Science.gov

Sample records for equilibrium phase experimental

  1. Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis

    PubMed Central

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.

    2013-01-01

    Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500–2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β–t'–L at ~ 8.0 GPa and ~ 2490 K; and β–γ–t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element. PMID:23912523

  2. Phase equilibrium of liquid mixtures: Experimental and modeled data using statistical associating fluid theory for potential of variable range approach

    NASA Astrophysics Data System (ADS)

    Giner, Beatriz; Bandrés, Isabel; Carmen López, M.; Lafuente, Carlos; Galindo, Amparo

    2007-10-01

    A study of the phase equilibrium (experimental and modeled) of mixtures formed by a cyclic ether and haloalkanes has been derived. Experimental data for the isothermal vapor liquid equilibrium of mixtures formed by tetrahydrofuran and tetrahydropyran and isomeric chlorobutanes at temperatures of 298.15, 313.15, and 328.15K are presented. Experimental results have been discussed in terms of both molecular characteristics of pure compounds and potential intermolecular interaction between them using thermodynamic information of the mixtures obtained earlier. The statistical associating fluid theory for potential of variable range (SAFT-VR) approach together with standard combining rules without adjustable parameters has been used to model the phase equilibrium. Good agreement between experiment and the prediction is found with such a model. Mean absolute deviations for pressures are of the order of 1kPa, while less than 0.013mole fraction for vapor phase compositions. In order to improve the results obtained, a new modeling has been carried out by introducing a unique transferable parameter kij, which modifies the strength of the dispersion interaction between unlike components in the mixtures, and is valid for all the studied mixtures being not temperature or pressure dependent. This parameter together with the SAFT-VR approach provides a description of the vapor-liquid equilibrium of the mixtures that is in excellent agreement with the experimental data for most cases. The absolute deviations are of the order of 0.005mole fraction for vapor phase compositions and less than 0.3kPa for pressure, excepting for mixtures containing 2-chloro-2-methylpropane which deviations for pressure are larger. Results obtained in this work in the modeling of the phase equilibrium with the SAFT-VR equation of state have been compared to the ones obtained in a previous study when the approach was used to model similar mixtures with clear differences in the thermodynamic behavior. We

  3. Semi-experimental equilibrium structure of pyrazinamide from gas-phase electron diffraction. How much experimental is it?

    NASA Astrophysics Data System (ADS)

    Tikhonov, Denis S.; Vishnevskiy, Yury V.; Rykov, Anatolii N.; Grikina, Olga E.; Khaikin, Leonid S.

    2017-03-01

    A semi-experimental equilibrium structure of free molecules of pyrazinamide has been determined for the first time using gas electron diffraction method. The refinement was carried using regularization of geometry by calculated quantum chemical parameters. It is discussed to which extent is the final structure experimental. A numerical approach for estimation of the amount of experimental information in the refined parameters is suggested. The following values of selected internuclear distances were determined (values are in Å with 1σ in the parentheses): re(Cpyrazine-Cpyrazine)av = 1.397(2), re(Npyrazine-Cpyrazine)av = 1.332(3), re(Cpyrazine-Camide) = 1.493(1), re(Namide-Camide) = 1.335(2), re(Oamide-Camide) = 1.219(1). The given standard deviations represent pure experimental uncertainties without the influence of regularization.

  4. Group Contribution Methods for Phase Equilibrium Calculations.

    PubMed

    Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian

    2015-01-01

    The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.

  5. The α +ɛ Two-Phase Equilibrium in the Fe-N-C System: Experimental Investigations and Thermodynamic Calculations

    NASA Astrophysics Data System (ADS)

    Göhring, Holger; Leineweber, Andreas; Mittemeijer, Eric Jan

    2016-09-01

    The present work is dedicated to investigating the occurrence of the α +ɛ equilibrium at temperatures typically applied for nitrocarburizing treatments. To this end, pearlitic Fe-C specimens were treated between 823 K and 863 K (550 °C and 590 °C) in gaseous nitriding and gaseous nitrocarburizing atmospheres, allowing control of the chemical potentials of N and C. Subsequently, the resulting compound-layer microstructures were investigated using light microscopy and X-ray diffraction. Thermodynamic calculations, adopting several models for the Fe-N-C system from the literature, were performed, showing significantly different predictions for both the sequence of the invariant reactions and their temperatures. Comparison of the experimental data and the theoretical calculations led to the conclusion that none of the models from the literature is able to realistically describe the experimentally observed constitution in the Fe-N-C system in the considered temperature range. Values/value ranges for the temperatures of the invariant reactions were obtained.

  6. Phase Equilibrium Investigations of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Grove, T. L.

    2005-01-01

    This grant provided funds to carry out phase equilibrium studies on the processes of chemical differentiation of the moon and the meteorite parent bodies, during their early evolutionary history. Several experimental studies examined processes that led to the formation of lunar ultramafic glasses. Phase equilibrium studies were carried out on selected low-Ti and high-Ti lunar ultramafic glass compositions to provide constraints on the depth range, temperature and processes of melt generation and/or assimilation. A second set of experiments examined the role of sulfide melts in core formation processes in the earth and terrestrial planets. The major results of each paper are discussed, and copies of the papers are attached as Appendix I.

  7. Inferring unstable equilibrium configurations from experimental data

    NASA Astrophysics Data System (ADS)

    Virgin, L. N.; Wiebe, R.; Spottswood, S. M.; Beberniss, T.

    2016-09-01

    This research considers the structural behavior of slender, mechanically buckled beams and panels of the type commonly found in aerospace structures. The specimens were deflected and then clamped in a rigid frame in order to exhibit snap-through. That is, the initial equilibrium and the buckled (snapped-through) equilibrium configurations both co-existed for the given clamped conditions. In order to transit between these two stable equilibrium configurations (for example, under the action of an externally applied load), it is necessary for the structural component to pass through an intermediate unstable equilibrium configuration. A sequence of sudden impacts was imparted to the system, of various strengths and at various locations. The goal of this impact force was to induce relatively intermediate-sized transients that effectively slowed-down in the vicinity of the unstable equilibrium configuration. Thus, monitoring the velocity of the motion, and specifically its slowing down, should give an indication of the presence of an equilibrium configuration, even though it is unstable and not amenable to direct experimental observation. A digital image correlation (DIC) system was used in conjunction with an instrumented impact hammer to track trajectories and statistical methods used to infer the presence of unstable equilibria in both a beam and a panel.

  8. Phase equilibrium measurements on twelve binary mixtures

    SciTech Connect

    Giles, N.F.; Wilson, H.L.; Wilding, W.V.

    1996-11-01

    Phase equilibrium measurements have been performed on twelve binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following binary systems at two temperatures each: ethanethiol + propylene; nitrobenzene + methanol; pyridine + ethyl acetate; octane + tert-amyl methyl ether; diisopropyl ether + butane; 1,3-dichloro-2-propanol + epichlorohydrin; 2,3-dichloro-1-propanol + epichlorohydrin; 2,3-epoxy-1-propanol + epichlorohydrin; 3-chloro-1,2-propanediol + epichlorohydrin; methanol + hydrogen cyanide. For these systems, equilibrium vapor and liquid phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson, NRTL, or Redlich-Kister activity coefficient model to represent the liquid phase. The infinite dilution activity coefficient of methylamine in N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone-rich half of the binary. Liquid-liquid equilibrium studies were made on the triethylene glycol + 1-pentene system at two temperatures by directly analyzing samples taken from each liquid phase.

  9. Equilibrium Phase Behavior of Polydisperse Hard Spheres

    NASA Astrophysics Data System (ADS)

    Fasolo, Moreno; Sollich, Peter

    2003-08-01

    We calculate the phase behavior of hard spheres with size polydispersity, using accurate free energies for the fluid and solid phases. Cloud and shadow curves are found exactly by the moment free energy method, but we also compute the complete phase diagram, taking full account of fractionation. In contrast to earlier, simplified treatments we find no point of equal concentration between fluid and solid or reentrant melting at higher densities. Rather, the fluid cloud curve continues to the largest polydispersity that we study (14%); from the equilibrium phase behavior a terminal polydispersity can thus be defined only for the solid, where we find it to be around 7%. At sufficiently large polydispersity, fractionation into several solid phases can occur, consistent with previous approximate calculations; we find, in addition, that coexistence of several solids with a fluid phase is also possible.

  10. Phase-field model of oxidation: Equilibrium

    NASA Astrophysics Data System (ADS)

    Sherman, Q. C.; Voorhees, P. W.

    2017-03-01

    A phase-field model of an oxide relevant to corrosion resistant alloys for film thicknesses below the Debye length LD, where charge neutrality in the oxide does not occur, is formulated. The phase-field model is validated in the Wagner limit using a sharp interface Gouy-Chapman model for the electrostatic double layer. The phase-field simulations show that equilibrium oxide films below the Wagner limit are charged throughout due to their inability to electrostatically screen charge over the length of the film, L . The character of the defect and charge distribution profiles in the oxide vary depending on whether reduced oxygen adatoms are present on the gas-oxide interface. The Fermi level in the oxide increases for thinner films, approaching the Fermi level of the metal in the limit L /LD→0 , which increases the driving force for adsorbed oxygen reduction at the gas-oxide interface.

  11. Thermal fluctuations and phase equilibrium in microemulsions

    NASA Astrophysics Data System (ADS)

    Golubović, Leonardo; Lubensky, T. C.

    1990-04-01

    We construct a simple coarse-grained model and use it to study global phase behavior of ensembles of fluid membranes. This model is an improvement over previous phenomenological models of Talmon and Prager, de Gennes and co-workers, Widom, and more recently of Safran and co-workers. We show here that there is necessarily an entropic contribution, missing in all previous theories, to the coarse-grained free energy whose physical origin is the same as that of Helfrich's entropic repulsion stabilizing lamellar multimembrane phases. The inclusion of this steric entropy in the previous phenomenological studies is essential if they are to be used in the study of periodic phases in microemulsions and analogous surfactant systems. Thus the model enables us to obtain, in a unified way, phase diagrams containing both uniform and periodic phases in microemulsions and in binary systems of nonionic surfactant bilayers in a single solvent. Mean-field theory for this model yields rich phase diagrams containing dilute, random bicontinuous, lamellar, columnar, and an antiferromagnetic phase that may correspond to a droplet crystal or to a ``plumber's nightmare.'' The model depends on two phenomenological parameters related to strengths of steric entropy and softening of membrane rigidity. We discuss the sensitivity of phase diagrams (in particular the existence of the middle-phase microemulsion) to values of these parameters. We find that the existence of a realistic middle phase (with structural length scale much larger than the molecular length scale) crucially depends on the presence of steric entropy. The model reproduces the experimentally observed four-phase equilibria among uniform phases in microemulsions.

  12. Thermal fluctuations and phase equilibrium in microemulsions

    SciTech Connect

    Golubovic, L. Solid State Center, University of California, Los Angeles, Los Angeles, CA ); Lubensky, T.C. )

    1990-04-15

    We construct a simple coarse-grained model and use it to study global phase behavior of ensembles of fluid membranes. This model is an improvement over previous phenomenological models of Talmon and Prager, de Gennes and co-workers, Widom, and more recently of Safran and co-workers. We show here that there is necessarily an entropic contribution, missing in all previous theories, to the coarse-grained free energy whose physical origin is the same as that of Helfrich's entropic repulsion stabilizing lamellar multimembrane phases. The inclusion of this steric entropy in the previous phenomenological studies is essential if they are to be used in the study of periodic phases in microemulsions and analogous surfactant systems. Thus the model enables us to obtain, in a unified way, phase diagrams containing both uniform and periodic phases in microemulsions and in binary systems of nonionic surfactant bilayers in a single solvent. Mean-field theory for this model yields rich phase diagrams containing dilute, random bicontinuous, lamellar, columnar, and an antiferromagnetic phase that may correspond to a droplet crystal or to a plumber's nightmare.'' The model depends on two phenomenological parameters related to strengths of steric entropy and softening of membrane rigidity. We discuss the sensitivity of phase diagrams (in particular the existence of the middle-phase microemulsion) to values of these parameters. We find that the existence of a realistic middle phase (with structural length scale much larger than the molecular length scale) crucially depends on the presence of steric entropy. The model reproduces the experimentally observed four-phase equilibria among uniform phases in microemulsions.

  13. The deconfining phase transition in and out of equilibrium

    NASA Astrophysics Data System (ADS)

    Bazavov, Oleksiy

    Recent experiments carried out at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory provide strong evidence that a matter can be driven from a confined, low-temperature phase, observed in our every day world into a deconfined high-temperature phase of liberated quarks and gluons. The equilibrium and dynamical properties of the deconfining phase transition are thus of great theoretical interest, since they also provide an information about the first femtoseconds of the evolution of our Universe, when the hot primordial soup while cooling has undergone a chain of phase transitions. The aspects of the deconfining phase transition studied in this work include: the dynamics of the SU(3) gauge theory after the heating quench (which models rapid heating in the heavy-ion collisions), equilibrium properties of the phase transition in the SU(3) gauge theory with boundaries at low temperature (small volumes at RHIC suggest that boundary effects cannot be neglected and periodic boundary conditions normally used in lattice simulations do not correspond to the experimental situation), and a study of the order of the transition in U(1) gauge theory.

  14. Phase equilibrium in Mg-Cu-Y

    NASA Astrophysics Data System (ADS)

    Mezbahul-Islam, Mohammad; Medraj, Mamoun

    2013-10-01

    Magnesium-based bulk metallic glasses (BMG) have potential in applications ranging from biomedical to sports equipment and the Mg-Cu-Y system offers some of the most promising alloys. Phase relations and ternary solubility of the binary and ternary compounds of this system have been experimentally investigated. The Isothermal section of Mg-Cu-Y system at 673 K for the entire composition range has been constructed. Phase relations in the Cu-rich (>66 at.% Cu) region of the Mg-Cu-Y system has been determined for the first time. The homogeneity range of three ternary compounds has been determined. Solidifications behavior of several key alloys have been discussed based on the differential scanning calorimetry (DSC) experiments and thermodynamic calculations. Extensive analysis of the DSC curves has been carried out to relate them to the corresponding phase transformation reactions and temperatures. Some of the most promising metallic glass forming regions have been analyzed using thermodynamic calculations.

  15. Near-equilibrium polymorphic phase transformations in Praseodymium under dynamic compression

    SciTech Connect

    Bastea, M; Reisman, D

    2007-02-12

    We report the first experimental observation of sequential, multiple polymorphic phase transformations occurring in Praseodymium dynamically compressed using a ramp wave. The experiments also display the signatures of reverse transformations occuring upon pressure release and reveal the presence of small hysteresys loops. The results are in very good agreement with equilibrium hydrodynamic calculations performed using a thermodynamically consistent, multi-phase equation of state for Praseodymium, suggesting a near-equilibrium transformation behavior.

  16. Experimental determination of thermodynamic equilibrium in biocatalytic transamination.

    PubMed

    Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M

    2012-08-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics.

  17. Non-equilibrium phase transitions in a liquid crystal.

    PubMed

    Dan, K; Roy, M; Datta, A

    2015-09-07

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min(-1), consistent with a glass transition, a clear peak for β ≤ 5 K min(-1) and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  18. Non-equilibrium phase transitions in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  19. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    SciTech Connect

    Shashurin, A.; Keidar, M.

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  20. Evaporation from Soils Under Thermal Boundary Conditions: Experimental and Modeling Investigation to Compare Equilibrium and Non-Equilibrium Based Approaches

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.

    2010-12-01

    experimental data. The non-equilibrium approach yielded good agreement with the experimental results, validating the hypothesis that transport in the gas phase is better suited to be modeled with non-equilibrium liquid/gas phase change for highly transient field conditions where the thermal conditions at the land-atmosphere interface are constantly changing. This knowledge is applicable to many current environmental problems to include the simulation of contaminant transport and volatilization in the shallow subsurface and water content fluctuation in the vadose zone interacting with the atmosphere.

  1. Equilibrium and non-equilibrium cluster phases in colloids with competing interactions.

    PubMed

    Mani, Ethayaraja; Lechner, Wolfgang; Kegel, Willem K; Bolhuis, Peter G

    2014-07-07

    The phase behavior of colloids that interact via competing interactions - short-range attraction and long-range repulsion - is studied by computer simulation. In particular, for a fixed strength and range of repulsion, the effect of the strength of an attractive interaction (ε) on the phase behavior is investigated at various colloid densities (ρ). A thermodynamically stable equilibrium colloidal cluster phase, consisting of compact crystalline clusters, is found below the fluid-solid coexistence line in the ε-ρ parameter space. The mean cluster size is found to linearly increase with the colloid density. At large ε and low densities, and at small ε and high densities, a non-equilibrium cluster phase, consisting of elongated Bernal spiral-like clusters, is observed. Although gelation can be induced either by increasing ε at constant density or vice versa, the gelation mechanism is different in either route. While in the ρ route gelation occurs via a glass transition of compact clusters, gelation in the ε route is characterized by percolation of elongated clusters. This study both provides the location of equilibrium and non-equilibrium cluster phases with respect to the fluid-solid coexistence, and reveals the dependencies of the gelation mechanism on the preparation route.

  2. Phase Equilibrium Investigations of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Grove, T. L.

    1997-01-01

    This grant provided funds to carry out experimental studies designed to illuminate the conditions of melting and chemical differentiation that has occurred in planetary interiors. Studies focused on the conditions of mare basalt generation in the moon's interior and on processes that led to core formation in the Shergottite Parent Body (Mars). Studies also examined physical processes that could lead to the segregation of metal-rich sulfide melts in an olivine-rich solid matrix. The major results of each paper are discussed below and copies of the papers are attached as Appendix I.

  3. Microrheology close to an equilibrium phase transition

    SciTech Connect

    Reinhardt, J.; Scacchi, A.; Brader, J. M.

    2014-04-14

    We investigate the microstructural and microrheological response to a tracer particle of a two-dimensional colloidal suspension under thermodynamic conditions close to a liquid-gas phase boundary. On the liquid side of the binodal, increasing the velocity of the (repulsive) tracer leads to the development of a pronounced cavitation bubble, within which the concentration of colloidal particles is strongly depleted. The tendency of the liquid to cavitate is characterized by a dimensionless “colloidal cavitation” number. On the gas side of the binodal, a pulled (attractive) tracer leaves behind it an extended trail of colloidal liquid, arising from downstream advection of a wetting layer on its surface. For both situations the velocity dependent friction is calculated.

  4. Phase Transitions and Equilibrium Measures in Random Matrix Models

    NASA Astrophysics Data System (ADS)

    Martínez-Finkelshtein, A.; Orive, R.; Rakhmanov, E. A.

    2015-02-01

    The paper is devoted to a study of phase transitions in the Hermitian random matrix models with a polynomial potential. In an alternative equivalent language, we study families of equilibrium measures on the real line in a polynomial external field. The total mass of the measure is considered as the main parameter, which may be interpreted also either as temperature or time. Our main tools are differentiation formulas with respect to the parameters of the problem, and a representation of the equilibrium potential in terms of a hyperelliptic integral. Using this combination we introduce and investigate a dynamical system (system of ODEs) describing the evolution of families of equilibrium measures. On this basis we are able to systematically derive a number of new results on phase transitions, such as the local behavior of the system at all kinds of phase transitions, as well as to review a number of known ones.

  5. Non-equilibrium phase transitions of aqueous starch systems.

    PubMed

    Biliaderis, C G

    1991-01-01

    Experimental data on phase transitions of aqueous starch systems, obtained by thermal analysis (TA) methods, are often indicative of irreversible (non-equilibrium) processes involving various metastable states. The thermal responses usually reflect composite effects from contributions of several opposing processes [e.g. annealing, melting, and (re)crystallization] taking place concurrently during TA. It is important, therefore, to recognize the temperature- and time-dependence of the structure of starch materials, if non-isothermal techniques are used for their characterization. Identifying the pertinent morphological features (supermolecular structure) of each particular system, as well as recognizing the role of water as a plasticizer which depresses the Tg of the amorphous domains, is essential to predict heat/moisture-mediated transformations of this biopolymer. The phase transition behaviour of granular starch and amylose-lipid complexes, as revealed by Differential Scanning Calorimetry and Thermomechanical Analysis, and the metastability of these materials are considered herein with respect to the effects of water and low molecular weight solutes.

  6. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  7. Nematic-like stable glasses without equilibrium liquid crystal phases.

    PubMed

    Gómez, Jaritza; Gujral, Ankit; Huang, Chengbin; Bishop, Camille; Yu, Lian; Ediger, M D

    2017-02-07

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ∼10(5) times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  8. Nematic-like stable glasses without equilibrium liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Gómez, Jaritza; Gujral, Ankit; Huang, Chengbin; Bishop, Camille; Yu, Lian; Ediger, M. D.

    2017-02-01

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ˜105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  9. Modeling of gamma/gamma-prime phase equilibrium in the nickel-aluminum system

    NASA Technical Reports Server (NTRS)

    Sanchez, J. M.; Barefoot, J. R.; Jarrett, R. N.; Tien, J. K.

    1984-01-01

    A theoretical model is proposed for the determination of phase equilibrium in alloys, taking into consideration dissimilar lattice parameters. Volume-dependent pair interactions are introduced by means of phenomenological Lennard-Jones potentials and the configurational entropy of the system is treated in the tetrahedron approximation of the cluster variation method. The model is applied to the superalloy-relevant, nickel-rich, gamma/gamma-prime phase region of the Ni-Al phase diagram. The model predicts reasonable values for the lattice parameters and the enthalpy of formation as a function of composition, and the calculated phase diagram closely approximates the experimental diagram.

  10. Liquid-liquid phase equilibrium of methanol + ethylbenzene + isooctane + ethanol system at 303 K

    NASA Astrophysics Data System (ADS)

    Gramajo, Mónica B.; Veliz, Jonatan H.; Cases, Alicia M.

    2017-03-01

    The phase equilibrium data for methanol + ethanol + isooctane systems were obtained at 303.15 K. Data for methanol + ethylbenzene + isooctane system were taken from literature. The effect of ethanol addition on the system equilibrium was investigated at the same temperature. The distribution curves for ternary and quaternary system was analyzed. The experimental results for ternary systems were correlated with UNIQUAC and NRTL equations. For the ternary systems studied here, the NRTL equation is more accurate than the UNIQUAC. The equilibrium data for the three ternary systems were used to determine interactions parameters for the UNIQUAC equation. For the quaternary system, the experimental data can be fitted more accurately to UNIQUAC equation than by the UNIFAC method.

  11. Phase-field-crystal models and mechanical equilibrium

    NASA Astrophysics Data System (ADS)

    Heinonen, V.; Achim, C. V.; Elder, K. R.; Buyukdagli, S.; Ala-Nissila, T.

    2014-03-01

    Phase-field-crystal (PFC) models constitute a field theoretical approach to solidification, melting, and related phenomena at atomic length and diffusive time scales. One of the advantages of these models is that they naturally contain elastic excitations associated with strain in crystalline bodies. However, instabilities that are diffusively driven towards equilibrium are often orders of magnitude slower than the dynamics of the elastic excitations, and are thus not included in the standard PFC model dynamics. We derive a method to isolate the time evolution of the elastic excitations from the diffusive dynamics in the PFC approach and set up a two-stage process, in which elastic excitations are equilibrated separately. This ensures mechanical equilibrium at all times. We show concrete examples demonstrating the necessity of the separation of the elastic and diffusive time scales. In the small-deformation limit this approach is shown to agree with the theory of linear elasticity.

  12. Thermochemical study of the liquid phase equilibrium reaction of dihalomethanes by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dávalos, J. Z.; Lago, A. F.; Baer, Tomas

    2005-06-01

    The liquid phase equilibrium reaction of dihalomethanes (2CH 2BrI ⇄ CH 2Br 2 + CH 2I 2) has been investigated by NMR spectroscopy, as a function of the temperature and initial concentration of the reactants. The equilibrium constants have been experimentally determined for this reaction from the profile of the NMR spectra. Heat capacity measurements were carried out in the temperature range from 293.15 to 353.15 K by differential scanning calorimetry. The results relate the heats of formation of the three compounds and confirm the recently determined heat of formation of CH 2I 2 of 107.5 kJ mol -1.

  13. Constraints on Contact Angles for Multiple Phases in Thermodynamic Equilibrium.

    PubMed

    Blunt, Martin J.

    2001-07-01

    For three or more fluid phases in thermodynamic equilibrium and in contact with a solid surface, the Young equation can be used to find relations between the contact angles for different pairs of fluids. For an n-fluid-phase system, n(n-1)/2 contact angles can be defined, but there are (n-1)(n-2)/2 constraints between them, leaving only n-1 independent values of the contact angle. These constraints are very powerful in limiting and determining possible types of wetting behavior. The consequences are discussed for three- and four-phase flow. They have important applications for the understanding of gas injection processes in petroleum reservoirs. Copyright 2001 Academic Press.

  14. Phase diagram of KHF2 and non-equilibrium effects

    NASA Technical Reports Server (NTRS)

    Hobson, M. C.; Kellner, J. D.

    1978-01-01

    The equilibrium diagram for the KHF2-H2O system was constructed from cooling and heating curves for the compositions between 5 wt% and 40 wt% KHF2 and the results are shown. The phase diagrams shown is typical of that of a two component system with miscible liquid phases and whole solid phases consist of pure components. A eutectic point was found at approximately 15% KHF2 which remains completely liquid down to a temperature of -9.0 C. No hydrate formation was observed and no anomalous behavior such as the occurrence of solid transitions or metastable states was observed. The effect of rapid freezing on the equilibrium diagram did not appear, and cooling curves exhibited only one halt. Also, at rapid freezing rates, the supercooling of the solutions was smaller than those observed at the slow cooling rates. The existence of a eutectic composition and the slow rate of dissolution of the salt are used to interpret heat absorption behavior in practical applications of the KHF2-H2O system.

  15. Uniformity of the phase space and fluctuations in thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Majka, Arkadiusz; Wiślicki, Wojciech

    2003-05-01

    General relations are found between the measure of the uniformity of distributions on the phase space and the first moments and correlations of extensive variables for systems close to thermal equilibrium. The role played by the parameter of the Renyi entropy for the analysis of their fluctuations and correlations is studied. Analytical results are verified and illustrated by direct simulations of quantum systems of ideal fermions and bosons. Problems of finite statistics, usual in experiments and simulations, are addressed and discussed and solved by finding unbiased estimators for Renyi entropies and uniformities.

  16. Optical Properties in Non-equilibrium Phase Transitions

    SciTech Connect

    Ao, T; Ping, Y; Widmann, K; Price, D F; Lee, E; Tam, H; Springer, P T; Ng, A

    2006-01-05

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.

  17. Effect of an equilibrium phase transition on multiphase transport in relativistic heavy ion collisions

    SciTech Connect

    Yu Meiling; Du Jiaxin; Liu Lianshou

    2006-10-15

    The hadronization scheme for parton transport in relativistic heavy ion collisions is considered in detail. It is pointed out that the traditional scheme for particles being freezed out one by one leads to serious problem on unreasonable long lifetime of partons. A collective phase transition following a supercooling is implemented in a simple way. It turns out that the modified model with a sudden phase transition is able to reproduce the experimental longitudinal distributions of final state particles better than the original one does. The encouraging results indicate that equilibrium phase transition should be taken into proper account in parton transport models for relativistic heavy ion collisions.

  18. Interpretation of high-temperature tensile properties by thermodynamically calculated equilibrium phase diagrams of heat-resistant austenitic cast steels

    NASA Astrophysics Data System (ADS)

    Jung, Seungmun; Sohn, Seok Su; Choi, Won-Mi; Lee, Byeong-Joo; Oh, Yong-Jun; Jang, Seongsik; Lee, Sunghak

    2017-01-01

    High-temperature tensile properties of three heat-resistant austenitic cast steels fabricated by varying W, Mo, and Al contents were interpreted by thermodynamically calculated equilibrium phase diagrams of austenite, ferrite, and carbides as well as microstructural analyses. A two-step calculation method was adopted to cast steel microstructures below the liquid dissolution temperature because the casting route was not an equilibrium state. Thermodynamically calculated fractions of equilibrium phases were well matched with experimentally measured fractions. Ferrites existed at room and high temperatures in both equilibrium phase diagrams and actual microstructures, which has not been reported in previous researches on austenitic cast steels. In the W2Mo1Al1 steel, 38% and 12% of ferrite existed in the equilibrium phase diagram and actual microstructure, respectively, and led to the void initiation and coalescence at ferrites and consequently to the serious deterioration of high-temperature strengths. The present equilibrium phase diagrams, besides detailed microstructural analyses, effectively evaluated the high-temperature performance by estimating high-temperature equilibrium phases, and provided an important idea on whether ferrite were formed or not in the heat-resistant austenitic cast steels.

  19. Off-equilibrium photon production during the chiral phase transition

    SciTech Connect

    Michler, Frank; Hees, Hendrik van; Dietrich, Dennis D.; Leupold, Stefan; Greiner, Carsten

    2013-09-15

    In the early stage of ultrarelativistic heavy-ion collisions chiral symmetry is restored temporarily. During this so-called chiral phase transition, the quark masses change from their constituent to their bare values. This mass shift leads to the spontaneous non-perturbative creation of quark–antiquark pairs, which effectively contributes to the formation of the quark–gluon plasma. We investigate the photon production induced by this creation process. We provide an approach that eliminates possible unphysical contributions from the vacuum polarization and renders the resulting photon spectra integrable in the ultraviolet domain. The off-equilibrium photon numbers are of quadratic order in the perturbative coupling constants while a thermal production is only of quartic order. Quantitatively, we find, however, that for the most physical mass-shift scenarios and for photon momenta larger than 1 GeV the off-equilibrium processes contribute less photons than the thermal processes. -- Highlights: •We investigate first-order photon emission arising from the chiral mass shift. •We provide an ansatz eliminating possible unphysical vacuum contributions. •Our ansatz leads to photon spectra being integrable in the ultraviolet domain.

  20. Phase equilibrium in coal liquefaction processes. Final report

    SciTech Connect

    Chao, K.C.

    1984-08-01

    Gas-liquid equilibrium data have been determined in simulation of coal liquefaction process conditions in mixtures of light gases + heavy hydrocarbons to add to the accumulated data previously reported in EPRI AP-1593. The mixture systems newly investigated are: methane + 9,10 dihydrophenanthrene; hydrogen + methane + 1-methylnaphthalene; hydrogen + carbon dioxide + tetralin; hydrogen + carbon dioxide + 1-methynaphthalene; hydrogen + carbon dioxide + quinoline; nitrogen + tetralin, + n-hexadecane, + 1-methylnaphthalene, + quinoline, and + m-cresol. Correlations for the solubilities of methane and carbon dioxide have been developed from the data based on the use of solubility parameter. The solubility of hydrogen was correlated in EPRI AP-1593. Two equations of state are developed for the description of both the gas solubility and the vaporization of the heavy oil. The Chain-of-Rotators (COR) equation of state explicitly accounts for the rotational molecular motion contribution to the pressure of a fluid. The Cubic-Chain-of-Rotators (CCOR) equation is obtained upon simplifying the COR equation. Interaction constants in the CCOR equation have been determined for the light gases with the heavy hydrocarbons based on data from this project, and the constants are correlated. Equilibrium flash vaporization has been experimentally determined for three coal liquids and for their mixtures with hydrogen. The data are correlated with the CCOR equation of state. 74 figures, 46 tables.

  1. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen: phase equilibrium measurements.

    PubMed

    Duarte, Ana Rita C; Shariati, Alireza; Rovetto, Laura J; Peters, Cor J

    2008-02-21

    In this experimental phase equilibrium study, we show for the first time that it is possible to stabilize structure sH of hydrogen clathrate hydrate with the help of some selected promoters. It was established that the formation pressures of these systems are significantly higher than that of structure sII of hydrogen clathrate hydrate when tetrahydrofuran (THF) is used as a promoter. Although no experimental evidence is available yet, it is estimated that the hydrogen storage capacity of structure sH can be as high as 1.4 wt % of H2, which is about 40% higher compared to the hydrogen storage capacity in structure sII.

  2. Phase equilibrium data for development of correlations for coal fluids

    SciTech Connect

    Robinson, R.L. Jr.; Gasem, K.A.M.; Darwish, N.A.; Raff, A.M.

    1991-02-01

    The overall objective of the authors' work is to develop accurate predictive methods for representations of vapor-liquid equilibria in systems encountered in coal-conversion processes. The objectives pursued in the present project include: (1) Measurements of binary vapor-liquid phase behavior data for selected solute gases (e.g., C{sub 2}H{sub 6}, CH{sub 4}) in a series of paraffinic, naphthenic, and aromatic hydrocarbon solvents to permit evaluations of interaction parameters in models for phase behavior. Solubilities of the gases in the liquid phase have been determined. (2) Evaluation of existing equations of state and other models for representations of phase behavior in systems of the type studied experimentally; development of new correlation frameworks as needed. (3) Generalization of the interaction parameters for the solutes studied to a wide spectrum of heavy solvents; presentation of final results in formats useful in the design/optimization of coal liquefaction processes.

  3. Phase equilibrium modeling for high temperature metallization on GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Chung, M. A.; Davison, J. E.; Smith, S. R.

    1991-01-01

    Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.

  4. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

    PubMed

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael

    2013-06-13

    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database.

  5. Phase equilibrium and intermediate phases in the Eu-Sb system

    SciTech Connect

    Abdusalyamova, M.N.

    2011-10-15

    Rapid heating rate thermal analysis, X-ray diffraction, fluorescence spectrometry, and differential dissolution method were used to study the high-temperature phase equilibrium in the Eu-Sb system within the composition range between 37 and 96 at% Sb. The techniques were effective in determination of the vapor-solid-liquid equilibrium since intermediate phases except Eu{sub 4}Sb{sub 3} evaporated incongruently after melting. A thermal procedure was developed to determine the liquidus and solidus lines of the T-x diagram. Six stable phases were identified: two phases, EuSb{sub 2} and Eu{sub 4}Sb{sub 3}, melt congruently at 1045{+-}10 deg. C and 1600{+-}15 deg. C, the Eu{sub 2}Sb{sub 3}, Eu{sub 11}Sb{sub 10}, Eu{sub 5}Sb{sub 4}, and Eu{sub 5}Sb{sub 3} phases melt incongruently at 850{+-}8 deg. C, 950{+-}10 deg. C, 1350{+-}15 deg. C, and 1445{+-}15 deg. C, respectively. The exact composition shifting of Sb-rich decomposable phases towards Eu{sub 4}Sb{sub 3}, the most refractory compound, was determined. The topology of the Eu-Sb phase diagram was considered together with that of the Yb-Sb system. - Graphical abstract: The high-temperature range of the T-x phase diagram for the Eu-Sb system. Highlights: > The phase relations in the Eu-Sb system were studied over a large composition and temperature scale. > The liquidus and solidus lines of the T-x diagram were well established using effective techniques. > In the system, six binary phases are stable and they melt incongruently except EuSb{sub 2} and Eu{sub 4}Sb{sub 3}. > Incongruent evaporation was found to be typical of all the phases besides Eu{sub 4}Sb{sub 3}.

  6. Trace element partitioning behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation.

    PubMed

    Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-10-01

    Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements.

  7. Equilibrium and non-equilibrium dynamics of the dilute lamellar phase

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    1992-07-01

    A model for the dynamics of the sterically stabilized dilute lamellar phase is constructed and studied. The model consists of a stack of flexible fluid sheets, with excluded volume, separated by macroscopic layers of solvent. The dynamics of small fluctuations of the sheets about their mean positions is found to have two distinct short-wavelength regimes in which the frequency ω depends on the wavenumber q in an unusual manner. One is a single-membrane Zimm mode, ω ≈ - iq3, while the other is a “red-blood-cell mode”, ω ≈ - iq6. These modes give rise to fluctuation corrections for the viscosities of the system, going as ω {-1}/{3} and ω {-2}/{3}, respectively. In addition, it is shown that a sufficiently rapid shear flow with velocity and gradient in the plane of the layers causes a transition into a state where regions of reduced layer spacing co-exist with regions devoid of any layer material. The critical shear-rate for this transition should go as (layer spacing) -3. Possible experimental tests of these predictions are discussed.

  8. Disposal phase experimental program plan

    SciTech Connect

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  9. Phase equilibrium constraints on the howardite-eucrite-diogenite association

    NASA Technical Reports Server (NTRS)

    Longhi, John; Pan, Vivian

    1988-01-01

    Model determinations of fractional crystallization and equilibrium partial melting in the 0-10-kbar range have been performed for a series of compositions relevant to diogenite and eucrite petrogenesis. Olivine is found to react with diogenite parent liquids along the plagioclase-absent olivine/low-Ca pyroxene liquidus boundary under conditions of both fractional and equilibrium crystallization up to about 2 kbar. Olivine also reacts with eucritic liquids saturated with plagioclase and low-Ca pyroxene to pressures in excess of 2 kbar. The ability of simple fractional crystallization at 2 kbar to account for mineralogical and chemical features of the diogenite-eucrite association is discussed.

  10. Student Understanding of Liquid-Vapor Phase Equilibrium

    ERIC Educational Resources Information Center

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  11. Experimental compressive phase space tomography

    PubMed Central

    Tian, Lei; Lee, Justin; Oh, Se Baek; Barbastathis, George

    2012-01-01

    Phase space tomography estimates correlation functions entirely from snapshots in the evolution of the wave function along a time or space variable. In contrast, traditional interferometric methods require measurement of multiple two–point correlations. However, as in every tomographic formulation, undersampling poses a severe limitation. Here we present the first, to our knowledge, experimental demonstration of compressive reconstruction of the classical optical correlation function, i.e. the mutual intensity function. Our compressive algorithm makes explicit use of the physically justifiable assumption of a low–entropy source (or state.) Since the source was directly accessible in our classical experiment, we were able to compare the compressive estimate of the mutual intensity to an independent ground–truth estimate from the van Cittert–Zernike theorem and verify substantial quantitative improvements in the reconstruction. PMID:22513541

  12. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-09-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

  13. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    PubMed Central

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-01-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties. PMID:27609305

  14. Effect of organic matter on CO(2) hydrate phase equilibrium in phyllosilicate suspensions.

    PubMed

    Park, Taehyung; Kyung, Daeseung; Lee, Woojin

    2014-06-17

    In this study, we examined various CO2 hydrate phase equilibria under diverse, heterogeneous conditions, to provide basic knowledge for successful ocean CO2 sequestration in offshore marine sediments. We investigated the effect of geochemical factors on CO2 hydrate phase equilibrium. The three-phase (liquid-hydrate-vapor) equilibrium of CO2 hydrate in the presence of (i) organic matter (glycine, glucose, and urea), (ii) phyllosilicates [illite, kaolinite, and Na-montmorillonite (Na-MMT)], and (iii) mixtures of them was measured in the ranges of 274.5-277.0 K and 14-22 bar. Organic matter inhibited the phase equilibrium of CO2 hydrate by association with water molecules. The inhibition effect decreased in the order: urea < glycine < glucose. Illite and kaolinite (unexpandable clays) barely affected the CO2 hydrate phase equilibrium, while Na-MMT (expandable clay) affected the phase equilibrium because of its interlayer cations. The CO2 hydrate equilibrium conditions, in the illite and kaolinite suspensions with organic matter, were very similar to those in the aqueous organic matter solutions. However, the equilibrium condition in the Na-MMT suspension with organic matter changed because of reduction of its inhibition effect by intercalated organic matter associated with cations in the Na-MMT interlayer.

  15. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    SciTech Connect

    Choi, Jeong

    2011-01-01

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  16. Phase Segregation at the Liquid-Air Interface Prior to Liquid-Liquid Equilibrium.

    PubMed

    Bermúdez-Salguero, Carolina; Gracia-Fadrique, Jesús

    2015-08-13

    Binary systems with partial miscibility segregate into two liquid phases when their overall composition lies within the interval defined by the saturation points; out of this interval, there is one single phase, either solvent-rich or solute-rich. In most systems, in the one-phase regions, surface tension decreases with increasing solute concentration due to solute adsorption at the liquid-air interface. Therefore, the solute concentration at the surface is higher than in the bulk, leading to the hypothesis that phase segregation starts at the liquid-air interface with the formation of two surface phases, before the liquid-liquid equilibrium. This phenomenon is called surface segregation and is a step toward understanding liquid segregation at a molecular level and detailing the constitution of fluid interfaces. Surface segregation of aqueous binary systems of alkyl acetates with partial miscibility was theoretically demonstrated by means of a thermodynamic stability test based on energy minimization. Experimentally, the coexistence of two surface regions was verified through Brewster's angle microscopy. The observations were further interpreted with the aid of molecular dynamics simulations, which show the diffusion of the acetates from the bulk toward the liquid-air interface, where acetates aggregate into acetate-rich domains.

  17. An experimental study of trace element partitioning between perovskite, hibonite and melt: Equilibrium values

    NASA Technical Reports Server (NTRS)

    Kennedy, A. K.; Lofgren, G. E.; Wasserburg, G. J.

    1993-01-01

    The presence of perovskite (CATiO3) and hibonite (Ca Al12O19) within different regions of Calcium-, Aluminum-rich Inclusions (CAI) and the trace element concentrations of these minerals in each circumstance, constrain models of precursor formation, nebular condensation, the thermal history of inclusions with relict perovskite and hibonite, and the formation of the Wark-Lovering rim. At present mineral/melt partition coefficient data for hibonite are limited to a few elements in simple experimental systems, or to those derived from hibonite-glass pairs in hibonite/glass microspherules. Similarly, there is only limited data on perovskite D that are applicable to meteorite compositions. Apart from the importance of partitioning studies to meteorite research, D values also are invaluable in the development of thermodynamic models, especially when data is available for a large number of elements that have different ionic charge and radii. In addition, study of the effect of rapid cooling on partitioning is crucial to our understanding of meteorite inclusions. To expand our knowledge of mineral/melt D for perovskite and hibonite, a study was instituted where D values are obtained in both equilibrium and dynamic cooling experiments. As an initial phase of this study mineral/melt D was measured for major elements (Ca, Mg, Al, Ti, and Si), 15 rare earth elements (La-Lu) and 8 other elements (Ba, Sr, U, Th, Nb, Zr, Hf, and Ge) in perovskite and hibonite grown under equilibrium conditions, in bulk compositions that are respectively similar to Compact Type A (CTA) CAI and to a hibonite/glass microspherule. Experimental mixes were doped with REE at 20-50x chondritic (ch) abundances, Ba at 50 ppm, Sr, Hf, Nb, and Zr at 100 ppm and, U and Th at 200 ppm. Trace element abundances were measured with the PANURGE ion microprobe. Major element compositions were obtained by electron microprobe analysis.

  18. On the role of ethenol in equilibrium gas-phase ethanal

    NASA Astrophysics Data System (ADS)

    Slanina, Zdeněk

    1984-03-01

    The ethenol content in gas-phase ethanal has been evaluated under equilibrium conditions within a broad temperature interval, and it has been shown that the content thresholds of 1% and 1% can be crossed at about 650 and 1000 K, respectively. At moderate and higher temperatures the presence of ethenol is manifested by contributions to thermodynamic functions of the equilibrium gas-phase ethanal which can be even higher than the usual anharmonicity and non-rigidity corrections.

