of superhydrophobicity was evidenced by the trophic transfer factor that continuously increased with Kow up to 10(7.8). These results suggest that superhydrophobicity might be species specific. The trophic transfer factors and the fugacity levels in the lipid phase indicated that bioaccumulation in crab and goby advanced beyond the level in equilibrium with seawater in the harbor basin.
Gaussian random bridges and a geometric model for information equilibrium
NASA Astrophysics Data System (ADS)
Mengütürk, Levent Ali
2018-03-01
The paper introduces a class of conditioned stochastic processes that we call Gaussian random bridges (GRBs) and proves some of their properties. Due to the anticipative representation of any GRB as the sum of a random variable and a Gaussian (T , 0) -bridge, GRBs can model noisy information processes in partially observed systems. In this spirit, we propose an asset pricing model with respect to what we call information equilibrium in a market with multiple sources of information. The idea is to work on a topological manifold endowed with a metric that enables us to systematically determine an equilibrium point of a stochastic system that can be represented by multiple points on that manifold at each fixed time. In doing so, we formulate GRB-based information diversity over a Riemannian manifold and show that it is pinned to zero over the boundary determined by Dirac measures. We then define an influence factor that controls the dominance of an information source in determining the best estimate of a signal in the L2-sense. When there are two sources, this allows us to construct information equilibrium as a functional of a geodesic-valued stochastic process, which is driven by an equilibrium convergence rate representing the signal-to-noise ratio. This leads us to derive price dynamics under what can be considered as an equilibrium probability measure. We also provide a semimartingale representation of Markovian GRBs associated with Gaussian martingales and a non-anticipative representation of fractional Brownian random bridges that can incorporate degrees of information coupling in a given system via the Hurst exponent.
Against the grain: The physical properties of anisotropic partially molten rocks
NASA Astrophysics Data System (ADS)
Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.
2014-12-01
Partially molten rocks commonly develop textures that appear close to textural equilibrium, where the melt network evolves to minimize the energy of the melt-solid interfaces, while maintaining the dihedral angle θ at solid-solid-melt contact lines. Textural equilibrium provides a powerful model for the melt distribution that controls the petro-physical properties of partially molten rocks, e.g., permeability, elastic moduli, and electrical resistivity. We present the first level-set computations of three-dimensional texturally equilibrated melt networks in rocks with an anisotropic fabric. Our results show that anisotropy induces wetting of smaller grain boundary faces for θ > 0 at realistic porosities ϕ < 3%. This was previously not thought to be possible at textural equilibrium and reconciles the theory with experimental observations. Wetting of the grain boundary faces leads to a dramatic redistribution of the melt from the edges to the faces that introduces strong anisotropy in the petro-physical properties such as permeability, effective electrical conductivity and mechanical properties. Figure, on left, shows that smaller grain boundaries become wetted at relatively low melt fractions of 3% in stretched polyhedral grains with elongation factor 1.5. Right plot represents the ratio of melt electrical conductivity to effective conductivity of medium (known as formation factor) as an example of anisotropy in physical properties. The plot shows that even slight anisotropy in grains induces considerable anisotropy in electrical properties.
NASA Astrophysics Data System (ADS)
Kryshchenko, V. S.; Zamulina, I. V.; Rybyanets, T. V.; Kravtsova, N. E.; Biryukova, O. A.; Golozubov, O. M.
2016-06-01
Monitoring of soil dispersivity and humus state has been performed in the stationary profile of ordinary chernozem in the Botanic Garden of the Southern Federal University in 2009-2014. The contents of physical clay and sand are almost stable in time, which indicates a quasi-static (climax) equilibrium in the soil. Another (reversible dynamic) process occurs simultaneously: seasonal and annual variation in the mass fractions of clay and silt in physical clay. Variations of humus content in the whole soil and in its physical clay are also observed on the background of seasonal changes in precipitation and temperature. A procedure has been developed for the analysis of the polydisperse soil system with consideration for the quasi-static and dynamic equilibriums. A two-vector coordinate system has been introduced, which consists of scales for changes in the contents of physical clay and physical sand in 100 g of soil and changes in the fractions of clay and silt in 100 g of physical clay. Co-measurements of two dispersivity series of soil samples—actual dynamic and calculated under quasi-static equilibrium (ideal)—have been performed. Dynamic equilibrium coefficients, which cumulatively reflect the varying proportions of physical clay and physical sand in the soil and the mass fractions of clay and silt in physical clay, have been calculated.
Jahnke, Annika; Mayer, Philipp; Adolfsson-Erici, Margaretha; McLachlan, Michael S
2011-07-01
Equilibrium sampling of organic pollutants into the silicone polydimethylsiloxane (PDMS) has recently been applied in biological tissues including fish. Pollutant concentrations in PDMS can then be multiplied with lipid/PDMS distribution coefficients (D(Lipid,PDMS) ) to obtain concentrations in fish lipids. In the present study, PDMS thin films were used for equilibrium sampling of polychlorinated biphenyls (PCBs) in intact tissue of two eels and one salmon. A classical exhaustive extraction technique to determine lipid-normalized PCB concentrations, which assigns the body burden of the chemical to the lipid fraction of the fish, was additionally applied. Lipid-based PCB concentrations obtained by equilibrium sampling were 85 to 106% (Norwegian Atlantic salmon), 108 to 128% (Baltic Sea eel), and 51 to 83% (Finnish lake eel) of those determined using total extraction. This supports the validity of the equilibrium sampling technique, while at the same time confirming that the fugacity capacity of these lipid-rich tissues for PCBs was dominated by the lipid fraction. Equilibrium sampling was also applied to homogenates of the same fish tissues. The PCB concentrations in the PDMS were 1.2 to 2.0 times higher in the homogenates (statistically significant in 18 of 21 cases, p < 0.05), indicating that homogenization increased the chemical activity of the PCBs and decreased the fugacity capacity of the tissue. This observation has implications for equilibrium sampling and partition coefficients determined using tissue homogenates. Copyright © 2011 SETAC.
NASA Astrophysics Data System (ADS)
Mysen, Bjorn
2017-02-01
Our understanding of materials transport processes in the Earth relies on characterizing the behavior of fluid and melt in silicate-(C-O-H) systems at high temperature and pressure. Here, Raman spectroscopy was employed to determine structure of and carbon isotope partitioning between melts and fluids in alkali aluminosilicate-C-O-H systems. The experimental data were recorded in-situ while the samples were at equilibrium in a hydrothermal diamond anvil cell at temperatures and pressures to 825 °C and >1300 MPa, respectively. The carbon solution equilibrium in both (C-O-H)-saturated melt and coexisting, silicate-saturated (C-O-H) fluid is 2CO3 + H2O + 2Qn + 1 = 2HCO3 + 2Qn. In the Qn-notation, the superscript, n, is the number of bridging oxygen in silicate structural units. At least one oxygen in CO3 and HCO3 groups likely is shared with silicate tetrahedra. The structural behavior of volatile components described with this equilibrium governs carbon isotope fractionation factors between melt and fluid. For example, the ΔH equals 3.2 ± 0.7 kJ/mol for the bulk 13C/12C exchange equilibrium between fluid and melt. From these experimental data, it is suggested that at deep crustal and upper mantle temperatures and pressures, the δ13C-differences between coexisting silicate-saturated (C-O-H) fluid and (C-O-H)-saturated silicate melts may change by more than 100‰ as a function of temperature in the range of magmatic processes. Absent information on temperature and pressure, the use of carbon isotopes of mantle-derived magma to derive isotopic composition of magma source regions in the Earth's interior, therefore, should be exercised with care.
Search for methane isotope fractionation due to Rayleigh distillation on Titan
NASA Astrophysics Data System (ADS)
Ádámkovics, Máté; Mitchell, Jonathan L.
2016-09-01
We search for meridional variation in the abundance of CH3D relative to CH4 on Titan using near-IR spectra obtained with NIRSPAO at Keck, which have a photon-limited signal-to-noise ratio of ∼50. Our observations can rule out a larger than 10% variation in the column of CH3D below 50 km. The preferential condensation of the heavy isotopologues will fractionate methane by reducing CH3D in the remaining vapor, and therefore these observations place limits on the amount of condensation that occurs in the troposphere. While previous estimates of CH3D fractionation on Titan have estimated an upper limit of -6‰, assuming a solid condensate, we consider more recent laboratory data for the equilibrium fractionation over liquid methane, and use a Rayleigh distillation model to calculate fractionation in an ascending parcel of air that is following a moist adiabat. We find that deep, precipitating convection can enhance the fractionation of the remaining methane vapor by -10 to -40‰, depending on the final temperature of the rising parcel. By relating fractionation of our reference parcel model to the pressure level where the moist adiabat achieves the required temperature, we argue that the measured methane fractionation constrains the outflow level for a deep convective event. Observations with a factor of at least 4-6 times larger signal-to-noise are required to detect this amount of fractionation, depending on the altitude range over which the outflow from deep convection occurs.
Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update
NASA Astrophysics Data System (ADS)
Johnson, Perry B.; Bahadori, Amir A.; Eckerman, Keith F.; Lee, Choonsik; Bolch, Wesley E.
2011-04-01
A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues—active and total shallow marrow—within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.
Johnson, Perry B; Bahadori, Amir A; Eckerman, Keith F; Lee, Choonsik; Bolch, Wesley E
2011-04-21
A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R(2) = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.
NASA Astrophysics Data System (ADS)
Stoliker, D.; Liu, C.; Kent, D. B.; Zachara, J. M.
2012-12-01
The aquifer below the 300-Area of the Hanford site (Richland, WA, USA) is plagued by a persistent plume of dissolved uranium (U(VI)) in excess of the Environmental Protection Agency drinking water maximum contamination level even after the removal of highly contaminated sediments. The aquifer sediments in the seasonally saturated lower vadose zone act as both a source and sink for uranium during stage changes in the nearby Columbia River. Diffusion limitation of uranium mass-transfer within these sediments has been cited as a potential cause of the plume's persistence. Equilibrium U(VI) sorption is a strong function of variable chemical conditions, especially carbonate, hydrogen, and uranyl ion activities. Field-contaminated sediments from the site require up to 1,000 hours to reach equilibrium in static batch reactors. Increases in U(VI) concentrations over longer time-scales result from changes in chemical conditions, which drive reactions with sediments that favor U(VI) desorption. Grain-scale U(VI) sorption/desorption rates are slow, likely owing to diffusion of U(VI) and other solutes through intra-granular pore domains. In order to improve understanding of the impact of intra-granular diffusion and chemical reactions controlling grain-scale U(VI) release, experiments were conducted on individual particle size fractions of a <8 mm composite of field-contaminated, lower vadose zone sediments. For each size fraction, equilibrium U(VI) sorption/desorption in static batch reactors was well-described by surface complexation models over a range of chemical conditions applicable to the field site. Desorption rates from individual size fractions in flow-through batch reactors, examined under a single set of constant chemical conditions with multiple stop-flow events, were similar for all size fractions <2 mm. Kinetic U(VI) desorption in flow-through batch reactors was modeled using a multi-rate surface complexation approach, where sorption/desorption rates were assumed to be proportional to the displacement from equilibrium and multiple diffusion domains were described with a two-parameter lognormal distribution of mass-transfer rate coefficients. Parameters describing mass transfer were the same for all size fractions <2 mm but differed for the largest (2-8 mm) size fraction. The evolution of pH, along with dissolved cation and carbonate concentrations, was modeled using equilibrium cation exchange, rate-limited calcite dissolution, aerobic respiration, and silica dissolution. Desorption and chemical reaction models calibrated with individual size fractions predicted U(VI) and chemical composition as a function of time for the bulk sediment sample. Volumes of pores less than 2.4 nm, quantified using nitrogen adsorption-desorption isotherms, were the same for all size fractions < 2 mm, nearly double that of the 2-8 mm size fraction. Similarity in the observed pore volumes and multi-rate mass-transfer parameters across all size fractions <2 mm suggest the importance of pores in this size class in controlling slow grain-scale U(VI) desorption rates. Models like these provide a means for testing the influence of grain-scale mass-transfer on the persistence of U(VI) plume at the site.
Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
Sardar, Tridip; Saha, Bapi
2017-06-01
In the last few years, fractional order derivatives have been used in epidemiology to capture the memory phenomena. However, these models do not have proper biological justification in most of the cases and lack a derivation from a stochastic process. In this present manuscript, using theory of a stochastic process, we derived a general time dependent single strain vector borne disease model. It is shown that under certain choice of time dependent transmission kernel this model can be converted into the classical integer order system. When the time-dependent transmission follows a power law form, we showed that the model converted into a vector borne disease model with fractional order transmission. We explicitly derived the disease-free and endemic equilibrium of this new fractional order vector borne disease model. Using mathematical properties of nonlinear Volterra type integral equation it is shown that the unique disease-free state is globally asymptotically stable under certain condition. We define a threshold quantity which is epidemiologically known as the basic reproduction number (R 0 ). It is shown that if R 0 > 1, then the derived fractional order model has a unique endemic equilibrium. We analytically derived the condition for the local stability of the endemic equilibrium. To test the model capability to capture real epidemic, we calibrated our newly proposed model to weekly dengue incidence data of San Juan, Puerto Rico for the time period 30th April 1994 to 23rd April 1995. We estimated several parameters, including the order of the fractional derivative of the proposed model using aforesaid data. It is shown that our proposed fractional order model can nicely capture real epidemic. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ai, Cheng; Zhou, Jian; Zhang, Heng; Zhao, Xinbao; Pei, Yanling; Li, Shusuo; Gong, Shengkai
2016-01-01
The non-equilibrium solidification behaviors of five Ni-Al-Ta ternary model single crystal alloys with different Al contents were investigated by experimental analysis and theoretical calculation (by JMatPro) in this study. These model alloys respectively represented the γ' phase with various volume fractions (100%, 75%, 50%, 25% and 0%) at 900 °C. It was found that with decreasing Al content, liquidus temperature of experimental alloys first decreased and then increased. Meanwhile, the solidification range showed a continued downward trend. In addition, with decreasing Al content, the primary phases of non-equilibrium solidified model alloys gradually transformed from γ' phase to γ phase, and the area fraction of which first decreased and then increased. Moreover, the interdendritic/intercellular precipitation of model alloys changed from β phase (for 100% γ') to (γ+γ')Eutectic (for 75% γ'), (γ+γ')Eutectic+γ' (for 50% γ' and 25% γ') and none interdendritic precipitation (for 0% γ'), and the last stage non-equilibrium solidification sequence of model alloys was determined by the nominal Al content and different microsegregation behaviors of Al element.
Ortho-para-hydrogen equilibration on Jupiter
NASA Technical Reports Server (NTRS)
Carlson, Barbara E.; Lacis, Andrew A.; Rossow, William B.
1992-01-01
Voyager IRIS observations reveal that the Jovian para-hydrogen fraction is not in thermodynamic equilibrium near the NH3 cloud top, implying that a vertical gradient exists between the high-temperature equilibrium value of 0.25 at depth and the cloud top values. The height-dependent para-hydrogen profile is obtained using an anisotropic multiple-scattering radiative transfer model. A vertical correlation is found to exist between the location of the para-hydrogen gradient and the NH3 cloud, strongly suggesting that paramagnetic conversion on NH3 cloud particle surfaces is the dominant equilibration mechanism. Below the NH3 cloud layer, the para fraction is constant with depth and equal to the high-temperature equilibrium value of 0.25. The degree of cloud-top equilibration appears to depend on the optical depth of the NH3 cloud layer. Belt-zone variations in the para-hydrogen profile seem to be due to differences in the strength of the vertical mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, M.; Ganesh, R.
The dynamics of cylindrically trapped electron plasma has been investigated using a newly developed 2D Electrostatic PIC code that uses unapproximated, mass-included equations of motion for simulation. Exhaustive simulations, covering the entire range of Brillouin ratio, were performed for uniformly filled circular profiles in rigid rotor equilibrium. The same profiles were then loaded away from equilibrium with an initial value of rigid rotation frequency different from that required for radial force balance. Both these sets of simulations were performed for an initial zero-temperature or cold load of the plasma with no spread in either angular velocity or radial velocity. Themore » evolution of the off-equilibrium initial conditions to a steady state involve radial breathing of the profile that scales in amplitude and algebraic growth with Brillouin fraction. For higher Brillouin fractions, the growth of the breathing mode is followed by complex dynamics of spontaneous hollow density structures, excitation of poloidal modes, leading to a monotonically falling density profile.« less
The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation
NASA Technical Reports Server (NTRS)
Mills, Ryan D.
2013-01-01
Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.
Warm and cold pasta phase in relativistic mean field theory
NASA Astrophysics Data System (ADS)
Avancini, S. S.; Menezes, D. P.; Alloy, M. D.; Marinelli, J. R.; Moraes, M. M. W.; Providência, C.
2008-07-01
In the present article we investigate the onset of the pasta phase with different parametrizations of the nonlinear Walecka model. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium is studied. The pasta phase decreases with the increase of temperature. The internal pasta structure and the beginning of the homogeneous phase vary depending on the proton fraction (or the imposition of β equilibrium), on the method used, and on the chosen parametrization. It is shown that a good parametrization of the surface tension with dependence on the temperature, proton fraction, and geometry is essential to describe correctly large isospin asymmetries and the transition from pasta to homogeneous matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, W.P.
1990-01-01
Concepts for rate limitation of sorptive uptake of hydrophobic organic solutes by aquifer solids are reviewed, emphasizing physical diffusion models and in the context of effects on contaminant transport. Data for the sorption of tetrachloroethene (PCE) and 1,2,4,5-tetrachlorobenzene (TeCB) on Borden sand are presented, showing that equilibrium is attained very slowly, requiring equilibration times on the order of tens of days for PCE and hundreds of days for TeCB. The rate of approach to equilibrium decreased with increasing particle size and sorption distribution coefficient, in accordance with retarded intragranular diffusion models. Pulverization of the samples significantly decreased the required timemore » to equilibrium without changing the sorption capacity of the solids. Batch sorption methodology was refined to allow accurate measurement of long-term distribution coefficients, using purified {sup 14}C-labelled solute spikes and sealed glass ampules. Sorption isotherms for PCE and TeCB were conducted with size fractions of Borden sand over four to five orders of magnitude in aqueous concentration, and were found to be slightly nonlinear (Freundlich exponent = 0.8). A concentrated set of data in the low concentration range (<50 ug/L) revealed that sorption in this range could be equally well described by a linear isotherm. Distribution coefficients of the two solutes with seven size fractions of Borden sand, measured at low concentration and at full equilibrium, were between seven and sixty times the value predicted on the basis of recent correlations with organic carbon content. Rate results for coarse size fractions support a simple pore diffusion model, with pore diffusion coefficients estimated to be approximately 3 {times} 10{sup {minus}8} cm{sup 2}/sec, more than 200{times} lower than the aqueous diffusivities.« less
NASA Astrophysics Data System (ADS)
Li, Long; Lollar, Barbara Sherwood; Li, Hong; Wortmann, Ulrich G.; Lacrampe-Couloume, Georges
2012-05-01
Ammonium/ammonia is an essential nutrient and energy source to support life in oceanic and terrestrial hydrothermal systems. Thus the stability of ammonium is crucial to determine the habitability or ecological structure in hydrothermal environments, but still not well understood. To date, the lack of constraints on nitrogen isotope fractionations between ammonium and ammonia has limited the application of nitrogen isotopes to trace (bio)geochemical processes in such environments. In this study, we carried out laboratory experiments to (1) examine the stability of ammonium in an ammonium sulfate solution under temperature conditions from 20 to 70 °C and pH from 2.1 to 12.6 and (2) determine nitrogen isotope fractionation between ammonium and ammonia. Our experimental results show that ammonium is stable under the experimental temperatures when pH is less than 6. In experiments with starting pH greater than 8, significant ammonium was lost as a result of dissociation of ammonium and degassing of ammonia product. Nitrogen concentrations in the fluids decreased by more than 50% in the first two hours, indicating extremely fast effusion rates of ammonia. This implies that ammonium at high pH fluids (e.g., Lost City Hydrothermal Vents, Oman ophiolite hyperalkaline springs) may not be stable. Habitable environments may be more favorable at the leading edge of a pH gradient toward more acidic conditions, where the fluid can efficiently trap any ammonia transferred from a high pH vent. Although modeling shows that high temperature, low pH hydrothermal vents (e.g., Rainbow hydrothermal vent) may have the capability to retain ammonium, their high temperatures may limit habitability. The habitable zone associated with such a hydrothermal vent is likely at the lower front of a temperature gradient. In contrast, modeling of ammonium in deep terrestrial systems, suggests that saline fracture waters in crystalline rocks such as described in the Canadian Shield and in the Witwatersrand Basin, South Africa may also provide habitable environments for life. The nitrogen isotope results of remaining ammonium from the partial dissociation experiments fit well with a batch equilibrium model, indicating equilibrium nitrogen isotope fractionations have been reached between ammonium and its dissociation product aqueous ammonia. Modeling yielded nitrogen isotope fractionations between ammonium and aqueous ammonia were 45.4‰ at 23 °C, 37.7‰ at 50 °C, and 33.5‰ at 70 °C, respectively. A relationship between nitrogen equilibrium isotope fractionation and temperature is determined for the experimental temperature range as: 103·lnα(aq)=25.94×{103}/{T}-42.25 Integrated with three previous theoretical estimates on nitrogen isotope equilibrium fractionations between ammonium and gaseous ammonia, we achieved three possible temperature-dependent nitrogen isotope equilibrium fractionation between aqueous ammonia and gaseous ammonia:
NASA Technical Reports Server (NTRS)
Snyder, Gregory A.; Taylor, Lawrence A.; Neal, Clive R.
1992-01-01
A chemical model for simulating the sources of the lunar mare basalts was developed by considering a modified mafic cumulate source formed during the combined equilibrium and fractional crystallization of a lunar magma ocean (LMO). The parameters which influence the initial LMO and its subsequent crystallization are examined, and both trace and major elements are modeled. It is shown that major elements tightly constrain the composition of mare basalt sources and the pathways to their creation. The ability of this LMO model to generate viable mare basalt source regions was tested through a case study involving the high-Ti basalts.
NASA Astrophysics Data System (ADS)
Suryanto, Agus; Darti, Isnani
2017-12-01
In this paper we discuss a fractional order predator-prey model with ratio-dependent functional response. The dynamical properties of this model is analyzed. Here we determine all equilibrium points of this model including their existence conditions and their stability properties. It is found that the model has two type of equilibria, namely the predator-free point and the co-existence point. If there is no co-existence equilibrium, i.e. when the coefficient of conversion from the functional response into the growth rate of predator is less than the death rate of predator, then the predator-free point is asymptotically stable. On the other hand, if the co-existence point exists then this equilibrium is conditionally stable. We also construct a nonstandard Grnwald-Letnikov (NSGL) numerical scheme for the propose model. This scheme is a combination of the Grnwald-Letnikov approximation and the nonstandard finite difference scheme. This scheme is implemented in MATLAB and used to perform some simulations. It is shown that our numerical solutions are consistent with the dynamical properties of our fractional predator-prey model.
Direct numerical simulation of turbulent H2-O2 combustion using reduced chemistry
NASA Technical Reports Server (NTRS)
Montgomery, Christopher J.; Kosaly, George; Riley, James J.
1993-01-01
Results of direct numerical simulations of hydrogen-oxygen combustion using a partial-equilibrium chemistry scheme in constant density, decaying, isotropic turbulence are reported. The simulations qualitatively reproduce many features of experimental results, such as superequilibrium radical species mole fractions, with temperature and major species mole fractions closer to chemical equilibrium. It was also observed that the peak reaction rates occur in narrow zones where the stoichiometric surface intersects regions of high scalar dissipation, as might be expected for combustion conditions close to chemical equilibrium. Another finding was that high OH mole fraction correspond more closely to the stoichiometric surface than to areas of high reaction rate for conditions of the simulations. Simulation results were compared to predictions of the Conditional Moment Closure model. This model was found to give good results for all quantities of interest when the conditionally averaged scalar dissipation was used in the prediction. When the nonconditioned average dissipation was used, the predictions compared well to the simulations for most of the species and temperature, but not for the reaction rate. The comparison would be expected to improve for higher Reynolds number flows, however.
Schmit, Kathryn H; Wells, Martha J M
2002-02-01
Activated carbon treatment of drinking water is used to remove natural organic matter (NOM) precursors that lead to the formation of disinfection byproducts. The innate hydrophobic nature and macromolecular size of NOM render it amenable to sorption by activated carbon. Batch equilibrium and minicolumn breakthrough adsorption studies were performed using granular activated carbon to treat NOM-contaminated water. Ultraviolet (UV) absorption spectroscopy and flow field-flow fractionation analysis using tandem diode-array and fluorescence detectors were used to monitor the activated carbon sorption of NOM. Using these techniques, it was possible to study activated carbon adsorption properties of UV absorbing, fluorescing and nonfluorescing, polyelectrolytic macromolecules fractionated from the total macromolecular and nonmacromolecular composition of NOM. Adsorption isotherms were constructed at pH 6 and pH 9. Data were described by the traditional and modified Freundlich models. Activated carbon capacity and adsorbability were compared among fractionated molecular subsets of fulvic and humic acids. Preferential adsorption (or adsorptive fractionation) of polyelectrolytic, fluorescing fulvic and humic macromolecules on activated carbon was observed. The significance of observing preferential adsorption on activated carbon of fluorescing macromolecular components relative to nonfluorescing components is that this phenomenon changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the composition that existed in the aqueous phase prior to adsorption. Likewise, it changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the adsorbed phase. This research increases our understanding of NOM interactions with activated carbon which may lead to improved methods of potable water production.
ERIC Educational Resources Information Center
Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.
2010-01-01
Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…
Molecular finite-size effects in stochastic models of equilibrium chemical systems.
Cianci, Claudia; Smith, Stephen; Grima, Ramon
2016-02-28
The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.
NASA Astrophysics Data System (ADS)
Gregory, Melissa J.; Mathur, Ryan
2017-11-01
Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.
Equilibrium water and solute uptake in silicone hydrogels.
Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J
2015-05-01
Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mesoscale Modeling of LX-17 Under Isentropic Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, H K; Willey, T M; Friedman, G
Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weightedmore » specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.« less
NASA Astrophysics Data System (ADS)
Gövert, D.; Conrad, R.
2009-04-01
During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.
Diffusion method of seperating gaseous mixtures
Pontius, Rex B.
1976-01-01
A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter portions into still lighter subportions according to a major fraction equilibrium recycle procedure.
Adsorption of xenon and krypton on shales
NASA Technical Reports Server (NTRS)
Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.
1981-01-01
A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.
Viscosity Determination of Molten Ash from Low-Grade US Coals
Zhu, Jingxi; Nakano, Jinichiro; Kaneko, Tetsuya Kenneth; ...
2012-10-01
In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po 2 = 10 - 8 atmmore » in the temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al 2O 4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO 2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and compared to available experimental data.« less
Abeni, Fabio; Petrera, Francesca; Capelletti, Maurizio; Dal Prà, Aldo; Bontempo, Luana; Tonon, Agostino; Camin, Federica
2015-01-01
Environmental temperature affects water turnover and isotope fractionation by causing water evaporation from the body in mammals. This may lead to rearrangement of the water stable isotope equilibrium in body fluids. We propose an approach to detect possible variations in the isotope ratio in different body fluids on the basis of different homoeothermic adaptations in varying reproductive stages. Three different reproductive stages (pregnant heifer, primiparous lactating cow, and pluriparous lactating cow) of two dairy cattle breeds (Italian Friesian and Modenese) were studied in winter and summer. Blood plasma, urine, faecal water, and milk were sampled and the isotope ratios of H (2H/1H) and O (18O/16O) were determined. Deuterium excess and isotope-fractionation factors were calculated for each passage from plasma to faeces, urine and milk. The effects of the season, reproductive stages and breed on δ 2H and δ 18O were significant in all the fluids, with few exceptions. Deuterium excess was affected by season in all the analysed fluids. The correlations between water isotope measurements in bovine body fluids ranged between 0.6936 (urine-milk) and 0.7848 (urine-plasma) for δ 2H, and between 0.8705 (urine-milk) and 0.9602 (plasma-milk) for δ 18O. The increase in both isotopic δ values in all body fluids during summer is representative of a condition in which fractionation took place as a consequence of a different ratio between ingested and excreted water, which leads to an increased presence of the heavy isotopes. The different body water turnover between adult lactating cattle and non-lactating heifers was confirmed by the higher isotopic δ for the latter, with a shift in the isotopic equilibrium towards values more distant from those of drinking water. PMID:25996911
Evaluation of indoor radon equilibrium factor using CFD modeling and resulting annual effective dose
NASA Astrophysics Data System (ADS)
Rabi, R.; Oufni, L.
2018-04-01
The equilibrium factor is an important parameter for reasonably estimating the population dose from radon. However, the equilibrium factor value depended mainly on the ventilation rate and the meteorological factors. Therefore, this study focuses on investigating numerically the influence of the ventilation rate, temperature and humidity on equilibrium factor between radon and its progeny. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on indoor equilibrium factor. The variations of equilibrium factor with the ventilation, temperature and relative humidity are discussed. Moreover, the committed equivalent doses due to 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of indoor air. The annual effective dose due to radon short lived progeny from the inhalation of indoor air by the members of the public was investigated.
Dwivedi, Prakash; Pandey, Sandeep; Junghare, A S
2018-04-01
A rotary single inverted pendulum (RSIP) typically represents a space booster rocket, Segway and similar systems with unstable equilibrium. This paper proposes a novel two degree of freedom (2-DOF) fractional control strategy based on 2-loop topology for RSIP system which can be extended to control the systems with unstable equilibrium. It comprises feedback and feed-forward paths. Primary controller relates the perturbation attenuation while the secondary controller is accountable for set point tracking. To tune the parameters of proposed fractional controller a simple graphical tuning method based on frequency response is used. The study will serve the outstanding experimental results for both, stabilization and trajectory tracking tasks. The study will also serve to present a comparison of the performance of the proposed controller with the 1-DOF FOPID controller and sliding mode controller (SMC) for the RSIP system. Further to confirm the usability of the proposed controller and to avoid the random perturbations sensitivity, robustness, and stability analysis through fractional root-locus and Bode-plot is investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.
1980-01-01
The saturated equilibrium expansion approximation for two phase flow often involves ideal-gas and latent-heat assumptions to simplify the solution procedure. This approach is well documented by Wegener and Mack and works best at low pressures where deviations from ideal-gas behavior are small. A thermodynamic expression for liquid mass fraction that is decoupled from the equations of fluid mechanics is used to compare the effects of the various assumptions on nitrogen-gas saturated equilibrium expansion flow starting at 8.81 atm, 2.99 atm, and 0.45 atm, which are conditions representative of transonic cryogenic wind tunnels. For the highest pressure case, the entire set of ideal-gas and latent-heat assumptions are shown to be in error by 62 percent for the values of heat capacity and latent heat. An approximation of the exact, real-gas expression is also developed using a constant, two phase isentropic expansion coefficient which results in an error of only 2 percent for the high pressure case.
Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O
2018-01-01
In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.
Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2
NASA Technical Reports Server (NTRS)
Herbert, F.
1985-01-01
A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.
Empirical calibration of the clinopyroxene-garnet magnesium isotope geothermometer and implications
NASA Astrophysics Data System (ADS)
Li, Wang-Ye; Teng, Fang-Zhen; Xiao, Yilin; Gu, Hai-Ou; Zha, Xiang-Ping; Huang, Jian
2016-07-01
The large equilibrium Mg isotope fractionation between clinopyroxene and garnet observed in eclogites makes it a potential high-precision geothermometer, but calibration of this thermometer by natural samples is still limited. Here, we report Mg isotopic compositions of eclogite whole rocks as well as Mg and O isotopic compositions of clinopyroxene and garnet separates from 16 eclogites that formed at different temperatures from the Dabie orogen, China. The whole-rock δ26Mg values vary from -1.20 to +0.10 ‰. Among them, 11 samples display limited δ26Mg variations from -0.36 to -0.17 ‰, similar to those of their protoliths. The mineral separates exhibit very different δ26Mg values, from -0.39 to +0.39 ‰ for clinopyroxenes and from -1.94 to -0.81 ‰ for garnets. The clinopyroxene-garnet Mg isotope fractionation (Δ26Mgclinopyroxene-garnet = δ26Mgclinopyroxene-δ26Mggarnet) varies from 1.05 to 2.15 ‰. The clinopyroxene-garnet O isotope fractionation (Δ18Oclinopyroxene-garnet = δ18Oclinopyroxene-δ18Ogarnet) varies from -1.01 to +0.98 ‰. Equilibrium Mg isotope fractionation between clinopyroxene and garnet in the investigated samples is selected based on both the δ26Mgclinopyroxene versus δ26Mggarnet plot and the state of O isotope equilibrium between clinopyroxene and garnet. The equilibrium Δ26Mgclinopyroxene-garnet and corresponding temperature data obtained in this study, together with those available so far in literatures for natural eclogites, are used to calibrate the clinopyroxene-garnet Mg isotope thermometer. This yields a function of Δ26Mgclinopyroxene-garnet = (0.99 ± 0.06) × 106/ T 2, where T is temperature in Kelvin. The refined function not only provides the best empirically calibrated clinopyroxene-garnet Mg isotope thermometer for precise constraints of temperatures of clinopyroxene- and garnet-bearing rocks, but also has potential applications in high-temperature Mg isotope geochemistry.
NASA Astrophysics Data System (ADS)
Tsang, M. Y.; Wortmann, U.
2016-12-01
Recent theoretical models suggest that low cell-specific sulfate reduction rates (csSRR) in marine sediments should result in high S-isotope fractionation factors (1). Existing studies on marginal sediments show actual fractionation factors indeed approach the theoretical equilibrium fractionation of 70‰ (2,3,4). Here we apply a reaction transport model (REMAP) (5) to data from ODP Site 1226 in the abyssal plain of the Eastern Equatorial Pacific (same location as Leg 138, Site 846). Our results suggest volumetric sulfate reduction rates vary from 346 fmol/cm3/day at 3 mbsf to 0.4 fmol/cm3/day in deeper sediments. Using existing cell counts, this implies csSRR between 10-3 and 10-6 fmol/cell/day, orders of magnitudes lower than those observed in shallower marine settings (10-1 to 10-4 fmol/cell/day) (6). We show that the observed S-isotopes are best explained with a constant fractionation factor of 48‰, considerably smaller than the 70‰ predicted by theoretical models (1). We hypothesize that this is due to in-situ sulfide re-oxidation and disproportionation, promoted by high contents of sedimentary Fe(III) and Mn(IV) at Site 1226 (7). We will further explore this hypothesis in our poster. Wing B.A. & Halevy I. Proc. Natl. Acad. Sci. USA 111, 18116-18125 (2014). Wortmann U.G. Geochem. Geophys. Geosyst. 7 (2006). Rudnicki M., Elderfield H. & Spiro B. Geochim. Cosmochim. Acta 65, 777-789 (2001). Tudge A.P. & Thode H.G. Canadian J. Res. 28, 567-578 (1950). Chernyavsky B.M. & Wortmann U.G. Geochem. Geophys. Geosyst. 8 (2007). Hoehler T.M. & Jørgensen B.B. Nature Rev. Microbiol. 11, 83-94 (2013). Gurvich E.G., Levitan M.A. & Kuzmina T.G. in Proc. of the Ocean Drilling Prog., Sci. Results, N. Pisias et al., Eds. (1995), vol. 138, pp. 769-778.
NASA Astrophysics Data System (ADS)
Chen, X.; Romaniello, S. J.; Herrmann, A. D.; Wasylenki, L. E.; Anbar, A. D.
2015-12-01
Natural variations of 238U/235U in marine carbonates are being explored as a paleoredox proxy. However, in order for this proxy to be robust, it is important to understand how pH and alkalinity affect the fractionation of 238U/235U during coprecipitation with calcite and aragonite. Recent work suggests that the U/Ca ratio of foraminiferal calcite may vary with seawater [CO32-] concentration due to changes in U speciation[1]. Here we explore analogous isotopic consequences in inorganic laboratory co-precipitation experiments. Uranium coprecipitation experiments with calcite and aragonite were performed at pH 8.5 ± 0.1 and 7.5 ± 0.1 using a constant addition method [2]. Dissolved U in the remaining solution was periodically collected throughout the experiments. Samples were purified with UTEVA resin and 238U/235U was determined using a 233U-236U double-spike and MC-ICP-MS, attaining a precision of ± 0.10 ‰ [3]. Small but resolvable U isotope fractionation was observed in aragonite experiments at pH ~8.5, preferentially enriching heavier U isotopes in the solid phase. 238U/235U of the dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00002 - 1.00009. In contrast, no resolvable U isotope fractionation was detected in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among dissolved U species is the most likely mechanism driving these isotope effects. Our quantitative model of this process assumes that charged U species are preferentially incorporated into CaCO3 relative to the neutral U species Ca2UO2(CO3)3(aq), which we hypothesize to have a lighter equilibrium U isotope composition than the charged U species. According to this model, the magnitude of U isotope fractionation should scale with the fraction of the neutral U species in the solution, in agreement with our experimental results. These findings suggest that U isotope variations in abiotic CaCO3 reflect changes in aqueous U(VI) speciation, which are in turn a function of carbonate ion chemistry and pH. Hence, the door is opened to the development of a possible 238U/235U proxy for the carbonate ion system. [1] DeCarlo et al., (2015), GCA, 162,151-165. [2] Reeder et a., (2001), GCA, 65, 3491-3503. [3] Weyer et al., (2008) GCA 72, 345-359.
NASA Astrophysics Data System (ADS)
Baker, D. R.
2012-12-01
Measurements of volcanic gas compositions are often presumed to be directly related to equilibrium compositions of fluids exsolved at depth in magmatic systems that rapidly escape into the atmosphere. In particular, changes in the ratios of volatile species concentrations in volcanic gases have been interpreted to reflect influx of new magma batches or changes in the degassing depth. However, other mechanisms can also yield changes in volcanic gas compositions. One such mechanism is diffusive fractionation during rapid bubble growth. Such fractionation can occur because radial growth rates of bubbles in magmas are estimated to be in the range of 10-6 to 10-3 m s-1 and diffusion coefficients of minor volatiles (e.g., Cl, F, S, CO2) are orders of magnitude slower, 10-12 to 10-9 m2 s-1. Thus a bubble that rapidly grows and subsequently loses its volatiles to the surface may contribute a fluid sample whose concentration is affected by the interplay between the kinetics of bubble growth and volatile diffusion in the melt. A finite difference code was developed to calculate the effects of rapid bubble growth on the concentration of minor elements in the bubble for a spherical growth geometry. The bubble is modeled with a fixed growth rate and a constant equilibrium fluid-melt partition coefficient, KD. Bubbles were modeled to grow to a radius of 50 μm, the size at which the dominant bubble growth mechanism appears to change from diffusion to coalescence. The critical variables that control the departure from equilibrium behavior are the K D and the ratio of the growth velocity, V, to the diffusivity, D. Modeling bubble growth in a magma chamber at 100 MPa demonstrates that when KD is in the range of 10 to 1000 at low V/D values (e.g., 103 m-1) the composition of the fluid is at, or near, equilibrium with the melt. However, as V/D increases the bubble composition deviates increasingly from equilibrium. For V/D ratios of 105 and equilibrium KD's of either 50 or 100 (similar to estimates for S), a bubble with a 50 μm radius will contain a fluid whose concentration was apparently determined by a KD of less than 10. These models also demonstrate that the combination of rapid bubble growth with slow diffusion can deplete the melt in the volatile species only within the immediate neighborhood, on the order of 100 μm. If bubbles are spaced further apart the melts may retain significant concentrations of dissolved volatiles, which could lead to secondary and tertiary nucleation events. These models for diffusive fractionation during rapid bubble growth suggest that changes in the ratios of minor elements in volcanic gases may be influenced by bubble growth rate changes. Volatiles with lower diffusivities and volatiles with very high or very low partition coefficients will be more influenced by this process. Diffusive fractionation may be responsible for the drop in the CO2/SO2 ratios sometimes observed prior to large eruptions of Stromboli volcano.
Application of a novel sorting system for equine mesenchymal stem cells (MSCs)
Radtke, Catherine L.; Nino-Fong, Rodolfo; Esparza Gonzalez, Blanca P.; McDuffee, Laurie A.
2014-01-01
The objective of this study was to validate non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs) into subpopulations, for use with MSCs derived from equine muscle tissue, periosteal tissue, bone marrow, and adipose tissue. Cells were collected from 6 young, adult horses, postmortem. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and left supragluteal subcutaneous adipose tissue. Aliquots of 800 × 103 MSCs from each tissue source were separated and injected into a ribbon-like capillary device by continuous flow (GrFFF proprietary system). Cells were sorted into 6 fractions and absorbencies [optical density (OD)] were read. Six fractions from each of the 6 aliquots were then combined to provide pooled fractions that had adequate cell numbers to seed at equal concentrations into assays. Equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells were consistently sorted into 6 fractions that remained viable for use in further assays. Fraction 1 had more cuboidal morphology in culture when compared to the other fractions. Statistical analysis of the fraction absorbencies (OD) revealed a P-value of < 0.05 when fractions 2 and 3 were compared to fractions 1, 4, 5, and 6. It was concluded that non-equilibrium GrFFF is a valid method for sorting equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells into subpopulations that remain viable, thus securing its potential for use in equine stem cell applications and veterinary medicine. PMID:25355998
Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead
Yang, Sha; Liu, Yun
2015-01-01
The nuclear volume effects (NVEs) of Hg, Tl and Pb isotope systems are investigated with careful evaluation on quantum relativistic effects via the Dirac’s formalism of full-electron wave function. Equilibrium 202Hg/198Hg, 205Tl/203Tl, 207Pb/206Pb and 208Pb/206Pb isotope fractionations are found can be up to 3.61‰, 2.54‰, 1.48‰ and 3.72‰ at room temperature, respectively, larger than fractionations predicted by classical mass-dependent isotope fractionations theory. Moreover, the NVE can cause mass-independent fractionations (MIF) for odd-mass isotopes and even-mass isotopes. The plot of vs. for Hg-bearing species falls into a straight line with the slope of 1.66, which is close to previous experimental results. For the first time, Pb4+-bearing species are found can enrich heavier Pb isotopes than Pb2+-bearing species to a surprising extent, e.g., the enrichment can be up to 4.34‰ in terms of 208Pb/206Pb at room temperature, due to their NVEs are in opposite directions. In contrast, fractionations among Pb2+-bearing species are trivial. Therefore, the large Pb fractionation changes provide a potential new tracer for redox conditions in young and closed geologic systems. The magnitudes of NVE-driven even-mass MIFs of Pb isotopes (i.e., ) and odd-mass MIFs (i.e., ) are almost the same but with opposite signs. PMID:26224248
Site-specific equilibrium isotopic fractionation of oxygen, carbon and calcium in apatite
NASA Astrophysics Data System (ADS)
Aufort, Julie; Ségalen, Loïc; Gervais, Christel; Paulatto, Lorenzo; Blanchard, Marc; Balan, Etienne
2017-12-01
The stable isotope composition of biogenic apatite is an important geochemical marker that can record environmental parameters and is widely used to infer past climates, biomineralization processes, dietary preferences and habitat of vertebrates. In this study, theoretical equilibrium isotopic fractionation of oxygen, carbon and calcium in hydroxyapatite and carbonate-bearing hydroxyapatite is investigated using first-principles methods based on density-functional theory and compared to the theoretical isotopic fractionation properties of calcite, CO2 and H2O. Considering the variability of apatite crystal-chemistry, special attention is given to specific contributions of crystal sites to isotopic fractionation. Significant internal fractionation is calculated for oxygen and carbon isotopes in CO3 between the different structural sites occupied by carbonate groups in apatite (typically 7‰ for both 18O/16O and 13C/12C fractionation at 37 °C). Compared with calcite-water oxygen isotope fractionation, occurrence of A-type substitution in apatite structure, in addition to the main B-type substitution, could explain the larger temperature dependence of oxygen isotope fractionation measured at low temperature between carbonate in apatite and water. Theoretical internal fractionation of oxygen isotopes between carbonate and phosphate in B-type carbonated apatite (∼8‰ at 37 °C) is consistent with experimental values obtained from modern and well-preserved fossil bio-apatites. Concerning calcium, theoretical results suggest a small fractionation between apatite and calcite (-0.17‰ at 37 °C). Internal fractionation reaching 0.8‰ at 37 °C occurs between the two Ca sites in hydroxyapatite. Furthermore, the Ca isotopic fractionation properties of apatite are affected by the occurrence of carbonate groups, which could contribute to the variability observed on natural samples. Owing to the complexity of apatite crystal-chemistry and in light of the theoretical results, measurements of site-specific isotopic fractionation properties could improve our understanding and the interpretation of isotopic records in apatites.
A Harris-Todaro Agent-Based Model to Rural-Urban Migration
NASA Astrophysics Data System (ADS)
Espíndola, Aquino L.; Silveira, Jaylson J.; Penna, T. J. P.
2006-09-01
The Harris-Todaro model of the rural-urban migration process is revisited under an agent-based approach. The migration of the workers is interpreted as a process of social learning by imitation, formalized by a computational model. By simulating this model, we observe a transitional dynamics with continuous growth of the urban fraction of overall population toward an equilibrium. Such an equilibrium is characterized by stabilization of rural-urban expected wages differential (generalized Harris-Todaro equilibrium condition), urban concentration and urban unemployment. These classic results obtained originally by Harris and Todaro are emergent properties of our model.
NASA Astrophysics Data System (ADS)
Foustoukos, Dionysis I.; Mysen, Bjorn O.
2012-06-01
A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the O-D⋯O environment. This difference allows enhanced gas solubility in the denser and more polar H2O clusters, and thus, affects the D/H exchange between the H2-D2 volatiles and the coexisting H2O-D2O mixtures. The proposed role of temperature in promoting differences in the density and polarity of hydrogen-bonded OHO and ODO molecules may be explained with isotope-specific molar volume effects similar to those suggested to account for the hydrogen isotope fractionation between H2O and hydroxide mineral phases (e.g. brucite) across large pressure intervals.
The effect of non-equilibrium metal cooling on the interstellar medium
NASA Astrophysics Data System (ADS)
Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso
2018-04-01
By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of 10 simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from 10 to 100 per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular-gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations that link star formation rate to metal emission lines.