  19. Evaporation from soils under diurnal boundary conditions: Experimental and modeling investigation to evaluate Non-equilibrium-based approaches

    NASA Astrophysics Data System (ADS)

    Trautz, Andrew; Smits, Kathleen; Cihan, Abdullah; Illangasekare, Tissa

    2013-04-01

    Evaporation from bare soil is a key component of the hydrologic cycle and the process primarily responsible for governing water and energy exchanges between the land and atmosphere. Despite its importance, there is still a great deal of uncertainty associated with our current understanding of this complex multiphase phenomenon. A common approach when modeling the movement of liquid water, water vapor and heat in the soil immediately below the land-atmosphere interface is to assume that water vapor concentration in air is always in equilibrium with liquid water. However, this equilibrium assumption is called into question by experiments about liquid/gas phase change in porous media suggesting that the equilibrium establishment is not instantaneous; a volatilization or condensation time is observed at the macroscopic scale under certain conditions. Introduction of such a non-equilibrium mass transfer relationship is based on the Hertz-Knudsen equation (HKE) derived from the kinetic theory of gases. Multiple formulations have been presented to represent the rate of phase change between water and vapor, many relying on empirical fitting parameters due to limited experimental data. The purpose of this work is to perform an unbiased comparison between various conceptual and mathematical formulations for non-equilibrium phase change on evaporation and develop appropriate numerical models to be used in simulations. The key to such a comparison is the availability of accurate data. As such data at the scale of interest is not possible to obtain in field settings, a unique two-dimensional cell apparatus was developed. The test cell was equipped with a network of sensors for automated and continuous monitoring of soil moisture, soil and air temperature and relative humidity, and wind velocity to generate precision data. A fully-coupled numerical model to solve the governing equations for heat, liquid water and water vapor transport in soil was developed. The code implements a

  20. Experimental measurements of a non-equilibrium thermal boundary layer flow

    NASA Astrophysics Data System (ADS)

    Biles, Drummond; Ebadi, Alireza; Whie, Chris

    2016-11-01

    Data from a newly constructed non-equilibrium and thermal boundary layer wind tunnel is presented. The bottom wall of the tunnel is a sectioned-wall design composed of twelve aluminum 6061 plates with resistive heaters adhered to their underside. Each section is heated and controlled using independent feedback loop controllers. The freestream temperature is controlled by an upstream array of resistive heaters and a feedback controller. Experimental data with strong perturbations that produce non-equilibrium boundary layer flow behaviors is presented. Data for ZPG conditions are provided for validation purposes, and the effects of non-equilibrium behaviors on the transport of momentum and heat are discussed.

  1. Phase equilibrium of methane and nitrogen at low temperatures - Application to Titan

    NASA Technical Reports Server (NTRS)

    Kouvaris, Louis C.; Flasar, F. M.

    1991-01-01

    Since the vapor phase composition of Titan's methane-nitrogen lower atmosphere is uniquely determined as a function of the Gibbs phase rule, these data are presently computed via integration of the Gibbs-Duhem equation. The thermodynamic consistency of published measurements and calculations of the vapor phase composition is then examined, and the saturated mole fraction of gaseous methane is computed as a function of altitude up to the 700-mbar level. The mole fraction is found to lie approximately halfway between that computed from Raoult's law, for a gas in equilibrium with an ideal solution of liquid nitrogen and methane, and that for a gas in equilibrium with pure liquid methane.

  2. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  3. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage.

    PubMed

    Ke, Jie; Parrott, Andrew J; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C; Poliakoff, Martyn; George, Michael W

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  4. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Ke, Jie; Parrott, Andrew J.; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C.; Poliakoff, Martyn; George, Michael W.

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  5. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    NASA Astrophysics Data System (ADS)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  6. The Sulfur-Iodine Cycle: Process Analysis and Design Using Comprehensive Phase Equilibrium Measurements and Modeling

    SciTech Connect

    Thies, Mark C.; O'Connell, J. P.; Gorensek, Maximilian B.

    2010-01-10

    Of the 100+ thermochemical hydrogen cycles that have been proposed, the Sulfur-Iodine (S-I) Cycle is a primary target of international interest for the centralized production of hydrogen from nuclear power. However, the cycle involves complex and highly nonideal phase behavior at extreme conditions that is only beginning to be understood and modeled for process simulation. The consequence is that current designs and efficiency projections have large uncertainties, as they are based on incomplete data that must be extrapolated from property models. This situation prevents reliable assessment of the potential viability of the system and, even more, a basis for efficient process design. The goal of this NERI award (05-006) was to generate phase-equilibrium data, property models, and comprehensive process simulations so that an accurate evaluation of the S-I Cycle could be made. Our focus was on Section III of the Cycle, where the hydrogen is produced by decomposition of hydroiodic acid (HI) in the presence of water and iodine (I2) in a reactive distillation (RD) column. The results of this project were to be transferred to the nuclear hydrogen community in the form of reliable flowsheet models for the S-I process. Many of the project objectives were achieved. At Clemson University, a unique, tantalum-based, phase-equilibrium apparatus incorporating a view cell was designed and constructed for measuring fluid-phase equilibria for mixtures of iodine, HI, and water (known as HIx) at temperatures to 350 °C and pressures to 100 bar. Such measurements were of particular interest for developing a working understanding of the expected operation of the RD column in Section III. The view cell allowed for the IR observation and discernment of vapor-liquid (VL), liquid-liquid, and liquid-liquid-vapor (LLVE) equilibria for HIx systems. For the I2-H2O system, liquid-liquid equilibrium (LLE) was discovered to exist at temperatures up to 310-315 °C, in contrast to the models and

  7. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Maćkowiak, Sz.; Heyes, D. M.; Dini, D.; Brańka, A. C.

    2016-10-01

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (˜0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential

  8. Dynamic Off-Equilibrium Transition in Systems Slowly Driven across Thermal First-Order Phase Transitions

    NASA Astrophysics Data System (ADS)

    Pelissetto, Andrea; Vicari, Ettore

    2017-01-01

    We study the off-equilibrium behavior of systems with short-range interactions, slowly driven across a thermal first-order transition, where the equilibrium dynamics is exponentially slow. We consider a dynamics that starts in the high-T phase at time t =ti<0 and ends at t =tf>0 in the low-T phase, with a time-dependent temperature T (t )/Tc≈1 -t /ts, where ts is the protocol time scale. A general off-equilibrium scaling (OS) behavior emerges in the limit of large ts. We check it at the first-order transition of the two-dimensional q -state Potts model with q =20 and 10. The numerical results show evidence of a dynamic transition, where the OS functions show a spinodal-like singularity. Therefore, the general mean-field picture valid for systems with long-range interactions is qualitatively recovered, provided the time dependence is appropriately (logarithmically) rescaled.

  9. A Simple System for Observing Dynamic Phase Equilibrium via an Inquiry-Based Laboratory or Demonstration

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Andrew, Julie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    This article describes an activity that can be used as an inquiry-based laboratory or demonstration for either high school or undergraduate chemistry students to provide a basis for understanding both vapor pressure and the concept of dynamic phase equilibrium. The activity includes a simple setup to create a closed system of only water liquid and…

  10. Determination of the experimental equilibrium structure of solid nitromethane using path-integral molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony M.; Habershon, Scott; Morrison, Carole A.; Rankin, David W. H.

    2010-03-01

    Path-integral molecular dynamics (PIMD) simulations with an empirical interaction potential have been used to determine the experimental equilibrium structure of solid nitromethane at 4.2 and 15 K. By comparing the time-averaged molecular structure determined in a PIMD simulation to the calculated minimum-energy (zero-temperature) molecular structure, we have derived structural corrections that describe the effects of thermal motion. These corrections were subsequently used to determine the equilibrium structure of nitromethane from the experimental time-averaged structure. We find that the corrections to the intramolecular and intermolecular bond distances, as well as to the torsion angles, are quite significant, particularly for those atoms participating in the anharmonic motion of the methyl group. Our results demonstrate that simple harmonic models of thermal motion may not be sufficiently accurate, even at low temperatures, while molecular simulations employing more realistic potential-energy surfaces can provide important insight into the role and magnitude of anharmonic atomic motions.

  11. An experimental X band phased array

    NASA Astrophysics Data System (ADS)

    Rao, N. P. R.; Limaye, K. U.; Ramalingam, R. P.; Gangadharan, T. S.; Bhandopadhyay, G.; Deshpande, P. A.

    1983-10-01

    The details of an X band experimental 11 x 11 element Phased Array Antenna of phased lens configuration with a monopulse space feed developed at LRDE are presented. The studies carried and the results obtained on collimation, beam steering, pattern variation with scan, array operation in two-dimensional search, dedicated track and track while scan (TWS) are also given.

  12. Experimental Determination of the Liquidus Surface of the Cu-O-ZnO-CaO System in Equilibrium with Air

    NASA Astrophysics Data System (ADS)

    Xia, Longgong; Liu, Zhihong; Taskinen, Pekka

    2016-12-01

    Phase relationships of the Cu-O-ZnO-CaO system in equilibrium with air ( p tot = 1 atm, p_{{{{O}}2 }} = 0.21 {{atm}} ) have been studied using the equilibration and quenching technique within the temperature range from 1273 K to 1773 K (1000 °C to 1500 °C). The chemical compositions of the molten oxide and solid phases in equilibrium were analyzed by EPMA. The eutectic point in the Cu-O-ZnO-CaO system was found to be 1293 K ± 2 K (1020 °C ± 2 °C) and 0.6785 mole fraction tenorite (`CuO'), 0.1793 mole fraction halite (CaO), and 0.1422 mole fraction wurtzite (ZnO). The results from the present study have been used in constructing the liquidus surface of the Cu-O-ZnO-CaO system. The liquidus surface expands dramatically along with increasing temperature, and it moves simultaneously toward the primary phase fields of wurtzite (ZnO) and halite (CaO). The constructed liquidus surfaces have been compared with the isothermal sections (`Cu2O'-ZnO-CaO) calculated by MTDATA 5.10 software and its Mtox 8.1 database. Deviations between the thermodynamically assessed diagrams and the experimental results are significant. Thus, the system requires a reassessment.

  13. Spontaneous Time Symmetry Breaking in System with Mixed Strategy Nash Equilibrium: Evidences in Experimental Economics Data

    NASA Astrophysics Data System (ADS)

    Wang, Zhijian; Xu, Bin; Zhejiang Collaboration

    2011-03-01

    In social science, laboratory experiment with human subjects' interaction is a standard test-bed for studying social processes in micro level. Usually, as in physics, the processes near equilibrium are suggested as stochastic processes with time-reversal symmetry (TRS). To the best of our knowledge, near equilibrium, the breaking time symmetry, as well as the existence of robust time anti-symmetry processes, has not been reported clearly in experimental economics till now. By employing Markov transition method to analysis the data from human subject 2x2 Games with wide parameters and mixed Nash equilibrium, we study the time symmetry of the social interaction process near Nash equilibrium. We find that, the time symmetry is broken, and there exists a robust time anti-symmetry processes. We also report the weight of the time anti-symmetry processes in the total processes of each the games. Evidences in laboratory marketing experiments, at the same time, are provided as one-dimension cases. In these cases, time anti-symmetry cycles can also be captured. The proposition of time anti-symmetry processes is small, but the cycles are distinguishable.

  14. Predicting out-of-Equilibrium Phase Behavior in the Dynamic Self-Assembly of Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Swan, James; Sherman, Zachary

    Crystals self-assembled from colloidal particles are useful in an array of well demonstrated applications. During fabrication however, gelation and glassification often leave these materials arrested in defective or disordered metastable states. We show how time-dependent, pulsed interparticle interactions can avoid kinetic barriers and yield well-ordered crystalline domains for a suspension of hard, spherical colloidal particles interacting through short-range attractions. This dynamic self-assembly process is analogous to the flashing Brownian rachet. Although this is an inherently unsteady, out-of-equilibrium process, we can predict its outcome using appropriate time averages of equilibrium equations of state. The predicted phase behavior is tested and validated by examining the fluid/crystal coexistence of such dynamically self-assembling dispersions in Brownian dynamics simulations of sedimentation equilibrium and homogeneous nucleation. We also show that our dynamic self-assembly scheme offers control and tunability over the crystal growth kinetics and can even stabilize nonequilibrium structures.

  15. Experimental Thermochemistry of Gas Phase Cytosine Tautomers

    NASA Astrophysics Data System (ADS)

    Morrison, A. M.; Douberly, G. E.

    2011-06-01

    Enthalpies of interconversion are measured for the three lowest energy tautomers of isolated cytosine. The equilibrium distribution of tautomers near 600 K is frozen upon the capture of the gas phase species by low temperature helium nanodroplets. The temperature dependence of the gas phase cytosine tautomer populations is determined with infrared laser spectroscopy of the helium solvated species. The interconverison enthalpies obtained from the van't Hoff relation are 1.14 ± 0.21 and 1.63 ± 0.12 for the C31 rightleftharpoons C32 and C31 rightleftharpoons C1 equilibria, respectively. C31 and C32 are rotamers of an enol tautomer, and C1 is a keto tautomer. The interconversion enthalpies are compared to recent CCSD(T) thermochemistry calculations of cytosine tautomers.

  16. Thermal Effect in Lipkin Model. I --- Thermal Equilibrium State and Phase Transition ---

    NASA Astrophysics Data System (ADS)

    Kuriyama, A.; Provid234ncia, J. D.; Tsue, Y.; Yamamura, M.

    1995-12-01

    We study the thermal effect with the use of Lipkin model. We define the density and entropy operator associated with the mixed state representation of Lipkin model, which has been developed with the aid of auxiliary fermion field. We investigate the thermal equilibrium state and its phase transition. In super phase, the thermal effect breaks the particle-hole pairs with coupled angular momentum 0 and does not lift up nucleons from the lower level to upper one, contrary to the case of normal phase.

  17. Equilibrium Liquid Crystal Phase Diagrams and Detection of Kinetic Arrest in Cellulose Nanocrystal Suspensions

    NASA Astrophysics Data System (ADS)

    Honorato Rios, Camila; Kuhnhold, Anja; Bruckner, Johanna; Dannert, Rick; Schilling, Tanja; Lagerwall, Jan

    2016-05-01

    The cholesteric liquid crystal self-assembly of water-suspended cellulose nanocrystal (CNC) into a helical arrangement was observed already more than 20 years ago and the phenomenon was used to produce iridescent solid films by evaporating the solvent or via sol-gel processing. Yet it remains challenging to produce optically uniform films and to control the pitch reproducibly, reflecting the complexity of the three-stage drying process that is followed in preparing the films. An equilibrium liquid crystal phase formation stage is followed by a non-equilibrium kinetic arrest, which in turn is followed by structural collapse as the remaining solvent is evaporated. Here we focus on the first of these stages, combining a set of systematic rheology and polarizing optics experiments with computer simulations to establish a detailed phase diagram of aqueous CNC suspensions with two different values of the surface charge, up to the concentration where kinetic arrest sets in. We also study the effect of varying ionic strength of the solvent. Within the cholesteric phase regime, we measure the equilibrium helical pitch as a function of the same parameters. We report a hitherto unnoticed change in character of the isotropic-cholesteric transition at increasing ionic strength, with a continuous weakening of the first-order character up to the point where phase coexistence is difficult to detect macroscopically due to substantial critical fluctuations.

  18. Computational studies of thermal and quantum phase transitions approached through non-equilibrium quenching

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Wei

    Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the

  19. Two-phase equilibrium states in individual Cu-Ni nanoparticles: size, depletion and hysteresis effects.

    PubMed

    Shirinyan, Aram S

    2015-01-01

    In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature-composition phase diagram occur. Our calculations for individual Cu-Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature-composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu-Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram.

  20. Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Mehan, S.; Aswal, V. K.; Schwein, R.

    2016-05-01

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters. DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.

  1. A comparison of homogeneous equilibrium and relaxation model for CO2 expansion inside the two-phase ejector

    NASA Astrophysics Data System (ADS)

    Palacz, M.; Haida, M.; Smolka, J.; Nowak, A. J.; Hafner, A.

    2016-09-01

    In this study, the comparison of the accuracy of the homogeneous equilibrium model (HEM) and homogeneous relaxation model (HRM) is presented. Both models were applied to simulate the CO2 expansion inside the two-phase ejectors. Moreover, the mentioned models were implemented in the robust and efficient computational tool ejectorPL. That tool guarantees the fully automated computational process and the repeatable computations for the various ejector shapes and operating conditions. The simulated motive nozzle mass flow rates were compared to the experimentally measured mass flow rates. That comparison was made for both, HEM and HRM. The results showed the unsatisfying fidelity of the HEM for the operating regimes far from the carbon dioxide critical point. On the other hand, the HRM accuracy for such conditions was slightly higher. The approach presented in this paper, showed the limitation of applicability of both two-phase models for the expansion phenomena inside the ejectors.

  2. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material

    DOE PAGES

    Lantz, G.; Mansart, B.; Grieger, D.; ...

    2017-01-09

    Photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behavior, including non-thermal phases and photoinduced phase transitions. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states of matter inaccessible by quasi-adiabatic pathways. We present a study of the ultrafast non-equilibrium evolution of the prototype Mott-Hubbard material V2O3, which presents a transient non-thermal phase developing immediately after photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggeredmore » by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a marked hardening of the A1g coherent phonon. Furthermore, this configuration is in stark contrast with the thermally accessible ones - the A1g phonon frequency actually softens when heating the material. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are of particular relevance for the optical manipulation of strongly correlated systems, whose electronic and structural properties are often strongly intertwinned.« less

  3. Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions.

    PubMed

    Engelmann, Yannick; Bogaerts, Annemie; Neyts, Erik C

    2014-10-21

    Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.

  4. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  5. Out-of-equilibrium phase transitions in the Hamiltonian mean-field model: A closer look

    NASA Astrophysics Data System (ADS)

    Staniscia, F.; Chavanis, P. H.; de Ninno, G.

    2011-05-01

    We provide a detailed discussion of out-of-equilibrium phase transitions in the Hamiltonian mean-field (HMF) model in the framework of Lynden-Bell’s statistical theory of the Vlasov equation. For two-level initial conditions, the caloric curve β(E) only depends on the initial value f0 of the distribution function. We evidence different regions in the parameter space where the nature of the phase transitions between magnetized and nonmagnetized states changes: (i) For f0>0.10965, the system displays a second-order phase transition; (ii) for 0.109497phase transition and a first-order phase transition; (iii) for 0.10947phase transitions; and (iv) for f0<0.10947, there is no phase transition. The passage from a first-order to a second-order phase transition corresponds to a tricritical point. The sudden appearance of two second-order phase transitions from nothing corresponds to a second-order azeotropy. This is associated with a phenomenon of phase reentrance. When metastable states are taken into account, the problem becomes even richer. In particular, we find another situation of phase reentrance. We consider both microcanonical and canonical ensembles and report the existence of a tiny region of ensemble inequivalence. We also explain why the use of the initial magnetization M0 as an external parameter, instead of the phase level f0, may lead to inconsistencies in the thermodynamical analysis. Finally, we mention different causes of incomplete relaxation that could be a limitation to the application of Lynden-Bell’s theory.

  6. The voltage limitation for phase coherence experiments: non-equilibrium effects versus Joule heating

    NASA Astrophysics Data System (ADS)

    Linke, H.; Omling, P.; Xu, Hongqi; Lindelof, P. E.

    1996-12-01

    The breaking of phase coherence of electrons by a finite bias voltage is studied in a quasi-one-dimensional electron gas. Although the wire is longer than the energy relaxation length we find that Joule heating in the wire is not important for dephasing of non-equilibrium electrons. Instead, phase breaking occurs by electron-electron interaction due to the excess energy of the injected electrons with respect to the Fermi energy. The relevant limiting parameter for phase coherence is, therefore, the bias voltage, rather than the dissipated power. A model calculation suggests that our results are of general relevance for coherence experiments in one-dimensional geometry on length scales of the same order of magnitude as the energy relaxation length.

  7. Entropy analysis on non-equilibrium two-phase flow models

    SciTech Connect

    Karwat, H.; Ruan, Y.Q.

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  8. Phase equilibriums, self-assembly and interactions in two-, three- and four medium-chain length component systems.

    PubMed

    Rosenholm, Jarl B

    2014-03-01

    The Scandinavian surface (surfactant) and colloid science owes much of its success to Per Ekwall and Björn Lindman. In this review the main topics shared by their research groups at Åbo Akademi University in Finland and at Lund University in Sweden are described. The nature of surface active substances (cosolvents, co-surfactants and surfactants) and microemulsions are evaluated. It is shown that the properties of medium-chain length surfactants differ dramatically from long-chain surfactants. The phase equilibriums of binary systems are related to the phase equilibriums of ternary and quaternary systems referred to as microemulsions or more recently also as nanoemulsions. A distinction is made between hydrotrope liquids, detergentless microemulsions, surfactant mixture systems and microemulsions. Three component systems are assembled to "true" quaternary microemulsions. An exceptionally comprehensive network of thermodynamic parameters describing molecular site exchange and micelle formation are derived and related mutually. Gibbs free energy, enthalpy, entropy, volume, heat capacity, expansivity and compressibility can be used to illustrate the degree of aggregation cooperativity and to evaluate whether micelle formation is of a first-, second- or intermediate order phase transition. Theoretical simulations and experimental results show that the associate structures of medium-chain length surfactants are quite open and may be deformed due to small aggregation numbers. The self-assembly occurs over a number of distinct steps at a series of experimentally detectable critical concentrations. Despite the low aggregation tendency their phase behavior equals those of long-chain homologs in surfactant mixture and microemulsion systems. A number of models describing the self-assembly are reviewed. Nuclear magnetic resonance (shift, relaxation rate and diffusion), Laser Raman and infrared spectroscopies were chosen as key instruments for molecular interaction

  9. Equilibrium phase behavior and maximally random jammed state of truncated tetrahedra.

    PubMed

    Chen, Duyu; Jiao, Yang; Torquato, Salvatore

    2014-07-17

    Numerous recent investigations have been devoted to the determination of the equilibrium phase behavior and packing characteristics of hard nonspherical particles, including ellipsoids, superballs, and polyhedra, to name but just a few shapes. Systems of hard nonspherical particles exhibit a variety of stable phases with different degrees of translational and orientational order, including isotropic liquid, solid crystal, rotator and a variety of liquid crystal phases. In this paper, we employ a Monte Carlo implementation of the adaptive-shrinking-cell (ASC) numerical scheme and free-energy calculations to ascertain with high precision the equilibrium phase behavior of systems of congruent Archimedean truncated tetrahedra over the entire range of possible densities up to the maximal nearly space-filling density. In particular, we find that the system undergoes two first-order phase transitions as the density increases: first a liquid-solid transition and then a solid-solid transition. The isotropic liquid phase coexists with the Conway-Torquato (CT) crystal phase at intermediate densities, verifying the result of a previous qualitative study [ J. Chem. Phys. 2011 , 135 , 151101 ]. The freezing- and melting-point packing fractions for this transition are respectively ϕF = 0.496 ± 0.006 and ϕM = 0.591 ± 0.005. At higher densities, we find that the CT phase undergoes another first-order phase transition to one associated with the densest-known crystal, with coexistence densities in the range ϕ ∈ [0.780 ± 0.002, 0.802 ± 0.003]. We find no evidence for stable rotator (or plastic) or nematic phases. We also generate the maximally random jammed (MRJ) packings of truncated tetrahedra, which may be regarded to be the glassy end state of a rapid compression of the liquid. Specifically, we systematically study the structural characteristics of the MRJ packings, including the centroidal pair correlation function, structure factor and orientational pair correlation

  10. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    SciTech Connect

    Cooper, F.

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  11. Entropic description of gas hydrate ice/liquid equilibrium via enhanced sampling of coexisting phases

    DOE PAGES

    Malolepsza, Edyta; Kim, Jaegil; Keyes, Tom

    2015-04-28

    Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. Furthermore, with replicas spanning the range between β ice and liquid water we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.

  12. Universal Off-Equilibrium Scaling of Critical Cumulants in the QCD Phase Diagram.

    PubMed

    Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi

    2016-11-25

    Exploiting the universality between the QCD critical point and the three-dimensional Ising model, closed form expressions derived for nonequilibrium critical cumulants on the crossover side of the critical point reveal that they can differ in both magnitude and sign from equilibrium expectations. We demonstrate here that key elements of the Kibble-Zurek framework of nonequilibrium phase transitions can be employed to describe the dynamics of these critical cumulants. Our results suggest that observables sensitive to critical dynamics in heavy-ion collisions should be expressible as universal scaling functions, thereby providing powerful model-independent guidance in searches for the QCD critical point.

  13. PHASE-OTI: A pre-equilibrium model code for nuclear reactions calculations

    NASA Astrophysics Data System (ADS)

    Elmaghraby, Elsayed K.

    2009-09-01

    The present work focuses on a pre-equilibrium nuclear reaction code (based on the one, two and infinity hypothesis of pre-equilibrium nuclear reactions). In the PHASE-OTI code, pre-equilibrium decays are assumed to be single nucleon emissions, and the statistical probabilities come from the independence of nuclei decay. The code has proved to be a good tool to provide predictions of energy-differential cross sections. The probability of emission was calculated statistically using bases of hybrid model and exciton model. However, more precise depletion factors were used in the calculations. The present calculations were restricted to nucleon-nucleon interactions and one nucleon emission. Program summaryProgram title: PHASE-OTI Catalogue identifier: AEDN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5858 No. of bytes in distributed program, including test data, etc.: 149 405 Distribution format: tar.gz Programming language: Fortran 77 Computer: Pentium 4 and Centrino Duo Operating system: MS Windows RAM: 128 MB Classification: 17.12 Nature of problem: Calculation of the differential cross section for nucleon induced nuclear reaction in the framework of pre-equilibrium emission model. Solution method: Single neutron emission was treated by assuming occurrence of the reaction in successive steps. Each step is called phase because of the phase transition nature of the theory. The probability of emission was calculated statistically using bases of hybrid model [1] and exciton model [2]. However, more precise depletion factor was used in the calculations. Exciton configuration used in the code is that described in earlier work [3]. Restrictions: The program is restricted to single nucleon emission and nucleon

  14. Universal Off-Equilibrium Scaling of Critical Cumulants in the QCD Phase Diagram

    NASA Astrophysics Data System (ADS)

    Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi

    2016-11-01

    Exploiting the universality between the QCD critical point and the three-dimensional Ising model, closed form expressions derived for nonequilibrium critical cumulants on the crossover side of the critical point reveal that they can differ in both magnitude and sign from equilibrium expectations. We demonstrate here that key elements of the Kibble-Zurek framework of nonequilibrium phase transitions can be employed to describe the dynamics of these critical cumulants. Our results suggest that observables sensitive to critical dynamics in heavy-ion collisions should be expressible as universal scaling functions, thereby providing powerful model-independent guidance in searches for the QCD critical point.

  15. Evaporation and condensation in soils: Experimental and modeling investigation to compare non-equilibrium-based approaches under different atmospheric boundary conditions

    NASA Astrophysics Data System (ADS)

    Trautz, A.; Smits, K. M.; Cihan, A.; Illangasekare, T. H.

    2013-12-01

    Evaporation and condensation in bare soils govern water and energy fluxes between the land and atmosphere. Despite their importance to the hydrologic cycle, there is great uncertainty associated with our understanding of these complex multiphase phenomena. At the representative elementary volume scale, phase change (i.e. evaporation/condensation) between water vapor and liquid water is commonly evaluated in soil hydrology using the equilibrium assumption. The equilibrium-based approach assumes that within the soil pores, phase change occurs instantaneously. However, finite volatilization/condensation times have been observed experimentally under certain conditions calling into question the validity of using the equilibrium assumption for all possible land-atmospheric interaction scenarios. The use of non-equilibrium mass transfer relationships is based on the Hertz-Knudsen (HK) equation derived from the kinetic theory of gases. Multiple formulations have been posited to numerically represent phase change between water vapor and liquid water, many relying on empirical fitting parameters. The purpose of this investigation was to perform an unbiased comparison between the various non-equilibrium phase change formulations using a fully coupled heat and mass transfer model that simulates the processes of evaporation/condensation from soils using precision generated laboratory data. A non-isothermal solution was implemented in a numerical model to account for five different non-equilibrium phase change formulations reported in literature. A series of five experiments were performed using a unique laboratory system consisting of a soil tank with controlled airflow boundary conditions at the soil surface. The apparatus was equipped with a sensor network for continuous and autonomous collection of soil moisture, soil and air temperature, relative humidity, and wind velocity data. Soil surface conditions (e.g. temperature, diurnal variations and wind speed) and initial

  16. Complex salts formed by anionic copolymers with hexadecyltrimethylammonium: Phase equilibrium and structural characterization using SAXS.

    NASA Astrophysics Data System (ADS)

    Percebom, Ana Maria; Bernardes, Juliana S.; Loh, Watson

    2009-01-01

    Extending earlier studies conducted by this research group about the hexadecyltrimethylammonium (CTA+) and other poly-anions in water, this study aims at analyzing the phase equilibrium and characterizing structures of mesophases formed by mixtures of oppositely charged surfactants and polymers. Its specific objective is to verify the effect of the charge density along the poly-electrolyte. Poly(4-styrenesulfonic acid-co-maleic acid), P(SS-AM), was used because this copolymer has three acid groups with different pKa values, enabling to obtain negative charges in all groups or only in a few. The self-assembly of the complex salt (anionic copolymer+cationic surfactant) was investigated in binary (+water) and ternary systems (+water+1-decanol), determining their phase diagrams and analyzing the structures of mesophases formed by SAXS.

  17. Phase transformations in the system Cu-Zn-Al under conditions far from equilibrium

    NASA Astrophysics Data System (ADS)

    Klopotov, Anatolii; Ivanov, Yuri; Vlasov, Viktor; Dedov, Nikolai; Loskutov, Oleg

    2016-01-01

    It is shown that the alloy Cu-Zn-Al is a multiphase material. Under equilibrium conditions this alloy can form an α-phase (FCC crystalline lattice) and a β-phase (simple cubic crystalline lattice) based on copper. The possibility of formation of a γ-phase due to a three-component alloy composition is revealed. It is established that different chemical composition of the copper-based solid solution (alloys with zinc or alloys with aluminum), different concentration of the second element in a solid solution leads to the fact that within the same type of the crystalline lattice there is a certain amount of α- and γ-phases, differing in the parameter value of the crystalline lattice. The possibility of formation of powder alloys with an x-ray amorphous and a nanocrystalline structure using the plasma chemical synthesis methods is demonstrated. A wide variety of binary phases, each with different concentrations of zinc and aluminum in a solid copper-based solution is revealed. These results indicate that plasma-chemical synthesis of metal alloy powders is accompanied by separation of elements. Powders of the ternary composition are not detected.

  18. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Rogers, D. W.; Bahr, D. W.

    1976-01-01

    The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.

  19. Consideration of a Phase Change Model Based on Apparent Phase Equilibrium

    NASA Astrophysics Data System (ADS)

    Kashiwada, S.; Iga, Y.

    2015-12-01

    It has been known that cavity volume is underestimated and there is a discrepancy between predicted and measured breakdown characteristics for the numerical simulation of unsteady cavitation around a hydrofoil at high angle of attack. Therefore, in this study, in order to predict the cavity volume with high accuracy, the phenomena that gas phase increases even at a pressure higher than saturated vapour pressure which is known as aeration is modelled, and applied to phase change term. It was assumed that the precipitation of dissolved air is promoted by mechanical stimulation such as Reynolds stress in unsteady flow. The effectivity of the proposed model is discussed through the comparison among some kinds of components of the pressure variation.

  20. Immunodominance: a new hypothesis to explain parasite escape and host/parasite equilibrium leading to the chronic phase of Chagas' disease?

    PubMed

    Rodrigues, M M; Alencar, B C G de; Claser, C; Tzelepis, F

    2009-03-01

    Intense immune responses are observed during human or experimental infection with the digenetic protozoan parasite Trypanosoma cruzi. The reasons why such immune responses are unable to completely eliminate the parasites are unknown. The survival of the parasite leads to a parasite-host equilibrium found during the chronic phase of chagasic infection in most individuals. Parasite persistence is recognized as the most likely cause of the chagasic chronic pathologies. Therefore, a key question in Chagas' disease is to understand how this equilibrium is established and maintained for a long period. Understanding the basis for this equilibrium may lead to new approaches to interventions that could help millions of individuals at risk for infection or who are already infected with T. cruzi. Here, we propose that the phenomenon of immunodominance may be significant in terms of regulating the host-parasite equilibrium observed in Chagas' disease. T. cruzi infection restricts the repertoire of specific T cells generating, in some cases, an intense immunodominant phenotype and in others causing a dramatic interference in the response to distinct epitopes. This immune response is sufficiently strong to maintain the host alive during the acute phase carrying them to the chronic phase where transmission usually occurs. At the same time, immunodominance interferes with the development of a higher and broader immune response that could be able to completely eliminate the parasite. Based on this, we discuss how we can interfere with or take advantage of immunodominance in order to provide an immunotherapeutic alternative for chagasic individuals.

  1. Experimental Determination of Gas Phase Thermodynamic Properties of Bimolecular Complexes

    NASA Astrophysics Data System (ADS)

    Hansen, Anne S.; Maroun, Zeina; Mackeprang, Kasper; Kjaergaard, Henrik G.

    2016-06-01

    Accurate determination of the atmospheric abundance of hydrogen bound bimolecular complexes is necessary, as hydrogen bonds are partly responsible for the formation and growth of aerosol particles. The abundance of a complex is related to the Gibbs free energy of complex formation (Δ G), which is often obtained from quantum chemical calculations that rely on calculated values of the enthalpy (Δ H) and entropy (Δ S) of complex formation. However, calculations of Δ H and in particular Δ S are associated with large uncertainties, and accurate experimental values are therefore crucial for theoretical benchmarking studies. Infrared measurements of gas phase hydrogen bound complexes were performed in the 300 to 373 K range, and lead to a purely experimental determination of Δ H using the van't Hoff equation. Equilibrium constants were determined by combining an experimental and calculated OH-stretching intensity, from which values of Δ G and hence Δ S could be determined. Thus we can determine Δ G, Δ H and Δ S for a bimolecular complex. We find that in the 300 to 373 K temperature range the determined Δ H and Δ S values are independent of temperature.

  2. An experimental investigation of the equilibrium and stability of long towed cable systems

    NASA Astrophysics Data System (ADS)

    Obligado, Martin; Bourgoin, Mickaël

    2013-04-01

    The dynamics of towed objects in a fluid environment is of interest for many practical situations. We investigate experimentally the equilibrium and stability of the trajectory of a sphere towed at constant velocity at the tip of a cable with an unprecedented large length-to-diameter aspect ratio, exceeding 104. The towing configuration is artificially obtained by considering a steady cable (with one fixed end and a free end to which a sphere is eventually attached) in a low-turbulence wind tunnel. We consider three different configurations: (i) the cable towed by itself; (ii) a light millimetric towed sphere made of expanded polystyrene; and (iii) a denser millimetric towed sphere made of lead. The trajectory of the cable tip is monitored using high-speed Lagrangian tracking, which allows one to characterize the average position and the dynamical fluctuations of the towed object. We show that the mean equilibrium position is well predicted by a simple model including the aerodynamical forces acting along the cable and on the towed sphere (when present). Concerning stability issues, we find that the heavy lead particle is always towed in stable conditions (within the accessible range of velocities) with only very low energy oscillations related to a weak pendulum-like motion. In contrast, the free end and light sphere cases are shown to become unstable when the towing velocity exceeds a certain threshold. Spectral analysis shows a flutter-type instability for the sphere, with a dominant oscillatory motion, while the cable alone develops a divergence-type instability with random fluctuations.

  3. Out-of-equilibrium phase re-entrance(s) in long-range interacting systems

    NASA Astrophysics Data System (ADS)

    Staniscia, F.; Chavanis, P. H.; de Ninno, G.; Fanelli, D.

    2009-08-01

    Systems with long-range interactions display a short-time relaxation toward quasistationary states (QSSs) whose lifetime increases with system size. The application of Lynden-Bell’s theory of “violent relaxation” to the Hamiltonian Mean Field model leads to the prediction of out-of-equilibrium first- and second-order phase transitions between homogeneous (zero magnetization) and inhomogeneous (nonzero magnetization) QSSs, as well as an interesting phenomenon of phase re-entrances. We compare these theoretical predictions with direct N -body numerical simulations. We confirm the existence of phase re-entrance in the typical parameter range predicted from Lynden-Bell’s theory, but also show that the picture is more complicated than initially thought. In particular, we exhibit the existence of secondary re-entrant phases: we find unmagnetized states in the theoretically magnetized region as well as persisting magnetized states in the theoretically unmagnetized region. We also report the existence of a region with negative specific heats for QSSs both in the numerical and analytical caloric curves.

  4. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    SciTech Connect

    Wang, Chi-Jen; Liu, Da-Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. Mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.

  5. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    SciTech Connect

    Wang, Chi -Jen; Liu, Da -Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. As a result, mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.

  6. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    DOE PAGES

    Wang, Chi -Jen; Liu, Da -Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique valuemore » but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. As a result, mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.« less

  7. Equilibrium and nonequilibrium partition coefficients of volatile fission products between liquid sodium and the gas phase

    SciTech Connect

    Haga, K.; Nishizawa, Y.; Watanabe, T.; Miyahara, S.; Himeno, Y. )

    1992-02-01

    Two series of experiments have been conducted to obtain the gas-liquid equilibrium partition coefficient K{sub d} and the nonequilibrium partition coefficient K{prime}{sub d} of volatile fission products such as cesium, iodine, and tellurium between liquid sodium and the gas phase. In the equilibrium experiment, a sodium pool mixed with a fission product simulant was heated by a n electric furnace, and the solvent of the vapors and aerosols trapped by filters was quantitatively analyzed. The results provided in this paper are as follows: Cesium shows the largest K{sub d} (20 to 100). The K{sub d} values of cesium and iodine agree well with the theoretical ones reported by Castleman and Tang. If sodium telluride, which is harder to vaporize than pure tellurium, is assumed, the measured K{sub d} value of tellurium agrees with the theoretical. The nonequilibrium experiment in which the temperature dropped relatively sharply in the cover-gas region shows that K{prime}{sub d} was not larger than K{sub d}.

  8. In-cloud multiphase behaviour of acetone in the troposphere: gas uptake, Henry's law equilibrium and aqueous phase photooxidation.

    PubMed

    Poulain, Laurent; Katrib, Yasmine; Isikli, Estelle; Liu, Yao; Wortham, Henri; Mirabel, Philippe; Le Calvé, Stéphane; Monod, Anne

    2010-09-01

    Acetone is ubiquitous in the troposphere. Several papers have focused in the past on its gas phase reactivity and its impact on tropospheric chemistry. However, acetone is also present in atmospheric water droplets where its behaviour is still relatively unknown. In this work, we present its gas/aqueous phase transfer and its aqueous phase photooxidation. The uptake coefficient of acetone on water droplets was measured between 268 and 281K (γ=0.7 x 10(-2)-1.4 x 10(-2)), using the droplet train technique coupled to a mass spectrometer. The mass accommodation coefficient α (derived from γ) was found in the range (1.0-3.0±0.25) x 10(-2). Henry's law constant of acetone was directly measured between 283 and 298K using a dynamic equilibrium system (H((298K))=(29±5)Matm(-1)), with the Van't Hoff expression lnH(T)=(5100±1100)/T-(13.4±3.9). A recommended value of H was suggested according to comparison with literature. The OH-oxidation of acetone in the aqueous phase was carried out at 298K, under two different pH conditions: at pH=2, and under unbuffered conditions. In both cases, the formation of methylglyoxal, formaldehyde, hydroxyacetone, acetic acid/acetate and formic acid/formate was observed. The formation of small amounts of four hydroperoxides was also detected, and one of them was identified as peroxyacetic acid. A drastic effect of pH was observed on the yields of formaldehyde, one hydroperoxide, and, (to a lesser extent) acetic acid/acetate. Based on the experimental observations, a chemical mechanism of OH-oxidation of acetone in the aqueous phase was proposed and discussed. Atmospheric implications of these findings were finally discussed.

  9. Impurity-tuned non-equilibrium phase transition in a bacterial carpet

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Teng; Wu, Kuan-Ting; Uchida, Nariya; Woon, Wei-Yen

    2016-05-01

    The effects of impurity on the non-equilibrium phase transition in Vibrio alginolyticus bacterial carpets are investigated through a position-sensitive-diode implemented optical tweezers-microsphere assay. The collective flow increases abruptly as we increase the rotation rate of flagella via Na+ concentration. The effects of impurities on the transition behavior are examined by mixing cells of a wild type strain (VIO5) with cells of a mutant strain (NMB136) in different swimming patterns. For dilute impurities, the transition point is shifted toward higher Na+ concentration. Increasing the impurities' ratio to over 0.25 leads to a significant drop in the collective force, suggesting a partial orientational order with a smaller correlation length.

  10. Chemicals loading in acetylated bamboo assisted by supercritical CO2 based on phase equilibrium data

    NASA Astrophysics Data System (ADS)

    Silviana, Petermann, M.

    2015-12-01

    Indonesia has a large tropical forest. However, the deforestation still appears annually and vastly. This reason drives a use of bamboo as wood alternative. Recently, there are many modifications of bamboo in order to prolong the shelf life. Unfortunately, the processes need more chemicals and time. Based on wood modification, esterifying of bamboo was undertaken in present of a dense gas, i.e. supercritical CO2. Calculation of chemicals loading referred to ASTM D1413-99 by using the phase equilibrium data at optimum condition by a statistical design. The results showed that the acetylation of bamboo assisted by supercritical CO2 required 14.73 kg acetic anhydride/m3 of bamboo for a treatment of one hour.

  11. Damage of Honeybee Colonies and Non-Equilibrium Percolation Phase Transition

    NASA Astrophysics Data System (ADS)

    Zhang, Peipei; Su, Beibei; He, Da-Ren

    Recently the mechanism of the damage caused by invasion of Apis mellifera capensis honeybee into the normal A. M. Scutellata colonies became interesting for scientists due to the fact that the mechanism may resemble those of cancer vicious hyperplasia, spreading of some epidemic, and turbulence of society induced by some bad society groups. We suggest a new guess that losing control of self-reproduction disturbs and throws information structure of the society into confuse. We simulate the damage process with a cellular automata based on the guess. The simulation shows that the process is equivalent to a non-equilibrium percolation phase transition. This discussion remind us that the management and monitor on the information network between society members may be a more effective way for avoiding the overflow of the destructor sub-colonies.

  12. Entropic screening preserves non-equilibrium nature of nematic phase while enthalpic screening destroys it

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2016-02-01

    The present manuscript describes the role of entropic and enthalpic forces mediated by organic non-polar (hexane) and polar (methanol) solvents on the bulk and microscopic phase transition of a well known nematic liquid crystalline material MBBA (N-(4-methoxybenzylidene)-4-butylaniline) through Differential Scanning calorimetry (DSC), UV-Visible (UV-Vis), and Fourier Transform Infrared (FTIR) spectroscopy. DSC study indicates continuous linear decreases in both nematic-isotropic (N-I) phase transition temperature and enthalpy of MBBA in presence of hexane while both these parameters show a saturation after an initial decay in methanol. These distinct transitional behaviours were explained in terms of the "depletion force" model for entropic screening in hexane and "screening-self-screening" model for methanol. Heating rate dependent DSC studies find that non-Arrhenius behaviour, characteristic of pristine MBBA and a manifestation of non-equilibrium nature [Dan et al., J. Chem. Phys. 143, 094501 (2015)], is preserved in presence of entropic screening in the hexane solution, while it changes to Arrhenius behaviour (signifying equilibrium behaviour) in presence of enthalpic screening in methanol solution. FTIR spectra show similar dependence on the solvent induced screening in the intensities of the imine (—C = N) stretch and the out-of-plane distortion vibrations of the benzene rings of MBBA with hexane and methanol as in DSC, further establishing our entropic and enthalpic screening models. UV-Vis spectra of the electronic transitions in MBBA as a function of temperature also exhibit different dependences of intensities on the solvent induced screening, and an exponential decrease is observed in presence of hexane while methanol completely changes the nature of interaction to follow a linear dependence.

  13. Entropic screening preserves non-equilibrium nature of nematic phase while enthalpic screening destroys it

    SciTech Connect

    Dan, K.; Roy, M.; Datta, A.

    2016-02-14

    The present manuscript describes the role of entropic and enthalpic forces mediated by organic non-polar (hexane) and polar (methanol) solvents on the bulk and microscopic phase transition of a well known nematic liquid crystalline material MBBA (N-(4-methoxybenzylidene)-4-butylaniline) through Differential Scanning calorimetry (DSC), UV-Visible (UV–Vis), and Fourier Transform Infrared (FTIR) spectroscopy. DSC study indicates continuous linear decreases in both nematic-isotropic (N-I) phase transition temperature and enthalpy of MBBA in presence of hexane while both these parameters show a saturation after an initial decay in methanol. These distinct transitional behaviours were explained in terms of the “depletion force” model for entropic screening in hexane and “screening-self-screening” model for methanol. Heating rate dependent DSC studies find that non-Arrhenius behaviour, characteristic of pristine MBBA and a manifestation of non-equilibrium nature [Dan et al., J. Chem. Phys. 143, 094501 (2015)], is preserved in presence of entropic screening in the hexane solution, while it changes to Arrhenius behaviour (signifying equilibrium behaviour) in presence of enthalpic screening in methanol solution. FTIR spectra show similar dependence on the solvent induced screening in the intensities of the imine (—C = N) stretch and the out-of-plane distortion vibrations of the benzene rings of MBBA with hexane and methanol as in DSC, further establishing our entropic and enthalpic screening models. UV–Vis spectra of the electronic transitions in MBBA as a function of temperature also exhibit different dependences of intensities on the solvent induced screening, and an exponential decrease is observed in presence of hexane while methanol completely changes the nature of interaction to follow a linear dependence.

  14. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott-Hubbard material.

    PubMed

    Lantz, G; Mansart, B; Grieger, D; Boschetto, D; Nilforoushan, N; Papalazarou, E; Moisan, N; Perfetti, L; Jacques, V L R; Le Bolloc'h, D; Laulhé, C; Ravy, S; Rueff, J-P; Glover, T E; Hertlein, M P; Hussain, Z; Song, S; Chollet, M; Fabrizio, M; Marsi, M

    2017-01-09

    The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott-Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems.

  15. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott-Hubbard material

    NASA Astrophysics Data System (ADS)

    Lantz, G.; Mansart, B.; Grieger, D.; Boschetto, D.; Nilforoushan, N.; Papalazarou, E.; Moisan, N.; Perfetti, L.; Jacques, V. L. R.; Le Bolloc'h, D.; Laulhé, C.; Ravy, S.; Rueff, J.-P.; Glover, T. E.; Hertlein, M. P.; Hussain, Z.; Song, S.; Chollet, M.; Fabrizio, M.; Marsi, M.

    2017-01-01

    The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott-Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems.

  16. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material

    PubMed Central

    Lantz, G.; Mansart, B.; Grieger, D.; Boschetto, D.; Nilforoushan, N.; Papalazarou, E.; Moisan, N.; Perfetti, L.; Jacques, V. L. R.; Le Bolloc'h, D.; Laulhé, C.; Ravy, S.; Rueff, J-P; Glover, T. E.; Hertlein, M. P.; Hussain, Z.; Song, S.; Chollet, M.; Fabrizio, M.; Marsi, M.

    2017-01-01

    The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott–Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron–lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems. PMID:28067228

  17. Equilibrium phase boundary between hcp-cobalt and fcc-cobalt

    NASA Astrophysics Data System (ADS)

    Cynn, Hyunchae; Lipp, Magnus J.; Evans, William J.; Baer, Bruce J.

    In 2000 (Yoo et al., PRL), fcc-cobalt was reported as a new high pressure phase transforming from ambient hcp-cobalt starting at around 105 GPa and 300 K. Both cobalts coexist up to 150 GPa and thereafter only fcc-cobalt was found to be the only stable phase to 200 GPa. Our recent synchrotron x-ray diffraction data on cobalt are at odds with the previous interpretation. We will present our new finding and elaborate on our understanding in terms of the equilibrium phase boundary of cobalt. We will also compare our previous work on xenon (Cynn et al., 2001, PRL) with our new results on cobalt. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Portions of this work were performed at HPCAT (Sector 16), APS, Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DENA0001974 and DOE-BES under Award No. DE-FG02-99ER45775. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

  18. Experimental and numerical investigation of the equilibrium geometry of liquid lenses.

    PubMed

    Burton, J C; Huisman, F M; Alison, P; Rogerson, D; Taborek, P

    2010-10-05

    The equilibrium configuration of a nonwetted three fluid system takes the form of a floating liquid lens, where the lens resides between an upper and lower phase. The axisymmetric profiles of the three interfaces can be computed by solving the nonlinear Young-Laplace differential equation for each interface with coupled boundary conditions at the contact line. Here we describe a numerical method applicable to sessile or pendant lenses and provide a free, downloadable Mathematica Player file which uses a graphical interface for analyzing and plotting lens profiles. The results of the calculations were compared to optical photographs of various liquid lens systems which were analyzed using basic ray-tracing and Moiré imaging. The lens profile calculator, together with a measurement of the lens radius for a known volume, provides a simple and convenient method of determining the spreading coefficient (S) of a liquid lens system if all other fluid parameters are known. If surfactants are present, the subphase surface tension must also be self-consistently determined. A procedure is described for extracting characteristic features in the optical images to uniquely determine both parameters. The method gave good agreement with literature values for pure fluids such as alkanes on water and also for systems with a surfactant (hexadecane/DTAB), which show a transition from partial wetting to the pseudopartial wetting regime. Our technique is the analog of axisymmetric drop shape analysis, applied to a three fluid system.

  19. THE ROLE OF METASTABLE STATES IN POLYMER PHASE TRANSITIONS: Concepts, Principles, and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Cheng, Stephen Z. D.; Keller, Andrew

    1998-08-01

    Polymer phases can be described in the same way as phases in other condensed matter using a number density operator and its correlation functions. This description requires the understanding of symmetry operations and order at different atomic and molecular levels. Statistical mechanics provides a link between the microscopic description of the structure and motion and the macroscopic thermodynamic properties. Within the limits of the laws of thermodynamics, polymers exhibit a rich variety of phase transition behaviors. By definition, a first-order phase transition describes a transformation that involves a sudden change of thermodynamic properties at its transition temperature, whereas higher-order phase transitions are classified as critical phenomena. Of special interest is the role of metastability in phase and phase transition behaviors. Although a metastable state possesses a local free energy minimum, it is not at the global equilibrium. Furthermore, metastable states can also be associated with phase sizes. Metastable behavior is also observed in phase transformations that are impeded by kinetic limitations along the pathway to thermodynamic equilibrium. This is illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification, and gel formation, as well as combinations of transformation processes. In these cases, the metastable state often becomes the dominant state for the entire system and is observed over a range of time and size scales. This review describes the general principles of metastability in polymer phases and phase transitions and provides illustrations from current experimental works in selected areas.

  20. A two-phase restricted equilibrium model for combustion of metalized solid propellants

    NASA Technical Reports Server (NTRS)

    Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.

    1992-01-01

    An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.

  1. Carbon dioxide hydrate phase equilibrium and cage occupancy calculations using ab initio intermolecular potentials.

    PubMed

    Velaga, Srinath C; Anderson, Brian J

    2014-01-16

    Gas hydrate deposits are receiving increased attention as potential locations for CO2 sequestration, with CO2 replacing the methane that is recovered as an energy source. In this scenario, it is very important to correctly characterize the cage occupancies of CO2 to correctly assess the sequestration potential as well as the methane recoverability. In order to predict accurate cage occupancies, the guest–host interaction potential must be represented properly. Earlier, these potential parameters were obtained by fitting to experimental equilibrium data and these fitted parameters do not match with those obtained by second virial coefficient or gas viscosity data. Ab initio quantum mechanical calculations provide an independent means to directly obtain accurate intermolecular potentials. A potential energy surface (PES) between H2O and CO2 was computed at the MP2/aug-cc-pVTZ level and corrected for basis set superposition error (BSSE), an error caused due to the lower basis set, by using the half counterpoise method. Intermolecular potentials were obtained by fitting Exponential-6 and Lennard-Jones 6-12 models to the ab initio PES, correcting for many-body interactions. We denoted this model as the “VAS” model. Reference parameters for structure I carbon dioxide hydrate were calculated using the VAS model (site–site ab initio intermolecular potentials) as Δμ(w)(0) = 1206 ± 2 J/mol and ΔH(w)(0) = 1260 ± 12 J/mol. With these reference parameters and the VAS model, pure CO2 hydrate equilibrium pressure was predicted with an average absolute deviation of less than 3.2% from the experimental data. Predictions of the small cage occupancy ranged from 32 to 51%, and the large cage is more than 98% occupied. The intermolecular potentials were also tested by calculating the pure CO2 density and diffusion of CO2 in water using molecular dynamics simulations.

  2. Dolomite-calcite equilibrium at 220 to 240[degrees]C at saturation vapour pressure: Experimental data

    SciTech Connect

    Morrow, D.W.; Gorham, B.L.; Wong, J.N.Y. )

    1994-01-01

    Small amounts of dolomite and calcite were added as reactants to a series of CaCl[sub 2-]MgCl[sub 2] solutions with variable Ca:Mg ratios at temperatures of 220[degrees]C and 240[degrees]C at vapour pressure in sixty experimental runs. Dolomitization of calcite and calcitization of dolomite in these runs indicates that the value of log (aCa[sup 2+]/aMg[sup 2+]) in solutions at equilibrium with calcite and dolomite ranges from about 0.4 to 0.9 at these temperatures. This is in agreement with previous experimental work at higher and lower temperatures. These experimentally determined equilibrium log (aCa[sup 2+]/aMg[sup 2+]) values are less than calculated by thermodynamic based programs, such as SUPCRT and PTA, for equilibrium with ordered dolomite and those which may be calculated from calorimetric data obtained from ordered, ideal dolomite. This may indicate that the experimentally observed calcite-dolomite equilibrium is metastable and that the precipitated dolomites are imperfectly ordered. Precipitation of partially disordered, metastable dolomite of stoichiometric composition may be favoured over that of ideal dolomite at these temperatures for kinetic reasons.

  3. Theoretical Aspects of Differential Scanning Calorimetry as a Tool for the Studies of Equilibrium Thermodynamics in Pharmaceutical Solid Phase Transitions.

    PubMed

    Faroongsarng, Damrongsak

    2016-06-01

    Although differential scanning calorimetry (DSC) is a non-equilibrium technique, it has been used to gain energetic information that involves phase equilibria. DSC has been widely used to characterize the equilibrium melting parameters of small organic pharmaceutical compounds. An understanding of how DSC measures an equilibrium event could make for a better interpretation of the results. The aim of this mini-review was to provide a theoretical insight into the DSC measurement to obtain the equilibrium thermodynamics of a phase transition especially the melting process. It was demonstrated that the heat quantity obtained from the DSC thermogram (ΔH) was related to the thermodynamic enthalpy of the phase transition (ΔH (P) ) via: ΔH = ΔH (P) /(1 + K (- 1)) where K was the equilibrium constant. In melting, the solid and liquefied phases presumably coexist resulting in a null Gibbs free energy that produces an infinitely larger K. Thus, ΔH could be interpreted as ΔH (P). Issues of DSC investigations on melting behavior of crystalline solids including polymorphism, degradation impurity due to heating in situ, and eutectic melting were discussed. In addition, DSC has been a tool for determination of the impurity based on an ideal solution of the melt that is one of the official methods used to establish the reference standard.

  4. The role of equilibrium volume and magnetism on the stability of iron phases at high pressures.

    PubMed

    Alnemrat, S; Hooper, J P; Vasiliev, I; Kiefer, B

    2014-01-29

    The present study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in the known hcp, bcc and fcc iron. The Birch-Murnaghan equation of state parameters are; bcc: V0 = 11.759 A(3)/atom, K0 = 177.72 GPa; hcp: V0 = 10.525 A(3)/atom, K0 = 295.16 GPa; and fcc: V0 = 10.682 A(3)/atom, K0 = 274.57 GPa. These parameters compare favorably with previous studies. Consistent with previous studies we find that the close-packed hcp and fcc phases are non-magnetic at pressures above 50 GPa and 60 GPa, respectively. The principal features of magnetism in iron are predicted to be invariant, at least up to ∼6% overextension of the equilibrium volume. Our results predict that magnetism for overextended fcc iron disappears via an intermediate spin state. This feature suggests that overextended lattices can be used to stabilize particular magnetic states. The analysis of the orbital hybridization shows that the magnetic bcc structure at high pressures is stabilized by splitting the majority and minority spin bands. The bcc phase is found to be magnetic at least up to 600 GPa; however, magnetism is insufficient to stabilize the bcc phase itself, at least at low temperatures. Finally, the analysis of the orbital contributions to the total energy provides evidence that non-magnetic hcp and fcc phases are likely more stable than bcc at core earth pressures.

  5. Comparison of the experimental, semi-experimental and ab initio equilibrium structures of acetylene: influence of relativisitic effects and of the diagonal Born-Oppenheimer corrections.

    PubMed

    Liévin, J; Demaison, J; Herman, M; Fayt, A; Puzzarini, C

    2011-02-14

    The equilibrium structure of acetylene (also named ethyne) has been reinvestigated to resolve the small discrepancies noted between different determinations. The size of the system as well as the large amount of available experimental data provides the quite unique opportunity to check the magnitude and relevance of various contributions to equilibrium structure as well as to verify the accuracy of experimental results. With respect to pure theoretical investigation, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, inclusion of core correlation effects as well as relativistic and diagonal Born-Oppenheimer corrections. In particular, it is found that the extrapolation to the complete basis set limit, the inclusion of higher excitations in the electronic-correlation treatment and the relativistic corrections are of the same order of magnitude. It also appears that a basis set as large as a core-valence quintuple-zeta set is required for accurately accounting for the inner-shell correlation contribution. From a pure experimental point of view, the equilibrium structure has been determined using very accurate rotational constants recently obtained by a "global analysis" (that is to say that all non-negligible interactions are explicitly included in the Hamiltonian matrix) of rovibrational spectra. Finally, a semi-experimental equilibrium structure (where the equilibrium rotational constants are obtained from the experimental ground state rotational constants and computed rovibrational corrections) has been obtained from the available experimental ground-state rotational constants for ten isotopic species corrected for computed vibrational corrections. Such a determination led to the revision of the ground-state rotational constants of two isotopologues, thus showing that structural determination is a good method to identify

  6. Anomalous long-range correlations at a non-equilibrium phase transition

    NASA Astrophysics Data System (ADS)

    Gerschenfeld, A.; Derrida, B.

    2012-02-01

    Non-equilibrium diffusive systems are known to exhibit long-range correlations, which decay like the inverse 1/L of the system size L in one dimension. Here, taking the example of the ABC model, we show that this size dependence becomes anomalous (the decay becomes a non-integer power of L) when the diffusive system approaches a second-order phase transition. This power-law decay as well as the L-dependence of the time-time correlations can be understood in terms of the dynamics of the amplitude of the first Fourier mode of the particle densities. This amplitude evolves according to a Langevin equation in a quartic potential, which was introduced in a previous work to explain the anomalous behavior of the cumulants of the current near this second-order phase transition. Here we also compute some of these cumulants away from the transition and show that they become singular as the transition is approached, matching with what we already knew in the critical regime.

  7. Non-equilibrium one-dimensional two-phase flow in variable area channels

    NASA Technical Reports Server (NTRS)

    Rohatgi, U. S.; Reshotko, E.

    1975-01-01

    A one-dimensional nonequilibrium flow analysis has been formulated for a one component two phase flow. The flow is considered homogeneous and essentially isothermal. Phase change is assumed to occur at heterogeneous nucleation sites and the growth of the vapor bubbles is governed by heat conduction from the liquid to the bubble. The analysis adjusted for friction is applied to liquid nitrogen flow in a venturi and comparison is made with the NASA experimental results of Simoneau. Good agreement with the experiments is obtained when one assumes the effective activation energy for nucleus formation to be small but nonzero. The computed pressure distributions deviate from the experimental results in the throat region of the venturi in a manner consistent with centrifugal effects not accounted for in the one-dimensional theory. The results are shown to depend not only on cavitation number but on additional dimensionless parameters governing the nonequilibrium production and subsequent growth of nuclei.

  8. Non-equilibrium phase map, optical and electrical properties of Cu-Zn-O alloys

    NASA Astrophysics Data System (ADS)

    Subramaniyan, Archana; Perkins, John; O'Hayre, Ryan; Ginley, David; Lany, Stephan; Zakutayev, Andriy

    2014-03-01

    Cuprous oxide (Cu2O) is a candidate p-type solar cell absorber material that has been spotlighted recently due to its low cost, earth abundant and non-toxic nature. The maximum reported efficiency of Cu2O based solar cells is rather low (5. 38%) and it can in part be attributed its forbidden direct band gap (2.1 eV) and higher absorption threshold (2.6 eV). Here, we alloy Cu2O with ZnO via combinatorial RF magnetron sputtering as a function of temperature (T) and composition at fixed 20 mTorr Ar pressure to modify the electronic band structure and reduce its absorption threshold, which can potentially enhance the solar cell performance. A non-equilibrium Cu-Zn-O phase map was generated in the T range 100 - 400 °C and Zn composition 0 - 37 at%. Highly crystalline Cu2O structured Cu-Zn-O alloys with Zn content of 0 to 17 at% were synthesized in the T range 200 - 270 °C. With increasing Zn at%, the preferential orientation in Cu-Zn-O alloy changes from (200) to (111) direction. At lower T (<200 °C), either amorphous or poor crystalline Cu2O structured alloys were observed, whereas at higher T (>270 ° C) and higher Zn composition (>25 at%), CuO or ZnO second phases were observed. The absorption coefficient of all Cu-Zn-O alloys was higher than that of phase pure Cu2O. The absorption threshold () was also reduced significantly, for example, at = 2*104 cm-1 the absorption threshold of Cu-Zn-O alloy with 10 at% Zn reduced from 2.4 eV to 2.1 eV. The electrical conductivity of all Cu-Zn-O alloys was measured to be within 2 - 5 mS/cm.

  9. Mathematical modeling of gas-condensate mixture filtration in porous media taking into account non-equilibrium of phase transitions

    NASA Astrophysics Data System (ADS)

    Kachalov, V. V.; Molchanov, D. A.; Sokotushchenko, V. N.; Zaichenko, V. M.

    2016-11-01

    At the present time, a considerable part of the largest dry gas reservoirs in Russia are found in the stage of declining production, therefore active exploitation of gas-condensate fields will begin in the coming decades. There is a significant discrepancy between the project and the actual value of condensate recovery factor while producing reservoir of this type, which is caused by insufficient knowledge about non-equilibrium filtration mechanisms of gas-condensate mixtures in reservoir conditions. A system of differential equations to describe filtration process of two-phase multicomponent mixture for one-, two- and three-dimensional cases is presented in this work. The solution of the described system was made by finite-element method in the software package FlexPDE. Comparative distributions of velocities, pressures, saturations and phase compositions of three-component mixture along the reservoir model and in time in both cases of equilibrium and non-equilibrium filtration processes were obtained. Calculation results have shown that system deviation from the thermodynamic equilibrium increases gas phase flow rate and reduces liquid phase flow rate during filtration process of gas-condensate mixture.

  10. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces

    NASA Astrophysics Data System (ADS)

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-01

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime

  11. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces.

    PubMed

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-22

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation C(k)<=>mu(k) between the concentrations C(k) and the chemical potentials mu(k) of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation C(k)<=>mu(k) implies in fact two problems: a direct problem C(k)=>mu(k) and an inverse problem mu(k)=>C(k). Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 A thick gypsum interface. The major unexpected observation is the repulsion of SO(4) (2-) ions towards the reference solution and the attraction of Ca(2+) ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions

  12. Theoretical and Experimental Research of Capabilities of MHD Technology to Control Gas Flow with Non-Equilibrium Ionization

    DTIC Science & Technology

    2007-11-02

    experimental research of capabilities of using of MHD technology to control gas flow with non-equilibrium ionization. Cold gas flows will be considered, where...and MHD generator will be developed. Requirements to ionizer, MHD generator and flow parameters at which self- sustained operational mode of ionizer and...MHD generator is realized will be formulated. Possibilities of using of MHD control in gas-dynamical systems will be considered. Traditional use of

  13. Tautomeric ratio and prototropic equilibrium constants of tenoxicam, a 1H and 13C NMR theoretical and experimental study.

    PubMed

    Franco-Pérez, Marco; Moya-Hernández, Rosario; Rojas-Hernández, Alberto; Gutiérrez, Atilano; Gómez-Balderas, Rodolfo

    2011-11-24

    The determination of the micro-equilibrium prototropic constants is often a tough task when the tautomeric ratio favors one of the species or when the chemical exchange is not slow enough to allow the quantitative detection of the tautomeric species. There are just few experimental methods available to reveal the constants of the tautomeric micro-equilibriums; its applicability depends on the nature of the tautomeric system. A combination of experimental and quantum chemistry calculated (1)H and (13)C NMR chemical shifts is presented here to estimate the population of the species participating in the tautomeric equilibriums of the tenoxicam, an important anti-inflammatory drug. A multivariate fitting of a fraction-mol-weighted contribution model, for the NMR chemical shifts of the species in solution, was used to find the populations of the tautomers of tenoxicam. To consider and evaluate the effect of the solvent polarity on the tautomers' populations, experimental determinations were carried out in DMSO-d(6), in an equimolar DMSO-H(2)O mixture of deuterated solvents and in D(2)O. Additionally, by employing HYPNMR, it has been possible to refine the acid-base macroscopic constants of tenoxicam.

  14. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites.

    PubMed

    Zhang, L; Pauly, S; Tang, M Q; Eckert, J; Zhang, H F

    2016-01-12

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated.

  15. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    PubMed Central

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  16. Off-equilibrium fluctuation-dissipation relation in a spin glass. An experimental test for mean-field predictions

    NASA Astrophysics Data System (ADS)

    Hérisson, D.; Ocio, M.

    2004-08-01

    We report new experimental results obtained on the insulating spin glass CdCr2-2 x In2 x S4. Our experimental setup allows a quantitative comparison between the thermo-remanent magnetisation and the autocorrelation of spontaneous fluctuations of magnetisation, yielding a complete determination of the fluctuation-dissipation relation. The dynamics can be studied both in the quasi-equilibrium regime, where the fluctuation-dissipation theorem holds, and in the deeply ageing regime. The limit of separation of time-scales, as used in analytical calculations, can be approached by use of a scaling procedure.

  17. Non-equilibrium processes by a gas phase synthesis of diamond

    NASA Astrophysics Data System (ADS)

    Rebrov, A. K.; Yudin, I. B.

    2016-11-01

    The analysis of influence of heterogeneous reactions in rarefied gas flows with dissociation and recombination is carried on for the first time, at least for hydrogen and methane flows. The flow in channels with heterogeneous reaction can be equilibrium and non-equilibrium, depending on a flow rate. Non-equilibrium effects are pronounced as a rule in the space between channel exit and substrate, where the activated gas flow to the surface of diamond deposition is formed. The gas dynamic analysis of gas jet deposition of diamond facilitates the optimization of experiments and their analysis.

  18. Integrated tokamak modelling taskforce: Validation of the equilibrium reconstruction from experimental data

    NASA Astrophysics Data System (ADS)

    Zwingmann, W.; Airaj, M.; Appel, L.; Drozdov, V.; Eriksson, L.-G.; Guillerminet, B.; Huysmans, G. T. A.; Imbeaux, F.; McCarthy, P.; Moreau, Ph.; Romanelli, M.; Strand, P.

    2008-03-01

    The Integrated tokamak modelling taskforce was set up to provide the European scientific community with simulation tools for preparing and analysing discharges of fusion experiments. We will report on recent progress made on the taskforce project on equilibrium and linear stability. A generic data structure has been devised to describe the geometry of a machine and physical processes in the discharge. This data structure is used to interface all individual analysis program within the taskforce. One of the analysis tools, the equilibrium code EFIT__ITM, based on the EFIT code written by L. L. Lao, has been completely rewritten in order to make it suitable for the ITM. It has algorithm enhancements to increase execution speed, and the ability to treat anisotropic pressure and deviation from axisymmetry. The reconstruction code is now completely independent of the machine description. First results on veriflcation and validation of the new tool are presented.

  19. Integrated tokamak modelling taskforce: Validation of the equilibrium reconstruction from experimental data

    SciTech Connect

    Zwingmann, W.; Airaj, M.; Eriksson, L.-G.; Guillerminet, B.; Huysmans, G. T. A.; Imbeaux, F.; Moreau, Ph.; McCarthy, P.; Strand, P.

    2008-03-19

    The Integrated tokamak modelling taskforce was set up to provide the European scientific community with simulation tools for preparing and analysing discharges of fusion experiments. We will report on recent progress made on the taskforce project on equilibrium and linear stability. A generic data structure has been devised to describe the geometry of a machine and physical processes in the discharge. This data structure is used to interface all individual analysis program within the taskforce. One of the analysis tools, the equilibrium code EFIT-ITM, based on the EFIT code written by L. L. Lao, has been completely rewritten in order to make it suitable for the ITM. It has algorithm enhancements to increase execution speed, and the ability to treat anisotropic pressure and deviation from axisymmetry. The reconstruction code is now completely independent of the machine description. First results on veriflcation and validation of the new tool are presented.

  20. Causality and non-equilibrium second-order phase transitions in inhomogeneous systems.

    PubMed

    del Campo, A; Kibble, T W B; Zurek, W H

    2013-10-09

    When a second-order phase transition is crossed at a finite rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum manifold, disparate local choices of the ground state lead to the formation of topological defects. The universality class of the transition imprints a signature on the resulting density of topological defects: it obeys a power law in the quench rate, with an exponent dictated by a combination of the critical exponents of the transition. In inhomogeneous systems the situation is more complicated, as the spontaneous symmetry breaking competes with bias caused by the influence of the nearby regions that already chose the new vacuum. As a result, the choice of the broken symmetry vacuum may be inherited from the neighboring regions that have already entered the new phase. This competition between the inherited and spontaneous symmetry breaking enhances the role of causality, as the defect formation is restricted to a fraction of the system where the front velocity surpasses the relevant sound velocity and phase transition remains effectively homogeneous. As a consequence, the overall number of topological defects can be substantially suppressed. When the fraction of the system is small, the resulting total number of defects is still given by a power law related to the universality class of the transition, but exhibits a more pronounced dependence on the quench rate. This enhanced dependence complicates the analysis but may also facilitate experimental testing of defect formation theories.

  1. Phase equilibria in the system CO 2-H 2O I: New equilibrium relations at low temperatures

    NASA Astrophysics Data System (ADS)

    Longhi, John

    2005-02-01

    Graphical analysis of free-energy relationships involving binary quadruple points and their associated univariant equilibria in the system CO 2-H 2O suggests the presence of at least 2 previously unrecognized quadruple points and a degenerate binary invariant point involving an azeotrope between CO 2-rich gas and liquid. Thermodynamic data extracted from the equilibrium involving clathrate (hydrate), gas, and ice (H = G+I) are employed along with published data to calculate the P-T range of the 3-ice equilibrium curve, S+I = H, where S is solid CO 2. This equilibrium curve intersects the H = G+I curve approximately where the latter curve intersects the S+H = G curve, thus confirming the existence of one of the inferred quadruple points involving the phases S, G, H, and I. Recognition of some binary equilibria probably have been hampered by extremely low mutual solubilities of CO 2 and H 2O in the fluids phases which, for example, render the S+H = G virtually indistinguishable from the CO 2-sublimation curve. To make the published portion of the L(liquid CO 2)-G-H equilibrium "connect" with the other new quadruple point involving S, L, G, and H, it is necessary to change the sense of the equilibrium from L = G+H at higher pressures to L+H = G at lower pressures by positing a L = G azeotrope at very low concentrations of H 2O. At the low-pressure origin of the azeotrope, which is only a few bars above the CO 2-triple point, the azeotrope curve intersects the 3-phase curve tangentially, creating a degenerate invariant point at which the 3-phase equilibrium changes from L+H = G at lower pressures to L = G+H at higher pressures. The azeotrope curve is offset at slightly lower temperature from the L = G+H curve until the 3-phase equilibrium terminates at the quadruple point involving G, L, H, and W (water). With further increase in pressure the azeotrope curve tracks the L = G+W equilibrium and apparently terminates at a critical end point in close proximity to critical

  2. Phase-equilibrium modelling of blueschists from the Vestgötabreen Complex (SW Svalbard)

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Majka, Jarosław; Manecki, Maciej; Lorenz, Henning; Kozub, Gabriela

    2014-05-01

    In Svalbard Archipelago, blueschists are known from Motalafjella area (Oscar II Land). They belong to the Vestgötabreen Complex, which is divided into a Lower (LU) and Upper Unit (UU). The former is composed of high pressure-low temperature (HP-LT) metasediments. The latter consists mainly of blueschists and eclogites. Various radiometric dating yielded an age of c. 470 Ma for the HP-LT metamorphism in the Motalafjella area. The pressure-temperature (P-T) conditions for carpholite-bearing schists from LU have been estimated to c. 16 kbar and 330-450°C (Agard et al., 2005), whereas eclogites from UU indicate peak conditions of 18-24 kbar and 580-640°C (Hirajima et al., 1988). During the fieldwork in 2011, blueschists were also discovered at the western coast of Nordenskiöld Land. They form isolated bodies enclosed within metasedimentary units, but their tectonic position is still under debate. Preliminary P-T estimates indicate peak pressure conditions of c. 17 kbar and 480°C (Kośmińska et al., in revision). The age of metamorphism is unknown, however P-T conditions as well as metamorphic assemblage suggest that the blueschists from Nordenskiöld Land may be an equivalent of these in the Vestgötabreen Complex. Samples of blueschists from UU have been collected on Skipperryggen. They consist mainly of glaucophane, garnet, white micas (phengite and paragonite), rutile, lawsonite and chlorite. The garnet typically forms euhedral to subhedral porphyroblasts which contain voluminous inclusions. Its composition varies from Alm63Prp13Grs22Sps2 in the cores to Alm60Prp19Grs20Sps1 in the rims. The change in chemical zoning is rather gradual. The garnet shows bowl-shaped pyrope profiles and opposite almandine trends. The P-T conditions were estimated using phase equilibrium modeling. Preliminary modeling in the NCKFMMnASHTO system yields peak pressure conditions at c. 20 kbar and 520°C. The estimated P-T conditions for the blueschists from Skipperryggen are in

  3. Experimental determination of equilibrium constant for the complexing reaction of nitric oxide with hexamminecobalt(II) in aqueous solution.

    PubMed

    Mao, Yan-Peng; Chen, Hua; Long, Xiang-Li; Xiao, Wen-de; Li, Wei; Yuan, Wei-Kang

    2009-02-15

    Ammonia solution can be used to scrub NO from the flue gases by adding soluble cobalt(II) salts into the aqueous ammonia solutions. The hexamminecobalt(II), Co(NH3)6(2+), formed by ammonia binding with Co2+ is the active constituent of eliminating NO from the flue gas streams. The hexamminecobalt(II) can combine with NO to form a complex. For the development of this process, the data of the equilibrium constants for the coordination between NO and Co(NH3)6(2+)over a range of temperature is very important. Therefore, a series of experiments were performed in a bubble column to investigate the chemical equilibrium. The equilibrium constant was determined in the temperature range of 30.0-80.0 degrees C under atmospheric pressure at pH 9.14. All experimental data fit the following equation well: [see text] where the enthalpy and entropy are DeltaH degrees = - (44.559 +/- 2.329)kJ mol(-1) and DeltaS degrees = - (109.50 +/- 7.126) J K(-1)mol(-1), respectively.

  4. Experimental phasing using zinc anomalous scattering

    SciTech Connect

    Cha, Sun-Shin; An, Young Jun; Jeong, Chang-Sook; Kim, Min-Kyu; Lee, Sung-Gyu; Lee, Kwang-Hoon; Oh, Byung-Ha

    2012-09-01

    The surface of proteins can be charged with zinc ions and the anomalous signals from these zinc ions can be used for structure determination of proteins. Zinc is a suitable metal for anomalous dispersion phasing methods in protein crystallography. Structure determination using zinc anomalous scattering has been almost exclusively limited to proteins with intrinsically bound zinc(s). Here, it is reported that multiple zinc ions can easily be charged onto the surface of proteins with no intrinsic zinc-binding site by using zinc-containing solutions. Zn derivatization of protein surfaces appears to be a largely unnoticed but promising method of protein structure determination.

  5. Teaching the Concept of Gibbs Energy Minimization through Its Application to Phase-Equilibrium Calculation

    ERIC Educational Resources Information Center

    Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie

    2016-01-01

    Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…

  6. Effect of aircraft noise on the equilibrium of airport residents: Longitudinal study around Roissy, phase 3

    NASA Technical Reports Server (NTRS)

    Francois, J.

    1981-01-01

    The effects of airplane noise on the mental equilibrium of residents living near airports are discussed, and based on population sample surveys involving health questionnaires and self-administered personality tests. Progressive changes were observed on the part of residents living near a large airport.

  7. Computational and Experimental Evidence of Emergent Equilibrium Isotope Effects in Anion Receptor Complexes

    PubMed Central

    2017-01-01

    The measurement of a deuterium equilibrium isotope effect (EIE) for the aryl CH···Cl– interaction of anion receptor 1H/1D is reported. Computations corroborate the results of solution measurements for a small, normal EIE in the full complex (KaH/KaD = 1.019 ± 0.010). Interestingly, isotope effects involving fragments of the anion receptor (urea, aryl ring, etc.) are predicted to produce an inverse effect. This points to an unusual and subtle structural organization effect of the anion receptor complex that changes the nature of the combined interactions to a normal isotope effect. The reversal of EIE values suggests that overall architecture of the anion receptor can dramatically impact the nature of bonding in these complexes. PMID:28282134

  8. Clusters in sedimentation equilibrium for an experimental hard-sphere-plus-dipolar Brownian colloidal system

    PubMed Central

    Newman, Hugh D.; Yethiraj, Anand

    2015-01-01

    In this work, we use structure and dynamics in sedimentation equilibrium, in the presence of gravity, to examine, via confocal microscopy, a Brownian colloidal system in the presence of an external electric field. The zero field equation of state (EOS) is hard sphere without any re-scaling of particle size, and the hydrodynamic corrections to the long-time self-diffusion coefficient are quantitatively consistent with the expected value for hard spheres. Care is taken to ensure that both the dimensionless gravitational energy, which is equivalent to a Peclet number Peg, and dipolar strength Λ are of order unity. In the presence of an external electric field, anisotropic chain-chain clusters form; this cluster formation manifests itself with the appearance of a plateau in the diffusion coefficient when the dimensionless dipolar strength Λ ~ 1. The structure and dynamics of this chain-chain cluster state is examined for a monodisperse system for two particle sizes. PMID:26323363

  9. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1976-01-01

    The alternate fuels investigation objective was to experimentally determine the impacts, if any, on exhaust emissions, performance, and durability characteristics of the hybrid and vorbix low pollution combustor concepts when operated on test fuels which simulate composition and property changes which might result from future broadened aviation turbine fuel specifications or use of synthetically derived crude feedstocks. Results of the program indicate a significant increase in CO and small NOX increase in emissions at idle for both combustor concepts, and an increase in THC for the vorbix concept. Minimal impact was observed on gaseous emissions at high power. The vorbix concept exhibited significant increase in exhaust smoke with increasing fuel aromatic content. Altitude stability was not affected for the vorbix combustor, but was substantially reduced for the hybrid concept. Severe carbon deposition was observed in both combustors following limited endurance testing with No. 2 home heat fuel. Liner temperature levels were insensitive to variations in aromatic content over the range of conditions investigated.

  10. Improving experimental phases for strong reflections prior to density modification

    SciTech Connect

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; Read, Randy J.

    2013-09-20

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program,SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.

  11. Improving experimental phases for strong reflections prior to density modification

    DOE PAGES

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; ...

    2013-09-20

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number ofmore » strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program,SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  12. Experimental determination of the Cu-In-Pb ternary phase diagram

    SciTech Connect

    Bolcavage, A.; Kao, C.R.; Chang, Y.A.; Romig, A.D. Jr.

    1993-12-01

    Use of lead-indium solders in microelectronics packaging has increased over the last decade. Increased usage is due to improved properties, such as greater thermo-mechanical fatigue resistance, lower intermetallic formation rates with base metallizations, such as copper, and lower reflow temperatures. However, search of literature reveals no comprehensive studies on phase equilibrium relations between copper metal and lead-indium solder. Our effort involves a combination of experimental data acquisition and computer modeling to obtain the Cu-In-Pb ternary phase diagram. Isotherms and isopleths of interest at low temperatures are achieved by means of differential scanning calorimetry and electron probe microanalysis. Thermodynamic models of these sections served as a guide for efficient experimentation.

  13. Experimental investigation and application of the equilibrium rutile + orthopyroxene = quartz + ilmenite

    USGS Publications Warehouse

    Hayob, J.L.; Bohlen, S.R.; Essene, E.J.

    1993-01-01

    Equilibria in the Sirf (Silica-Ilmenite-Rutile-Ferrosilite) system: {Mathematical expression} have been calibrated in the range 800-1100?? C and 12-26 kbar using a piston-cylinder apparatus to assess the potential of the equilibria for geobarometry in granulite facies assemblages that lack garnet. Thermodynamic calculations indicate that the two end-member equilibria involving quartz + geikielite = rutile + enstatite, and quartz + ilmenite = rutile + ferrosilite, are metastable. We therefore reversed equilibria over the compositional range Fs40-70, using Ag80Pd20 capsules with {Mathematical expression} buffered at or near iron-wu??stite. Ilmenite compositions coexisting with orthopyroxene are {Mathematical expression} of 0.06 to 0.15 and {Mathematical expression} of 0.00 to 0.01, corresponding to KD values of 13.3, 10.2, 9.0 and 8.0 (??0.5) at 800, 900, 1000 and 1100?? C, respectively, where KD=(XMg/XFe)Opx/(XMg/XFe)Ilm. Pressures have been calculated using equilibria in the Sirf system for granulites from the Grenville Province of Ontario and for granulite facies xenoliths from central Mexico. Pressures are consistent with other well-calibrated geobarometers for orthopyroxeneilmenite pairs from two Mexican samples in which oxide textures appear to represent equilibrium. Geologically unreasonable pressures are obtained, however, where oxide textures are complex. Application of data from this study on the equilibrium distribution of iron and magnesium between ilmenite and orthopyroxene suggests that some ilmenite in deep crustal xenoliths is not equilibrated with coexisting pyroxene, while assemblages from exposed granulite terranes have reequilibrated during retrogression. The Sirf equilibria are sensitive to small changes in composition and may be used for determination of activity/composition (a/X) relations of orthopyroxene if an ilmenite model is specified. A symmetric regular solution model has been used for orthopyroxene in conjunction with activity models

  14. An Internally Consistent Thermodynamic Model for the System CaO-MgO-Al2O3-SiO2 Derived Primarily from Phase Equilibrium Data.

    PubMed

    Gasparik

    2000-01-01

    An internally consistent thermodynamic model for the subsolidus system CaO-MgO-Al2O3-SiO2 (CMAS) was developed and refined using primarily data from phase equilibrium experiments. The solution properties of pyroxenes and garnet were approximated with an ionic model, with independent mixing on adjacent crystallographic sites. This approach simplified the calculation of phase relations by allowing sequential calculation of the site occupancies. Enthalpy, entropy, and volume differences, nominally at 970 K, were derived for all participating phases by matching as closely as possible the experimentally observed phase relations. Although thermochemical measurements were not used directly in the refinement, the results were continuously monitored and compared with the thermochemical data to achieve a close match. The new model can be used to calculate phase diagrams for the CMAS system and its subsystems in the whole pressure range of the upper mantle. Simple empirical corrections for the effects of Na, Fe, Cr, etc., could potentially be introduced to make the model applicable to the thermobarometry of chemically complex mantle materials. Application of the new model to garnet lherzolite xenoliths from northern Lesotho and garnet peridotites from Norway supports the proposals for higher temperatures of the continental lithosphere.

  15. Cloud Point and Liquid-Liquid Equilibrium Behavior of Thermosensitive Polymer L61 and Salt Aqueous Two-Phase System.

    PubMed

    Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang

    2015-06-25

    The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.

  16. Modeling of phase equilibrium and vapor adsorption on carbon black based on a combination of a lattice theory and equation of state.

    PubMed

    Ustinov, E A; Do, D D

    2002-09-15

    A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption

  17. An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)

    NASA Technical Reports Server (NTRS)

    Pratt, B. S.; Pratt, D. T.

    1984-01-01

    A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.

  18. Toward a Multi-scale Phase Transition Kinetics Methodology: From Non-Equilibrium Statistical Mechanics to Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Belof, Jonathan; Orlikowski, Daniel; Wu, Christine; McLaughlin, Keith

    2013-06-01

    Shock and ramp compression experiments are allowing us to probe condensed matter under extreme conditions where phase transitions and other non-equilibrium aspects can now be directly observed, but first principles simulation of kinetics remains a challenge. A multi-scale approach is presented here, with non-equilibrium statistical mechanical quantities calculated by molecular dynamics (MD) and then leveraged to inform a classical nucleation and growth kinetics model at the hydrodynamic scale. Of central interest is the free energy barrier for the formation of a critical nucleus, with direct NEMD presenting the challenge of relatively long timescales necessary to resolve nucleation. Rather than attempt to resolve the time-dependent nucleation sequence directly, the methodology derived here is built upon the non-equilibrium work theorem in order to bias the formation of a critical nucleus and thus construct the nucleation and growth rates. Having determined these kinetic terms from MD, a hydrodynamics implementation of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics and metastabilty is applied to the dynamic compressive freezing of water and compared with recent ramp compression experiments [Dolan et al., Nature (2007)] Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  19. Numerical and experimental exploration of phase control of chaos.

    PubMed

    Zambrano, Samuel; Allaria, Enrico; Brugioni, Stefano; Leyva, Immaculada; Meucci, Riccardo; Sanjuán, Miguel A F; Arecchi, Fortunato T

    2006-03-01

    A well-known method to suppress chaos in a periodically forced chaotic system is to add a harmonic perturbation. The phase control of chaos scheme uses the phase difference between a small added harmonic perturbation and the main driving to suppress chaos, leading the system to different periodic orbits. Using the Duffing oscillator as a paradigm, we present here an in-depth study of this technique. A thorough numerical exploration has been made focused in the important role played by the phase, from which new interesting patterns in parameter space have appeared. On the other hand, our novel experimental implementation of phase control in an electronic circuit confirms both the well-known features of this method and the new ones detected numerically. All this may help in future implementations of phase control of chaos, which is globally confirmed here to be robust and easy to implement experimentally.