NASA Astrophysics Data System (ADS)
Kim, Youngseob; Sartelet, Karine; Seigneur, Christian; Charron, Aurélie; Besombes, Jean-Luc; Jaffrezo, Jean-Luc; Marchand, Nicolas; Polo, Lucie
2016-09-01
Exhaust emissions of semi-volatile organic compounds (SVOC) from passenger vehicles are usually estimated only for the particle phase via the total particulate matter measurements. However, they also need to be estimated for the gas phase, as they are semi-volatile. To better estimate SVOC emission factors of passenger vehicles, a measurement campaign using a chassis dynamometer was conducted with different instruments: (1) a constant volume sampling (CVS) system in which emissions were diluted with filtered air and sampling was performed on filters and polyurethane foams (PUF) and (2) a Dekati Fine Particle Sampler (FPS) in which emissions were diluted with purified air and sampled with on-line instruments (PTR-ToF-MS, HR-ToF-AMS, MAAP, CPC). Significant differences in the concentrations of organic carbon (OC) measured by the instruments are observed. The differences can be explained by sampling artefacts, differences between (1) the time elapsed during sampling (in the case of filter and PUF sampling) and (2) the time elapsed from emission to measurement (in the case of on-line instruments), which vary from a few seconds to 15 min, and by the different dilution factors. To relate elapsed times and measured concentrations of OC, the condensation of SVOC between the gas and particle phases is simulated with a dynamic aerosol model. The simulation results allow us to understand the relation between elapsed times and concentrations in the gas and particle phases. They indicate that the characteristic times to reach thermodynamic equilibrium between gas and particle phases may be as long as 8 min. Therefore, if the elapsed time is less than this characteristic time to reach equilibrium, gas-phase SVOC are not at equilibrium with the particle phase and a larger fraction of emitted SVOC will be in the gas phase than estimated by equilibrium theory, leading to an underestimation of emitted OC if only the particle phase is considered or if the gas-phase SVOC are estimated by equilibrium theory. Current European emission inventories for passenger cars do not yet estimate gas-phase SVOC emissions, although they may represent 60% of total emitted SVOC (gas + particle phases).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Y.B.; Yang, L.H.; Duan, J.L.
The kinetics of the β → α phase transformation in the 47Zr–45Ti–5Al–3V (wt.%) alloy with different initial β grain sizes under isothermal conditions was investigated by X-ray diffraction. The results showed that the volume fraction of α phase first increased with increasing aging time, and then reached an equilibrium value. The equilibrium value of α phase decreased with increased aging temperature. At the same aging temperature and time, the volume fraction of α phase in the 47Zr–45Ti–5Al–3V alloy solution-treated at 850 °C was higher than at 1050 °C, and the size of α phase in the 47Zr–45Ti–5Al–3V alloy solution-treated atmore » 850 °C was larger than that at 1050 °C. The kinetics of the β → α phase transformation was modeled under isothermal conditions in the theoretical frame of the Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory. The Avrami index (n) increased with increasing aging temperature, while the reaction rate constant (k) decreased. - Highlights: • The kinetics of the β → α phase transformation in the ZrTiAlV alloy was investigated. • The volume fraction of α phase first increased and then reached an equilibrium value. • The kinetics of the β → α phase transformation was modeled by the JMAK theory. • The n increased with increasing aging temperature, while the k decreased.« less
Kanoatov, Mirzo; Galievsky, Victor A; Krylova, Svetlana M; Cherney, Leonid T; Jankowski, Hanna K; Krylov, Sergey N
2015-03-03
Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a versatile tool for studying affinity binding. Here we describe a NECEEM-based approach for simultaneous determination of both the equilibrium constant, K(d), and the unknown concentration of a binder that we call a target, T. In essence, NECEEM is used to measure the unbound equilibrium fraction, R, for the binder with a known concentration that we call a ligand, L. The first set of experiments is performed at varying concentrations of T, prepared by serial dilution of the stock solution, but at a constant concentration of L, which is as low as its reliable quantitation allows. The value of R is plotted as a function of the dilution coefficient, and dilution corresponding to R = 0.5 is determined. This dilution of T is used in the second set of experiments in which the concentration of T is fixed but the concentration of L is varied. The experimental dependence of R on the concentration of L is fitted with a function describing their theoretical dependence. Both K(d) and the concentration of T are used as fitting parameters, and their sought values are determined as the ones that generate the best fit. We have fully validated this approach in silico by using computer-simulated NECEEM electropherograms and then applied it to experimental determination of the unknown concentration of MutS protein and K(d) of its interactions with a DNA aptamer. The general approach described here is applicable not only to NECEEM but also to any other method that can determine a fraction of unbound molecules at equilibrium.
Oxygen isotope trajectories of crystallizing melts: Insights from modeling and the plutonic record
NASA Astrophysics Data System (ADS)
Bucholz, Claire E.; Jagoutz, Oliver; VanTongeren, Jill A.; Setera, Jacob; Wang, Zhengrong
2017-06-01
Elevated oxygen isotope values in igneous rocks are often used to fingerprint supracrustal alteration or assimilation of material that once resided near the surface of the earth. The δ18O value of a melt, however, can also increase through closed-system fractional crystallization. In order to quantify the change in melt δ18O due to crystallization, we develop a detailed closed-system fractional crystallization mass balance model and apply it to six experimentally- and naturally-determined liquid lines of descent (LLDs), which cover nearly complete crystallization intervals (melt fractions of 1 to <0.1). The studied LLDs vary from anhydrous tholeiitic basalts to hydrous high-K and calc-alkaline basalts and are characterized by distinct melt temperature-SiO2 trajectories, as well as, crystallizing phase relationships. Our model results demonstrate that melt fraction-temperature-SiO2 relationships of crystallizing melts, which are strongly a function of magmatic water content, will control the specific δ18O path of a crystallizing melt. Hydrous melts, typical of subduction zones, undergo larger increases in δ18O during early stages of crystallization due to their lower magmatic temperatures, greater initial increases in SiO2 content, and high temperature stability of low δ18O phases, such as oxides, amphibole, and anorthitic plagioclase (versus albite). Conversely, relatively dry, tholeiitic melts only experience significant increases in δ18O at degrees of crystallization greater than 80%. Total calculated increases in melt δ18O of 1.0-1.5‰ can be attributed to crystallization from ∼50 to 70 wt.% SiO2 for modeled closed-system crystallizing melt compositions. As an example application, we compare our closed system model results to oxygen isotope mineral data from two natural plutonic sequences, a relatively dry, tholeiitic sequence from the Upper and Upper Main Zones (UUMZ) of the Bushveld Complex (South Africa) and a high-K, hydrous sequence from the arc-related Dariv Igneous Complex (Mongolia). These two sequences were chosen as their major and trace element compositions appear to have been predominantly controlled by closed-system fractional crystallization and their LLDs have been modeled in detail. We calculated equilibrium melt δ18O values using the measured mineral δ18O values and calculated mineral-melt fractionation factors. Increases of 2-3‰ and 1-1.5‰ in the equilibrium melts are observed for the Dariv Igneous Complex and the UUMZ of the Bushveld Complex, respectively. Closed-system fractional crystallization model results reproduce the 1‰ increase observed in the equilibrium melt δ18O for the Bushveld UUMZ, whereas for the Dariv Igneous Complex assimilation of high δ18O material is necessary to account for the increase in melt δ18O values. Assimilation of evolved supracrustal material is also confirmed with Sr and Nd isotope analyses of clinopyroxene from the sequence. Beginning with a range of mantle-derived basalt δ18O values of 5.7‰ ("pristine" mantle) to ∼7.0‰ (heavily subduction-influenced mantle), our model results demonstrated that high-silica melts (i.e. granites) with δ18O of up to 8.5‰ can be produced through fractional crystallization alone. Lastly, we model the zircon-melt δ18O fractionations of different LLDs, emphasizing their dependence on the specific SiO2-T relationships of a given crystallizing melt. Wet, relatively cool granitic melts will have larger zircon-melt fractionations, potentially by ∼1.5‰, compared to hot, dry granites. Therefore, it is critical to constrain zircon-melt fractionations specific to a system of interest when using zircon δ18O values to calculate melt δ18O.
The overview of the radon and environmental characteristics measurements in the Czech show caves.
Thinová, L; Froňka, A; Rovenská, K
2015-06-01
This paper focuses on the measurement and assessment of absorbed doses of radiation in caves of the Czech Republic, some of which exhibit high activity concentration of radon in air. Presented is an analysis and recommendations based on measurement results obtained in the underground caves over the past 12 y. The most important results for cave environments were as follows: integral radon monitoring using RAMARN detectors can provide more consistent results for calculating the effective dose; no major differences were shown in the average radon activity concentration during working time as opposed to non-working time; the unattached fraction of radioactive particles in air ranged from 0.03 to 0.6, with arithmetical average fp = 0.13; the direct dependence between equilibrium factor F and the size of the unattached fraction fp was described using the Log-Power expression ln(1/fp) = a*ln(1/F)(b); the calculated values for coefficients a and b were 1.85 and -1.096, respectively. The individual cave factor for each investigated underground area was calculated. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meidt, Sharon E.
2016-02-10
In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itselfmore » inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.« less
NASA Astrophysics Data System (ADS)
Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.
2015-03-01
Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.
Equilibrium and Kinetic Models for Colloid Release Under Transient Solution Chemistry Conditions
NASA Astrophysics Data System (ADS)
Bradford, S. A.; Torkzaban, S.; Leij, F. J.; Simunek, J.
2014-12-01
Colloid retention and release is well known to depend on a wide variety of physical, chemical, and microbiological factors that may vary temporally in the subsurface environment. We present equilibrium, kinetic, combined equilibrium and kinetic, and two-site kinetic models of colloid release during transient physicochemical conditions. Our mathematical modeling approach relates colloid release under transient conditions to changes in the fraction of the solid surface area that contributes to retention. The developed models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of E. coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity, respectively. The retention and release of 20 nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca2+ than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2 mM CaCl2 solution, and release of NPs only occurred after exchange of Ca2+ by Na+ and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider Born repulsion and nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque. Collectively, experimental and modeling results indicate that episodic colloid transport in the subsurface is expected because of transient conditions.
NASA Astrophysics Data System (ADS)
Zhao, Fa-Ming; Wang, Jiang-Feng; Li, Long-Fei
2018-05-01
The air chemical non-equilibrium effect (ACNEE) on hydrogen-air combustion flow fields at Mach number of 10 is numerically analyzed for a semi-sphere with a sonic opposing-hydrogen jet. The 2D axisymmetric multi-components N-S equations are solved by using the central scheme with artificial dissipation and the S-A turbulence model. Numerical results show that as compared to the result without ACNEE, the ACNEE has little influence on the structure of flow field, but has a considerable impact on fluid characteristics which reduces the maximum value of mass fraction of water in the flow field and increases the maximum value of mass fraction of water on solid surface, as well as the maximum surface temperature.
Efficient estimation of diffusion during dendritic solidification
NASA Technical Reports Server (NTRS)
Yeum, K. S.; Poirier, D. R.; Laxmanan, V.
1989-01-01
A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.
Fractional Relativistic Yamaleev Oscillator Model and Its Dynamical Behaviors
NASA Astrophysics Data System (ADS)
Luo, Shao-Kai; He, Jin-Man; Xu, Yan-Li; Zhang, Xiao-Tian
2016-07-01
In the paper we construct a new kind of fractional dynamical model, i.e. the fractional relativistic Yamaleev oscillator model, and explore its dynamical behaviors. We will find that the fractional relativistic Yamaleev oscillator model possesses Lie algebraic structure and satisfies generalized Poisson conservation law. We will also give the Poisson conserved quantities of the model. Further, the relation between conserved quantities and integral invariants of the model is studied and it is proved that, by using the Poisson conserved quantities, we can construct integral invariants of the model. Finally, the stability of the manifold of equilibrium states of the fractional relativistic Yamaleev oscillator model is studied. The paper provides a general method, i.e. fractional generalized Hamiltonian method, for constructing a family of fractional dynamical models of an actual dynamical system.
D'Auria, Maurizio; Racioppi, Rocco; Velluzzi, Vincenzina
2008-04-01
The fate of crude oil under irradiation is studied. After UV irradiation, the fraction present in the highest percentage shifts from the C8-C9 fractions to C13, using gas chromatography-mass spectrometry (GC-MS) analysis in solution. An increase of the relative amount of the C13-C25 fraction is observed, while a decrease in the relative amount of the C7-C12 fractions is present. In headspace solid-phase microextraction (HS-SPME) analysis, the C8-C10 fractions represent 53% of all the compounds detected. A decrease in the relative amount of the C8-C10 fractions is observed, while C11-C15 fractions increase. The irradiation of crude oil with a solar simulator gives a mixture the analysis of which using GC-MS in solution furnishes the same type of results: the relative amounts of linear alkanes and aromatic compounds increase, while a sharp decrease in the relative amounts of branched and cyclic alkanes is observed. In the SPME analysis, a decreased relative amount of branched alkanes and alkenes, and an increase in the relative amounts of cyclic alkanes and aromatic compounds are observed. Analysis of the distribution of the compounds in all the types of compound shows that a dynamic equilibrium between different compounds and different types of compounds is present. To confirm the presence of a dynamic equilibrium, the irradiation of methylcyclohexane in the presence of 2-methylnaphthalene shows the presence in the reaction mixture of a small amount of tetradecane.
Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks
NASA Technical Reports Server (NTRS)
Vandresar, Neil T.; Haberbusch, Mark S.
1994-01-01
Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.
Evaporation in equilibrium, in vacuum, and in hydrogen gas
NASA Technical Reports Server (NTRS)
Nagahara, Hiroko
1993-01-01
Evaporation experiments were conducted for SiO2 in three different conditions: in equilibrium, in vacuum, and in hydrogen gas. Evaporation rate in vacuum is about two orders of magnitude smaller than that in equilibrium, which is consistent with previous works. The rate in hydrogen gas changes depending on hydrogen pressure. The rate at 10 exp -7 bar of hydrogen pressure is as small as that of free evaporation, but at 10 exp -5 bar of hydrogen pressure it is larger than that in equilibrium. In equilibrium and in vacuum, the evaporation rate is limited by decomposition of SiO2 on the crystal surface, but it is limited by a diffusion process for evaporation in hydrogen gas. Therefore, evaporation rate of minerals in the solar nebula can be shown neither by that in equilibrium nor by that in vacuum. The maximum temperature of the solar nebula at the midplane at 2-3 AU where chondrites are believed to have originated is calculated to be as low as 150 K, 1500 K, or in between them. The temperature is, in any case, not high enough for total evaporation of the interstellar materials. Therefore, evaporation of interstellar materials is one of the most important processes for the origin and fractionation of solid materials. The fundamental process of evaporation of minerals has been intensively studied for these several years. Those experiments were carried out either in equilibrium or in vacuum; however, evaporation in the solar nebula is in hydrogen (and much smaller amount of helium) gas. In order to investigate evaporation rate and compositional (including isotopic) fractionation during evaporation, vaporization experiments for various minerals in various conditions are conducted. At first, SiO2 was adopted for a starting material, because thermochemical data and its nature of congruent vaporization are well known. Experiments were carried out in a vacuum furnace system.
Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean
NASA Astrophysics Data System (ADS)
Pahlevan, K.; Karato, S. I.
2016-12-01
Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial magma ocean. Whether such endogenous isotopic heterogeneity would survive as an observable signature in the modern silicate Earth is an open question.
NASA Astrophysics Data System (ADS)
Fenger, T. L.; Surge, D. M.; Schoene, B. R.; Carter, J. G.; Milner, N.
2006-12-01
Shells of the European limpet, Patella vulgata, from Late Holocene archaeological deposits potentially contain critical information about climate change in coastal areas. Before deciphering climate information preserved in these zooarchaeological records, we studied the controls on oxygen isotope ratios (δ18O) in modern specimens. We tested the hypothesis that P. vulgata precipitates its shell in isotopic equilibrium with ambient water by comparing δ18OSHELL with expected values. Expected δ18OSHELL was constructed using the calcite-water fractionation equation, observed sea surface temperature (SST), and assuming δ18OWATER is +0.10‰ (VSMOW). Comparison between expected and measured δ18OSHELL revealed a +1.51±0.21‰ (VPDB) offset from expected values. Consequently, estimated SST calculated from δ18OSHELL was 6.50±2.45°C lower than observed SST. However, because the offset was relatively uniform, an adjustment can be made to account for this predictable vital effect and past SST can be reliably reconstructed. To further investigate the source of offset in this genus, we analyzed a fully marine tropical species (Patella stellaeformis) to minimize seasonal variation in environmental factors that influence δ18OSHELL. P. stellaeformis was evaluated to determine whether it has a similar offset from equilibrium as P. vulgata. We tested the hypotheses that: (1) δ18OSHELL in tropical species also displays vital effects; and (2) the offset from equilibrium (if any) would be constant and predictable. Our results indicated: (1) aragonite comprises most of P. stellaeformis' shell; and (2) δ18OSHELL is statistically indistinguishable from expected values calculated using the aragonite-water fractionation equation (Kolmogorov-Smirnov test statistic=0.61, D0.05[56, 57]=1.36) in contrast with our observations in P. vulgata. Differences in mineralogy or growth rates at different latitudes may play a role in mechanisms that influence vital effects.
Effects of crowders on the equilibrium and kinetic properties of protein aggregation
NASA Astrophysics Data System (ADS)
Bridstrup, John; Yuan, Jian-Min
2016-08-01
The equilibrium and kinetic properties of protein aggregation systems in the presence of crowders are investigated using simple, illuminating models based on mass-action laws. Our model yields analytic results for equilibrium properties of protein aggregates, which fit experimental data of actin and ApoC-II with crowders reasonably well. When the effects of crowders on rate constants are considered, our kinetic model is in good agreement with experimental results for actin with dextran as the crowder. Furthermore, the model shows that as crowder volume fraction increases, the length distribution of fibrils becomes narrower and shifts to shorter values due to volume exclusion.
Burns, Douglas A.
1989-01-01
In a small watershed in the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. Available chemical evidence indicates that acidic soil water was the primary source of dissolved aluminum. As flow increased, the Al(OH)3 saturation index in the stream water increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3− at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. A soil water/stream water mixing model was developed based on measured changes of stream water alkalinity, silica concentration, and charge imbalance during the rain events. Model results indicate that a small amount of soil water (3–11%) was present in the stream at peak stage.
Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar
NASA Astrophysics Data System (ADS)
Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun
2015-04-01
Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged from 6.5 to 8.0. Sorption capacity was reduced with aging time. From kinetic results, two-compartment first order model was more suitable than one-compartment first order model. Fast sorption site of biochar-amended soils dominated total sorption process (i.e., Fraction of fast sorption site ranged from 0.55 to 0.96). Reduced sorption capacity with aging time could be attributed to changes in physico-chemical properties of biochar-amended soils (e.g., reduced pores and increased hydrophilic carboxyl and carbonyl functional groups). Verification is FI-IR and SSA. It is assumed that biochar is a suitable material for PHE contaminated soil in order to reduce the lability of PHE. However, aging effects would lessen biochar benefit for reducing the sorption capacity of PHE by forming hydrophilic functional group and reducing pores.
13C 18O clumping in speleothems: Observations from natural caves and precipitation experiments
NASA Astrophysics Data System (ADS)
Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G.
2011-06-01
The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ 18O. Interpreting speleothem δ 18O records in terms of absolute paleotemperatures and δ 18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C 18O bonds in CO 2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation. Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ 18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ 18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ 18O and Δ47 values, probably inherited from prior degassing within the cave system. In addition to these modern observations, clumped-isotope analyses of a flowstone from Villars cave (France) offer evidence that the amount of disequilibrium affecting Δ47 in a single speleothem can experience large variations at time scales of 10 kyr. Application of clumped-isotope thermometry to speleothem records calls for an improved physical understanding of DIC fractionation processes in karst waters, and for the resolution of important issues regarding equilibrium calibration of Δ47 in inorganic carbonates.
Theory of Random Copolymer Fractionation in Columns
NASA Astrophysics Data System (ADS)
Enders, Sabine
Random copolymers show polydispersity both with respect to molecular weight and with respect to chemical composition, where the physical and chemical properties depend on both polydispersities. For special applications, the two-dimensional distribution function must adjusted to the application purpose. The adjustment can be achieved by polymer fractionation. From the thermodynamic point of view, the distribution function can be adjusted by the successive establishment of liquid-liquid equilibria (LLE) for suitable solutions of the polymer to be fractionated. The fractionation column is divided into theoretical stages. Assuming an LLE on each theoretical stage, the polymer fractionation can be modeled using phase equilibrium thermodynamics. As examples, simulations of stepwise fractionation in one direction, cross-fractionation in two directions, and two different column fractionations (Baker-Williams fractionation and continuous polymer fractionation) have been investigated. The simulation delivers the distribution according the molecular weight and chemical composition in every obtained fraction, depending on the operative properties, and is able to optimize the fractionation effectively.
Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya.
Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Kandari, Tushar; Gusain, G S; Mishra, Rosaline; Ramola, R C
2016-01-01
The measurements of radon, thoron and their progeny concentrations have been carried out in the dwellings of Uttarkashi and Tehri districts of Garhwal Himalaya, India using LR-115 detector based pin-hole dosimeter and DRPS/DTPS techniques. The equilibrium factors for radon, thoron and their progeny were calculated by using the values measured with these techniques. The average values of equilibrium factor between radon and its progeny have been found to be 0.44, 0.39, 0.39 and 0.28 for rainy, autumn, winter and summer seasons, respectively. For thoron and its progeny, the average values of equilibrium factor have been found to be 0.04, 0.04, 0.04 and 0.03 for rainy, autumn, winter and summer seasons, respectively. The equilibrium factor between radon and its progeny has been found to be dependent on the seasonal changes. However, the equilibrium factor for thoron and progeny has been found to be same for rainy, autumn and winter seasons but slightly different for summer season. The annual average equilibrium factors for radon and thoron have been found to vary from 0.23 to 0.80 with an average of 0.42 and from 0.01 to 0.29 with an average of 0.07, respectively. The detailed discussion of the measurement techniques and the explanation for the results obtained is given in the paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vibrational density of states and Lindemann melting law
NASA Astrophysics Data System (ADS)
Luo, Sheng-Nian; Strachan, Alejandro; Swift, Damian C.
2005-05-01
We examine the Lindemann melting law at different pressures using the vibrational density of states (DOS), equilibrium melting curve, and Lindemann parameter δL (fractional root-mean-squared displacement, rmsd, at equilibrium melting) calculated independently from molecular dynamics simulations of the Lennard-Jones system. The DOS is obtained using spectra analysis of atomic velocities and accounts for anharmonicity. The increase of δL with pressure is non-negligible: δL is about 0.116 and 0.145 at ambient and extreme pressures, respectively. If the component of rmsd normal to a reflecting plane as in the Debye-Waller-factor-type measurements using x rays is adopted for δL, these values are about 0.067(±0.002) and 0.084(±0.003), and are comparable with experimental and calculated values for face-centered-cubic elements. We find that the Lindemann relation holds accurately at ambient and high pressures. The non-negligible pressure dependence of δL suggests that caution should be exerted in applying the Lindemann law to obtaining the high pressure melting curve anchored at ambient pressure.
Gas hydrate property measurements in porous sediments with resonant ultrasound spectroscopy
NASA Astrophysics Data System (ADS)
McGrail, B. P.; Ahmed, S.; Schaef, H. T.; Owen, A. T.; Martin, P. F.; Zhu, T.
2007-05-01
Resonant ultrasound spectroscopy was used to characterize a natural geological core sample obtained from the Mallik 5L-38 gas hydrate research well at high pressure and subambient temperatures. Using deuterated methane gas to form gas hydrate in the core sample, it was discovered that resonance amplitudes are correlated with the fraction of the pore space occupied by the gas hydrate crystals. A pore water freezing model was developed that utilizes the known pore size distribution and pore water chemistry to predict gas hydrate saturation as a function of pressure and temperature. The model showed good agreement with the experimental measurements and demonstrated that pore water chemistry is the most important factor controlling equilibrium gas hydrate saturations in these sediments when gas hydrates are formed artificially in laboratory pressure vessels. With further development, the resonant ultrasound technique can provide a rapid, nondestructive, field portable means of measuring the equilibrium P-T properties and dissociation kinetics of gas hydrates in porous media, determining gas hydrate saturations, and may provide new insights into the nature of gas hydrate formation mechanisms in geologic materials.
Computer simulations of equilibrium magnetization and microstructure in magnetic fluids
NASA Astrophysics Data System (ADS)
Rosa, A. P.; Abade, G. C.; Cunha, F. R.
2017-09-01
In this work, Monte Carlo and Brownian Dynamics simulations are developed to compute the equilibrium magnetization of a magnetic fluid under action of a homogeneous applied magnetic field. The particles are free of inertia and modeled as hard spheres with the same diameters. Two different periodic boundary conditions are implemented: the minimum image method and Ewald summation technique by replicating a finite number of particles throughout the suspension volume. A comparison of the equilibrium magnetization resulting from the minimum image approach and Ewald sums is performed by using Monte Carlo simulations. The Monte Carlo simulations with minimum image and lattice sums are used to investigate suspension microstructure by computing the important radial pair-distribution function go(r), which measures the probability density of finding a second particle at a distance r from a reference particle. This function provides relevant information on structure formation and its anisotropy through the suspension. The numerical results of go(r) are compared with theoretical predictions based on quite a different approach in the absence of the field and dipole-dipole interactions. A very good quantitative agreement is found for a particle volume fraction of 0.15, providing a validation of the present simulations. In general, the investigated suspensions are dominated by structures like dimmer and trimmer chains with trimmers having probability to form an order of magnitude lower than dimmers. Using Monte Carlo with lattice sums, the density distribution function g2(r) is also examined. Whenever this function is different from zero, it indicates structure-anisotropy in the suspension. The dependence of the equilibrium magnetization on the applied field, the magnetic particle volume fraction, and the magnitude of the dipole-dipole magnetic interactions for both boundary conditions are explored in this work. Results show that at dilute regimes and with moderate dipole-dipole interactions, the standard method of minimum image is both accurate and computationally efficient. Otherwise, lattice sums of magnetic particle interactions are required to accelerate convergence of the equilibrium magnetization. The accuracy of the numerical code is also quantitatively verified by comparing the magnetization obtained from numerical results with asymptotic predictions of high order in the particle volume fraction, in the presence of dipole-dipole interactions. In addition, Brownian Dynamics simulations are used in order to examine magnetization relaxation of a ferrofluid and to calculate the magnetic relaxation time as a function of the magnetic particle interaction strength for a given particle volume fraction and a non-dimensional applied field. The simulations of magnetization relaxation have shown the existence of a critical value of the dipole-dipole interaction parameter. For strength of the interactions below the critical value at a given particle volume fraction, the magnetic relaxation time is close to the Brownian relaxation time and the suspension has no appreciable memory. On the other hand, for strength of dipole interactions beyond its critical value, the relaxation time increases exponentially with the strength of dipole-dipole interaction. Although we have considered equilibrium conditions, the obtained results have far-reaching implications for the analysis of magnetic suspensions under external flow.
Zatsiorsky, Vladimir M; Gao, Fan; Latash, Mark L
2005-04-01
According to basic physics, the local effects induced by gravity and acceleration are identical and cannot be separated by any physical experiment. In contrast-as this study shows-people adjust the grip forces associated with gravitational and inertial forces differently. In the experiment, subjects oscillated a vertically-oriented handle loaded with five different weights (from 3.8 N to 13.8 N) at three different frequencies in the vertical plane: 1 Hz, 1.5 Hz and 2.0 Hz. Three contributions to the grip force-static, dynamic, and stato-dynamic fractions-were quantified. The static fraction reflects grip force related to holding a load statically. The stato-dynamic fraction reflects a steady change in the grip force when the same load is moved cyclically. The dynamic fraction is due to acceleration-related adjustments of the grip force during oscillation cycles. The slope of the relation between the grip force and the load force was steeper for the static fraction than for the dynamic fraction. The stato-dynamic fraction increased with the frequency and load. The slope of the dynamic grip force-load force relation decreased with frequency, and as a rule, increased with the load. Hence, when adjusting grip force to task requirements, the central controller takes into account not only the expected magnitude of the load force but also such factors as whether the force is gravitational or inertial and the contributions of the object mass and acceleration to the inertial force. As an auxiliary finding, a complex finger coordination pattern aimed at preserving the rotational equilibrium of the object during shaking movements was reported.
222Rn progeny surface deposition and resuspension--residential materials.
Leonard, B E
1995-07-01
The radiological hazard of radon gas to occupants in residential environments is from the particulate progeny 218Po, 214Pb, 214Bi, and 214Po, rather than 222Rn itself. Attachment to aerosols, plateout, and resuspension impact on the progeny airborne concentrations. Plateout rate and resuspension factors were measured for air change (ventilation) rates, 0.01 to 1.0 h-1, in a 0.28 m3 test chamber for interior residential materials of wallboard, drapery, carpet, ceiling tile, and concrete, and from 0.05 to 2.5 h-i for hardwood and glass. The overall accuracy of the plateout rate values is estimated to be +/- 13% standard deviation. For the different materials, the plateout rates for 218Po progeny varied by a factor of nearly six. Drapery gave the largest plateout rates. Resuspension rate factors, R, were measured for hardwood, wallboard, drapery, carpet, and glass by a new time-dependent measurement method based on the difference in buildup rate of 214Po to equilibrium caused by resuspension. Values for R obtained for hardwood, wallboard, drapery, carpet and glass were 0.31, 0.29, 0.44, 0.55, and 0.36, respectively ( +/- 30% standard deviation). All measurements were made in a continuous air conditioned interior environment maintaining temperature at 22.2 +/- 1.1 degrees C and relative humidity of 30% +/- 10%. Computations were made of equivalent plateout rates and equilibrium fractions for a standard 5 m x 5 m x 3 m high room to provide values to compare with other work.
Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts
NASA Astrophysics Data System (ADS)
Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.
2014-06-01
The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during uptake. However, Cu in Fe-Mn crusts is isotopically light (at ∼0.3 to 0.5‰) compared to the dissolved phase in seawater (at ∼0.9‰). We suggest that this is because dissolved Cu in the oceans is overwhelmingly complexed to strong organic ligands, which are better competitors for the heavy isotope.
NASA Astrophysics Data System (ADS)
Horita, Juske; Cole, David R.; Wesolowski, David J.
1995-03-01
The effect of dissolved NaCl on equilibrium oxygen and hydrogen isotope fractionation factors between liquid water and water vapor was precisely determined in the temperature range from 130-350°C, using two different types of apparatus with static or dynamic sampling techniques of the vapor phase. The magnitude of the oxygen and hydrogen isotope effects of NaCl is proportional to the molality of liquid NaCl solutions at a given temperature. Dissolved NaCl lowers appreciably the hydrogen isotope fractionation factor between liquid water and water vapor over the entire temperature range. NaCl has little effect on the oxygen isotope fractionation factor at temperatures below about 200°C, with the magnitude of the salt effect gradually increasing from 200-350°C. Our results are at notable variance with those of Truesdell (1974) and Kazahaya (1986), who reported large oxygen and hydrogen isotope effects of NaCl with very complex dependencies on temperature and NaCl molality. Our high-temperature results have been regressed along with our previous results between 50 and 100°C (Horita et al., 1993a) and the low-temperature literature data to simple equations which are valid for NaCl solutions from 0 to at least 5 molal NaCl in the temperature range from 10-350°C. Our preliminary results of oxygen isotope fractionation in the system CaCO3-water ± NaCl at 300°C and 1 kbar are consistent with those obtained from the liquid-vapor equilibration experiments, suggesting that the isotope salt effects are common to systems involving brines and any other coexisting phases or species (gases, minerals, dissolved species, etc.). The observed NaCl isotope effects at elevated temperatures should be taken into account in the interpretation of isotopic data of brine-dominated natural systems.
NASA Astrophysics Data System (ADS)
Vollstaedt, Hauke; Mezger, Klaus; Leya, Ingo
2016-09-01
Solar nebula processes led to a depletion of volatile elements in different chondrite groups when compared to the bulk chemical composition of the solar system deduced from the Sun's photosphere. For moderately-volatile elements, this depletion primarily correlates with the element condensation temperature and is possibly caused by incomplete condensation from a hot solar nebula, evaporative loss from the precursor dust, and/or inherited from the interstellar medium. Element concentrations and interelement ratios of volatile elements do not provide a clear picture about responsible mechanisms. Here, the abundance and stable isotope composition of the moderately- to highly-volatile element Se are investigated in carbonaceous, ordinary, and enstatite chondrites to constrain the mechanism responsible for the depletion of volatile elements in planetary bodies of the inner solar system and to define a δ 82 / 78 Se value for the bulk solar system. The δ 82 / 78 Se of the studied chondrite falls are identical within their measurement uncertainties with a mean of - 0.20 ± 0.26 ‰ (2 s.d., n = 14, relative to NIST SRM 3149) despite Se abundance depletions of up to a factor of 2.5 with respect to the CI group. The absence of resolvable Se isotope fractionation rules out a kinetic Rayleigh-type incomplete condensation of Se from the hot solar nebula or partial kinetic evaporative loss on the precursor material and/or the parent bodies. The Se depletion, if acquired during partial condensation or evaporative loss, therefore must have occurred under near equilibrium conditions to prevent measurable isotope fractionation. Alternatively, the depletion and cooling of the nebula could have occurred simultaneously due to the continuous removal of gas and fine particles by the solar wind accompanied by the quantitative condensation of elements from the pre-depleted gas. In this scenario the condensation of elements does not require equilibrium conditions to avoid isotope fractionation. The results further suggest that the processes causing the high variability of Se concentrations and depletions in ordinary and enstatite chondrites did not involve any measurable isotope fractionation. Different degrees of element depletions and isotope fractionations of the moderately-volatile elements Zn, S, and Se in ordinary and enstatite chondrites indicate that their volatility is controlled by the thermal stabilities of their host phases and not by the condensation temperature under canonical nebular conditions.
Kinetic fractionation processes recorded in the stalagmites of some limestone caves in Korea
NASA Astrophysics Data System (ADS)
Woo, K. S.; Jo, K.; Edwards, L. R.; Cheng, H.; Wang, Y.; Yoon, H.
2006-12-01
Stable isotope data (oxygen and carbon) of carbonate minerals (mostly calcite, but sometimes aragonite) in stalagmites have been the most commonly and widely used proxies for paleoclimatic research. This is based upon the assumption that carbonate minerals precipitated in isotopic equilibrium with dripping waters from stalactites, thus should reflect paleoclimatic variations. The state of equilibrium, so called "Hendy Test", has been commonly used. Hendy (1971) showed that during kinetic fractionation both oxygen and carbon isotopes behaves in a similar way due to faster degassing rate of cabon dioxide, resulting in the enrichment of both isotopes. The stalagmites from three limestone caves (Gwaneum, Eden and Daeya Caves) in Korea were investigated to understand the effects of kinetic fractionation during their growth. The stalagmites are mostly composed of columnar calcites, but contains the layers of cave coral that is composed of fibrous calcite. The cave coral layers should have grown when the supply rate of dripping water decreased significantly. Stable isotope pattern in three stalagmites do not show the same pattern of disequilibrium process. The cave corals in the Eden stalagmite show the enriched carbon and oxygen isotope values (15 and 5 per mil, respectively) that has the same bimodal pattern as suggested by Hendy (1971). However, the cave corals in the Gwaneum stalagmites show the enriched carbon, but depleted oxygen isotope values (3 and 1 per mil, respectively). Also, the calcite layer precipitated in disequilibrium in the Daeya stalagmite show more enriched carbon isotope values by up to 6 per mil, but show more or less the same oxygen isotopic values, compared to the columnar calcite which was precipitated in equilibrium. Therefore, caution should be made to determine the state of equilibrium precipitation of carbonate minerals in stalagmites. The "Hendy Test" may not be the only solution because other types of speleothems can be formed in stalagmites as the supply rate of dripping water changes. Also, different texture in stalagmites can be used as another criteria to determine the degree of equilibrium.
Chemical Principles Revisited: Chemical Equilibrium.
ERIC Educational Resources Information Center
Mickey, Charles D.
1980-01-01
Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)
Design and implementation of grid multi-scroll fractional-order chaotic attractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao
2016-08-15
This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.; Mildebrath, Mark E.
1983-12-01
The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.
Daou, Doumit; Coaguila, Carlos; Vilain, Didier
2007-05-01
Electrocardiograph-gated single photon emission computed tomography (SPECT) radionuclide angiography provides accurate measurement of right ventricular ejection fraction and end-diastolic and end-systolic volumes. In this study, we report the interstudy precision and reliability of SPECT radionuclide angiography for the measurement of global systolic right ventricular function using two, three-dimensional volume processing methods (SPECT-QBS, SPECT-35%). These were compared with equilibrium planar radionuclide angiography. Ten patients with chronic coronary artery disease having two SPECT and planar radionuclide angiography acquisitions were included. For the right ventricular ejection fraction, end-diastolic volume and end-systolic volume, the interstudy precision and reliability were better with SPECT-35% than with SPECT-QBS. The sample sizes needed to objectify a change in right ventricular volumes or ejection fraction were lower with SPECT-35% than with SPECT-QBS. The interstudy precision and reliability of SPECT-35% and SPECT-QBS for the right ventricle were better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography on the same population. SPECT-35% and SPECT-QBS present good interstudy precision and reliability for right ventricular function, with the results favouring the use of SPECT-35%. The results are better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography. They need to be confirmed in a larger population.
A test of the significance of intermolecular vibrational coupling in isotopic fractionation
Herman, Michael F.; Currier, Robert P.; Peery, Travis B.; ...
2017-07-15
Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less
Yang, Xujun; Li, Chuandong; Song, Qiankun; Chen, Jiyang; Huang, Junjian
2018-05-04
This paper talks about the stability and synchronization problems of fractional-order quaternion-valued neural networks (FQVNNs) with linear threshold neurons. On account of the non-commutativity of quaternion multiplication resulting from Hamilton rules, the FQVNN models are separated into four real-valued neural network (RVNN) models. Consequently, the dynamic analysis of FQVNNs can be realized by investigating the real-valued ones. Based on the method of M-matrix, the existence and uniqueness of the equilibrium point of the FQVNNs are obtained without detailed proof. Afterwards, several sufficient criteria ensuring the global Mittag-Leffler stability for the unique equilibrium point of the FQVNNs are derived by applying the Lyapunov direct method, the theory of fractional differential equation, the theory of matrix eigenvalue, and some inequality techniques. In the meanwhile, global Mittag-Leffler synchronization for the drive-response models of the addressed FQVNNs are investigated explicitly. Finally, simulation examples are designed to verify the feasibility and availability of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stable Fe isotope fractionation during anaerobic microbial dissimilatory iron reduction at low pH
NASA Astrophysics Data System (ADS)
Chanda, P.; Amenabar, M. J.; Boyd, E. S.; Beard, B. L.; Johnson, C.
2017-12-01
In low-temperature anaerobic environments microbial dissimilatory iron reduction (DIR) plays an important role in Fe cycling. At neutral pH, sorption of aqueous Fe(II) (Fe(II)aq, produced by DIR) catalyzes isotopic exchange between Fe(II) and solid Fe(III), producing 56Fe/54Fe fractionations on the order of 3‰ during DIR[1,2,3]. At low pH, however, the absence of sorbed Fe(II) produces only limited abiologic isotopic exchange[4]. Here we investigated the scope of isotopic exchange between Fe(II)aq and ferric (hydr)oxides (ferrihydrite and goethite) and the associated stable Fe isotope fractionation during DIR by Acidianus strain DS80 at pH 3.0 and 80°C[5]. Over 19 days, 13% reduction of both minerals via microbial DIR was observed. The δ56Fe values of the fluid varied from -2.31 to -1.63‰ (ferrihydrite) and -0.45 to 0.02‰ (goethite). Partial leaching of bulk solid from each reactor with dilute HCl showed no sorption of Fe(II), and the surface layers of the solids were composed of Fe(III) with high δ56Fe values (ferrihydrite: 0.20 to 0.48‰ and goethite: 1.20 to 1.30‰). These results contrast with the lack of Fe isotope exchange in abiologic low-pH systems and indicate a key role for biology in catalyzing Fe isotope exchange between Fe(II)aq and Fe(III) solids, despite the absence of sorbed Fe(II). The estimated fractionation factor (ΔFeFe(III) -Fe(II)aq 2.6‰) from leaching of ferrihydrite is similar to the abiologic equilibrium fractionation factor ( 3.0‰)[3]. The fractionation factor (ΔFeFe(III) -Fe(II)aq 2.0‰) for goethite is higher than the abiologic fractionation factor ( 1.05‰)[2], but is consistent with the previously proposed "distorted surface layer" of goethite produced during the exchange with Fe(II)aq at neutral pH[1]. This study indicates that significant variations in Fe isotope compositions may be produced in low-pH environments where biological cycling of Fe occurs, in contrast to the expected lack of isotopic fractionation in low-pH abiologic systems, and such results bear on the search for biosignatures in Mars and Mars-analog settings. [1] Crosby et al., 2007 Geobiol. 5, 169-189 [2] Beard et al., 2010 Earth Planet. Sci. Lett. 295, 241-250 [3] Wu et al., 2011 Environ. Sci. Technol. 45, 1847-1852 [4] Reddy et al., 2015 Chem. Geol. 397, 118-127 [5] Amenabar et al., 2017 Nat. Geosci. In press
NASA Astrophysics Data System (ADS)
Miller, Christian A.; Peucker-Ehrenbrink, Bernhard; Schauble, Edwin A.
2015-11-01
We present the first data documenting environmental variations in the isotope composition of Re, and the first theoretical models of equilibrium Re isotope fractionation factors. Variations of δ187Re at modern surface temperatures are predicted to be ‰ level for redox (ReVII ⇌ ReIV) and perrhenate thiolation reactions (ReVIIO4- ⇌ReVIIOXS4-X- ⇌ReVII S4-). Nuclear volume fractionations are calculated to be smaller than mass dependent effects. Values of δ187Re from New Albany Shale samples presented in this work and in a previous study show a range of 0.8‰ over a stratigraphic interval of ∼20 m. The magnitude of variation is consistent with theoretical predictions and may provide evidence for changing δ187Re of seawater in the geologic past. A -0.3‰ change in δ187Re across a 14 m horizontal black shale weathering profile is accompanied by a hundred-fold decrease in Re concentration and a 75% decrease in organic carbon associated with the transition from reducing to oxic weathering environment. We attribute decreasing δ187Re to the loss of organically bound Re component (δ187Re = -0.28‰). The Re isotope composition of the complementary detrital silicate fraction varies from -0.59 to -1.5‰, depending on the choice of silicate Re concentration.
NASA Astrophysics Data System (ADS)
Wang, P.; Sun, C.; Ono, S.; Lin, L.
2012-12-01
Microbial dissimilatory sulfate reduction is one of the major mechanisms driving anaerobic mineralization of organic matter in global ocean. While sulfate-reducing prokaryotes are well known to fractionate sulfur isotopes during dissimilatory sulfate reduction, unraveling the isotopic compositions of sulfur-bearing minerals preserved in sedimentary records could provide invaluable constraints on the evolution of seawater chemistry and metabolic pathways. Variations in the sulfur isotope fractionations are partly due to inherent differences among species and also affected by environmental conditions. The isotope fractionations caused by microbial sulfate reduction have been interpreted to be a sequence of enzyme-catalyzed isotope fractionation steps. Therefore, the fractionation factor depends on (1) the sulfate flux into and out of the cell, and (2) the flux of sulfur transformation between the internal pools. Whether the multiple sulfur isotope effect could be quantitatively predicted using such a metabolic flux model would provide insights into the cellular machinery catalyzing with sulfate reduction. This study examined the multiple sulfur isotope fractionation patterns associated with a thermophilic Thermodesulfobacterium-related strain and a mesophilic Desulfovibrio gigas over a wide temperature range. The Thermodesulfobacterium-related strain grew between 34 and 79°C with an optimal temperature at 72°C and the highest cell-specific sulfate reduction rate at 77°C. The 34ɛ values ranged between 8.2 and 31.6‰ with a maximum at 68°C. The D. gigas grew between 10 and 45 °C with an optimal temperature at 30°C and the highest cell-specific sulfate reduction rate at 41°C. The 34ɛ values ranged between 10.3 and 29.7‰ with higher magnitude at both lower and higher temperatures. The results of multiple sulfur isotope measurements expand the previously reported range and cannot be described by a solution field of the metabolic flux model, which calculates the Δ33S and 34ɛ values assuming equilibrium fractionation among internal steps. Either larger isotope effects or kinetic fractionation has to be considered in the metabolic flux model to explain the multiple sulfur isotope effect produced by these two strains. Overall, the metabolic flux model warrants further revision and further studies regarding physiological responses to growth conditions may probably offer a linkage between multiple sulfur isotope effects and environmental factors for microbial dissimilatory sulfate reduction.
M. M. Clark; T. H. Fletcher; R. R. Linn
2010-01-01
The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixtureâ fraction model relying on thermodynamic...
Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?
NASA Technical Reports Server (NTRS)
Rapp, Jennifer F.; Draper, David S.
2013-01-01
New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization
Formation of Minor Phases in a Nickel-Based Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Garg, A.; Miller, D. R.; Sudbrack, C. K.; Hull, D. R.; Johnson, D.; Rogers, R. B.; Gayda, J.; Semiatin, S. L.
2012-01-01
The minor phases of powder metallurgy disk superalloy LSHR were studied. Samples were consistently heat treated at three different temperatures for long times to approximate equilibrium. Additional heat treatments were also performed for shorter times, to then assess non-equilibrium conditions. Minor phases including MC carbides, M23C6 carbides, M3B2 borides, and sigma were identified. Their transformation temperatures, lattice parameters, compositions, average sizes and total area fractions were determined, and compared to estimates of an existing phase prediction software package. Parameters measured at equilibrium sometimes agreed reasonably well with software model estimates, with potential for further improvements. Results for shorter times representing non-equilibrium indicated significant potential for further extension of the software to such conditions, which are more commonly observed during heat treatments and service at high temperatures for disk applications.
On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system
NASA Astrophysics Data System (ADS)
Hajipour, Ahamad; Hajipour, Mojtaba; Baleanu, Dumitru
2018-05-01
This manuscript mainly focuses on the construction, dynamic analysis and control of a new fractional-order financial system. The basic dynamical behaviors of the proposed system are studied such as the equilibrium points and their stability, Lyapunov exponents, bifurcation diagrams, phase portraits of state variables and the intervals of system parameters. It is shown that the system exhibits hyperchaotic behavior for a number of system parameters and fractional-order values. To stabilize the proposed hyperchaotic fractional system with uncertain dynamics and disturbances, an efficient adaptive sliding mode controller technique is developed. Using the proposed technique, two hyperchaotic fractional-order financial systems are also synchronized. Numerical simulations are presented to verify the successful performance of the designed controllers.