  20. Experimental proposal for measuring the Gouy phase of matter waves

    NASA Astrophysics Data System (ADS)

    da Paz, I. G.; Saldanha, P. L.; Nemes, M. C.; Peixoto de Faria, J. G.

    2011-12-01

    The Schrödinger equation for an atomic beam predicts that it must have a phase anomaly near the beam waist analogous to the Gouy phase of an electromagnetic beam. We propose here a feasible experiment that allows for direct determination of this anomalous phase using Ramsey interferometry with Rydberg atoms. Possible experimental limitations are discussed, and shown to be completely under control within present-day technology. We also discuss how this finding can open the possibility of using the spatial mode wavefunctions of atoms as q-dits, since the Gouy phase is an essential ingredient for making rotations in the quantum states.

  1. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    PubMed

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  2. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces

    PubMed Central

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L.

    2017-01-01

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces ‘on the fly’ has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320909

  3. Experimental Investigation of the Cd-Pr Phase Diagram

    PubMed Central

    Reichmann, Thomas L.; Effenberger, Herta S.; Ipser, Herbert

    2014-01-01

    The complete Cd-Pr equilibrium phase diagram was investigated with a combination of powder-XRD, SEM and DTA. All intermetallic compounds within this system, already reported in literature, could be confirmed: CdPr, Cd2Pr, Cd3Pr, Cd45Pr11, Cd58Pr13, Cd6Pr and Cd11Pr. The corresponding phase boundaries were determined at distinct temperatures. The homogeneity range of the high-temperature allotropic modification of Pr could be determined precisely and a limited solubility of 22.1 at.% Cd was derived. Additionally, single-crystal X-ray diffraction was employed to investigate structural details of Cd2Pr; it is isotypic to the AlB2-type structure with a z value of the Cd site of 0.5. DTA results of alloys located in the adjacent two-phase fields of Cd2Pr suggested a phase transformation between 893 and 930°C. For the phase Cd3Pr it was found that the lattice parameter a changes linearly with increasing Cd content, following Vegard’s rule. The corresponding defect mechanism could be evaluated from structural data collected with single-crystal XRD. Introduction of a significant amount of vacancies on the Pr site and the reduction in symmetry of one Cd position (8c to 32f) resulted in a noticeable decrease of all R-values. PMID:24718502

  4. Experimental investigation of the Cd-Pr phase diagram.

    PubMed

    Reichmann, Thomas L; Effenberger, Herta S; Ipser, Herbert

    2014-01-01

    The complete Cd-Pr equilibrium phase diagram was investigated with a combination of powder-XRD, SEM and DTA. All intermetallic compounds within this system, already reported in literature, could be confirmed: CdPr, Cd2Pr, Cd3Pr, Cd45Pr11, Cd58Pr13, Cd6Pr and Cd11Pr. The corresponding phase boundaries were determined at distinct temperatures. The homogeneity range of the high-temperature allotropic modification of Pr could be determined precisely and a limited solubility of 22.1 at.% Cd was derived. Additionally, single-crystal X-ray diffraction was employed to investigate structural details of Cd2Pr; it is isotypic to the AlB2-type structure with a z value of the Cd site of 0.5. DTA results of alloys located in the adjacent two-phase fields of Cd2Pr suggested a phase transformation between 893 and 930°C. For the phase Cd3Pr it was found that the lattice parameter a changes linearly with increasing Cd content, following Vegard's rule. The corresponding defect mechanism could be evaluated from structural data collected with single-crystal XRD. Introduction of a significant amount of vacancies on the Pr site and the reduction in symmetry of one Cd position (8c to 32f) resulted in a noticeable decrease of all R-values.

  5. A two phase Mach number description of the equilibrium flow of nitrogen in ducts

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.; Adcock, J. B.

    1979-01-01

    Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.

  6. Non-equilibrium phase distribution in an Al-SiC composite

    NASA Technical Reports Server (NTRS)

    Nutt, S. R.; Carpenter, R. W.

    1985-01-01

    The phase distribution in an Al-SiC composite has been investigated using high resolution analytical electron microscopy. Particular attention was focused on Al-SiC interfaces, matrix boundaries and impurity phases which would impede the easy glide of dislocations. Small crystallites of MgO were distributed singly and in clusters along Al-SiC interfaces in all specimens. Interfacial segregation and precipitation involving alloy species apparently affected precipitation in the matrix, where the distribution of phases was found to be very heterogeneous. Matrix phases also included unusually large constituent particles and dispersoids, a consequence of the composite processing methods. The relationship between the observed microstructure and the composite mechanical behavior reported by others is discussed. The heterogeneous distribution of matrix phases is expected to result in a wide variaiton in local yield stress and local work-hardening rate within the composite.

  7. Experimental evidence of momentum transport induced by an up-down asymmetric magnetic equilibrium in toroidal plasmas.

    PubMed

    Camenen, Y; Bortolon, A; Duval, B P; Federspiel, L; Peeters, A G; Casson, F J; Hornsby, W A; Karpushov, A N; Piras, F; Sauter, O; Snodin, A P; Szepesi, G

    2010-09-24

    The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak à Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.

  8. Cordierite-garnet-sillimanite-quartz equilibrium: I. New experimental calibration in the system FeO-Al2O3-SiO2-H2O and certain P-T- X H2O relations

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Biswajit; Holdaway, Michael J.

    1994-05-01

    The equilibrium in which hydrous Fe-cordierite breaks down to almandine, sillimanite, quartz, and water was previously experimentally determined by Richardson (1968) and Holdaway and Lee (1977) using QMF buffer and by Weisbrod (1973) using QIF buffer. All these studies yielded similar results — a negative dP/dT slope for the equilibrium curve. However, based on theoretical arguments, Martignole and Sisi (1981), and based on Fe-Mg partitioning experiments on coexisting cordierite and garnet in equilibrium with sillimanite and quartz, Aranovich and Podlesskii (1983) suggested that this equilibrium curve has a positive dP/dT slope and its position depends on the water content of the equilibrium cordierite. We have redetermined this equilibrium using a much improved tecnique of detecting reaction direction, and cordierite starting material that contained virtually no hercynite. Hercynite was present as a contaminant in the cordierites of previous experimental studies and possibly reacted with quartz during the experimental runs to expand the apparent stability field of Fe-cordierite. We synthesized Fe-cordierite from reagent grade oxides at 710°C and 2 kbar (using QMF buffer) with two intermediate stages of grinding and mixing. The cordierite has a unit cell volume of 1574.60 Å3 (molar volume=23.706 J/bar) and no Fe3+ as indicated by X-ray diffraction and room temperature Mössbauer studies respectively. Reaction direction was concluded by noting≥20% change of the ratios of intensities of two key X-ray diffraction peaks of cordierite and almandine. Our results show that the four-phase equilibrium curve passes through the points 2.1 kbar, 650°C and 2.5 kbar, 750°C. This disagrees with all previous experimental studies. H2O in the Fe-cordierite, equilibrated at 2.2 kbar and 700°C and determined by H-extraction line in the stable isotope laboratory, is 1.13 wt% ( n=0.41 moles). H2O content of pure Mg-cordierite equilibrated under identical conditions and

  9. Gas phase kinetics and equilibrium of allyl radical reactions with NO and NO2.

    PubMed

    Rissanen, Matti P; Amedro, Damien; Krasnoperov, Lev; Marshall, Paul; Timonen, Raimo S

    2013-02-07

    Allyl radical reactions with NO and NO(2) were studied in direct, time-resolved experiments in a temperature controlled tubular flow reactor connected to a laser photolysis/photoionization mass spectrometer (LP-PIMS). In the C(3)H(5) + NO reaction 1 , a dependence on the bath gas density was observed in the determined rate coefficients and pressure falloff parametrizations were performed. The obtained rate coefficients vary between 0.30-14.2 × 10(-12) cm(3) s(-1) (T = 188-363 K, p = 0.39-23.78 Torr He) and possess a negative temperature dependence. The rate coefficients of the C(3)H(5) + NO(2) reaction 2 did not show a dependence on the bath gas density in the range used (p = 0.47-3.38 Torr, T = 201-363 K), and they can be expressed as a function of temperature with k(C(3)H(5) + NO(2)) = (3.97 ± 0.84) × 10(-11) × (T/300 K) (-1.55±0.05) cm(3) s(-1). In the C(3)H(5) + NO reaction, above 410 K the observed C(3)H(5) radical signal did not decay to the signal background, indicating equilibrium between C(3)H(5) + NO and C(3)H(5)NO. This allowed the C(3)H(5) + NO ⇄ C(3)H(5)NO equilibrium to be studied and the equilibrium constants of the reaction between 414 and 500 K to be determined. With the standard second- and third-law analysis, the enthalpy and entropy of the C(3)H(5) + NO ⇄ C(3)H(5)NO reaction were obtained. Combined with the calculated standard entropy of reaction (ΔS°(298) = 137.2 J mol(-1)K(-1)), the third-law analysis resulted in ΔH°(298) = 102.4 ± 3.2 kJ mol(-1) for the C(3)H(5)-NO bond dissociation enthalpy.

  10. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  11. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states

    PubMed Central

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-01-01

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height , the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field. PMID:26568306

  12. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states.

    PubMed

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-11-16

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height (|λF - λI|), the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field.

  13. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    SciTech Connect

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  14. Phase equilibrium modeling of Pan-African incipient charnockite from southern Madagascar

    NASA Astrophysics Data System (ADS)

    Tsunogae, Toshiaki; Endo, Takahiro; Santosh, Mw; Thierry Rakotonandrasana, N. O.; Shaji, Erath; Rambeloson, Roger A.

    2013-04-01

    Dark brownish patches and/or veins of coarse-grained orthopyroxene-bearing felsic granulite (charnockite) within foliated amphibolite-facies gneiss/migmatite, are considered as examples of 'metamorphic' charnockite, and represent the transformation of amphibolite-facies rocks to dry granulites on a local scale. Such 'incipient' charnockites have been reported so far from many localities in southern India and Sri Lanka which corresponds to the central part of the East African - Antarctic Orogenic Belt related to the assembly of the Gondwana Supercontinent. Detailed petrological investigations of incipient charnockites therefore provide important insights into granulite-forming processes in the lower crust during Neoproterozoic to Cambrian. Here, we report the first occurrence of incipient charnockite from Ihosy area in southern Madagascar, and discuss the petrogenesis of granulite formation in an arrested stage on the basis of petrography, geothermobarometry, fluid inclusion study, and mineral equilibrium modeling. In the study area, patches of brownish charnockite (Pl+ Qtz + Kfs + Bt + Grt + Opx + Ilm + Mag) of about 20 to 50 cm in length occur within host orthopyroxene-free garnet-biotite gneiss (Pl + Qtz + Kfs + Bt + Grt + Ilm + Mag). The application of mineral equilibrium modeling on charnockite assemblage in NCKFMASHTO system to constrain the conditions of charnockitization defines a P - T range of 8-10.5 kbar and 820-880° C, which is broadly consistent with the results from the conventional geothermobarometry (820-880° C at 9 kbar) on Grt-Bt gneiss. The result of T versus mole H2O (M(H2O)) modeling demonstrated that orthopyroxene-free assemblage in Grt-Bt gneiss is stable only at M(H2O) >0.1 mol.%, while orthopyroxene in charnockite occurs as a stable mineral at very low M(H2O) condition of

  15. Phase equilibrium in a water + n-hexane system with a high water content

    NASA Astrophysics Data System (ADS)

    Rasulov, S. M.; Orakova, S. M.; Isaev, Z. A.

    2017-02-01

    The P, ρ, and T-properties of a water + n-hexane system immiscible under normal conditions are measured piezometrically in the water mole fraction range of 0.918-0.977 at 309-685 K and pressures of up to 66 MPa. Two phase transitions are observed on each isochore corresponding to phase transitions of hydrocarbon liquid into gas or the dissolution of n-hexane in water and the transition of aqueous liquid into gas. The boundaries of phase transitions and their critical parameters are determined.

  16. Experimental implementation of phase locking in a nonlinear interferometer

    SciTech Connect

    Wang, Hailong; Jing, Jietai; Marino, A. M.

    2015-09-21

    Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in such a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.

  17. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    NASA Astrophysics Data System (ADS)

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH < 6.8, thus being a possible precipitate in oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear

  18. Experimental study on confined two-phase jets

    SciTech Connect

    Levy, Y.; Albagli, D. )

    1991-09-01

    The basic mixing phenomena in confined, coaxial, particle-laden turbulent flows are studied within the scope of ram combustor research activities. Cold-flow experiments in a relatively simple configuration of confined, coaxial two-phase jets provided both qualitative and quantitative insight on the multiphase mixing process. Pressure, tracer gas concentration, and two-phase velocity measurements revealed that unacceptably long ram combustors are needed for complete confined jet mixing. Comparison of the experimental results with a previous numerical simulation displayed a very good agreement, indicating the potential of the experimental facility for validation of computational parametric studies. 38 refs.

  19. Phase equilibrium of colloidal suspensions with particle size dispersity: a Monte Carlo study.

    PubMed

    Yiannourakou, Marianna; Economou, Ioannis G; Bitsanis, Ioannis A

    2009-05-21

    We have studied the crystalline-amorphous coexistence for systems of polydisperse soft spheres that interact via a purely repulsive power law potential. Potential softness quantified by the exponent of the potential was a primary input in our simulations. Simulations were performed in the isobaric semigrand statistical ensemble, i.e., the composition of the parent distribution was not fixed in our systems. Gibbs-Duhem integration was used to trace the coexistence pressure as a function of potential softness for monodisperse systems. A second Gibbs-Duhem integration, initiated from the monodisperse coexistence curve, was employed to determine coexistence pressure versus imposed variance of the activity distribution. Amorphous-crystalline coexistence densities and volume fractions were determined to be monotonically increasing functions of the breadth of particle size dispersity. Semigrand ensemble simulations testified to the existence of a terminal diameter dispersity, i.e., a dispersity above which no amorphous-crystalline phase coexistence was observed. At the terminus size dispersity increases from 5.8% to 6.1% to 6.4% and to 6.7% and 6.5% for the crystalline phase as the steepness parameter n, takes on smaller values: from 100 to 50 to 12 to 10 and 8, respectively. In sharp contrast to the crystalline phases' enhanced, by potential softness, allowable size dispersity the amorphous phase exhibits an opposite trend, as potential interactions soften. Furthermore, amorphous phases accommodate, on average, smaller particles than those of the ordered (fcc) phase. Contrary to widely accepted intuition crystalline phases composed of size-disperse particulates exhibit a higher degree of local order than their monodisperse counterparts, admittedly at differing thermodynamic conditions.

  20. Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system

    NASA Astrophysics Data System (ADS)

    He, Feng

    The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single

  1. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Ghiorso, M. S.; Begue, F.; Pamukcu, A. S.; Gravley, D. M.

    2013-12-01

    Constraining the pressure of crystallization of magmas is an important but elusive task. We propose here a method to derive crystallization pressures for rocks that preserve glass compositions (either glass inclusions or matrix glass) representative of equilibration between melt, quartz, and 1 or 2 feldspars. The method relies on the shift of the quartz-feldspar saturation surface towards higher silica with decreasing pressure. The critical realization is that melt, quartz and feldspars need to be in equilibrium at the liquidus for the melt composition of interest. Thus, this method consists of calculating the saturation surfaces for quartz and feldspars using rhyolite-MELTS over a range of pressures, and searching for the pressure at which the expected assemblage (quartz+1 feldspar or quartz+2 feldspars) is found at the liquidus. We evaluate errors resulting from uncertainties in glass composition using Monte Carlo simulations, which reveal errors of ~20-45 MPa for the quartz+2 feldspars constraint and of ~25-100 MPa for the quartz+1 feldspar constraint; actual errors are likely closer to the lower bounds of these ranges. We demonstrate that the effect of fluid-saturation is more important at higher pressures (~300 MPa) than at lower pressures (~100 MPa), but reasonable pressure estimates can be derived irrespective of fluid saturation for geologically relevant H2O concentrations (>3 wt. %). And, we show that pressures calculated using the rhyolite-MELTS geobarometer compare well with those resulting from H2O-CO2 glass inclusion barometry and Al-in-hornblende barometry for an array of natural systems for which data has been compiled from the literature. We apply the rhyolite-MELTS barometer to three systems we are currently studying in detail: (1) For the Bishop Tuff (CA, USA), we find that quartz-hosted glass inclusion compositions yield indistinguishable crystallization pressures for early-erupted and late-erupted pumice, consistent with the Bishop Tuff having

  2. A magic triangle for experimental phasing of macromolecules.

    PubMed

    Beck, Tobias; Krasauskas, Andrius; Gruene, Tim; Sheldrick, George M

    2008-11-01

    Obtaining phase information for the solution of macromolecular structures is still one of the bottlenecks in X-ray crystallography. 5-Amino-2,4,6-triiodoisophthalic acid (I3C), in which three covalently bound iodines form an equilateral triangle, was incorporated into proteins in order to obtain phases by single-wavelength anomalous dispersion (SAD). An improved binding capability compared with simple heavy-metal ions, ready availability, improved recognition of potential heavy-atom sites and low toxicity make I3C particularly suitable for experimental phasing.

  3. The effects of three-body dispersion interactions on liquid-liquid phase equilibrium

    NASA Astrophysics Data System (ADS)

    McMahon, P. D.

    1989-02-01

    Using perturbation theory, we show that three-body dispersion interactions influence the phase diagrams of partially miscible liquid mixtures. In our model mixtures, the argon-like particles interact through Maitland-Smith pair potentials and Axilrod-Teller three-body potentials. We find that ternary liquid-liquid coexistence curves are sensitive to vABC, the strength of the Axilrod-Teller interaction appearing for the first time in the ternary mixture. Effective pair potentials predict the ternary phase diagrams well if vABC satisfies Tang's rule.

  4. Analytical and experimental study of high phase order induction motors

    NASA Technical Reports Server (NTRS)

    Klingshirn, Eugene A.

    1989-01-01

    Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.

  5. Experimental Investigation of two-phase nitrogen Cryo transfer line

    NASA Astrophysics Data System (ADS)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  6. Phase equilibrium for surfactant Ls-54 in liquid CO(2) with water and solubility estimation using the Peng-Robinson equation of state.

    PubMed

    Tarafa, Pedro J; Matthews, Michael A

    2010-11-25

    It is known that the commercial surfactant Dehypon® Ls-54 is soluble in supercritical CO(2) and that it enables formation of water-in-CO(2) microemulsions. In this work we observed phase equilibrium for the Ls-54/CO(2) and Ls-54/water/CO(2) systems in the liquid CO(2) region, from 278.15 - 298.15 K. In addition, the Peng-Robinson equation of state (PREOS) was used to model the phase behavior of Ls-54/CO(2) binary system as well as to estimate water solubilities in CO(2). Ls-54 in CO(2) can have solubilities as high as 0.086 M at 278.15 K and 15.2 MPa. The stability of the microemulsion decreases with increasing concentration of water, and lower temperatures favor increased solubility of water into the one-phase microemulsion. The PREOS model showed satisfactory agreement with the experimental data for both Ls-54/CO(2) and water/CO(2) systems.

  7. Phase equilibrium for surfactant Ls-54 in liquid CO2 with water and solubility estimation using the Peng-Robinson equation of state

    PubMed Central

    Tarafa, Pedro J.; Matthews, Michael A.

    2010-01-01

    It is known that the commercial surfactant Dehypon® Ls-54 is soluble in supercritical CO2 and that it enables formation of water-in-CO2 microemulsions. In this work we observed phase equilibrium for the Ls-54/CO2 and Ls-54/water/CO2 systems in the liquid CO2 region, from 278.15 - 298.15 K. In addition, the Peng-Robinson equation of state (PREOS) was used to model the phase behavior of Ls-54/CO2 binary system as well as to estimate water solubilities in CO2. Ls-54 in CO2 can have solubilities as high as 0.086 M at 278.15 K and 15.2 MPa. The stability of the microemulsion decreases with increasing concentration of water, and lower temperatures favor increased solubility of water into the one-phase microemulsion. The PREOS model showed satisfactory agreement with the experimental data for both Ls-54/CO2 and water/CO2 systems. PMID:21037962

  8. A general unified non-equilibrium model for predicting saturated and subcooled critical two-phase flow rates through short and long tubes

    SciTech Connect

    Fraser, D.W.H.; Abdelmessih, A.H.

    1995-09-01

    A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.

  9. Long Range Correlations and Phase Transitions in Non-equilibrium Diffusive Systems

    NASA Astrophysics Data System (ADS)

    Bodineau, T.; Derrida, B.; Lecomte, V.; van Wijland, F.

    2008-12-01

    We obtain explicit expressions for the long range correlations in the ABC model and in diffusive models conditioned to produce an atypical current of particles. In both cases, the two-point correlation functions allow one to detect the occurrence of a phase transition as they become singular when the system approaches the transition.

  10. Saddle-point equilibrium lines between fcc and bcc phases in Al and Ca from first principles

    NASA Astrophysics Data System (ADS)

    Qiu, S. L.; Marcus, P. M.

    2013-10-01

    Phase equilibrium lines (denoted ph-eq lines) of face-centered-cubic (fcc) and body-centered-cubic (bcc) phases, as well as saddle-point equilibrium lines (denoted sp-eq lines) in Al and Ca are studied by first-principles total-energy calculations. For a non-vibrating crystal of Al we determine the transition pressure p t = 2.62 Mbar from fcc to bcc phase. The sp-eq line lies between the two ph-eq lines, merges with the bcc-eq line at V = 61 au3/atom ( p = 1.64 Mbar) and with the fcc-eq line at V = 42.4 au3/atom ( p = 5.50 Mbar), gives the Gibbs free energy barrier ΔG = 0.64 mRy/atom at p t . The bcc phase is unstable below 1.64 Mbar, while the fcc phase is unstable above 5.50 Mbar. In a non-vibrating crystal of Ca two sp-eq lines (denoted sp1-eq line and sp2-eq line, respectively) are found corresponding to two phase transitions: one is from fcc to bcc at p t1 = 89.6 kbar, the other is from bcc to fcc at p t2 = 787 kbar. The sp1-eq line merges with the bcc-eq line at V = 231 au3/atom ( p = 50 kbar) and with the fcc-eq line at V = 183 au3/atom ( p = 174 kbar), gives a barrier of Δ G 1 = 0.62 mRy/atom at p t1. The sp2-eq line merges with the bcc-eq line at V = 90 au3/atom ( p = 981 kbar) and with the fcc-eq line at V = 110 au3/atom ( p = 624 kbar), gives a barrier of Δ G 2 = 1.1 mRy/atom at p t2. The bcc phase is stable in the range from 50 kbar to 981 kbar but unstable outside this range, while the fcc phase is unstable in the range from 174 to 624 kbar but stable outside this range. This work confirms all the features of the sp-eq line described in our recent work [S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012)] and finds two additional features: (1) there are two sp-eq lines corresponding to the two phase transitions between fcc and bcc phases in Ca; (2) fcc phase of Ca is unstable between the two merge points on the fcc-eq line but stable beyond them, while bcc phase of Ca is stable between the two merge points on the bcc-eq line but

  11. Advanced Crystallographic Data Collection Protocols for Experimental Phasing.

    PubMed

    Finke, Aaron D; Panepucci, Ezequiel; Vonrhein, Clemens; Wang, Meitian; Bricogne, Gérard; Oliéric, Vincent

    2016-01-01

    Experimental phasing by single- or multi-wavelength anomalous dispersion (SAD or MAD) has become the most popular method of de novo macromolecular structure determination. Continuous advances at third-generation synchrotron sources have enabled the deployment of rapid data collection protocols that are capable of recording SAD or MAD data sets. However, procedural simplifications driven by the pursuit of high throughput have led to a loss of sophistication in data collection strategies, adversely affecting measurement accuracy from the viewpoint of anomalous phasing. In this chapter, we detail optimized strategies for collecting high-quality data for experimental phasing, with particular emphasis on minimizing errors from radiation damage as well as from the instrument. This chapter also emphasizes data processing for "on-the-fly" decision-making during data collection, a critical process when data quality depends directly on information gathered while at the synchrotron.

  12. Experimental methods for phase equilibria at high pressures.

    PubMed

    Dohrn, Ralf; Fonseca, José M S; Peper, Stephanie

    2012-01-01

    Knowledge of high-pressure phase equilibria is crucial in many fields, e.g., for the design and optimization of high-pressure chemical and separation processes, carbon capture and storage, hydrate formation, applications of ionic liquids, and geological processes. This review presents the variety of methods to measure phase equilibria at high pressures and, following a classification, discusses the measurement principles, advantages, challenges, and error sources. Examples of application areas are given. A detailed knowledge and understanding of the different methods is fundamental not only for choosing the most suitable method for a certain task but also for the evaluation of experimental data. The discrepancy between the (sometimes low) true accuracy of published experimental data and the (high) accuracy claimed by authors is addressed. Some essential requirements for the generation of valuable experimental results are summarized.

  13. Phase equilibrium in the formation of silicon carbide by topochemical conversion of silicon

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.

    2016-04-01

    Methods of linear algebra were used to find a basis of independent chemical reactions in the topochemical conversion of silicon into silicon carbide by the reaction with carbon monoxide. The pressure-flow phase diagram was calculated from this basis, describing the composition of the solid phase for a particular design of vacuum furnace. It was demonstrated that to grow pure silicon carbide, it is necessary to ensure the pressure of carbon monoxide less than a certain value and its flow more than a certain value, depending on the temperature of the process. The elastic fields around vacancies formed were considered for the first time in calculating the topochemical reaction. It was shown that the anisotropy of these fields in a cubic crystal increases the constant of the main reaction approximately fourfold.

  14. Latitudinal plasma distribution in the dusk plasmaspheric bulge - Refilling phase and quasi-equilibrium state

    NASA Technical Reports Server (NTRS)

    Decreau, P. M. E.; Carpenter, D.; Chappell, C. R.; Green, J.; Waite, J. H., Jr.

    1986-01-01

    Very low-energy trapped ions, mostly protons, have been observed in a region of moderate density characteristic of the plasmapause boundary and of the plasmaspheric bulge. The present paper is concerned with an examination of the latitudinal structure of the bulge under quasi-steady conditions and the conditions of the recovery phase. Details regarding the data base are considered along with observations of the morphology and dynamics of the bulge, the latitudinal density distribution in the expanded bulge, the convection scenario during the replenishment phase, and latitudinal effects on plasma characteristics during plasmasphere refilling. The data utilized have been mainly provided by the DE 1 and GEOS 2 spacecraft traveling in two perpendicular planes. It is found that the bulge is a dynamic region, where no reasonable interpretation of the observed density distribution can be achieved without taking into account the mechanism of magnetospheric convection.

  15. Decoding the pair correlations and properties of equilibrium microscopic cluster phases

    NASA Astrophysics Data System (ADS)

    Bollinger, Jonathan; Jadrich, Ryan; Truskett, Thomas

    Due to competing interactions acting between particles, dispersed colloidal suspensions can reversibly transition to phases comprising aggregate clusters. Cluster phases have been reported for both 'model' colloidal particles and complex monomers (e.g., proteins); however, many questions remain regarding how to detect and characterize cluster phases given only pair structural correlations (the information most accessible across diverse systems) and how to relate clustering susceptibility and behavior to underlying monomer-monomer interactions. Using molecular simulations and liquid-state theory across a wide survey of conditions, we decode the widely-observed intermediate range order pre-peak in the structure factor by: (1) validating a physically-intuitive rule for detecting clustering based on the pre-peak thermal correlation length; and (2) relating pre-peak position to cluster size and bulk monomer density. We further demonstrate how clustering transitions and resultant properties relate to monomer interactions along coordinates tunable in experiments. These trends are suitable for comparing against clustering systems that can be directly visualized (via, e.g., confocal microscopy), which should aid in assessing the realism of commonly-adopted monomer interaction potentials.

  16. Non-equilibrium Simulation of CO­2-hydrate Phase Transitions from Mixtures of CO2 and N2 Gases

    NASA Astrophysics Data System (ADS)

    Qorbani Nashaqi, K.

    2015-12-01

    Storage of CO2 in aquifers is one of several options for reducing the emissions of CO2 to the atmosphere. Generally this option requires sealing integrity through layers of clay or shale. Many reservoirs have regions of temperature and pressure inside hydrate formation conditions. Whether hydrate formation can provide long term extra sealing still remains unverified in view of all co-existing phases that affect hydrate stability. Yet another storage option for CO2 is in the form of hydrate through exchange of in situ CH4 hydrate. Injection of CO2 into hydrate filled sediments is challenging due to the partial filling of pores with hydrate which results in low porosity and low permeability. Formation of new hydrate from injected CO2 will enhance these problems, Mixing N2 gas with the CO2 will increase permeability and will reduce driving forces for formation of new hydrate from pore water and injection gas. Hydrate can generally not reach thermodynamic equilibrium due to Gibbs' phase rule and the combined first and second laws of thermodynamics. These thermodynamic constraints on distribution of masses over co-existing phases are dynamically coupled to local mass- and heat-transport. Reservoir simulations are one possible method for investigation of possible scenarios related to injection of CO2 with N2 into aquifers containing CH4 hydrate. In this work we have developed prevoiusly modified RetrasoCodeBrite (RCB) simulator to handle injection of CO2/N2 gas mixtures. Hydrate formation and dissociation were determined by investigating Gibbs free energy differences between hydrate and hydrate formers. Gibbs free energy differences were calculated from changes in chemical potentials, which were obtained using non-equilibrium thermodynamic approach. Further extension of RCB has been implemented in this work through adding on-the-fly thermodynamic calculations. Correspondingly, hydrate phase transitions are calculated directly inside the code as a result of super

  17. Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip.

    PubMed

    Paesani, S; Gentile, A A; Santagati, R; Wang, J; Wiebe, N; Tew, D P; O'Brien, J L; Thompson, M G

    2017-03-10

    Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The approach is verified to be well suited for prethreshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.

  18. Thermodynamic aspects of phase equilibrium in binary water-organic solvent mixtures

    NASA Astrophysics Data System (ADS)

    Mizerovskii, L. N.

    2017-02-01

    It is shown that the boundary curves of liquid equilibria in binary systems characterize the temperature-concentration boundary of the existence of homogeneous mixtures whose formation is not accompanied by changes in the Gibbs energy of the system and are a combination of two branches that do not convert into each other but intersect at the temperature of homogenization of a mixture of critical composition. The phase diagrams of a number of water-organic solvent systems are analyzed to determine the thermodynamic particularities of the latter.

  19. Terfenol: A study of the phase equilibrium diagram and the solidification process

    SciTech Connect

    Anderson, M.

    1993-12-07

    Terfenol is a rare earth-iron alloy that was first developed at the Naval Ordinance Laboratory because of its rare magnetostrictive properties. Terfenol is composed of terbium and dysprosium combined with iron in a composition Tb{sub x}Dy{sub 1{minus}x}Fe{sub 2}, where x{approximately}0.3. The objective of this work was to determine the growth characteristics of Terfenol and its dependence on solidification rate, temperature gradient, and stoichiometry. Specific goals of this work were to verify the phase equilibria that is currently accepted for the systems DyFe{sub 2} and TbFe{sub 2}, and establish the phase equilibria near the composition Tb{sub 0.3}Dy{sub 0.7}Fe{sub 2}; establish that Terfenol grows directly from the liquid and that the reaction is occurring under metastable conditions; evaluate whether or not Terfenol can be grown under plane front conditions with a new radiofrequency float zone apparatus, and; determine whether or not <111> seeded crystals can be grown and <111> single crystals produced by elimination of dendrites employing growth methods capable of achieving high gradient/solidification rate ratios.

  20. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    PubMed

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

  1. Bose-Hubbard model: Relation between driven-dissipative steady states and equilibrium quantum phases

    NASA Astrophysics Data System (ADS)

    Le Boité, Alexandre; Orso, Giuliano; Ciuti, Cristiano

    2014-12-01

    We present analytical solutions for the mean-field master equation of the driven-dissipative Bose-Hubbard model for cavity photons, in the limit of both weak pumping and weak dissipation. Instead of pure Mott-insulator states, we find statistical mixtures with the same second-order coherence g(2 )(0 ) as a Fock state with n photons, but a mean photon number of n /2 . These mixed states occur when n pump photons have the same energy as n interacting photons inside the nonlinear cavity and survive up to a critical tunneling coupling strength, above which a crossover to a classical coherent state takes place. We also explain the origin of both antibunching and superbunching predicted by P-representation mean-field theory at higher pumping and dissipation. In particular, we show that the strongly correlated region of the associated phase diagram cannot be described within the semiclassical Gross-Pitaevskii approach.

  2. Semi-experimental equilibrium structure determinations by employing B3LYP/SNSD anharmonic force fields: validation and application to semirigid organic molecules.

    PubMed

    Piccardo, Matteo; Penocchio, Emanuele; Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo

    2015-03-12

    This work aims at extending the semi-experimental (SE) approach for deriving accurate equilibrium structures to large molecular systems of organic and biological interest. SE equilibrium structures are derived by a least-squares fit of the structural parameters to the experimental ground-state rotational constants of several isotopic species corrected by vibrational contributions computed by quantum mechanical (QM) methods. A systematic benchmark study on 21 small molecules (CCse set) is carried out to evaluate the performance of hybrid density functionals (in particular B3LYP) in the derivation of vibrational corrections to rotational constants. The resulting SE equilibrium structures show a very good agreement with the corresponding geometries obtained employing post-Hartree-Fock vibrational corrections. The use of B3LYP in conjunction with the double-ζ SNSD basis set strongly reduces the computational costs, thus allowing for the evaluation of accurate SE equilibrium structures for medium-sized molecular systems. On these grounds, an additional set of 26 SE equilibrium structures including the most common organic moieties has been set up by collecting the most accurate geometries available in the literature together with new determinations from the present work. The overall set of 47 SE equilibrium structures determined using B3LYP/SNSD vibrational corrections (B3se set) provides a high quality benchmark for validating the structural predictions of other experimental and/or computational approaches. Finally, we present a new strategy (referred to as the template approach) to deal with the cases for which it is not possible to fit all geometrical parameters due to the lack of experimental data.

  3. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    SciTech Connect

    Butlitsky, M. A.; Zelener, B. V.

    2014-07-14

    A two-component plasma model, which we called a “shelf Coulomb” model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The “shelf Coulomb” model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ε parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ε and γ = βe{sup 2}n{sup 1/3} (where β = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ε and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ε{sub crit}≈13(T{sub crit}{sup *}≈0.076),γ{sub crit}≈1.8(v{sub crit}{sup *}≈0.17),P{sub crit}{sup *}≈0.39, where specific volume v* = 1/γ{sup 3} and reduced temperature T{sup *} = ε{sup −1}.

  4. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    SciTech Connect

    Khodadi, M. Sepangi, H.R.

    2014-07-15

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.

  5. A history of experimental phasing in macromolecular crystallography

    PubMed Central

    Isaacs, Neil

    2016-01-01

    It was just over a century ago that W. L. Bragg published a paper describing the first crystal structures to be determined using X-ray diffraction data. These structures were obtained from considerations of X-ray diffraction (Bragg equation), crystallography (crystal lattices and symmetry) and the scattering power of different atoms. Although W. H. Bragg proposed soon afterwards, in 1915, that the periodic electron density in crystals could be analysed using Fourier transforms, it took some decades before experimental phasing methods were developed. Many scientists contributed to this development and this paper presents the author’s own perspective on this history. There will be other perspectives, so what follows is a history, rather than the history, of experimental phasing. PMID:26960116

  6. A history of experimental phasing in macromolecular crystallography.

    PubMed

    Isaacs, Neil

    2016-03-01

    It was just over a century ago that W. L. Bragg published a paper describing the first crystal structures to be determined using X-ray diffraction data. These structures were obtained from considerations of X-ray diffraction (Bragg equation), crystallography (crystal lattices and symmetry) and the scattering power of different atoms. Although W. H. Bragg proposed soon afterwards, in 1915, that the periodic electron density in crystals could be analysed using Fourier transforms, it took some decades before experimental phasing methods were developed. Many scientists contributed to this development and this paper presents the author's own perspective on this history. There will be other perspectives, so what follows is a history, rather than the history, of experimental phasing.

  7. Spectral analysis of finite-time correlation matrices near equilibrium phase transitions

    NASA Astrophysics Data System (ADS)

    Vinayak; Prosen, T.; Buča, B.; Seligman, T. H.

    2014-10-01

    We study spectral densities for systems on lattices, which, at a phase transition display, power-law spatial correlations. Constructing the spatial correlation matrix we prove that its eigenvalue density shows a power law that can be derived from the spatial correlations. In practice time series are short in the sense that they are either not stationary over long time intervals or not available over long time intervals. Also we usually do not have time series for all variables available. We shall make numerical simulations on a two-dimensional Ising model with the usual Metropolis algorithm as time evolution. Using all spins on a grid with periodic boundary conditions we find a power law, that is, for large grids, compatible with the analytic result. We still find a power law even if we choose a fairly small subset of grid points at random. The exponents of the power laws will be smaller under such circumstances. For very short time series leading to singular correlation matrices we use a recently developed technique to lift the degeneracy at zero in the spectrum and find a significant signature of critical behavior even in this case as compared to high temperature results which tend to those of random matrix models.

  8. On the possibility to develop an advanced non-equilibrium model of depressurisation in two-phase fluids

    NASA Astrophysics Data System (ADS)

    Duc, Linh Do; Horák, Vladimír; Kulish, Vladimir; Lukáč, Tomáš

    2017-01-01

    Carbon dioxide is widely used as the power gas in the gas guns community due to its ease of handling, storability at room temperature, and high vapor pressure depending only upon temperature, but not a tank size, as long as some liquid carbon dioxide remains in the tank. This high vapor pressure can be used as the pressurant, making it what is referred to as a self-pressurising propellant. However, as a two-phase substance, carbon dioxide does have its drawbacks: (1) vaporization of liquefied CO2 inside a tank when shooting rapidly or a lot causes the tank to get cool, resulting in pressure fluctuations that makes the gun's performance and accuracy worse, (2) solid carbon dioxide that is also known as dry ice can appear on the output valve of the tank while shooting and it can cause damage or slow the gun's performance down, if it works its way into some control components, including the barrel of the gun. Hence, it is crucial to obtain a scientific understanding of carbon dioxide behavior and further the discharge characteristics of a wide range of pressure-tank configurations. For the purpose of satisfying this goal, a comprehensive discharge mathematical model for carbon dioxide tank dynamics is required. In this paper, the possibility to develop an advanced non-equilibrium model of depressurization in two-phase fluids is discussed.

  9. Water-saturated phase-equilibrium experiments on rhyolite and dacite obsidians: the effect of variable melt water concentration on the composition of phenocrysts

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.; Andrews, B. J.

    2012-12-01

    Results of water-saturated phase equilibrium experiments on three obsidians ranging in composition from dacite to rhyolite (67-74 wt% SiO2) are presented and demonstrate the effect of changing melt water concentrations on the composition of plagioclase and orthopyroxene phenocrysts. Experiments were conducted in a cold-seal Ni-rich pressure vessel (Waspaloy) with Ni filler rod, so that experiments were buffered at ΔNNO +1 (± 0.5) (Gershwind & Rutherford, 1992) and pressurized with H2O (where Ptotal= PH2O). Temperatures ranged from 750-900°C and pressures ranged from 100-300 MPa. Prior to the experiments, detailed petrologic studies were first conducted on the three obsidian samples, which are from Cascade and Mexican arcs. Overall phenocryst abundances in all three samples are low (<2.3%), with little to no microlite crystallization. Despite low phenocryst abundances, the obsidians are saturated in five to seven mineral phases: plagioclase + orthopyroxene + ilmenite + magnetite + apatite ± clinopyroxene ± biotite. Eruptive temperatures (±1σ), on the basis of Fe-Ti two oxide thermometry (Ghiorso & Evans, 2008), range from 760 ± 18°C to 943 ± 20°C; corresponding ΔNNO values (±1σ) range from -0.9 ± 0.1 and 0.7 ± 0.1. Plagioclase compositions span a wide range in each sample (e.g., 9-40 and 30-54 mol% An), despite low phenocryst abundances. Orthopyroxene compositions also span a wide range (≤ 15 mol% En), which correspond to Fe-MgKD(opx-liq) values that range from 0.18-0.46. Given the low crystallinity, absence of evidence for mixing of magmas, and no apparent change in oxygen fugacity recorded by iron oxides, the progressive loss of water from a melt, through degassing during rapid magma ascent, is a plausible hypothesis to explain the observed variation in phenocryst compositions. This hypothesis is evaluated with the run products from the water-saturated phase equilibrium experiments on the three obsidian samples. The experimental results indicate

  10. Correlation Between Experimental and Calculated Phase Fractions in Aged 20Cr32Ni1Nb Austenitic Stainless Steels Containing Nitrogen

    NASA Astrophysics Data System (ADS)

    Dewar, Matthew P.; Gerlich, Adrian P.

    2013-02-01

    A centrifugally cast 20Cr32Ni1Nb stainless steel manifold in service for 16 years at temperatures ranging from 1073 K to 1123 K (800 °C to 850 °C) has been characterized using scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), auger electron spectroscopy (AES), and X-ray diffraction (XRD). Nb(C,N), M23C6, and the silicide G-phases (Ni16Nb6Si7) were all identified in a conventional SEM, while the nitride Z-phase (CrNbN) was observed only in AES. M23C6, Z-phase and G-phase were characterized in XRD. Thermodynamic equilibrium calculations using ThermoCalc Version S, with the TCS Steel and Fe-alloys Database (TCFE6), and Thermotech Ni-based Superalloys Database (TTNI8) were validated by comparing experimental phase fraction results obtained from both EPMA and AES. A computational study looking at variations in the chemical composition of the alloy, and how they affect phase equilibria, was investigated. Increasing the nitrogen concentration is shown to decrease G-phase formation, where it is replaced by other intermetallic phases such as Z-phase and π-phase that do not experience liquation during pre-weld annealing treatments. Suppressing G-phase formation was ultimately determined to be a function of minimizing silicon content, and understabilizing the Nb/(C + 6/7N) ratio.

  11. An experimental investigation of two-phase liquid oxygen pumping

    NASA Technical Reports Server (NTRS)

    Gross, L. A.

    1973-01-01

    The results of an experimental program to explore the feasibility of pumping two-phase oxygen (liquid and gas) at the pump inlet are reported. Twenty-one cavitation tests were run on a standard J-2 oxygen pump at the MSFC Components Test Laboratory. All tests were run with liquid oxygen 5 to 10 K above the normal boiling point temperature. During ten tests run at approximately at the pump inlet were noted before complete pump performance 50 percent of the nominal operating speed, two phase conditions were achieved. Vapor volumes of 40 to 50 percent at the pump inlet were noted before complete pump performance loss. The experimental results compared to predictions. Nine cavitation tests run at the nominal pump speed over a 5 K temperature range showed progressively lower net positive suction head (NPSH) requirements as temperature was increased. Two-phase operation was not achieved. The temperature varying NPSH data were used to calculate thermodynamic effects on NPSH, and the results were compared to existing data.

  12. Swelling equilibrium of dentin adhesive polymers formed on the water-adhesive phase boundary: Experiments and micromechanical model

    PubMed Central

    Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Singh, Viraj; Spencer, Paulette

    2013-01-01

    During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases have been characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using granular micromechanics based model that incorporates poro-mechanical effects and polymer-solvent thermodynamics. The variation of the model parameters and model-predicted polymer properties has been studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers. PMID:24076070

  13. Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase.

    PubMed

    Gupta, V K; Rastogi, A

    2008-05-01

    The biosorption of cadmium(II) ions on Oedogonium sp. is studied in a batch system with respect to initial pH, algal dose, contact time and the temperature. The algal biomass exhibited the highest cadmium(II) uptake capacity at 25 degrees C, at the initial pH value of 5.0 in 55 min and at the initial cadmium(II) ion concentration of 200 mg L(-1). Biosorption capacity decreased from 88.9 to 80.4 mg g(-1) with an increase in temperature from 25 to 45 degrees C at this initial cadmium(II) concentration. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. Acid pretreatments did not substantially increase metal sorption capacity but alkali like NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles at the end of fifth cycle, Cd(II) sorption decreased by 18%, with 15-20% loss of biomass. Nevertheless, Oedogonium sp. appears to be a good sorbent for removing metal Cd(II) from aqueous phase.

  14. Phase equilibrium modeling, fluid inclusions and origin of charnockites in the Datian region of the northeastern Cathaysia Block, South China

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Qiang; Li, Zi-Long; Yu, Sheng-Qiang

    2016-08-01

    Charnockites in the Datian region of the northeastern Cathaysia Block, South China have an assemblage of garnet, clinopyroxene, orthopyroxene, plagioclase, anti-perthite, K-feldspar, biotite, quartz and ilmenite. Phase equilibrium modeling indicates that the Datian charnockite was formed at T = 845-855 °C and P = 8.2-8.4 kbar with corresponding water activity lower than 0.50. Fluid inclusions in the Datian charnockite are dominated by N2 and CO2 with minor CH4. The fluids homogenized to liquid at -153.0 to -138.8 °C and 18.3-21.6 °C, respectively, showing a low-density nature. The low-density fluids could be attributed to selective leakage of water due to the affinity of water to melt and decompression-dominated retrograde process. Combined with previous studies, a two-stage formation model is proposed to interpret the petrogenesis of the Datian charnockite, viz emplaced at the Paleoproterozoic and underwent the granulite-facies metamorphism during the Phanerozoic tectonic event.

  15. Scaling analysis of phase fluctuations in experimental three-phase flows

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Jin, Ning-De

    2011-10-01

    The characterization of complex patterns arising from three-phase (e.g., oil-gas-water) flows is an important problem with significant engineering and industrial applications. Based solely on measured conductance fluctuation signals from experimental three-phase flows, we propose a method to characterize and distinguish three commonly observed flow patterns. Using the phase characterization method, we first calculate the instantaneous phase from the signals. Then, through performing a scaling analysis, detrended fluctuation analysis (DFA), we extract scaling behaviors associated with the phase fluctuations and find that the DFA scaling exponent is sensitive to the transition among different flow patterns, which can be used to characterize nonlinear dynamics of the three-phase flow. From a novel perspective, we investigate the three-phase flow in terms of phase characterization and scaling analysis. The results indicate that our method can provide new insights into the exploration of complex mechanism in flow pattern transition. The effectiveness of the method is demonstrated and its broader applicability is articulated.

  16. An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules - Equilibrium values and kinetic effects

    NASA Technical Reports Server (NTRS)

    Kennedy, A. K.; Lofgren, G. E.; Wasserburg, G. J.

    1993-01-01

    Mineral/melt partition coefficients were measured using an ion microprobe for 32 elements in orthopyroxene and olivine in equilibrium and dynamic crystallization experiments on compositions corresponding to chondrules. The mineral/melt partition coefficients calculated from the measured concentrations for both olivine and orthopyroxene show very little change between equilibrium experiments and dynamic experiments with cooling rates of up to 100 C/h. The results provide a self-consistent set of partition coefficients that can be used in thermodynamic models of equilibrium and kinetic partitioning between olivine, orthopyroxene, and melt. These data can be used in models of partial melting and crystal fractionation in olivine- and orthopyroxene-rich systems, such as chondrules. The results may also be applicable to mantle peridotites, komatiitic and picritic lavas, and ultramafic intrusions.

  17. Catalytic supercritical water gasification of primary paper sludge using a homogeneous and heterogeneous catalyst: Experimental vs thermodynamic equilibrium results.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-02-01

    H2, CH4, CO and CO2 yields were measured during supercritical water gasification (SCWG) of primary paper waste sludge (PWS) at 450°C. Comparing these yields with calculated thermodynamic equilibrium values offer an improved understanding of conditions required to produce near-equilibrium yields. Experiments were conducted at different catalyst loads (0-1g/gPWS) and different reaction times (15-120min) in a batch reactor, using either K2CO3 or Ni/Al2O3-SiO2 as catalyst. K2CO3 up to 1g/gPWS increased the H2 yield significantly to 7.5mol/kgPWS. However, these yields and composition were far from equilibrium values, with carbon efficiency (CE) and energy recovery (ER) of only 29% and 20%, respectively. Addition of 0.5-1g/gPWS Ni/Al2O3-SiO2 resulted in high H2 and CH4 yields (6.8 and 14.8mol/kgPWS), CE of 84-90%, ER of 83% and a gas composition relatively close to the equilibrium values (at hold times of 60-120min).

  18. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  19. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  20. Experimental constraints on phase relations in subducted continental crust

    NASA Astrophysics Data System (ADS)

    Hermann, Jörg

    2002-01-01

    Synthesis piston cylinder experiments were carried out in the range 2.0-4.5 GPa and 680-1,050 °C to investigate phase relations in subducted continental crust. A model composition (KCMASH) has been used because all major ultrahigh-pressure (UHP) minerals of the whole range of rock types typical for continental crust can be reproduced within this system. The combination of experimental results with phase petrologic constraints permits construction of a UHP petrogenetic grid. The phase relations demonstrate that the most important UHP paragenesis consists of coesite, kyanite, phengite, clinopyroxene, and garnet in subducted continental crust. Below 700 °C talc is stable instead of garnet. As most of these minerals are also stable at much lower pressure and temperature conditions it is thus not easy to recognize UHP metamorphism in subducted crust. A general feature, however, is the absence of feldspars at H2O-saturated conditions. Plagioclase is never stable at UHP conditions, but K-feldspar can occur in H2O-undersaturated rocks. Mineral compositions in the experiments are fully buffered by coexisting phases. The Si content of phengite and biotite increase with increasing pressure. At 4.0 GPa, 780 °C, biotite contains 3.28 Si per formula unit, which is most probably caused by solid solution of biotite with talc. Above 800 °C, the CaAl2SiO6 component in clinopyroxene buffered with kyanite, coesite and a Mg-phase increases with increasing temperature, providing a tool to distinguish between 'cold' and 'hot' eclogites. Up to 10% Ca-eskolaite (Ca0.5[]0.5AlSi2O6) in clinopyroxene has been found at the highest temperature and pressure investigated (>900 °C, 4.5 GPa). Garnet buffered with coesite, kyanite and clinopyroxene displays an increase of grossular component with increasing pressure for a given temperature. Although the investigated system represents a simplification with respect to natural rocks, it helps to constrain general features of subducted continental

  1. Determination of free concentration of piroxicam and naproxen in plasma. The influence of experimental conditions in equilibrium dialysis.

    PubMed

    Hundal, O; Rugstad, H E

    1991-01-01

    An equilibrium dialysis method was established in order to investigate possible relationships between free drug concentrations of piroxicam and naproxen and clinical events. Therefore the influence of variations in pH, phosphate concentration and sodium azide concentration of the dialysis buffer on the free concentrations of piroxicam and naproxen was investigated. Piroxicam was found to have a pH-dependent protein binding. Therefore a good control of pH during the dialysis process is necessary. This has been achieved by increasing the buffer capacity of the dialysis buffer, by adding an antibacterial agent to the dialysis buffer and by cleansing the dialysis cells with 70% ethanol before use to prevent bacterial growth. Addition of 0.03% sodium azide as an antibacterial agent and the use of a 0.09 mol/l phosphate buffer gave good pH control. A method to correct for deviations of pH in measurements of free concentrations of piroxicam by a simple mathematical correction has been found. As naproxen was found to have a protein binding independent of pH, a pH-correction is not necessary for this drug. Standardized conditions in determination of protein binding of drugs by equilibrium dialysis are important, as composition of the dialysis buffer and pH of plasma compartment at equilibrium may influence the free concentration measurements. Comparisons of data from experiments using different methods are therefore difficult; the importance of pH-control is stressed. With the methods used in the present investigation, equilibrium dialysis in connection with HPLC, the coefficients of variation for piroxicam and naproxen free concentrations are 5.5% and 7.4%, respectively.

  2. Experimental investigation of direct contact three phase boiling heat transfer

    SciTech Connect

    Bruce, W.D.

    1981-01-01

    The system which was studied in the present work consisted of one liquid undergoing vaporization by contact with a hotter immiscible liquid. The liquids and vapor were contacted in a counterflow spray column with only differential increases in vapor quality. Experiments yielded vertical temperature profiles, flow rates of the phases, liquid holdups, pressure drops, and a characterization of flow patterns. A micro-computer was utilized for measuring temperatures in the column at the rate of 1500 to 1600 times per second at several depths. Analysis of the experimental data indicate that the maximum temperature difference between the phases is 0.5F/sup 0/, and that a temperature crossover occurs at the lower end of the column. The heat transfer fluid undergoes flash vaporization at its inlet at the top of the column, and much of its sensible heat is tranferred to the dispersed phase near the top of the column. Temperature profiles along the length of the boiler are nearly flat, and very little heat transfer occurs in the lower part of the boiler. A chemical method was developed for measuring effective interfacial area in a direct contact boiler. The theoretical basis of the method is discussed, and physico-chemical data necessary for application of the technique are reported. Water solubility of methyl salicylate was measured as a function of temperature, and the second order reaction rate coefficient for saponification of methyl salicylate by sodium hydroxide was determined from sodium hydroxide concentration versus time data and a computer model of a well-mixed semibatch reactor. The activation energy for the reaction was found to be 9.58 kilocalories per gram mole.

  3. Non-aqueous-phase fluids in heterogeneous aquifers -- experimental study

    SciTech Connect

    Illangasekare, T.H.; Yates, D.N.; Armbruster, E.J. III.

    1995-08-01

    Understanding of flow and entrapment of non-aqueous-phase liquids (NAPLs) in aquifers contaminated with organic chemicals is important in the effective design of recovery and remediation schemes. Soil heterogeneities play a significant role in the physical behavior of these chemicals. An experimental facility consisting of a large soil tank (lysimeter) and a dual-gamma spectroscopy system for fluid saturation measurements was developed to simulate and monitor plume migration in water-table aquifers after chemical spills. Experimental techniques and results form a preliminary set of experiments conducted in unsaturated and saturated soils under homogeneous and heterogeneous conditions are presented. the effects of the layered homogeneities were pronounced in modifying the migration pattern and velocity of the plume. Pockets of coarse sand placed across the path of the plume resulted in the soil acting as a light NAPL trap. A fine-sand pocket acted as a barrier. Qualitative and quantitative data generated in the type of experiments presented in this paper can be used to validate multiphase flow models.

  4. Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Wania, F.; Lei, Y. D.; Wang, C.; Abbatt, J. P. D.; Goss, K.-U.

    2015-03-01

    Many atmospheric and chemical variables influence the partitioning equilibrium between gas phase and condensed phases of compounds implicated in the formation of secondary organic aerosol (SOA). The large number of factors and their interaction makes it often difficult to assess their relative importance and concerted impact. Here we introduce a two-dimensional space which maps regions of dominant atmospheric phase distribution within a coordinate system defined by equilibrium partition coefficients between the gas phase, an aqueous phase and a water-insoluble organic matter (WIOM) phase. Placing compounds formed from the oxidation of n-alkanes, terpenes and mono-aromatic hydrocarbons on the maps based on their predicted partitioning properties allows for a simple graphical assessment of their equilibrium phase distribution behaviour. Specifically, it allows for the simultaneous visualisation and quantitative comparison of the impact on phase distribution of changes in atmospheric parameters (such as temperature, salinity, WIOM-phase polarity, organic aerosol load, and liquid water content) and chemical properties (such as oxidation state, molecular size, functionalisation, and dimerisation). The graphical analysis reveals that the addition of hydroxyl, carbonyl and carboxyl groups increases the affinity of aliphatic, alicyclic and aromatic hydrocarbons for the aqueous phase more rapidly than their affinity for WIOM, suggesting that the aqueous phase may often be relevant even for substances that are considerably larger than the C2 and C3 compounds that are typically believed to be associated with aqueous SOA. In particular, the maps identify some compounds that contribute to SOA formation if partitioning to both WIOM and aqueous phase is considered but would remain in the gas phase if either condensed phase were neglected. For example, many semi-volatile α-pinene oxidation products will contribute to aqueous SOA under the conditions of high liquid water content

  5. Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Wania, F.; Lei, Y. D.; Wang, C.; Abbatt, J. P. D.; Goss, K.-U.

    2014-10-01

    Many atmospheric and chemical variables influence the partitioning equilibrium between gas phase and condensed phases of compounds implicated in the formation of secondary organic aerosol (SOA). The large number of factors and their interaction makes it often difficult to assess their relative importance and concerted impact. Here we introduce a two-dimensional space, which maps regions of dominant atmospheric phase distribution within a coordinate system defined by equilibrium partitioning coefficients between the gas phase, an aqueous phase and a water insoluble organic matter (WIOM) phase. Placing compounds formed from the oxidation of n-alkanes, terpenes and mono-aromatic hydrocarbons on the maps based on their predicted partitioning properties allows for a simple graphical assessment of their equilibrium phase distribution behaviour. Specifically, it allows for the simultaneous visualization and quantitative comparison of the impact on phase distribution of changes in atmospheric parameters (such as temperature, salinity, WIOM phase polarity, organic aerosol load, and liquid water content), and chemical properties (such as oxidation state, molecular size, functionalization, and dimerisation). The graphical analysis reveals that the addition of hydroxyl, carbonyl and carboxyl groups increases the affinity of aliphatic, alicyclic and aromatic hydrocarbons for the aqueous phase more rapidly than their affinity for WIOM, suggesting that the aqueous phase may often be relevant even for substances that are considerably larger than the C2 and C3 compounds that are typically believed to be associated with aqueous SOA. In particular, the maps identify some compounds that contribute to SOA formation if partitioning to both WIOM and aqueous phase is considered, but would remain in the gas phase if either condensed phase were neglected. For example, many semi-volatile α-pinene oxidation products will contribute to aqueous SOA under the high liquid water content

  6. Equilibrium-phase MR angiography: Comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality.

    PubMed

    Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick

    2016-01-01

    The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection.

  7. Thermodynamic modelling of phase equilibrium in system Ti-B-Si-C, synthesis and phases composition of borides and carbides layers on titanic alloyVT-1 at electron beam treatment in vacuum

    NASA Astrophysics Data System (ADS)

    Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.

    2017-01-01

    Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.

  8. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.

    2008-01-01

    Most submarine gas hydrates are located within the two-phase equilibrium region of hydrate and interstitial water with pressures (P) ranging from 8 to 60 MPa and temperatures (T) from 275 to 293 K. However, current measurements of solubilities of methane in equilibrium with hydrate in the absence of a vapor phase are limited below 20 MPa and 283.15 K, and the differences among these data are up to 30%. When these data were extrapolated to other P-T conditions, it leads to large and poorly known uncertainties. In this study, in situ Raman spectroscopy was used to measure methane concentrations in pure water in equilibrium with sI (structure one) methane hydrate, in the absence of a vapor phase, at temperatures from 276.6 to 294.6 (??0.3) K and pressures at 10, 20, 30 and 40 (??0.4%) MPa. The relationship among concentration of methane in water in equilibrium with hydrate, in mole fraction [X(CH4)], the temperature in K, and pressure in MPa was derived as: X(CH4) = exp [11.0464 + 0.023267 P - (4886.0 + 8.0158 P)/T]. Both the standard enthalpy and entropy of hydrate dissolution at the studied T-P conditions increase slightly with increasing pressure, ranging from 41.29 to 43.29 kJ/mol and from 0.1272 to 0.1330 kJ/K ?? mol, respectively. When compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for methane concentration measurements eliminates possible uncertainty caused by sampling and ex situ analysis, (2) it is simple and efficient, and (3) high-pressure data can be obtained safely. ?? 2007 Elsevier Ltd. All rights reserved.

  9. SOLID-LIQUID PHASE EQUILIBRIUM IN BINARY SYSTEMS OF TRIPHENYL ANTIMONY WITH BIPHENYL, NAPHTHALENE, AND BENZOIC ACID.

    DTIC Science & Technology

    PHASE STUDIES, *ORGANOMETALLIC COMPOUNDS, SEMICONDUCTORS, SOLID STATE PHYSICS, ANTIMONY COMPOUNDS, EUTECTICS , ZONE MELTING, HALIDES, BISMUTH, ARSENIC, ELECTRONS, NAPHTHALENES , PHASE DIAGRAMS, SOLIDS.

  10. A time-asymptotic one equation non-equilibrium model for reactive transport in a two phase porous medium

    NASA Astrophysics Data System (ADS)

    Yohan, D.; Gerald, D.; Magali, G.; Michel, Q.

    2008-12-01

    The general problem of transport and reaction in multiphase porous media has been a subject of extensive studies during the last decades. For example, biologically mediated porous media have seen a long history of research from the environmental engineering point of view. Biofilms (aggregate of microorganisms coated in a polymer matrix generated by bacteria) have been particularly examined within the context of bioremediation in the subsurface zone. Five types of models may be used to describe these kinds of physical system: 1) one-equation local mass equilibrium models when the assumption of local mass equilibrium is valid 2) two equations models when the assumption of local mass equilibrium is not valid 3) one equation non-equilibrium models 4) mixed models coupling equations solved at two different scales 5) one equation time-asymptotic models. In this presentation, we use the method of volume averaging with closure to extend the time- asymptotic model at the Darcy scale to the reactive case. Closure problems are solved for simple unit cells, and the macro-scale model is validated against pore-scale simulations.

  11. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite.

    PubMed

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-05-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process.

  12. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2011-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  13. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite

    PubMed Central

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-01-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box–Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748

  14. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  15. Equilibrium Fermi's Golden Rule Charge Transfer Rate Constants in the Condensed Phase: The Linearized Semiclassical Method vs Classical Marcus Theory.

    PubMed

    Sun, Xiang; Geva, Eitan

    2016-05-19

    In this article, we present a comprehensive comparison between the linearized semiclassical expression for the equilibrium Fermi's golden rule rate constant and the progression of more approximate expressions that lead to the classical Marcus expression. We do so within the context of the canonical Marcus model, where the donor and acceptor potential energy surface are parabolic and identical except for a shift in both the free energies and equilibrium geometries, and within the Condon region. The comparison is performed for two different spectral densities and over a wide range of frictions and temperatures, thereby providing a clear test for the validity, or lack thereof, of the more approximate expressions. We also comment on the computational cost and scaling associated with numerically calculating the linearized semiclassical expression for the rate constant and its dependence on the spectral density, temperature, and friction.

  16. Partition Equilibrium

    NASA Astrophysics Data System (ADS)

    Feldman, Michal; Tennenholtz, Moshe

    We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.

  17. Determination of rate constants and equilibrium constants for solution-phase drug-protein interactions by ultrafast affinity extraction.

    PubMed

    Zheng, Xiwei; Li, Zhao; Podariu, Maria I; Hage, David S

    2014-07-01

    A method was created on the basis of ultrafast affinity extraction to determine both the dissociation rate constants and equilibrium constants for drug-protein interactions in solution. Human serum albumin (HSA), an important binding agent for many drugs in blood, was used as both a model soluble protein and as an immobilized binding agent in affinity microcolumns for the analysis of free drug fractions. Several drugs were examined that are known to bind to HSA. Various conditions to optimize in the use of ultrafast affinity extraction for equilibrium and kinetic studies were considered, and several approaches for these measurements were examined. The dissociation rate constants obtained for soluble HSA with each drug gave good agreement with previous rate constants reported for the same drugs or other solutes with comparable affinities for HSA. The equilibrium constants that were determined also showed good agreement with the literature. The results demonstrated that ultrafast affinity extraction could be used as a rapid approach to provide information on both the kinetics and thermodynamics of a drug-protein interaction in solution. This approach could be extended to other systems and should be valuable for high-throughput drug screening or biointeraction studies.

  18. Determination of Rate Constants and Equilibrium Constants for Solution-Phase Drug–Protein Interactions by Ultrafast Affinity Extraction

    PubMed Central

    2015-01-01

    A method was created on the basis of ultrafast affinity extraction to determine both the dissociation rate constants and equilibrium constants for drug–protein interactions in solution. Human serum albumin (HSA), an important binding agent for many drugs in blood, was used as both a model soluble protein and as an immobilized binding agent in affinity microcolumns for the analysis of free drug fractions. Several drugs were examined that are known to bind to HSA. Various conditions to optimize in the use of ultrafast affinity extraction for equilibrium and kinetic studies were considered, and several approaches for these measurements were examined. The dissociation rate constants obtained for soluble HSA with each drug gave good agreement with previous rate constants reported for the same drugs or other solutes with comparable affinities for HSA. The equilibrium constants that were determined also showed good agreement with the literature. The results demonstrated that ultrafast affinity extraction could be used as a rapid approach to provide information on both the kinetics and thermodynamics of a drug–protein interaction in solution. This approach could be extended to other systems and should be valuable for high-throughput drug screening or biointeraction studies. PMID:24911267

  19. Experimental determination of the solid-liquid equilibrium, metastable zone, and nucleation parameters of the flunixin meglumine-ethanol system

    NASA Astrophysics Data System (ADS)

    Wu, Songgu; Feng, Fei; Zhou, Lina; Gong, Junbo

    2012-09-01

    Measurements of the metastable zone and solubility for flunixin meglumine-ethanol system were obtained. The solubility was measured within the temperature range from 288.15 to 328.15 K. The mole fraction solubility was correlated satisfactorily with the temperature by the equation: xeq=2.35×10-12e0.07121T. The value of enthalpy of dissolution, enthalpy of fusion and enthalpy of mixing were determined to be 49.04, 64.03 and -14.99 kJ mol-1 respectively. The metastable zone width of flunixin meglumine was measured by an electric conductivity method. A comparison of the nucleation temperatures from electric conductivity measurement and from focused beam reflectance measurement (FBRM) shows that both detection techniques give almost the same results for flunixin meglumine. The nucleation parameters of flunixin meglumine in ethanol were determined from the metastable zone data. Over the equilibrium temperature range from 312.28 to 325.55 K, the nucleation rate constant was varied from 0.00001 to 0.00120 #/m2 min, whereas the nucleation order was varied from 2.23022 to 3.39299. The obtained high values of nucleation order indicated a high rate of nucleation.

  20. Thermodynamic calculation and experimental verification of the carbonitride-austenite equilibrium in Ti-Nb microalloyed steels

    NASA Astrophysics Data System (ADS)

    Zou, Heilong; Kirkaldy, J. S.

    1992-02-01

    The sublattice-regular solution model has been adapted to describe the thermodynamics of complex carbonitrides. This model has been applied to titanium- and niobium-bearing microalloyed steels for calculation of the mole fraction and composition of the carbonitride precipitates and the residual solute levels in the austenite. Both experimental results and calculations show that titanium nitride predominantly forms at very high temperatures and titanium-niobium carbides go to completion at low temperatures. Quantitative agreement between the experimental measurements and the predictions for carbonitride compositions as a function of temperature is demonstrated.

  1. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under a variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  2. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  3. Condensed-phase versus gas-phase ozonolysis of catechol: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Barnum, Timothy J.; Medeiros, Nicholas; Hinrichs, Ryan Z.

    2012-08-01

    Anthropogenic emissions of volatile aromatic compounds contribute to the formation of secondary organic aerosols (SOA), especially in urban environments. Aromatic SOA precursors typically require oxidation by hydroxyl radicals, although recent work suggests that ozonolysis of 1,2-benzenediols produces SOA in high yields. We employed attenuated total reflectance and transmission infrared spectroscopy to investigate the heterogeneous ozonolysis of catechol thin films. Formation of the dominant condensed-phase product muconic acid was highly dependent on relative humidity (RH) with few products detected below 40% RH and a maximum reactive uptake coefficient of γ = (5.6 ± 0.5) × 10-5 measured at 81.2% RH. We also performed quantum chemical calculations mapping out several reaction pathways for the homogeneous ozonolysis of gaseous catechol. 1,3-cycloaddition transition states were rate limiting with the most favorable activation energies at 45.4 and 47.1 kJ mol-1 [CCSD(T)/6-311++G(d,p)] corresponding to addition across and adjacent to the diol Cdbnd C, respectively. Gas-phase rate constants, calculated using transition state theory, were six orders of magnitude slower than experimental values. In contrast, a calculated activation energy was lower for the ozonolysis of a catechol•H2O complex, which serves as a first-approximation for modeling the ozonolysis of condensed-phase catechol. These combined results suggests that homogeneous ozonolysis of catechol may not be important for the formation of secondary organic aerosols but that ozonolysis of surface-adsorbed catechol may contribute to SOA growth.

  4. Aerothermal modeling, phase 1. Volume 2: Experimental data

    NASA Technical Reports Server (NTRS)

    Kenworthy, M. J.; Correa, S. M.; Burrus, D. L.

    1983-01-01

    The experimental test effort is discussed. The test data are presented. The compilation is divided into sets representing each of the 18 experimental configurations tested. A detailed description of each configuration, and plots of the temperature difference ratio parameter or pattern factor parameter calculated from the test data are also provided.

  5. Order Parameter and Kinetics of Non-Equilibrium Phase Transition Stimulated by the Impact of Volumetric Heat Source

    NASA Astrophysics Data System (ADS)

    Slyadnikov, E. E.; Turchanovskii, I. Yu.

    2017-01-01

    The authors formulated an understanding of the order parameter and built a kinetic model for the nonequilibrium first-order "solid body - liquid" phase transition stimulated by the impact of the volumetric heat source. Analytical solutions for kinetic equations were found, and it was demonstrated that depending on the phase transition rate "surface" and "bulk" melting mechanisms are implemented.

  6. Experimental observation of phase-flip transitions in the brain

    NASA Astrophysics Data System (ADS)

    Dotson, Nicholas M.; Gray, Charles M.

    2016-10-01

    The phase-flip transition has been demonstrated in a host of coupled nonlinear oscillator models, many pertaining directly to understanding neural dynamics. However, there is little evidence that this phenomenon occurs in the brain. Using simultaneous microelectrode recordings in the nonhuman primate cerebral cortex, we demonstrate the presence of phase-flip transitions between oscillatory narrow-band local field potential signals separated by several centimeters. Specifically, we show that sharp transitions between in-phase and antiphase synchronization are accompanied by a jump in synchronization frequency. These findings are significant for two reasons. First, they validate predictions made by model systems. Second, they have potentially far reaching implications for our understanding of the mechanisms underlying corticocortical communication, which are thought to rely on narrow-band oscillatory synchronization with specific relative phase relationships.

  7. Experimental phase diagram of lithium-intercalated graphite

    SciTech Connect

    Woo, K.C.; Mertwoy, H.; Fischer, J.E.; Kamitakahara, W.A.; Robinson, D.S.

    1983-06-15

    First-order transitions to dilute stage 1 from stages 2--4 and from mixed stages are observed in Li-graphite compounds in the range 430--1020 K. The resulting (T,x) phase boundary agrees generally with predictions by Safran and others except for a sharp peak of very stable stage-2 compositions around xapprox.0.4. The commensurability energy does not contribute to this peak since both low-T and high-T phases are disordered.

  8. A Brief Survey of the Equilibrium and Transport Properties of Critical Fluids and the Degree to Which Microgravity is Required for Their Experimental Investigation

    NASA Technical Reports Server (NTRS)

    Ferrell, Richard A.

    1996-01-01

    The modern theory of second order phase transitions is very successful in calculating the critical exponents as an asymptotic expansion in powers of epsilon = 4 - D, the deviation of D = 3, the spatial dimension of the actual physical system from that of the abstract four-dimensional reference model. This remarkable mathematical 'tour de force' leaves unanswered, however, many fundamental questions concerning the exact nature of how the fluctuations interact. I discuss here some experiments which would help to further our understanding of the equilibrium critical properties. Especially promising would be a measurement of the temperature dependence of the turbidity very close to the critical point. This has the promise of determining the small and elusive but fundamentally important anomalous dimension exponent eta. I also review various ways of measuring the critical transport coefficients and point out some cases where ground based experiments may usefully supplement flight experiments.

  9. Methods for achieving the equilibrium number of phases in mixtures suitable for use in battery electrodes, e.g., for lithiating FeS.sub.2

    DOEpatents

    Guidotti, Ronald A.

    1988-01-01

    In a method for preparing lithiated, particulate FeS.sub.2 useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved, comprising admixing FeS.sub.2 and an amount of a lithium-containing compound whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components, an improvement comprises admixing said lithium-containing compound and FeS.sub.2 together with a solid electrolyte compatible with said catholyte, and heating the mixture at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.

  10. Improved methods for achieving the equilibrium number of phases in mixtures suitable for use in battery electrodes e. g. , for lithiating FeS/sub 2/

    DOEpatents

    Guidotti, R.A.

    1986-06-10

    A method is disclosed for preparing lithiated, particulate FeS/sub 2/ useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved. The method comprises admixing FeS/sub 2/ and an amount of a lithium-containing compound, whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components. Said lithium-containing compound and FeS/sub 2/ are admixed together with a solid electrolyte compatible with said catholyte, and the mixture is heated at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.

  11. Le Chatelier Principle for Out-of-Equilibrium and Boundary-Driven Systems: Application to Dynamical Phase Transitions

    NASA Astrophysics Data System (ADS)

    Shpielberg, O.; Akkermans, E.

    2016-06-01

    A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.

  12. A Experimental Determination of the Phases of Mosaic Centrosymmetric Crystals.

    NASA Astrophysics Data System (ADS)

    Gong, Ping-Po.

    Bragg reflections, in a Renninger type setup, have been used as primary beams in an investigation of the x-ray phase effect in simultaneous n-beam diffraction. The major part of the study involves the analysis of the simultaneous diffraction patterns of centrosymmetric crystals of germanium, silicon and zinc tungstate using n-beam dynamical theory of x-ray diffraction. The germanium and silicon crystals which we used were perfect while the zinc tungstate crystal was definitely mosaic in character. In the analysis, the general shapes, i.e. the intensity maxima and minima of the n-beam diffraction peaks can be explained in terms of abrupt variations of the absorption coefficients across the three- or four-beam regions. The behavior of these absorption coefficients can be understood on the basis of analysis of the general shapes of the dispersion surfaces which in turn, can be estimated at the n-beam point by using an approximated approach due to Post (1977). This approach ignores polarization effects, and therefore greatly simplifies the analysis of three- and four-beam diffraction effects. It is relatively straightforward to obtain useful x-ray phase information from both three- and four-beam diffractions for centrosymmetric crystals. The actual phase determination is based on qualitative observation of the location of the resonance type minimum in the n -beam interaction relative to the maximum of the interaction. The invariant triplet phase may be considered to be positive if the minimum is, say, to the right of the maximum on the diffraction chart and negative if it appears to the left of the maximum. It is necessary to consider reflection triplets which are "entering" the Ewald sphere separately from those that are "leaving". Clearly, a triplet which yields a positive invariant phase indication in an "entering" case, would yield a negative phase indication in a "leaving" case. The latter type are corrected for that effect. About one hundred and ten invariant

  13. Reaction mechanism and tautomeric equilibrium of 2-mercaptopyrimidine in the gas phase and in aqueous solution: a combined Monte Carlo and quantum mechanics study.

    PubMed

    Lima, Maria Carolina P; Coutinho, Kaline; Canuto, Sylvio; Rocha, Willian R

    2006-06-08

    A combined Monte Carlo and quantum mechanical study was carried out to analyze the tautomeric equilibrium of 2-mercaptopyrimidine in the gas phase and in aqueous solution. Second- and fourth-order Møller-Plesset perturbation theory calculations indicate that in the gas phase thiol (Pym-SH) is more stable than the thione (Pym-NH) by ca. 8 kcal/mol. In aqueous solution, thermodynamic perturbation theory implemented on a Monte Carlo NpT simulation indicates that both the differential enthalpy and Gibbs free energy favor the thione form. The calculated differential enthalpy is DeltaH(SH)(-->)(NH)(solv) = -1.7 kcal/mol and the differential Gibbs free energy is DeltaG(SH)(-->)(NH)(solv) = -1.9 kcal/mol. Analysis is made of the contribution of the solute-solvent hydrogen bonds and it is noted that the SH group in the thiol and NH group in the thione tautomers act exclusively as a hydrogen bond donor in aqueous solution. The proton transfer reaction between the tautomeric forms was also investigated in the gas phase and in aqueous solution. Two distinct mechanisms were considered: a direct intramolecular transfer and a water-assisted mechanism. In the gas phase, the intramolecular transfer leads to a large energy barrier of 34.4 kcal/mol, passing through a three-center transition state. The proton transfer with the assistance of one water molecule decreases the energy barrier to 17.2 kcal/mol. In solution, these calculated activation barriers are, respectively, 32.0 and 14.8 kcal/mol. The solvent effect is found to be sizable but it is considerably more important as a participant in the water-assisted mechanism than the solvent field of the solute-solvent interaction. Finally, the calculated total Gibbs free energy is used to estimate the equilibrium constant.

  14. Experimental constraints on the Qitianling granite in south China: phase equilibria and petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Scaillet, Bruno; Wang, Rucheng; Erdmann, Saskia; Chen, Yan; Faure, Michel; Liu, Hongsheng; Xie, Lei; Wang, Bo; Zhu, Jinchu

    2016-04-01

    In South China, the huge distribution of the Mesozoic metallogenic province reflects the abundant magmatism and associated mineralizations which occurred during that period. Building up the phase equilibrium diagrams of representative Mesozoic granites allows us to better understand Mesozoic magmatic events, an approach so far little applied to granites of South China. The Qitianling ganite is a representative Jurassic A-type metaluminous pluton which is associated with tin mineralization in South China. The dominant rock-types are hornblende-biotite monzonitic granites, biotite±hornblende bearing granites and fine-grained biotite-bearing granites. Three metaluminous granite samples (QTL38C, QTL14A and QTL13), of varying mafic character but all bearing hornblende, were chosen for constraining crystallization and magma generation conditions of the Qitianling composite batholith. Crystallization experiments were performed in the 100-700 MPa range, albeit mainly at 200 MPa, at an fO2 at NNO-1 or NNO +2.5, in a temperature range 700°C to 900°C. At 200 MPa, the water content in melt varies between 3 wt% and 6.5 wt% (water-saturated). Experimental results show that under H2O-saturated conditions and at NNO-1, ilmenite, magnetite and pyroxene are the liquidus phases, followed by hornblende, biotite and plagioclase. Hornblende is present only in the most mafic sample (QTL38C), below 900°C and above 5 wt% H2O. In contrast, for H2O-saturated conditions and at NNO+2.5, magnetite, pyroxene crystallize first, followed by biotite while ilmenite is rarely observed. Petrographic observations of natural samples show that magnetite and ilmenite coexist, whereas pyroxene is never observed. The Fe# value (Fe/Mg+Fe) of natural amphibole goes up to 0.69, being on average at 0.67. Experiments indicate that the crystallization of pyroxene occurs at early magmatic stages, but it breaks down to hornblende and biotite at low temperatures, explaining its absence in natural assemblages

  15. Experimental studies on equilibrium adsorption isosteres and determination of the thermodynamic quantities of polar media on alumina Al2O3

    NASA Astrophysics Data System (ADS)

    Yonova, Albena

    2017-03-01

    The present work is a revieif of theoretical and experimental study on the adsorption performance of the adsorbent Alumina (Al2O3) used in the adsorption system. An experimental investigation on the equilibrium adsorption isosteres at low pressure (< 1 atm) of working pairs Al2O3/H2O and Al2O3/C2H6O2 is carried out. The isovolume measurement method is adopted in the test setup to directly measure the saturated vapor pressures of working pairs at vapor-liquid equilibrium (dG=0 and dμi=0). Quantity adsorbed is determined from pressure, volume and temperature using gas law. The isosteric heat of adsorption is calculated from the slope of the plot of lnP versus 1/T different amounts of adsorbate onto adsorbent as follows: 0,01 vol% Al2O3/H2O; 0,03 vol% Al2O3/H2O; 0,1 vol% Al2O3/H2O; 0,01 vol% Al2O3/C2H6O2; 0,03 vol% Al2O3/C2H6O2; 0,1 vol% Al2O3/C2H6O2. This study shows that adsorption working pair Al2O3 C2H6O2 has better adsorption performances than those of the A2O3/H2O. Surface acidity! is a most important property! far both adsorption and catalysis and therefore is examined structure of active sites of alumina surface. Thermodynamic parameters such as isosteric heat of adsorption, isosteric enthalpy and entropy of adsorption are critical design variables in estimating the performance and predicting the mechanism of an adsorption process and are also one of the basic requirements for the characterization and optimization of an adsorption process

  16. Studies on equilibrium of anthranilic acid in aqueous solutions and in two-phase systems: aromatic solvent-water.

    PubMed

    Zapała, Lidia; Kalembkiewicz, Jan; Sitarz-Palczak, Elzbieta

    2009-03-01

    The acid-base equilibria of anthranilic acid have been characterized in terms of macro- and microdissociation constants (dissociation constants K(a1), K(a2) and tautomeric constant K(z)). On the basis of spectrophotometric investigations the values of the distribution ratio D of anthranilic acid in the two-phase systems: aromatic solvent (benzene, ethylbenzene, toluene, chlorobenzene, bromobenzene)-aqueous solution were obtained. Employing the results of potentiometric titration in the two-phase systems: aromatic solvent-aqueous solution the distribution constant K(D) and dimerization constant K(dim) values were calculated. The influence of organic solvent polarity and pH of the aqueous phase on the contents of the particular forms of the acid in the two-phase systems were analyzed.

  17. Experimental Evidence of the Gardner Phase in a Granular Glass

    NASA Astrophysics Data System (ADS)

    Seguin, A.; Dauchot, O.

    2016-11-01

    Analyzing the dynamics of a vibrated bidimensional packing of bidisperse granular disks below jamming, we provide evidence of a Gardner phase deep into the glass phase. To do so, we perform several compression cycles within a given realization of the same glass and show that the particles select different average vibrational positions at each cycle, while the neighborhood structure remains unchanged. The separation between the cages obtained for different compression cycles plateaus with an increasing packing fraction, while the mean square displacement steadily decreases. This phenomenology is strikingly similar to that reported in recent numerical observations when entering the Gardner phase, for a mean-field model of glass as well as for hard spheres in finite dimension. We also characterize the distribution of the cage order parameters. Here we note several differences from the numerical results, which could be attributed to activated processes and cage heterogeneities.

  18. Experimental observation and computer simulation of HOLZ line patterns of quasicrystalline icosahedral phase

    NASA Astrophysics Data System (ADS)

    Dai, Mingxing; Wang, Renhui

    1990-01-01

    Higher-order Laue zone (HOLZ) line patterns of an Al 76Si 4Mn 20 quasi- crystalline icosahedral phase (I phase) have been obtained experimentally with a large angular range by connecting a series of conventional convergent-beam electron diffraction patterns. The computer simulated HOLZ line patterns covering the whole orientation triangle of the I phase, which were calculated by using cut and projection method and the simple quasilattice model, show principle agreement with the experimental ones.

  19. Heterogeneous equilibrium between the condensed phase and vapor of aprotonic solvents and electrolytes based on them II. Solvent mixtures

    NASA Astrophysics Data System (ADS)

    Gaidym, I. L.; Gurevich, I. G.; Shchitnikov, V. K.; Dubasova, V. S.; Tumanov, B. I.

    1982-06-01

    Experimental results for the saturated vapor pressure of mixtures of organic solvents with electrolytes based on them are given, together with thermodynamic characteristics of the vaporization process calculated on this basis.

  20. Fractionation of petroleum pitch by supercritical fluid extraction: Experimental phase behavior and thermodynamic modeling

    SciTech Connect

    Hutchenson, K.W.

    1990-01-01

    Petroleum pitch is being considered as a raw material for the economical production of high-performance carbon fibers and composites. This dissertation presents part of ongoing research that is investigating a supercritical fluid extraction process for producing a mesophase precursor pitch for carbon fibers. The process can be used to separate the parent pitch into several fractions having narrow molecular weight distributions. A continuous-flow apparatus for measuring vapor-liquid and liquid-liquid phase equilibria is described that is capable of operation at pressures to 350 bar and temperatures to 675 K. A key feature of the apparatus is a nonvisual interface detection technique for operation with opaque phases. Phase equilibrium measurements are presented for mixtures of toluene with phenanthrene and with two petroleum pitches: Ashland A-240 pitch and a proprietary heat-soaked pitch obtained from Conoco. These measurements and analytical results for extracted fractions demonstrate that supercritical extraction can be used to separate pitch into fractions by molecular weight. High extraction yields and significant mesophase formation are observed in a region of liquid-liquid phase equilibrium, indicating this region is likely to be of practical interest for fractionating petroleum pitch. Initial efforts toward the development of a thermodynamic model of the phase equilibria for these systems are also presented. The model uses generalized correlations for equation-of-state constants in terms of average molecular structure parameters and does reasonably well in fitting VLE data for the pitch/toluene system. The model should be useful for guiding future phase equilibrium measurements.

  1. Estimation of local effective bulk (LEB) by micro-mapping; implications for equilibrium phase diagram computed for migmatites

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Lanari, Pierre; Engi, Martin

    2014-05-01

    Metamorphic rocks often display mineral assemblages indicating local thermodynamic equilibria, even though the minerals involved grew sequentially, at different times and over a range of P-T (pressure-temperature) conditions. At thin section scale two or more mineral assemblages are commonly observed. Micro-structural or textural criteria are used to assess their stability, and forward thermodynamic models allow P-T conditions of local equilibration to be derived. The predicted P-T range of the stability fields of each assemblage and the computed proportion and composition of minerals are sensitively dependent on the bulk rock composition assumed in modeling. The XRF-measured composition of a sample may serve as a good approximation of the local bulk composition of all equilibrium assemblages. However, it is well known that this hypothesis is not valid for (1) rocks that experienced strong fluid-assisted metasomatism, (2) rocks showing a high proportion of zoned minerals, and for (3) heterogeneous rocks showing different domains with different mineral assemblages. In such cases, the concept of LEB (local effective bulk) is essential, and the question is how to determine the LEB composition. We explore the possibility to derive suitable LEB by means of standardized microprobe X-ray images, using the program XMapTools (Lanari et al. 2014). For chemically heterogeneous samples, these LEB allow us to model (using Perple_X, Connolly, 2009) the stable mineral assemblages for each domain and to obtain reliable P-T estimates. To demonstrate the utility of this approach, we investigated metapelites showing evidence of partial melting from a xenolith whithin the Marcabeli pluton, El Oro Complex, Ecuador. Migmatites are good candidates, as they usually show complex mineral patterns resulting from prograde melt producing reactions, subsequent melt migration, and retrograde reactions. For example, the separation of melt from its residuum occurring near the peak temperature may

  2. Experimental phase equilibria of a Mount St. Helens rhyodacite: a framework for interpreting crystallization paths in degassing silicic magmas

    NASA Astrophysics Data System (ADS)

    Riker, Jenny M.; Blundy, Jonathan D.; Rust, Alison C.; Botcharnikov, Roman E.; Humphreys, Madeleine C. S.