Oxygen isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals
NASA Astrophysics Data System (ADS)
Kohn, Matthew J.; Valley, John W.
1998-06-01
The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition 18O in the order: hornblende ≪ gedrite < cummingtonite ≤ anthophyllite. The observed fractionations at ˜575°C are: Δ(Ged-Hbl) = 0.8‰, Δ(Cum-Hbl) = 0.9, Δ(Cum-Ged) = 0.2, Δ(Ath-Ged) = 0.3, and Δ(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that Δ(Act-Hbl) ˜ 0.2, Δ(Gln-Grt) ≫ 1, and Δ(Hbl-Grt) ˜ 0. Thus, glaucophane strongly partitions 18O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components such as CaAl(NaSi) -1, NaAl(CaMg) -1, CaMg -1, MgFe -1, FeMn -1, KNa -1, KAl( Si) -1, and Fe 3+Al -1. Applications of the exchange component method reproduce measured amphibole fractionations to within ±0.1 to ±0.2‰, whereas other predictive methods cause misfit for typical metamorphic hornblende of ≥0.5‰ at 575°C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium δ 18O differences of 2-9‰. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.
Equilibrium β-limits in classical stellarators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.
Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less
Equilibrium β-limits in classical stellarators
Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.; ...
2017-11-17
Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less
Keedakkadan, Habeeb Rahman; Abe, Osamu
2015-04-30
The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic and molecular fractionations, and this fractionation by molecular sieves can be corrected by the amount of molecular sieve used in the experiment. The reproducibility of the method was tested by the measurement of the oxygen isotope ratios of dissolved oxygen at equilibrium with atmospheric air. We confirmed that the choice of methods for making air-equilibrated water was not related to the magnitude of isotope fractionation, whereas there was a difference between seawater and deionized water. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Gordon, S.
1982-01-01
The equilibrium compositions that correspond to the thermodynamic and transport combustion properties for a wide range of conditions for the reaction of hydrocarbons with air are presented. Initially 55 gaseous species and 3 coin condensed species were considered in the calculations. Only 17 of these 55 gaseous species had equilibrium mole fractions greater than 0.000005 for any of the conditions studied and therefore these were the only ones retained in the final tables.
Competitive Cyber-Insurance and Internet Security
NASA Astrophysics Data System (ADS)
Shetty, Nikhil; Schwartz, Galina; Felegyhazi, Mark; Walrand, Jean
This paper investigates how competitive cyber-insurers affect network security and welfare of the networked society. In our model, a user's probability to incur damage (from being attacked) depends on both his security and the network security, with the latter taken by individual users as given. First, we consider cyberinsurers who cannot observe (and thus, affect) individual user security. This asymmetric information causes moral hazard. Then, for most parameters, no equilibrium exists: the insurance market is missing. Even if an equilibrium exists, the insurance contract covers only a minor fraction of the damage; network security worsens relative to the no-insurance equilibrium. Second, we consider insurers with perfect information about their users' security. Here, user security is perfectly enforceable (zero cost); each insurance contract stipulates the required user security. The unique equilibrium contract covers the entire user damage. Still, for most parameters, network security worsens relative to the no-insurance equilibrium. Although cyber-insurance improves user welfare, in general, competitive cyber-insurers fail to improve network security.
Stability of high-speed boundary layers in oxygen including chemical non-equilibrium effects
NASA Astrophysics Data System (ADS)
Klentzman, Jill; Tumin, Anatoli
2013-11-01
The stability of high-speed boundary layers in chemical non-equilibrium is examined. A parametric study varying the edge temperature and the wall conditions is conducted for boundary layers in oxygen. The edge Mach number and enthalpy ranges considered are relevant to the flight conditions of reusable hypersonic cruise vehicles. Both viscous and inviscid stability formulations are used and the results compared to gain insight into the effects of viscosity and thermal conductivity on the stability. It is found that viscous effects have a strong impact on the temperature and mass fraction perturbations in the critical layer and in the viscous sublayer near the wall. Outside of these areas, the perturbations closely match in the viscous and inviscid models. The impact of chemical non-equilibrium on the stability is investigated by analyzing the effects of the chemical source term in the stability equations. The chemical source term is found to influence the growth rate of the second Mack mode instability but not have much of an effect on the mass fraction eigenfunction for the flow parameters considered. This work was supported by the AFOSR/NASA/National Center for Hypersonic Laminar-Turbulent Transition Research.
Uranium Isotope Fractionation during Oxidation of Dissolved U(iv) and Synthetic Solid UO2
NASA Astrophysics Data System (ADS)
Wang, X.; Johnson, T. M.; Lundstrom, C. C.
2013-12-01
U isotopes (238U/235U) show promise as a tool for environmental monitoring of U contamination as well as a proxy for paleo-redox conditions. However, the isotopic fractionation mechanisms of U are still poorly understood. In groundwater systems, U(VI), a mobile contaminant, can be reduced to immobile U(IV) and thus remediated. Previous work shows that 238U/235U of the remaining U(VI) changes with the extent of reduction. Therefore, U(VI) isotope composition in groundwater can potentially be used to detect and perhaps quantify the extent of reduction. However, knowing if isotopic fractionation occurs during U(IV) oxidation is equally important. First, the reduced U(IV) (either solid or as dissolved organic complexes) potentially can be reoxidized to U(VI). If isotope fractionation occurs during oxidation, it would complicate the use of U isotope composition as a monitoring technique. Further, in natural weathering processes, U(IV) minerals are oxidized to form dissolved U(VI), which is carried to rivers and eventually to the ocean and deposited in marine sediments. The weathering cycle is thus sensitive to redox conditions, meaning the sedimentary U isotope record may serve as a paleoredox indicator, provided U isotope fractionation during oxidation and reduction are well known. We conducted experiments oxidizing 2 different U(IV) species by O2 and measuring isotopic fractionation factors. In one experiment, dissolved U(IV) in 0.1 N HCl (pH 1) was oxidized by entrained air. As oxidation proceeds at pH 1, the remaining dissolved U(IV) becomes progressively enriched in 238U in a linear trend, while the product U(VI) paralleled, but was offset to 1.0‰ lighter in 238U/235U. This linear progression of both remaining reactant and product suggests equilibrium fractionation during oxidation of dissolved U(IV) by O2. A second experiment oxidized synthetic, solid UO2 (in 20 mM NaHCO3, pH 7) with entrained air. The oxidative fractionation is very weak in this case with product U(VI) ~0.1‰ heavier than the remaining UO2. We attribute the lack of strong fractionation during oxidation of solid UO2 to a 'rind effect', where the surface layer must be completely oxidized before the next layer is exposed to oxidant. Hence, nearly complete, congruent conversion of each layer of U(IV) to U(VI) results in minimal isotope fractionation. A small amount of transient fractionation probably occurs initially, but this is quickly negated as the surface becomes isotopically fractionated. Interestingly, our measured ~0.1‰ U isotope fractionation during oxidation of solid U(IV) agrees with the natural observation that 238U/235U ratios in river water (mainly U(VI)) are ~0.1‰ greater than those in fresh continental rocks (primarily U(IV) minerals). Application of these results to natural settings should be done with caution, however. Oxidation of natural uraninite in continental rocks is a much slower process. If the U(VI) product and the U(IV) reactant remain in contact for long periods of time (e.g., months), they may evolve toward isotopic equilibrium. Measurements of 238U/235U in various natural weathering environments should be undertaken to examine this idea.
NASA Astrophysics Data System (ADS)
Stasiak, Andrzej
2016-09-01
Being a geek of DNA topology, I remember very well the stir caused by 1997 Science paper showing that DNA topoisomerases have the ability to simplify DNA topology below the topological equilibrium values [1]. In their seminal experiments Rybenkov et al. [1] started with linear double-stranded DNA molecules with cohesive ends. The mutual cohesiveness of DNA ends was due to mutual complementarity of single-stranded extensions at both ends of linear double-stranded DNA molecules. When such DNA molecules were heated up and then slowly cooled down the single-stranded ends eventually annealed with each other causing DNA circularization. This experimental protocol permitted the authors to establish topological/thermodynamic equilibrium within samples of circularized DNA molecules. Among simple unknotted circles one also observed knotted and catenated DNA molecules. The fraction of knotted molecules in DNA samples at topological equilibrium was increasing with the length of DNA molecules undergoing slow circularization. The fraction of catenated molecules was increasing with the length and the concentration of the molecules undergoing slow circularization. Rybenkov et al. incubated then such equilibrated DNA samples with type II DNA topoisomerases, which pass DNA duplex regions through each other, and observed that as the result of it the fraction of knotted and catenated DNA molecules was dramatically decreased (up to 80-fold). This elegant experiment indicated for the first time that type II DNA topoisomerases acting on knotted or catenated DNA molecules have the ability to select among many potential sites of DNA-DNA passages these that result in DNA unknotting or decatenation. Without such a selection topoisomerases could only maintain the original topological equilibrium obtained during the slow cyclization. The big question was how DNA topoisomerases can be directed to do DNA-DNA passages that preferentially result in DNA unknotting and decatenation.
Cobalt and scandium partitioning versus iron content for crystalline phases in ultramafic nodules
Glassley, W.E.; Piper, D.Z.
1978-01-01
Fractionation of Co and Sc between garnets, olivines, and clino- and orthopyroxenes, separated from a suite of Salt Lake Crater ultramafic nodules that equilibrated at the same T and P, is strongly dependent on Fe contents. This observation suggests that petrogenetic equilibrium models of partial melting and crystal fractionation must take into account effects of magma composition, if they are to describe quantitatively geochemical evolutionary trends. ?? 1978.
NASA Astrophysics Data System (ADS)
Bilenker, L. D.; Simon, A.; Lundstrom, C.; Gajos, N.
2012-12-01
Fractionation of non-traditional stable isotopes (NTSI) such as Fe in magmatic systems is a relatively understudied subject. The fractionation of Fe stable isotopes has been quantified in some natural igneous samples, but there is a paucity of experimental data that could provide further insight into the causative processes of the observed fractionation. Substantial experimental work has been performed at higher temperatures pertaining to the formation of chondrites and the Earth's core, but only a handful of studies have addressed crustal rocks. To fill this knowledge gap, we performed isothermal, isobaric experiments containing mineral (e.g., magnetite, Fe-sulfides) and fluid, or mineral, rhyolite melt, and fluid assemblages to quantify equilibrium fractionation factors (α). These data, to our knowledge, are the first data that quantify the effect of a fluid phase on iron isotope fractionation at conditions appropriate for evolving magmatic systems. Charges were run inside gold capsules held in a René-41 cold seal vessel, and heated to 400, 600, or 800°C at 150 MPa for mineral-fluid, and 800°C and 100 MPa for mineral-melt-fluid runs. Use of the René vessel fixed the fO2 at the NNO buffer, an oxidation state consistent with arc magmas. The isotopic compositions of the starting and quenched phases were obtained by using a Multi-Collector Plasma Mass Spectrometer (MC-ICP-MS). Equilibrium was assessed by performing time-series runs and the three-isotope method, used only once before in a similar Fe isotope study. Correlation between Fe isotope mass and oxidation state is also being explored. Magnetite-fluid results indicate enrichment of heavy Fe isotopes in the mineral relative to the fluid, consistent with measurements of felsic igneous rocks. Magnetite-melt-fluid relationships are also consistent with measurements of natural samples. In the latter assemblage, over the course of the run, the rhyolite melt becomes heavy relative to the fluid while magnetite takes on a heavier Fe isotope signature than the starting value. These data corroborate the hypothesis that fluid exsolution caused the isotopic patterns observed in highly-differentiated igneous rocks. Further, owing to the ubiquitous importance of melt degassing as a critical process for the formation of magmatic-hydrothermal ore deposits, these data may be potentially serve as an exploration tool. This work contributes to our overall understanding of igneous processes by elucidating the Fe isotope fingerprints observed in the field as well as develop the laboratory techniques needed to study NTSI fractionation in magmatic systems and build a reliable dataset for interpretation of natural systems.
Oxygen isotope fractionation in the CaCO3-DIC-H2O system
NASA Astrophysics Data System (ADS)
Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.
2017-10-01
The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading to a relatively constant foraminifer calcite δ18O-temperature relationship (-0.21 ± 0.01‰/°C). The lower average coral δ18O data relative to foraminifers and other calcifiers is best explained by the precipitation of internal DIC derived from hydrated CO2 in a high-pH calcifying fluid and minimal subsequent DIC-H2O isotopic equilibration. This leads to a reduced and variable coral aragonite δ18O-temperature relationship (-0.11 to -0.22‰/°C). Together, the model presented here reconciles observations of oxygen isotope fractionation over a range of CaCO3-DIC-H2O systems.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Hollweg, Joseph V.
1993-01-01
Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.
The equilibrium sedimentation of hyaluronic acid and of two synthetic polymers
Nichol, L. W.; Ogston, A. G.; Preston, B. N.
1967-01-01
1. The method of equilibrium sedimentation has been investigated as an alternative to osmotic-pressure measurement for determining thermodynamic properties of polymer solutions at relatively high concentrations. 2. The simplifications that must be made in the theoretical treatment are discussed. 3. Measurements have been made on samples of polyethylene glycol, neutralized polymethacrylic acid and hyaluronic acid. With the first and third, values of the `non-ideality coefficients' have been obtained that agree with those obtained from osmotic measurements on the same materials. 4. Evidence has been obtained of the presence in hyaluronic acid preparations of a fraction that has either a lower degree of thermodynamic non-ideality or a higher density increment than the bulk of the sample. This fraction is not protein. ImagesFig. 3.Fig. 4.Fig. 5.Fig. 7.Fig. 8.Fig. 9.Fig. 11.Fig. 12.Fig. 13.Fig. 14. PMID:6029600
Micelle Morphology and Mechanical Response of Triblock Gels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, Michelle E.; Burghardt, Wesley R.; Shull, Kenneth R.
2010-01-12
The effect of polymer concentration on mechanical response and micelle morphology of ABA and AB copolymers in B-selective solvents has been systematically studied. Micelle morphology was determined using a combination of small-angle X-ray scattering, shear, and birefringence while mechanical response at low and high strains was determined using indentation techniques. Self-consistent field theory calculations were used to determine micelle volume fraction profiles and to construct an equilibrium phase map. The transition from spherical to cylindrical micelles increases the triblock gel modulus and energy dissipation. Combining knowledge of gel relaxation time, which determines the rate at which the gel can equilibratemore » its micelle structure, with the equilibrium phase map allows estimation of the experimental temperatures and time scales over which kinetic trapping will arrest micelle structure evolution. Kinetic trapping enables cylindrical morphologies to be obtained at significantly lower polymer fractions than is possible in equilibrated systems.« less
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Dynamic stability analysis of fractional order leaky integrator echo state neural networks
NASA Astrophysics Data System (ADS)
Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.
2017-06-01
The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.
NASA Astrophysics Data System (ADS)
Jokisch, D. W.; Rajon, D. A.; Bahadori, A. A.; Bolch, W. E.
2011-11-01
Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.
Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel
2014-01-01
This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487
Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel
2014-01-01
This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.
NASA Astrophysics Data System (ADS)
Valenzuela-Calahorro, Cristóbal; Navarrete-Guijosa, Antonio; Stitou, Mostafa; Cuerda-Correa, Eduardo M.
2007-04-01
In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy ( ΔH°) and entropy ( ΔS°) have been calculated. Finally, information related to variations of differential adsorption enthalpy ( ΔH) and entropy ( ΔS) with the surface coverage fraction ( θ) was obtained by using the corresponding Clausius-Clapeyron equations.
NASA Astrophysics Data System (ADS)
Rujiwarodom, Rachanee
2010-05-01
To study the Equilibrium between radon-222 and its daughters in Bangkok atmosphere by Gamma-ray spectrometry, air sample were collected on 48 activated charcoal canister and 360 glass fiber filters by using a high volume jet-air sampler during December 2007 to November 2008.The Spectra of gamma-ray were measured by using a HPGe (Hyper Pure Germanium Detector). In the condition of secular equilibrium obtaining between Radon-222 and its decay products, radon-222 on activated charcoal canister and its daughters on glass fiber filters collected in the same time interval were calculated. The equilibrium factor (F) in the open air had a value of 0.38 at the minimum ,and 0.75 at the maximum. The average value of equilibrium factor (F) was 0.56±0.12. Based on the results, F had variations with a maximum value in the night to the early morning and decreased in the afternoon. In addition, F was higher in the winter than in the summer. This finding corresponds with the properties of the Earth atmosphere. The equilibrium factor (F) also depended on the concentration of dust in the atmosphere. People living in Bangkok were exposed to average value of 30 Bq/m3 of Radon-222 in the atmosphere. The equilibrium factor (0.56±0.12) and the average value of Radon-222 showed that people were exposed to alpha energy from radon-222 and its daughters decay at 0.005 WL(Working Level) which is lower than the safety standard at 0.02 WL. Keywords: Radon, Radon daughters , equilibrium factor, Gamma -ray spectrum analysis ,Bangkok ,Thailand
NASA Astrophysics Data System (ADS)
Cullen, J. T.; Hurwitz, S.; Thordsen, J. J.; Barnes, J.
2017-12-01
B, Li, and halogens (Cl, F, Br) are used extensively in studies of thermal waters to infer fluid equilibrium conditions with the host reservoir lithology, and quantify the possible fraction of a magmatic component in thermal waters. Apart from fluorine, the limited number of minerals that incorporate these elements support the notion that they preferentially partition into an aqueous fluid during high temperature water-rock interaction. Although limited experimental work is largely consistent with these observations, a rigorous experimental investigation is required to quantify the mobility of these elements under conditions emulating a silicic hydrothermal system. Here we present the results from water-rhyolite interaction batch experiments conducted over a range of temperatures between 150 °C and 350 °C and 250 bar. Powdered obsidian from Yellowstone was reacted with MiliQ water and sampled intermittently throughout the duration of the 90 day experiment. The experimental data show that at temperatures ≤ 200 °C, B, Cl, Br, and Li are not readily leached from the rhyolite, whereas aqueous F- concentration increases by a factor of 3.5 when the temperature was increased from 150 °C to 200 °C. Between 200 °C and 250 °C, B concentration increased by more than an order of magnitude and Cl- concentration increased by a factor of 5. F- concentration increased by a factor of 3. Between 250 °C and 300 °C the opposite trend was observed, in which F- concentration decreased by 60%, Br- concentration increased by a factor of 5, and Cl- and B concentrations increased by more than an order of magnitude. The progressive decrease of aqueous F- at T ≥ 300 °C is likely controlled by precipitation into a fluorine bearing secondary mineral(s). Our experimental results demonstrate that leaching of B, Li, Cl, F, and Br from rhyolite is highly temperature-dependent between 150 °C and 350 °C. These results can provide context to infer the sources of solutes discharged at thermal springs and the subsurface water-rhyolite equilibrium temperatures in the Yellowstone hydrothermal system. Work to characterize the alteration mineralogy and the temperature-dependent stable Cl, Li, and B isotope fractionation is currently ongoing. Keywords: Yellowstone, hydrothermal, halogens, experiments, water-rock interaction
NASA Astrophysics Data System (ADS)
Cullen, J. T.; Hurwitz, S.; Thordsen, J. J.; Barnes, J.
2016-12-01
B, Li, and halogens (Cl, F, Br) are used extensively in studies of thermal waters to infer fluid equilibrium conditions with the host reservoir lithology, and quantify the possible fraction of a magmatic component in thermal waters. Apart from fluorine, the limited number of minerals that incorporate these elements support the notion that they preferentially partition into an aqueous fluid during high temperature water-rock interaction. Although limited experimental work is largely consistent with these observations, a rigorous experimental investigation is required to quantify the mobility of these elements under conditions emulating a silicic hydrothermal system. Here we present the results from water-rhyolite interaction batch experiments conducted over a range of temperatures between 150 °C and 350 °C and 250 bar. Powdered obsidian from Yellowstone was reacted with MiliQ water and sampled intermittently throughout the duration of the 90 day experiment. The experimental data show that at temperatures ≤ 200 °C, B, Cl, Br, and Li are not readily leached from the rhyolite, whereas aqueous F- concentration increases by a factor of 3.5 when the temperature was increased from 150 °C to 200 °C. Between 200 °C and 250 °C, B concentration increased by more than an order of magnitude and Cl- concentration increased by a factor of 5. F- concentration increased by a factor of 3. Between 250 °C and 300 °C the opposite trend was observed, in which F- concentration decreased by 60%, Br- concentration increased by a factor of 5, and Cl- and B concentrations increased by more than an order of magnitude. The progressive decrease of aqueous F- at T ≥ 300 °C is likely controlled by precipitation into a fluorine bearing secondary mineral(s). Our experimental results demonstrate that leaching of B, Li, Cl, F, and Br from rhyolite is highly temperature-dependent between 150 °C and 350 °C. These results can provide context to infer the sources of solutes discharged at thermal springs and the subsurface water-rhyolite equilibrium temperatures in the Yellowstone hydrothermal system. Work to characterize the alteration mineralogy and the temperature-dependent stable Cl, Li, and B isotope fractionation is currently ongoing. Keywords: Yellowstone, hydrothermal, halogens, experiments, water-rock interaction
Final bubble lengths for aqueous foam coarsened in a horizontal cylinder
NASA Astrophysics Data System (ADS)
Sebag, V.; Roth, A. E.; Durian, D. J.
2011-12-01
We report on length statistics measured for bubbles in the equilibrium bamboo state, achieved by the coarsening of aqueous foam in long cylindrical tubes, such that the soap films are all flat and perpendicular to the axis of the tube. The average bubble length is found to be 0.88 times the tube diameter, independent of variation of the liquid filling fraction by a factor of nearly three. The actual distribution is well-approximated by a shifted Rayleigh form, with a minimum bubble size of 0.28 tube diameters. And, perhaps surprisingly, no correlations are found in the lengths of neighboring bubbles. The observed length distribution agrees with that of Fortes et al. for short bubbles, but not for long bubbles.
Continued-fraction representation of the Kraus map for non-Markovian reservoir damping
NASA Astrophysics Data System (ADS)
van Wonderen, A. J.; Suttorp, L. G.
2018-04-01
Quantum dissipation is studied for a discrete system that linearly interacts with a reservoir of harmonic oscillators at thermal equilibrium. Initial correlations between system and reservoir are assumed to be absent. The dissipative dynamics as determined by the unitary evolution of system and reservoir is described by a Kraus map consisting of an infinite number of matrices. For all Laplace-transformed Kraus matrices exact solutions are constructed in terms of continued fractions that depend on the pair correlation functions of the reservoir. By performing factorizations in the Kraus map a perturbation theory is set up that conserves in arbitrary perturbative order both positivity and probability of the density matrix. The latter is determined by an integral equation for a bitemporal matrix and a finite hierarchy for Kraus matrices. In the lowest perturbative order this hierarchy reduces to one equation for one Kraus matrix. Its solution is given by a continued fraction of a much simpler structure as compared to the non-perturbative case. In the lowest perturbative order our non-Markovian evolution equations are applied to the damped Jaynes–Cummings model. From the solution for the atomic density matrix it is found that the atom may remain in the state of maximum entropy for a significant time span that depends on the initial energy of the radiation field.
Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granero, D., E-mail: dgranero@eresa.com; Candela-Juan, C.; Vijande, J.
2016-05-15
Purpose: High dose rate (HDR) brachytherapy for treatment of small skin lesions using the Leipzig and Valencia applicators is a widely used technique. These applicators are equipped with an attachable plastic cap to be placed during fraction delivery to ensure electronic equilibrium and to prevent secondary electrons from reaching the skin surface. The purpose of this study is to report on the dosimetric impact of the cap being absent during HDR fraction delivery, which has not been explored previously in the literature. Methods: GEANT4 Monte Carlo simulations (version 10.0) have been performed for the Leipzig and Valencia applicators with andmore » without the plastic cap. In order to validate the Monte Carlo simulations, experimental measurements using radiochromic films have been done. Results: Dose absorbed within 1 mm of the skin surface increases by a factor of 1500% for the Leipzig applicators and of 180% for the Valencia applicators. Deeper than 1 mm, the overdosage flattens up to a 10% increase. Conclusions: Differences of treating with or without the plastic cap are significant. Users must check always that the plastic cap is in place before any treatment in order to avoid overdosage of the skin. Prior to skin HDR fraction delivery, the timeout checklist should include verification of the cap placement.« less
Carbon isotope constraints on degassing of carbon dioxide from Kilauea Volcano
Gerlach, T.M.; Taylor, B.E.
1990-01-01
We examine models for batch-equilibrium and fractional-equilibrium degassing of CO2 from magma at Kilauea Volcano. The models are based on 1. (1) the concept of two-stage degassing of CO2 from magma supplied to the summit chamber, 2. (2) C isotope data for CO2 in eruptive and noneruptive (quiescent) gases from Kilauea and 3. (3) data for the isotopic fractionation of C between CO2 and C dissolved in tholeiitic basalt melt. The results of our study indicate that 1. (1) both eruptive and noneruptive degassing of CO2 most closely approach a batch equilibrium process, 2. (2) the ??13C of parental magma supplied to the summit chamber is in the range -4.1 to-3.4??? and 3. (3) the ??13C of melt after summit chamber degassing is in the range -7 to -8???, depending upon the depth of equilibration. We also present ??13C data for CO2 in eruptive gases from the current East Rift Zone eruption. These are the first C isotope data for CO2 in high-temperature (>900??C) eruptive gases from Kilauea; they have a mean ??13C value of -7.82 ?? 0.24??? and are similar to those predicted for the melt after summit chamber degassing. The minor role played by fractional degassing of ascending magma at Kilauea means that exsolved CO2 tends to remain entrained in and coherent with its host melt during ascent from both mantle source regions and crustal magma reservoirs. This has important implications for magma dynamics at Kilauea. ?? 1990.
NASA Astrophysics Data System (ADS)
Sade, Ziv; Halevy, Itay
2017-10-01
CO2 (de)hydration (i.e., CO2 hydration/HCO3- dehydration) and (de)hydroxylation (i.e., CO2 hydroxylation/HCO3- dehydroxylation) are key reactions in the dissolved inorganic carbon (DIC) system. Kinetic isotope effects (KIEs) during these reactions are likely to be expressed in the DIC and recorded in carbonate minerals formed during CO2 degassing or dissolution of gaseous CO2. Thus, a better understanding of KIEs during CO2 (de)hydration and (de)hydroxylation would improve interpretations of disequilibrium compositions in carbonate minerals. To date, the literature lacks direct experimental constraints on most of the oxygen KIEs associated with these reactions. In addition, theoretical estimates describe oxygen KIEs during separate individual reactions. The KIEs of the related reverse reactions were neither derived directly nor calculated from a link to the equilibrium fractionation. Consequently, KIE estimates of experimental and theoretical studies have been difficult to compare. Here we revisit experimental and theoretical data to provide new constraints on oxygen KIEs during CO2 (de)hydration and (de)hydroxylation. For this purpose, we provide a clearer definition of the KIEs and relate them both to isotopic rate constants and equilibrium fractionations. Such relations are well founded in studies of single isotope source/sink reactions, but they have not been established for reactions that involve dual isotopic sources/sinks, such as CO2 (de)hydration and (de)hydroxylation. We apply the new quantitative constraints on the KIEs to investigate fractionations during simultaneous CaCO3 precipitation and HCO3- dehydration far from equilibrium.
NASA Astrophysics Data System (ADS)
Basile-Doelsch, Isabelle; Puyraveau, Romain-Arnaud; Guihou, Abel; Haurine, Frederic; Deschamps, Pierre; rad, Setareh; Nehlig, Pierre
2017-04-01
Low temperature chemical weathering fractionates silicon (Si) isotopes while forming secondary silicates. The Si fractionation ranges of high temperature secondary phyllosilicates formed in hydrothermal alteration environments have not been investigated to date. Several parameters, including temperature, reaction rates, pH, ionic concentrations in solution, precipitation/dissolution series or kinetic versus equilibrium regime are not the same in hydrothermal alteration and surface weathering systems and may lead to different fractionation factors. In this work, we analyzed Si isotopes in these two types of alteration conditions in two profiles sampled on the volcanic island of Mayotte. In both profiles, Si-bearing secondary mineral was kaolinite. Both profiles showed 30Si depletion as a function of the degree of alteration but each with a distinct pattern. In the meteoric weathering profile, from the bottom to the top, a gradual decrease of the δ30Si from parent rock (-0.29 ± 0.13 ‰) towards the most weathered product (-2.05 ± 0.13 ‰) was observed. In the hydrothermal alteration profile, in which meteoric weathering was also superimposed at the top of the profile, an abrupt transition of the δ30Si was measured at the interface between parent-rock (-0.21 ± 0.11 ‰) and the altered products, with a minimum value of -3.06 ± 0.16 ‰˙ At the scale of Si-bearing secondary minerals, in the chemical weathering system, a Δ30Sikaol-parentrock of -1.9 ‰ was observed, in agreement with results in the literature. A low temperature kinetic fractionation 30ɛ of -2.29 ‰ was calculated using a simple steady state model. However, an unexpected Δ30Sikaol-parentrock of -2.85 ‰ was measured in the hydrothermal alteration site, pointing to possible mechanisms linked to dissolution/precipitation series and/or to ionic composition of the solution as the main controlling factors of fractionation in hydrothermal conditions. At the scale of the profiles, both δ30Si bulk rocks showed linear correlations with the SiO2:Al2O3 ratios, suggesting an alternative alteration index based on Si isotopic composition.
Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeller, D.A.; Leitch, C.A.; Brown, C.
The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water,more » local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.« less
Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
Forest, M Gregory; Wang, Qi; Zhou, Ruhai
2015-08-28
Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic state, consisting of discrete 1d banded or 2d cellular patterns depending on nanorod volume fraction. Increasing activation strength further induces a sequence of attractor bifurcations, including oscillations superimposed on the 1d and 2d stationary patterns, a uniform translational motion of 1d and 2d oscillating patterns, and periodic switching between 1d and 2d patterns. These results imply that active macromolecular suspensions are capable of long-range spatial and dynamic organization at isotropic equilibrium concentrations, provided particle-scale activation is sufficiently strong.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vercher, E.; Pena, M.P.; Martinez-Andreu, A.
Isobaric experimental data of vapor-liquid equilibrium for the ethanol-water-strontium bromide system at different mole fractions of strontium bromide have been measured at 100.6 kPa. Data were correlated by Jaques and Furter's method. Thermodynamic consistency was checked by Herington's method with satisfactory results.
Thermodynamics of impurity-enhanced vacancy formation in metals
NASA Astrophysics Data System (ADS)
Bukonte, Laura; Ahlgren, Tommy; Heinola, Kalle
2017-01-01
Hydrogen induced vacancy formation in metals and metal alloys has been of great interest during the past couple of decades. The main reason for this phenomenon, often referred to as the superabundant vacancy formation, is the lowering of vacancy formation energy due to the trapping of hydrogen. By means of thermodynamics, we study the equilibrium vacancy formation in fcc metals (Pd, Ni, Co, and Fe) in correlation with the H amounts. The results of this study are compared and found to be in good agreement with experiments. For the accurate description of the total energy of the metal-hydrogen system, we take into account the binding energies of each trapped impurity, the vibrational entropy of defects, and the thermodynamics of divacancy formation. We demonstrate the effect of vacancy formation energy, the hydrogen binding, and the divacancy binding energy on the total equilibrium vacancy concentration. We show that the divacancy fraction gives the major contribution to the total vacancy fraction at high H fractions and cannot be neglected when studying superabundant vacancies. Our results lead to a novel conclusion that at high hydrogen fractions, superabundant vacancy formation takes place regardless of the binding energy between vacancies and hydrogen. We also propose the reason of superabundant vacancy formation mainly in the fcc phase. The equations obtained within this work can be used for any metal-impurity system, if the impurity occupies an interstitial site in the lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.P.C. Wong; B. Merrill
2014-10-01
ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a systemmore » code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.« less
Equilibrium 𝛽-limits in classical stellarators
NASA Astrophysics Data System (ADS)
Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.
2017-12-01
A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.
Controlling species richness in spin-glass model ecosystems
NASA Astrophysics Data System (ADS)
Poderoso, Fábio C.; Fontanari, José F.
2006-11-01
Within the framework of the random replicator model of ecosystems, we use equilibrium statistical mechanics tools to study the effect of manipulating the ecosystem so as to guarantee that a fixed fraction of the surviving species at equilibrium display a predefined set of characters (e.g., characters of economic value). Provided that the intraspecies competition is not too weak, we find that the consequence of such intervention on the ecosystem composition is a significant increase on the number of species that become extinct, and so the impoverishment of the ecosystem.
Tiwari, M; Sahu, S K; Bhangare, R C; Pandit, G G
2016-10-01
In this study, size fractionated mass and 210 Po activity concentrations in mainstream cigarette smoke (MCS) were monitored for three popular cigarette brands. Size segregated collection of MCS was carried out using a cascade type impactor, while mass and 210 Po activity concentration were analyzed gravimetrically and alpha spectrometry (following the radiochemical separation) respectively. Multiple-Path Particle Dosimetry (MPPD V2.11) model is used for prediction of deposition fraction calculations for the MCS deposition in different compartment of human respiratory tract. The activity concentration of 210 Po is founds 10.56 ± 2.46 mBq per cigarette for the tested cigarette brands. 210 Po size distribution indicates most of this associates with fine fraction (Dp < 2.23 μm) of cigarette smoke. The committed annual effective dose to smokers (smoking on an average 20 cigarette a day), considering the 210 Po and 210 Pb concentrations (assuming it is in secular equilibrium with 210 Po) in MCS, was estimated between 0.22 and 0.40 mSv, with mean value of 0.30 mSv for tested cigarette brands. Considering the risk factor of fatal cancer due to radiation exposure of lung (exposure time of 30 years); the average collective estimated fatal cancer risk is estimated as 1.5 × 10 -4 due to 210 Po and 210 Pb exposure to smokers. Copyright © 2016. Published by Elsevier Ltd.
Jiang, Lingxiang; Yu, Caifang; Deng, Manli; Jin, Changwen; Wang, Yilin; Yan, Yun; Huang, Jianbin
2010-02-18
Cationic surfactant/anionic surfactant/beta-CD ternary aqueous systems provide a platform for the coexistence of the host-guest (beta-CD/surfactant) equilibrium and the biased aggregation (monomeric/aggregated surfactants) equilibrium. We report here that the interplay between the two equilibria dominates the systems as follows. (1) The biased aggregation equilibrium imposes an apparent selectivity on the host-guest equilibrium, namely, beta-CD has to always selectively bind the major surfactant (molar fraction > 0.5) even if binding constants of beta-CD to the pair of surfactants are quite similar. (2) In return, the host-guest equilibrium amplifies the bias of the aggregation equilibrium, that is, the selective binding partly removes the major surfactant from the aggregates and leaves the aggregate composition approaching the electroneutral mixing stoichiometry. (3) This composition variation enhances electrostatic attractions between oppositely charged surfactant head groups, thus resulting in less-curved aggregates. In particular, the present apparent host-guest selectivity is of remarkably high values, and the selectivity stems from the bias of the aggregation equilibrium rather than the difference in binding constants. Moreover, beta-CD is defined as a "stoichiometry booster" for the whole class of cationic/anionic surfactant systems, which provides an additional degree of freedom to directly adjust aggregate compositions of the systems. The stoichiometry boosting of the compositions can in turn affect or even determine microstructures and macroproperties of the systems.
Structure of high alumina content Al2O3-SiO2 composition glasses.
Weber, Richard; Sen, Sabyasachi; Youngman, Randall E; Hart, Robert T; Benmore, Chris J
2008-12-25
The structure of binary aluminosilicate glasses containing 60-67 mol % Al2O3 were investigated using high-resolution 27Al NMR and X-ray and neutron diffraction. The glasses were made by aerodynamic levitation of molten oxides. The 67% alumina composition required a cooling rate of approximately 1600 degrees C s(1-) to form glass from submillimeter sized samples. NMR results show that the glasses contain aluminum in 4-, 5-, and 6-fold coordination in the approximate ratio 4:5:1. The average Al coordination increases from 4.57 to 4.73 as the fraction of octahedral Al increases with alumina content. The diffraction results on the 67% composition are consistent with a disordered Al framework with Al ions in a range of coordination environments that are substantially different from those found in the equilibrium crystalline phases. Analysis of the neutron and X-ray structure factors yields an average bond angle of 125 +/- 4 degrees between an Al ion and the adjoining cation via a bridging oxygen. We propose that the structure of the glass is a "transition state" between the alumina-rich liquid and the equilibrium mullite phase that are dominated by 4- and 6-coordinated aluminum ions, respectively.
SORPTION KINETICS OF PAHS IN METHANOL-WATER SYSTEMS
The objectives of this study were to evaluate the relationships between the equilibrium sorption constant (Kp), the first-order desorption rate coefficient (k2), and the volumetric fraction of water miscible solvent (fc); and to utilize SPARC-calculated (SPARC Performs Automatic ...
NASA Astrophysics Data System (ADS)
Chen, Lie-Meng; Teng, Fang-Zhen; Song, Xie-Yan; Hu, Rui-Zhong; Yu, Song-Yue; Zhu, Dan; Kang, Jian
2018-04-01
Magnesium isotopic compositions of olivine, clinopyroxene, and ilmenite from the Baima intrusion, SW China, for the first time, are investigated to constrain the magnitude and mechanisms of Mg isotope fractionation among cumulus minerals in layered mafic intrusions and to evaluate their geological implications. Olivine and clinopyroxene have limited Mg isotope variations, with δ26Mg ranging from -0.33 to +0.05‰ and from -0.29 to -0.13‰, respectively, similar to those of mantle xenolithic peridotites. By contrast, ilmenites display extremely large Mg isotopic variation, with δ26Mg ranging from -0.50 to +1.90‰. The large inter-mineral fractionations of Mg isotopes between ilmenite and silicates may reflect both equilibrium and kinetic processes. A few ilmenites have lighter Mg isotopic compositions than coexisting silicates and contain high MgO contents without compositional zoning, indicating equilibrium fractionation. The implication is that the light Mg isotopic compositions of lunar high-Ti basalts may result from an isotopically light source enriched in cumulate ilmenites. On the other hand, most ilmenites have heavy Mg isotopic compositions, coupled with high MgO concentration and chemical zoning, which can be quantitatively modeled by kinetic Mg isotope fractionations induced by subsolidus Mg-Fe exchange between ilmenite and ferromagnesian silicates during the cooling of the Baima intrusion. The extensive occurrence of kinetic Mg isotope fractionation in ilmenites implies the possibility of widespread compositional disequilibrium among igneous minerals in magma chambers. Consequently, disequilibrium effects need to be considered in studies of basaltic magma evolution, magma chamber processes, and magmatic Fe-Ti oxide ore genesis.
Properties of quasiparticles in Luttinger liquid
NASA Astrophysics Data System (ADS)
Koutouza, Andrei Boris
In this dissertation we first explain why the Fermi liquid theory breaks down in one dimension and introduce the concept of Luttinger Liquid and the idea of bozonization. In the second part, we study the tunneling through an impurity in a quantum wire with arbitrary Luttinger interaction parameter. By combining the integrable approach, developed in the case of quantum Hall edge states, with the introduction of radiative boundary conditions to describe the adiabatic coupling to the reservoirs, we are able to obtain the exact equilibrium and non-equilibrium current. One of the most striking features observed is the appearance of negative differential conductances out of equilibrium in the strongly interacting regime g < 0.2. In spite of the various charging effects, a remarkable form of duality is still observed. In the third part, the tunneling between edge states in the Fractional Quantum Hall Effect is studied and the shot noise is computed to determine the charge of the carriers in the system. We show that the inclusion of irrelevant terms in the Hamiltonian, describing tunneling between edge states in the fractional quantum Hall effect affect crucially the determination of charge through shot noise measurements. We show, for instance, that certain combinations of relevant and irrelevant terms can lead to an effective measured charge e in the strong backscattering limit and an effective measured charge e in the weak backscattering limit, in sharp contrast with standard perturbative expectations. This provides a possible scenario to explain the experimental observations by Heiblum et al. [35], which are so far not understood. And finally, the scattering amplitudes at a point contact between a Fermi liquid and a Luttinger liquid will be considered, and calculated in the certain cases, using the form-factors technique. These include the reflection and transmission amplitudes at a point contact between a Fermi liquid and a g = 1/3 Luttinger liquid for the processes 2e → 2e, and e → e. These results are obtained in closed form, and give rise to rather simple expressions for the probabilities of the most basic processes of non-Fermi liquid physics at these special values of the couplings.
Zhang, Xinxin; Niu, Peifeng; Ma, Yunpeng; Wei, Yanqiao; Li, Guoqiang
2017-10-01
This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transient Macroscopic Chemistry in the DSMC Method
NASA Astrophysics Data System (ADS)
Goldsworthy, M. J.; Macrossan, M. N.; Abdel-Jawad, M.
2008-12-01
In the Direct Simulation Monte Carlo method, a combination of statistical and deterministic procedures applied to a finite number of `simulator' particles are used to model rarefied gas-kinetic processes. Traditionally, chemical reactions are modelled using information from specific colliding particle pairs. In the Macroscopic Chemistry Method (MCM), the reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell is used to determine a reaction rate coefficient for that cell. MCM has previously been applied to steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation and during the unsteady development of 2-D flow through a cavity. For the shock tube simulation, close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature and species mole fractions. For the cavity flow, a high degree of thermal non-equilibrium is present and non-equilibrium reaction rate correction factors are employed in MCM. Very close agreement is demonstrated for ensemble averaged mole fraction contours predicted by the particle and macroscopic methods at three different flow-times. A comparison of the accumulated number of net reactions per cell shows that both methods compute identical numbers of reaction events. For the 2-D flow, MCM required similar CPU and memory resources to the particle chemistry method. The Macroscopic Chemistry Method is applicable to any general DSMC code using any viscosity or non-reacting collision models and any non-reacting energy exchange models. MCM can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies.
Kim, Du Yung; Kwon, Jung-Hwan
2018-05-04
Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gallium isotope fractionation during Ga adsorption on calcite and goethite
NASA Astrophysics Data System (ADS)
Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques
2018-02-01
Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its geochemical analog aluminum.
Evaluating non-equilibrium solute transport in small soil columns
NASA Astrophysics Data System (ADS)
Kamra, S. K.; Lennartz, B.; Van Genuchten, M. Th; Widmoser, P.
2001-04-01
Displacement studies on leaching of bromide and two pesticides (atrazine and isoproturon) were conducted under unsaturated steady state flow conditions in 24 small undisturbed soil columns (5.7 cm in diameter and 10 cm long) each collected from two sites differing in soil structure and organic carbon content in North Germany. There were large and irregular variabilities in the characteristics of both soils, as well as in the shapes of breakthrough curves (BTCs) of different columns, including some with early breakthrough and increased tailing, qualitatively indicating the presence of preferential flow. It was estimated that one preferential flow column (PFC) at site A, and four at site B, contributed, respectively to 11% and 58% of the accumulated leached fraction and to more than 80% of the maximum observed standard deviation (SD) in the field-scale concentration and mass flux of pesticides at two sites. The bromide BTCs of two sites were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region/mobile-immobile model. Transport parameters of these models for individual BTCs were determined using a curve fitting program, CXTFIT, and by the time moment method. For the CDE based equilibrium model, the mean values of retardation factor, R, considered separately for all columns, PFCs or non-preferential flow columns (NPFCs) were comparable for the two methods; significant differences were observed in the values of dispersion coefficients of two sites using the two estimation methods. It was inferred from the estimated parameters of non-equilibrium model that 5-12% of water at site A, and 12% at site B, was immobile during displacement in NPFCs. The corresponding values for PFCs of two sites were much larger, ranging from 25% to 51% by CXTFIT and from 24% to 72% by the moment method, suggesting the role of certain mechanisms other than immobile water in higher degrees of non-equilibrium in these columns. Peclet numbers in PFCs of both sites were consistently smaller than five, indicating the inadequacy of the non-equilibrium model to incorporate the effect of all forms of non-equilibrium in PFCs. Overall, the BTCs of individual NPFCs, PFCs and of field average concentration at the two sites were better reproduced with parameters obtained from CXTFIT than by the moment method. The moment method failed to capture the peak concentrations in PFCs, but tended to describe the desorption and tail branches of BTCs better than the curve fitting approach.
Whicker, Jeffrey J; Pinder, John E; Ibrahim, Shawki A; Stone, James M; Breshears, David D; Baker, Kristine N
2007-07-01
The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diameters<45 microm). The 7-d Kd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in desorption rates from soil to solution (e.g., into groundwater or lung fluid). We also explore potential relationships between wind erosion, soil characteristics, and Kd values. Combined, our results highlight the need for a better mechanistic understanding of soil-solution partitioning kinetics for accurate risk assessment.
Rohatagi, Shashank; Luo, Yongyi; Shen, Liduo; Guo, Zuyu; Schemm, Christina; Huang, Yongqing; Chen, Kelly; David, Michael; Nave, Ruediger; King, S Peter
2005-01-01
Freely circulating, protein unbound, active inhaled corticosteroid (ICS) can cause systemic adverse effects. Desisobutyryl-ciclesonide (des-CIC) is the active metabolite of ciclesonide, an effective, novel ICS for persistent asthma. This study examines the free fraction of ciclesonide and des-CIC and determines whether the presence of other agents or disease states affects protein binding. Protein binding of des-CIC (0.5, 5.0, 25, 100, and 500 ng/mL) was determined, using both equilibrium dialysis and ultrafiltration, in plasma from humans (healthy and either renally or hepatically impaired) and several animal species and in the presence of either salicylates or warfarin. Dialyzed samples were analyzed by liquid chromatography with tandem mass spectroscopy to determine both free and bound concentrations of des-CIC. After ultrafiltration, spiked plasma plus H-des-CIC was separated into free and bound fractions by centrifugation and quantified by scintillation counting. Additionally, in another study, protein binding of ciclesonide was determined by equilibrium dialysis. For equilibrium dialysis, the mean percentages of des-CIC (0.5-500 ng/mL) plasma protein binding across species were high, approximately 99%, and no apparent saturation of protein binding was observed. Results were similar for ultrafiltration analysis. Protein binding of des-CIC did not change in the presence of warfarin or salicylates or in the plasma of renally or hepatically impaired patients. The protein binding of ciclesonide was 99.4% in human serum. The very low fraction of unbound des-CIC in the systemic circulation suggests minimal systemic exposure of unbound des-CIC, thus suggesting a low potential for systemic adverse effects after administration of inhaled ciclesonide.