    2015-07-01

    We present isothermal (885 °C) phase equilibrium experiments for a rhyodacite from Mount St. Helens (USA) at variable total pressure (25-457 MPa) and fluid composition (XH2Ofl = 0.6-1.0) under relatively oxidizing conditions (NNO to NNO + 3). Run products were characterized by SEM, electron microprobe, and SIMS. Experimental phase assemblages and phase chemistry are consistent with those of natural samples from Mount St. Helens from the last 4000 years. Our results emphasize the importance of pressure and melt H2O content in controlling phase proportions and compositions, showing how significant textural and compositional variability may be generated in the absence of mixing, cooling, or even decompression. Rather, variations in the bulk volatile content of magmas, and the potential for fluid migration relative to surrounding melts, mean that magmas may take varied trajectories through pressure-fluid composition space during storage, transport, and eruption. We introduce a novel method for projecting isothermal phase equilibria into CO2-H2O space (as conventionally done for melt inclusions) and use this projection to interpret petrological data from Mount St. Helens dacites. By fitting the experimental data as empirical functions of melt water content, we show how different scenarios of isothermal magma degassing (e.g., water-saturated ascent, vapor-buffered ascent, and vapor fluxing) can have quite different textural and chemical consequences. We explore how petrological data might be used to infer degassing paths of natural magmas and conclude that melt CO2 content is a much more useful parameter in this regard than melt H2O.

  3. Phase equilibrium of Cd1-xZnxS alloys studied by first-principles calculations and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Fu-Zhen, Zhang; Hong-Tao, Xue; Fu-Ling, Tang; Xiao-Kang, Li; Wen-Jiang, Lu; Yu-Dong, Feng

    2016-01-01

    The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc-blende (ZB) Cd1-xZnxS alloys. All formation energies are positive for WZ and ZB Cd1-xZnxS alloys, which means that the Cd1-xZnxS alloys are unstable and have a tendency to phase separation. For WZ and ZB Cd1-xZnxS alloys, the consolute temperatures are 655 K and 604 K, respectively, and they both have an asymmetric miscibility gap. We obtained the spatial distributions of Cd and Zn atoms in WZ and ZB Cd0.5Zn0.5S alloys at different temperatures by MC simulations. We found that both WZ and ZB phases of Cd0.5Zn0.5S alloy exhibit phase segregation of Cd and Zn atoms at low temperature, which is consistent with the phase diagrams. Project supported by the National Natural Science Foundation of China (Grant Nos. 11164014 and 11364025) and Gansu Science and Technology Pillar Program, China (Grant No. 1204GKCA057).

  4. Liquid-liquid phase equilibrium and core-shell structure formation in immiscible Al-Bi-Sn alloys

    NASA Astrophysics Data System (ADS)

    Li, Mingyang; Jia, Peng; Sun, Xiaofei; Geng, Haoran; Zuo, Min; Zhao, Degang

    2016-04-01

    In this paper, the liquid-phase separation of ternary immiscible Al45Bi19.8Sn35.2 and Al60Bi14.4Sn25.6 melts was studied with resistivity and thermal analysis methods at different temperature. The resistivity-temperature curves appear abrupt and anomalously change with rising temperature, corresponding to the anomalous and low peak of melting process in DSC curves, indicative of the occurrence of the liquid-phase separation. The anomalous behavior of the resistivity temperature dependence is attributable to concentration-concentration fluctuations. The effect of composition and melt temperature on the liquid-phase separation and core-shell structure formation in immiscible Al-Bi-Sn alloys was studied. The liquid-phase separation and formation of the core-shell structure in immiscible Al-Bi-Sn alloys are readily acquired when the alloy compositions fall into liquid miscibility gap. What's more, the cross-sectional structure changes from irregular, dispersed to core-type shapes under the actions of Marangoni motion with increasing melt temperature. This study provides some clues for the preparation of core-shell microspheres of immiscible Al-Bi-Sn alloys via liquid-phase separation.

  5. Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2013-10-01

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

  6. First-principles calculation of phase equilibrium of V-Nb, V-Ta, and Nb-Ta alloys

    NASA Astrophysics Data System (ADS)

    Ravi, C.; Panigrahi, B. K.; Valsakumar, M. C.; van de Walle, Axel

    2012-02-01

    In this paper, we report the calculated phase diagrams of V-Nb, V-Ta, and Nb-Ta alloys computed by combining the total energies of 40-50 configurations for each system (obtained using density functional theory) with the cluster expansion and Monte Carlo techniques. For V-Nb alloys, the phase diagram computed with conventional cluster expansion shows a miscibility gap with consolute temperature Tc=1250 K. Including the constituent strain to the cluster expansion Hamiltonian does not alter the consolute temperature significantly, although it appears to influence the solubility of V- and Nb-rich alloys. The phonon contribution to the free energy lowers Tc to 950 K (about 25%). Our calculations thus predicts an appreciable miscibility gap for V-Nb alloys. For bcc V-Ta alloy, this calculation predicts a miscibility gap with Tc=1100 K. For this alloy, both the constituent strain and phonon contributions are found to be significant. The constituent strain increases the miscibility gap while the phonon entropy counteracts the effect of the constituent strain. In V-Ta alloys, an ordering transition occurs at 1583 K from bcc solid solution phase to the V2Ta Laves phase due to the dominant chemical interaction associated with the relatively large electronegativity difference. Since the current cluster expansion ignores the V2Ta phase, the associated chemical interaction appears to manifest in making the solid solution phase remain stable down to 1100 K. For the size-matched Nb-Ta alloys, our calculation predicts complete miscibility in agreement with experiment.

  7. Equilibrium Principles: A Game for Students

    NASA Astrophysics Data System (ADS)

    Edmonson, Lionel J., Jr.; Lewis, Don L.

    1999-04-01

    The laboratory exercise is a game using marked sugar cubes as dice. The game emphasizes the dynamic character of equilibrium. Forward and reverse rate-constant values are used to calculate an equilibrium constant and to predict equilibrium populations. Predicted equilibrium populations are compared with experimental results.

  8. Phase equilibrium calculations of ternary liquid mixtures with binary interaction parameters and molecular size parameters determined from molecular dynamics.

    PubMed

    Oh, Suk Yung; Bae, Young Chan

    2010-07-15

    The method presented in this paper was developed to predict liquid-liquid equilibria in ternary liquid mixtures by using a combination of a thermodynamic model and molecular dynamics simulations. In general, common classical thermodynamic models have many parameters which are determined by fitting a model with experimental data. This proposed method, however, provides a simple procedure for calculating liquid-liquid equilibria utilizing binary interaction parameters and molecular size parameters determined from molecular dynamics simulations. This method was applied to mixtures containing water, hydrocarbons, alcohols, chlorides, ketones, acids, and other organic liquids over various temperature ranges. The predicted results agree well with the experimental data without the use of adjustable parameters.

  9. Trans-Pacific HDR Satellite Communications Experiment Phase-2: Experimental Network and Demonstration Plan

    NASA Technical Reports Server (NTRS)

    Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Hsu, Eddie; Bergman, Larry; Bhasin, Kul; Gary, Pat

    1998-01-01

    The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. Following the first phase, the second phase experiment is currently prepared. This paper describes the experimental network configuration, application demonstration, and performance evaluation plan of the second phase experiment.

  10. Reflection of processes of non-equilibrium two-phase filtration in oil-saturated hierarchical medium in data of active wave geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Andrey; Khachay, Oleg

    2016-04-01

    The processes of oil extraction from deposit are linked with the movement of multi-phase multi-component media, which are characterized by non-equilibrium and non-linear rheological features. The real behavior of layered systems is defined by the complexity of the rheology of moving fluids and the morphology structure of the porous medium, and also by the great variety of interactions between the fluid and the porous medium [Hasanov and Bulgakova, 2003]. It is necessary to take into account these features in order to informatively describe the filtration processes due to the non-linearity, non-equilibrium and heterogeneity that are features of real systems. In this way, new synergetic events can be revealed (namely, a loss of stability when oscillations occur, and the formation of ordered structures). This allows us to suggest new methods for the control and management of complicated natural systems that are constructed on account of these phenomena. Thus the layered system, from which it is necessary to extract the oil, is a complicated dynamical hierarchical system. A comparison is provided of non-equilibrium effects of the influence of independent hydrodynamic and electromagnetic induction on an oil layer and the medium which it surrounds. It is known that by drainage and steeping the hysteresis effect on curves of the relative phase permeability in dependence on the porous medium's water saturation in some cycles of influence (drainage-steep-drainage) is observed. Using the earlier developed 3D method of induction electromagnetic frequency geometric monitoring, we showed the possibility of defining the physical and structural features of a hierarchical oil layer structure and estimating the water saturation from crack inclusions. This effect allows managing the process of drainage and steeping the oil out of the layer by water displacement. An algorithm was constructed for 2D modeling of sound diffraction on a porous fluid-saturated intrusion of a hierarchical

  11. Boundary Layer Study. Experimental Validation Test Plan. Phase 4

    DTIC Science & Technology

    1990-11-01

    areas of experimental fluid mechanics, fiber technology, and control systems. During his four year activities in Owens - Corning Fiber Glass Technical...Flow and Temperature Fields of a Novel Fiberizing System - Owens - Corning Technical Report. 3. Direct Digital Control of the Flow Rate of an Electric...Melter - Owens - Corning Technical Report. 4. Numerical Study of the Flow of a Oravity Driven Non-Lsothermal Liquid Jet - Owens - Corning Technical Report

  12. Removal of Bisphenol A aqueous solution using surfactant-modified natural zeolite: Taguchi's experimental design, adsorption kinetic, equilibrium and thermodynamic study.

    PubMed

    Genç, Nevim; Kılıçoğlu, Ödül; Narci, Ali Oğuzhan

    2017-02-01

    In this study, surfactant-modified natural zeolite was used to remove Bisphenol A (BPA) from aqueous solutions. Kinetics, equilibrium and thermodynamics of BPA adsorption on the adsorbent surfaces were investigated. The experimental data were described with the Temkin isotherm and the pseudo-second- order kinetic model. Taguchi's robust design approach was used to optimize adsorption of BPA. Experimentation was planned as per Taguchi's L27 orthogonal array. Tests were conducted with different adsorbate amount, pH, time, initial concentration of BPA, temperature and agitation speed. The optimum levels of control factors for maximum total organic carbon removal were defined (adsorbate amount at 0.25 g, pH at 7, time at 30 min, initial concentration of BPA at 50 mg/L, temperature at 30°C and agitation speed at 200 rpm). The ANOVA analysis shown that the most effective control factor is adsorbent dosage; its contribution is 56.4%. Contribution of pH and mixing rate are 7.5% and 7.6%, respectively. A confirmation experiment was conducted to verify the feasibility and effectiveness of the optimal combination. The observed value of S/N (ηobs = 39) ratio is compared with that of the predicted value (ηopt = 48). The prediction error, that is, ηopt - ηobs = 9, is within CI value.

  13. Experimental investigations of single-phase and two-phase flow resistance in narrow rectangular duct under rolling condition

    NASA Astrophysics Data System (ADS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Wang, Yang

    2013-07-01

    Effects of rolling motion on single-phase and two-phase flow resistance were compared experimentally under ambient temperature and pressure. In the single-phase flow experiments, the different pump head was obtained by a variable speed electromotor, and the flow rate was adjusted combining with a regulating valve. However, for the two-phase pressure drop measurements, the pump delivering water operated with an invariable pressure head of 48m, in order to neglect the effect of pump head on flow fluctuation. The results indicated that effects of rolling motion on single-phase flow resistance depend on the pump head. The fluctuation amplitude of flow rate and frictional pressure drop decreases rapidly as the pump head increases, finally, the flow will tend to be steady if the pump head dramatically exceeds the additional pressure drop. Different from the case of single-phase flow, transient frictional pressure drop of two-phase flow fluctuates synchronously with the rolling motion when liquid Reynolds number is less than 1400, whereas keeps a stable steady state without obvious oscillation for other cases. The fluctuation amplitude is independent of rolling period and amplitude and decreases with the increase of flow rate. The inclination angle and phase interface distribution is taken into account in analyzing the influence of rolling motion on two-phase flow resistance. Comparing with the vertical condition, rolling motion nearly has no effects on time-averaged frictional resistance for both the single-phase and two-phase flow.

  14. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 2: application to Taupo Volcanic Zone rhyolites

    NASA Astrophysics Data System (ADS)

    Bégué, Florence; Gualda, Guilherme A. R.; Ghiorso, Mark S.; Pamukcu, Ayla S.; Kennedy, Ben M.; Gravley, Darren M.; Deering, Chad D.; Chambefort, Isabelle

    2014-11-01

    Constraining the pressure of crystallisation of large silicic magma bodies gives important insight into the depth and vertical extent of magmatic plumbing systems; however, it is notably difficult to constrain pressure at the level of detail necessary to understand shallow magmatic systems. In this study, we use the recently developed rhyolite-MELTS geobarometer to constrain the crystallisation pressures of rhyolites from the Taupo Volcanic Zone (TVZ). As sanidine is absent from the studied deposits, we calculate the pressures at which quartz and feldspar are found to be in equilibrium with melt now preserved as glass (the quartz +1 feldspar constraint of Gualda and Ghiorso, Contrib Mineral Petrol 168:1033. doi:10.1007/s00410-014-1033-3. 2014). We use glass compositions (matrix glass and melt inclusions) from seven eruptive deposits dated between ~320 and 0.7 ka from four distinct calderas in the central TVZ, and we discuss advantages and limitations of the rhyolite-MELTS geobarometer in comparison with other geobarometers applied to the same eruptive deposits. Overall, there is good agreement with other pressure estimates from the literature (amphibole geobarometry and H2O-CO2 solubility models). One of the main advantages of this new geobarometer is that it can be applied to both matrix glass and melt inclusions—regardless of volatile saturation. The examples presented also emphasise the utility of this method to filter out spurious glass compositions. Pressure estimates obtained with the new rhyolite-MELTS geobarometer range between ~250 to ~50 MPa, with a large majority at ~100 MPa. These results confirm that the TVZ hosts some of the shallowest rhyolitic magma bodies on the planet, resulting from the extensional tectonic regime and thinning of the crust. Distinct populations with different equilibration pressures are also recognised, which is consistent with the idea that multiple batches of eruptible magma can be present in the crust at the same time and

  15. Application of the Double-Tangent Construction of Coexisting Phases to Any Type of Phase Equilibrium for Binary Systems Modeled with the Gamma-Phi Approach

    ERIC Educational Resources Information Center

    Jaubert, Jean-Noël; Privat, Romain

    2014-01-01

    The double-tangent construction of coexisting phases is an elegant approach to visualize all the multiphase binary systems that satisfy the equality of chemical potentials and to select the stable state. In this paper, we show how to perform the double-tangent construction of coexisting phases for binary systems modeled with the gamma-phi…

  16. Fluid structure in the immediate vicinity of an equilibrium three-phase contact line and assessment of disjoining pressure models using density functional theory

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Sibley, David N.; Goddard, Benjamin D.; Kalliadasis, Serafim

    2014-07-01

    We examine the nanoscale behavior of an equilibrium three-phase contact line in the presence of long-ranged intermolecular forces by employing a statistical mechanics of fluids approach, namely, density functional theory (DFT) together with fundamental measure theory (FMT). This enables us to evaluate the predictive quality of effective Hamiltonian models in the vicinity of the contact line. In particular, we compare the results for mean field effective Hamiltonians with disjoining pressures defined through (i) the adsorption isotherm for a planar liquid film, and (ii) the normal force balance at the contact line. We find that the height profile obtained using (i) shows good agreement with the adsorption film thickness of the DFT-FMT equilibrium density profile in terms of maximal curvature and the behavior at large film heights. In contrast, we observe that while the height profile obtained by using (ii) satisfies basic sum rules, it shows little agreement with the adsorption film thickness of the DFT results. The results are verified for contact angles of 20°, 40°, and 60°.

  17. EXPERIMENTAL RESULTS OF THE NEPHELINE PHASE III STUDY

    SciTech Connect

    Fox, K.; Edwards, T.

    2009-11-09

    This study is the third phase in a series of experiments designed to reduce conservatism in the model that predicts the formation of nepheline, a crystalline phase that can reduce the durability of high level waste glass. A Phase I study developed a series of glass compositions that were very durable while their nepheline discriminator values were well below the current nepheline discriminator limit of 0.62, where nepheline is predicted to crystallize upon slow cooling. A Phase II study selected glass compositions to identify any linear effects of composition on nepheline crystallization and that were restricted to regions that fell within the validation ranges of the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) models. However, it was not possible to identify any linear effects of composition on chemical durability performance for this set of study glasses. The results of the Phase II study alone were not sufficient to recommend modification of the current nepheline discriminator. It was recommended that the next series of experiments continue to focus not only on compositional regions where the PCCS models are considered applicable (i.e., the model validation ranges), but also be restricted to compositional regions where the only constraint limiting processing is the current nepheline discriminator. Two methods were used in selecting glasses for this Phase III nepheline study. The first was based on the relationship of the current nepheline discriminator model to the other DWPF PCCS models, and the second was based on theory of crystallization in mineral and glass melts. A series of 29 test glass compositions was selected for this study using a combination of the two approaches. The glasses were fabricated and characterized in the laboratory. After reviewing the data, the study glasses generally met the target compositions with little issue. Product Consistency Test results correlated well with the crystallization analyses in

  18. Dense nonaqueous phase liquid tracer tests: experimental results.

    PubMed

    Burt, R A; Christians, G L; Williams, S P; Wilson, D J

    2001-12-01

    Two dense nonaqueous phase liquid (DNAPL) tracer tests were carried out in a shallow aquifer north of Fort Worth, TX. i-Propanol was used as the nonpartitioning tracer: n-hexanol and n-octanol were the partitioning tracers. Field data, mathematical modeling, the results of column tests, and field tracer tests with NaCl were used in designing the DNAPL tracer tests. The results indicated the presence of DNAPL at both sites tested; semi-quantitative estimates of the amounts of DNAPL present were obtained by mathematical modeling. Interpretation was complicated by heterogeneity of the aquifer and mass transport effects.

  19. Batch sorption dynamics, kinetics and equilibrium studies of Cr(VI), Ni(II) and Cu(II) from aqueous phase using agricultural residues

    NASA Astrophysics Data System (ADS)

    Kaur, Rajvinder; Singh, Joginder; Khare, Rajshree; Cameotra, Swaranjit Singh; Ali, Amjad

    2013-03-01

    In the present study, the agricultural residues viz., Syzygium cumini and Populus deltoides leaves powder have been used for the biosorption of Cu(II), Ni(II), and Cr(VI) from aqueous solutions. FTIR and SEM analysis of the biosorbents were performed to explore the type of functional groups available for metal binding and to study the surface morphology. Various physico-chemical parameters such as pH, adsorbent dosage, initial metal ion concentration, and equilibrium contact time were studied. Thermodynamic studies were carried out and the results demonstrated the spontaneous and endothermic nature of the biosorption process. The equilibrium data were tested using four isotherm models—Langmuir, Freundlich, Temkin and Dubinin-Radushkevich and the maximum biosorption capacities were evaluated. The Pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models were applied to study the reaction kinetics with pseudo-second order model giving the best fit ( R 2 = 0.99) to the experimental data.

  20. Experimental Studies of Phase Equilibria of Meteorites and Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Stolper, Edward M.

    2005-01-01

    The primary theme of this project was the application of experimental petrology and geochemistry to a variety of problems in meteoritics and planetary geology. The studies were designed to help develop constraints on the histories of primitive meteorites and their components, the environments in which they formed and evolved, and to understand quantitatively the processes involved in the evolution of igneous rocks on the earth and other planetary bodies. We undertook several projects relating to the origin of CAIs and chondrules. Systematics in the thermodynamic properties of CAI-like liquids were investigated and used to elucidate speciation of multi-valent cations and sulfide capacity of silicate melts and to constrain redox conditions and the vapor pressures of volatile species over molten chondrules. We experimentally determined vanadium speciation in meteoritic pyroxenes and in pyroxenes crystallized from CAI-like melts under very reducing conditions. We also found that bulk oxygen isotope compositions of chondrules in the moderately unequilibrated LL chondrites are related to the relative timing of plagioclase crystallization. We completed an experimental study on the vaporization of beta-SiC and SiO2 (glass or cristobalite) in reducing gases and established the conditions under which these presolar grains could have survived in the solar nebula. We expanded our technique for determining the thermodynamic properties of minerals and liquids to iron-bearing systems. We determined activity-composition relationships in Pt-Fe, Pt-Cr and Pt-Fe-Cr alloys. Results were used to determine the thermodynamic properties of chromite-picrochromite spinels including the free energy of formation of end-member FeCr2O4. We also established a new approach for evaluating Pt-Fe saturation experiments. We calculated the T-fO2 relationships in equilibrated ordinary chondrites and thereby constrained the conditions of metamorphism in their parent bodies.

  1. [Serum protein binding of fentanyl. The effect of postoperative acute phase reaction with elevated alpha 1-acid glycoprotein and methodologic problems in determination by equilibrium dialysis].

    PubMed

    Wiesner, G; Taeger, K; Peter, K

    1996-04-01

    Numerous basic drugs are extensively bound to alpha 1-acid glycoprotein. Fentanyl, with a pKa value of 8.43, is also a basic drug. Protein binding studies have yielded contradictory results concerning binding of fentanyl to alpha 1-acid glycoprotein. In this study we investigated time courses of serum protein concentrations and serum protein binding of fentanyl during postoperative acute phase reaction, assuming that an increase of alpha 1-acid glycoprotein is accompanied by an increase of serum protein binding, if fentanyl is extensively bound to alpha 1-acid glycoprotein. Fentanyl protein binding measurements using equilibrium dialysis can be affected by volume shifts and pH changes. Therefore, volume shifts from buffer to serum and the influence of various phosphate buffers on increasing pH due to loss of CO2 were also evaluated. METHODS. Thirteen patients with no history of renal or hepatic disease undergoing an operation with a significant acute phase reaction were studied. Preoperatively and on the first 3 postoperative days serum concentrations of alpha 1-acid glycoprotein, albumin, total protein and apolipoprotein A and B were determined by rocket immunoeolectrophoresis, biuret method and laser nephelometry, respectively. Corresponding serum protein binding of fentanyl was measured by adding 40 ng of fentanyl to 1 ml serum followed by equilibrium dialysis at 37 degrees C for 4 h. A 0.167 M phosphate buffer (pH 7.27), which gave a final pH of 7.40, was used. Volume shifts from buffer to serum were measured. Fentanyl concentration in serum before dialysis (FS) was determined by gas chromatography, and fentanyl concentration in buffer after dialysis (FB) was determined by radioimmunoassay. Serum protein binding (SPB) was calculated by the formula: SPB = (FS - FB - FB*c)/(FS - FB) where c is a correction factor. Ten randomly selected patient sera were dialyzed against four phosphate buffers of different pH values and molarities, and the serum pH at the end of

  2. High-Temperature Fractionation of Iron Isotopes During Metal Segregation From a Silicate Melt: Experimental Study of Kinetic and Equilibrium Fractionation

    NASA Astrophysics Data System (ADS)

    Roskosz, M.; Luais, B.; Watson, H.; Toplis, M. J.; Alexander, C. M.; Mysen, B. O.

    2005-12-01

    Advances in mass spectrometry make it possible to measure isotopic variations of iron in meteoritic and igneous materials. However, interpreting these data is hampered by a lack of theoretical and experimental knowledge concerning how Fe isotopes fractionate during magmatic processes. As a first step in this direction we have performed experiments in which metallic iron was reduced and segregated from a silicate melt at one bar as a function of f(O2) and time. The starting material was a glass of anorthite-diopside eutectic composition, to which 9 wt% Fe2O3 was added. Experiments were performed at 1500 circC and f(O2) in the range 10-0.7 to 10-8 bars. A proportion of this iron is extracted through formation of an alloy with the Pt-capsule in which the melt was held. The silicate and metallic portions were physically separated and bulk analyses of each fraction performed using standard MC-ICP-MS methods. Furthermore, a Cameca 6f ion microprobe was used to measure isotopic profiles in metallic samples, such that kinetic and equilibrium effects may be disentangled and quantified. Large isotopic variations are observed and attributed to kinetic fractionation during incorporation of iron into the initially Fe-free Pt-capsule. This process leads to the formation of isotopically light metal and a heavy silicate. For instance, in samples heat-treated for 24 hours, metal fractions have δ56Fe/54Fe from 0 to -2‰, whereas silicate fractions have δ56Fe/54Fe from 0 to 4.8‰. These values are positively correlated with the fraction of iron lost to the platinum. Ion-probe analyses and time-series experiments confirm that Fe isotopes are strongly fractionated during diffusion of Fe in the Pt,Fe alloy, and the observed profiles are used to calculate the diffusion coefficients of individual iron isotopes. With increasing time at fixed oxygen fugacity, iron in the alloy reaches a constant isotopic composition. At these conditions, assumed to represent equilibrium, iron in the

  3. Solid-fluid and solid-solid equilibrium in hard sphere united atom models of n-alkanes: rotator phase stability.

    PubMed

    Cao, M; Monson, P A

    2009-10-22

    We present a study of the phase behavior for models of n-alkanes with chain lengths up to C(21) based on hard sphere united atom models of methyl and methylene groups, with fixed bond lengths and C-C-C bond angles. We extend earlier work on such models of shorter alkanes by allowing for gauche conformations in the chains. We focus particularly on the orientational order about the chain axes in the solid phase near the melting point, and our model shows how the loss of this orientational order leads to the formation of rotator phases. We have made extensive calculations of the thermodynamic properties of the models as well as order parameters for tracking the degree of orientational order around the chain axis. Depending on the chain length and whether the carbon number is even or odd, the model exhibits both a rotator phase and a more orientationally ordered solid phase in addition to the fluid phase. Our results indicate that the transition between the two solid phases is first-order with a small density change. The results are qualitatively similar to those seen experimentally and show that rotator phases can appear in models of alkanes without explicit treatment of attractive forces or explicit treatment of the hydrogen atoms in the chains.

  4. Method optimization for non-equilibrium solid phase microextraction sampling of HAPs for GC/MS analysis

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Del Negro, L. A.

    2010-12-01

    Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.

  5. Informational Equilibrium.

    DTIC Science & Technology

    1982-09-01

    that for variouis standard types of equilibria* they hold. In particular, if one uses the teaporary equilibrium framework one can use the standard ...T, the integral converges toward f’ia(da) f fU(b~dc)6(a,b,c)T( asdm ) A B C which is fR (da) f d(lib,c) U0 T (cab) A BxC Me converse Is obvious

  6. An experimental and theoretical evaluation of increased thermal diffusivity phase change devices

    NASA Technical Reports Server (NTRS)

    White, S. P.; Golden, J. O.; Stermole, F. J.

    1972-01-01

    This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.

  7. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  8. Phase-Elective English: An Experimental Program for Grades Eleven and Twelve.

    ERIC Educational Resources Information Center

    Jefferson County Board of Education, Louisville, KY.

    This report of an experimental program, developed at the Jeffersontown High School in Louisville, Kentucky, describes 26 nongraded elective English courses which are divided into five ability-level phases. Phase 1 and 2 courses (for less advanced students) deal with such areas as developmental reading, vocational English, oral communication,…

  9. Electrohydraulic forming of dual phase steels; numerical and experimental work

    NASA Astrophysics Data System (ADS)

    Hassannejadasl, Amir; Green, Daniel E.; Golovashchenko, Sergey F.

    2013-12-01

    Electrohydraulic Forming (EHF) is a high velocity forming process, in which the strain-rate in the sheet metal can reach very high values depending on the prescribed input energy, the chamber geometry, the die geometry, instrumentation efficiency and the mechanical properties of the sheet material. In EHF, a high voltage discharge between electrodes that are submerged in a water-filled chamber generates a plasma channel that leads to propagation of a shockwave through the water that forms the sheet, with or without a die, in less than a millisecond. EHF generates a complex pressure pulse history that is extremely challenging to simulate. In this work, three-dimensional finite element simulations of DP590 sheet were completed in free-forming (EHFF) and die-forming (EHDF) conditions using ABAQUS/Explicit and a combination of Eulerian and Lagrangian elements. The Johnson-Cook constitutive plasticity model was selected and the parameters were calibrated based on uniaxial tensile test data at different strain-rates. A comprehensive numerical study was carried out with a view to understanding the differences between EHFF and EHDF in terms of the history of the deformation profile of the specimen, the strain-rate history, the loading path and through-thickness stresses. Higher strain-rates and more complex strain-paths were predicted in EHDF compared to EHFF due to dynamic sheet/die interaction. Good correlation between the experimental and numerical results demonstrated the ability of numerical models to accurately predict the history of the deformation profile in both EHDF and EHFF conditions.

  10. Experimental evidence for an absorbing phase transition underlying yielding of a soft glass

    NASA Astrophysics Data System (ADS)

    Nagamanasa, K. Hima; Gokhale, Shreyas; Sood, A. K.; Ganapathy, Rajesh

    2014-03-01

    A characteristic feature of solids ranging from foams to atomic crystals is the existence of a yield point, which marks the threshold stress beyond which a material undergoes plastic deformation. In hard materials, it is well-known that local yield events occur collectively in the form of intermittent avalanches. The avalanche size distributions exhibit power-law scaling indicating the presence of self-organized criticality. These observations led to predictions of a non-equilibrium phase transition at the yield point. By contrast, for soft solids like gels and dense suspensions, no such predictions exist. In the present work, by combining particle scale imaging with bulk rheology, we provide a direct evidence for a non-equilibrium phase transition governing yielding of an archetypal soft solid - a colloidal glass. The order parameter and the relaxation time exponents revealed that yielding is an absorbing phase transition that belongs to the conserved directed percolation universality class. We also identified a growing length scale associated with clusters of particles with high Debye-Waller factor. Our findings highlight the importance of correlations between local yield events and may well stimulate the development of a unified description of yielding of soft solids.

  11. Experimental realization of Talbot array illumination for a 2-dimensional phase grating

    NASA Astrophysics Data System (ADS)

    Mondal, Puspen; Kumar, Mukund; Tiwari, Pragya; Srivastava, A. K.; Chakera, J. A.; Naik, P. A.

    2016-10-01

    We present the result of a multiple phase level Talbot array illuminator (TAI) based on two dimensional phase grating. The grating was fabricated on glass by a Deep Reactive Ion Etching (DRIE) system with optimized gas combination recipe. The opening ratio of the grating is ˜0.71 with a phase step of 11π. The experimental study on Talbot array illuminations (TAI's) of this fabricated device in near-field region was carried out using a He-Ne laser. The TAI's were observed at the positions 2.81 mm, 8.59 mm, 14.28 mm, and 20.57 mm along the light propagation direction. The computer simulations of wave field distribution in near field region at different fractional Talbot distances have been generated. These simulated results are in reasonably good agreement with our experimental observed results. Our analysis on Talbot array illumination (TAI's) shows that the multiple harmonic phase modulations are transformed into intensity modulations at 1/8, 3/8, 5/8, and 7/8 fractional Talbot position. We have observed three different grating images, viz., attenuated, phase contrast, and diffraction contrast images. We also show the presence of a considerable amount of phase change at the edge of each phase sublevel that enhances the contrast of differential phase contrast imaging. Therefore, the phase contrast signal can be detected at a fractional position using single phase grating without the need of phase stepping.

  12. Experimental and computed phase diagrams of the Fe-Re system

    NASA Astrophysics Data System (ADS)

    Breidi, A.; Andasmas, M.; Crivello, J.-C.; Dupin, N.; Joubert, J.-M.

    2014-12-01

    In order to clarify controversial reports on the Fe-Re phase diagram, a new experimental investigation has been carried out. Three intermetallic phases have been evidenced, including the new report of the P phase found for the first time in a binary system. The phase relations involving the σ phase were established. In parallel, a first-principles study has been performed which provided the heat of formation of every ordered configuration for four intermetallic phases (D8b, A12, A13 and P). The mixing energy of solid solutions (fcc, bcc, hcp) was calculated using the special quasi-random structure method. Calculations were performed with the help of the density functional theory, with and without spin polarization. From these results, in the frame of the Compound Energy Formalism using the Bragg-Williams approximation, the Fe-Re phase diagram has been computed without the use of adjustable parameters. Different thermodynamic parameters obtained experimentally and theoretically, as the site occupancies, are compared. The computed phase diagram presents several differences with the experimental one. To understand these differences, the influence of several parameters on the phase stability, such as the magnetic contribution has been evaluated.

  13. Experimental study of a modified phase diversity with a diffraction grating.

    PubMed

    Luo, Qun; Huang, Linhai; Gu, Naiting; Rao, Changhui

    2012-05-21

    The measurement ability of the conventional Phase diversity wavefront sensor (C-PD WFS) is limited by the accuracy and dynamic range of CCD cameras. In this letter, a modified Phase diversity wavefront sensor based on a diffraction grating (G-PD WFS) is proposed. We build a corresponding experimental setup to compare the measurement accuracy of the G-PD WFS and the C-GPDWFS under the same experimental conditions. The experimental results show that the measurement ability of G-PD WFS is improved obviously, especially for the wavefront aberration with larger amplitude.

  14. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  15. Timing and conditions of high-pressure metamorphism in the western Grenville Province: Constraints from accessory mineral composition and phase equilibrium modeling

    NASA Astrophysics Data System (ADS)

    Marsh, Jeffrey H.; Culshaw, Nicholas G.

    2014-07-01

    Previous geochronological analyses of high pressure (HP) metamorphic rocks in the western Grenville Province, Ontario, Canada have yielded precise U-Pb zircon ages; however, uncertainty has remained as to whether these ages represent the timing of HP metamorphism or the granulite/amphibolite facies overprint accompanying exhumation to a hot middle orogenic crust. Detailed study of these HP rocks, involving garnet, rutile, and zircon trace element analysis, phase equilibrium modeling, and zircon U-Pb geochronology, has yielded much improved constraints on the timing and conditions of HP metamorphism. Zircon from five of the six HP samples yield anchored discordia upper intercept and 207Pb/206Pb weighted average ages between 1097 and 1085 Ma, and typically have trace element compositions consistent with growth in a garnet-rich, plagioclase-poor eclogite-type assemblage (i.e. no negative Eu anomaly and flat HREE trends). Titanium-in-zircon and Zr-in-rutile thermometry indicates that the range of zircon crystallization temperatures for most samples (643-767 °C) is close to that of rutile inclusions in garnet (668-753 °C) and matrix rutile (690-772 °C). Phase relations in a pseudosection calculated for the sample that best preserves the HP assemblage indicate that: (1) the stability field for the inclusions observed in garnet and kyanite is between 11.5 < P < 14 kbar and 600 < T < 700 °C, and (2) zircon and rutile crystallization temperatures intersect the inferred HP assemblage field (Grt + Cpx + Ky + Rt + Hbl + Qtz) and garnet and kyanite modal isopleths at P > ~ 15 kbar, indicating that the ca. 1090 Ma zircon ages date metamorphism at eclogite facies conditions. Thus, the deep burial of mafic lower crust that resulted in HP metamorphism in the western CGB occurred just prior to the main "Ottawan" phase of continental collision in the western Grenville Province (ca. 1080-1040 Ma).

  16. Influence of debris flow scale on equilibrium bed slope

    NASA Astrophysics Data System (ADS)

    Itoh, T.; Egashira, S.; Papa, M.; Miyamoto, K.

    2003-04-01

    Results obtained from both of flume tests and theory suggest that an equilibrium bed slope in flow over an erodible bed is determined only by sediment discharge rate when the movements of sediment particles are laminar and thus no suspended transportation take place. This means that the static friction force is dominant in debris flow and that sediment concentration is determined by shear stress balance on the bed surface; i.e., the external shear stress must be equal to the resisting static shear stress of sediment particles, as seen in our previous studies. On the other hand, if part of sediment particles in debris flow body is transported in suspension, sediment concentration will be larger in comparison with that in case of laminar motion of sediment particles and the equilibrium bed slope will decrease. These facts are supported Egashira et al.'s experimental data. The present study discusses an influence of flow scales on an equilibrium bed slope and flow structure experimentally and theoretically. Equilibrium bed slopes and velocity profiles are measured for many flow conditions in flume tests. Those results emphasize that the equilibrium bed slope decreases with increasing of flow scale if part of debris flow body is turbulent, and it is predicted corresponding to increase of mass density of fluid phase. Experimental data for velocity profiles are compared to the results predicted by authors' constitutive equations for non-cohesive sediment and water mixture. When no turbulent diffusions take place, flow characteristics such as velocity profiles and flow resistance are predicted very well by our equations. However, the equations will underestimate the flow resistance if a part of the flow body becomes turbulent because of increase of flow scale. These suggest that the changes of equilibrium bed slope and flow structure are caused by phase-shift from solid phase to fluid phase depending on debris flow scale.

  17. Trans-Pacific HDR Satellite Communications Experiment Phase-2 Project Plan and Experimental Network

    NASA Technical Reports Server (NTRS)

    Hsu, Eddie; Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Bergman, Larry; Bhasin, Kul

    2000-01-01

    The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. ATM-based 45 Mbps trans-Pacific link was established in the first phase, and the following experiments with 155 Mbps was planned as the phase 2. This paper describes the experimental network configuration and project plan of TP-HDR experiment phase 2. Additional information is provided in the original.

  18. Solids Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Godrèche, C.

    2011-03-01

    Preface; 1. Shape and growth of crystals P. Nozières; 2. Instabilities of planar solidification fronts B. Caroli, C. Caroli and B. Roulet; 3. An introduction to the kinetics of first-order phase transition J. S. Langer; 4. Dendritic growth and related topics Y. Pomeau and M. Ben Amar; 5. Growth and aggregation far from equilibrium L. M. Sander; 6. Kinetic roughening of growing surfaces J. Krug and H. Spohn; Acknowledgements; References; Index.

  19. Molecular equilibrium with condensation

    NASA Astrophysics Data System (ADS)

    Sharp, C. M.; Huebner, W. F.

    1990-02-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.

  20. Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins.

    PubMed

    Hemmen, Andrea; Gross, Joachim

    2015-09-03

    A new transferable force field parametrization for n-alkanes and n-olefins is proposed in this work. A united-atom approach is taken, where hydrogen atoms are lumped with neighboring atoms to single interaction sites. A comprehensive study is conducted for alkanes, optimizing van der Waals force field parameters in 6 dimensions. A Mie n-6 potential is considered for the van der Waals interaction, where for n-alkanes we simultaneously optimize the energy parameters ϵCH3 and ϵCH2 as well as the size parameters σCH3 and σCH2 of the CH3(sp(3)) and CH2(sp(3)) groups. Further, the repulsive exponent n of the Mie n-6 potential is varied. Moreover, we investigate the bond length toward the terminal CH3 group as a degree of freedom. According to the AUA (anisotropic united-atom) force field, the bond length between the terminal CH3 group and the neighboring interaction site should be increased by Δl compared with the carbon-carbon distance in order to better account for the hydrogen atoms. The parameter Δl is considered as a degree of freedom. The intramolecular force field parametrization is taken from existing force fields. A single objective function for the optimization is defined as squared relative deviations in vapor pressure and in liquid density of propane, n-butane, n-hexane, and n-octane. A similar study is also done for olefins, where the objective function includes 1-butene, 1-hexene, 1-octene, cis-2-pentene, and trans-2-pentene. Molecular simulations are performed in the grand canonical ensemble with transition-matrix sampling where the phase equilibrium properties are obtained with the histogram reweighting technique. The 6-dimensional optimization of strongly correlated parameters is possible, because the analytic PC-SAFT equation of state is used to locally correlate simulation results. The procedure is iterative but leads to very efficient convergence. An implementation is proposed, where the converged result is not affected (disturbed) by the

  1. 3.6 AND 4.5 {mu}m PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b

    SciTech Connect

    Knutson, Heather A.; Lewis, Nikole; Showman, Adam P.; Fortney, Jonathan J.; Laughlin, Gregory; Burrows, Adam; Cowan, Nicolas B.; Agol, Eric; Aigrain, Suzanne; Charbonneau, David; Desert, Jean-Michel; Deming, Drake; Henry, Gregory W.; Langton, Jonathan

    2012-07-20

    We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 {mu}m bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 {mu}m, these data allow us to characterize the exoplanet's emission spectrum as a function of planetary longitude and to search for local variations in its vertical thermal profile and atmospheric composition. We utilize an improved method for removing the effects of intrapixel sensitivity variations and robustly extracting phase curve signals from these data, and we calculate our best-fit parameters and uncertainties using a wavelet-based Markov Chain Monte Carlo analysis that accounts for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% {+-} 0.0061% in the 3.6 {mu}m band and 0.0982% {+-} 0.0089% in the 4.5 {mu}m band, corresponding to brightness temperature contrasts of 503 {+-} 21 K and 264 {+-} 24 K, respectively. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 {mu}m, and we present new evidence indicating that the flux minimum observed in the 8 {mu}m is likely caused by an overshooting effect in the 8 {mu}m array. We obtain improved estimates for HD 189733b's dayside planet-star flux ratio of 0.1466% {+-} 0.0040% in the 3.6 {mu}m band and 0.1787% {+-} 0.0038% in the 4.5 {mu}m band, corresponding to brightness temperatures of 1328 {+-} 11 K and 1192 {+-} 9 K, respectively; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of one-dimensional radiative transfer models from

  2. Non-equilibrium universality in the dynamics of dissipative cold atomic gases

    NASA Astrophysics Data System (ADS)

    Marcuzzi, M.; Levi, E.; Li, W.; Garrahan, J. P.; Olmos, B.; Lesanovsky, I.

    2015-07-01

    The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established concept at or near equilibrium, universality, can also characterize the physics of systems out of equilibrium. The most fundamental instance of a genuine non-equilibrium phase transition is the directed percolation (DP) universality class, where a system switches from an absorbing inactive to a fluctuating active phase. Despite being known for several decades it has been challenging to find experimental systems that manifest this transition. Here we show theoretically that signatures of the DP universality class can be observed in an atomic system with long-range interactions. Moreover, we demonstrate that even mesoscopic ensembles—which are currently studied experimentally—are sufficient to observe traces of this non-equilibrium phase transition in one, two and three dimensions.

  3. Theoretical and experimental study of metastable solid solutions and phase stability within the immiscible Ag-Mo binary system

    NASA Astrophysics Data System (ADS)

    Sarakinos, K.; Greczynski, G.; Elofsson, V.; Magnfält, D.; Högberg, H.; Alling, B.

    2016-03-01

    Metastable solid solutions are phases that are synthesized far from thermodynamic equilibrium and offer a versatile route to design materials with tailor-made functionalities. One of the most investigated classes of metastable solid solutions with widespread technological implications is vapor deposited ternary transition metal ceramic thin films (i.e., nitrides, carbides, and borides). The vapor-based synthesis of these ceramic phases involves complex and difficult to control chemical interactions of the vapor species with the growing film surface, which often makes the fundamental understanding of the composition-properties relations a challenging task. Hence, in the present study, we investigate the phase stability within an immiscible binary thin film system that offers a simpler synthesis chemistry, i.e., the Ag-Mo system. We employ magnetron co-sputtering to grow Ag1-xMox thin films over the entire composition range along with x-ray probes to investigate the films structure and bonding properties. Concurrently, we use density functional theory calculations to predict phase stability and determine the effect of chemical composition on the lattice volume and the electronic properties of Ag-Mo solid solutions. Our combined theoretical and experimental data show that Mo-rich films (x ≥ ˜0.54) form bcc Mo-Ag metastable solid solutions. Furthermore, for Ag-rich compositions (x ≤ ˜0.21), our data can be interpreted as Mo not being dissolved in the Ag fcc lattice. All in all, our data show an asymmetry with regards to the mutual solubility of Ag and Mo in the two crystal structures, i.e., Ag has a larger propensity for dissolving in the bcc-Mo lattice as compared to Mo in the fcc-Ag lattice. We explain these findings in light of isostructural short-range clustering that induces energy difference between the two (fcc and bcc) metastable phases. We also suggest that the phase stability can be explained by the larger atomic mobility of Ag atoms as compared to that

  4. Experimental and theoretical search for a phase transition in nuclear fragmentation

    NASA Astrophysics Data System (ADS)

    Chbihi, A.; Schapiro, O.; Salou, S.; Gross, D. H. E.