Air conditioning impact on the dynamics of radon and its daughters concentration.
Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz
2014-12-01
Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Elardo, S. M.; Shahar, A.
2015-12-01
There are numerous studies that show well-resolved Fe isotope fractionations in igneous materials from different planetary bodies. Potential explanations for these fractionations include a non-chondritic bulk planetary Fe isotopic composition, and equilibrium fractionation between Fe-alloys or minerals and silicate melts during planetary differentiation, mantle melting, or fractional crystallization. This is further complicated by the fact that these processes are not mutually exclusive, making the interpretation of Fe isotope data a complex task. Here we present new experimental results investigating the effect of C on Fe isotope fractionation between molten peridotite and an Fe-alloy. Experiments were conducted at 1 GPa and 1850° C for 0.5 - 3 hours on a mixture of an 54Fe-spiked peridotite and Fe-metal with and without Ni metal in an end-loaded piston cylinder at the Geophysical Laboratory. Carbon saturation was achieved with a graphite capsule, and resulted in C contents of the Fe-alloy in our experiments ranging from 3.8 - 4.9 wt. %. The metal and silicate phases from half of each experiment were separated manually and dissolved in concentrated acids. Iron was separated from matrix elements by anion exchange chromatagraphy. Iron-isotopic compositions were determined with the Nu Plasma II MC-ICP-MS at GL. The other half of each experiment was used for quantitative microbeam analysis. Equilibrium was assessed with a time series and the three-isotope exchange method. The Ni-free experiments resulted in no resolvable Fe isotope fractionation between the Fe-C-alloy and molten silicate. This is in contrast to the results of Shahar et al. (2015) which showed a fractionation for Δ57Fe of ~0.18 ‰ between a peridotite and an Fe-alloy with a similar S abundance to C in these experiments. The one experiment thus far that contained Ni (~4 wt. % in the alloy) showed a resolvable fractionation between the Fe-Ni-C alloy and silicate of ~0.10 ‰. Shahar et al. found a similar magnitude fractionation to our Ni bearing experiment in experiments with no C or S. The difference in temperature (1650° C in Shahar et al. vs. 1850° C here) may be partially responsible for these discrepancies. Ongoing experiments will further investigate the effects of C and other light elements on Fe isotope fractionation during core segregation.
Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C
2015-01-01
Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.
Zhong, Xinyan; Shang, Ruishu; Huang, Lihong
2016-01-01
Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, PCO2, variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide. PMID:27907043
Duan, Yiping; Feng, Mingshi; Zhong, Xinyan; Shang, Ruishu; Huang, Lihong
2016-01-01
Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, [Formula: see text], variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide.
NASA Astrophysics Data System (ADS)
Sakata, Masahiro; Kurata, Masaki; Hijikata, Takatoshi; Inoue, Tadashi
1991-11-01
Distribution experiments for several rare earth elements (La, Ce, Pr, Nd and Y) between molten KCl-LiCl eutectic salt and liquid Cd were carried out at 450, 500 and 600°C. The material balance of rare earth elements after reaching the equilibrium and their distribution and chemical states in a Cd sample frozen after the experiment were examined. The results suggested the formation of solid intermetallic compounds at the lower concentrations of rare earth metals dissolved in liquid Cd than those solubilities measured in the binary alloy system. The distribution coefficients of rare earth elements between two phases (mole fraction in the Cd phase divided by mole fraction in the salt phase) were determined at each temperature. These distribution coefficients were explained satisfactorily by using the activity coefficients of chlorides and metals in salt and Cd. Both the activity coefficients of metal and chloride caused a much smaller distribution coefficient of Y relative to those of other elements.
Collisional Ionization Equilibrium for Optically Thin Plasmas
NASA Technical Reports Server (NTRS)
Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.
2006-01-01
Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.
NASA Astrophysics Data System (ADS)
Hansen, Christian T.; Meixner, Anette; Kasemann, Simone A.; Bach, Wolfgang
2017-11-01
Multiple batch experiments (100 °C, 200 °C; 40 MPa) were conducted, using Dickson-type reactors, to investigate Li and B partitioning and isotope fractionation between rock and water during serpentinization. We reacted fresh olivine (5 g; Fo90; [B] = <0.02 μg/g; δ11BOlivine -14‰; [Li] = 1.7 μg/g; δ7LiOlivine = +5.3‰) with seawater-like fluids (75 ml, 3.2 wt.% NaCl) adjusted with respect to their Li (0.2, 0.5 μg/ml; and δ7LiFluid +55‰) and B (∼10 μg/ml and δ11BFluid -0.3‰) characteristics. At 200 °C a reaction turnover of about 70% and a serpentinization mineral assemblage matching equilibrium thermodynamic computational results (EQ3/6) developed after 224 days runtime. Characterization of concomitant fluid samples indicated a distinct B incorporation into solid phases ([B]final_200 °C = 55.61 μg/g; DS/FB200 °C = 13.42) and a preferential uptake of the lighter 10B isotope (Δ11BS-F = -3.46‰). Despite a low reaction turnover at 100 °C (<12%), considerable amounts of B were again incorporated into solid phases ([B]final_100 °C = 25.33 μg/g; DS/FB100 °C = 24.2) with even a larger isotope fractionation factor (Δ11BS-F = -9.97‰). While magnitude of isotope fraction appears anti-correlated with temperature, we argue for an overall attenuation of the isotopic effect through changes in B speciation in saline solutions (NaB(OH)4(aq) and B(OH)3Cl-) as well as variable B fixation and fractionation for different serpentinization product minerals (brucite, chrysotile). Breakdown of the Li-rich olivine and limited Li incorporation into product mineral phases resulted in an overall lower Li content of the final solid phase assemblage at 200 °C ([Li]final_200 °C = 0.77 μg/g; DS/FLi200 °C = 1.58). First order changes in Li isotopic compositions were defined by mixing of two isotopically distinct sources i.e. the fresh olivine and the fluid rather than by equilibrium isotope fraction. At 200 °C primary olivine is dissolved, releasing its Li budget into the fluid which shifts towards a lower δ7LiF of +38.62‰. Newly formed serpentine minerals (δ7LiS = +30.58‰) incorporate fluid derived Li with a minor preference of the 6Li isotope. At 100 °C Li enrichment of secondary phases exceeded Li release by olivine breakdown ([Li]final_100 °C = 2.10 μg/g; DS/FLi100 °C = 11.3) and it was accompanied by preferential incorporation of heavier 7Li isotope that might be due to incorporation of a 7Li enriched fluid fraction into chrysotile nanotubes.
NASA Astrophysics Data System (ADS)
Sheth, Swapnil Suhas
Narrow molecular weight fractions of poly(epsilon-caprolactone) were successfully obtained using the successive precipitation fractionation technique with toluene/n-heptane as a solvent/nonsolvent pair. Calorimetric studies of the melting behavior of fractions that were crystallized either isothermally or under constant cooling rate conditions suggested that the isothermal crystallization of the samples should be used for a proper evaluation of the molecular weight dependence of the observed melting temperature and degree of crystallinity in PCL. The molecular weight and temperature dependence of the spherulitic growth rate of fractions was studied in the context of the Lauritzen-Hoffman two-phase model and the Strobl three-phase model of polymer crystallization. The zero-growth rate temperatures, determined from spherulitic growth rates using four different methods, are consistent with each other and increase with chain length. The concomitant increase in the apparent secondary nucleation constant was attributed to two factors. First, for longer chains there is an increase in the probability that crystalline stems belong to loose chain-folds, hence, an increase in fold surface free energy. It is speculated that the increase in loose folding and resulting decrease in crystallinity with increasing chain length are associated with the ester group registration requirement in PCL crystals. The second contribution to the apparent nucleation constant arises from chain friction associated with segmental transport across the melt/crystal interface. These factors were responsible for the much stronger chain length dependence of spherulitic growth rates at fixed undercooling observed here with PCL than previously reported for PE and PEO. In the case of PCL, the scaling exponent associated with the chain length dependence of spherulitic growth rates exceeds the upper theoretical bound of 2 predicted from the Brochard- DeGennes chain pullout model. Observation that zero-growth and equilibrium melting temperature values are identical with each other within the uncertainty of their determinations casts serious doubt on the validity of Strobl three-phase model. A novel method is proposed to determine the Porod constant necessary to extrapolate the small angle X-ray scattering intensity data to large scattering vectors. The one-dimensional correlation function determined using this Porod constant yielded the values of lamellar crystal thickness, which were similar to these estimated using the Hosemann-Bagchi Paracrystalline Lattice model. The temperature dependence of the lamellar crystal thickness was consistent with both LH and the Strobl model of polymer crystallization. However, in contrast to the predictions of Strobl's model, the value of the mesomorph-to-crystal equilibrium transition temperature was very close to the zero-growth temperature. Moreover, the lateral block sizes (obtained using wide angle X-ray diffraction) and the lamellar thicknesses were not found to be controlled by the mesomorph-to-crystal equilibrium transition temperature. Hence, we concluded that the crystallization of PCL is not mediated by a mesophase. Metallocene-catalyzed linear low-density (m-LLDPE with 3.4 mol% 1-octene) and conventional low-density (LDPE) polyethylene blends of different compositions were investigated for their melt-state miscibility and concurrent crystallization tendency. Differential scanning calorimetric studies and morphological studies using atomic force microscopy confirm that these blends are miscible in the melt-state for all compositions. LDPE chains are found to crystallize concurrently with m-LLDPE chains during cooling in the m-LLDPE crystallization temperature range. While the extent of concurrent crystallization was found to be optimal in .. .. iv blends with highest m-LLDPE content studied, strong evidence was uncovered for the existence of a saturation effect in the concurrent crystallization behavior. This observation leads us to suggest that co-crystallization, rather than mere concurrent crystallization, of LDPE with m- LLDPE can indeed take place. Matching of the respective sequence length distributions in LDPE and m-LLDPE is suggested to control the extent of co-crystallization.
NASA Astrophysics Data System (ADS)
Defant, Marc J.; Nielsen, Roger L.
1990-01-01
We have used a computer model (TRACES) to simulate low pressure differentiation of natural basaltic magmas in an attempt to investigate the chemical dynamics of open system magmatic processes. Our results, in the form of simulated liquid lines of descent and the calculated equilibrium mineralogy, were determined for perfect fractional crystallization; fractionation paired with recharge and eruption (PRF); fractionation paired with assimilation (AFC); and fractionation paired with recharge, eruption, and assimilation (FEAR). These simulations were calculated in an attempt to assess the effects of combinations of petrogenetic processes on major and trace element evolution of natural systems and to test techniques that have been used to decipher the relative roles of these processes. If the results of PRF calculations are interpreted in terms of a mass balance based fractionation model (e.g., Bryan et al., 1969), it is possible to generate low residuals even if one assumes that fractional crystallization was the only active process. In effect, the chemical consequences of recharge are invisible to mass balance models. Pearce element ratio analyses, however, can effectively discern the effects of PRF versus simple fractionation. The fractionating mineral proportions, and therefore, bulk distribution coefficients ( D¯) of a differentiating system are dependent on the recharge or assimilation rate. Comparison of the results of simulations assuming constant D¯ with the results calculated by TRACES show that the steady state liquid concentrations of some elements can differ by a factor of 2 to 5. If the PRF simulation is periodic, with episodes of mixing separated by intervals of fractionation, parallel liquidus mineral control lines are produced. Most of these control lines do not project back to the parental composition. This must be an important consideration when attempting to calculate a potential parental magma for any natural suite where magma chamber recharge has occurred. Most basaltic magmas cannot evolve to high silica compositions without magnetite fractionation. Small amounts of rhyolite assimilation (assimilation/fractionation < 0.1), however, can drive evolving basalts to more silica rich compositions. If mass balance models are used to interpret these synthetic AFC data, low residuals are obtained if magnetite is added to the crystallizing assemblage. This approach works even for cases where magnetite was not a fractionating phase. Thus, the mass balance results are mathematically correct, but are geologically irrelevant.
Effect of neutrino rest mass on ionization equilibrium freeze-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.
2015-12-23
We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.
Global Dynamics of Certain Homogeneous Second-Order Quadratic Fractional Difference Equation
Garić-Demirović, M.; Kulenović, M. R. S.; Nurkanović, M.
2013-01-01
We investigate the basins of attraction of equilibrium points and minimal period-two solutions of the difference equation of the form x n+1 = x n−1 2/(ax n 2 + bx n x n−1 + cx n−1 2), n = 0,1, 2,…, where the parameters a, b, and c are positive numbers and the initial conditions x −1 and x 0 are arbitrary nonnegative numbers. The unique feature of this equation is the coexistence of an equilibrium solution and the minimal period-two solution both of which are locally asymptotically stable. PMID:24369451
NASA Astrophysics Data System (ADS)
Lei, Ting; Zuend, Andreas; Cheng, Yafang; Su, Hang; Wang, Weigang; Ge, Maofa
2018-01-01
Hygroscopic growth factors of organic surrogate compounds representing biomass burning and mixed organic-inorganic aerosol particles exhibit variability during dehydration experiments depending on their chemical composition, which we observed using a hygroscopicity tandem differential mobility analyzer (HTDMA). We observed that levoglucosan and humic acid aerosol particles release water upon dehumidification in the range from 90 to 5 % relative humidity (RH). However, 4-Hydroxybenzoic acid aerosol particles remain in the solid state upon dehumidification and exhibit a small shrinking in size at higher RH compared to the dry size. For example, the measured growth factor of 4-hyroxybenzoic acid aerosol particles is ˜ 0.96 at 90 % RH. The measurements were accompanied by RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model and Extended Aerosol Inorganics Model (E-AIM), the Zdanovskii-Stokes-Robinson (ZSR) relation, and a fitted hygroscopicity expression. We observed several effects of organic components on the hygroscopicity behavior of mixtures containing ammonium sulfate (AS) in relation to the different mass fractions of organic compounds: (1) a shift of efflorescence relative humidity (ERH) of ammonium sulfate to higher RH due to the presence of 25 wt % levoglucosan in the mixture. (2) There is a distinct efflorescence transition at 25 % RH for mixtures consisting of 25 wt % of 4-hydroxybenzoic acid compared to the ERH at 35 % for organic-free AS particles. (3) There is indication for a liquid-to-solid phase transition of 4-hydroxybenzoic acid in the mixed particles during dehydration. (4) A humic acid component shows no significant effect on the efflorescence of AS in mixed aerosol particles. In addition, consideration of a composition-dependent degree of dissolution of crystallization AS (solid-liquid equilibrium) in the AIOMFAC and E-AIM models leads to a relatively good agreement between models and observed growth factors, as well as ERH of AS in the mixed system. The use of the ZSR relation leads to good agreement with measured diameter growth factors of aerosol particles containing humic acid and ammonium sulfate. Lastly, two distinct mixtures of organic surrogate compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, were used to represent the average water-soluble organic carbon (WSOC) fractions observed during the wet and dry seasons in the central Amazon Basin. A comparison of the organic fraction's hygroscopicity parameter for the simple mixtures, e.g., κ ≈ 0.12 to 0.15 for the wet-season mixture in the 90 to 40 % RH range, shows good agreement with field data for the wet season in the Amazon Basin (WSOC κ ≈ 0.14±0.06 at 90 % RH). This suggests that laboratory-generated mixtures containing organic surrogate compounds and ammonium sulfate can be used to mimic, in a simplified manner, the chemical composition of ambient aerosols from the Amazon Basin for the purpose of RH-dependent hygroscopicity studies.
NASA Astrophysics Data System (ADS)
Douglas, P. M.; Eiler, J. M.; Sessions, A. L.; Dawson, K.; Walter Anthony, K. M.; Smith, D. A.; Lloyd, M. K.; Yanay, E.
2016-12-01
Microbially produced methane is a globally important greenhouse gas, energy source, and biological substrate. Methane clumped isotope measurements have recently been developed as a new analytical tool for understanding the source of methane in different environments. When methane forms in isotopic equilibrium clumped isotope values are determined by formation temperature, but in many cases microbial methane clumped isotope values deviate strongly from expected equilibrium values. Indeed, we observe a very wide range of clumped isotope values in microbial methane, which are likely strongly influenced by kinetic isotope effects, but thus far the biological and environmental parameters controlling this variability are not understood. We will present data from both culture experiments and natural environments to explore patterns of variability in non-equilibrium clumped isotope values on temporal and spatial scales. In methanogen batch cultures sampled at different time points along a growth curve we observe significant variability in clumped isotope values, with values decreasing from early to late exponential growth. Clumped isotope values then increase during stationary growth. This result is consistent with previous work suggesting that differences in the reversibility of methanogenesis related to metabolic rates control non-equilibrium clumped isotope values. Within single lakes in Alaska and Sweden we observe substantial variability in clumped isotope values on the order of 5‰. Lower clumped isotope values are associated with larger 2H isotopic fractionation between water and methane, which is also consistent with a kinetic isotope effect determined by the reversibility of methanogenesis. Finally, we analyzed a time-series clumped isotope compositions of methane emitted from two seeps in an Alaskan lake over several months. Temporal variability in these seeps is on the order of 2‰, which is much less than the observed spatial variability within the lake. Comparing carbon isotope fractionation between CO2 and CH4 with clumped isotope data suggests the temporal variability may result from changes in methane oxidation.
Ustrzycka, Alicja; Piotrowska, Natalia; Bonk, Alicja; Filipiak, Janusz; Tylmann, Wojciech
2018-06-01
An isotopic monitoring was undertaken in 2012-2014 at Lake Żabińskie (Mazurian Lakeland, NE Poland). The aim was to identify the factors and processes controlling an isotopic composition of the lake water and to explore the mechanism responsible for recording the climatic signal in stable isotope composition of deposited carbonates. δ 18 O and δ 2 H in the precipitation, lake water column, inflows and outflow, δ 18 O and δ 13 C in the carbonate fraction of sediments trapped in the water column were recorded with monthly resolution. A relationship between δ 18 O and δ 2 H in local precipitation was used to estimate the local meteoric water line. The dataset obtained for the water enabled to identify the modification of the water's isotopic composition due to evaporation, connected with seasonal lake water stratification and mixing patterns. Statistically significant correlation coefficients suggest that the δ 18 O of the carbonate fraction in the sediment traps depends on the δ 18 O of rainfall water and on air temperature. The fractionation coefficient α shows that in summer months the carbonate precipitation process is closest to equilibrium. As expected for an exorheic lake, no significant correlation was observed between δ 18 O and δ 13 C in precipitated carbonate.
Dehydroxylation and diagenetic variations in diatom oxygen isotope values
NASA Astrophysics Data System (ADS)
Dodd, Justin P.; Wiedenheft, Wilson; Schwartz, Joshua M.
2017-02-01
Numerous studies have documented changes in the dissolution and reactivity of biogenic silica as it is transferred from the water column to sediment archives; here we present the first experimental data that demonstrate a physical mechanism by which the oxygen isotope (δ18Osil) values of biogenic silica (diatoms) are altered during early diagenesis. The δ18Osil value of diatom silica cultured at 19.3 °C was +31.9‰ ± 0.2‰ (n = 6); the same silica experimentally aged in an artificial seawater media at near silica saturation at 85 °C had an average δ18Osil value of +27.1‰ ± 0.6‰ (n = 20). The most significant change in the δ18Osil value was coincident with an initial reduction in the total silanol abundance, indicating that the timing of dehydroxylation reactions in natural sedimentary environments is associated with diagenetic changes in the recorded δ18Osil values. The rate of change in the experimental aging environment at 85 °C was rapid, with significant changes in both silanol abundance and δ18Osil values. Additionally, the silica-water fractionation relationship recorded by the experimentally-aged samples approaches the equilibrium quartz-water fractionation factor. The linear rate law was used to estimate the timing of these changes in low temperature environments; the initial and most significant change in silica reactivity and δ18Osil values is likely to occur on the order of 10's of years at 4 °C. Published silica-water fractionation factors for sedimentary diatoms most likely represent a combination of growth and diagenetic environments, and the δ18O value of diagenetic water needs to be addressed when using δ18Osil values to reconstruct paleoceanographic and paleoenvironmental conditions.
Triple oxygen isotope systematics of structurally bonded water in gypsum
NASA Astrophysics Data System (ADS)
Herwartz, Daniel; Surma, Jakub; Voigt, Claudia; Assonov, Sergey; Staubwasser, Michael
2017-07-01
The triple oxygen isotopic composition of gypsum mother water (gmw) is recorded in structurally bonded water in gypsum (gsbw). Respective fractionation factors have been determined experimentally for 18O/16O and 17O/16O. By taking previous experiments into account we suggest using 18αgsbw-gmw = 1.0037; 17αgsbw-gmw = 1.00195 and θgsbw-gmw = 0.5285 as fractionation factors in triple oxygen isotope space. Recent gypsum was sampled from a series of 10 ponds located in the Salar de Llamara in the Atacama Desert, Chile. Total dissolved solids (TDS) in these ponds show a gradual increase from 23 g/l to 182 g/l that is accompanied by an increase in pond water 18O/16O. Gsbw falls on a parallel curve to the ambient water from the saline ponds. The offset is mainly due to the equilibrium fractionation between gsbw and gmw. However, gsbw represents a time integrated signal biased towards times of strong evaporation, hence the estimated gmw comprises elevated 18O/16O compositions when compared to pond water samples taken on site. Gypsum precipitation is associated with algae mats in the ponds with lower salinity. No evidence for respective vital effects on the triple oxygen isotopic composition of gypsum hydration water is observed, nor are such effects expected. In principle, the array of δ18Ogsbw vs. 17Oexcess can be used to: (1) provide information on the degree of evaporation during gypsum formation; (2) estimate pristine meteoric water compositions; and (3) estimate local relative humidity which is the controlling parameter of the slope of the array for simple hydrological situations. In our case study, local mining activities may have decreased deep groundwater recharge, causing a recent change of the local hydrology.
Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.
Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J
2010-11-15
A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, J.K.; Palmer, M.R.
Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals.more » Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.« less
Plasma protein binding of phenytoin in 100 epileptic patients.
Peterson, G M; McLean, S; Aldous, S; Von Witt, R J; Millingen, K S
1982-01-01
The plasma protein binding of phenytoin was investigated in 100 epileptic patients, using equilibrium dialysis at 37 degrees C. The unbound fractions of phenytoin in plasma formed a skewed distribution, with a range of 9.7 to 24.7% and a median value of 12.3%. Most (80%) patients appeared to form one group with free phenytoin fractions from 9.7 to 14.5%, while the remainder formed a group with elevated free fractions (greater than 14.5%). Total and unbound plasma concentrations of phenytoin were strongly correlated (r=0.95, P less than 0.0001). There was a weak correlation between increasing age and the unbound phenytoin fraction (r=0.28, P less than 0.01). The results indicate that measurement of the total phenytoin concentration in plasma should usually provide a reliable index of anticonvulsant effect. However, determination of the unbound phenytoin fraction would be beneficial in the management of those patients in whom this fraction may be elevated, due to interacting drugs or biochemical abnormalities. PMID:7104186
Equilibrium carbon and hydrogen isotope fractionation in iron
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2009-12-01
Recent theoretical and experimental studies (e.g., [1-3]) have suggested that Si- and Fe-isotopic signatures can be used to characterize the compositions and conditions of segregation of metallic cores in planetary interiors. This study expands the theoretical framework to include carbon and hydrogen, which may also be alloying elements. Hydrogen (D/H) and carbon (13C/12C) fractionations in iron-rich metallic melts are estimated by modeling analogous iron-rich crystals, i.e., dhcp-FeH and η-Fe2C. C- and H-atoms in these crystals are completely coordinated by iron. The driving energy for equilibrium fractionation is assumed to come from the reduction of vibrational frequencies when heavy isotopes are substituted for light ones; vibrations are assumed to be harmonic. This treatment is crude at high temperature, and for the relatively anharmonic vibrations typical of hydrogen-bearing substances, but may provide a reasonably accurate, semi-quantitative approximation of real fractionation behavior. Vibrational frequencies of all crystals are modeled with density functional theory, using gradient-corrected functionals and ultrasoft pseudopotentials. For both carbon and hydrogen, the models suggest that the metal phase will be strongly depleted in heavy isotopes. At 2000 K, 1 atm, η-Fe2C will have 3‰ lower 13C/12C than coexisting diamond. Combining this result with previous high-temperature theoretical and experimental studies (e.g., [4]), metal-graphite fractionation is expected to be very similar, while metal-CO2 fractionation will be almost twice as large, ca. -5‰. Deuterium/hydrogen fractionations are expected to be an order of magnitude larger, with 50-70‰ lower D/H in dhcp-FeH than in coexisting H2 gas at 2000 K, and approximately 100‰ lower D/H than water vapor. These fractionations are much larger than those inferred for silicon and iron, as expected given the differences in atomic mass. References: 1. Georg et al. (2007) Nature 447:1102; 2. Rustad & Yin (2009) Nature Geoscience doi:10.1038/ngeo546; 3. Polyakov (2009) Science 323:912; 4. Polyakov & Kharlashina (1995) GCA 59:2561.
Magma transport and metasomatism in the mantle: a critical review of current geochemical models
Nielson, J.E.; Wilshire, H.G.
1993-01-01
Conflicting geochemical models of metasomatic interactions between mantle peridotite and melt all assume that mantle reactions reflect chromatographic processes. Examination of field, petrological, and compositional data suggests that the hypothesis of chromatographic fractionation based on the supposition of large-scale percolative processes needs review and revision. Well-constrained rock and mineral data from xenoliths indicate that many elements that behave incompatibly in equilibrium crystallization processes are absorbed immediately when melts emerge from conduits into depleted peridotite. After reacting to equilibrium with the peridotite, melt that percolates away from the conduit is largely depleted of incompatible elements. Continued addition of melts extends the zone of equilibrium farther from the conduit. Such a process resembles ion-exchange chromatography for H2O purification, rather than the model of chromatographic species separation. -from Authors
Solidification Sequence of Spray-Formed Steels
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro
2016-02-01
Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.
Larsson, Niklas; Utterback, Karl; Toräng, Lars; Risberg, Johan; Gustafsson, Per; Mayer, Philipp; Jönsson, Jan Ke
2009-08-01
Hollow fibre (HF) membrane modules were applied in continuous mode for equilibrium sampling through membranes (ESTM) of polar organic pollutants. Phenolic compounds (chlorophenols, cresols and phenol) served as model substances and ESTM was tuned towards the measurement of freely dissolved concentrations (C(free)). HF membrane modules were constructed using thin-walled membrane, 1-m module length and low packing density in order to optimise the uptake kinetics of the analytes into the acceptor solution. Such custom made devices were tested and compared to commercially available modules. The former modules performed best for continuous ESTM. The custom made modules provided steady-state equilibrium within 20-40 min and enrichment that was in general agreement with calculated distribution ratios between acceptor and sample. In experiments during which sample concentration was changed, acceptor response time to decreased sample concentration was around 30 min for custom built modules. In the presence of commercial humic acids, analytes showed lower steady-state enrichment, which is due to a decrease in C(free). Continuous ESTM may be automated and is suggested for use in online determination of C(free) of pollutants and studies on sorption of pollutants. Future studies should include optimisation of the membrane liquid and factors regarding the residence time of the acceptor solution in the fibre lumen. Qualitative aspects of DOM should also be included, as natural DOM can be fractionated. C(free) could be correlated to DOM properties that have previously been shown to influence sorption, such as aromaticity, carboxylic acid content and molecular size.
Redefining the utility of the three-isotope method
NASA Astrophysics Data System (ADS)
Cao, Xiaobin; Bao, Huiming
2017-09-01
The equilibrium isotope fractionation factor αeq is a fundamental parameter in the study of stable isotope effects. Experimentally, it has been difficult to establish that a system has attained equilibrium. The three-isotope method, using the initial trajectory of changing isotope ratios (e.g. 16O, 17O, and 18O) to deduce the final equilibrium point of isotope exchange, has long been hailed as the most rigorous experimental approach. However, over the years some researchers have cautioned on the limitations of this method, but the foundation of three-isotope method has not been properly examined and the method is still widely used in calibrating αeq for both traditional and increasingly non-traditional isotope systems today. Here, using water-water and dissolved CO2-water oxygen exchange as model systems, we conduct an isotopologues-specific kinetic analysis of the exchange processes and explore the underlying assumptions and validity of the three-isotope method. We demonstrate that without knowing the detailed exchange kinetics a priori the three-isotope method cannot lead to a reliable αeq. For a two-reservoir exchanging system, α determined by this method may be αeq, kinetic isotope effect, or apparent kinetic isotope effect, which can all bear different values. When multiple reservoirs exist during exchange, the evolving trajectory can be complex and hard to predict. Instead of being a tool for αeq determination, three-isotope method should be used as a tool for studying kinetic isotope effect, apparent kinetic isotope effect, and detailed exchange kinetics in diverse systems.
Combinatorial effects on clumped isotopes and their significance in biogeochemistry
NASA Astrophysics Data System (ADS)
Yeung, Laurence Y.
2016-01-01
The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial clumped-isotope effects. These isotopic signatures, manifest as either directly bound isotope ;clumps; or as features of a molecule's isotopic anatomy, are linked to molecular mechanisms and may eventually provide additional information about biogeochemical cycling on environmentally relevant spatial scales.
Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium
NASA Astrophysics Data System (ADS)
Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.
2015-06-01
Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.
Some physical aspects of fluid-fluxed melting
NASA Astrophysics Data System (ADS)
Patiño Douce, A.
2012-04-01
Fluid-fluxed melting is thought to play a crucial role in the origin of many terrestrial magmas. We can visualize the fundamental physics of the process as follows. An infinitesimal amount of fluid infiltrates dry rock at the temperature of its dry solidus. In order to restore equilibrium the temperature must drop, so that enthalpy is released and immediately reabsorbed as enthalpy of melting. The amount of melt produced must be such that the energy balance and thermodynamic equilibrium conditions are simultaneously satisfied. We wish to understand how an initially dry rock melts in response to progressive fluid infiltration, under both batch and fractional melting constraints. The simplest physical model for this process is a binary system in which one of the components makes up a pure solid phase and the other component a pure fluid phase, and in which a binary melt phase exists over certain temperature range. Melting point depression is calculated under the assumption of ideal mixing. The equations of energy balance and thermodynamic equilibrium are solved simultaneously for temperature and melt fraction, using an iterative procedure that allows addition of fluid in infinitesimal increments. Batch melting and fractional melting are simulated by allowing successive melt increments to remain in the system (batch) or not (fractional). Despite their simplified nature, these calculations reveal some important aspects of fluid-fluxed melting. The model confirms that, if the solubility of the fluid in the melt is sufficiently high, fluid fluxed melting is an efficient mechanism of magma generation. One might expect that the temperature of the infiltrating fluid would have a significant effect on melt productivity, but the results of the calculations show this not to be the case, because a relatively small mass of low molecular weight fluid has a strong effect on the melting point of minerals with much higher molecular weights. The calculations reveal the somewhat surprising result that fluid infiltration produces more melt during fractional melting than during batch melting. This behavior, which is opposite to that of decompression melting of a dry solid, arises because the melting point depression effect of the added fluid is greater during fractional melting than during batch melting, which results in a greater release of enthalpy and, therefore, greater melt production for fractional melting than for batch melting, for the same total amount of fluid added. The difference may be considerable. As an example, suppose that 0.1 mols of H2O infiltrate 1 mol or silicate rock. Depending on the rock composition this may corresponds to ˜ 1 wt% H2O. For a given choice of model parameters (initial temperature, heat capacity and entropy of fusion), about 28% of the rock melts during fractional melting, versus some 23 % during batch melting. Fluid fluxing is a robust process of melt generation, without which magmatism at Earth's convergent plate margins would be impossible.
Samuel, Premila P.; Smith, Lucian P.; Phillips, George N.; Olson, John S.
2015-01-01
Expression levels in animal muscle tissues and in Escherichia coli vary widely for naturally occurring mammalian myoglobins (Mb). To explore this variation, we developed an in vitro transcription and wheat germ extract-based translation assay to examine quantitatively the factors that govern expression of holoMb. We constructed a library of naturally occurring Mbs from two terrestrial and four deep-diving aquatic mammals and three distal histidine mutants designed to enhance apoglobin stability but decrease hemin affinity. A strong linear correlation is observed between cell-free expression levels of holo-metMb variants and their corresponding apoglobin stabilities, which were measured independently by guanidine HCl-induced unfolding titrations using purified proteins. In contrast, there is little dependence of expression on hemin affinity. Our results confirm quantitatively that deep diving mammals have highly stable Mbs that express to higher levels in animal myocytes, E. coli, and the wheat germ cell-free system than Mbs from terrestrial mammals. Our theoretical analyses show that the rate of aggregation of unfolded apoMb is very large, and as a result, the key factor for high level expression of holoMb, and presumably other heme proteins, is an ultra high fraction of folded, native apoglobin that is capable of rapidly binding hemin. This fraction is determined by the overall equilibrium folding constant and not hemin affinity. These results also demonstrate that the cell-free transcription/translation system can be used as a high throughput platform to screen for apoglobin stability without the need to generate large amounts of protein for in vitro unfolding measurements. PMID:26205820
[Interaction of surface-active base with fraction of membrane-bound Williams's protons].
Iaguzhinskiĭ, L S; Motovilov, K A; Volkov, E M; Eremeev, S A
2013-01-01
In the process of mitochondrial respiratory H(+)-pumps functioning, the fraction membrane-bound protons (R-protons), which have an excess of free energy is formed. According to R.J. Williams this fraction is included as energy source in the reaction of ATP synthesis. Previously, in our laboratory was found the formation of this fraction was found in the mitochondria and on the outer surface of mitoplast. On the mitoslast model we strictly shown that non-equilibrium R-proton fraction is localized on the surface of the inner mitochondrial membrane. In this paper a surface-active compound--anion of 2,4,6-trichloro-3-pentadecylphenol (TCP-C15) is described, which selectively interacts with the R-protons fraction in mitochondria. A detailed description of the specific interaction of the TCP-C15 with R-protons fraction in mitochondria is presented. Moreover, in this work it was found that phosphate transport system reacts with the R-protons fraction in mitochondria and plays the role of the endogenous volume regulation system of this fraction. The results of experiments are discussed in the terms of a local coupling model of the phosphorylation mechanism.
The inorganic species of sulfate, nitrate and ammonium constitute a major fraction of atmospheric aerosols. The behavior of nitrate is one of the most intriguing aspects of inorganic atmospheric aerosols because particulate nitrate concentrations depend not only on the amount of ...
40 CFR 63.680 - Applicability and designation of affected sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for the treatment, recycling, or recovery of off-site material. Distillation means a process, either... equilibrium within the distillation unit. (ii) Fractionation process used for the treatment, recycling, or... process used for the treatment, recycling, or recovery of off-site material. Thin-film evaporation means a...
Dangerous nutrients: evolution of phytoplankton resource uptake subject to virus attack.
Menge, Duncan N L; Weitz, Joshua S
2009-03-07
Phytoplankton need multiple resources to grow and reproduce (such as nitrogen, phosphorus, and iron), but the receptors through which they acquire resources are, in many cases, the same channels through which viruses attack. Therefore, phytoplankton can face a bottom-up vs. top-down tradeoff in receptor allocation: Optimize resource uptake or minimize virus attack? We investigate this top-down vs. bottom-up tradeoff using an evolutionary ecology model of multiple essential resources, specialist viruses that attack through the resource receptors, and a phytoplankton population that can evolve to alter the fraction of receptors used for each resource/virus type. Without viruses present the singular continuously stable strategy is to allocate receptors such that resources are co-limiting, which also minimizes the equilibrium concentrations of both resources. Only one virus type can be present at equilibrium (because phytoplankton, in this model, are a single resource for viruses), and when a virus type is present, it controls the equilibrium phytoplankton population size. Despite this top-down control on equilibrium densities, bottom-up control determines the evolutionary outcome. Regardless of which virus type is present, the allocation strategy that yields co-limitation between the two resources is continuously stable. This is true even when the virus type attacking through the limiting resource channel is present, even though selection for co-limitation in this case decreases the equilibrium phytoplankton population and does not decrease the equilibrium concentration of the limiting resource. Therefore, although moving toward co-limitation and decreasing the equilibrium concentration of the limiting resource often co-occur in models, it is co-limitation, and not necessarily the lowest equilibrium concentration of the limiting resource, that is the result of selection. This result adds to the growing body of literature suggesting that co-limitation at equilibrium is a winning strategy.
Experimental Constraints on Fe Isotope Fractionation in Carbonatite Melt Systems
NASA Astrophysics Data System (ADS)
Stuff, M.; Schuessler, J. A.; Wilke, M.
2015-12-01
Iron isotope data from carbonatite rocks show the largest variability found in igneous rocks to date [1]. Thus, stable Fe isotopes are promising tracers for the interaction of carbonate and silicate magmas in the mantle, particularly because their fractionation is controlled by oxidation state and bonding environment. The interpretation of Fe isotope data from carbonatite rocks remains hampered, since Fe isotope fractionation factors between silicate and carbonate melts are unknown and inter-mineral fractionation can currently only be assessed by theoretical calculations [1;2]. We present results from equilibration experiments in three natrocarbonatite systems between immiscible silicate and carbonate melts, performed at 1200°C and 0.7 GPa in an internally heated gas pressure vessel at intrinsic redox conditions. The Fe isotope compositions of the silicate melt (sil.m.), quenched to a glass, and the carbonate melt (carb.m.), forming fine-grained quench crystals, were analysed by solution MC-ICP-MS. Our first data indicate a remarkable fractionation of Δ56Fesil.m.‒carb.m.= 0.29 ±0.07 ‰ near equilibrium. At short run durations, even stronger fractionation up to Δ56Fesil.m.‒carb.m. = 0.41 ±0.07 ‰ occurs, due to kinetic effects. Additionally, Δ56Fesil.m.‒carb.m. changes with bulk chemical composition, likely reflecting considerable differences between the studied systems in terms of the Fe3+/Fe2+-ratios in the two immiscible liquids. Our findings provide experimental support for a carbonatite genesis model, in which extremely negative δ56Fe values in carbonatites result from differentiation processes, such as liquid immiscibility [1]. This effect can be enhanced by disequilibrium during fast ascent of carbonatite magmas. Their sensitivity to chemical and redox composition makes Fe isotopes a potential tool for constraining the original compositions of carbonatite magmas. [1] Johnson et al. (2010) Miner. Petrol. 98, 91-110. [2] Polyakov & Mineev (2000) Geochim. Cosmochim. Acta 64, 849-865.
NASA Technical Reports Server (NTRS)
Watson, W. D.; Anicich, V. G.; Huntress, W. T., Jr.
1976-01-01
Laboratory measurements using the ion-cyclotron resonance technique yield a rate constant of 2 by 10 to the -10th power cu cm/sec at 300 K for the isotope exchange C-13(+) + (C-12)O yields C-12(+) + (C-13)O. According to the usual ideas about ion-molecule reactions, this rate constant should also be appropriate at temperatures not exceeding about 100 K. Then the observed C-13/C-12 ratio obtained from radio observation of interstellar molecules may be either larger or smaller than the actual value in the interstellar medium by factors of 2 or so. If the ratio is altered from the actual interstellar value, it will not be the same in all molecules, and CO will tend to have the highest value. The chief astronomical uncertainty for the occurrence of this isotope fractionation is the abundance of 'unobservable' molecules which can react rapidly with C(+): e.g., O2, H2O, CO2, and CH4. If their abundance is greater than about one-tenth that of CO, the isotope fractionation will be inhibited.
Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection
NASA Astrophysics Data System (ADS)
Hyhlík, Tomáš
2016-03-01
The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure argon. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 2 to 18 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. Working charts illustrating shock tube performance with argon test gas and heated helium and hydrogen driver gases are also presented.
Metal-silicate interaction in quenched shock-induced melt of the Tenham L6-chondrite
NASA Astrophysics Data System (ADS)
Leroux, Hugues; Doukhan, Jean-Claude; Guyot, François
2000-07-01
The metal-silicate microstructures in the shock-induced melt pockets of the Tenham (L6) chondrite have been investigated by analytical transmission electron microscopy. The melt areas, formed under high-pressure, high-temperature dynamic shock conditions, consist of spherical Fe-Ni metal/iron sulfide globules embedded in a silicate glass matrix, showing that the melt was quenched at high cooling rate. The Fe-Ni fraction in the globules is two-phase, composed of a bcc phase (˜5 wt% Ni) and an fcc phase (˜49 wt% Ni), indicating that fractional crystallisation of the metal occurred during the fast cooling. The metal fraction also contains appreciable amounts of non-siderophile elements (mostly Si, Mg and O) suggesting that these elements were trapped in the metal, either as alloying components or as tiny silicate or oxide inclusions. In the iron sulfide fraction, the Na content is high (>3 wt%), suggesting chalcophile behaviour for Na during the shock event. The composition of the silicate glass reflects non-equilibrium melting of several silicate phases (olivine, pyroxene and plagioclase). Moreover, the FeO content is high compared to the FeO contents of the unmelted silicates. Some Fe redistribution took place between metal and silicate liquids during the shock event. The silicate glass also contains tiny iron sulfide precipitates which most probably originated by exsolution during quench, suggesting that the molten silicate retained significant amounts of S, dissolved at high temperature and high pressure. Based on these observations, we suggest that non-equilibrium phenomena may be important in determining the compositions of metal and silicate reservoirs during their differentiation.
Osmosis and thermodynamics explained by solute blocking.
Nelson, Peter Hugo
2017-01-01
A solute-blocking model is presented that provides a kinetic explanation of osmosis and ideal solution thermodynamics. It validates a diffusive model of osmosis that is distinct from the traditional convective flow model of osmosis. Osmotic equilibrium occurs when the fraction of water molecules in solution matches the fraction of pure water molecules that have enough energy to overcome the pressure difference. Solute-blocking also provides a kinetic explanation for why Raoult's law and the other colligative properties depend on the mole fraction (but not the size) of the solute particles, resulting in a novel kinetic explanation for the entropy of mixing and chemical potential of ideal solutions. Some of its novel predictions have been confirmed; others can be tested experimentally or by simulation.
Osmosis and thermodynamics explained by solute blocking
Nelson, Peter Hugo
2016-01-01
A solute-blocking model is presented that provides a kinetic explanation of osmosis and ideal solution thermodynamics. It validates a diffusive model of osmosis that is distinct from the traditional convective flow model of osmosis. Osmotic equilibrium occurs when the fraction of water molecules in solution matches the fraction of pure water molecules that have enough energy to overcome the pressure difference. Solute-blocking also provides a kinetic explanation for why Raoult’s law and the other colligative properties depend on the mole fraction (but not the size) of the solute particles, resulting in a novel kinetic explanation for the entropy of mixing and chemical potential of ideal solutions. Some of its novel predictions have been confirmed, others can be tested experimentally or by simulation. PMID:27225298
Volterra-type Lyapunov functions for fractional-order epidemic systems
NASA Astrophysics Data System (ADS)
Vargas-De-León, Cruz
2015-07-01
In this paper we prove an elementary lemma which estimates fractional derivatives of Volterra-type Lyapunov functions in the sense Caputo when α ∈ (0, 1) . Moreover, by using this result, we study the uniform asymptotic stability of some Caputo-type epidemic systems with a pair of fractional-order differential equations. These epidemic systems are the Susceptible-Infected-Susceptible (SIS), Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Recovered-Susceptible (SIRS) models and Ross-Macdonald model for vector-borne diseases. We show that the unique endemic equilibrium is uniformly asymptotically stable if the basic reproductive number is greater than one. We illustrate our theoretical results with numerical simulations using the Adams-Bashforth-Moulton scheme implemented in the fde12 Matlab function.
Mechanism of α-ketol-type rearrangement of benzoin derivatives under basic conditions.
Karino, Masahiro; Kubouchi, Daiki; Hamaoka, Kazuki; Umeyama, Shintaro; Yamataka, Hiroshi
2013-07-19
The mechanism of base-catalyzed rearrangement of ring-substituted benzoins in aqueous methanol was examined by kinetic and product analyses. Substituent effects on the rate and equilibrium constants revealed that the kinetic process has a different electron demand compared to the equilibrium process. Reactions in deuterated solvents showed that the rate of H/D exchange of the α-hydrogen is similar to the overall rate toward the equilibrium state. A proton-inventory experiment using partially deuterated solvents showed a linear dependence of the rate on the deuterium fraction of the solvent, indicating that only one deuterium isotope effect contributes to the overall rate process. All these results point to a mechanism in which the rearrangement is initiated by the rate-determining α-hydrogen abstraction rather than a mechanism with initial hydroxyl hydrogen abstraction as in the general α-ketol rearrangement.
KREEP basalt petrogenesis: Insights from 15434,181
NASA Astrophysics Data System (ADS)
Cronberger, Karl; Neal, Clive R.
2017-05-01
Returned lunar KREEP basalts originated through impact processes or endogenous melting of the lunar interior. Various methods have been used to distinguish between these two origins, with varying degrees of success. Apollo 15 KREEP basalts are generally considered to be endogenous melts of the lunar interior. For example, sample 15434,181 is reported to have formed by a two-stage cooling process, with large orthopyroxene (Opx) phenocrysts forming first and eventually cocrystalizing with smaller plagioclase crystals. However, major and trace element analyses of Opx and plagioclase coupled with calculated equilibrium liquids are inconsistent with the large orthopyroxenes being a phenocryst phase. Equilibrium liquid rare earth element (REE) profiles are enriched relative to the whole rock (WR) composition, inconsistent with Opx being an early crystallizing phase, and these are distinct from the plagioclase REE equilibrium liquids. Fractional crystallization modeling using the Opx equilibrium liquids as a parental composition cannot reproduce the WR values even with crystallization of late-stage phosphates and zircon. This work concludes that instead of being a phenocryst phase, the large Opx crystals are actually xenocrysts that were subsequently affected by pyroxene overgrowths that formed intergrowths with cocrystallizing plagioclase.
Einert, T R; Sing, C E; Alexander-Katz, A; Netz, R R
2011-12-01
We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength ε and the globule size N (G) is observed. We find two distinct dynamical regimes: a liquid-like regime (for ε < ε(s) with fast internal dynamics and a solid-like regime (for ε > ε(s) with slow internal dynamics. The cohesion strength ε(s) of this freezing transition depends on N (G) . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with ε and scales extensive in N (G) . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.
Iron Isotope Constraints on Planetesimal Core Formation
NASA Astrophysics Data System (ADS)
Jordan, M.; Young, E. D.
2016-12-01
The prevalence of iron in both planetary cores and silicate mantles renders the element a valuable tool for understanding core formation. Magmatic iron meteorites exhibit an enrichment in 57Fe/54Fe relative to chondrites and HED meteorites. This is suggestive of heavy Fe partitioning into the cores of differentiated bodies. If iron isotope fractionation accompanies core formation, we can elucidate details about the history of accretion for planetary bodies as well as their compositions and relative core sizes. The equilibrium 57Fe/54Fe between metal and silicate is necessary for understanding observed iron isotope compositions and placing constraints on core formation. We measure this fractionation in two Aubrite meteorites, Norton County and Mount Egerton, which have known temperatures of equilibration and equilibrated silicon isotopes. Iron was purified using ion-exchange chromatography. Data were collected on a ThermoFinnigan NeptuneTM multiple-collector inductively coupled plasma-source mass spectrometer (MC-ICP-MS) run in wet plasma mode. The measured fractionation Δ57Femetal-silicate is 0.08‰ ± 0.039 (2 SE) for Norton County and 0.09‰ ± 0.019 (2 SE) for Mount Egerton, indicating that the heavy isotopes of Fe partition into the metallic phase. These rocks are in isotopic equilibrium at a temperature of 1130 K and 1200 K ± 80 K, respectively. The concentration of the heavy isotopes of iron in the metallic phase is consistent with recent experimental studies. Using our measured metal-silicate Fe isotope fractionation and the resulting temperature calibration, while taking into account impurities in the metallic phase and temperatures of equilibration, determine that core formation could explain the observed difference between magmatic iron meteorites and chondrites if parent bodies have small cores. In order to verify that Rayleigh distillation during fractional crystallization was not a cause of iron isotope fractionation in iron meteorites, we measured iron isotope ratios in a suite of iron meteorites representing a large range of degrees of fractional crystallization. We find no clear variation in 57Fe/54Fe among these samples.
Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.
Bose, Amartya; Makri, Nancy
2017-10-21
The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.
Bioconcentration of lipophilic compounds by some aquatic organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawker, D.W.; Connell, D.W.
1986-04-01
With nondegradable, lipophilic compounds having log P values ranging from 2 to 6, direct linear relationships have been found between the logarithms of the equilibrium bioconcentration factors, and also reciprocal clearance rate constants, with log P for daphnids and molluscs. These relationships permit calculation of the times required for equilibrium and significant bioconcentration of lipophilic chemicals. Compared with fish, these time periods are successively shorter for molluscs, then daphnids. The equilibrium biotic concentration was found to decrease with increasing chemical hydrophobicity for both molluscs and daphnids. Also, new linear relationships between the logarithm of the bioconcentration factor and log Pmore » were found for compounds not attaining equilibrium within finite exposure times.« less
The objective of the study is the development of sorbents where the sorption sites are highly accessible for the capture of mercury from aqueous and vapor streams. Only a small fraction of the equilibrium capacity is utilized for a sorbent in applications involving short residenc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, Michael F.; Currier, Robert P.; Peery, Travis B.
Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less
The stationary non-equilibrium plasma of cosmic-ray electrons and positrons
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2016-06-01
The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.
From Urey To The Ocean's Glacial Ph: News From The Boron-11 Paleo-acidimetry.
NASA Astrophysics Data System (ADS)
Zeebe, R. E.; Wolf-Gladrow, D. A.; Bijma, J.
Boron paleo-acidimetry is based on the stable boron isotope composition of foraminiferal shells which has been shown to be a function of seawater pH. It is cur- rently one of the most promising paleo-carbonate chemistry proxies. One important parameter of the proxy is the equilibrium fractionation between the dissolved boron species B(OH)3 and B(OH)- which was calculated to be 19 per mil at 25C by Kak- 4 ihana and Kotaka (1977), based on Urey's theory. The calculated equilibrium frac- tionation, however, depends on the vibrational frequencies of the molecules for which different values have been reported in the literature. We have recalculated the equilib- rium fractionation and find that it may be distinctly different from 19 per mil (this is the bad news). The good news is that - theoretically - the use of 11B as a paleo-pH indicator is not compromised through vital effects in planktonic foraminifera. We de- rive this conclusion by the use of a diffusion-reaction model that calculates pH profiles and 11B values in the vicinity of a foraminifer.
Self-consistent calculation of the nuclear composition in hot and dense stellar matter
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Mishustin, Igor
2017-03-01
We investigate the mass fractions and in-medium properties of heavy nuclei in stellar matter at characteristic densities and temperatures for supernova (SN) explosions. The individual nuclei are described within the compressible liquid-drop model taking into account modifications of bulk, surface, and Coulomb energies. The equilibrium properties of nuclei and the full ensemble of heavy nuclei are calculated self-consistently. It is found that heavy nuclei in the ensemble are either compressed or decompressed depending on the isospin asymmetry of the system. The compression or decompression has a little influence on the binding energies, total mass fractions, and average mass numbers of heavy nuclei, although the equilibrium densities of individual nuclei themselves are changed appreciably above one-hundredth of normal nuclear density. We find that nuclear structure in the single-nucleus approximation deviates from the actual one obtained in the multinucleus description, since the density of free nucleons is different between these two descriptions. This study indicates that a multinucleus description is required to realistically account for in-medium effects on the nuclear structure in supernova matter.
H2-rich interstellar grain mantles: An equilibrium description
NASA Technical Reports Server (NTRS)
Dissly, Richard W.; Allen, Mark; Anicich, Vincent G.
1994-01-01
Experiments simulating the codeposition of molecular hydrogen and water ice on interstellar grains demonstrate that amorphous water ice at 12 K can incorporate a substantial amount of H2, up to a mole ratio of H2/H2O = 0.53. We find that the physical behavior of approximately 80% of the hydrogen can be explained satisfactorily in terms of an equilibrium population, thermodynamically governed by a wide distribution of binding site energies. Such a description predicts that gas phase accretion could lead to mole fractions of H2 in interstellar grain mantles of nearly 0.3; for the probable conditions of WL5 in the rho Ophiuchi cloud, an H2 mole fraction of between 0.05 and 0.3 is predicted, in possible agreement with the observed abundance reported by Sandford, Allamandola, & Geballe. Accretion of gas phase H2 onto grain mantles, rather than photochemical production of H2 within the ice, could be a general explanation for frozen H2 in interstellar ices. We speculate on the implications of such a composition for grain mantle chemistry and physics.
Torek, Paul V; Hall, David L; Miller, Tiffany A; Wooldridge, Margaret S
2002-04-20
Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.
Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M
2007-08-30
Static measures such as density and entropy, which are intimately connected to structure, have featured prominently in modern thinking about the dynamics of the liquid state. Here, we explore the connections between self-diffusivity, density, and excess entropy for two of the most widely used model "simple" liquids, the equilibrium Lennard-Jones and square-well fluids, in both bulk and confined environments. We find that the self-diffusivity data of the Lennard-Jones fluid can be approximately collapsed onto a single curve (i) versus effective packing fraction and (ii) in appropriately reduced form versus excess entropy, as suggested by two well-known scaling laws. Similar data collapse does not occur for the square-well fluid, a fact that can be understood on the basis of the nontrivial effects that temperature has on its static structure. Nonetheless, we show that the implications of confinement for the self-diffusivity of both of these model fluids, over a broad range of equilibrium conditions, can be predicted on the basis of knowledge of the bulk fluid behavior and either the effective packing fraction or the excess entropy of the confined fluid. Excess entropy is perhaps the most preferable route due to its superior predictive ability and because it is a standard, unambiguous thermodynamic quantity that can be readily predicted via classical density functional theories of inhomogeneous fluids.
Pushing the glass transition towards random close packing using self-propelled hard spheres
NASA Astrophysics Data System (ADS)
Ni, Ran; Stuart, Martien A. Cohen; Dijkstra, Marjolein
2013-10-01
Although the concept of random close packing with an almost universal packing fraction of approximately 0.64 for hard spheres was introduced more than half a century ago, there are still ongoing debates. The main difficulty in searching the densest packing is that states with packing fractions beyond the glass transition at approximately 0.58 are inherently non-equilibrium systems, where the dynamics slows down with a structural relaxation time diverging with density; hence, the random close packing is inaccessible. Here we perform simulations of self-propelled hard spheres, and we find that with increasing activity the relaxation dynamics can be sped up by orders of magnitude. The glass transition shifts to higher packing fractions upon increasing the activity, allowing the study of sphere packings with fluid-like dynamics at packing fractions close to RCP. Our study opens new possibilities of investigating dense packings and the glass transition in systems of hard particles.
Radical chiral Floquet phases in a periodically driven Kitaev model and beyond
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Fidkowski, Lukasz; Vishwanath, Ashvin; Potter, Andrew C.
2017-12-01
We theoretically discover a family of nonequilibrium fractional topological phases in which time-periodic driving of a 2D system produces excitations with fractional statistics, and produces chiral quantum channels that propagate a quantized fractional number of qubits along the sample edge during each driving period. These phases share some common features with fractional quantum Hall states, but are sharply distinct dynamical phenomena. Unlike the integer-valued invariant characterizing the equilibrium quantum Hall conductance, these phases are characterized by a dynamical topological invariant that is a square root of a rational number, inspiring the label: radical chiral Floquet phases. We construct solvable models of driven and interacting spin systems with these properties, and identify an unusual bulk-boundary correspondence between the chiral edge dynamics and bulk "anyon time-crystal" order characterized by dynamical transmutation of electric-charge into magnetic-flux excitations in the bulk.
Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.
Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart
2003-01-15
The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.
Sun, Xueli; Ghosh, Upal
2008-11-01
The present study evaluated the effect of activated carbon amendment in four freshwater sediments from the Great Lakes (North America) areas of concern with a wide range of sediment geochemical characteristics (0.83-5.1% total organic carbon) and polychlorinated biphenyl (PCB) concentrations (0.33-84.7 microg/g). The work focused on understanding the impact of activated carbon amendment on PCB aqueous partitioning, PCB desorption characteristics, and PCB biouptake in a freshwater oligochaete (Lumbriculus variegatus). The results showed that PCB aqueous equilibrium concentrations, rapid desorption fractions, and biouptake by the oligochaete were reduced after activated carbon amendment. Addition of activated carbon at a dose of 0.5-fold native organic carbon reduced PCB bioaccumulation by 42% for Niagara River sediment, 85% for Grasse River sediment, 74% for Milwaukee River sediment 1, and 70% for Milwaukee River sediment 2. A linear relationship was observed between log biota-sediment accumulation factor and the first 6-h desorption fractions for each PCB homologue for treated and untreated sediments. Water-lipid bioconcentration factors for PCB congeners were largely conserved after amendment with activated carbon. Our present results suggest that at steady state, changes in the aqueous PCB concentrations can be used to predict changes in PCB bioaccumulation in deposit-feeding organisms. Thus, use of advanced pore-water measurement techniques, such as solid-phase extraction passive samplers, may be suitable for long-term monitoring of treatment performance.
Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence
NASA Astrophysics Data System (ADS)
Seeley, J.; Jeevanjee, N.; Romps, D. M.
2016-12-01
Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.
Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.
Ai, Bao-quan; Shao, Zhi-gang; Zhong, Wei-rong
2012-11-07
We study fractional brownian motion and Lévy flights in periodic corrugated channels without any external driving forces. From numerical simulations, we find that both fractional gaussian noise and Lévy-stable noise in asymmetric corrugated channels can break thermodynamical equilibrium and induce directed transport. The rectified mechanisms for fractional brownian motion and Lévy flights are different. The former is caused by non-uniform spectral distribution (low or high frequencies) of fractional gaussian noise, while the latter is due to the nonthermal character (occasional long jumps) of the Lévy-stable noise. For fractional brownian motion, average velocity increases with the Hurst exponent for the persistent case, while for the antipersistent case there exists an optimal value of Hurst exponent at which average velocity takes its maximal value. For Lévy flights, the group velocity decreases monotonically as the Lévy index increases. In addition, for both cases, the optimized periodicity and radius at the bottleneck can facilitate the directed transport. Our results could be implemented in constrained structures with narrow channels and pores where the particles undergo anomalous diffusion.
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Borup, Rodney L.
The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.
A model on CME/Flare initiation: Loss of Equilibrium caused by mass loss of quiescent prominences
NASA Astrophysics Data System (ADS)
Miley, George; Chon Nam, Sok; Kim, Mun Song; Kim, Jik Su
2015-08-01
Coronal Mass Ejections (CMEs) model should give an answer to enough energy storage for giant bulk plasma into interplanetary space to escape against the sun’s gravitation and its explosive eruption. Advocates of ‘Mass Loading’ model (e.g. Low, B. 1996, SP, 167, 217) suggested a simple mechanism of CME initiation, the loss of mass from a prominence anchoring magnetic flux rope, but they did not associate the mass loss with the loss of equilibrium. The catastrophic loss of equilibrium model is considered as to be a prospective CME/Flare model to explain sudden eruption of magnetic flux systems. Isenberg, P. A., et al (1993, ApJ, 417, 368)developed ideal magnetohydrodynamic theory of the magnetic flux rope to show occurrence of catastrophic loss of equilibrium according to increasing magnetic flux transported into corona.We begin with extending their study including gravity on prominence’s material to obtain equilibrium curves in case of given mass parameters, which are the strengths of the gravitational force compared with the characteristic magnetic force. Furthermore, we study quasi-static evolution of the system including massive prominence flux rope and current sheet below it to obtain equilibrium curves of prominence’s height according to decreasing mass parameter in a properly fixed magnetic environment. The curves show equilibrium loss behaviors to imply that mass loss result in equilibrium loss. Released fractions of magnetic energy are greater than corresponding zero-mass case. This eruption mechanism is expected to be able to apply to the eruptions of quiescent prominences, which is located in relatively weak magnetic environment with 105 km of scale length and 10G of photospheric magnetic field.
Tian, Liyan; Guo, Qingjun; Zhu, Yongguan; He, Huijun; Lang, Yunchao; Hu, Jian; Zhang, Han; Wei, Rongfei; Han, Xiaokun; Peters, Marc; Yang, Junxing
2016-12-01
Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ 18 O P ) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L -1 NaHCO 3 (pH = 8.5), 0.1 mol L -1 NaOH and 1 mol L -1 HCl) of agricultural soils from the Beijing area. The δ 18 O P results of the water extracts and NaHCO 3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ 18 O P value of the water extracts and NaHCO 3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ 18 O P values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ 18 O P values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ 18 O p values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.
NASA Astrophysics Data System (ADS)
Nakada, Ryoichi; Tanimizu, Masaharu; Takahashi, Yoshio
2013-11-01
Many elements have become targets for studies of stable isotopic fractionation with the development of various analytical techniques. Although several chemical factors that control the isotopic fractionation of heavy elements have been proposed, it remains controversial which properties are most important for the isotopic fractionation of elements. In this study, the stable isotopic fractionation of neodymium (Nd) and samarium (Sm) during adsorption on ferrihydrite and δ-MnO2 was examined. This examination was combined with speciation analyses of these ions adsorbed on the solid phases by extended X-ray absorption fine structure (EXAFS) spectroscopy. Neodymium isotope ratios for Nd on ferrihydrite and δ-MnO2 systems were, on average, 0.166‰ and 0.410‰ heavier than those of the liquid phase, which correspond to mean isotopic fractionation factors between the liquid and solid phases (αLq-So) of Nd on ferrihydrite and δ-MnO2 of 0.999834 (2σ = ±0.000048) and 0.999590 (2σ = ±0.000106), respectively. Similarly, averaged Sm isotope ratios on ferrihydrite and δ-MnO2 were 0.206‰ and 0.424‰ heavier than those of the liquid phase and the corresponding αLq-So values were 0.999794 (±0.000041) and 0.999576 (±0.000134), respectively. These results indicate that the directions of isotopic fractionation in the Nd and Sm systems are in contrast with that recently found for Ce(III) systems despite the similar chemical characteristics of rare earth elements. EXAFS analyses suggest that the bond length of the first coordination sphere (REE-O bond) of Nd and Sm adsorbed on δ-MnO2 is shorter than that of their aqua ions, although this was not clear for the ferrihydrite systems. The shorter bond length relative to the aqua ion is indicative of a stronger bond, suggesting that the equilibrium isotopic fractionation for the Nd and Sm systems can be governed by bond strength as has often been discussed for isotopic fractionation in solid-water adsorption systems. Meanwhile, EXAFS analyses of the Ce/ferrihydrite system showed a distorted structure for the first coordination sphere that was not observed for Ce3+ aqua ions. Such distortion was also observed for La adsorption on ferrihydrite and δ-MnO2. In addition, previous studies have suggested a high stability of the hydrated state for La and Ce in terms of Gibbs free energy change. Thus, we suggest here that the difference in the stable isotopic fractionation for Ce (and predicted for La) vs. Nd and Sm can be explained by (i) the shorter bond lengths of adsorbed relative to dissolved species for Nd and Sm and (ii) the distorted structure of adsorbed Ce (and La) species and high stability of the aqua Ce ion.
NASA Astrophysics Data System (ADS)
Yeung, Chi Ho
In this thesis, we study two interdisciplinary problems in the framework of statistical physics, which show the broad applicability of physics on problems with various origins. The first problem corresponds to an optimization problem in allocating resources on random regular networks. Frustrations arise from competition for resources. When the initial resources are uniform, different regimes with discrete fractions of satisfied nodes are observed, resembling the Devil's staircase. We apply the spin glass theory in analyses and demonstrate how functional recursions are converted to simple recursions of probabilities. Equilibrium properties such as the average energy and the fraction of free nodes are derived. When the initial resources are bimodally distributed, increases in the fraction of rich nodes induce a glassy transition, entering a glassy phase described by the existence of multiple metastable states, in which we employ the replica symmetry breaking ansatz for analysis. The second problem corresponds to the study of multi-agent systems modeling financial markets. Agents in the system trade among themselves, and self-organize to produce macroscopic trading behaviors resembling the real financial markets. These behaviors include the arbitraging activities, the setting up and the following of price trends. A phase diagram of these behaviors is obtained, as a function of the sensitivity of price and the market impact factor. We finally test the applicability of the models with real financial data including the Hang Seng Index, the Nasdaq Composite and the Dow Jones Industrial Average. A substantial fraction of agents gains faster than the inflation rate of the indices, suggesting the possibility of using multi-agent systems as a tool for real trading.
Nitrogen isotope effects induced by anammox bacteria
Brunner, Benjamin; Contreras, Sergio; Lehmann, Moritz F.; Matantseva, Olga; Rollog, Mark; Kalvelage, Tim; Klockgether, Gabriele; Lavik, Gaute; Jetten, Mike S. M.; Kartal, Boran; Kuypers, Marcel M. M.
2013-01-01
Nitrogen (N) isotope ratios (15N/14N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes 14N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (−31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (−60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in 15N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones. PMID:24191043
NASA Astrophysics Data System (ADS)
Fahrni, Simon M.; Southon, John R.; Santos, Guaciara M.; Palstra, Sanne W. L.; Meijer, Harro A. J.; Xu, Xiaomei
2017-09-01
The vast majority of radiocarbon measurement results (14C/12C isotopic ratios or sample activities) are corrected for isotopic fractionation processes (measured as 13C/12C isotopic ratios) that occur in nature, in sample preparation and measurement. In 1954 Harmon Craig suggested a value of 2.0 for the fractionation ratio b that is used to correct 14C/12C ratios for shifts in the 13C/12C ratios and this value has been applied by the radiocarbon community ever since. While theoretical considerations suggest moderate deviations of b from 2.0, some measurements have suggested larger differences (e.g. b = 2.3, measured by Saliège and Fontes in 1984). With the high precision attained in radiocarbon measurements today (±2‰), even a relatively small deviation of b from 2.0 can impact the accuracy of radiocarbon data, and it is, therefore, of interest to re-evaluate the fractionation corrections. In the present study, the fractionation ratio b was determined by independent experiments on the chemical reduction of carbon dioxide (CO2) to elemental carbon (graphitization reaction) and on the photosynthetic uptake of CO2 by C3 and C4 plants. The results yielded b = 1.882 ± 0.019 for the reduction of CO2 to solid graphite and b = 1.953 ± 0.025 for the weighted mean of measurements involving C3 and C4 photosynthesis pathways. In addition, the analysis of over 9600 full-sized OX-I and OX-II normalizing standards measured between 2002 and 2012 confirms b values lower than 2.0. The obtained values are in good agreement with quantum mechanical estimates of the equilibrium fractionation and classic kinetic fractionation as well as with results from other light three-isotope systems (oxygen, magnesium, silicon and sulfur). While the value of the fractionation ratio varies with the relative importance of kinetic and equilibrium fractionation, the values obtained in the present study cluster around b = 1.9. Our findings suggest that a significant fraction of all samples ("unknowns") would be shifted by 2‰ (16 radiocarbon years) or more due to this effect: for example, for b = 1.882, between 16.8% and 25.9% of almost 60,000 radiocarbon values measured at the Keck Carbon Cycle AMS facility between 2002 and 2012 would be affected. The implications for radiocarbon dating and its accuracy are discussed.
Siciliano, Steven D; Laird, B D; Lemieux, C L
2010-08-01
The health risk associated with exposure to urban brownfields is often driven by the incidental ingestion of soil by humans. Recent evidence found that humans likely ingest the fraction of soil that passes a 45-microm sieve, which is the particle size adhered to the hands. We evaluated if PAH concentrations were enriched in this soil fraction compared to the bulk soil and if this enrichment lead to an increase in bioaccessibility and thus an increase in incremental lifetime cancer risk for exposed persons. Soils (n=18) with PAH concentrations below the current Canadian soil quality guidelines for human health were collected from an Arctic urban site and were sieved to pass a 45-microm sieve. Soil PAH profiles were measured and bioaccessibility was assessed using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). PAHs were significantly enriched in the <45 microm size fraction (3.7-fold) and this enrichment could be predicted according to the fugacity capacity of soil (Enrichment=2.18-0.055Zsoil, r2=0.65, p<0.001). PAH release in the stomach and small intestine compartments of the SHIME was low (8%) and could not be predicted by PAH concentrations in 45-microm sieved soil. In fact, PAH release in the SHIME was lower from the <45 microm size fraction despite the fact that this fraction had higher levels of PAHs than the bulk soil. We postulate that this occurs because PAHs adsorbed to soil did not reach equilibrium with the small intestinal fluid. In contrast, PAH release in the colonic compartment of the SHIME reached equilibrium and was linked to soil concentration. Bioaccessibility in the SHIME colon could be predicted by the ratio of fugacity capacity of soil to water for a PAH (Bioaccessibility=0.15e(-6.4x10E-7Zsoil/Zwater), r2=0.53, p<0.01). The estimated incremental lifetime cancer risk was significantly greater for the <45 microm soil fraction compared to the bulk fraction; however, when bioaccessible PAH concentrations in a simulated small intestine were used in the risk assessment calculations, cancer risk was slightly lower in the <45 microm soil fraction for these soils. Our results highlight the importance of using a small soil size fraction, e.g. 45 microm, for contaminated site human health risk assessment. However, further work is needed to estimate the bioavailability of this size fraction in an in vivo model and to assess the correlation between in vitro and in vivo gastrointestinal models. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Kumar, K Vasanth; Porkodi, K; Rocha, F
2008-01-15
A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.
X-ray analysis of the galaxy group UGC 03957 beyond R200 with Suzaku
NASA Astrophysics Data System (ADS)
Thölken, Sophia; Lovisari, Lorenzo; Reiprich, Thomas H.; Hasenbusch, Jan
2016-07-01
Context. In the last few years, the outskirts of galaxy clusters have been studied in detail and the analyses have brought up interesting results such as indications of possible gas clumping and the breakdown of hydrostatic, thermal, and ionization equilibrium. These phenomena affect the entropy profiles of clusters, which often show deviations from the self-similar prediction around R200. However, significant uncertainties remain for groups of galaxies. In particular the question, of whether entropy profiles are similar to those of galaxy clusters. Aims: We investigated the gas properties of the galaxy group UGC 03957 up to 1.4 R200 ≈ 1.4 Mpc in four azimuthal directions with the Suzaku satellite. We checked for azimuthal symmetry and obtained temperature, entropy, density, and gas mass profiles. Previous studies point to deviations from equilibrium states at the outskirts of groups and clusters and so we studied the hydrodynamical status of the gas at these large radii. Methods: We performed a spectral analysis of five Suzaku observations of UGC 03957 with ~138 ks good exposure time in total and five Chandra snapshot observations for point source detection. We investigated systematic effects such as point spread function and uncertainties in the different background components, and performed a deprojection of the density and temperature profile. Results: We found a temperature drop of a factor of ~3 from the center to the outskirts that is consistent with previous results for galaxy clusters. The metal abundance profile shows a flat behavior towards large radii, which is a hint for galactic winds as the primary ICM enrichment process. The entropy profile is consistent with numerical simulations after applying a gas mass fraction correction. Feedback processes and AGN activity might be one explanation for entropy modification, imprinting out to larger radii in galaxy groups than in galaxy clusters. Previous analyses for clusters and groups often showed an entropy flattening or even a drop around ~ R200, which can be an indication of clumping or non-equilibrium states in the outskirts. Such entropy behavior is absent in UGC 03957. The gas mass fraction is well below the cosmic mean but rises above this value beyond R200, which could be a hint for deviations from hydrostatic equilibrium at these large radii. By measuring the abundance of the α-elements Si and S at intermediate radii we determined the relative number of different supernovae types and found that the abundance pattern can be described by a relative contribution of 80%-100% of core-collapse supernovae. This result is in agreement with previous measurements for galaxy groups.
Frey, M.; Hunziker, J.C.; O'Neil, J.R.; Schwander, H.W.
1976-01-01
Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1-3.2) and 2 M or 3 T phengite (Si=3.3-3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ?? C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) 'Isotopic reversals' in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance between quartz-muscovite and quartz-biotite 'Permian temperatures' implies oxygen isotope equilibrium in Permian time which was undisturbed during Alpine metamorphism. Arguments for equilibrium during the mid-Tertiary metamorphism are as follows: (i) Mid-Tertiary Rb-Sr mineral isochrons of up to six minerals exist, (ii) Oxygen isotope temperatures of coexisting Alpine phengites and biotites are concordant. The major factor for the adjustment of the Permian assemblages to Alpine conditions was the degree of Alpine tectonic overprinting rather than the maximum temperatures reached during the mid-Tertiary Alpine metamorphism. The lack of exchange with externally introduced fluid phases in the samples least affected by tectonism indicates that the Monte Rosa Granite 'stewed in its own juices'. This seems to be the major cause for the persistence of Permian ages and corresponding temperatures. ?? 1976 Springer-Verlag.
Predicting equilibrium uranium isotope fractionation in crystals and solution
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2015-12-01
Despite the rapidly growing interest in using 238U/235U measurements as a proxy for changes in oxygen abundance in surface and near-surface environments, the present theoretical understanding of uranium isotope fractionation is limited to a few simple gas-phase molecules and analogues of dissolved species (e.g., 1,2,3). Understanding uranium isotope fractionation behavior in more complicated species, such as crystals and adsorption complexes, will help in the design and interpretation of experiments and field studies, and may suggest other uses for 38U/235U measurements. In this study, a recently developed first-principles method for estimating the nuclear volume component of field shift fractionation in crystals and complex molecular species (4) is combined with mass-dependent fractionation theory to predict equilibrium 38U/235U fractionations in aqueous and crystalline uranium compounds, including uraninite (UO2). The nuclear field shift effect, caused by the interaction of electrons with the finite volume of the positive charge distribution in uranium nuclei, is estimated using Density Functional Theory and the Projector Augmented Wave method (DFT-PAW). Tests against relativistic electronic structure calculations and Mössbauer isomer shift data indicate that the DFT-PAW method is reasonably accurate, while being much better suited to models of complex and crystalline species. Initial results confirm previous predictions that the nuclear volume effect overwhelms mass depdendent fractionation in U(VI)-U(IV) exchange reactions, leading to higher 238U/235U in U(IV) species (i.e., for UO2 xtal vs. UO22+aq, ln αNV ≈ +1.8‰ , ln αMD ≈ -0.8‰, ln αTotal ≈ +1.0‰ at 25ºC). UO2 and U(H2O)94+, are within ~0.4‰ of each other, while U(VI) species appear to be more variable. This suggests that speciation is likely to significantly affect natural uranium isotope fractionations, in addition to oxidation state. Tentatively, it appears that uranyl-type (UO22+-bearing) structures will tend to have higher 238U/235U than uranate-type structures that lack strong U=O bonds. References: 1. Bigeleisen (1996) JACS 118:3676; 2. Schauble (2006) Eos 87:V21B-0570; 3. Abe et al. (2008) J Chem Phys 128:144309, 129:164309, & Abe et al. (2010) J Chem Phys 133:044309; 4. Schauble (2013) PNAS 110:17714.
The quasi-equilibrium response of MOS structures: Quasi-static factor
NASA Astrophysics Data System (ADS)
Okeke, M.; Balland, B.
1984-07-01
The dynamic response of a MOS structure driven into a non-equilibrium behaviour by a voltage ramp is presented. In contrast to Khun's quasi-static technique it is shown that any ramp-driven MOS structure has some degree of non-equilibrium. A quasi staticity factor μAK which serves as a measure of the degree of quasi-equilibrium, has been introduced for the first time. The mathematical model presented in the paper allows a better explanation of the experimental recordings. It is shown that this model could be used to analyse the various features of the response of the structure and that such physical parameters as the generation-rate, trap activation energy, and the effective capture constants could be obtained.
Controls on the Transition Metal Isotopic Composition of Seawater: Diatom Culture Experiments
NASA Astrophysics Data System (ADS)
Vance, D.; Archer, C.; Kennaway, G.; Cox, E.; Statham, P. J.
2004-12-01
Many transition metals are essential micronutrients for marine phytoplankton. As a result the expectation is that biological processes play an important, perhaps a dominant, role in their marine isotope geochemistry. These observations raise the prospect of using isotope records to trace transition metal micronutrient usage in the past oceans, an issue that is of importance to the efficiency of the biological pump and atmospheric carbon dioxide. As such, the characterisation of trace metal isotopic fractionations associated with marine primary productivity are an important scientific goal. Here we report fractionations associated with Fe, Cu and Zn sequestration by diatoms, one of the main primary producers in the oceans. Axenic unialgal cultures of Thalassiosira weissflogii and Thalassiosira pseudonana were established in artificial seawater + F/2 medium at 18° C on a 16:8 light:dark cycle. The cultures were filtered to separate diatom material from residual media and analysed for Zn, Cu and Fe concentrations and isotope composition using techniques described elsewhere1,2. Aliquots of the starting medium were also measured for each batch of cultures. The diatom organic material shows small, but consistent and resolvable, positive fractionations (0.1-0.3 per mil) for Fe, Cu and Zn relative to the starting medium. In the case of all three metals, but particularly for Zn (70-95% depending on experiment size), the diatoms had sequestered a large proportion of the available metal, suggesting that the fractionation factor for metal usage by the diatoms is much greater than 1.0001 to 1.0003. Time-series experiments are under way to determine the exact magnitude of the fractionation factor. The mass-balance is supported by the fact that the residual medium is around -0.4 per mil for Zn. The fact that diatoms incorporate trace metals that are isotopically heavier than the nutrient pool is a surprising result, the expectation having been that, as with carbon, the biological usage of trace metals would result in kinetic fractionations3. The positive fractionations necessitate an equilibrium process and, perhaps, active extra-cellular sequestration of trace metals. The second broader implication is that given the proposed role of diatoms in controlling the extreme depletion of Zn in open ocean surface waters, particularly in the Pacific where surface waters are have up to a factor of 250 less Zn than deep waters4, the depletion of the light isotope in surface waters and its enrichment in deep waters are predicted to be extreme. Zn, and other trace metal, isotopes may have an important role in recording this process in the past oceans. 1 C. Archer and D. Vance, 2004, J. Anal. Atom. Spectr. 19, 656-665. 2 J. Bermin, et al., 2004, this volume. 3 Pichat, S et al., 2003, Earth Planet. Sci. Lett. 210, 167-178. 4 Lohan, M.C. et al., 2002, Deep-Sea Res. II 49, 5793-5808.
VizieR Online Data Catalog: Supernova matter EOS (Buyukcizmeci+, 2014)
NASA Astrophysics Data System (ADS)
Buyukcizmeci, N.; Botvina, A. S.; Mishustin, I. N.
2017-03-01
The Statistical Model for Supernova Matter (SMSM) was developed in Botvina & Mishustin (2004, PhLB, 584, 233 ; 2010, NuPhA, 843, 98) as a direct generalization of the Statistical Multifragmentation Model (SMM; Bondorf et al. 1995, PhR, 257, 133). We treat supernova matter as a mixture of nuclear species, electrons, and photons in statistical equilibrium. The SMSM EOS tables cover the following ranges of control parameters: 1. Temperature: T = 0.2-25 MeV; for 35 T values. 2. Electron fraction Ye: 0.02-0.56; linear mesh of Ye = 0.02, giving 28 Ye values. It is equal to the total proton fraction Xp, due to charge neutrality. 3. Baryon number density fraction {rho}/{rho}0 = (10-8-0.32), giving 31 {rho}/{rho}0 values. (2 data files).
NASA Astrophysics Data System (ADS)
Engelmann, Yannick; Bogaerts, Annemie; Neyts, Erik C.
2014-09-01
Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Reduced partition function ratios of iron and oxygen in goethite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, M.; Dauphas, N.; Hu, M. Y.
2015-02-01
First-principles calculations based on the density functional theory (DFT) with or without the addition of a Hubbard U correction, are performed on goethite in order to determine the iron and oxygen reduced partition function ratios (beta-factors). The calculated iron phonon density of states (pDOS), force constant and beta-factor are compared with reevaluated experimental beta-factors obtained from Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements. The reappraisal of old experimental data is motivated by the erroneous previous interpretation of the low- and high-energy ends of the NRIXS spectrum of goethite and jarosite samples (Dauphas et al., 2012). Here the NRIXS data aremore » analyzed using the SciPhon software that corrects for non-constant baseline. New NRIXS measurements also demonstrate the reproducibility of the results. Unlike for hematite and pyrite, a significant discrepancy remains between DFT, NRIXS and the existing Mossbauer-derived data. Calculations suggest a slight overestimation of the NRIXS signal possibly related to the baseline definition. The intrinsic features of the samples studied by NRIXS and Mossbauer spectroscopy may also contribute to the discrepancy (e. g., internal structural and/or chemical defects, microstructure, surface contribution). As for oxygen, DFT results indicate that goethite and hematite have similar beta-factors, which suggests almost no fractionation between the two minerals at equilibrium.« less
Dynamic phantom for radionuclide cardiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nickles, R.J.
1979-06-01
A flow-based phantom has been developed to verify analysis routines most frequently employed in clinical radionuclide cardiology. Ejection-fraction studies by first-pass or equilibrium techniques are simulated, as well as assessment of shunts and cardiac output. This hydraulic phantom, with its valve-selectable dysfunctions, offers a greater role in training than in quality control, as originally intended.
Thermodynamic analysis of the interaction of factor VIII with von Willebrand factor.
Dimitrov, Jordan D; Christophe, Olivier D; Kang, Jonghoon; Repessé, Yohann; Delignat, Sandrine; Kaveri, Srinivas V; Lacroix-Desmazes, Sébastien
2012-05-22
Factor VIII (FVIII) is a glycoprotein that plays an important role in the intrinsic pathway of coagulation. In circulation, FVIII is protected upon binding to von Willebrand factor (VWF), a chaperone molecule that regulates its half-life, distribution, and activity. Despite the biological significance of this interaction, its molecular mechanisms are not fully characterized. We determined the equilibrium and activation thermodynamics of the interaction between FVIII and VWF. The equilibrium affinity determined by surface plasmon resonance was temperature-dependent with a value of 0.8 nM at 35 °C. The FVIII-VWF interaction was characterized by very fast association (8.56 × 10(6) M(-1) s(-1)) and fast dissociation (6.89 × 10(-3) s(-1)) rates. Both the equilibrium association and association rate constants, but not the dissociation rate constant, were dependent on temperature. Binding of FVIII to VWF was characterized by favorable changes in the equilibrium and activation entropy (TΔS° = 89.4 kJ/mol, and -TΔS(++) = -8.9 kJ/mol) and unfavorable changes in the equilibrium and activation enthalpy (ΔH° = 39.1 kJ/mol, and ΔH(++) = 44.1 kJ/mol), yielding a negative change in the equilibrium Gibbs energy. Binding of FVIII to VWF in solid-phase assays demonstrated a high sensitivity to acidic pH and a sensitivity to ionic strength. Our data indicate that the interaction between FVIII and VWF is mediated mainly by electrostatic forces, and that it is not accompanied by entropic constraints, suggesting the absence of conformational adaptation but the presence of rigid "pre-optimized" binding surfaces.
Description of the General Equilibrium Model of Ecosystem Services (GEMES)
Travis Warziniack; David Finnoff; Jenny Apriesnig
2017-01-01
This paper serves as documentation for the General Equilibrium Model of Ecosystem Services (GEMES). GEMES is a regional computable general equilibrium model that is composed of values derived from natural capital and ecosystem services. It models households, producing sectors, and governments, linked to one another through commodity and factor markets. GEMES was...
Diffusion model validation and interpretation of stable isotopes in river and lake ice
Ferrick, M.G.; Calkins, D.J.; Perron, N.M.; Cragin, J.H.; Kendall, C.
2002-01-01
The stable isotope stratigraphy of river- and lake-ice archives winter hydroclimatic conditions, and can potentially be used to identify changing water sources or to provide important insights into ice formation processes and growth rates. However, accurate interpretations rely on known isotopic fractionation during ice growth. A one-dimensional diffusion model of the liquid boundary layer adjacent to an advancing solid interface, originally developed to simulate solute rejection by growing crystals, has been used without verification to describe non-equilibrium fractionation during congelation ice growth. Results are not in agreement, suggesting the presence of important uncertainties. In this paper we seek validation of the diffusion model for this application using large-scale laboratory experiments with controlled freezing rates and frequent sampling. We obtained consistent, almost constant, isotopic boundary layer thicknesses over a representative range of ice growth rates on both quiescent and well-mixed water. With the 18O boundary layer thickness from the laboratory, the model successfully quantified reduced river-ice growth rates relative to those of a nearby lake. These results were more representative and easier to obtain than those of a conventional thermal ice-growth model. This diffusion model validation and boundary layer thickness determination provide a powerful tool for interpreting the stable isotope stratigraphy of floating ice. The laboratory experiment also replicated successive fractionation events in response to a freeze-thaw-refreeze cycle, providing a mechanism for apparent ice fractionation that exceeds equilibrium. Analysis of the composition of snow ice and frazil ice in river and lake cores indicated surprising similarities between these ice forms. Published in 2002 by John Wiley & Sons, Ltd.
Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian
2018-05-01
We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Nasir, Sobhi J.; Jabeen, Iffat; Al Rawas, Ahmed; Banerjee, Neil R.; Osinski, Gordon R.
2017-10-01
Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5-10% in REE (Eu = 14%), 6-13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg-normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are 0.6 × CI with enriched La abundance ( 0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass-dependent isotope fractionation trend. Both groups show a slope-1/2 line on a three-isotope plot with subtle negative deviation in Δ17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.
13C 12C exchange between calcite and graphite: A possible thermometer in Grenville marbles
Valley, J.W.; O'Neil, J.R.
1981-01-01
The fractionation of 13C between calcite and graphite, ??(Cc-Gr). is consistently small (2.6-4.8 permil) in 34 assemblages from upper amphibolite- and granulite-facies marbles of the Grenville Province. In 25 samples from the Adirondack Mountains, New York, it decreases regularly with increasing metamorphic temperature. The fractionations are independent of absolute ??13C values of calcite (-2.9 to +5.0). For T = 600-800??C, the Adirondack data are described by ??(Cc-Gr) = -0.00748T (??C) + 8.68. This good correlation between ?? and T suggests that carbon isotope equilibrium was attained in these high-grade marbles and that the theoretical calculations of this fractionation by Bottinga are approximately 2 permil too large in this temperature range. Because of the relatively high temperature sensitivity suggested by these results and by Bottinga's calculations, and the pressure independence of isotope fractionation, ??(Cc-Gr) may provide a very good thermometer for high-grade marbles. Comparison of this field calibration for ??(Cc-Gr) vs temperature with results from other terranes supports the utility of ??(Cc-Gr) for geothermometry and suggests that graphite is much more sluggish to exchange than calcite, that exchange between calcite and graphite occurs at temperatures as low as 300??C, and that equilibrium may normally be attained only when peak metamorphic temperatures are greater than 500-600??C. Because 13C exchange is an unavoidable metamorphic process at temperatures above 300??C, high values of ??13C(Gr) in moderate- to high-grade carbonate-bearing rocks do not provide a sufficient criterion to infer an abiogenic origin for the graphite. ?? 1981.
NASA Astrophysics Data System (ADS)
Zhao, X.; Cao, H.; Yu, H.; Huang, F.
2016-12-01
Iron isotope systems have become widely used tools in high temperature geochemistry and provide important constraints on mantle dynamics. Here, we report Fe isotopic data on a series of pyroxenite xenoliths from Hannuoba, North China Craton to further constrain the Fe isotopic composition of the mantle and investigate the behavior of Fe isotopes during mantle processes. These xenoliths range from Cr- pyroxenites, Al-pyroxenites to garnet pyroxenites, and are taken as physical evidence for different episodes of melt injection events. Our results show that both Cr- pyroxenites and Al-pyroxenites have a narrow range of Fe isotopes (δ57Fe=-0.01 to 0.09), similar to that reported typical mantle peridotites and they show equilibrium inter-mineral Fe isotope fractionation between coexisting mantle minerals. In contract, the garnet pyroxenites, which are products of reaction between a silicate melt and peridotite, exhibit larger Fe isotopic variations, with δ57Fe ranging from 0.08 to 0.30. The δ57Fe values of minerals in these garnet pyroxenites also vary widely from -0.25 to -0.03 in olivines, from -0.04 to 0.14 in orthopyroxenes, from -0.07 to 0.31 in clinopyroxenes, from 0.07 to 0.26 in spinels and from 0.30 to 0.39 in garnets. These observed data stand in marked contrast to the calculated equilibrium Fe isotope fractionation between coexisting mantle minerals at mantle temperature from theory, indicating disequilibrium isotope fractionation. The disequilibrium isotope fractionations between coexisting mantle minerals in garnet pyroxenites most likely reflect kinetic isotope fractionation during melt-peridotite interaction. In addition, the phlogopite clinopyroxenite with an apparent metasomatic overprint has the heaviest δ57Fe (as high as 1.00) but lightest δ26Mg (as low as -1.50) values of the investigated samples. Our study shows that mantle metasomatism plays an important role in producing Fe isotopic heterogeneity of the subcontinental mantle.
Review of anhydrous zirconium-hafnium separation techniques. Information circular/1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaggs, R.L.; Rogers, D.T.; Hunter, D.B.
1983-12-01
Sixteen nonaqueous techniques conceived to replace the current aqueous scheme for separating hafnium and zirconium tetrachlorides were reviewed and evaluated by the Bureau of Mines. The methods are divided into two classes: separation by fractional volatilization of the tetrachlorides, which takes advantage of the higher volatility of hafnium tetrachloride; and separation by chemical techniques, based on differences in chemical behavior of the two tetrachlorides. The criteria used to evaluate separation methods were temperature, pressure, separation factor per equilibrium stage, complexity, compatibility with existing technology, and potential for continuous operation. Three processes were selected as being most promising: (1) high-pressure distillation,more » (2) extractive distillation from a molten salt, and (3) preferential reduction of gaseous ZrCl4. Any of the proposed nonaqueous Hf-Zr separation schemes must be supplemented with additional purification to remove trace impurities.« less
Observations of magnetic fields on solar-type stars
NASA Technical Reports Server (NTRS)
Marcy, G. W.
1982-01-01
Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.
Equilibration and aging of dense soft-sphere glass-forming liquids
NASA Astrophysics Data System (ADS)
Sánchez-Díaz, Luis Enrique; Ramírez-González, Pedro; Medina-Noyola, Magdaleno
2013-05-01
The recently developed nonequilibrium extension of the self-consistent generalized Langevin equation theory of irreversible relaxation [Ramírez-González and Medina-Noyola, Phys. Rev. E10.1103/PhysRevE.82.061503 82, 061503 (2010); Ramírez-González and Medina-Noyola, Phys. Rev. E10.1103/PhysRevE.82.061504 82, 061504 (2010)] is applied to the description of the irreversible process of equilibration and aging of a glass-forming soft-sphere liquid that follows a sudden temperature quench, within the constraint that the local mean particle density remains uniform and constant. For these particular conditions, this theory describes the nonequilibrium evolution of the static structure factor S(k;t) and of the dynamic properties, such as the self-intermediate scattering function FS(k,τ;t), where τ is the correlation delay time and t is the evolution or waiting time after the quench. Specific predictions are presented for the deepest quench (to zero temperature). The predicted evolution of the α-relaxation time τα(t) as a function of t allows us to define the equilibration time teq(ϕ), as the time after which τα(t) has attained its equilibrium value ταeq(ϕ). It is predicted that both, teq(ϕ) and ταeq(ϕ), diverge as ϕ→ϕ(a), where ϕ(a) is the hard-sphere dynamic-arrest volume fraction ϕ(a)(≈0.582), thus suggesting that the measurement of equilibrium properties at and above ϕ(a) is experimentally impossible. The theory also predicts that for fixed finite waiting times t, the plot of τα(t;ϕ) as a function of ϕ exhibits two regimes, corresponding to samples that have fully equilibrated within this waiting time (ϕ≤ϕ(c)(t)), and to samples for which equilibration is not yet complete (ϕ≥ϕ(c)(t)). The crossover volume fraction ϕ(c)(t) increases with t but saturates to the value ϕ(a).
Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.J.; Chun, Y.J.