    Phase transitions of small isolated systems are signaled by the shape of the caloric equation of state e*(T), the relationship between the excitation energy per nucleon e* and temperature. In this work we compare the experimentally deduced e*(T) to the theoretical predictions. The experimentally accessible temperature was extracted from evaporation spectra from incomplete fusion reactions leading to residue nuclei. The experimental e*(T) dependence exhibits the characteristic S-shape at e*= 2-3 MeV/A. Such behavior is expected for a finite system at a phase transition. The observed dependence agrees with predictions of the MMMC-model, which simulates the total accessible phase-space of fragmentation.

  5. Topological quantum phase transition in synthetic non-Abelian gauge potential: gauge invariance and experimental detections.

    PubMed

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops.

  6. Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections

    PubMed Central

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153

  7. A direct liquid, non-equilibrium solid-phase micro-extraction application for analysing chemical variation of single peltate trichomes on leaves of Salvia officinalis.

    PubMed

    Grassi, Paolo; Novak, Johannes; Steinlesberger, Heidi; Franz, Chlodwig

    2004-01-01

    A non-equilibrium solid phase micro-extraction application was tested for the rapid extraction of essential oil from single oil glands of sage and the oil components compared with those determined by solvent extract and distillation. Oil glands were directly ruptured with a polydimethylsiloxane-coated fused silica fibre and the essential oil was sorbed. Three insertion levels of an individual plant of Salvia officinalis involving an immature apical young leaf, an expanding and a fully developed leaf, respectively, were used to determine the applicability of this method. Thirty-eight components in the oil could be identified by GC-MS. The method only showed small semi-quantitative differences compared with conventional methods. Chemical variation of single oil glands within the immature and premature leaf was higher than within the homogeneous mature leaf. The intermediary, still-expanding leaf was used to carry out a detailed study of the glands. The basal region of the intermediary leaf contained compounds in high conformity with the young leaf trichomes. The remaining oil glands of this leaf showed inconsistent accumulation patterns.

  8. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  9. Liquid-vapor equilibrium of the systems butylmethylimidazolium nitrate-CO2 and hydroxypropylmethylimidazolium nitrate-CO2 at high pressure: influence of water on the phase behavior.

    PubMed

    Bermejo, M Dolores; Montero, Marta; Saez, Elisa; Florusse, Louw J; Kotlewska, Aleksandra J; Cocero, M José; van Rantwijk, Fred; Peters, Cor J

    2008-10-30

    Ionic liquids (IL) are receiving increasing attention due to their potential as "green" solvents, especially when used in combination with SC-CO2. In this work liquid-vapor equilibria of binary mixtures of CO2 with two imidazolium-based ionic liquids (IL) with a nitrate anion have been experimentally determined: butylmethylimidazolium nitrate (BMImNO3) and hydroxypropylmethylimidazolium nitrate (HOPMImNO3), using a Cailletet apparatus that operates according to the synthetic method. CO2 concentrations from 5 up to 30 mol % were investigated. It was found that CO2 is substantially less soluble in HOPMImNO3 than in BMImNO3. Since these ILs are very hygroscopic, water easily can be a major contaminant, causing changes in the phase behavior. In case these Ils are to be used in practical applications, for instance, together with CO2 as a medium in supercritical enzymatic reactions, it is very important to have quantitative information on how the water content will affect the phase behavior. This work presents the first systematic study on the influence of water on the solubility of carbon dioxide in hygroscopic ILs. It was observed that the presence of water reduces the absolute solubility of CO2. However, at fixed ratios of CO2/IL, the bubble point pressure remains almost unchanged with increasing water content. In order to explain the experimental results, the densities of aqueous mixtures of both ILs were determined experimentally and the excess molar volumes calculated.

  10. Experimental study of an X-band phase-locked relativistic backward wave oscillator

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.

    2015-11-15

    To achieve high power microwave combined with high frequency band, an X-band phase-locked relativistic backward wave oscillator (RBWO) is proposed and investigated theoretically and experimentally using a modulated electron beam. In the device, an overmoded input cavity and a buncher cavity are employed to premodulate the electron beam. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with the locking bandwidth of 60 MHz. Moreover, phase and frequency locking of an RBWO has been accomplished experimentally with an output power of 1.5 GW. The fluctuation of the relative phase difference between output microwave and input RF signal is less than ±20° with the locking duration of about 50 ns. The input RF power required to lock the oscillator is only 90 kW.

  11. Supersonic Jet Mixing with Vibrational Non-Equilibrium

    NASA Astrophysics Data System (ADS)

    Reising, Heath H.; Kc, Utsav; Varghese, Philip L.; Clemens, Noel T.

    2013-11-01

    A new study has been initiated to study the effect of vibrational non-equilibrium on turbulent mixing and combustion. This work is relevant to high-speed, high-temperature environments, such as scramjet combustors, where shocks and mixing can lead to high degrees of vibrational non-equilibrium. In this experimental study, a new facility has been developed that consists of a perfectly-expanded axisymmetric Mach 1.5 turbulent air jet issuing into an electrically heated co-flow of air for precise control of the temperature and thus vibrationally-active population. This hot flow can be brought into non-equilibrium when the co-flow fluid is rapidly mixed with the colder supersonic jet fluid. Effects of the non-equilibrium can be isolated by replacing the nitrogen in the flow with argon. The degree of non-equilibrium in the jet shear layers is quantified by using high-spectral resolution time-averaged spontaneous Raman scattering centered on the Stokes-shifted Q branch line of N2 at 607 nm. In this first phase of the study, the effect of non-equilibrium on the mixing field will be investigated, but future work will focus on H2-air combustion. Planar Rayleigh thermometry is utilized to investigate the effects of vibrational non-equilibrium on the turbulent structures and thermal dissipation field. This work was funded by the Air Force Office of Scientific Research under BRI grant FA9550-12-0460.

  12. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method

    SciTech Connect

    Li, Dianfan; Pye, Valerie E.; Caffrey, Martin

    2015-01-01

    Very little information is available in the literature concerning the experimental heavy-atom phasing of membrane-protein structures where the crystals have been grown using the lipid cubic phase (in meso) method. In this paper, pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine labelling as applied to an integral membrane kinase crystallized in meso are described. An assay to assess cysteine accessibility for mercury labelling of membrane proteins is introduced. Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method.

  13. Experimental investigations on a tapered ferrite rod antenna with magnetic phase control

    NASA Astrophysics Data System (ADS)

    Petosa, A.; Wight, J. S.; Ittipiboon, A.

    1994-08-01

    Experimental investigations were performed on a tapered ferrite rod antenna at 20 GHz. By inserting a section of the rod into a solenoid, phase control was achieved by varying the applied DC solenoid current. Phase shifts of greater than 100 deg/lambda(0) were attained. The gain and radiation patterns did not change significantly with the applied bias. The return loss was somewhat more sensitive, but a better than 10dB return loss was obtained over the complete bias range.

  14. The ruthenium-yttrium system: An experimental calorimetric study with a phase diagram optimization

    SciTech Connect

    Selhaoui, N.; Bouirden, L.; Charles, J.; Gachon, J.C.; Kleppa, O.J.

    1998-07-01

    After an experimental determination of the standard enthalpies of formation of Ru{sub 0.67}Y{sub 0.33} and Ru{sub 0.286}Y{sub 0.714}, the Ru-Y system was numerically assessed with help of NANCYUN software to check the consistency between the experimental results and the phase diagram proposed in the literature.

  15. Experimental and molecular modeling study of the three-phase behavior of (n-decane + carbon dioxide + water) at reservoir conditions.

    PubMed

    Forte, Esther; Galindo, Amparo; Trusler, J P Martin

    2011-12-15

    Knowledge of the phase behavior of mixtures of oil with carbon dioxide and water is essential for reservoir engineering, especially in the processes of enhanced oil recovery and geological storage of carbon dioxide. However, for a comprehensive understanding, the study of simpler systems needs to be completed. In this work the system (n-decane + carbon dioxide + water) was studied as a model (oil + carbon dioxide + water) mixture. To accomplish our aim, a new analytical apparatus to measure phase equilibria at high pressure was designed with maximum operating temperature and pressure of 423 K and 45 MPa, respectively. The equipment relies on recirculation of two coexisting phases using a two-channel magnetically operated micropump designed during this work, with sampling and online compositional analysis by gas chromatography. The apparatus has been validated by comparison with published isothermal vapor-liquid equilibrium data for the binary system (n-decane + carbon dioxide). New experimental data have been measured for the system (n-decane + carbon dioxide + water) under conditions of three-phase equilibria. Data for the three coexisting phases have been obtained on five isotherms at temperatures from 323 to 413 K and at pressures up to the point at which two of the phases become critical. The experimental work is complemented here with a theoretical effort in which we developed models for these molecules within the framework of the statistical associating fluid theory for potentials of variable range (SAFT-VR). The phase behavior of the three binary subsystems was calculated using this theory, and where applicable, a modification of the Hudson and McCoubrey combining rules was used to treat the systems predictively. The experimental data obtained for the ternary mixture are compared to the predictions of the theory. Furthermore, a detailed analysis of the ternary mixture is carried out based on comparison with available data for the constituent binary

  16. Equilibrium Shape of Colloidal Crystals.

    PubMed

    Sehgal, Ray M; Maroudas, Dimitrios

    2015-10-27

    Assembling colloidal particles into highly ordered configurations, such as photonic crystals, has significant potential for enabling a broad range of new technologies. Facilitating the nucleation of colloidal crystals and developing successful crystal growth strategies require a fundamental understanding of the equilibrium structure and morphology of small colloidal assemblies. Here, we report the results of a novel computational approach to determine the equilibrium shape of assemblies of colloidal particles that interact via an experimentally validated pair potential. While the well-known Wulff construction can accurately capture the equilibrium shape of large colloidal assemblies, containing O(10(4)) or more particles, determining the equilibrium shape of small colloidal assemblies of O(10) particles requires a generalized Wulff construction technique which we have developed for a proper description of equilibrium structure and morphology of small crystals. We identify and characterize fully several "magic" clusters which are significantly more stable than other similarly sized clusters.

  17. Experimental optical phase measurement at the exact Heisenberg limit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Daryanoosh, Shakib; Slussarenko, Sergei; Wiseman, Howard M.; Pryde, Geoff J.

    2016-10-01

    Optical phase measurement through its application in quantum metrology has pushed the precision limit with which some physical quantities can be measured accurately. At the very fundamental level, the laws of quantum mechanics dictate that the uncertainty in phase estimations scales as 1/N, where N is the number of quantum resources employed in the protocol [1]. This is the well known Heisenberg limit (HL) which is quadratically better than the traditional precision limit known as the standard quantum limit (SQL) with uncertainty asymptotically scaling as 1/&sqrt{N} [1]. Several experiments have demonstrated that the SQL can be beaten by using an entangled state as the probe and a specific measurement scheme for ab initio estimation of unknown phases [2,3]. It has also been shown experimentally that even in the absence of the entanglement one can measure an unknown phase with imprecision scaling at the HL [4]. In this work we first present a new protocol able to estimate an optical phase at the Heisenberg limit, and then experimentally explore fundamental and practical issues in generating high-quality novel entangled states, for use in this protocol and beyond. Our aim in this study is to measure an unknown phase in the interval [0,2π) with uncertainty attaining the exact HL. There is a condition that should be met to address this objective: preparation of an optimal state [5]. This would cover part of the presentation through which we explain how to experimentally realise such an optimal state with the current technological limitations and the feasibility of the scheme. In particular, we generate an entangled 3-photon (2-photon) state of specific superposition of GHZ (Bell) states. Our numerical simulation of the phase measurement gate together with the experimental outcomes show that the created state should have a high fidelity and purity to be able to have the phase uncertainty achieving the exact HL. Therefore, we briefly explain the modelling for

  18. Complex metallic surface phases in the Al/Cu(111) system: An experimental and computational study

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Gaudry, E.; Deniozou, T.; Ledieu, J.; de Weerd, M. C.; Belmonte, T.; Dubois, J. M.; Fournée, V.

    2009-11-01

    The growth of complex intermetallics as surface alloys is investigated by annealing Al thin films deposited on Cu(111) substrate in ultrahigh vacuum. Already at room temperature, the large lattice mismatch between Al and Cu results in interfacial intermixing. Upon annealing, various phases are formed by diffusion depending on the thickness of the Al films and the annealing temperature. The surface structures are characterized by scanning tunneling microscopy, low-energy electron diffraction, and x-ray photoelectron spectroscopy. Three different superlattice phases are identified as well as the complex Hume-Rothery γ-Al4Cu9 phase. The epitaxial relationships between the surface phases and the Cu(111) substrate are determined. We further investigate the electronic structure of the γ phase by density functional calculations. Experimental valence bands are compared to calculated density of states and simulated STM images are used to identify possible bulk planes appearing as surface termination.

  19. Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser

    SciTech Connect

    Yang Shiquan; Bao Xiaoyi

    2006-09-15

    The intracavity phase-modulated laser can work in two distinct stages: 1) phase mode-locking when the applied modulation frequency is equal to the cavity's fundamental frequency or one of its harmonics, and 2) the FM laser oscillation at a moderate detuned modulation frequency. In this paper, we experimentally studied the noise buildup process in the transition from FM laser oscillation to phase mode-locking in a phase-modulated laser. We found that the relaxation oscillation frequency varies with the modulation frequency detuning and the relaxation oscillation will occur twice in the transition region. Between these two relaxation oscillations, the supermode noise can be significantly enhanced, which is evidence of excess noise in laser systems. All of these results can be explained by the theory of Floquet modes in a phase-modulated laser cavity.

  20. Experimental Studies of the Phase Diagram Leucite - Nepheline - Diopside under 4.0GPa and High Temperatures

    NASA Astrophysics Data System (ADS)

    Conceicao, R. V.; Wilbert de Souza, M. R.; Cedeno, D. G.; Schmitz Quinteiro, R. V.

    2015-12-01

    One of the most important heat sources for the Earth's interior is the radioactive decay of radiogenic elements, mainly 235U, 238U, 232Th and 40K radionuclides. However, our planet emits much more heat than that expected for the energy produced by the calculated concentration of these elements in the Earth's Mantle, even if we consider solar radiation and planetary accretion energy too. Such data suggest that the concentration of all these elements, or some of them, is underestimated and several authors suggest that some of these elements could be enriched even in the Earth's core, despite their lithophyle characteristics. In this study, we focus on the potassium behavior, concentration in the mantle and we aim to find stable mineral phases under high pressure and temperature, able to keep potassium (and by consequence its radioactive 40K isotope) and water in their structure in the mantle conditions. In such way, we will be able to better understand the role of potassium in the mantle as a heat source to the Earth's interior. We conducted experimental runs in which synthetic vitreous samples, stoichiometrically equivalent to different concentrations of leucite, nepheline and diopside, are processed in a 1000 tonf hydraulic press, under 4.0 GPa (equivalent to 120 km Earth deep) and temperatures up to 1400 °C. As run products, we obtained euhedral minerals in equilibrium with a liquid (melt), simulating a potassium enriched mantle environment. The samples are analyzed by XRD, SEM-EDS and EPMA techniques, and the produced data is used to construct the "Leucite-Nepheline-Diopside under 4.0GPa and dry conditions" ternary phase diagram. Preliminary semiquantitative data (EDS), plotted in the diagram, show that clinopyroxene keeps up to 2wt% of K2O in its structure in absence of potassic phases and in the presence of nepheline. The amount of K2O decreases to 0,1wt% if kalsilite is present, which is the potassic stable phase in the experiment conditions. Compared to

  1. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-01-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the

  2. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  3. Experimental estimation of one-parameter qubit gates in the presence of phase diffusion

    SciTech Connect

    Brivio, Davide; Cialdi, Simone; Vezzoli, Stefano; Gebrehiwot, Berihu Teklu; Genoni, Marco G.; Olivares, Stefano; Paris, Matteo G. A.

    2010-01-15

    We address estimation of one-parameter qubit gates in the presence of phase diffusion. We evaluate the ultimate quantum limits to precision, seek optimal probes and measurements, and demonstrate an optimal estimation scheme for polarization encoded optical qubits. An adaptive method to achieve optimal estimation in any working regime is also analyzed in detail and experimentally implemented.

  4. A search for equilibrium states

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1982-01-01

    An efficient search algorithm is described for the location of equilibrium states in a search set of states which differ from one another only by the choice of pure phases. The algorithm has three important characteristics: (1) it ignores states which have little prospect for being an improved approximation to the true equilibrium state; (2) it avoids states which lead to singular iteration equations; (3) it furnishes a search history which can provide clues to alternative search paths.

  5. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error

    PubMed Central

    Read, Randy J.; McCoy, Airlie J.

    2016-01-01

    The crystallographic diffraction experiment measures Bragg intensities; crystallo­graphic electron-density maps and other crystallographic calculations in phasing require structure-factor amplitudes. If data were measured with no errors, the structure-factor amplitudes would be trivially proportional to the square roots of the intensities. When the experimental errors are large, and especially when random errors yield negative net intensities, the conversion of intensities and their error estimates into amplitudes and associated error estimates becomes nontrivial. Although this problem has been addressed intermittently in the history of crystallographic phasing, current approaches to accounting for experimental errors in macromolecular crystallography have numerous significant defects. These have been addressed with the formulation of LLGI, a log-likelihood-gain function in terms of the Bragg intensities and their associated experimental error estimates. LLGI has the correct asymptotic behaviour for data with large experimental error, appropriately downweighting these reflections without introducing bias. LLGI abrogates the need for the conversion of intensity data to amplitudes, which is usually performed with the French and Wilson method [French & Wilson (1978 ▸), Acta Cryst. A35, 517–525], wherever likelihood target functions are required. It has general applicability for a wide variety of algorithms in macromolecular crystallography, including scaling, characterizing anisotropy and translational noncrystallographic symmetry, detecting outliers, experimental phasing, molecular replacement and refinement. Because it is impossible to reliably recover the original intensity data from amplitudes, it is suggested that crystallographers should always deposit the intensity data in the Protein Data Bank. PMID:26960124

  6. Experimental observation of phase-flip transitions in two inductively coupled glow discharge plasmas

    NASA Astrophysics Data System (ADS)

    Chaubey, Neeraj; Mukherjee, S.; Sen, A.; Iyengar, A. N. Sekar

    2016-12-01

    We report an experimental observation of a phase-flip transition in the frequency synchronization of two dc glow discharge plasma sources that are coupled in a noninvasive fashion. When the fundamental oscillation frequency of the potential fluctuations of one of the sources is progressively increased, by raising its discharge voltage, a frequency pulling regime is observed, followed by a synchronized regime that shows a frequency jump phenomenon. The jump is associated with a phase-flip transition that takes the synchronized state from an in-phase to an antiphase state. When the process is reversed, the transition takes place at a different frequency, thereby exhibiting a hysteresis effect. A heuristic model, consisting of two van der Pol oscillators that are coupled to each other through a dynamic common medium, eminently captures the essential features of our experimental observations.

  7. Experimental evaluation of instantaneous phase based index for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jha, Ratneshwar; Cross, Kevin; Janoyan, Kerop D.; Sazonov, Edward S.; Fuchs, Michael; Krishnamurthy, Vidya

    2006-03-01

    The sensitivity and consistency of a damage index based on instantaneous phase values obtained through vibration measurements of a structure is investigated experimentally. An 'empirical mode decomposition' is performed to decompose structural vibrations into a small number of 'intrinsic mode functions' following the methodology generally known as the Hilbert-Huang Transform. Instantaneous phase information is derived through the Hilbert transform of intrinsic mode functions. The damage index is based on the idea that the difference in phase functions between any two points on a structure is altered if the structure is damaged. Experimental investigations are performed on a beam structure with varying excitations (white noise signals), damage levels, and damage locations. The damage index shows generally consistent results, but its sensitivity to damages needs improvements for practical applications.

  8. Experimental and numerical investigation of a phase change energy storage system

    NASA Astrophysics Data System (ADS)

    Casano, G.; Piva, S.

    2014-04-01

    Latent heat storage systems are an effective way of storing thermal energy. Recently, phase change materials were considered also in the thermal control of compact electronic devices. In the present work a numerical and experimental investigation is presented for a solid-liquid phase change process dominated by heat conduction. In the experimental arrangement a plane slab of PCM is heated from above with an on-off thermal power simulating the behaviour of an electronic device. A two-dimensional finite volume code is used for the solution of the corresponding mathematical model. The comparison between numerical predictions and experimental data shows a good agreement. Finally, in order to characterize this thermal energy storage system, the time distribution of latent and sensible heat is analyzed.

  9. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.

    PubMed

    Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H

    2009-07-01

    Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.

  10. The Cu-Sn phase diagram, Part I: New experimental results.

    PubMed

    Fürtauer, S; Li, D; Cupid, D; Flandorfer, H

    2013-03-01

    Phase diagram investigation of the Cu-Sn system was carried out on twenty Cu-rich samples by thermal analysis (DTA), metallographic methods (EPMA/SEM-EDX) and crystallographic analysis (powder XRD, high temperature powder XRD). One main issue in this work was to investigate the high temperature phases beta (W-type) and gamma (BiF3-type) and to check the phase relations between them. In the high temperature powder XRD experiments the presence of the two-phase-field between the beta- and the gamma-phase could not be confirmed. Detailed study of primary literature together with our experimental results leads to a new phase diagram version with a higher order transformation between these two high temperature phases. The present work is designated as part I of our joint publication. The new findings described here have been included into a completely new thermodynamic assessment of the Cu-Sn phase diagram which is presented in part II.

  11. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS—Part 3: Application to the Peach Spring Tuff (Arizona-California-Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Pamukcu, Ayla S.; Gualda, Guilherme A. R.; Ghiorso, Mark S.; Miller, Calvin F.; McCracken, Reba G.

    2015-03-01

    Establishing the depths of magma accumulation is critical to understanding how magmas evolve and erupt, but developing methods to constrain these pressures is challenging. We apply the new rhyolite-MELTS phase-equilibria geobarometer—based on the equilibrium between melt, quartz, and two feldspars—to matrix glass compositions from Peach Spring Tuff (Arizona-California-Nevada, USA) high-silica rhyolite. We compare the results to those from amphibole geothermobarometry, projection of glass compositions onto the haplogranitic ternary, and glass SiO2 geobarometry. Quartz + 2 feldspar rhyolite-MELTS pressures span a relatively small range (185-230 MPa), consistent with nearly homogeneous crystal compositions, and are similar to estimates based on projection onto the haplogranitic ternary (250 ± 50 MPa) and on glass SiO2 (255-275 MPa). Amphibole geothermobarometry gives much wider pressure ranges (temperature-independent: ~65-300 MPa; temperature-dependent: ~75-295 MPa; amphibole-only: ~80-950 MPa); average Anderson and Smith (Am Mineral 80:549-559, 1995) + Blundy and Holland (Contrib Miner Petrol 104:208-224, 1990) or Holland and Blundy (Contrib Miner Petrol 116:433-447, 1994—Thermometer A, B) pressures are most similar to phase-equilibria results (~220, 210, 190 MPa, respectively). Crystallization temperatures determined previously with rhyolite-MELTS (742 °C), Zr-in-sphene (769 ± 20 °C), and zircon saturation (770-780 °C) geothermometry are similar, but temperatures from amphibole geothermometry (~450-955 °C) are notably different; the average Anderson and Smith + Holland and Blundy (1994—Thermometer B; ~710 °C) temperature is most consistent with previous estimates. The rhyolite-MELTS geobarometer effectively culls glass compositions affected by alteration or analytical issues; Peach Spring glass compositions that yield pressure estimates reveal a tight range of plausible Na2O and K2O contents, suggesting that low Na2O and high K2O contents of many

  12. Experimentally enhanced model-based deconvolution of propagation-based phase-contrast data

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Palma, K.; Hasn, S.; Jakubek, J.; Vavrik, D.

    2016-12-01

    In recent years phase-contrast has become a much investigated modality in radiographic imaging. The radiographic setups employed in phase-contrast imaging are typically rather costly and complex, e.g. high performance Talbot-Laue interferometers operated at synchrotron light sources. In-line phase-contrast imaging states the most pedestrian approach towards phase-contrast enhancement. Utilizing small angle deflection within the imaged sample and the entailed interference of the deflected and un-deflected beam during spatial propagation, in-line phase-contrast imaging only requires a well collimated X-ray source with a high contrast & high resolution detector. Employing high magnification the above conditions are intrinsically fulfilled in cone-beam micro-tomography. As opposed of 2D imaging, where contrast enhancement is generally considered beneficial, in tomographic modalities the in-line phase-contrast effect can be quite a nuisance since it renders the inverse problem posed by tomographic reconstruction inconsistent, thus causing reconstruction artifacts. We present an experimentally enhanced model-based approach to disentangle absorption and in-line phase-contrast. The approach employs comparison of transmission data to a system model computed iteratively on-line. By comparison of the forward model to absorption data acquired in continuous rotation strong local deviations of the data residual are successively identified as likely candidates for in-line phase-contrast. By inducing minimal vibrations (few mrad) to the sample around the peaks of such deviations the transmission signal can be decomposed into a constant absorptive fraction and an oscillating signal caused by phase-contrast which again allows to generate separate maps for absorption and phase-contrast. The contributions of phase-contrast and the corresponding artifacts are subsequently removed from the tomographic dataset. In principle, if a 3D handling of the sample is available, this method also

  13. Experimental demonstration of parallel two-step phase-shifting digital holography.

    PubMed

    Tahara, Tatsuki; Ito, Kenichi; Fujii, Motofumi; Kakue, Takashi; Shimozato, Yuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2010-08-30

    Parallel two-step phase-shifting digital holography is a technique for single-shot implementation of phase-shifting interferometry and requires only the intensity distribution of the reference wave and spatial two phase-shifted holograms. We constructed a system of parallel two-step phase-shifting digital holography and experimentally demonstrated the technique, for the first time. The system uses an originally fabricated image sensor having an array of 2 × 1 micro polarizers. Each micro polarizer was attached on pixel by pixel. In the experiment, the unwanted images, the zero-order diffraction wave and the conjugate image, are removed from the reconstructed image of objects by the system, while the images superimpose on the image of objects reconstructed by Fresnel transform alone. Also the capability of single-shot and three-dimensional imaging is demonstrated by the system.

  14. Experimental demonstration of scanning phase retrieval by a noniterative method with a Gaussian-amplitude beam

    NASA Astrophysics Data System (ADS)

    Nakajima, Nobuharu; Yoshino, Masayuki

    2017-01-01

    We present a proof-of-principle experiment of an analytic (noniterative) phase-retrieval method for coherent imaging systems under scanning illumination of a probe beam. This method allows to reconstruct the amplitude and phase distribution of a semi-transparent object over a wide area from intensities measured at three points in the Fourier plane of the object under scanning illumination of a known Gaussian-amplitude beam in the object plane. The present measurement system is very simple in contrast to ones of interferometric techniques, and also the speed of the calculation of phase retrieval in this method is faster than that in iterative algorithms since this method is based on an analytic solution to the phase retrieval. The effectiveness of this method is shown in experimental examples of the object reconstructions of a converging lens and a plastic plate for scratch standards.

  15. The Differential Phase Experiment: experimental concept, design analysis, and data reduction analysis

    NASA Astrophysics Data System (ADS)

    Tyler, Glenn A.; Brennan, Terry J.; Browne, Stephen L.; Dueck, Robert H.; Lodin, Michael S.; Roberts, Phillip H.; Vaughn, Jeffrey L.

    1997-08-01

    This paper describes the differential phase experiment (DPE) which formed a major part of the ABLE ACE suite of experiments conducted by the Air Force. The work described covers the rationale for the experiment, the basic experimental concept, the analysis of the differential phase, the optical and software design analysis, a discussion of the polarization scrambling characteristics of the optics, calibration of the equipment and a presentation of some of the major results of the data reduction effort to date. The DPE was a propagation experiment conducted between two aircraft flying at an altitude of 40,000 feet whose purpose was to measure the phase difference between two beams propagating at slightly different angels through the atmosphere. A four bin polarization interferometer was used to measure the differential phase. Due to the high level of scintillation that was presented branch points were present in the phase function. Rytov theory, wave optics simulation and the experimental measurements are in general agreement. Self consistency checks that were performed on the data indicate a high level of confidence in the results. Values of Cn2 that are consistent with the measurements of the differential phase agree with simultaneous scintillometer measurement taken long the same path in levels of turbulence where the scintillometer is not saturated. These differential phase based Cn2 estimates do not appear to saturate as is typical of scintillometer measurements and appear to extend the range over which high levels of Cn2 can be estimated. In addition the differential phase and anisoplanatic Strehl computed from the data is consistent with Rytov theory and wave optics simulations.

  16. Experimental Validation of Pulse Phase Tracking for X-Ray Pulsar Based

    NASA Technical Reports Server (NTRS)

    Anderson, Kevin

    2012-01-01

    Pulsars are a form of variable celestial source that have shown to be usable as aids for autonomous, deep space navigation. Particularly those sources emitting in the X-ray band are ideal for navigation due to smaller detector sizes. In this paper X-ray photons arriving from a pulsar are modeled as a non-homogeneous Poisson process. The method of pulse phase tracking is then investigated as a technique to measure the radial distance traveled by a spacecraft over an observation interval. A maximum-likelihood phase estimator (MLE) is used for the case where the observed frequency signal is constant. For the varying signal frequency case, an algorithm is used in which the observation window is broken up into smaller blocks over which an MLE is used. The outputs of this phase estimation process were then looped through a digital phase-locked loop (DPLL) in order to reduce the errors and produce estimates of the doppler frequency. These phase tracking algorithms were tested both in a computer simulation environment and using the NASA Goddard Space flight Center X-ray Navigation Laboratory Testbed (GXLT). This provided an experimental validation with photons being emitted by a modulated X-ray source and detected by a silicon-drift detector. Models of the Crab pulsar and the pulsar B1821-24 were used in order to generate test scenarios. Three different simulated detector trajectories were used to be tracked by the phase tracking algorithm: a stationary case, one with constant velocity, and one with constant acceleration. All three were performed in one-dimension along the line of sight to the pulsar. The first two had a constant signal frequency and the third had a time varying frequency. All of the constant frequency cases were processed using the MLE, and it was shown that they tracked the initial phase within 0.15% for the simulations and 2.5% in the experiments, based on an average of ten runs. The MLE-DPLL cascade version of the phase tracking algorithm was used in

  17. Proper Orthogonal Decomposition on Experimental Multi-phase Flow in a Pipe

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; Tutkun, Murat; Cal, Raúl Bayoán

    2016-11-01

    Multi-phase flow in a 10 cm diameter pipe is analyzed using proper orthogonal decomposition. The data were obtained using X-ray computed tomography in the Well Flow Loop at the Institute for Energy Technology in Kjeller, Norway. The system consists of two sources and two detectors; one camera records the vertical beams and one camera records the horizontal beams. The X-ray system allows measurement of phase holdup, cross-sectional phase distributions and gas-liquid interface characteristics within the pipe. The mathematical framework in the context of multi-phase flows is developed. Phase fractions of a two-phase (gas-liquid) flow are analyzed and a reduced order description of the flow is generated. Experimental data deepens the complexity of the analysis with limited known quantities for reconstruction. Comparison between the reconstructed fields and the full data set allows observation of the important features. The mathematical description obtained from the decomposition will deepen the understanding of multi-phase flow characteristics and is applicable to fluidized beds, hydroelectric power and nuclear processes to name a few.

  18. The magic triangle goes MAD: experimental phasing with a bromine derivative

    SciTech Connect

    Beck, Tobias Gruene, Tim; Sheldrick, George M.

    2010-04-01

    5-Amino-2, 4, 6-tribromoisophthalic acid is used as a phasing tool for protein structure determination by MAD phasing. It is the second representative of a novel class of compounds for heavy-atom derivatization that combine heavy atoms with amino and carboxyl groups for binding to proteins. Experimental phasing is an essential technique for the solution of macromolecular structures. Since many heavy-atom ion soaks suffer from nonspecific binding, a novel class of compounds has been developed that combines heavy atoms with functional groups for binding to proteins. The phasing tool 5-amino-2, 4, 6-tribromoisophthalic acid (B3C) contains three functional groups (two carboxylate groups and one amino group) that interact with proteins via hydrogen bonds. Three Br atoms suitable for anomalous dispersion phasing are arranged in an equilateral triangle and are thus readily identified in the heavy-atom substructure. B3C was incorporated into proteinase K and a multiwavelength anomalous dispersion (MAD) experiment at the Br K edge was successfully carried out. Radiation damage to the bromine–carbon bond was investigated. A comparison with the phasing tool I3C that contains three I atoms for single-wavelength anomalous dispersion (SAD) phasing was also carried out.

  19. Equilibrium Electroconvective Instability

    NASA Astrophysics Data System (ADS)

    Rubinstein, I.; Zaltzman, B.

    2015-03-01

    Since its prediction 15 years ago, hydrodynamic instability in concentration polarization at a charge-selective interface has been attributed to nonequilibrium electro-osmosis related to the extended space charge which develops at the limiting current. This attribution had a double basis. On the one hand, it has been recognized that neither equilibrium electro-osmosis nor bulk electroconvection can yield instability for a perfectly charge-selective solid. On the other hand, it has been shown that nonequilibrium electro-osmosis can. The first theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge selectivity for the sake of simplicity and so did the subsequent studies of various time-dependent and nonlinear features of electro-osmotic instability. In this Letter, we show that relaxing the assumption of perfect charge selectivity (tantamount to fixing the electrochemical potential of counterions in the solid) allows for the equilibrium electroconvective instability. In addition, we suggest a simple experimental test for determining the true, either equilibrium or nonequilibrium, origin of instability in concentration polarization.

  20. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented.

  1. A computational study of projectile shape dependence on phase change phenomena with comparisons to experimental data

    SciTech Connect

    Hertel, E.S. Jr.; McIntosh, R.L.; Patterson, B.C.

    1994-10-01

    To make an estimate of the current state of predictive capabilities of hydrocodes for impacts where phase changes may be important, we have simulated a series of experiments where a zinc sphere, rod, and plate impact thin zinc plates at 5 km/s. The experimental data consists of radiographs of the debris cloud and visual evidence of the damage in an aluminum witness plate. CTH was used to simulate the three experiments noted above. A detailed comparison of the simulated debris structure and subsequent damage will be made with the available data. In general, the CTH predictions match the experimental record.

  2. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-08-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas-phase Master Chemical Mechanism version 3.2 (MCMv3.2), an aerosol dynamics and particle-phase chemistry module (which considers acid-catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion-limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study (1) the evaporation of liquid dioctyl phthalate (DOP) particles, (2) the slow and almost particle-size-independent evaporation of α-pinene ozonolysis secondary organic aerosol (SOA) particles, (3) the mass-transfer-limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), and (4) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. In the smog chamber experiments, these salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar-like amorphous-phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if the concentration of low-volatility and viscous oligomerized SOA material at the particle surface increases upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass-transfer-limited uptake of condensable organic compounds

  3. Experimental research on beam steering characteristics of liquid crystal optical phased array

    NASA Astrophysics Data System (ADS)

    Li, Man; Cai, Jun; Xu, Hong; Wang, Xiangru; Wu, Liang

    2016-01-01

    Beam steering characteristics of transmission liquid crystal optical phased array(LC-OPA) were measured using ultra precision electronic autocollimator. A continuous beam steering with a constant angular resolution in the order of 20 μrad is obtained experimentally from 0° to 6° based on the method of variable period grating (VPG).Meanwhile, the angular repeatability of less than 4 μrad (RMS) has been achieved.

  4. Experimental observation of structural phase transition in CsBr clusters

    NASA Astrophysics Data System (ADS)

    Hautala, L.; Jänkälä, K.; Löytynoja, T.; Mikkelä, M.-H.; Prisle, N.; Tchaplyguine, M.; Huttula, M.

    2017-01-01

    Formation and growth of CsBr clusters embedded in unsupported Ar clusters was studied using synchrotron radiation photoelectron spectroscopy. The development of the core-level electronic structure for cluster sizes between a few and a few hundred atoms contained information about the local coordination of the constituent particles. The experimental results indicate that a gradual structural phase transition from NaCl structure to CsCl structure for CsBr clusters takes place at around 160 atoms per cluster.

  5. Simulations for Teaching Chemical Equilibrium

    NASA Astrophysics Data System (ADS)

    Huddle, Penelope A.; White, Margaret Dawn; Rogers, Fiona

    2000-07-01

    This paper outlines a systematic approach to teaching chemical equilibrium using simulation experiments that address most known alternate conceptions in the topic. Graphs drawn using the data from the simulations are identical to those obtained using real experimental data for reactions that go to equilibrium. This allows easy mapping of the analogy to the target. The requirements for the simulations are simple and inexpensive, making them accessible to even the poorest schools. The simulations can be adapted for all levels, from pupils who are first encountering equilibrium through students in tertiary education to qualified teachers who have experienced difficulty in teaching the topic. The simulations were piloted on four very different audiences. Minor modifications were then made before the Equilibrium Games as reported in this paper were tested on three groups of subjects: a Grade 12 class, college students, and university Chemistry I students. Marked improvements in understanding of the concept were shown in two of the three sets of subjects.

  6. Equilibrium and volumetric data and model development of coal fluids

    SciTech Connect

    Robinson, R.L. Jr.; Gasem, K.A.M.; Park, J.

    1992-04-28

    The long term goal of our efforts is to develop accurate predictive methods for description of equilibrium phase properties for a variety of types of mixtures and operating conditions. The specific objectives of the work specified herein include: (1) development of an experimental facility having the capability to provide data on equilibrium phase compositions (solubilities) and liquid densities, and doing so with greater accuracy and speed than our previous facility, (2) measurement of equilibrium phase properties for systematically-selected mixtures-specifically those containing important solute gases (such as hydrogen, carbon monoxide, methane, ethane, carbonyl sulfide, ammonia) in a series of heavy paraffinic, naphthenic and aromatic solvents (e.g., n-decane, n-eicosane, n-octacosane, n-hexatriacontane, cyclohexane, Decalin, perhydrophenanthrene, perhydropyrene, benzene, naphthalene, phenanthrene, pyrene), (3) testing/development of correlation frameworks for representing the phase behavior of fluids of the type encountered in coal conversion processes, and (4) generalization of parameters in the correlation frameworks to enable accurate predictions for systems of the type studied, permitting predictions to be made for systems and conditions other than those for which experimental data are available.

  7. Experimental characterization of ultrasonic phased arrays for the nondestructive evaluation of concrete structures

    SciTech Connect

    Azar, L.; Wooh, S.C.

    1999-02-01

    Novel ultrasonic phased arrays were developed and their feasibility was tested for assessing the condition of concrete structures. These sensors are based on low frequency ultrasound technology, which, to date, has been the preferred method for concrete testing. By combining multiple transducer elements in a linear configuration, dynamic phase focusing and steering of the ultrasound beam is possible. An automated testing assembly was used to assess the steering and focusing performance of the array in a cementitious medium. Experimental results demonstrate excellent steerability and accuracy when compared to the numerical simulation presented. The effective steering and focusing behavior in concrete signifies that phased arrays can be used as the primary imaging and scanning device for large scale concrete structures.

  8. Non-equilibrium nanosecond-pulsed plasma generation in the liquid phase (water, PDMS) without bubbles: fast imaging, spectroscopy and leader-type model

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil; Seepersad, Yohan; Pekker, Mikhail; Shneider, Mikhail; Friedman, Gary; Fridman, Alexander

    2013-03-01

    In this paper we report the results on study of the non-equilibrium nanosecond discharge generation in liquid media. Here we studied the discharge in both water and silicon transformer oil, and present our findings on discharge behaviour depending on global (applied) electric, discharge emission spectrum and shadow imaging of the discharge. We also discuss possible scenarios of non-equilibrium nanosecond discharge development and suggest that the discharge operates in a leader-type regime supported by the electrostriction effect—creation of nano-sized pores in liquid due to high local electric field.

  9. Experimental verification of pulse-probing technique for improving phase coherence grating lobe suppression.

    PubMed

    Torbatian, Zahra; Adamson, Rob; Brown, Jeremy A

    2013-07-01

    Fabrication of high-frequency phased-array ultrasound transducers is challenging because of the small element- to-element pitch required to avoid large grating lobes appearing in the field-of-view. Phase coherence imaging (PCI) was recently proposed as a highly effective technique to suppress grating lobes in large-pitch arrays for synthetic aperture beamforming. Our previous work proposed and theoretically validated a technique called pulse probing for improving grating lobe suppression when transmit beamforming is used with PCI. The present work reports the experimental verification of the proposed technique, in which the data was collected using a high-frequency ultrasound system and the processing was done offline. The data was collected with a 50-MHz, 256-element, 1.26 λ-pitch linear array, for which only the central 64-elements were used as the full aperture while the beam was steered to various angles. By sending a defocused pulse, the PCI weighting factors could be calculated, and were subsequently applied to the conventional transmit-receive beamforming. The experimental two-way radiation patterns showed that the grating lobe level was suppressed approximately 40 dB using the proposed technique, consistent with the theory. The suppression of overlapping grating lobes in reconstructed phased array images from multiple wire-phantoms in a water bath and tissue phantoms further validated the effectiveness of the proposed technique. The application of pulse probing along with PCI should simplify the fabrication of large-pitch phased arrays at high frequencies.