2005-07-01
The separation of four kinds of nitrogen heterocyclic compounds (NHCs) from a model mixture comprising NHCs (indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)), three kinds of bicyclic aromatic compounds (BACs; 1-methyl-naphthalene (IMN), 2-methyl naphthalene (2MN), dimethylnaphthalene (DMN)), biphenyl (Bp) and phenyl ether (Pe) was examined by a solvent extraction. The model mixture used as a raw material of this work was prepared according to the components and compositions contained in coal tar fraction (the temperature ranges of fraction: 240-265{sup o}C). An aqueous solution of methanol, ethanol, iso-propyl alcohol, N,N-dimethyl acetamide, DMF, formamide, N-methylformamide/methanol, and formamide/methanol were used as solvents.more » An aqueous solution of formamide was found suitable for separating NHCs contained in coal tar fraction based on distribution coefficient and selectivity. The effect of operation factors on separating NHCs was investigated by the distribution equilibrium using an aqueous solution of formamide. Increasing the operation temperature and the volume ratio of solvent to feed at initial (S/F)(o) resulted in improving the distribution coefficients of each NHC, but increasing the volume fraction of water in the solvent at initial (y(w,O)) resulted in deteriorating the distribution coefficients of each NHC. With increasing y(w,O) and (S/F)(o), the selectivities of each NHC in reference to DMN increased. Increase in operation temperature resulted in decrease in selectivities of each NHC in reference to DMN. At an experimental condition fixed, the sequence of the distribution coefficient and selectivity in reference to DMN for each NHC was In {gt} iQ {gt} Q {gt} Qu, and also the sequence of the distribution coefficient for each BAC was IMN {gt} 2MN {gt} DMN. The sequence of the distribution coefficient for entire compounds analyzed by this work was In {gt} iQ {gt} Q {gt} Qu {gt} BP {gt} 1MN {gt} 2MN {gt} Pe {gt} DMN.« less
Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago
NASA Astrophysics Data System (ADS)
Genzel, R.; Schreiber, N. M. Förster; Übler, H.; Lang, P.; Naab, T.; Bender, R.; Tacconi, L. J.; Wisnioski, E.; Wuyts, S.; Alexander, T.; Beifiori, A.; Belli, S.; Brammer, G.; Burkert, A.; Carollo, C. M.; Chan, J.; Davies, R.; Fossati, M.; Galametz, A.; Genel, S.; Gerhard, O.; Lutz, D.; Mendel, J. T.; Momcheva, I.; Nelson, E. J.; Renzini, A.; Saglia, R.; Sternberg, A.; Tacchella, S.; Tadaki, K.; Wilman, D.
2017-03-01
In the cold dark matter cosmology, the baryonic components of galaxies—stars and gas—are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius—a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high-redshift) Universe efficiently condensed at the centres of dark-matter haloes when gas fractions were high and dark matter was less concentrated.
Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.
Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D
2017-03-15
In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high-redshift) Universe efficiently condensed at the centres of dark-matter haloes when gas fractions were high and dark matter was less concentrated.
NASA Astrophysics Data System (ADS)
Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor
2011-06-01
In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper, besides the detailed geochemical analyses along downstream sections, we present new evidences of non-equilibrium calcite-water fractionation in lower temperature range (13.3 to 51.3 °C). Our measurements and calculations on natural hot water travertine precipitations at Pamukkale and Egerszalók revealed that the δ 18O travertine is equal with the δ 18O HCO3 at the orifice of the thermal springs, which means that practically there is no oxygen isotope fractionation between these two phases. High rate of CO 2 degassing with rapid precipitation of carbonate could be responsible for this as it was theoretically supposed by O'Neil et al. (1969). Thus, for the determination of the deposition temperature of a fossil travertine deposit we propose to use the water-bicarbonate oxygen isotope equilibrium fractionation instead of the water-travertine fractionation, which can result 8-9 °C difference in the calculated values. Our study is the first detailed empirical proof of O'Neil's hypothesis on a natural carbonate depositing system. The presented observations can be used to identify more precisely the deposition temperature of fossil travertines during paleoclimate studies.
NASA Astrophysics Data System (ADS)
Chen, Chun; Zhao, Bin
2011-01-01
Epidemiologic evidence indicates a relationship between outdoor particle exposure and adverse health effects, while most people spend 85-90% of their time indoors, thus understanding the relationship between indoor and outdoor particles is quite important. This paper aims to provide an up-to-date revision for both experiment and modeling on relationship between indoor and outdoor particles. The use of three different parameters: indoor/outdoor (I/O) ratio, infiltration factor and penetration factor, to assess the relationship between indoor and outdoor particles were reviewed. The experimental data of the three parameters measured both in real houses and laboratories were summarized and analyzed. The I/O ratios vary considerably due to the difference in size-dependent indoor particle emission rates, the geometry of the cracks in building envelopes, and the air exchange rates. Thus, it is difficult to draw uniform conclusions as detailed information, which make I/O ratio hardly helpful for understanding the indoor/outdoor relationship. Infiltration factor represents the equilibrium fraction of ambient particles that penetrates indoors and remains suspended, which avoids the mixture with indoor particle sources. Penetration factor is the most relevant parameter for the particle penetration mechanism through cracks and leaks in the building envelope. We investigate the methods used in previously published studies to both measure and model the infiltration and penetration factors. We also discuss the application of the penetration factor models and provide recommendations for improvement.
Combined Functional and Immunochemical Analysis of Normal and Abnormal Human Factor X
Fair, Daryl S.; Plow, Edward F.; Edgington, Thomas S.
1979-01-01
Human Factor X was isolated from Cohn fraction III and characterized by polyacrylamide gel electrophoresis, amino acid composition, and isoelectric focusing. Two molecular forms with biological activity were observed at isoelectric points of 4.8 and 5.0. Antisera generated to Factor X was monospecific and used to establish an equilibrium competitive inhibition radioimmunoassay. This assay was specific for human Factor X and did not cross-react with human prothrombin or bovine Factor X within the sensitivity range of 6-300 ng Factor X antigen/ml. The mean concentration of Factor X based on the antigen was 11.9 μg/ml, whereas concentration values based on coagulant activity was 7.8 μg/ml. This 30% difference in measurement appears to result from the presence of a subpopulation of Factor X molecules devoid of coagulant activity. The radioimmunoassay was used to qualitatively and quantitatively compare purified Factor X to plasmic Factor X obtained from normal, warfarintreated, acquired Factor X-deficient, and congenitaldeficient patients. In all but one case, the Factor X present in these plasmas was immunochemically identical to the purified Factor X and permitted precise quantitation of these abnormal Factor X molecules. Factor X procoagulant activity was analyzed relative to Factor X antigen and the specific activities were used to characterize normal and abnormal Factor X molecules. Reduced Factor X activity in plasmas from warfarin-treated and acquired Factor X-deficient patients was attributed to both decreases in Factor X antigen and decreased function of the Factor X molecules. Congenitally deficient patients, in general, showed a reduction in Factor X antigen in parallel with Factor X procoagulant activities resulting from comparable decreases in specific biological activity of the molecules. Images PMID:90058
Water-soluble drug partitioning and adsorption in HEMA/MAA hydrogels.
Dursch, Thomas J; Taylor, Nicole O; Liu, David E; Wu, Rong Y; Prausnitz, John M; Radke, Clayton J
2014-01-01
Two-photon confocal microscopy and back extraction with UV/Vis-absorption spectrophotometry quantify equilibrium partition coefficients, k, for six prototypical drugs in five soft-contact-lens-material hydrogels over a range of water contents from 40 to 92%. Partition coefficients were obtained for acetazolamide, caffeine, hydrocortisone, Oregon Green 488, sodium fluorescein, and theophylline in 2-hydroxyethyl methacrylate/methacrylic acid (HEMA/MAA, pKa≈5.2) copolymer hydrogels as functions of composition, aqueous pH (2 and 7.4), and salinity. At pH 2, the hydrogels are nonionic, whereas at pH 7.4, hydrogels are anionic due to MAA ionization. Solute adsorption on and nonspecific electrostatic interaction with the polymer matrix are pronounced. To express deviation from ideal partitioning, we define an enhancement or exclusion factor, E ≡ k/φ1, where φ1 is hydrogel water volume fraction. All solutes exhibit E > 1 in 100 wt % HEMA hydrogels owing to strong specific adsorption to HEMA strands. For all solutes, E significantly decreases upon incorporation of anionic MAA into the hydrogel due to lack of adsorption onto charged MAA moieties. For dianionic sodium fluorescein and Oregon Green 488, and partially ionized monoanionic acetazolamide at pH 7.4, however, the decrease in E is more severe than that for similar-sized nonionic solutes. Conversely, at pH 2, E generally increases with addition of the nonionic MAA copolymer due to strong preferential adsorption to the uncharged carboxylic-acid group of MAA. For all cases, we quantitatively predict enhancement factors for the six drugs using only independently obtained parameters. In dilute solution for solute i, Ei is conveniently expressed as a product of individual enhancement factors for size exclusion (Ei(ex)), electrostatic interaction (Ei(el)), and specific adsorption (Ei(ad)):Ei≡Ei(ex)Ei(el)Ei(ad). To obtain the individual enhancement factors, we employ an extended Ogston mesh-size distribution for Ei(ex); Donnan equilibrium for Ei(el); and Henry's law characterizing specific adsorption to the polymer chains for Ei(ad). Predicted enhancement factors are in excellent agreement with experiment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Radiation calculation in non-equilibrium shock layer
NASA Astrophysics Data System (ADS)
Dubois, Joanne
2005-05-01
The purpose of the work was to investigate confidence in radiation predictions on an entry probe body in high temperature conditions taking the Huygens probe as an example. Existing engineering flowfield codes for shock tube and blunt body simulations were used and updated when necessary to compute species molar fractions and flow field parameters. An interface to the PARADE radiation code allowed radiative emission estimates to the body surface to be made. A validation of the radiative models in equilibrium conditions was first made with published data and by comparison with shock tube test case data from the IUSTI TCM2 facility with Titan like atmosphere test gas. Further verifications were made in non-equilibrium with published computations. These comparisons were initially made using a Boltzmann assumption for the electronic states of CN. An attempt was also made to use pseudo species for the individual electronic states of CN. Assumptions made in this analysis are described and a further comparison with shock tube data undertaken. Several CN radiation datasets have been used, and while improvements to the modelling tools have been made, it seems that considerable uncertainty remains in the modelling of the non-equilibrium emission using simple engineering methods.
NASA Astrophysics Data System (ADS)
Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi
2005-03-01
In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.
NASA Astrophysics Data System (ADS)
Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.
2012-04-01
The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde fractionation processes. Finally we show how, although the effective composition of symplectite growth is not easy to determine and quantify, it is possible to successfully model by constructing a series of phase equilibria calculations.
Predictions and Verification of an Isotope Marine Boundary Layer Model
NASA Astrophysics Data System (ADS)
Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.
2017-12-01
A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the <5% of observations that fall slightly outside of the predicted region in both δD-δ18O and d-excess - δ18O space: 1) variations in seawater isotopic ratios, 2) variations in isotopic composition of subsiding air, and 3) influence of sea spray. The model can be used for understanding the effects of boundary layer processes and meteorological conditions on isotopic composition of vapor within, and vapor fluxes through the MBL, and how changes in moisture source regions affect the isotopic composition of precipitation. The model can be applied to modern as well as paleo- climate conditions.
Lorphensri, Oranuj; Sabatini, David A; Kibbey, Tohren C G; Osathaphan, Khemarath; Saiwan, Chintana
2007-05-01
The sorption and transport of three pharmaceutical compounds (acetaminophen, an analgesic; nalidixic acid, an antibiotic; and 17alpha-ethynyl estradiol, a synthetic hormone) were examined by batch sorption experiments and solute displacement in columns of silica, alumina, and low organic carbon aquifer sand at neutral pH. Silica and alumina were used to represent negatively-charged and positively-charged fractions of subsurface media. Column transport experiments were also conducted at pH values of 4.3, 6.2, and 8.2 for the ionizable nalidixic acid. The computer program UFBTC was used to fit the breakthrough data under equilibrium and nonequilibrium conditions with linear/nonlinear sorption. Good agreement was observed between the retardation factors derived from column model studies and estimated from equilibrium batch sorption studies. The sorption and transport of nalidixic acid was observed to be highly pH dependent, especially when the pH was near the pK(a) of nalidixic acid (5.95). Thus, near a compound's pK(a) it is especially important that the batch studies be performed at the same pH as the column experiment. While for ionic pharmaceuticals, ion exchange to oppositely-charged surfaces, appears to be the dominant adsorption mechanism, for neutral pharmaceuticals (i.e., acetaminophen, 17alpha-ethynyl estradiol) the sorption correlated well with the K(ow) of the pharmaceuticals, suggesting hydrophobically motivated sorption as the dominant mechanism.
Li, Juan-Ying; Tang, Janet Yat Man; Jin, Ling; Escher, Beate I
2013-12-01
Bioavailable and bioaccessible fractions of sediment-associated contaminants are considered as better dose metrics for sediment-quality assessment than total concentrations. The authors applied exhaustive solvent extraction and nondepletive equilibrium sampling techniques to sediment samples collected along the Brisbane River in South East Queensland, Australia, which range from pristine environments to urban and industry-impacted areas. The wide range of chemicals expected prevents comprehensive chemical analysis, but a battery of cell-based bioassays sheds light on mixture effects of chemicals in relation to various modes of toxic action. Toxic effects were expressed as bioanalytical equivalent concentrations (BEQs) normalized to the organic carbon content of each sediment sample. Bioanalytical equivalent concentrations from exhaustive extraction agreed fairly well with values estimated from polydimethylsiloxane passive sampling extracts via the constant organic carbon to polydimethylsiloxane partition coefficient. Agreement was best for bioassays indicative of photosynthesis inhibition and oxidative stress response and discrepancy within a factor of 3 for the induction of the aryl hydrocarbon receptor. For nonspecific cytotoxicity, BEQ from exhaustive extraction were 1 order of magnitude higher than values from equilibrium sampling, possibly because of coextraction of bioactive natural organic matter that led to an overestimation of toxicity in the exhaustive extracts, which suggests that passive sampling is better suited in combination with bioanalytical assessment than exhaustive extraction. © 2013 SETAC.
Calculation of Free-Atom Fractions in Hydrocarbon-Fueled Rocket Engine Plume
NASA Technical Reports Server (NTRS)
Verma, Satyajit
2006-01-01
Free atom fractions (Beta) of nine elements are calculated in the exhaust plume of CH4- oxygen and RP-1-oxygen fueled rocket engines using free energy minimization method. The Chemical Equilibrium and Applications (CEA) computer program developed by the Glenn Research Center, NASA is used for this purpose. Data on variation of Beta in both fuels as a function of temperature (1600 K - 3100 K) and oxygen to fuel ratios (1.75 to 2.25 by weight) is presented in both tabular and graphical forms. Recommendation is made for the Beta value for a tenth element, Palladium. The CEA computer code was also run to compare with experimentally determined Beta values reported in literature for some of these elements. A reasonable agreement, within a factor of three, between the calculated and reported values is observed. Values reported in this work will be used as a first approximation for pilot rocket engine testing studies at the Stennis Space Center for at least six elements Al, Ca, Cr, Cu, Fe and Ni - until experimental values are generated. The current estimates will be improved when more complete thermodynamic data on the remaining four elements Ag, Co, Mn and Pd are added to the database. A critique of the CEA code is also included.
The Lunar Magma Ocean: Sharpening the Focus on Process and Composition
NASA Technical Reports Server (NTRS)
Rapp, J. F.; Draper, D. S.
2014-01-01
The currently accepted model for the formation of the lunar anorthositic crust is by flotation from a crystallizing lunar magma ocean (LMO) shortly following lunar accretion. Anorthositic crust is globally distributed and old, whereas the mare basalts are younger and derived from a source region that has experienced plagioclase extraction. Several attempts at modelling such a crystallization sequence have been made [e.g. 1, 2], but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. This abstract presents results from our ongoing ex-periments simulating LMO crystallization and address-ing a range of variables. We investigate two bulk com-positions, which span most of the range of suggested lunar bulk compositions, from the refractory element enriched Taylor Whole Moon (TWM) [3] to the more Earth-like Lunar Primitive Upper Mantle (LPUM) [4]. We also investigate two potential crystallization mod-els: Fully fractional, where crystallizing phases are separated from the magma as they form and sink (or float in the case of plagioclase) throughout magma ocean solidification; and a two-step process suggested by [1, 5] with an initial stage of equilibrium crystalliza-tion, where crystals remain entrained in the magma before the crystal burden increases viscosity enough that convection slows and the crystals settle, followed by fractional crystallization. Here we consider the frac-tional crystallization part of this process; the equilibri-um cumulates having been determined by [6].
The isotopic effects of electron transfer: an explanation for Fe isotope fractionation in nature
NASA Astrophysics Data System (ADS)
Kavner, A.; Shahar, A.; Bonet, F.; Simon, J. I.; Young, E.
2004-12-01
Recent developments in mass spectrometry techniques have created opportunities to examine the partitioning behavior of stable isotopes of transition metals with a focus on application to iron isotopes. Iron oxidizing and reducing bacteria have been shown to cause isotope fractionations similar in magnitude to those observed in sedimentary environments and it is believed that biological activity is responsible for the most significant Fe isotope fractionation in natural settings. Debate over the use of Fe isotopes as a biological marker resulted from subsequent measurements of fractionations in a variety of abiotic systems. The accumulated evidence, in both biotic and abiotic systems, points to a connection between redox processes and Fe isotope fractionation, however the exact mechanism for isotope fractionation is not yet well understood. Here, we present both a newly-developed theory based on chemical kinetics and preliminary experimental results that quantitatively delineate the relationship between driving force in a charge transfer reaction and resulting Fe isotope fractionation. The theory, based on R. Marcus's chemical kinetics theory for electron transfer (Ann. Rev. Phys. Chem. 15 (1964), 155), predicts that fractionation increases linearly with driving force with a proportionality related to two factors: the difference between isotopic equilibrium exchange of products and reactants, and the reorganization energy along the reaction coordinate. The theoretical predictions were confirmed by measurements of isotopic fractionation associated with electroplating iron metal from a ferrous chloride solution. Isotope fractionation of Fe electroplated under potentiostatic conditions was measured as a function of applied electrochemical potential. As plating voltage was varied from -50 mV to -2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values ranging from -0.106(±0.01) to -2.290(±±0.006)‰ , and corresponding δ 57Fe values of -0.145(±.011) and -3.354(±.019)‰ . The slope of the line created by plotting δ 56Fe vs δ 57Fe is equal to 0.6723(±.0032), consistent with fractionation due to a kinetic process involving unsolvated iron atoms. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. The magnitude of fractionation is similar to observations of Fe reduction by certain bacteria, suggesting that electrochemical processes may be responsible for observed biogeochemical signatures. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.
Valenzuela-Calahorro, C; Cuerda-Correa, E; Navarrete-Guijosa, A; Gonzalez-Pradas, E
2002-06-01
The knowledge of sorption processes of nonelectrolytes in solution by solid adsorbents implies the study of kinetics, equilibrium, and thermodynamic functions. However, quite frequently the equilibrium isotherms are studied by comparing them with those corresponding to the Giles et al. classification (1); these isotherms are also analyzed by fitting them to equations based on thermodynamic or kinetic criteria, and even to empirical equations. Nevertheless, information obtained is more coherent and satisfactory if the adsorption isotherms are fitted by using an equation describing the equilibrium isotherms according to the kinetic laws. These mentioned laws would determine each one of the unitary processes (one or more) which condition the global process. In this paper, an adsorption process of prednisolone in solution by six carbonaceous materials is explained according to a previously proposed single model, which allows to establish a kinetic law which fits satisfactorily most of C vs t isotherms (2). According to the above-mentioned kinetic law, equations describing sorption equilibrium processes have been deducted, and experimental data points have been fitted to these equations; such a fitting yields to different values of adsorption capacity and kinetic equilibrium constants for the different processes at several temperatures. However, in spite of their practical interest, these constants have no thermodynamic signification. Thus, the thermodynamic equilibrium constant (K) has been calculated by using a modified expression of the Gaines et al. equation (3). Global average values of the thermodynamic functions have also been calculated from the K values. Information related to variations of DeltaH and DeltaS with the surface coverage fraction was obtained by using the corresponding Clausius-Clapeyron equations.
Binding of [35S]saccharin to a protein fraction of rat tongue epithelia.
Shimazaki, K; Sato, M; Takegami, T
1981-11-05
The binding of [35S]saccharin to ammonium sulfate fractions from homogenates of rat tongue epithelia was measured by equilibrium dialysis. The 40--60% saturated ammonium sulfate fraction from the buffer-soluble fraction had the highest saccharin-binding activity. Binding of [35S]saccharin to the 40--60% ammonium sulfate fraction was inhibited by unlabeled saccharin sodium salt. The inhibition increased with increasing unlabeled saccharin concentration and was nearly complete above 10 mM. [35S]Saccharin binding to the 40--60% ammonium sulfate fraction extracted from the tongue epithelia was inhibited by glucose, lactose and sucrose, while binding to similar fractions from tongue muscle was not affected by these sugars. The inhibition of binding of labeled saccharin to the epithelial fraction increased with increasing glucose concentrations. About 35% of the binding was inhibited by 1 M glucose. No significant difference in the amount of inhibition was seen among the three sugars at 0.1 M. The 40--60% ammonium sulfate fraction from tongue epithelium devoid of taste buds bound much less [35S]saccharin than did a similar fraction from epithelium with taste buds. Binding of [35S]saccharin by the preparation from epithelium devoid of taste buds was not inhibited by glucose. The results provide evidence that the 40--60% ammonium sulfate fraction from tongue epithelia with taste buds contains a protein which binds saccharin and sugars. We hypothesize that it is a sweet taste receptor protein.
Temperature dependence of the isotope chemistry of the heavy elements.
Bigeleisen, J
1996-01-01
The temperature coefficient of equilibrium isotope fractionation in the heavy elements is shown to be larger at high temperatures than that expected from the well-studied vibrational isotope effects. The difference in the isotopic behavior of the heavy elements as compared with the light elements is due to the large nuclear isotope field shifts in the heavy elements. The field shifts introduce new mechanisms for maxima, minima, crossovers, and large mass-independent isotope effects in the isotope chemistry of the heavy elements. The generalizations are illustrated by the temperature dependence of the isotopic fractionation in the redox reaction between U(VI) and U(IV) ions. PMID:8790340
Ayanda, Olushola S; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J
2013-07-15
The removal of tributyltin (TBT) from artificial seawater using nZnO, activated carbon and nZnO/activated carbon composite was systematically studied. The equilibrium and kinetics of adsorption were investigated in a batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherm models. Pseudo first- and second-order, Elovich, fractional power and intraparticle diffusion models were applied to test the kinetic data. Thermodynamic parameters such as ΔG°, ΔS° and ΔH° were also calculated to understand the mechanisms of adsorption. Optimal conditions for the adsorption of TBT from artificial seawater were then applied to TBT removal from natural seawater. A higher removal efficiency of TBT (>99%) was obtained for the nZnO/activated carbon composite material and for activated carbon but not for nZnO. Copyright © 2013 Elsevier Ltd. All rights reserved.
Impact of mutations on the allosteric conformational equilibrium
Weinkam, Patrick; Chen, Yao Chi; Pons, Jaume; Sali, Andrej
2012-01-01
Allostery in a protein involves effector binding at an allosteric site that changes the structure and/or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding, allostery involves a conformational equilibrium between one protein substate that binds the effector and a second substate that less strongly binds the effector. We run molecular dynamics simulations using simple, smooth energy landscapes to sample specific ligand-induced conformational transitions, as defined by the effector-bound and unbound protein structures. These simulations can be performed using our web server: http://salilab.org/allosmod/. We then develop a set of features to analyze the simulations and capture the relevant thermodynamic properties of the allosteric conformational equilibrium. These features are based on molecular mechanics energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a machine-learning algorithm on a dataset of 10 proteins and 179 mutations, we predict both the magnitude and sign of the allosteric conformational equilibrium shift by the mutation; the impact of a large identifiable fraction of the mutations can be predicted with an average unsigned error of 1 kBT. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted from the initial training and testing of the machine-learning algorithm. We also assess which calculated thermodynamic properties contribute most to the accuracy of the prediction. PMID:23228330
Sivaraman, B; Mebel, A M; Mason, N J; Babikov, D; Kaiser, R I
2011-01-14
The formation of six ozone isotopomers and isotopologues, (16)O(16)O(16)O, (18)O(18)O(18)O, (16)O(16)O(18)O, (18)O(18)O(16)O, (16)O(18)O(16)O, and (18)O(16)O(18)O, has been studied in electron-irradiated solid oxygen (16)O(2) and (18)O(2) (1 ∶ 1) ices at 11 K. Significant isotope effects were found to exist which involved enrichment of (18)O-bearing ozone molecules. The heavy (18)O(18)O(18)O species is formed with a factor of about six higher than the corresponding (16)O(16)O(16)O isotopologue. Likewise, the heavy (18)O(18)O(16)O species is formed with abundances of a factor of three higher than the lighter (16)O(16)O(18)O counterpart. No isotope effect was observed in the production of (16)O(18)O(16)O versus(18)O(16)O(18)O. Such studies on the formation of distinct ozone isotopomers and isotopologues involving non-thermal, non-equilibrium chemistry by irradiation of oxygen ices with high energy electrons, as present in the magnetosphere of the giant planets Jupiter and Saturn, may suggest that similar mechanisms may contribute to the (18)O enrichment on the icy satellites of Jupiter and Saturn such as Ganymede, Rhea, and Dione. In such a Solar System environment, energetic particles from the magnetospheres of the giant planets may induce non-equilibrium reactions of suprathermal and/or electronically excited atoms under conditions, which are quite distinct from isotopic enrichments found in classical, thermal gas phase reactions.
Slope stability analysis using limit equilibrium method in nonlinear criterion.
Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu
2014-01-01
In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.
Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion
Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu
2014-01-01
In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci, and the parameter of intact rock m i. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i, F decreases first and then increases. PMID:25147838
CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion
NASA Astrophysics Data System (ADS)
Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.
2015-09-01
The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.
Equilibrium radionuclide gated angiography in patients with tricuspid regurgitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handler, B.; Pavel, D.G.; Pietras, R.
Equilibrium gated radionuclide angiography was performed in 2 control groups (15 patients with no organic heart disease and 24 patients with organic heart disease but without right- or left-sided valvular regurgitation) and in 9 patients with clinical tricuspid regurgitation. The regurgitant index, or ratio of left to right ventricular stroke counts, was significantly lower in patients with tricuspid regurgitation than in either control group. Time-activity variation over the liver was used to compute a hepatic expansion fraction which was significantly higher in patients with tricuspid regurgitation than in either control group. Fourier analysis of time-activity variation in each pixel wasmore » used to generate amplitude and phase images. Only pixels with values for amplitude at least 7% of the maximum in the image were retained in the final display. All patients with tricuspid regurgitation had greater than 100 pixels over the liver automatically retained by the computer. These pixels were of phase comparable to that of the right atrium and approximately 180 degrees out of phase with the right ventricle. In contrast, no patient with no organic heart disease and only 1 of 24 patients with organic heart disease had any pixels retained by the computer. In conclusion, patients with tricuspid regurgitation were characterized on equilibrium gated angiography by an abnormally low regurgitant index (7 of 9 patients) reflecting increased right ventricular stroke volume, increased hepatic expansion fraction (7 of 9 patients), and increased amplitude of count variation over the liver in phase with the right atrium (9 of 9 patients).« less
NASA Astrophysics Data System (ADS)
Pavlos, George; Malandraki, Olga; Pavlos, Evgenios; Iliopoulos, Aggelos; Karakatsanis, Leonidas
2017-04-01
As the solar plasma lives far from equilibrium it is an excellent laboratory for testing non-equilibrium statistical mechanics. In this study, we present the highlights of Tsallis non-extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at solar wind phenomena and magnetosphere. In this study we present some new and significant results concerning the dynamics of interplanetary coronal mass ejections (ICMEs) observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of SEPs time series observed at the interplanetary space and magnetic field time series of the ICME observed at the Earth resulting from the solar eruptive activity on March 7, 2012 at the Sun. For the magnetic field, we used a multi-spacecraft approach based on data experiments from ACE, CLUSTER 4, THEMIS-E and THEMIS-C spacecraft. For the data analysis different time periods were considered, sorted as "quiet", "shock" and "aftershock", while different space domains such as the Interplanetary space (near Earth at L1 and upstream of the Earth's bowshock), the Earth's magnetosheath and magnetotail, were also taken into account. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the SEPs profile in time, and magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. So far, Tsallis non-extensive statistical theory and Tsallis extension of the Boltzmann-Gibbs entropy principle to the q-entropy entropy principle (Tsallis, 1988, 2009) reveal strong universality character concerning non-equilibrium dynamics (Pavlos et al. 2012a,b, 2014, 2015, 2016; Karakatsanis et al. 2013). Tsallis q-entropy principle can explain the emergence of a series of new and significant physical characteristics in distributed systems as well as in space plasmas. Such characteristics are: non-Gaussian statistics and anomalous diffusion processes, strange and fractional dynamics, multifractal, percolating and intermittent turbulence structures, multiscale and long spatio-temporal correlations, fractional acceleration and Non-Equilibrium Stationary States (NESS) or non-equilibrium self-organization process and non-equilibrium phase transition and topological phase transition processes according to Zelenyi and Milovanov (2004). In this direction, our results reveal clearly strong self-organization and development of macroscopic ordering of plasma system related to strengthen of non-extensivity, multifractality and intermittency everywhere in the space plasmas region during the CME event. Acknowledgements: This project has received funding form the European Union's Horizon 2020 research and innovation program under grant agreement No 637324.
Isolation of angiotensin converting enzyme (ACE) inhibiting triterpenes from Schinus molle.
Olafsson, K; Jaroszewski, J W; Smitt, U W; Nyman, U
1997-08-01
Bioactivity-guided fractionation of extracts of Schinus molle leaves, using an in vitro assay, led to the isolation of ACE-inhibitory steroidal triterpenes of the euphane type, identified by means of NMR spectroscopic methods. One of the triterpenes was isolated as an equilibrium mixture of epimeric aldehydes. The triterpenes showed moderate ACE-inhibitory activity (IC(50) about 250 microM).
A two phase Mach number description of the equilibrium flow of nitrogen in ducts
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.; Adcock, J. B.
1979-01-01
Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.
Hayden, M. E.; Häfeli, U. O.
2017-01-01
Magnetic forces and curvature-induced hydrodynamic drag have both been studied and employed in continuous microfluidic particle separation and enrichment schemes. Here we combine the two. We investigate consequences of applying an outwardly directed magnetic force to a dilute suspension of magnetic microspheres circulating in a spiral microfluidic channel. This force is realized with an array of permanent magnets arranged to produce a magnetic field with octupolar symmetry about the spiral axis. At low flow rates particles cluster around an apparent streamline of the flow near the outer wall of the turn. At high flow rates this equilibrium is disrupted by the induced secondary (Dean) flow and a new equilibrium is established near the inner wall of the turn. A model incorporating key forces involved in establishing these equilibria is described, and is used to extract quantitative information about the magnitude of local Dean drag forces from experimental data. Steady-state fractionation of suspensions by particle size under the combined influence of magnetic and hydrodynamic forces is demonstrated. Extensions of this work could lead to new continuous microscale particle sorting and enrichment processes with improved fidelity and specificity. PMID:28107472
Calculation of boron-isotope fractionation between B(OH) 3(aq) and B(OH)4-(aq)
NASA Astrophysics Data System (ADS)
Rustad, James R.; Bylaska, Eric J.; Jackson, Virgil E.; Dixon, David A.
2010-05-01
Density functional and correlated molecular orbital calculations (MP2) are carried out on B(OH) 3· nH 2O clusters ( n = 0, 6, 32), and B(OH)4-· nH 2O ( n = 0, 8, 11, 32) to estimate the equilibrium distribution of 10B and 11B isotopes between boric acid and borate in aqueous solution. For the large 32-water clusters, multiple conformations are generated from ab initio molecular dynamics simulations to account for the effect of solvent fluctuations on the isotopic fractionation. We provide an extrapolated value of the equilibrium constant α34 for the isotope exchange reaction 10B(OH) 3(aq) + 11B(OH)4- (aq) = 11B(OH) 3(aq) + 11B(OH)4- (aq) of 1.026-1.028 near the MP2 complete basis set limit with 32 explicit waters of solvation. With some exchange-correlation functionals we find potentially important contributions from a tetrahedral neutral B(OH) 3·H 2O Lewis acid-base complex. The extrapolations presented here suggest that DFT calculations give a value for 10 3ln α34 about 15% higher than the MP2 calculations.
Picart, Sébastien; Ramière, Isabelle; Mokhtari, Hamid; Jobelin, Isabelle
2010-09-02
This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelized by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model.
NASA Astrophysics Data System (ADS)
Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Fischer, Alec M.; Ponce, Fernando A.; Ryou, Jae-Hyun
2015-09-01
Unintentional incorporation of gallium (Ga) in InAlN layers grown with different molar flow rates of Group-III precursors by metalorganic chemical vapor deposition has been experimentally investigated. The Ga mole fraction in the InAl(Ga)N layer was increased significantly with the trimethylindium (TMIn) flow rate, while the trimethylaluminum flow rate controls the Al mole fraction. The evaporation of metallic Ga from the liquid phase eutectic system between the pyrolized In from injected TMIn and pre-deposited metallic Ga was responsible for the Ga auto-incorporation into the InAl(Ga)N layer. The theoretical calculation on the equilibrium vapor pressure of liquid phase Ga and the effective partial pressure of Group-III precursors based on growth parameters used in this study confirms the influence of Group-III precursors on Ga auto-incorporation. More Ga atoms can be evaporated from the liquid phase Ga on the surrounding surfaces in the growth chamber and then significant Ga auto-incorporation can occur due to the high equilibrium vapor pressure of Ga comparable to effective partial pressure of input Group-III precursors during the growth of InAl(Ga)N layer.
Sulfur Isotope Effects of Dissimilatory Sulfite Reductase
Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.
2015-01-01
The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S = 17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S = 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern and ancient environments. PMID:26733949
Fundamental Study of Three-dimensional Fast Spin-echo Imaging with Spoiled Equilibrium Pulse.
Ogawa, Masashi; Kaji, Naoto; Tsuchihashi, Toshio
2017-01-01
Three-dimensional fast spin-echo (3D FSE) imaging with variable refocusing flip angle has been recently applied to pre- or post-enhanced T 1 -weighted imaging. To reduce the acquisition time, this sequence requires higher echo train length (ETL), which potentially causes decreased T 1 contrast. Spoiled equilibrium (SpE) pulse consists of a resonant +90° radiofrequency (RF) pulse and is applied at the end of the echo train. This +90° RF pulse brings residual transverse magnetization to the negative longitudinal axis, which makes it possible to increase T 1 contrast. The purpose of our present study was to examine factors that influence the effect of spoiled equilibrium pulse and the relationship between T 1 contrast improvement and imaging parameters and to understand the characteristics of spoiled equilibrium pulse. Phantom studies were conducted using an magnetic resonance imaging (MRI) phantom made of polyvinyl alcohol gel. To evaluate the effect of spoiled equilibrium pulse with changes in repetition time (TR), ETL, and refocusing flip angle, we measured the signal-to-noise ratio and contrast-to-noise ratio (CNR). The effect of spoiled equilibrium pulse was evaluated by calculating the enhancement rate of CNR. The factors that influence the effect of spoiled equilibrium pulse are TR, ETL, and relaxation time of tissues. Spoiled equilibrium pulse is effective with increasing TR and decreasing ETL. The shorter the T 1 value, the better the spoiled equilibrium pulse functions. However, for tissues in which the T 1 value is long (>600 ms), at a TR of 600 ms, improvement in T 1 contrast by applying spoiled equilibrium pulse cannot be expected.
Glass transition of soft colloids
NASA Astrophysics Data System (ADS)
Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca
2018-04-01
We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.
Oxygen isotope fractionation between analcime and water - An experimental study
NASA Technical Reports Server (NTRS)
Karlsson, Haraldur R.; Clayton, Robert N.
1990-01-01
The oxygen isotope fractionation between analcime and water is studied to test the feasibility of using zeolites as low-temperature thermometers. The fractionation of oxygen isotopes between natural analcime and water is determined at 300, 350, and 400 C, and at fluid pressures ranging from 1.5 to 5.0 kbar. Also, isotope ratios for the analcime framework, the channel water, and bulk water are obtained. The results suggest that the channel water is depleted in O-18 relative to bulk water by a constant value of about 5 percent, nearly independent of temperature. The analcime-water fractionation curve is presented, showing that the exchange has little effect on grain morphology and does not involve recrystallization. The exchange is faster than any other observed for a silicate. The exchange rates suggest that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. It is concluded that calibrated zeolites may be excellent low-temperature oxygen isotope geothermometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LIU, B; Zhu, T
Purpose: The dose in the buildup region of a photon beam is usually determined by the transport of the primary secondary electrons and the contaminating electrons from accelerator head. This can be quantified by the electron disequilibrium factor, E, defined as the ratio between total dose and equilibrium dose (proportional to total kerma), E = 1 in regions beyond buildup region. Ecan be different among accelerators of different models and/or manufactures of the same machine. This study compares E in photon beams from different machine models/ Methods: Photon beam data such as fractional depth dose curve (FDD) and phantom scattermore » factors as a function of field size and phantom depth were measured for different Linac machines. E was extrapolated from these fractional depth dose data while taking into account inverse-square law. The ranges of secondary electron were chosen as 3 and 6 cm for 6 and 15 MV photon beams, respectively. The field sizes range from 2x2 to 40x40 cm{sup 2}. Results: The comparison indicates the standard deviations of electron contamination among different machines are about 2.4 - 3.3% at 5 mm depth for 6 MV and 1.2 - 3.9% at 1 cm depth for 15 MV for the same field size. The corresponding maximum deviations are 3.0 - 4.6% and 2 - 4% for 6 and 15 MV, respectively. Both standard and maximum deviations are independent of field sizes in the buildup region for 6 MV photons, and slightly decreasing with increasing field size at depths up to 1 cm for 15 MV photons. Conclusion: The deviations of electron disequilibrium factor for all studied Linacs are less than 3% beyond the depth of 0.5 cm for the photon beams for the full range of field sizes (2-40 cm) so long as they are from the same manufacturer.« less
NASA Astrophysics Data System (ADS)
Varghese, Susheel John; Johny, Sojimol K.; Paul, David; Ravi, Thengungal Kochupappy
2011-07-01
The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37 ± 0.5 °C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out.
Characterization and Computational Modeling of Minor Phases in Alloy LSHR
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng; Olson, Gregory; Gabb, Timothy; Garg, Anita; Miller, Derek
2012-01-01
The minor phases of powder metallurgy disk superalloy LSHR were studied. Samples were consistently heat treated at three different temperatures for long times to approach equilibrium. Additional heat treatments were also performed for shorter times, to assess minor phase kinetics in non-equilibrium conditions. Minor phases including MC carbides, M23C6 carbides, M3B2 borides, and sigma were identified. Their average sizes and total area fractions were determined. CALPHAD thermodynamics databases and PrecipiCalc(TradeMark), a computational precipitation modeling tool, were employed with Ni-base thermodynamics and diffusion databases to model and simulate the phase microstructural evolution observed in the experiments with an objective to identify the model limitations and the directions of model enhancement.
Venusian atmospheric equilibrium chemistry at the Pioneer Venus anomalous event altitude
NASA Technical Reports Server (NTRS)
Craig, Roger A.
1994-01-01
No convincing explanation for the anomalous behavior of the Atmospheric Structure Experiment temperature sensors at approximately 13 km altitude has been found. It occurred on all of the widely-spaced probes, in a similar fashion. A preliminary effort has been made to determine atmospheric chemical species which might be present at 13 km. The purpose of this effort is to initiate suggestions of possible chemical interactions and to explore the effects of the presence of possible metal reactants including condensation. Equilibrium fractions of chemical species were calculated at a variety of conditions. Baseline calculations were made for the altitudes near 13 km. For comparison calculations were also made at 13 km but with the introduction of plausible metal atoms.
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.
Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri
2015-10-01
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts and rates of colloid release and indicate that episodic colloid transport is expected under transient physicochemical conditions. Published by Elsevier B.V.
The effect of natural and anthropogenic factors on sorption of copper in chernozem
NASA Astrophysics Data System (ADS)
Bauer, Tatiana; Minkina, Tatiana; Mandzhieva, Saglara; Pinskii, David; Linnik, Vitaly; Sushkova, Svetlana
2016-04-01
The aim of this work was to study the effect of the attendant anions and particle-size distribution on the adsorption of copper by ordinary chernozem. Solutions of HM nitrates, acetates, chlorides, and sulfates were used to study the effect of the chemical composition of added copper salts on the adsorption of copper by an ordinary chernozem. Samples of the soil sieved through a 1-mm sieve in the natural ionic form and soil fraction with different particle size (clay - the particle with size < 1μm and physical clay < 10 μm) were treated with solutions of the corresponding copper salts at a soil : solution ratio of 1:10. The concentrations of the initial copper solutions were 0.02, 0.05, 0.08, 0.1, 0.3, 0.5, and 1.0 mM/L. The range of Cu2+ concentrations in the studied system covers different geochemical situations corresponding to the actual levels of soil contamination with the metal under study. The suspensions were shaken for 1 h, left to stand for 24 h, and then filtered. The contents of the HM in the filtrates were determined by atomic absorption spectrometry (AAS). The contents of the adsorbed copper cations were calculated from the difference between the metal concentrations in the initial and equilibrium solutions. The isotherms of copper adsorption from the metal nitrate, chloride, and sulfate solutions have near linear shapes and, hence, can be satisfactorily described by a Henry or Freundlich equation: Cads = KH •Ceq.(1) Cads = KF •Ceqn,(2) where Cadsis the content of the adsorbed cations, mM/kg soil;Ceq is the concentration of copper in the equilibrium solution, mM/L; KH and KF denote the Henry and Freundlich adsorption coefficients, respectively, kg/L. The isotherm of Cu2+ adsorption by ordinary chernozem from acetate solutions is described by the Langmuir equation: Cads = C∞ÊLC / (1 + ÊLC), (3) where Cadsis the content of the adsorbed cations, mM/kg soil;C∞ is the maximum adsorption of the HM, mM/kg soil; ÊL is the affinity constant, L/mM; C is the concentration of the HM in the equilibrium solution, mM/L. According to the values of KH, the binding strength of the copper cations adsorbed from different salt solutions decreases in the series: Cu(Ac)2(1880,5± 76,2) > CuCl2(1442,8±113,5) > Cu(NO3)2(911,4 ± 31,1) >> CuSO4(165,3 ± 12,9). Thus, copper is most strongly adsorbed from the acetate solution and least strongly from the sulfate solution. The adsorption of copper by clay and physical clay fractions from the ordinary chernozem was of limited character and followed the (3) equation. In the particle-size fractions separated from the soils, the concentrations of copper decreased with the decreasing particle size. The values of ÊL and C∞characterizing the HM adsorption by the chernozem and its particle-size fractions formed the following sequence: clay (80,20±20,29 and 28,45±0,46 > physical clay (58,20±14,54 and 22,15±1,22) > entire soil (38,80±12,33 and 17,58±3,038). This work was supported by the Russian Ministry of Education and Science, project no. 5.885.2014/K, Russian Foundation for Basic Research, projects no. 14-05-00586 À
NASA Astrophysics Data System (ADS)
Nayak, Gouranga C.
2017-12-01
Recently we have proved the factorization of NRQCD S-wave heavy quarkonium production at all orders in coupling constant. In this paper we extend this to prove the factorization of infrared divergences in χ _{cJ} production from color singlet c{\\bar{c}} pair in non-equilibrium QCD at RHIC and LHC at all orders in coupling constant. This can be relevant to study the quark-gluon plasma at RHIC and LHC.
NASA Astrophysics Data System (ADS)
Oelkers, Eric H.; Berninger, Ulf-Niklas; Pérez-Fernàndez, Andrea; Chmeleff, Jérôme; Mavromatis, Vasileios
2018-04-01
This study provides experimental evidence of the resetting of the magnesium (Mg) isotope signatures of hydromagnesite in the presence of an aqueous fluid during its congruent dissolution, precipitation, and at equilibrium at ambient temperatures over month-long timescales. All experiments were performed in batch reactors in aqueous sodium carbonate buffer solutions having a pH from 7.8 to 9.2. The fluid phase in all experiments attained bulk chemical equilibrium within analytical uncertainty with hydromagnesite within several days, but the experiments were allowed to continue for up to 575 days. During congruent hydromagnesite dissolution, the fluid first became enriched in isotopically light Mg compared to the dissolving hydromagnesite, but this Mg isotope composition became heavier after the fluid attained chemical equilibrium with the mineral. The δ26Mg composition of the fluid was up to ∼0.35‰ heavier than the initial dissolving hydromagnesite at the end of the dissolution experiments. Hydromagnesite precipitation was provoked during one experiment by increasing the reaction temperature from 4 to 50 °C. The δ26Mg composition of the fluid increased as hydromagnesite precipitated and continued to increase after the fluid attained bulk equilibrium with this phase. These observations are consistent with the hypothesis that mineral-fluid equilibrium is dynamic (i.e. dissolution and precipitation occur at equal, non-zero rates at equilibrium). Moreover the results presented in this study confirm (1) that the transfer of material from the solid to the fluid phase may not be conservative during stoichiometric dissolution, and (2) that the isotopic compositions of carbonate minerals can evolve even when the mineral is in bulk chemical equilibrium with its coexisting fluid. This latter observation suggests that the preservation of isotopic signatures of carbonate minerals in the geological record may require a combination of the isolation of fluid-mineral system from external chemical input and/or the existence of a yet to be defined dissolution/precipitation inhibition mechanism.
Dousset, S; Thevenot, M; Pot, V; Simunek, J; Andreux, F
2007-12-07
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.
NASA Astrophysics Data System (ADS)
Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.
2007-12-01
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.
Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.
Tian, Huanhuan; Zhang, Li; Wang, Moran
2015-08-15
Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ariskin, Alexei A.
1999-05-01
A new version of COMAGMAT-3.5 model designed for computer simulations of equilibrium and fractional crystallization of basaltic magmas at low to high pressures is presented. The most important modifications of COMAGMAT include an ability to calculate more accurately the crystallization of magnetite and ilmenite, allowing the user to study numerically the effect of oxygen fugacity on basalt magma fractionation trends. Methodological principles of the use of COMAGMAT were discussed based on its thermodynamical and empirical basis, including specific details of the model calibration. Using COMAGMAT-3.5 a set of phase equilibria calculations (called Geochemical Thermometry) has been conducted for six cumulative rocks from the Marginal Border Series of the Skaergaard intrusion. As a result, initial magma temperature (1165±10°C) and trapped melt composition proposed to be parental magma to the Skaergaard intrusion were determined. Computer simulations of perfect fractionation of this composition as well as another proposed parent produced petrochemical trends opposite to those followed from natural observations. This is interpreted as evidence for an initial Skaergaard magma containing a large amount of olivine and plagioclase crystals (about 40-45%), so that the proposed and calculated parents are related through the melt trapped in the crystal-liquid mixture. This promotes the conclusion that the Skaergaard magma fractionation process was intermediate between equilibrium and fractional crystallization. In this case the classic Wager's trend should be considered an exception rather than a rule for the differentiation of ferro-basaltic magmas. A polybaric version of COMAGMAT has been applied for the genetic interpretation of a volcanic suite from the Klyuchevskoi volcano, Kamchatka, Russia. To identify petrological processes responsible for the observed suite ranging from high-magnesia to high-alumina basalts, we used the model to simulate the Klyuchevskoi suite assuming isobaric crystallization of a parental HMB magma at a variety of pressures and a separate set of simulations assuming fractionation during continuous magma ascent from a depth of 60 km. These results indicate that the Klyuchevskoi trend can be produced by ˜40% fractionation of Ol-Aug-Sp±Opx assemblages during ascent of the parental HMB magma over the pressure range 19-7 kbar with the rate of decompression being 0.33 kbar/% crystallized (at 1350-1110°C), with ˜2 wt.% of H 2O in the initial melt and ˜3 wt.% of H 2O in the resultant high-Al basalt.
Is “morphodynamic equilibrium” an oxymoron?
Zhou, Zeng; Coco, Giovanni; Townend, Ian; Olabarrieta, Maitane; van der Wegen, Mick; Gong, Zheng; D'Alpaos, Andrea; Gao, Shu; Jaffe, Bruce E.; Gelfenbaum, Guy R.; He, Qing; Wang, Yaping; Lanzoni, Stefano; Wang, Zhengbing; Winterwerp, Han; Zhang, Changkuan
2017-01-01
Morphodynamic equilibrium is a widely adopted yet elusive concept in the field of geomorphology of coasts, rivers and estuaries. Based on the Exner equation, an expression of mass conservation of sediment, we distinguish three types of equilibrium defined as static and dynamic, of which two different types exist. Other expressions such as statistical and quasi-equilibrium which do not strictly satisfy the Exner conditions are also acknowledged for their practical use. The choice of a temporal scale is imperative to analyse the type of equilibrium. We discuss the difference between morphodynamic equilibrium in the “real world” (nature) and the “virtual world” (model). Modelling studies rely on simplifications of the real world and lead to understanding of process interactions. A variety of factors affect the use of virtual-world predictions in the real world (e.g., variability in environmental drivers and variability in the setting) so that the concept of morphodynamic equilibrium should be mathematically unequivocal in the virtual world and interpreted over the appropriate spatial and temporal scale in the real world. We draw examples from estuarine settings which are subject to various governing factors which broadly include hydrodynamics, sedimentology and landscape setting. Following the traditional “tide-wave-river” ternary diagram, we summarize studies to date that explore the “virtual world”, discuss the type of equilibrium reached and how it relates to the real world.
Mishima, Y; Financsek, I; Kominami, R; Muramatsu, M
1982-01-01
Mouse and human cell extracts (S100) can support an accurate and efficient transcription initiation on homologous ribosomal RNA gene (rDNA) templates. The cell extracts were fractionated with the aid of a phosphocellulose column into four fractions (termed A, B, C and D), including one containing a major part of the RNA polymerase I activity. Various reconstitution experiments indicate that fraction D is an absolute requirement for the correct and efficient transcription initiation by RNA polymerase I on both mouse and human genes. Fraction B effectively suppresses random initiation on these templates. Fraction A appears to further enhance the transcription which takes place with fractions C and D. Although fractions A, B and C are interchangeable between mouse and human extracts, fraction D is not; i.e. initiation of transcription required the presence of a homologous fraction D for both templates. The factor(s) in fraction D, however, is not literally species-specific, since mouse D fraction is capable of supporting accurate transcription initiation on a rat rDNA template in the presence of all the other fractions from human cell extract under the conditions where human D fraction is unable to support it. We conclude from these experiments that a species-dependent factor in fraction D plays an important role in the initiation of rDNA transcription in each animal species. Images PMID:7177852
NASA Astrophysics Data System (ADS)
Pavlos, G. P.; Malandraki, O. E.; Pavlos, E. G.; Iliopoulos, A. C.; Karakatsanis, L. P.
2016-12-01
In this study we present some new and significant results concerning the dynamics of interplanetary coronal mass ejections (ICMEs) observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat ,qsen ,qrel) of magnetic field time series of the ICME observed at the Earth resulting from the solar eruptive activity on March 7, 2012 at the Sun. For this, we used a multi-spacecraft approach based on data experiments from ACE, CLUSTER 4, THEMIS-E and THEMIS-C spacecraft. For the data analysis different time periods were considered, sorted as ;quiet;, ;shock; and ;aftershock;, while different space domains such as the Interplanetary space (near Earth at L1 and upstream of the Earth's bowshock), the Earth's magnetosheath and magnetotail, were also taken into account. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. So far, Tsallis non-extensive statistical theory and Tsallis extension of the Boltzmann-Gibbs entropy principle to the q-entropy principle (Tsallis, 1988, 2009) reveal strong universality character concerning non-equilibrium dynamics (Pavlos et al. 2012a,b, 2014a,b; Karakatsanis et al. 2013). Tsallis q-entropy principle can explain the emergence of a series of new and significant physical characteristics in distributed systems as well as in space plasmas. Such characteristics are: non-Gaussian statistics and anomalous diffusion processes, strange and fractional dynamics, multifractal, percolating and intermittent turbulence structures, multiscale and long spatio-temporal correlations, fractional acceleration and Non-Equilibrium Stationary States (NESS) or non-equilibrium self-organization process and non-equilibrium phase transition and topological phase transition processes according to Zelenyi and Milovanov (2004). In this direction, our results reveal clearly strong self-organization and development of macroscopic ordering of plasma system related to strengthen of non-extensivity, multifractality and intermittency everywhere in the space plasmas region during the CME event.
Isotopic Abundances as Tracers of the Processes of Lunar Formation
NASA Astrophysics Data System (ADS)
Pahlevan, K.
2011-12-01
Ever since Apollo, isotopic abundances have been used as tracers to study lunar formation, in particular, to study the sources of the lunar material. In the last decade, however, a number of isotopic similarities have been observed between the lunar samples and the Earth's mantle such that these two reservoirs are now known to be indistinguishable from one another to high precision for a variety of isotopic tracers. This occurs against the backdrop of a Solar System that exhibits widespread heterogeneity with respect to these tracers, a situation that strongly argues that the source of the lunar material is the silicate Earth. To reconcile this observation with the fact that the Moon is thought to result from the collision of two isotopically distinct planetary bodies, a scenario has emerged in which the material from the Moon-forming impactor and the proto-Earth are homogenized in the aftermath of the giant impact. This takes place via turbulent mixing in the time after the giant impact but before lunar accretion while the Earth-Moon system exists in the form of a continuous, high-temperature fluid. Importantly, this high-temperature phase of the evolution occurs in the presence of at least two phases (liquid + vapor) making possible chemical and isotopic fractionation. While equilibrium isotopic fractionation tends to zero at high temperatures, and the post giant impact environment experiences some of the highest temperatures encountered in the Earth sciences, there are several factors that nevertheless make equilibrium isotope effects important probes of this early evolution. (1) Because the vaporization of silicates involves decomposition reactions, the bonding environment for elements in the liquid is often very different from that in the vapor. This difference makes the magnitude of isotopic fractionation intrinsically large, even at the relevant temperatures. (2) Since the isotopic composition of a silicate liquid and co-existing vapor are distinctly different, if the Moon preferentially forms from the liquid or vapor relative to the Earth, mass-dependent isotopic differences at the planetary scale may arise. The large density contrast between liquid and vapor makes phase separation possible. (3) The precision with which planetary isotopic compositions can be determined has increased such that measurements are sensitive to even small degrees of high-temperature phase separation. Using thermodynamic models of silicate liquids to determine the partial vaporization behavior of the major elements, we will present calculations of isotopic fractionation due to liquid-vapor separation for the elements iron, magnesium, silicon, and oxygen. Improvements in analytical precision have largely settled the question of the source of the lunar material - the Earth's mantle - and isotopic measurements are now beginning to yield insight into the high-temperatures processes operating during lunar formation.
Approximated adjusted fractional Bayes factors: A general method for testing informative hypotheses.
Gu, Xin; Mulder, Joris; Hoijtink, Herbert
2018-05-01
Informative hypotheses are increasingly being used in psychological sciences because they adequately capture researchers' theories and expectations. In the Bayesian framework, the evaluation of informative hypotheses often makes use of default Bayes factors such as the fractional Bayes factor. This paper approximates and adjusts the fractional Bayes factor such that it can be used to evaluate informative hypotheses in general statistical models. In the fractional Bayes factor a fraction parameter must be specified which controls the amount of information in the data used for specifying an implicit prior. The remaining fraction is used for testing the informative hypotheses. We discuss different choices of this parameter and present a scheme for setting it. Furthermore, a software package is described which computes the approximated adjusted fractional Bayes factor. Using this software package, psychological researchers can evaluate informative hypotheses by means of Bayes factors in an easy manner. Two empirical examples are used to illustrate the procedure. © 2017 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Evard, Margarita E.; Volkov, Aleksandr E.; Belyaev, Fedor S.; Ignatova, Anna D.
2018-05-01
The choice of Gibbs' potential for microstructural modeling of FCC ↔ HCP martensitic transformation in FeMn-based shape memory alloys is discussed. Threefold symmetry of the HCP phase is taken into account on specifying internal variables characterizing volume fractions of martensite variants. Constraints imposed on model constants by thermodynamic equilibrium conditions are formulated.
Factorization of the association rate coefficient in ligand rebinding to heme proteins
NASA Astrophysics Data System (ADS)
Young, Robert D.
1984-01-01
A stochastic theory of ligand migration in biomolecules is used to analyze the recombination of small ligands to heme proteins after flash photolysis. The stochastic theory is based on a generalized sequential barrier model in which a ligand binds by overcoming a series of barriers formed by the solvent protein interface, the protein matrix, and the heme distal histidine system. The stochastic theory shows that the association rate coefficient λon factorizes into three terms λon =γ12
NASA Astrophysics Data System (ADS)
Rǎdulescu, I. R.; Cândea, D.; Kaslik, E.
2017-01-01
In this paper, a delay differential equations (DDEs) model of leukemia is introduced and its dynamical properties are investigated in comparison with the modified fractional-order system where the Caputo's derivative is used. The model takes into account three types of division that a stem-like cell can undergo and cell competition between healthy and leukemia cell populations. The action of the immune system on the leukemic cell populations is also considered. The stability properties of the equilibrium points are established through numerical results and the differences between the two types of approaches are discussed. Medical conclusions are drawn in view of the obtained numerical simulations.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad
2016-04-01
Water storage in the unsaturated zone is controlled by capillary forces which increase nonlinearly with decreasing pore size, because water acts as a wetting fluid in soil. The standard approach to represent capillary and gravity controlled soil water dynamics is the Darcy-Richards equation in combination with suitable soil water characteristics. This continuum model essentially assumes capillarity controlled diffusive fluxes to dominate soil water dynamics under local thermodynamic equilibrium conditions. Today we know that the assumptions of local equilibrium conditions e.g. and a mainly diffusive flow are often not appropriate, particularly during rainfall events in structured soils. Rapid or preferential flow imply a strong local disequilibrium and imperfect mixing between a fast fraction of soil water, traveling in interconnected coarse pores or non-capillary macropores, and the slower diffusive flow in finer fractions of the pore space. Although various concepts have been proposed to overcome the inability of the Darcy - Richards concept to cope with not-well mixed preferential flow, we still lack an approach that is commonly accepted. Notwithstanding the listed short comings, one should not mistake the limitations of the Richards equation with non-importance of capillary forces in soil. Without capillarity infiltrating rainfall would drain into groundwater bodies, leaving an empty soil as the local equilibrium state - there would be no soil water dynamics at all, probably even no terrestrial vegetation without capillary forces. Better alternatives for the Darcy-Richards approach are thus highly desirable, as long they preserve the grain of "truth" about capillarity as first order control. Here we propose such an alternative approach to simulate soil moisture dynamics in a stochastic and yet physical way. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. A naive random walk, which assumes all water particles to move at the same drift velocity and diffusivity, overestimated depletion of soil moisture gradients compared to a Richards' solver within three distinctly different soils. This is because soil water and hence the corresponding water particles in smaller pores size fractions, are, due to the non-linear decrease of soil hydraulic conductivity with decreasing soil moisture, much less mobile. After accounting for this subscale variability of particle mobility, the particle model and a Richards' solver performed highly similar during simulated wetting and drying circles in three distinctly different soils. Alternatively, we tested a computational less approach, assuming only the 10 or 20% of the fastest particles as mobile, while treating the remaining particles located in smaller pores sizes as immobile. For instance in a sandy soil a mobile fraction of 20% revealed almost identical results as the full mobility model and performed even closer to the Richards solver. In this context we also compared the cases of perfect mixing and no mixing between mobile and immobile water particles between different time steps. The second option was clearly superior with respect to match simulations with the Richards' solver. The particle model is hence a suitable tool to "unmask" a) inherent implications of the Darcy-Richards concept on the fraction of soil water that actually contributes to soil water dynamics and b) the inherent very limited degrees of freedom for mixing between mobile and immobile water fractions. A main asset of the particle based approach is that the assumption of local equilibrium equation during infiltration may be easily released. We tested this idea in a straight forward manner, by treating infiltrating event water particles as second particle type which travel initially, mainly gravity driven, in the largest pore fraction at maximum drift, and yet experience a slow diffusive mixing with the pre-event water particles within a characteristic mixing time. Simulations with the particle model in the non-equilibrium mode were a) rather sensitive to the coefficient describing mixing of event water particles and b) clearly outperformed the Richards model with respect to match observed soil dynamics in a real world benchmark. The proposed non-linear random walk of water particles is, hence, an easy to implement alternative for simulating soil moisture dynamics in the unsaturated, which preserves the influence of capillarity and makes use of established soil physics. The approach is particularly promising to deal with preferential flow and transport of solutes and to explore transit time distributions.
NASA Astrophysics Data System (ADS)
Lázaro-Lázaro, E.; Moreno-Razo, J. A.; Medina-Noyola, M.
2018-03-01
Upon compression, the equilibrium hard-sphere liquid [pair potential uHS(r)] freezes at a packing fraction ϕf = 0.494 or, if crystallization is prevented, becomes metastable up to its glass transition at ϕg ≈ 0.58. Throughout the fluid regime (ϕ < ϕg), we are, thus, certain that this model liquid does not exhibit any form of kinetic arrest. If, however, a small portion of these spheres (packing fraction ϕ2 ≪ ϕ) happen to ignore each other [u22(r) = 0] but do not ignore the remaining "normal" hard spheres [u12(r) = u21(r) = u11(r) = uHS(r)], whose packing fraction is thus ϕ1 = ϕ - ϕ2, they run the risk of becoming dynamically arrested before they demix from the "normal" particles. This unexpected and counterintuitive scenario was first theoretically predicted and then confirmed by simulations.
A structured population model with diffusion in structure space.
Pugliese, Andrea; Milner, Fabio
2018-05-09
A structured population model is described and analyzed, in which individual dynamics is stochastic. The model consists of a PDE of advection-diffusion type in the structure variable. The population may represent, for example, the density of infected individuals structured by pathogen density x, [Formula: see text]. The individuals with density [Formula: see text] are not infected, but rather susceptible or recovered. Their dynamics is described by an ODE with a source term that is the exact flux from the diffusion and advection as [Formula: see text]. Infection/reinfection is then modeled moving a fraction of these individuals into the infected class by distributing them in the structure variable through a probability density function. Existence of a global-in-time solution is proven, as well as a classical bifurcation result about equilibrium solutions: a net reproduction number [Formula: see text] is defined that separates the case of only the trivial equilibrium existing when [Formula: see text] from the existence of another-nontrivial-equilibrium when [Formula: see text]. Numerical simulation results are provided to show the stabilization towards the positive equilibrium when [Formula: see text] and towards the trivial one when [Formula: see text], result that is not proven analytically. Simulations are also provided to show the Allee effect that helps boost population sizes at low densities.
Capillary equilibrium and sintering kinetics in dispersed media and catalysts
NASA Astrophysics Data System (ADS)
Delannay, Francis
2016-06-01
The evolution of an aggregate of particles embedded in a fluid phase, no matter whether a liquid, a vapor, or a mixture of both, is determined by the dependence of the equilibrium interface area on porosity volume fraction. In system with open porosity, this equilibrium can be analyzed using a model representing the particles as a collection of cones of revolution, the number of which is the average particle coordination number. The accuracy of the model has been assessed using in situ X-ray microtomography. The model makes possible the computation of the driving force for sintering, commonly called sintering stress. It allows the mapping of the domains of relative density, coordination number, and dihedral angle that bring about aggregate densification or expansion. The contribution of liquid/vapor interfaces is enlightened, as well as the dependence of the equilibrium fluid phase distribution on particle size. Applied to foams and emulsions, the model provides insight into the relationship between osmotic pressure and coordination. Interface-governed transport mechanisms are considered dominant in the macroscopic viscosity. Both sintering stress and viscosity parameters strongly depend on particle size. The capacity of modeling the simultaneous particle growth is thus essential. The analysis highlights the microstructural parameters and material properties needed for kinetics simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odian, G.; Bernstein, B.S.; Kelly, J.J.
1961-11-01
Gel contents can be obtained with polyethylene swollen with inhibitor- free allyl acrylate or inhibitor-free allyl methacrylate at a dose of only 0.05 Mrads Using Co/sup 60/ as the radiation source, allyl methacrylate gives higher gel content than allyl acrylate under similar conditions. icant and continues after Co/sup 60/ irradiation has been completed. Monomer desorption after a dose of 1.2 Mrads is less than after 0.05 Mrads, and does not continue after irradiation is stopped. Gel contents can be obtained without prior equilibrium swelling of polymer--monomer mixtures by irradiating the polymer in the presence of the monomer in a nitrogenmore » atmosphere. By irradiating under these conditions with prior equilibrium swelling, gel fractions appear to be higher than those normally obtained. Gel contents of irradiated equilibrium-swollen polyethylene/ allyl acrylate and polyethylene/allyl methacrylate increase with increasing radiation dose from 0.05 to 1.2 Mrads. Gel contents of 1.2 Mrad irradiated polyethyleneallyl methacrylate systems containing various initial amounts of monomer, increase with increasing monomer content. Polypropylene can be radiation crosslinked to give over 40% gel by prior equilibrium swelling with allyl acrylate or allyl methacrylate. (auth)« less
Sun, Jin; Sakai, Shigeko; Tauchi, Yoshihiko; Deguchi, Yoshiharu; Cheng, Gang; Chen, Jimin; Morimoto, Kazuhiro
2003-09-01
This study was performed to characterize the protonation equilibrium at the molecular level and pH-dependent lipophilicity of olamufloxacin. The deprotonation fraction of the carboxyl group as a function of pH was specifically calculated at the critical wavelength 294 nm, where UV pH-dependent absorbance of olamufloxacin was independent of the ionized state of the aminopyrrolidinyl amino group but heavily depended on that of the carboxyl moiety. Accordingly, micro-protonation equilibrium could be described using a nonlinear least-squares regression program MULTI. In contrast, macro-protonation equilibrium was depicted at most wavelengths where olamufloxacin absorbance was influenced by ionized states of both proton-binding groups, results coinciding with the former. Furthermore, distribution features of four microspecies in aqueous phase were assessed. The apparent partition coefficient versus pH profile of olamufloxacin showed a parabolic curve in n-octanol/buffer system which reached peak near pH 8, agreeing with the above determined isoelectric point (pI). Ion-pair effect was observed for olamufloxacin under an acidic condition, eliciting experimental values higher than those theoretically calculated, which was similar to ciprofloxacin but not levofloxacin due to amino group type. Moreover, olamufloxacin was moderately lipophilic in comparison with other quinolones, with an apparent partition coefficient of 1.95 at pH 7.4.
Non-equilibrium effects in atmospheric characteristic oscillations due to radiation balance
NASA Astrophysics Data System (ADS)
Nurgaliyeva, K. E.; Somsikov, V. M.
2008-12-01
Nowadays researches on global change of climate are faces the challenge of insufficient development of open system theory. In this connection the problem of energy and entropy exchange process between solar radiation and atmospheric gas influence on atmospheric dynamics in the frames of non-equilibrium thermodynamics was studied in this work. For this purpose the equations of flow [fluid] dynamics for interacting medium - gas and radiation - with taking into account the entropy production in atmosphere and its exchanging between gas and radiation were used in this work. Dispersion relation numerical analysis of atmospheric gravity waves (AGWs) in non-equilibrium atmosphere was carried out. It has been established that the spectra in the daytime hours shifts on high-frequency region in comparison with nighttime spectra. This difference can reach several percent in certain atmospheric regions. For the spectrum of the equilibrium model of the atmosphere the difference between the daytime and nighttime spectra makes up several fractions of percent. A comparison of the theoretical calculations of AGWs spectrum with observations confirmed the availability of non-equilibrium effects in the AGWs spectral composition. In particular, that concerns of Antarctic data results gave the difference is about 4 percent, Almaty data results ranges between 1.3 - 6 per cent in depends of season. Investigation of wave disturbances on sunset and sunrise periods of time shows that there is a tendency for low frequency region at evening-time spectra and high frequency region at morning- time spectra.
Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies
NASA Astrophysics Data System (ADS)
Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad
2018-02-01
Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.
Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B
2011-03-01
Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (<0.9‰) and within the typical uncertainties of isotope ratio measurements by SPME-GC/IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.
Fast Molecular Cloud Destruction Requires Fast Cloud Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mac Low, Mordecai-Mark; Burkert, Andreas; Ibáñez-Mejía, Juan C., E-mail: mordecai@amnh.org, E-mail: burkert@usm.lmu.de, E-mail: ibanez@ph1.uni-koeln.de
A large fraction of the gas in the Galaxy is cold, dense, and molecular. If all this gas collapsed under the influence of gravity and formed stars in a local free-fall time, the star formation rate in the Galaxy would exceed that observed by more than an order of magnitude. Other star-forming galaxies behave similarly. Yet, observations and simulations both suggest that the molecular gas is indeed gravitationally collapsing, albeit hierarchically. Prompt stellar feedback offers a potential solution to the low observed star formation rate if it quickly disrupts star-forming clouds during gravitational collapse. However, this requires that molecular cloudsmore » must be short-lived objects, raising the question of how so much gas can be observed in the molecular phase. This can occur only if molecular clouds form as quickly as they are destroyed, maintaining a global equilibrium fraction of dense gas. We therefore examine cloud formation timescales. We first demonstrate that supernova and superbubble sweeping cannot produce dense gas at the rate required to match the cloud destruction rate. On the other hand, Toomre gravitational instability can reach the required production rate. We thus argue that, although dense, star-forming gas may last only around a single global free-fall time; the dense gas in star-forming galaxies can globally exist in a state of dynamic equilibrium between formation by gravitational instability and disruption by stellar feedback. At redshift z ≳ 2, the Toomre instability timescale decreases, resulting in a prediction of higher molecular gas fractions at early times, in agreement with the observations.« less
How energy conversion drives economic growth far from the equilibrium of neoclassical economics
NASA Astrophysics Data System (ADS)
Kümmel, Reiner; Lindenberger, Dietmar
2014-12-01
Energy conversion in the machines and information processors of the capital stock drives the growth of modern economies. This is exemplified for Germany, Japan, and the USA during the second half of the 20th century: econometric analyses reveal that the output elasticity, i.e. the economic weight, of energy is much larger than energy's share in total factor cost, while for labor just the opposite is true. This is at variance with mainstream economic theory according to which an economy should operate in the neoclassical equilibrium, where output elasticities equal factor cost shares. The standard derivation of the neoclassical equilibrium from the maximization of profit or of time-integrated utility disregards technological constraints. We show that the inclusion of these constraints in our nonlinear-optimization calculus results in equilibrium conditions, where generalized shadow prices destroy the equality of output elasticities and cost shares. Consequently, at the prices of capital, labor, and energy we have known so far, industrial economies have evolved far from the neoclassical equilibrium. This is illustrated by the example of the German industrial sector evolving on the mountain of factor costs before and during the first and the second oil price explosion. It indicates the influence of the ‘virtually binding’ technological constraints on entrepreneurial decisions, and the existence of ‘soft constraints’ as well. Implications for employment and future economic growth are discussed.
Varghese, Susheel John; Johny, Sojimol K; Paul, David; Ravi, Thengungal Kochupappy
2011-07-01
The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37±0.5°C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. The present results are applicable to shock tube flows and to freeflight conditions for a blunt body at high velocities. Working charts illustrating idealized shock tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.
Al-Wakeel-Marquard, Nadya; Rastin, Sanaz; Muench, Frédéric; O H-Ici, Darach; Yilmaz, Sevim; Berger, Felix; Kuehne, Titus; Messroghli, Daniel R
2017-12-01
Myocardial extracellular volume fraction (ECV) reflecting diffuse myocardial fibrosis can be measured with T1 mapping cardiovascular magnetic resonance (CMR) before and after the application of a gadolinium-based extracellular contrast agent. The equilibrium between blood and myocardium contrast concentration required for ECV measurements can be obtained with a primed contrast infusion (equilibrium contrast-CMR). We hypothesized that equilibrium can also be achieved with a single contrast bolus to accurately measure diffuse myocardial fibrosis in patients with congenital heart disease (CHD). Healthy controls (n = 17; median age 24.0 years) and patients with CHD (n = 19; 25.0 years) were prospectively enrolled. Using modified Look-Locker inversion recovery T1 mapping before, 15 min after bolus injection, and during constant infusion of gadolinium-DOTA, T1 values were obtained for blood pool and myocardium of the left ventricle (LV), the interventricular septum (IVS), and the right ventricle (RV) in a single midventricular plane in short axis or in transverse orientation. ECV of LV, IVS and RV by bolus-only and bolus-infusion correlated significantly in CHD patients (r = 0.94, 0.95, and 0.74; p < 0.01, respectively) and healthy controls (r = 0.96, 0.89, and 0.64; p < 0.05, respectively). Bland-Altman plots revealed no significant bias between the techniques for any of the analyzed regions. ECV of LV and RV myocardium measured by bolus-only T1 mapping agrees well with bolus-infusion measurements in patients with CHD. The use of a bolus-only approach facilitates the integration of ECV measurements into existing CMR imaging protocols, allowing for assessment of diffuse myocardial fibrosis in CHD in clinical routine.
NASA Astrophysics Data System (ADS)
Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis
2013-06-01
Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.
NASA Technical Reports Server (NTRS)
Tyburczy, James A.; Krishnamurthy, R. V.; Epstein, Samuel; Ahrens, Thomas J.
1988-01-01
Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process.
Bowler, Michael G; Bowler, David R; Bowler, Matthew W
2017-04-01
The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F 68 , 111-114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult's law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult's law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult's law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample.
NASA Technical Reports Server (NTRS)
Hawley, Suzanne L.; Fisher, George H.
1993-01-01
Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.
Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems
Glynn, P.D.; Reardon, E.J.; Plummer, Niel; Busenberg, E.
1990-01-01
Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.
Core formation conditons in planetesimals: constraints from isotope fractionation experiments.
NASA Astrophysics Data System (ADS)
Guignard, J.; Quitté, G.; Toplis, M. J.; Poitrasson, F.
2016-12-01
Planetesimals are small objects (10 to 1000 km) early accreted in the history of the solar system which show a wide variety of thermal history due to the initial amount of radiogenic elements [1] (26Al and 60Fe), from a simple metamorphism to a complete metal-silicate differentiation. Moreover, isotope compositions of siderophile element, e.g. Fe, Ni, and W in meteorites spread on a range that can be attributed to the process of core-mantle segregation. We therefore performed isotope fractionation experiments of nickel and tungsten between metal and silicate in a gas-mixing (CO-CO2) vertical furnace, at different temperatures (from 1270°C to 1600°C), oxygen fugacity (from IW+2 to IW-6) and annealing times (from 20 minutes to 48 hours). The starting silicate is an anorthite-diopside eutectic composition glass, synthesize from the respective oxides. The starting metal is either a nickel or tungsten wire according to the element to study. After each experiment, metal and silicate are mechanically separated and digested in acids. Nickel and Tungsten separation have been made according to the methods developed by [2] and [3] and isotopes measurements have been made using a high resolution MC-ICP-MS (Neptune; Thermofisher©). Results show evidence for a strong kinetic isotope fractionation during the first annealing times with a faster diffusion of lightest isotopes than heaviest. Similar mechanism has been already highlighted for iron isotope fractionation between silicate and metal [4]. Chemical and isotopic equilibrium is also reached in our experiments but the time required dependent on the conditions of temperature and oxygen fugacity. Therefore, at equilibrium, metal-silicate isotope fractionation has also been quantified as well its temperature dependence. These experimental data can be used in order to bring new constraints on the metal silicate segregation in the planetesimals early accreted. [1] Lee T., et al., GRL, 3, 41-44 (1976) [2] Quitté G., and Oberli F., JAAS, 21, 1249-1255 (2006) [3] Breton T., and Quitté G., JAAS, 29, 2284-2293 (2014) [4] Roskosz M., et al., EPSL, 248, 851-867 (2006)
Minimal excitation states for heat transport in driven quantum Hall systems
NASA Astrophysics Data System (ADS)
Vannucci, Luca; Ronetti, Flavio; Rech, Jérôme; Ferraro, Dario; Jonckheere, Thibaut; Martin, Thierry; Sassetti, Maura
2017-06-01
We investigate minimal excitation states for heat transport into a fractional quantum Hall system driven out of equilibrium by means of time-periodic voltage pulses. A quantum point contact allows for tunneling of fractional quasiparticles between opposite edge states, thus acting as a beam splitter in the framework of the electron quantum optics. Excitations are then studied through heat and mixed noise generated by the random partitioning at the barrier. It is shown that levitons, the single-particle excitations of a filled Fermi sea recently observed in experiments, represent the cleanest states for heat transport since excess heat and mixed shot noise both vanish only when Lorentzian voltage pulses carrying integer electric charge are applied to the conductor. This happens in the integer quantum Hall regime and for Laughlin fractional states as well, with no influence of fractional physics on the conditions for clean energy pulses. In addition, we demonstrate the robustness of such excitations to the overlap of Lorentzian wave packets. Even though mixed and heat noise have nonlinear dependence on the voltage bias, and despite the noninteger power-law behavior arising from the fractional quantum Hall physics, an arbitrary superposition of levitons always generates minimal excitation states.
Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun
2014-01-01
Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.
An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient
NASA Technical Reports Server (NTRS)
Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun
2013-01-01
Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.
Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions.
Zhang, Jingji; Pavlov, Michael Y; Ehrenberg, Måns
2018-02-16
We studied the effects of aminoglycosides and changing Mg2+ ion concentration on the accuracy of initial codon selection by aminoacyl-tRNA in ternary complex with elongation factor Tu and GTP (T3) on mRNA programmed ribosomes. Aminoglycosides decrease the accuracy by changing the equilibrium constants of 'monitoring bases' A1492, A1493 and G530 in 16S rRNA in favor of their 'activated' state by large, aminoglycoside-specific factors, which are the same for cognate and near-cognate codons. Increasing Mg2+ concentration decreases the accuracy by slowing dissociation of T3 from its initial codon- and aminoglycoside-independent binding state on the ribosome. The distinct accuracy-corrupting mechanisms for aminoglycosides and Mg2+ ions prompted us to re-interpret previous biochemical experiments and functional implications of existing high resolution ribosome structures. We estimate the upper thermodynamic limit to the accuracy, the 'intrinsic selectivity' of the ribosome. We conclude that aminoglycosides do not alter the intrinsic selectivity but reduce the fraction of it that is expressed as the accuracy of initial selection. We suggest that induced fit increases the accuracy and speed of codon reading at unaltered intrinsic selectivity of the ribosome.
NASA Astrophysics Data System (ADS)
Rios, K. L.; Feineman, M. D.; Bybee, G. M.
2016-12-01
Dated at 2.056 Ga and encompassing an estimated 65,000 km2 in surface area and 650,000 km3 in volume the Bushveld Igneous Complex in South Africa contains the largest and most unique layered mafic intrusion in the world. It contains 80-90% of the world's minable platinum group elements. Scientists are interested in understanding the origin of this intrusion due to its massive size, unique assemblage of minerals, and strongly zoned stratigraphy. Iron isotopes may help us to understand the roles of partial mantle melting and fractional crystallization in magma genesis and differentiation. For example, it may be possible to determine what role fractional crystallization of oxides and sulfides played in the formation of the Rustenburg Layered Suite (RLS) by comparing δ56Fe in samples from the Lower, Critical, Main and Upper Zones. The use of MC-ICPMS has made it more routine to study the fractionation of stable iron isotopes in natural systems; however, this technique has only been applied in a few studies of the RLS, mostly restricted to the Upper Main and Upper Zones. In this study δ56Fe was determined in Upper Zone magnetite, Critical Zone chromitite and Critical Zone sulfides using MC-ICP-MS. Previous research has shown that early crystallizing mafic phases incorporate the lighter 54Fe isotope leaving a residual magma with a higher δ56Fe value. Therefore, if the Upper Zone magma represents a high-degree differentiate of the parental Bushveld magma, then magmas from the Upper Zone would be expected to have a higher δ56Fe than magmas contributing to the Lower, Critical and Main Zones. The results of this experiment were indeed consistent with this hypothesis. The δ56Fe values recorded for the three sample types were: magnetite 0.19 ±0.03‰; sulfides -0.45 ±0.03‰ to -0.81 ±0.03‰; and chromitite 0.03 ±0.05‰. The sulfides of the Critical Zone are isotopically lighter than would be predicted based on equilibrium sulfide-melt fractionation, if the parental melt of the Critical Zone were in equilibrium with previously published whole rock data for Upper Zone. This is consistent with interpretations of the Upper Zone as a high degree differentiate of the Bushveld Parental Magma.
Dynamic Interaction of TTDA with TFIIH Is Stabilized by Nucleotide Excision Repair in Living Cells
Theil, Arjan F; Mari, Pierre-Olivier; Hoogstraten, Deborah; Ng, Jessica M. Y; Dinant, Christoffel; Hoeijmakers, Jan H. J
2006-01-01
Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the TTDA/hTFB5 gene. One of these mutations completely inactivates the protein, whereas other TFIIH genes only tolerate point mutations that do not compromise the essential role in transcription. Nevertheless, the severe NER-deficiency in TTD-A suggests that the TTDA protein is critical for repair. Using a fluorescently tagged and biologically active version of TTDA, we have investigated the involvement of TTDA in repair and transcription in living cells. Under non-challenging conditions, TTDA is present in two distinct kinetic pools: one bound to TFIIH, and a free fraction that shuttles between the cytoplasm and nucleus. After induction of NER-specific DNA lesions, the equilibrium between these two pools dramatically shifts towards a more stable association of TTDA to TFIIH. Modulating transcriptional activity in cells did not induce a similar shift in this equilibrium. Surprisingly, DNA conformations that only provoke an abortive-type of NER reaction do not result into a more stable incorporation of TTDA into TFIIH. These findings identify TTDA as the first TFIIH subunit with a primarily NER-dedicated role in vivo and indicate that its interaction with TFIIH reflects productive NER. PMID:16669699
Pestana, Luis Ruiz; Minnetian, Natalie; Lammers, Laura Nielsen; ...
2018-01-02
When driven out of equilibrium, many diverse systems can form complex spatial and dynamical patterns, even in the absence of attractive interactions. Using kinetic Monte Carlo simulations, we investigate the phase behavior of a binary system of particles of dissimilar size confined between semiflexible planar surfaces, in which the nanoconfinement introduces a non-local coupling between particles, which we model as an activation energy barrier to diffusion that decreases with the local fraction of the larger particle. The system autonomously reaches a cyclical non-equilibrium state characterized by the formation and dissolution of metastable micelle-like clusters with the small particles in themore » core and the large ones in the surrounding corona. The power spectrum of the fluctuations in the aggregation number exhibits 1/f noise reminiscent of self-organized critical systems. Finally, we suggest that the dynamical metastability of the micellar structures arises from an inversion of the energy landscape, in which the relaxation dynamics of one of the species induces a metastable phase for the other species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestana, Luis Ruiz; Minnetian, Natalie; Lammers, Laura Nielsen
When driven out of equilibrium, many diverse systems can form complex spatial and dynamical patterns, even in the absence of attractive interactions. Using kinetic Monte Carlo simulations, we investigate the phase behavior of a binary system of particles of dissimilar size confined between semiflexible planar surfaces, in which the nanoconfinement introduces a non-local coupling between particles, which we model as an activation energy barrier to diffusion that decreases with the local fraction of the larger particle. The system autonomously reaches a cyclical non-equilibrium state characterized by the formation and dissolution of metastable micelle-like clusters with the small particles in themore » core and the large ones in the surrounding corona. The power spectrum of the fluctuations in the aggregation number exhibits 1/f noise reminiscent of self-organized critical systems. Finally, we suggest that the dynamical metastability of the micellar structures arises from an inversion of the energy landscape, in which the relaxation dynamics of one of the species induces a metastable phase for the other species.« less
NASA Astrophysics Data System (ADS)
Cox, Courtney E.; Phifer, Jeremy R.; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T.; O'Loughlin, Elizabeth J.; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T.; Paluch, Andrew S.
2017-02-01
Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.
Cox, Courtney E; Phifer, Jeremy R; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T; O'Loughlin, Elizabeth J; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T; Paluch, Andrew S
2017-02-01
Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.
NASA Astrophysics Data System (ADS)
Tirone, Massimiliano
2018-03-01
In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.
Kim, Sang-Tae; Gebbinck, Christa Klein; Mucci, Alfonso; Coplen, Tyler B.
2014-01-01
To investigate the oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system, witherite (BaCO3) was precipitated quasi-instantaneously and quantitatively from Na-Cl-Ba-CO2 solutions of seawater-like ionic strength (I = 0.7 mol/kg) at two pH values (~7.9 and ~10.6) at 25 °C. The oxygen isotope composition of the witherite and the dissolved inorganic carbon speciation in the starting solution were used to estimate the oxygen isotope fractionations between HCO3¯ and H2O as well as between CO3 2 and H2O. Given the analytical error on the oxygen isotope composition of the witherite and uncertainties of the parent solution pH and speciation, oxygen isotope fractionation between NaHCO3° and HCO3¯, as well as between NaCO3¯ and CO3 2, is negligible under the experimental conditions investigated. The influence of dissolved NaCl concentration on the oxygen isotope fractionation in the aragonite-CO2-H2O-NaCl system also was investigated at 25 °C. Aragonite was precipitated from Na-Cl-Ca-Mg-(B)-CO2 solutions of seawater-like ionic strength using passive CO2 degassing or constant addition methods. Based upon our new experimental observations and published experimental data from lower ionic strength solutions by Kim et al. (2007b), the equilibrium aragonite-water oxygen isotope fractionation factor is independent of the ionic strength of the parent solution up to 0.7 mol/kg. Hence, our study also suggests that the aragonite precipitation mechanism is not affected by the presence of sodium and chloride ions in the parent solution over the range of concentrations investigated.
Titanium stable isotope investigation of magmatic processes on the Earth and Moon
NASA Astrophysics Data System (ADS)
Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.
2016-09-01
We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.
Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments
2015-08-01
control RPD relative percent difference RSD relative standard deviation SERDP Strategic Environmental Research and Development Program SOPs...sediments from 2 stations, each at 4 PCB spike levels, for four individual congeners was 22 ± 6 % relative standard deviation ( RSD ). Also, comparison of... RSD (Table 3). However, larger congeners (e.g., congeners #153 and 180) whose approach to equilibrium is less certain, based on small fractions of
ERIC Educational Resources Information Center
Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.
2010-01-01
To say Earth systems are complex, is not the same as saying they are a complex system. A complex system, in the technical sense, is a group of -agents (individual interacting units, like birds in a flock, sand grains in a ripple, or individual units of friction along a fault zone), existing far from equilibrium, interacting through positive and…
Corresponding-states laws for protein solutions.
Katsonis, Panagiotis; Brandon, Simon; Vekilov, Peter G
2006-09-07
The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.
Eisosomes Are Dynamic Plasma Membrane Domains Showing Pil1-Lsp1 Heteroligomer Binding Equilibrium
Olivera-Couto, Agustina; Salzman, Valentina; Mailhos, Milagros; Digman, Michelle A.; Gratton, Enrico; Aguilar, Pablo S.
2015-01-01
Eisosomes are plasma membrane domains concentrating lipids, transporters, and signaling molecules. In the budding yeast Saccharomyces cerevisiae, these domains are structured by scaffolds composed mainly by two cytoplasmic proteins Pil1 and Lsp1. Eisosomes are immobile domains, have relatively uniform size, and encompass thousands of units of the core proteins Pil1 and Lsp1. In this work we used fluorescence fluctuation analytical methods to determine the dynamics of eisosome core proteins at different subcellular locations. Using a combination of scanning techniques with autocorrelation analysis, we show that Pil1 and Lsp1 cytoplasmic pools freely diffuse whereas an eisosome-associated fraction of these proteins exhibits slow dynamics that fit with a binding-unbinding equilibrium. Number and brightness analysis shows that the eisosome-associated fraction is oligomeric, while cytoplasmic pools have lower aggregation states. Fluorescence lifetime imaging results indicate that Pil1 and Lsp1 directly interact in the cytoplasm and within the eisosomes. These results support a model where Pil1-Lsp1 heterodimers are the minimal eisosomes building blocks. Moreover, individual-eisosome fluorescence fluctuation analysis shows that eisosomes in the same cell are not equal domains: while roughly half of them are mostly static, the other half is actively exchanging core protein subunits. PMID:25863055
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeomoh, E-mail: jkim610@gatech.edu; Ji, Mi-Hee; Detchprohm, Theeradetch
2015-09-28
Unintentional incorporation of gallium (Ga) in InAlN layers grown with different molar flow rates of Group-III precursors by metalorganic chemical vapor deposition has been experimentally investigated. The Ga mole fraction in the InAl(Ga)N layer was increased significantly with the trimethylindium (TMIn) flow rate, while the trimethylaluminum flow rate controls the Al mole fraction. The evaporation of metallic Ga from the liquid phase eutectic system between the pyrolized In from injected TMIn and pre-deposited metallic Ga was responsible for the Ga auto-incorporation into the InAl(Ga)N layer. The theoretical calculation on the equilibrium vapor pressure of liquid phase Ga and the effectivemore » partial pressure of Group-III precursors based on growth parameters used in this study confirms the influence of Group-III precursors on Ga auto-incorporation. More Ga atoms can be evaporated from the liquid phase Ga on the surrounding surfaces in the growth chamber and then significant Ga auto-incorporation can occur due to the high equilibrium vapor pressure of Ga comparable to effective partial pressure of input Group-III precursors during the growth of InAl(Ga)N layer.« less
Muthukkumaran, A; Aravamudan, K
2017-12-15
Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monte Carlo calculations of LR115 detector response to 222Rn in the presence of 220Rn.
Nikezić, D; Yu, K N
2000-04-01
The sensitivities (in m) of bare LR115 detectors and detectors in diffusion chambers to 222Rn and 220Rn chains are calculated by the Monte Carlo method. The partial sensitivities of bare detectors to the 222Rn chain are larger than those to the 220Rn chain, which is due to the higher energies of alpha particles in the 220Rn chain and the upper energy limit for detection for the LR115 detector. However, the total sensitivities are approximately equal because 220Rn is always in equilibrium with its first progeny, which is not the case for the 222Rn chain. The total sensitivity of bare LR115 detectors to 222Rn chain depends linearly on the equilibrium factor. The overestimation in 222Rn measurements with bare detectors caused by 220Rn in air can reach 10% in normal environmental conditions. An analytical relationship between the equilibrium factor and the ratio between track densities on the bare detector and the detector enclosed in chamber is given in the last part of the paper. This ratio is also affected by 220Rn, which can disturb the determination of the equilibrium factor.
NASA Astrophysics Data System (ADS)
Paonita, A.; Martelli, M.
2007-12-01
Topical scientific literature on magma degassing at mid-ocean ridges more and more focuses on exsolution processes occurring under conditions that are far from thermodynamic equilibrium between bubbles and silicate melt. Indeed, the dynamics of magma ascent and decompression can be faster than that of CO2 diffusion into bubbles, in which case the diffusivity ratios among volatiles are the main control of the composition of the exsolving gas phase. We have developed a model of bubble growth in silicate melts that calculates the extent of both CO2 supersaturation and kinetic fractionation among noble gases in vesicles in relation to the decompressive rate of basaltic melts. The model predicts that, due to comparable Ar and CO2 diffusivity, magma degassing at low pressure fractionates both He/Ar and He/CO2 ratios by a similar extent, while the slower CO2 diffusion at high pressure causes early kinetic effects on Ar/CO2 ratio and dramatically changes the degassing paths. By using this tool, we have reviewed the global He-Ar-CO2 dataset of fluid inclusions in mid-ocean-ridge glasses. We display that non-equilibrium fractionations among He, Ar and CO2, driven by their different diffusivities in silicate melts, are common in most of the natural conditions of magma decompression and their signature strongly depends on pressure of degassing. The different geochemical signatures among suites of data coming from different ridge segments mainly depend on the depth of the magma chamber where the melt was stored. Moreover, variations inside a single suite emerge due to the interplay between variable ascent speed of magma and cooling rate of the emplaced lava. As a result, two data groups coming from the Pito Seamount suite (Easter Microplate East ridge), showing different degree of CO2 supersaturation and He/Ar fractionation, provide ascent rates which differ by ten folds or even more. The large variations in both the He/CO2 and Ar/CO2 ratios at almost constant He/Ar, displayed in products coming from the Mid-Atlantic Ridge 24°N segment and the Rodriguez Triple Junction, require magma storage and degassing processes occurring at high-pressure conditions. In contrast, the simultaneous increase in both He/CO2 and He/Ar of the East Pacific Rise and South-East Indian Ridge data sets suggests the dominance of low-pressure fractionation, implying that the shallow magma chambers are at a lower depth than those of the Mid-Atlantic Ridge 24°N and Rodriguez Triple Junction. Our conclusions support the presence of a relationship between spreading rate and depth of high-temperature zones below ridges, and are consistent with the depth of magma chambers as suggested from seismic studies. Finally, the non-equilibrium degassing model provides striking constraints on the compositions of noble gases and carbon in mantle-derived magmas. Our results dispense in fact with the supposed need for He-Ar-CO2 heterogeneities in the upper mantle, because the degassing of a single, popping-rock-like primary magma is able to explain all the available data.
Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V.
2002-01-01
Results are presented for the first in-depth investigation of TI isotope variations in marine materials. The TI isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe-Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of TI isotope compositions in these samples exceeds the analytical reproducibility (?? 0.05???) by more than a factor of 40. Hydrogenetic Fe-Mn crusts have ??205TI of + 10 to + 14, whereas seawater is characterized by values as low as -8 (??205TI represents the deviation of the 205TI/203TI ratio of a sample from the NIST SRM 997 TI isotope standard in parts per 104). This ~ 2??? difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of TI onto ferromanganese particles. An equilibrium fractionation factor of ?? ~ 1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable TI isotope compositions that range between the values obtained for seawater and hydrogenetic Fe-Mn crusts. The variability in ??205TI in diagenetic nodules appears to be caused by the adsorption of TI from pore fluids, which act as a closed-system reservoir with a TI isotope composition that is inferred to be similar to seawater. Nodules with ??205TI values similar to seawater are found if the scavenging of TI is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ??205TI and Mn/Fe. This trend is thought to be due to the derivation of TI from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ??205TI are produced by the adsorption of TI from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal manganese deposits with high Mn/Fe and high ??205Ti are generated by scavenging of TI from colder, more distal hydrothermal fluids. Under such conditions, adsorption is associated with significant isotope fractionation, and this produces deposits with higher ??205TI values coupled with high Mn/Fe. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2015-06-01
Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell-Stefan (MS) Diffusivities of molten salt LiF-BeF2, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity ĐLi-F and ĐBe-F decreases sharply for higher concentration of LiF and BeF2 respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except ĐBe-F at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.
Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert
2014-12-01
Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media. Copyright © 2014. Published by Elsevier B.V.
Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Pi, Kunfu; Liu, Yaqing; Zhu, Yapeng
2016-03-01
This paper discusses the reactive transport and evolution of arsenic along a selected flow path in a study plot within the central part of Datong basin. The simulation used the TOUGHREACT code. The spatial and temporal trends in hydrochemistry and mineral volume fraction along a flow path were observed. Furthermore, initial simulation of major ions and pH fits closely to the measured data. The study shows that equilibrium conditions may be attained at different stress periods for each parameter simulated. It is noted that the variations in ionic chemistry have a greater impact on arsenic distribution while reducing conditions drive the mobilization of arsenic. The study concluded that the reduction of Fe(iii) and As(v) and probably SO4/HS cycling are significant factors affecting localized mobilization of arsenic. Besides cation exchange and water-rock interaction, incongruent dissolution of silicates is also a significant control mechanism of general chemistry of the Datong basin aquifer.
Donnini, Sandra; Finetti, Federica; Francese, Simona; Boscaro, Francesca; Dani, Francesca R; Maset, Fabio; Frasson, Roberta; Palmieri, Michele; Pazzagli, Mario; De Filippis, Vincenzo; Garaci, Enrico; Ziche, Marina
2011-12-01
Cytotoxic and antitumour factors have been documented in the venom of snakes, although little information is available on the identification of cytotoxic products in snake serum. In the present study, we purified and characterized a new cytotoxic factor from serum of the non-venomous African rock python (Python sebae), endowed with antitumour activity. PSS (P. sebae serum) exerted a cytotoxic activity and reduced dose-dependently the viability of several different tumour cell lines. In a model of human squamous cell carcinoma xenograft (A431), subcutaneous injection of PSS in proximity of the tumour mass reduced the tumour volume by 20%. Fractionation of PSS by ion-exchange chromatography yielded an active protein fraction, F5, which significantly reduced tumour cell viability in vitro and, strikingly, tumour growth in vivo. F5 is composed of P1 (peak 1) and P2 subunits interacting in a 1:1 stoichiometric ratio to form a heterotetramer in equilibrium with a hexameric form, which retained biological activity only when assembled. The two peptides share sequence similarity with PIP {PLI-γ [type-γ PLA(2) (phospholipase A(2)) inhibitor] from Python reticulatus}, existing as a homohexamer. More importantly, although PIP inhibits the hydrolytic activity of PLA(2), the anti-PLA(2) function of F5 is negligible. Using high-resolution MS, we covered 87 and 97% of the sequences of P1 and P2 respectively. In conclusion, in the present study we have identified and thoroughly characterized a novel protein displaying high sequence similarity to PLI-γ and possessing remarkable cytotoxic and antitumour effects that can be exploited for potential pharmacological applications.
Application of optimal control strategies to HIV-malaria co-infection dynamics
NASA Astrophysics Data System (ADS)
Fatmawati; Windarto; Hanif, Lathifah
2018-03-01
This paper presents a mathematical model of HIV and malaria co-infection transmission dynamics. Optimal control strategies such as malaria preventive, anti-malaria and antiretroviral (ARV) treatments are considered into the model to reduce the co-infection. First, we studied the existence and stability of equilibria of the presented model without control variables. The model has four equilibria, namely the disease-free equilibrium, the HIV endemic equilibrium, the malaria endemic equilibrium, and the co-infection equilibrium. We also obtain two basic reproduction ratios corresponding to the diseases. It was found that the disease-free equilibrium is locally asymptotically stable whenever their respective basic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. sic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. Then, the optimal control theory for the model was derived analytically by using Pontryagin Maximum Principle. Numerical simulations of the optimal control strategies are also performed to illustrate the results. From the numerical results, we conclude that the best strategy is to combine the malaria prevention and ARV treatments in order to reduce malaria and HIV co-infection populations.
In vitro toxicity testing with microplate cell cultures: Impact of cell binding.
Gülden, Michael; Schreiner, Jeannine; Seibert, Hasso
2015-06-05
In vitro generated data on toxic potencies are generally based on nominal concentrations. However, cellular and extracellular binding and elimination processes may reduce the available free fraction of a compound. Then, nominal effective concentrations do not represent appropriate measures of toxic exposure in vitro and underestimate toxic potencies. In this study it was investigated whether cell binding can affect the availability of chemicals in microplate based toxicity assays. To this end the cytotoxicity of compounds like mercury chloride, digitonin and alcohol ethoxylates, accumulated by cells via different modes, was investigated in 96-well microplate cultures with varying concentrations of Balb/c 3T3 cells. The median effective nominal concentrations of all but one of the tested compounds depended linearly from the cell concentration. Applying a previously developed equilibrium distribution model cell concentration-independent median effective extracellular concentrations and cell burdens, respectively, could be calculated. The compounds were accumulated by the cells with bioconcentration factors, BCF, between 480 and ≥ 25,000. Cell binding of the alcohol ethoxylates was correlated with their lipophilicity. The results show that significant cell binding can occur even at the small cell volume fractions (∼ 1 × 10(-5) to 3 × 10(-3) L/L) encountered in microplate assays. To what extent cell binding affects the bioavailability depends on the BCF and the cell volume fraction. EC50 measurements in the presence of at least two different cell concentrations allow for excluding or detecting significant cell binding and for determining more appropriate measures of toxic exposure in vitro like median effective extracellular (free) concentrations or cell burdens. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanner, E. D.; Bayer, T.; Wu, W.
In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II) aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Fe ppt), with distinct isotopic fractionation (ε 56Fe) values determined from fitting the δ 56Fe(II) aq (1.79‰ and 2.15‰) and the δ 56Fe ppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II)more » and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ 56Fe compositions than Fe(II) aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II) aq using published fractionation factors, is consistent with our resulting δ 56FeNaAc. The δ 56Fe ppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O 2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.« less
Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn
2009-03-01
Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that themore » equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.« less
Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A
2015-03-28
Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do.
Hydrogen isotope fractionation between C-H-O species in magmatic fluids
NASA Astrophysics Data System (ADS)
Foustoukos, D. I.; Mysen, B. O.
2012-12-01
Constraining the hydrogen isotope fractionation between H-bearing volatiles (e.g. H2, CH4, hydrocarbons, H2O) as function of temperature and pressure helps to promote our understanding of the isotopic composition of evolved magmatic fluids and the overall mantle-cycling of water and reduced C-O-H volatiles. To describe the thermodynamics of the exchange reactions between the different H/D isotopologues of H2 and CH4 under supercritical water conditions, a novel experimental technique has been developed by combining vibrational Raman spectroscopy with hydrothermal diamond anvil cell designs (HDAC), which offers a method to monitor the in-situ evolution of H/D containing species. To this end, the equilibrium relationship between H2-D2-HD in supercritical fluid was investigated at temperatures ranging from 300 - 800 oC and pressures ~ 0.3 - 1.3 GPa [1]. Experimental results obtained in-situ and ex-situ show a significant deviation from the theoretical values of the equilibrium constant predicted for ideal-gas reference state, and with an apparent negative temperature effect triggered by the enthalpy contributions due to mixing in supercritical water. Here, we present a series of HDAC experiments conducted to evaluate the role of supercritical water on the isotopic equilibrium between H/D methane isotopologues at 600 - 800 oC and 409 - 1622 MPa. In detail, tetrakis-silane (Si5C12H36) was reacted with H2O-D2O aqueous solution in the presence of either Ni or Pt metal catalyst, resulting to the formation of deuterated methane species such as CH3D, CHD3, CH2D2 and CD4. Two distinctly different set of experiments ("gas phase"; "liquid phase") were performed by adjusting the silane/water proportions. By measuring the relative intensities of Raman vibrational modes of species, experimental results demonstrate distinctly different thermodynamic properties for the CH4-CH3D-CHD3-CH2D2 equilibrium in gas and liquid-water-bearing systems. In addition, the D/H molar ratio of methane in the liquid is twice that recorded in the gas phase. Accordingly, condensed-phase isotope effects are inferred to govern the evolution of H/D isotopologues, induced by differences in the solubility of the isotopic molecules driven by excess energy/entropy developed during the mixing of non-polar species in the supercritical water structure. On the contrary, at such high temperatures/-pressures statistical thermodynamic models, based on the vibrational zero point energy distributions and high-temperature anharmonicity for isotopic molecules in ideal-gas reference state, predict minimal isotope exchange. Data, therefore, demonstrate that the solvation mechanism of H-D-bearing species in magmatic fluids can impose substantial D/H fractionation effects governing the δD composition of coexisting species even at lower-crust/upper-mantle temperature conditions. 1. Foustoukos D.I. and B.O. Mysen, (2012) D/H isotopic fractionation in the H2-H2O system at supercritical water conditions: Composition and hydrogen bonding effects, Geochim. Cosmochim. Acta, 86, 88-102.
Influence of arc current and pressure on non-chemical equilibrium air arc behavior
NASA Astrophysics Data System (ADS)
Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU
2018-01-01
The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.
NASA Astrophysics Data System (ADS)
Fang, Tilden T.; Fang, Wingra T. C.; Griffin, Peter B.; Plummer, James D.
1996-02-01
Investigation of boron diffusion in strained silicon germanium buried layers reveals a fractional interstitial component of boron diffusion (fBI) in Se0.8Ge0.2 approximately equal to the fBI value in silicon. In conjunction with computer-simulated boron profiles, the results yield an absolute lower-bound of fBI in Si0.8Ge0.2 of ˜0.8. In addition, the experimental methodology provides a unique vehicle for measuring the segregation coefficient; oxidation-enhanced diffusion is used instead of an extended, inert anneal to rapidly diffuse the dopant to equilibrium levels across the interface, allowing the segregation coefficient to be measured more quickly.
Controls on sediment cover in bedrock-alluvial channels of the Henry Mountains, Utah
NASA Astrophysics Data System (ADS)
Hodge, R. A.; Yager, E.; Johnson, J. P.; Tranmer, A.
2017-12-01
The location and extent of sediment cover in bedrock-alluvial channels influences sediment transport rates, channel incision and instream ecology. However, factors affecting sediment cover and how it responds to changes in relative sediment supply have rarely been quantitatively evaluated in field settings. Using field surveys and SFM analysis of channel reach topography, we quantified sediment cover and channel properties including slope, width, grain size distributions, and bedrock and alluvial roughness in North Wash and Chelada Creek in the Henry Mountains, Utah. Along reaches where upstream sediment supply does not appear to be restricted, we find that the fraction of local bedrock exposure increases as a function of local relative transport capacity . In a downstream section of Chelada Creek, decadal-scale sediment supply has been restricted by an upstream culvert that has caused a backwater effect and corresponding upstream deposition. In this section, alluvial cover is uncorrelated with local stream power. To test the impact of relative sediment supply on sediment cover, a 1D sediment transport model was used to predict the equilibrium sediment cover in Chelada Creek under varying flow and sediment supply conditions. Sediment transport in each model section was predicted using the partial cover model of Johnson (2015), which accounts for differences in bedrock and alluvial roughness on critical shear stress and flow resistance. Model runs in which sediment supply was approximately equal to mean transport capacity produced a pattern of sediment cover which best matched the field observations upstream of the culvert. However, runs where sediment supply was under-capacity produced the pattern most similar to field observations downstream of the culvert, consistent with our field-based interpretations. Model results were insensitive to initial sediment cover, and equilibrium was relatively quickly reached, suggesting that the channel is responsive to changes in imposed conditions. Overall, our results suggest that alluvial cover fractions may be predictable at spatial scales relevant for landscape evolution modelling, but that local bed roughness and thresholds in relative sediment supply may need to be accounted for.
Reconstructing mantle volatile contents through the veil of degassing
NASA Astrophysics Data System (ADS)
Tucker, J.; Mukhopadhyay, S.; Gonnermann, H. M.
2014-12-01
The abundance of volatile elements in the mantle reveals critical information about the Earth's origin and evolution such as the chemical constituents that built the Earth and material exchange between the mantle and exosphere. However, due to magmatic degassing, volatile element abundances measured in basalts usually do not represent those in undegassed magmas and hence in the mantle source of the basalts. While estimates of average mantle concentrations of some volatile species can be obtained, such as from the 3He flux into the oceans, volatile element variability within the mantle remains poorly constrained. Here, we use CO2-He-Ne-Ar-Xe measurements in basalts and a new degassing model to reconstruct the initial volatile contents of 8 MORBs from the Mid-Atlantic Ridge and Southwest Indian Ridge that span a wide geochemical range from depleted to enriched MORBs. We first show that equilibrium degassing (e.g. Rayleigh degassing), cannot simultaneously fit the measured CO2-He-Ne-Ar-Xe compositions in MORBs and argue that kinetic fractionation between bubbles and melt lowers the dissolved ratios of light to heavy noble gas species in the melt from that expected at equilibrium. We present a degassing model (after Gonnermann and Mukhopadhyay, 2007) that explicitly accounts for diffusive fractionation between melt and bubbles. The model computes the degassed composition based on an initial volatile composition and a diffusive timescale. To reconstruct the undegassed volatile content of a sample, we find the initial composition and degassing timescale which minimize the misfit between predicted and measured degassed compositions. Initial 3He contents calculated for the 8 MORB samples vary by a factor of ~7. We observe a correlation between initial 3He and CO2 contents, indicating relatively constant CO2/3He ratios despite the geochemical diversity and variable gas content in the basalts. Importantly, the gas-rich popping rock from the North Atlantic, as well as the average mantle ratio computed from the ridge 3He flux and independently estimated CO2 content fall along the same correlation. This observation suggests that undegassed CO2 and noble gas concentrations can be reconstructed in individual samples through measurement of noble gases and CO2 in erupted basalts.
Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite
Meier, M.; Namjesnik-Dejanovic, K.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.
1999-01-01
Natural organic matter (NOM) consists of a complex mixture of organic molecules; previous studies have suggested that preferential sorption of higher molecular weight, more hydrophobic, and more aromatic components may lead to fractionation of the NOM pool upon passage through porous media. Our work expands upon previous studies by quantifying the change in solution-phase weight average molecular weight (M(w)) upon sorption of bulk (rather than isolated) surface water NOM from the Suwannee River (SR) and the Great Dismal Swamp (GDS) to goethite and kaolinite at different sorption densities and at pH 4, 22??C. High pressure size exclusion chromatography (HPSEC) was used to quantify changes in M(w) upon sorption, and molar absorptivities at ?? = 280 nm were used to approximate changes in solution NOM aromaticity. Two SR water samples were used, with M(w) = 2320 and 2200 Da; a single GDS sample was used, with M(w) = 1890 Da. The SR NOM was slightly more hydrophobic and aromatic. These differences were reflected in greater sorption of SR NOM than GDS NOM. Both surface water NOMs showed a much greater affinity for goethite than for kaolinite. HPSEC analysis of the NOM remaining in solution after 24 h reaction time with geothite revealed that the largest changes in solution phase M(w)s (decreases by 900-1700 Da) occurred at relatively low equilibrium sorbate concentrations (approximately 5-20 mg C 1-1); the decrease in solution M(w) suggested that reactive surface sites were occupied disproportionately by large and intermediate size NOM moieties. At higher equilibrium NOM concentrations (>20 mg C 1-1), as percent adsorption decreased, M(w) in solution was similar to original samples. A smaller decrease in solution NOM M(w) (300-500 Da at 10-20 mg C 1-1 ~ 100 Da at > 20 mg) also occurred upon sorption to kaolinite. Overall, our results showed that factors (as related to NOM composition, clay mineral surface properties, and position along the sorption isotherm) which promote a higher percent sorption lead to the most pronounced decreases in solution M(w).
NASA Astrophysics Data System (ADS)
Jahediesfanjani, Hossein
The major part of the gas in coalbed methane and shale gas reservoirs is stored as the adsorbed gas in the coal and organic materials of the black shale internal surfaces. The sorption sites in both reservoirs are composed of several macropores that contain very small pore sizes. Therefore, the adsorption/desorption is very slow process and follows a non-equilibrium trend. The time-dependency of the sorption process is further affected by the reservoir resident water. Water can diffuse into the matrix and adsorption sites, plug the pores and affect the reservoir gas production. This study presents an experimental and theoretical procedure to investigate the effects of the resident water and time-dependency of the sorption process on coalbed and shale gas primary and enhanced recovery by simultaneous CO 2/N2 injection. Series of the experiments are conducted to construct both equilibrium and non-equilibrium single and multi-component isotherms with the presence of water. A novel and rapid data interpretation technique is developed based on the nonequilibrium adsorption/desorption thermodynamics, mass conservation law, and volume filling adsorption theory. The developed technique is implemented to construct both equilibrium and non-equilibrium multi-component multi-phase isotherms from the early time experimental measurements. The non-equilibrium isotherms are incorporated in the coalbed methane/shale gas reservoir simulations to account for the time-dependency of the sorption process. The experimental results indicate that the presence of water in the sorption system reduces both carbon dioxide and nitrogen adsorption rates. Reduction in the adsorption rate for carbon dioxide is more than nitrogen. The results also indicate that the resident water reduces the adsorption ability of low rank coals more than high rank ones. The results of the multi-component sorption tests indicate that increasing the initial mole fraction of the nitrogen gas in the injected CO2/N2 mixture will increase the net carbon dioxide sequestration rate on coals in the presence of water. The optimum CO2/N2 ratio that can result in the maximum carbon dioxide sequestration rate can be obtained by conducting the experiments for various CO2/N2 ratios. The results of applying the developed non-equilibrium interpretation technique for several literature and in-house data indicate that both the equilibrium and non-equilibrium isotherms can be constructed in shorter time period (around 70 times less than the time required with the equilibrium techniques) and with higher accuracy using this method. (Abstract shortened by UMI.)
Interaction and rheology of vesicle suspensions in confined shear flow
NASA Astrophysics Data System (ADS)
Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi
2017-10-01
Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.
Wagner, Shawn
2014-06-01
To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.
Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements
NASA Astrophysics Data System (ADS)
Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.
2017-04-01
High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winnard, P.T.; Esmon, C.T.; Laue, T.M.
1989-02-15
Lubrol-solubilized rabbit thrombomodulin has been examined by equilibrium sedimentation in buffers that include sufficient D/sub 2/O to make the detergent neutrally buoyant. Data were acquired at rotor speeds from 12,000 to 28,000 rpm from two thrombomodulin preparations, at protein concentrations from 0.01 to 0.07%, and in buffer containing 0.01 to 0.23% Lubrol. Examination of the data from different rotor speeds shows that the thrombomodulin exists as a heterogeneous mixture containing monomer (Mr 65,000), trimer, and higher oligomers. The oligomers do not equilibrate over the time scale of the experiment. The weight fraction as monomer varies from preparation to preparation, andmore » appears to be independent of detergent concentration. Thus, experimenters should be cautious when interpreting binding or kinetic results obtained under similar buffer conditions.« less
Andraski, Brian J.; Scanlon, Bridget R.; Dane, Jacob H.; Topp, G. Clarke
2002-01-01
Thermocouple psychrometry is a technique that infers the water potential of the liquid phase of a sample from measurements within the vapor phase that is in equilibrium with the sample. The theoretical relation between water potential of the liquid phase and relative humidity of the vapor phase is given by the Kelvin equation Ψ = energy/volume = (RT/Vw) ln(p/po) [3.2.3–1]where ψ is water potential (sum of matric and osmotic potential, MPa), R is the universal gas constant (8.314 × 10-6 MJ mol-1 K-1), T is temperature (K), Vw is molar volume of water (1.8 × 10-5 m3 mol-1), and p/po is relative humidity expressed as a fraction where p is actual vapor pressure of air in equilibrium with the liquid phase (MPa) and po is saturation vapor pressure (MPa) at T.
NASA Astrophysics Data System (ADS)
Bolotin, P. A.; Baranovsky, S. F.; Evstigneev, M. P.
2006-06-01
The self-association of thiazine dye, Methylene Blue (MB), and its hetero-association with Caffeine (CAF), were studied in aqueous solution by means of spectrophotometry in the visible range of spectrum. Concentration and temperature dependences of molar absorption of the interacting molecules were used to analyse dynamic equilibrium in solution in terms of two-component model of molecular hetero-association. The magnitudes of equilibrium dimerization and hetero-association constants as well as thermodynamic parameters, enthalpy and entropy, were determined. The calculation of the fraction of different types of associates in the mixed solution, containing Methylene Blue and Caffeine, was done. It was concluded that the hetero-association of Methylene Blue and Caffeine molecules results in lower effective concentration of the dye in solution, which may account for the alteration of its biological activity.
Large eddy simulation of cavitating flows
NASA Astrophysics Data System (ADS)
Gnanaskandan, Aswin; Mahesh, Krishnan
2014-11-01
Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.
Modeling Ignition of HMX with the Gibbs Formulation
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott
2017-06-01
We present a HMX model with the Gibbs formulation in which stress tensor and temperature are assumed to be in local equilibrium, but phase/chemical changes are not assumed to be in equilibrium. We assume multi-components for HMX including beta- and delta-phase, liquid, and gas phase of HMX and its gas products. Isotropic small strain solid model, modified Fried Howard liquid EOS, and ideal gas EOS are used for its relevant component. Phase/chemical changes are characterized as reactions and are in individual reaction rate. Maxwell-Stefan model is used for diffusion. Excited gas products in the local domain lead unreacted HMX solid to the ignition event. Density of the mixture, stress, strain, displacement, mass fractions, and temperature are considered in 1D domain with time histories. Office of Naval Research and Air Force Office of Scientific Research.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1974-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2, representative of Mars and Venus atmospheres. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 Newtons per square meter to 500 kilo Newtons per square meter. The present results are applicable to shock tube flows, and to free-flight conditions for a blunt body at high velocities. Working charts illustrating idealized shock-tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.
Permeability and 3-Dimensional Melt Distribution in Partially Molten Rocks
NASA Astrophysics Data System (ADS)
Zhu, Wen-Lu; Gaetani, Glenn; Fusseis, Florian
2010-05-01
Quantitative knowledge of the distribution of small amounts of silicate melt in peridotite and of its influence on permeability are critical to our understanding of melt migration and segregation processes in the upper mantle, as well as interpretations of the geochemical and geophysical observations at ocean ridges. For a system containing a single solid phase of isotropic interfacial energy, chemical and mechanical equilibrium requires a constant mean curvature of solid-melt interfaces and a single dihedral angle. Under these conditions, a simple power-law relationship between permeability, grain size and melt fraction, has been derived [e.g., von Bargen and Waff, 1986]. However, microstructural observations on texturally equilibrated, partially molten rocks reveal that the melt distribution is more complex than predicted by the isotropic model. Several factors, such as non-hydrostatic stress, anisotropic interfacial energy, or the presence of a second solid phase, will alter the power-law relationship. Better estimates for the permeability of partially molten rock require an accurate assessment of 3-dimensional melt distribution at the grain-scale. Existing studies of melt distribution, carried out on 2-D slices through experimental charges, have produced divergent models for melt distribution at small melt fractions. While some studies conclude that small amounts of melt are distributed primarily along 3-grain junctions [e.g., Wark et al., 2003], others predict an important role for melt distribution along grain boundaries at low melt fractions [e.g., Faul 1997]. Using X-ray synchrotron microtomography, we have carried out the first high quality non-destructive imaging of 3-dimensional melt distribution in experimentally equilibrated olivine-basalt aggregates [Zhu et al., 2009]. Microtomographic images of melt distribution were obtained on 1 mm cylindrical cores with melt fractions of 0.2, 0.1, and 0.02, at a spatial resolution of 0.7 microns. Textual information such as melt channel size and channel connectivity was determined using AVIZO and MATLAB. Our data indicate that as melt fraction decreases from 0.2 to 0.02, grain size increases slightly whereas melt interconnectivity decreases. Network modeling and the Lattice Boltzmann method provide a quantitative link between the macroscale transport properties and microscale melt distribtution. Incorporating our quantitative 3-D melt distribution data into these models allow us to simulate melt transport and, thereby, calculate the permeability and electrical conductivity of partially molten peridotite, especially at low melt fractions.
Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation
NASA Astrophysics Data System (ADS)
Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.
2007-12-01
The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically-symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over- saturation, determines crystal morphology, there are no quantitative models that relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be direct relationships between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D lattice Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. Crystal growth patterns can be varied between random growth and deterministic growth (along the maximum concentration gradient for example). The input parameters needed are the isotope- dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the condensation coefficient for ice is uncertain. The ratio D/k is a length (order 1 micron) that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions. Our calculations confirm that the crystal/vapor isotopic fractionation approaches the equilibrium value, and the crystals are compact (circular in 2D) as the saturation factor approaches unity (S= 1.0). However, few natural crystals form under such conditions. At higher oversaturation (e.g. S = 1.2), dendritic crystals of millimeter size develop on timescales appropriate to cloud processes, and kinetic effects control isotopic fractionation. Fractionation factors for dendritic crystals are similar to those predicted by the spherical diffusion model, but the model also gives estimates of crystal heterogeneity. Dendritic crystals are constrained to be relatively large, with dimension much greater than about 20D/k. The most difficult aspect of the modeling is to account for the large density difference between air and ice, which requires us to use a fictitious higher density for the vapor-oversaturated air and scale the crystal growth time accordingly. An approach using a larger scale simulation and the domain decomposition method can provide a vapor flux for a nested smaller scale calculation. The results clarify the controls on crystal growth, and the relationships between saturation state, growth rate, crystal morphology and isotopic fractionation.
NASA Astrophysics Data System (ADS)
Pernet-Coudrier, Benoît; Companys, Encarnació; Galceran, Josep; Morey, Margalida; Mouchel, Jean-Marie; Puy, Jaume; Ruiz, Núria; Varrault, Gilles
2011-07-01
Dissolved organic matter (DOM) from the treated effluent of a wastewater treatment plant and from the river Seine under high human pressure has been separated into three fractions: hydrophobic (containing humic and fulvic substances), transphilic and hydrophilic using a two column array of XAD-8 and XAD-4 resins. The acid base properties and the binding characteristics with respect to Pb ions (using the new electroanalytical technique AGNES, Absence of Gradients and Nernstian Equilibrium Stripping) have been studied and fitted to NICA (Non-Ideal Competitive Isotherm). We evaluated the binding potential of each DOM fraction in order to better predict the speciation of Pb and, later, its bioavailability in the river. The total binding capacity of the different fractions to Pb, as well as the total titratable charge, reaches its maximum value at the most hydrophilic fraction from the treated effluent. Specific properties of the distribution of the complexing sites within each DOM fraction have been exposed by plotting the conditional affinity spectrum (CAS). The addition of these distributions, weighted according to the respective abundance of each organic fraction, allows for a full description of the Pb binding properties of the whole DOM of a sampling site. Despite its weak aromaticity, the hydrophilic fraction from the wastewater treatment plant effluent exhibits a high lead binding affinity, so that at typical environmental pH and free Pb levels (0.1 μg L -1), Pb is mainly bound to the most hydrophilic fraction of the treated effluent (49% of bound Pb at pH 7). This feature may greatly enhance the transport of Pb and highlights that Pb speciation should also consider other fractions apart from humic and/or fulvic acids when studying surface waters under high human pressure.
Zhang, Songping; Sun, Yan
2004-01-01
A model describing the salt effect on adsorption equilibrium of a basic protein, lysozyme, to Cibacron Blue 3GA-modified Sepharose CL-6B (CB-Sepharose) has been developed. In this model, it is assumed that the presence of salt causes a fraction of dye-ligand molecules to lodge to the surface of the agarose gel, resulting from the induced strong hydrophobic interaction between dye ligand and agarose matrix. The salt effect on the lodging of dye-ligand is expressed by the equilibrium between salt and dye-ligand. For the interactions between protein and vacant binding sites, stoichiometric equations based either on cation exchanges or on hydrophobic interactions are proposed since the CB dye can be regarded as a cation exchanger contributed by the sulfonate groups on it. Combining with the basic concept of steric mass-action theory for ion exchange, which considers both the multipoint nature and the macromolecular steric shielding of protein adsorption, an explicit isotherm for protein adsorption equilibrium on the dye-ligand adsorbent is formulated, involving salt concentration as a variable. Analysis of the model parameters has yielded better understanding of the mechanism of salt effects on adsorption of the basic protein. Moreover, the model predictions are in good agreement with the experimental data over a wide range of salt and ligand concentrations, indicating the predictive nature of the model.
Origins Space Telescope: Tracing Dark Molecular Gas in the Milky Way
NASA Astrophysics Data System (ADS)
Narayanan, Desika; Li, Qi; Krumholz, Mark; Dave, Romeel; Origins Space Telescope Science and Technology Definition Team
2018-01-01
We present theoretical models for quantifying the fraction of CO-dark molecular gas in galaxies. To do this, we combine novel thermal, chemical, and radiative equilibrium calculations with high-resolution cosmological zoom galaxy formation models. We discuss how this dark molecular gas will be uncovered by the Origins Space Telescope, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.
On silicon group elements ejected by supernovae type IA
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, Soma; Timmes, F. X.; Brown, Edward F.
2014-06-01
There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y {sub e} at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejectamore » in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y {sub e} at explosion from the abundances recovered from an observed spectra. We show that measurement of {sup 28}Si, {sup 32}S, {sup 40}Ca, and {sup 54}Fe abundances can be used to construct Y {sub e} in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y {sub e} to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the {sup 28}Si abundance is insensitive to Y {sub e}, the {sup 32}S abundance has a nearly linear trend with Y {sub e}, and the {sup 40}Ca abundance has a nearly quadratic trend with Y {sub e}. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.« less
Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils.
Wang, Yanan; Zeng, Xibai; Lu, Yahai; Bai, Lingyu; Su, Shiming; Wu, Cuixia
2017-11-01
Although specific soil properties controlling the arsenic (As) aging process have been studied extensively, few investigations have attempted to determine how soil types influence As bioavailability and fractionations in soils. Nine types of soil were selected from typical grain producing areas in China, and the bioavailability and fractionations of As during aging were measured. Results showed that available As in all soils rapidly decreased in the first 30 days and slowly declined thereafter. In spiked soils, As easily became less available and less toxic in low pH soils compared to high pH soils, demonstrating the importance of soil pH on As availability. Results from fitting kinetic equations revealed that the pseudo-second-order model described the As aging processes well in all soils (R 2 = 0.945-0.999, P < 0.01, SE = 0.09-4.25), implying that the mechanism for As aging combined adsorption, external diffusion, and internal diffusion. Fe oxides were more important than Al oxides for determining the As aging rate (|k|). Based on these results, we are the first to propose the approximate aging equilibrium time (T) for As, which was mainly influenced by soil clay content. The shortest time for approximate stabilization of As aging was 28 d in latosol soils (LS), while the longest approximate equilibrium time was 169 d in cinnamon soils (CS). Individual soil properties controlling the variation in different As fractionations further confirmed that the influences of soil types on As aging were the result of the combined effects of soil properties and a time-consuming redistribution process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemistry of vaporization of refractory materials
NASA Technical Reports Server (NTRS)
Gilles, P. W.
1975-01-01
A discussion is given of the principles of physical chemistry important in vaporization studies, notably the concepts of equilibrium, phase behavior, thermodynamics, solid solution, and kinetics. The important factors influencing equilibrium vaporization phenomena are discussed and illustrated. A proper course of a vaporization study consisting of 9 stages is proposed. The important experimental techniques of Knudsen effusion, Langmuir vaporization and mass spectrometry are discussed. The principles, the factors, the course of a study and the experimental techniques and procedures are illustrated by recent work on the Ti-O system.
Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant
NASA Astrophysics Data System (ADS)
Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.
2017-11-01
We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.
Hafez, A F; Hussein, A S
2001-09-01
Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations insidc the tombs ranged from 540 to 3115 Bq m(-3). The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 microSv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr(-1) limit.
Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes
NASA Astrophysics Data System (ADS)
Tanekou, G. B.; Fogang, C. F.; Kengne, R.; Pelap, F. B.
2018-04-01
We examine the dynamical behaviours of the "single mass-spring" model for earthquakes considering lubrication pressure effects on pre-existing faults and viscous fractional damping. The lubrication pressure supports a part of the load, thereby reducing the normal stress and the associated friction across the gap. During the co-seismic phase, all of the strain accumulated during the inter-seismic duration does not recover; a fraction of this strain remains as a result of viscous relaxation. Viscous damping friction makes it possible to study rocks at depth possessing visco-elastic behaviours. At increasing depths, rock deformation gradually transitions from brittle to ductile. The fractional derivative is based on the properties of rocks, including information about previous deformation events ( i.e., the so-called memory effect). Increasing the fractional derivative can extend or delay the transition from stick-slip oscillation to a stable equilibrium state and even suppress it. For the single block model, the interactions of the introduced lubrication pressure and viscous damping are found to give rise to oscillation death, which corresponds to aseismic fault behaviour. Our result shows that the earthquake occurrence increases with increases in both the damping coefficient and the lubrication pressure. We have also revealed that the accumulation of large stresses can be controlled via artificial lubrication.
NASA Technical Reports Server (NTRS)
Coplen, T. B.; Hanshaw, B. B.
1973-01-01
Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.
The Sunyaev-Zel'dovich Effect in Abell 370
NASA Technical Reports Server (NTRS)
Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Holzapfel, William L.; Cooray, Asantha K.
1999-01-01
We present interferometric measurements of the Sunyaev-Zel'dovich (SZ) effect towards the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas is strongly aspherical, on agreement with the morphology revealed by x-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction by comparing the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods. The Hubble constant derived for this cluster, when the known systematic uncertainties are included, has a very wide range of values and therefore does not provide additional constraints on the validity of the assumptions. We examine carefully the possible systematic errors in the gas fraction measurement. The gas fraction is a lower limit to the cluster's baryon fraction and so we compare the gas mass fraction, calibrated by numerical simulations to approximately the virial radius, to measurements of the global mass fraction of baryonic matter, OMEGA(sub B)/OMEGA(sub matter). Our lower limit to the cluster baryon fraction is f(sub B) = (0.043 +/- 0.014)/h (sub 100). From this, we derive an upper limit to the universal matter density, OMEGA(sub matter) <= 0.72/h(sub 100), and a likely value of OMEGA(sub matter) <= (0.44(sup 0.15, sub -0.12)/h(sub 100).
Freezing and melting water in lamellar structures.
Gleeson, J T; Erramilli, S; Gruner, S M
1994-01-01
The manner in which ice forms in lamellar suspensions of dielaidoylphosphatidylethanolamine, dielaidoylphosphatidylcholine, and dioleoylphosphatidylcholine in water depends strongly on the water fraction. For weight fractions between 15 and 9%, the freezing and melting temperatures are significantly depressed below 0 degree C. The ice exhibits a continuous melting transition spanning as much as 20 degrees C. When the water weight fraction is below 9%, ice never forms at temperatures as low as -40 degrees C. We show that when water contained in a lamellar lipid suspension freezes, the ice is not found between the bilayers; it exists as pools of crystalline ice in equilibrium with the bound water associated with the polar lipid headgroups. We have used this effect, together with the known chemical potential of ice, to measure hydration forces between lipid bilayers. We find exponentially decaying hydration repulsion when the bilayers are less than about 7 A apart. For larger separations, we find significant deviations from single exponential decay. PMID:7948683
NASA Technical Reports Server (NTRS)
Longhi, J.
1977-01-01
A description is presented of an empirical model of fractional crystallization which predicts that slightly modified versions of certain of the proposed whole moon compositions can reproduce the major-element chemistry and mineralogy of most of the primitive highland rocks through equilibrium and fractional crystallization processes combined with accumulation of crystals and trapping of residual liquids. These compositions contain sufficient Al to form a plagioclase-rich crust 60 km thick on top of a magma ocean that was initially no deeper than about 300 km. Implicit in the model are the assumptions that all cooling and crystallization take place at low pressure and that there are no compositional or thermal gradients in the liquid. Discussions of the cooling and crystallization of the proposed magma ocean show these assumptions to be disturbingly naive when applied to the ocean as a whole. However, the model need not be applied to the whole ocean, but only to layers of cooling liquid near the surface.
Iron isotopic fractionation between silicate mantle and metallic core at high pressure
Liu, Jin; Dauphas, Nicolas; Roskosz, Mathieu; Hu, Michael Y.; Yang, Hong; Bi, Wenli; Zhao, Jiyong; Alp, Esen E.; Hu, Justin Y.; Lin, Jung-Fu
2017-01-01
The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure–temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ∼0–0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation. PMID:28216664
The Sunyaev-Zeldovich Effect in Abell 370
NASA Technical Reports Server (NTRS)
Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Cooray, Asantha R.; Holzappel, William L.
2000-01-01
We present interferometric measurements of the Sunyaev-Zeldovich (SZ) effect toward the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas distribution to be strongly aspherical, as do the X-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction in two ways. We first compare the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deprojecting the three-dimensional gas density distribution and deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods and find that they agree within the errors of the measurement. We discuss the possible system- atic errors in the gas mass fraction measurement and the constraints it places on the matter density parameter, Omega(sub M).
NASA Astrophysics Data System (ADS)
Tecchiato, Vanni; Gaeta, Mario; Mollo, Silvio; Scarlato, Piergiorgio; Bachmann, Olivier; Perinelli, Cristina
2018-01-01
This study deals with the textural and compositional characteristics of the calc-alkaline stratigraphic sequence from Capo Marargiu Volcanic District (CMVD; Sardinia island, Italy). The area is dominated by basaltic to intermediate hypabyssal (dikes and sills) and volcanic rocks (lava flows and pyroclastic deposits) emplaced during the Oligo-Miocene orogenic magmatism of Sardinia. Interestingly, a basaltic andesitic dome hosts dark-grey, crystal-rich enclaves containing up 50% of millimetre- to centimetre-sized clinopyroxene and amphibole crystals. This mineral assemblage is in equilibrium with a high-Mg basalt recognised as the parental magma of the entire stratigraphic succession at CMVD. Analogously, centimetre-sized clots of medium- and coarse-grained amphibole + plagioclase crystals are entrapped in andesitic dikes that ultimately intrude the stratigraphic sequence. Amphibole-plagioclase cosaturation occurs at equilibrium with a differentiated basaltic andesite. Major and trace element modelling indicates that the evolutionary path of magma is controlled by a two-step process driven by early olivine + clinopyroxene and late amphibole + plagioclase fractionation. In this context, enclaves represent parts of a cumulate horizon segregated at the early stage of differentiation of the precursory high-Mg basalt. This is denoted by i) resorption effects and sharp transitions between Mg-rich and Mg-poor clinopyroxenes, indicative of pervasive dissolution phenomena followed by crystal re-equilibration and overgrowth, and ii) reaction minerals found in amphibole coronas formed at the interface with more differentiated melts infiltrating within the cumulate horizon, and carrying the crystal-rich material with them upon eruption. Coherently, the mineral chemistry and phase relations of enclaves indicate crystallisation in a high-temperature, high-pressure environment under water-rich conditions. On the other hand, the upward migration and subsequent fractionation of the residual basaltic andesite in a shallower, colder, and hydrous region of the CMVD plumbing system lead to the formation of the amphibole-plagioclase crystal clots finally entrained by the andesitic dikes. Indeed, phenocrysts from these more evolved products record the final crystallisation path of magma during ascent towards the surface. Magma decompression and volatile loss cause the formation of amphibole reaction coronas and the crystallisation of a more sodic plagioclase in equilibrium with basaltic andesitic to andesitic melts. The bulk-rock geochemical signature of these products testifies to open-system, polybaric magma dynamics, accounting for variable degrees of crustal assimilation of the Hercynian basement of Sardinia.
Lathouri, Maria; Korre, Anna
2015-12-15
Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality parameters should be considered in setting appropriately protective environmental quality standards for metals. Copyright © 2015 Elsevier B.V. All rights reserved.
Nonequilibrium Brownian motion beyond the effective temperature.
Gnoli, Andrea; Puglisi, Andrea; Sarracino, Alessandro; Vulpiani, Angelo
2014-01-01
The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein's relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own "effective" temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein's relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.
NASA Astrophysics Data System (ADS)
Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li
2017-08-01
We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.
Problem-based test: replication of mitochondrial DNA during the cell cycle.
Sétáló, György
2013-01-01
Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids, re-replication block, cell fractionation, Svedberg (sedimentation constant = [ S]), nuclear DNA, mitochondrial DNA, heavy and light mitochondrial DNA chains, heteroplasmy, mitochondrial diseases Copyright © 2013 Wiley Periodicals, Inc.
Correlation of Helium Solubility in Liquid Nitrogen
NASA Technical Reports Server (NTRS)
VanDresar, Neil T.; Zimmerli, Gregory A.
2012-01-01
A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.
A petrological view of early Earth geodynamics
NASA Astrophysics Data System (ADS)
Herzberg, C.
2003-04-01
Xenoliths of low T Archean cratonic mantle consist mostly of harzburgite and lherzolite with geochemical depletions that are characterisitc of igneous residues. Many authors have identified the complementary magmas as komatiites. This model is re-examined in light of work presented in Herzberg & O'Hara (2002) and found to be problematic. Munro-type alumina-undepleted komatiites from Alexo, Pyke Hill, and other locations often contain olivine phenocrysts with maximum Mg# \\cong 94. Residues of fractional melting would consist of pure dunite having Mg# = 97-98, but these are not observed. Residues of equilibrium melting would also be pure dunite with Mg# = 94, but these are also not observed. Olivines with Mg# = 94 are found in rare harzburgites, indicating that residues of alumina-undepleted komatiite have either been overprinted by subsequent magmatism or they have been geodynamically eroded. Alumina-undepleted komatiites can be successfully modeled with a primary magma containing 30% MgO produced by 0.5 mass fractions of equilibrium melting of depleted peridotite. A hot plume interpretation is consistent with both the petrology and helium isotopic compositions of alumina-undepleted komatiites. But what about cratonic mantle? The FeO and MgO contents of residues of fertile mantle peridotite formed by both equilibrium and fractional melting can be predicted and applied to xenoliths of cratonic mantle in most cases. Application to xenoliths from the Kaapvaal and Slave cratons is not possible owing to a second stage of Opx enrichment, but results can be applied to most xenoliths from Siberia, Tanzania, Somerset Island, and east Greenland as they contain less than 45% SiO_2. These xenoliths are very similar to residues produced by fractional melting. Pressures of initial melting were mostly 3 to 5 GPa, but can be as high 7 GPa. Pressures of final melting were highly variable and can be as low as 1 GPa. Potential temperatures (T_P) were typically 1450 to 1600oC and primary magmas contained 14 to 22% MgO, similar to Reykjanes MORB, Gorgona, Hawaii, and the early Icelandic plume in the model of Herzberg & O'Hara (2002). However, a few xenoliths record T_P as low as 1300oC. Two geodynamic interpretations follow: 1) Archean cratonic mantle formed as residues below ridges and hotspots similar to those of today, except the lithosphere was somewhat thinner in some cases, 2) Archean cratonic mantle formed as residues below hot ridges in most cases. Early Proterozoic sheeted dikes and eruptives from the Cape Smith Belt in Canada are consistent with the hot ridge interpretation. Ridge potential temperatures could have been 1520-1570oC, higher than modern ridges (1300-1450oC) but similar to those for the Gorgona and early Tertiary Icelandic plumes.
Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.
NASA Astrophysics Data System (ADS)
Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.
NASA Astrophysics Data System (ADS)
Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong
2016-01-01
Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.
Determination of bioaccessibility of beta-carotene in vegetables by in vitro methods.
Veda, Supriya; Kamath, Akshaya; Platel, Kalpana; Begum, Khyrunnisa; Srinivasan, Krishnapura
2006-11-01
The in vitro method in use for the determination of beta-carotene bioaccessibility involves simulated gastrointestinal digestion followed by ultracentrifugation to separate the micellar fraction containing bioaccessible beta-carotene and its quantitation. In this study, the suitability of two alternatives viz., membrane filtration and equilibrium dialysis were examined to separate the micellar fraction. Values of beta-carotene bioaccessibility obtained with the membrane filtration method were similar to those obtained by the ultracentrifugation method. Equilibrium dialysis was found not suitable for this purpose. Among the vegetables analyzed, fenugreek leaves had the highest content of beta-carotene (9.15 mg/100 g), followed by amaranth (8.17 mg/100 g), carrot (8.14 mg/100 g) and pumpkin (1.90 mg/100 g). Percent bioaccessibility of beta-carotene ranged from 6.7 in fenugreek leaves to 20.3 in carrot. Heat treatment of these vegetables by pressure cooking and stir-frying had a beneficial influence on the bioaccessibility of beta-carotene from these vegetables. The increase in the percent bioaccessibility of beta-carotene as a result of pressure-cooking was 100, 48 and 19% for fenugreek leaves, amaranth and carrot, respectively. Stir-frying in presence of a small quantity of oil led to an enormous increase in the bioaccessibility of beta-carotene from these vegetables, the increase being 263% (fenugreek leaves), 192% (amaranth leaves), 63% (carrot) and 53% (pumpkin).