  10. Importance of granulometry on phase evolution and phase-to-phase relationships of experimentally burned impure limestones intended for production of hydraulic lime and/or natural cement

    NASA Astrophysics Data System (ADS)

    Kozlovcev, Petr; Přikryl, Richard; Přikrylová, Jiřina

    2015-04-01

    In contrast to modern ordinary Portland cement production from finely ground raw material blends, ancient burning of hydraulic lime was conducted by burning larger pieces of natural raw material. Due to natural variability of raw material composition, exploitation of different beds from even one formation can result the product with significantly different composition and/or properties. Prague basin (Neoproterozoic to pre-Variscan Palaeozoic of the central part of the Bohemian Massif - the so-called Barrandian area, Czech Republic) represents a classical example of the limestone-rich region with long-term history of limestone burning for quick lime and/or various types of hydraulic binders. Due to the fact that burning of natural hydraulic lime has been abandoned in this region at the turn of 19th/20th c., significant gap in knowledge on the behavior of various limestone types and on the influence of minor variance in composition on the quality of burned product is encountered. Moreover, the importance of employment of larger pieces of raw material for burning for the development of proper phase-to-phase relationships (i.e. development of hydraulic phases below sintering temperature at mutual contacts of minerals) has not been examined before. To fill this gap, a representative specimens of major limestone types from the Prague basin have been selected for experimental study: Upper Silurian limestone types (Přídolí and Kopanina Lms.), and Lower Devonian limestones (Radotín, Kotýs, Řeporyje, Dvorce-Prokop, and Zlíchov Lms.). Petrographic character of the experimental material was examined by polarizing microscopy, cathodoluminescence, scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS), and X-ray diffraction (XRD) of insoluble residue. Based on the data from wet silicate analyses, modal composition of studied impure limestones was computed. Experimental raw material was burned in laboratory electric furnace at 1000 and 1200°C for 3

  11. Experimental realization of new topological phases of matter beyond topological insulators

    NASA Astrophysics Data System (ADS)

    Neupane, Madhab

    A three-dimensional (3D) Z2 topological insulator (TI) is a crystalline solid, which is an insulator in the bulk but features spin-polarized Dirac electron states on its surface. In 2007, the first 3D TI was discovered in a bismuth-based compound. The discovery of the first TI tremendously accelerated research into phases of matter characterized by non-trivial topological invariants. Not only did the 3D Z2 TI itself attract great research interest, it also inspired the prediction of a range of new topological phases of matter. The primary examples are the topological Kondo insulator, the topological 3D Dirac and Weyl semimetals, the topological crystalline insulator, topological nodal line semimetal and the topological superconductor. Each of these phases was predicted to exhibit surface states with unique properties protected by a non-trivial topological invariant. In this talk, I will discuss the experimental realization of these new phases of matter in real materials by momentum and time-resolved photoemission spectroscopy. Special attention will be given to the experimental discovery of Dirac semimetal phase in Cd3As2 and topological nodal-line phase in PbTaSe2. The unusual properties of the protected topological surface states can lead to potential future applications in spintronics and quantum information, which hold promise to revolutionize our electronics and energy industries. This work is supported by start-up funds from University of Central Florida (MN) andLos Alamos National Laboratory LDRD program. The work at Princeton and Princeton-led ARPES measurements are supported by the Gordon and Betty Moore Foundations EPiQS Initiative through grant GBMF4547 (Hasan) and by U.S. Department of Energy DE-FG-02-05ER46200.

  12. STOMP Subsurface Transport Over Multiple Phases Version 1.0 Addendum: ECKEChem Equilibrium-Conservation-Kinetic Equation Chemistry and Reactive Transport

    SciTech Connect

    White, Mark D.; McGrail, B. Peter

    2005-12-01

    flow and transport simulator, STOMP (Subsurface Transport Over Multiple Phases). Prior to these code development activities, the STOMP simulator included sequential and scalable implementations for numerically simulating the injection of supercritical CO2 into deep saline aquifers. Additionally, the sequential implementations included operational modes that considered nonisothermal conditions and kinetic dissolution of CO2 into the saline aqueous phase. This addendum documents the advancement of these numerical simulation capabilities to include reactive transport in the STOMP simulator through the inclusion of the recently PNNL developed batch geochemistry solution module ECKEChem (Equilibrium-Conservation-Kinetic Equation Chemistry). Potential geologic reservoirs for sequestering CO2 include deep saline aquifers, hydrate-bearing formations, depleted or partially depleted natural gas and petroleum reservoirs, and coal beds. The mechanisms for sequestering carbon dioxide in geologic reservoirs include physical trapping, dissolution in the reservoir fluids, hydraulic trapping (hysteretic entrapment of nonwetting fluids), and chemical reaction. This document and the associated code development and verification work are concerned with the chemistry of injecting CO2 into geologic reservoirs. As geologic sequestration of CO2 via chemical reaction, namely precipitation reactions, are most dominate in deep saline aquifers, the principal focus of this document is the numerical simulation of CO2 injection, migration, and geochemical reaction in deep saline aquifers. The ECKEChem batch chemistry module was developed in a fashion that would allow its implementation into all operational modes of the STOMP simulator, making it a more versatile chemistry component. Additionally, this approach allows for verification of the ECKEChem module against more classical reactive transport problems involving aqueous systems.

  13. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific Objectives and Experimental Design

    NASA Technical Reports Server (NTRS)

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich

    2016-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  14. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design

    NASA Astrophysics Data System (ADS)

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich

    2016-03-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  15. Dynamic Protonation Equilibrium of Solvated Acetic Acid

    SciTech Connect

    Gu, Wei; Frigato, Tomaso; Straatsma, TP; Helms, Volkhard H.

    2007-04-13

    For the first time, the dynamic protonation equilibrium between an amino acid side chain analogue and bulk water as well as the diffusion properties of the excess proton were successfully reproduced through unbiased computer simulations. During a 50 ns Q-HOP MD simulation, two different regimes of proton transfer were observed. Extended phases of frequent proton swapping between acetic acid and nearby water were separated by phases where the proton freely diffuses in the simulation box until it is captured again by acetic acid. The pKa of acetic acid was calculated around 3.0 based on the relative population of protonated and deprotonated states and the diffusion coefficient of excess proton was computed from the average mean squared displacement in the simulation. Both calculated values agree well with the experimental measurements.

  16. Experimental confirmation of calculated phases and electron density profile for wet native collagen.

    PubMed Central

    Stinson, R H; Bartlett, M W; Kurg, T; Sweeny, P R; Hendricks, R W

    1979-01-01

    An experimental procedure is developed to phase the reflections obtained in x-ray diffraction investigations of collagen in native wet tendons. Phosphotungstic acid was used for isomorphous addition in phase determination and was located by electron microscopy. Structure factors (with phases) were obtained from the electron microscopy data for the heavy metal. Structure-factor magnitudes for collagen with and without the heavy metal were obtained from the x-ray diffraction data. The first 10 orders were investigated. Standard Argand diagrams provided two solutions for each of these, except the weak sixth order. In each case, one of the two possible solutions agrees well with the phases proposed on theoretical grounds by Hulmes et al. The present results suggest that their other proposed phases are probably correct. An electron density profile along the unit cell of the fibril is presented that shows a distinct step, as expected on the basis of the hole-overlap model. The overlap region is 48% of the length of the unit cell. Images FIGURE 2 PMID:262416

  17. Experimental and Analytical Study of Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Abdollahian, Davood; Quintal, J.; Zahm, J.

    1996-01-01

    Design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer parameters in reduced gravities. A program has been initiated by NASA to design a two-phase test loop and to perform a series of experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop is also instrumented to generate data for two-phase pressure drop. In addition to low gravity airplane trajectory testing, the experimental program consisted of a set of laboratory tests which were intended to generate data under the bounding conditions (+1 g and -1 g) in order to plan the test matrix. One set of airplane trajectory tests has been performed and several modifications to the test set-up have been identified. Preliminary test results have been used to demonstrate the applicability of the earth gravity models for prediction of the two-phase friction pressure drop.

  18. Two-phase damage theory and crustal rock failure: the theoretical `void' limit, and the prediction of experimental data

    NASA Astrophysics Data System (ADS)

    Ricard, Yanick; Bercovici, David

    2003-12-01

    Using a classical averaging approach, we derive a two-phase theory to describe the deformation of a porous material made of a matrix containing voids. The presence and evolution of surface energy at the interface between the solid matrix and voids is taken into account with non-equilibrium thermodynamic considerations that allow storage of deformational work as surface energy on growing or newly created voids. This treatment leads to a simple description of isotropic damage that can be applied to low-cohesion media such as sandstone. In particular, the theory yields two possible solutions wherein samples can either `break' by shear localization with dilation (i.e. void creation), or undergo shear-enhanced compaction (void collapse facilitated by deviatoric stress). For a given deviatoric stress and confining pressure, the dominant solution is that with the largest absolute value of the dilation rate, |Γ|, which thus predicts that shear-localization and dilation occur at low effective pressures, while shear-enhanced compaction occurs at larger effective pressure. Stress trajectories of constant |Γ| represent potential failure envelopes that are ogive- (Gothic-arch-) shaped curves, wherein the ascending branch represents failure by dilation and shear-localization, and the descending branch denotes shear-enhanced compactive failure. The theory further predicts that the onset of dilation preceding shear-localization and failure necessarily occurs at the transition from compactive to dilational states and thus along a line connecting the peaks of constant-|Γ| ogives. Finally, the theory implies that while shear-enhanced compaction first occurs with increasing deviatoric stress (at large effective pressure), dilation will occur at higher deviatoric stresses. All of these predictions in fact compare very successfully with various experimental data. Indeed, the theory leads to a normalization where all the data of failure envelopes and dilation thresholds collapse to a

  19. The transformation dynamics towards equilibrium in non-equilibrium w/w/o double emulsions

    NASA Astrophysics Data System (ADS)

    Chao, Youchuang; Mak, Sze Yi; Shum, Ho Cheung

    2016-10-01

    We use a glass-based microfluidic device to generate non-equilibrium water-in-water-in-oil (w/w/o) double emulsions and study how they transform into equilibrium configurations. The method relies on using three immiscible liquids, with two of them from the phase-separated aqueous two-phase systems. We find that the transformation is accompanied by an expansion rim, while the characteristic transformation speed of the rim mainly depends on the interfacial tension between the innermost and middle phases, as well as the viscosity of the innermost phase when the middle phase is non-viscous. Remarkably, the viscosity of the outermost phase has little effect on the transformation speed. Our results account for the dynamics of non-equilibrium double emulsions towards their equilibrium structure and suggest a possibility to utilize the non-equilibrium drops to synthesize functional particles.

  20. Experimental and theoretical study of anion-exchange preparative chromatography for neptunium: the first application to thorium(IV) and its equilibrium and kinetics.

    PubMed

    Yamamura, Tomoo; Miyakoshi, Takeshi; Shiokawa, Yoshinobu; Mitsugashira, Toshiaki

    2007-10-26

    In order to study equilibrium and kinetic parameters in anion-exchange chromatography for preparatory purpose, a quantitative model for nonlinear anion-exchange chromatography in porous media was constructed, by paying special attention to interstitial length along void structure (cm) distinguished from apparent length (cm*). Langmuir-type adsorption isotherm for thorium(IV), as a natural substitution for neptunium(IV), in 6 mol dm(-3) nitric acid to anion-exchanger MSA-1 (200-400 mesh) was investigated in batch-wise and chromatographic experiments. The equilibrium parameters determined by batch-wise experiments determined as k=2.4x10(2) mol(-1) dm3 s(-1) and s0=0.5 mol dm(-3) agrees very well with the values of k=222 mol(-1) dm3 s(-1) and s0=0.5 mol dm(-3) derived from fitting by the numerical calculation. Kinetic parameters of ks and D affect band profile similarly, thereby maximum value of each parameter was evaluated as ks=1.3 mol(-1) dm3 s(-1) and D=9x10(-4) cm2 s(-1) by the numerical calculations.

  1. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  2. Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.

    PubMed

    Hu, Yujing; Gao, Yang; An, Bo

    2015-07-01

    An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.

  3. Phase diagram of the B-B2O3 system at 5 GPa: experimental and theoretical studies.

    PubMed

    Solozhenko, Vladimir L; Kurakevych, Oleksandr O; Turkevich, Vladimir Z; Turkevich, Dmitry V

    2008-05-29

    X-ray diffraction with synchrotron radiation has been used to study in situ the chemical interaction of beta-rhombohedral boron with boron (III) oxide and phase relations in the B-B2O3 system at pressures up to 6 GPa in the temperature range from 300 to 2800 K. The B-B2O3 system has been thermodynamically analyzed, and its equilibrium phase diagram at 5 GPa has been constructed. Only one thermodynamically stable boron suboxide, B6O, exists in the system. It forms eutectic equilibria with boron and B2O3.

  4. Experimental and Numerical Simulations of Phase Transformations Occurring During Continuous Annealing of DP Steel Strips

    NASA Astrophysics Data System (ADS)

    Wrożyna, Andrzej; Pernach, Monika; Kuziak, Roman; Pietrzyk, Maciej

    2016-04-01

    Due to their exceptional strength properties combined with good workability the Advanced High-Strength Steels (AHSS) are commonly used in automotive industry. Manufacturing of these steels is a complex process which requires precise control of technological parameters during thermo-mechanical treatment. Design of these processes can be significantly improved by the numerical models of phase transformations. Evaluation of predictive capabilities of models, as far as their applicability in simulation of thermal cycles thermal cycles for AHSS is considered, was the objective of the paper. Two models were considered. The former was upgrade of the JMAK equation while the latter was an upgrade of the Leblond model. The models can be applied to any AHSS though the examples quoted in the paper refer to the Dual Phase (DP) steel. Three series of experimental simulations were performed. The first included various thermal cycles going beyond limitations of the continuous annealing lines. The objective was to validate models behavior in more complex cooling conditions. The second set of tests included experimental simulations of the thermal cycle characteristic for the continuous annealing lines. Capability of the models to describe properly phase transformations in this process was evaluated. The third set included data from the industrial continuous annealing line. Validation and verification of models confirmed their good predictive capabilities. Since it does not require application of the additivity rule, the upgrade of the Leblond model was selected as the better one for simulation of industrial processes in AHSS production.

  5. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification.

    PubMed

    Sheldrick, George M

    2010-04-01

    The programs SHELXC, SHELXD and SHELXE are designed to provide simple, robust and efficient experimental phasing of macromolecules by the SAD, MAD, SIR, SIRAS and RIP methods and are particularly suitable for use in automated structure-solution pipelines. This paper gives a general account of experimental phasing using these programs and describes the extension of iterative density modification in SHELXE by the inclusion of automated protein main-chain tracing. This gives a good indication as to whether the structure has been solved and enables interpretable maps to be obtained from poorer starting phases. The autotracing algorithm starts with the location of possible seven-residue alpha-helices and common tripeptides. After extension of these fragments in both directions, various criteria are used to decide whether to accept or reject the resulting poly-Ala traces. Noncrystallographic symmetry (NCS) is applied to the traced fragments, not to the density. Further features are the use of a 'no-go' map to prevent the traces from passing through heavy atoms or symmetry elements and a splicing technique to combine the best parts of traces (including those generated by NCS) that partly overlap.

  6. Placental thrombosis in acute phase abortions during experimental Toxoplasma gondii infection in sheep

    PubMed Central

    2014-01-01

    After oral administration of ewes during mid gestation with 2000 freshly prepared sporulated oocysts of T. gondii isolate M4, abortions occurred between days 7 and 11 in 91.6% of pregnant and infected ewes. Afterwards, a further infection was carried out at late gestation in another group of sheep with 500 sporulated oocysts. Abortions happened again between days 9 and 11 post infection (pi) in 58.3% of the infected ewes. Classically, abortions in natural and experimental ovine toxoplasmosis usually occur one month after infection. Few experimental studies have reported the so-called acute phase abortions as early as 7 to 14 days after oral inoculation of oocysts, and pyrexia was proposed to be responsible for abortion, although the underline mechanism was not elucidated. In the present study, all placentas analysed from ewes suffering acute phase abortions showed infarcts and thrombosis in the caruncullar villi of the placentomes and ischemic lesions (periventricular leukomalacia) in the brain of some foetuses. The parasite was identified by PCR in samples from some placentomes of only one sheep, and no antigen was detected by immunohistochemical labelling. These findings suggest that the vascular lesions found in the placenta, and the consequent hypoxic damage to the foetus, could be associated to the occurrence of acute phase abortions. Although the pathogenesis of these lesions remains to be determined, the infectious dose or virulence of the isolate may play a role in their development. PMID:24475786

  7. Phase Equilibrium Experiments on Potential Lunar Core Compositions: Extension of Current Knowledge to Multi-Component (Fe-Ni-Si-S-C) Systems

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L.

    2014-01-01

    Numerous geophysical and geochemical studies have suggested the existence of a small metallic lunar core, but the composition of that core is not known. Knowledge of the composition can have a large impact on the thermal evolution of the core, its possible early dynamo creation, and its overall size and fraction of solid and liquid. Thermal models predict that the current temperature at the core-mantle boundary of the Moon is near 1650 K. Re-evaluation of Apollo seismic data has highlighted the need for new data in a broader range of bulk core compositions in the PT range of the lunar core. Geochemical measurements have suggested a more volatile-rich Moon than previously thought. And GRAIL mission data may allow much better constraints on the physical nature of the lunar core. All of these factors have led us to determine new phase equilibria experimental studies in the Fe-Ni-S-C-Si system in the relevant PT range of the lunar core that will help constrain the composition of Moon's core.

  8. Three-phase flow in porous media: A review of experimental studies on relative permeability

    NASA Astrophysics Data System (ADS)

    Alizadeh, A. H.; Piri, M.

    2014-09-01

    We present a detailed, synthesized review of experimental studies on three-phase relative permeability published since 1980. We provide comprehensive, yet highly focused, analysis of critical aspects of the field and their evolution over the last three decades. In particular, we review the effects of saturation history, wettability, spreading, and layer drainage on the measured flow properties. We also list all the processes, rock types, fluid systems, and measurement techniques in order to provide a clear map for future studies. Behavior of the measured three-phase relative permeabilities with respect to fluid saturations, saturation histories, wettability of rock samples, spreading characteristics, interfacial tensions, and other pertinent properties are carefully discussed. Studies that use a diverse set of experimental techniques and data analysis to deduce relative permeability are included. The experimental techniques that should be utilized to reduce uncertainty are also explored. We interpret the measured properties and outcomes of different studies and compare them to substantiate distinct trends at various saturation ranges and provide ideas for new studies. This is intended to distill a clear image of where the field stands and to allow composition of possible paths for future investigations. The areas of critical relevance that have not been investigated or require further studies are highlighted.

  9. Experimental study of liquid-solid two phase flow over a step using PIV

    NASA Astrophysics Data System (ADS)

    Cando, E. H.; Luo, X. W.; Hidalgo, V. H.; Zhu, L.; Aguinaga, A. G.

    2016-05-01

    The present investigation focuses on the water-sand flow through a rectangular tunnel with a step using the Particle Image Velocimetry (PIV). Two cameras with appropriate optical filters have been used to capture each phase image separately. The optical filters were selected according to the optical properties of the sand and fluorescent tracers. Through data processing the experimental flow field such as the velocity profiles of sand and water had been obtained. In order to compare with the experiment, the steady state two phase flow fields were simulated using RANS method with k-ω SST turbulence model. It is noted that the numerical results matches the experimental results fairly good. Furthermore, the flow rates obtained from experimental and numerical velocity profiles also have a good match with the measurement by flow meter. The flow analysis shows that the water velocity variation induced by the presence of the step in the water-sand flow is equivalent to those cases with low sand concentration. However, the sand velocity in downstream region is 5% greater than the water velocity when the cross section is reduced in 25%.

  10. Liquid-vapor equilibrium in the 2-propanol-hexane system

    SciTech Connect

    Trokhin, V.E.; Nechaeva, G.Yu.; Semenov, V.A.

    1995-03-10

    Experimental results on the liquid-vapor phase equilibrium at 745 nm in the 2-propanol-hexane binary system have been presented. These data are necessary to determine the parameters of the azeotropic separation of excessive 2-propanol while obtaining trimethylisopropoxysilane. 6 refs., 1 fig., 1 tab.

  11. Under What Conditions Can Equilibrium Gas-Particle Partitioning Be Expected to Hold in the Atmosphere?

    PubMed

    Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H

    2015-10-06

    The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.

  12. Experimental setup for investigating silicon solid phase crystallization at high temperatures.

    PubMed

    Schmidt, Thomas; Gawlik, Annett; Schneidewind, Henrik; Ihring, Andreas; Andrä, Gudrun; Falk, Fritz

    2013-07-15

    An experimental setup is presented to measure and interpret the solid phase crystallization of amorphous silicon thin films on glass at very high temperatures of about 800 °C. Molybdenum-SiO(2)-silicon film stacks were irradiated by a diode laser with a well-shaped top hat profile. From the relevant thermal and optical parameters of the system the temperature evolution can be calculated accurately. A time evolution of the laser power was applied which leads to a temperature constant in time in the center of the sample. Such a process will allow the observation and interpretation of solid phase crystallization in terms of nucleation and growth in further work.

  13. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, J. E.

    1975-01-01

    A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.

  14. A comparison of phase change phenomena in CTH with experimental data

    SciTech Connect

    Hertel, E.S. Jr.; McIntosh, R.L.; Patterson, B.C.

    1993-12-31

    An estimate of the current state of the predictive capabilities of hydrocodes for impacts where phase changes may be important was made by simulating a series of experiments where zinc spheres impact thin zinc plates at 4 velocities. The experimental data was taken from Mullin, et al. and consisted of radiographs of the debris cloud and estimates of the momentum in the debris cloud along the velocity vector. The velocities ranged from 3.30 to 6.79 km/s indicating that the debris consists of solid/molten fragments to predominantly vapor phase material as the velocity increases. The simulations reveal that the CTH hydro can accurately predict the debris structure and momentum transfer for this class of impacts.

  15. Experimental study of two-phase filtration regimes of methane-n-pentane mixture

    NASA Astrophysics Data System (ADS)

    Zaichenko, V. M.; Molchanov, D. A.; Torchinskiy, V. M.

    2016-11-01

    The results of experimental studies of methane-n-pentane mixture filtration in a porous medium under isothermal conditions in pressure range typical for gas-condensate reservoirs are presented. Interest in the filtration problem of such mixtures is aroused by the need to intensify production of heavy fractions of gas-condensate-valuable hydrocarbons, consisting of methane and its higher homologues. Different flow regimes including oscillatory one are observed during gas-condensate extraction under natural conditions. Our studies have shown that there are multiple flow regimes including self-oscillating one under isothermal conditions for this type of mixtures depending on the initial pressure, the kind of the mixture's phase diagram and the permeability coefficients of the liquid and gas phases in the porous medium.

  16. Phase 3 Oncology Clinical Trials in South Africa: Experimentation or Therapeutic Misconception?

    PubMed

    Malan, Tina; Moodley, Keymanthri

    2016-02-01

    Although clinical research in oncology is vital to improve current understanding of cancer and to validate new treatment options, voluntary informed consent is a critical component. Oncology research participants are a particularly vulnerable population; hence, therapeutic misconception often leads to ethical and legal challenges. We conducted a qualitative study administering semi-structured questionnaires on 29 adult, Phase 3, oncology clinical trial participants at three different private oncology clinical trial sites in South Africa. A descriptive content analysis was performed to identify perceptions of these participants regarding Phase 3 clinical trials. We found that most participants provided consent to be included in the trial for self-benefit. More than half of the participants had a poor understanding of Phase 3 clinical trials, and almost half the participants believed the clinical trial did not pose any significant risk to them. The word "hope" was used frequently by participants, displaying clear optimism with regard to the clinical trial and its outcome. This indicated that therapeutic misconception does occur in the South African oncology research setting and has the potential to lead to underestimation of the risks of a Phase 3 clinical trial. Emphasizing the experimental nature of a clinical trial during the consent process is critical to address therapeutic misconception in oncology research.

  17. Experimental data showing the thermal behavior of a flat roof with phase change material.

    PubMed

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  18. Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma

    PubMed Central

    Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Bykova, Elena; Wirth, Richard; Dubrovinsky, Leonid

    2011-01-01

    Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the present work this enigma has been resolved based on the α-B-to- β-B phase boundary line which we experimentally established in the pressure interval of ∼4 GPa to 8 GPa and linearly extrapolated down to ambient pressure. In a series of high pressure high temperature experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and provided evidence of higher thermodynamic stability of α-B. Our work opens a way for reproducible synthesis of α-boron, an optically transparent direct band gap semiconductor with very high hardness, thermal and chemical stability. PMID:22355614

  19. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.

    PubMed

    Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M

    2014-01-31

    Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.

  20. Controls-structures interaction guest investigator program: Overview and phase 1 experimental results and future plans

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, Rudeen; Tanner, Sharon E.

    1993-01-01

    The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.

  1. Experimental analysis of beam pointing system based on liquid crystal optical phase array

    NASA Astrophysics Data System (ADS)

    Shi, Yubin; Zhang, Jianmin; Zhang, Zhen

    2016-12-01

    In this paper, we propose and demonstrate an elementary non-mechanical beam aiming and steering system with a single liquid crystal optical phase array (LC-OPA) and charge-coupled device (CCD). With the conventional method of beam steering control, the LC-OPA device can realize one dimensional beam steering continuously. An improved beam steering strategy is applied to realize two dimensional beam steering with a single LC-OPA. The whole beam aiming and steering system, including an LC-OPA and a retroreflective target, is controlled by the monitor. We test the feasibility of beam steering strategy both in one dimension and in two dimension at first, then the whole system is build up based on the improved strategy. The experimental results show that the max experimental pointing error is 56 μrad, and the average pointing error of the system is 19 μrad.

  2. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, T.; Sholes, J. E.

    1975-01-01

    The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.

  3. Experimental and computational thermochemical study and solid-phase structure of 5,5-dimethylbarbituric acid.

    PubMed

    Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P

    2010-03-18

    This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.

  4. Experimental and modeling studies of two-phase flow in pipelines

    SciTech Connect

    Manabe, Ryo; Tochikawa, Tetsuro; Tsukuda, M.; Arihara, Norio

    1997-11-01

    The objectives of this study are to develop and evaluate a mechanistic model for gas/liquid two-phase flow in pipelines. A mechanistic model has been developed by combining currently available models and correlations. The approach of the modeling study was based on the work by Xiao et al. Modifications have been made on the annular flow model by implementing the currently developed film-thickness-distribution model. An experimental database has been developed for model evaluation. Seventy-five runs of steady-state air/water flow tests in horizontal and slightly inclined pipes were conducted using a large-scale experimental facility. The experimental program was set up in a wide range of experimental conditions to cover the intermittent, dispersed bubble, and annular flow patterns. An evaluation of the model was carried out for each flow pattern, namely, intermittent, dispersed bubble, and annular flow. The comparisons between the measured and calculated pressure drops show good agreement for each flow pattern. Also, overall evaluation revealed that the proposed model provided the best performance among the commonly used empirical correlations, such as Beggs and Brill, Mukherjee and Brill, and Dukler et al.

  5. A combined experimental-numerical approach for two-phase flow boiling in a minichannel

    NASA Astrophysics Data System (ADS)

    Hożejowska, Sylwia; Grabowski, Mirosław

    2016-03-01

    The paper addresses experimental and numerical modeling of the two-phase flows in an asymmetrically heated horizontal minichannel. Experimental measurements concerned flows of evaporating ethanol in a minichannel with rectangular cross section 1.8mm × 2 mm. In order to observe the flows, measuring system was designed and built. The system measured and recorded basic heat and flow parameters of flowing fluid, and the temperature of external surface of the heater by using infrared camera and recorded images of flow with high-speed camera. The second aim of the paper was to formulate appropriate flow boiling heat transfer model, which would minimises the use of experimentally determined constants. The procedure of calculating the temperature of the ethanol is coupled with concurrent process of determining the temperature distributions in the isolating foil and the heating surface. The two-dimensional temperature distributions in three subsequent domains were calculated with Trefftz method. Due to the Robin condition, heat transfer coefficient at the heating surface-ethanol interface was calculated based on the known temperature distributions of the foil and liquid. Additionally, the paper describes the relation between two sets of functions used in the calculation. Numerical calculations made by Trefftz method were performed with using experimental data.

  6. Experimental Determination of Mechanisms and Rates of Fe-Mg Exchange Between Spinel Grains Mediated by a Fluid Phase

    NASA Astrophysics Data System (ADS)

    Mueller, T.; Dohmen, R.; Chakraborty, S.

    2008-12-01

    The overall mechanism and kinetics of mineral reactions results from a complex interaction of several processes such as surface reaction kinetics, volume diffusion and net transfer. In order to quantify the kinetics of reactions involving multiple phases in multicomponent systems, it is necessary to understand and characterize the nature and rates of each of these processes. Most laboratory experiments up to now have focused on kinetics of reactions where the reactants and products are in direct physical contact with each other. However, there is abundant textural evidence in rocks that reactions occurred between mineral grains that are physically separated from each other, frequently mediated by a fluid phase. We have devised an experimental setup to study the mechanism and kinetics of such reactions in the laboratory. Polished single crystals of two spinels (synthetic MgAl2O4 and a natural spinel with 44 mol% Hercynite component), 2mm on a side, were placed in a gold capsule (length: 2cm, diameter: 4mm) separated from each other by a 5mm long tube of Au or alumina. The capsule was welded shut after adding distilled water (80-100μl). Such capsules were annealed (2 Kbar, 700-750°C, up to 21 hours) in hydrothermal cold seal vessels. After annealing the crystals were cleaned in an ultrasonic bath in order to rinse them of possible quench products. The surfaces were examined optically and near surface chemistry was determined using Rutherford Backscattering Spectroscopy (RBS). We observe time dependent changes in the morphology as well as the chemistry of the crystals, as follows: After short times, the surface of the Mg spinel shows scattered etch pits while terraces form on the Fe spinel. After longer anneals, the etch pits disappear and the surface of the Mg spinels appear polished. Surface compositions are found to be different, depending on whether a Au or alumina separator was used in the experiments. The Fe rich spinel composition remains unchanged whereas

  7. Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions: experimental and theoretical studies.

    PubMed

    Minakata, Daisuke; Song, Weihua; Crittenden, John

    2011-07-15

    With concerns about emerging contaminants increasing, advanced oxidation processes have become attractive technologies because of potential mineralization of these contaminants via radical involved reactions that are induced by highly reactive hydroxyl radical. Considering the expensive and time-consuming experimental studies of degradation intermediates and byproduct, there is a need to develop a first-principles computer-based kinetic model that predict reaction pathways and associated reaction rate constants. In this study, we measured temperature-dependent hydroxyl radical reaction rate constants for a series of haloacetate ions and obtained their Arrhenius kinetic parameters. We found a linear correlation between these reaction rate constants and theoretically calculated aqueous-phase free energies of activation. To understand the quantitative effects on entropy of solvation due to solvent water molecules, we calculate each portion of the entropic energies that contribute to the overall aqueous phase entropy of activation; cavity formation is a dominant portion. For the series of reactions of hydroxyl radical with carboxylate ions, the increase in the entropy of activation during the solvation process is approximately 10-15 cal mol(-1)K(-1) because of interactions with solvent water molecules and the transition state. Finally, charge distribution analysis for the aqueous-phase reactions of hydroxyl radical with acetate/haloacetate ions reveals that in the aqueous phase, the degree of polarizability at the transition state is less substantial than those that are in the gaseous phase resulting in a high charge density. In the presence of electronegative halogenated functional groups, the transition state is less polarized and hydrogen bonding interactions are expected to be weaker.

  8. Experimental demonstration of all optical XOR and XNOR gates for differential phase modulated data

    NASA Astrophysics Data System (ADS)

    Kakarla, Ravikiran; Venkitesh, Deepa

    2014-05-01

    All optical logic gates play a key role in implementing an optically transparent network where the node functionalities are performed in the optical domain to reduce latency and power consumption. In this paper we present the experimental demonstration and details of optimization of all optical XOR/ XNOR gate using four-wave mixing (FWM) in Semiconductor Optical Amplifier (SOA) for 10 Gbps Differential Phase Shift Keyed (DPSK) data. Two DPSK modulated signals at carrier frequencies ω1 and ω2, phases ϕ1and ϕ2and a continuous wave pump at frequency ωCW and phase ϕCW are allowed to undergo FWM in a non-linear SOA to generate additional frequency components. The phase of the generated FWM idler corresponding to the frequency ω1+ ω2-ωCW given by ϕ1+ ϕ2- CW corresponds to the XOR operation in DPSK format. Light from a DFB and tunable laser source (TLS) are combined and phase-modulated using a pseudo-random bit sequence. The bit sequences in the two carrier wavelengths are separated in time by propagating through a sufficient length of SMF; the data is combined with a CW pump from a tunable laser and allowed to undergo non-degenerate FWM in a nonlinear SOA. The relative spacing between the pump and the signal wavelengths and their polarization states are optimized to yield maximum conversion efficiency in the desired idler. The XOR output is further propagated through a delay-line interferometer (DLI) to obtain XOR and XNOR outputs in the two ports of the DLI, in the OOK format. Extinction ratio and Contrast ratio of better than 7.2 dB and 10.6 dB respectively for the XNOR gate and 6.8 dB and 7.5 dB for the XOR gaterespectively.

  9. Experimental analysis of time-phase-shift flow sensing based on a piezoelectric peristaltic micropump

    NASA Astrophysics Data System (ADS)

    Huang, Pao-Cheng; Wang, Min-Haw; Chen, Ming-Kun; Jang, Ling-Sheng

    2016-05-01

    Flow rate sensing is a critical issue for piezoelectric-based micropump systems. This paper describes experimental analysis of flow rate sensing in a peristaltic micropump system. Sensing can be integrated with such a pump using piezoelectric actuators based on the time-phase-shift (TPS) method. To do this, an evaluation-window is added on the falling edge of the driving pulse to help detect the flow velocity without affecting the flow rate. We fabricate a prototype piezoelectric peristaltic micropump with three chambers and three piezoelectric actuators. The middle actuator works not only as an actuator for driving fluid but also as a transducer for sensing flow rate. An evaluation-window is performed to ascertain the relationship between the flow rate and the phase shift of output-signal responses from the transducer. The experimental results show that the evaluation-window response of flow rates in a piezoelectric peristaltic micropump has rates of from 5.56‒33.36 μl s-1. The results are extended to propose a practical flow rate sensor, the design of which can be realized easily in the piezoelectric peristaltic micropump system for sensorless responses that can detect flow rate without any sensors or circuits. The proposed TPS method is real-time, integrated, fast, efficient, and suitable for flow rate detection in piezoelectric peristaltic micropumps.

  10. Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies

    SciTech Connect

    Mistry, D.; Cooper, P.; Biswas, C.; Sloteman, D.; Onuschak, A.

    1983-01-01

    This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to the selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.

  11. Nuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Windschuh, Johannes; Umathum, Reiner; Bachert, Peter; Kuder, Tristan Anselm

    2017-02-01

    Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.

  12. Experimental Validation of a Neuro-Fuzzy Approach to Phasing the SIBOA Segmented Mirror Testbed

    NASA Technical Reports Server (NTRS)

    Olivier, Philip D.

    2002-01-01

    NASA is preparing to launch the Next Generation Space Telescope (NGST). This telescope will be larger than the Hubble Space Telescope, be launched on an Atlas missile rather than the Space Shuttle, have a segmented primary mirror, and be placed in a higher orbit. All these differences pose significant challenges. This effort addresses the challenge of aligning the segments of the primary mirror during the initial deployment. The segments need to piston values aligned to within one tenth of a wavelength. The present study considers using a neuro-fuzzy model of the Fraunhofer diffraction theory. The intention of the current study was to experimentally verify the algorithm derived earlier. The experimental study was to be performed on the SIBOA (Systematic Image Based Optical Alignment) test bed. Unfortunately the hardware/software for SIBOA was not ready by the end of the study period. We did succeed in capturing several images of two stacked segments with various relative phases. These images can be used to calibrate the algorithm for future implementation. This effort is a continuation of prior work. The basic effort involves developing a closed loop control algorithm to phase a segmented mirror test bed (SIBOA). The control algorithm is based on a neuro-fuzzy model of SIBOA and incorporates nonlinear observers built from observer banks. This effort involves implementing the algorithm on the SIBOA test bed.

  13. Experimental design of an optimal phase duration control strategy used in batch biological wastewater treatment.

    PubMed

    Pavgelj, N B; Hvala, N; Kocijan, J; Ros, M; Subelj, M; Music, G; Strmcnik, S

    2001-01-01

    The paper presents the design of an algorithm used in control of a sequencing batch reactor (SBR) for wastewater treatment. The algorithm is used for the on-line optimization of the batch phases duration which should be applied due to the variable input wastewater. Compared to an operation with fixed times of batch phases, this kind of a control strategy improves the treatment quality and reduces energy consumption. The designed control algorithm is based on following the course of some simple indirect process variables (i.e. redox potential, dissolved oxygen concentration and pH), and automatic recognition of the characteristic patterns in their time profile. The algorithm acts on filtered on-line signals and is based on heuristic rules. The control strategy was developed and tested on a laboratory pilot plant. To facilitate the experimentation, the pilot plant was superimposed by a computer-supported experimental environment that enabled: (i) easy access to all data (on-line signals, laboratory measurements, batch parameters) needed for the design of the algorithm, (ii) the immediate application of the algorithm designed off-line in the Matlab package also in real-time control. When testing on the pilot plant, the control strategy demonstrated good agreement between the proposed completion times and actual terminations of the desired biodegradation processes.

  14. Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction

    NASA Astrophysics Data System (ADS)

    Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.

    2014-12-01

    This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.

  15. Reentrant equilibrium disordering in nanoparticle–polymer mixtures

    DOE PAGES

    Meng, Dong; Kumar, Sanat K.; Grest, Gary S.; ...

    2017-01-31

    A large body of experimental work has established that athermal colloid/polymer mixtures undergo a sequence of transitions from a disordered fluid state to a colloidal crystal to a second disordered phase with increasing polymer concentration. These transitions are driven by polymer-mediated interparticle attraction, which is a function of both the polymer density and size. It has been posited that the disordered state at high polymer density is a consequence of strong interparticle attractions that kinetically inhibit the formation of the colloidal crystal, i.e., the formation of a non-equilibrium gel phase interferes with crystallization. Here we use molecular dynamics simulations andmore » density functional theory on polymers and nanoparticles (NPs) of comparable size and show that the crystal-disordered phase coexistence at high polymer density for sufficiently long chains corresponds to an equilibrium thermodynamic phase transition. While the crystal is, indeed, stabilized at intermediate polymer density by polymer-induced intercolloid attractions, it is destabilized at higher densities because long chains lose significant configurational entropy when they are forced to occupy all of the crystal voids. Finally, our results are in quantitative agreement with existing experimental data and show that, at least in the nanoparticle limit of sufficiently small colloidal particles, the crystal phase only has a modest range of thermodynamic stability.« less

  16. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.

    PubMed

    Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A

    2017-01-06

    The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.

  17. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium

    NASA Astrophysics Data System (ADS)

    Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N.; West, Ken; Snoke, David W.; Nelson, Keith A.

    2017-01-01

    The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.

  18. Thermodynamics and Kinetics of Chemical Equilibrium in Solution.

    ERIC Educational Resources Information Center

    Leenson, I. A.

    1986-01-01

    Discusses theory of thermodynamics of the equilibrium in solution and dissociation-dimerization kinetics. Describes experimental procedure including determination of molar absorptivity and equilibrium constant, reaction enthalpy, and kinetics of the dissociation-dimerization reaction. (JM)

  19. Tuning universality far from equilibrium

    PubMed Central

    Karl, Markus; Nowak, Boris; Gasenzer, Thomas

    2013-01-01

    Possible universal dynamics of a many-body system far from thermal equilibrium are explored. A focus is set on meta-stable non-thermal states exhibiting critical properties such as self-similarity and independence of the details of how the respective state has been reached. It is proposed that universal dynamics far from equilibrium can be tuned to exhibit a dynamical transition where these critical properties change qualitatively. This is demonstrated for the case of a superfluid two-component Bose gas exhibiting different types of long-lived but non-thermal critical order. Scaling exponents controlled by the ratio of experimentally tuneable coupling parameters offer themselves as natural smoking guns. The results shed light on the wealth of universal phenomena expected to exist in the far-from-equilibrium realm. PMID:23928853

  20. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Gharagozloo, Marjan; Mahmoud, Shaimaa; Gris, Denis

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35–55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS. PMID:27610007

  1. UNCERTAINTY IN PHASE ARRIVAL TIME PICKS FOR REGIONAL SEISMIC EVENTS: AN EXPERIMENTAL DESIGN

    SciTech Connect

    A. VELASCO; ET AL

    2001-02-01

    The detection and timing of seismic arrivals play a critical role in the ability to locate seismic events, especially at low magnitude. Errors can occur with the determination of the timing of the arrivals, whether these errors are made by automated processing or by an analyst. One of the major obstacles encountered in properly estimating travel-time picking error is the lack of a clear and comprehensive discussion of all of the factors that influence phase picks. This report discusses possible factors that need to be modeled to properly study phase arrival time picking errors. We have developed a multivariate statistical model, experimental design, and analysis strategy that can be used in this study. We have embedded a general form of the International Data Center(IDC)/U.S. National Data Center (USNDC) phase pick measurement error model into our statistical model. We can use this statistical model to optimally calibrate a picking error model to regional data. A follow-on report will present the results of this analysis plan applied to an implementation of an experiment/data-gathering task.

  2. Time aspects of the European Complement to GPS: Continental and transatlantic experimental phases

    NASA Technical Reports Server (NTRS)

    Uhrich, Pierre J. M.; Juompan, B.; Tourde, R.; Brunet, M.; Dutrey, J.-F.

    1995-01-01

    The CNES project of a European Complement to GPS (CE-GPS) is conceived to fulfill the needs of Civil Aviation for a non-precise approach phase with GPS as sole navigation means. This generates two missions: a monitoring mission - alarm of failure - ,and a navigation mission - generating a GPS-like signal on board the geostationary satellites. The host satellites will be the Inmarsat constellation. The CE-GPS missions lead to some time requirements, mainly the accuracy of GPS time restitution and of monitoring clock synchronization. To demonstrate that the requirements of the CE-GPS could be achieved, including the time aspects, an experiment has been scheduled over the Last two years, using a part of the Inmarsat II F-2 payload and specially designed ground stations based on 10 channels GPS receivers. This paper presents a review of the results obtained during the continental phase of the CE-GPS experiment with two stations in France, along with some experimental results obtained during the transatlantic phase (three stations in France, French Guyana, and South Africa). It describes the synchronization of the monitoring clocks using the GPS Common-view or the C- to L-Band transponder of the Inmarsat satellite, with an estimated accuracy better than 10 ns (1 sigma).

  3. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    NASA Astrophysics Data System (ADS)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  4. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  5. Computational/Experimental Aeroheating Predictions for X-33. Phase 2; Vehicle

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Weilmuenster, K. James; Horvath, Thomas J.; Berry, Scott A.

    1998-01-01

    Laminar and turbulent heating-rate calculations from an "engineering" code and laminar calculations from a "benchmark" Navier-Stokes code are compared with experimental wind-tunnel data obtained on several candidate configurations for the X-33 Phase 2 flight vehicle. The experimental data were obtained at a Mach number of 6 and a freestream Reynolds number ranging from 1 to 8 x 10(exp 6)/ft. Comparisons are presented along the windward symmetry plane and in a circumferential direction around the body at several axial stations at angles of attack from 20 to 40 deg. The experimental results include both laminar and turbulent flow. For the highest angle of attack some of the measured heating data exhibited a "non-laminar" behavior which caused the heating to increase above the laminar level long before "classical" transition to turbulent flow was observed. This trend was not observed at the lower angles of attack. When the flow was laminar, both codes predicted the heating along the windward symmetry plane reasonably well but under-predicted the heating in the chine region. When the flow was turbulent the LATCH code accurately predicted the measured heating rates. Both codes were used to calculate heating rates over the X-33 vehicle at the peak heating point on the design trajectory and they were found to be in very good agreement over most of the vehicle windward surface.

  6. An Experimental Evaluation of Programed Instruction as One of Two Review Techniques for Two-Year College Students Concerned with Solving Acid-Base Chemical Equilibrium Problems.

    ERIC Educational Resources Information Center

    Sharon, Jared Bear

    The major purpose of this study was to design and evaluate a programed instructional unit for a first year college chemistry course. The topic of the unit was the categorization and solution of acid-base equilibria problems. The experimental programed instruction text was used by 41 students and the fifth edition of Schaum's Theory and Problems of…

  7. EXPERIMENTAL PHASE EQUILIBRIA OF SELECTED BINARY, TERNARY, AND HIGHER ORDER SYSTEMS. PART 4. THE PHASE DIAGRAM W-B-C

    DTIC Science & Technology

    system and the mutual solubilities between carbide and boride phases are small. The solid state sections (򒾐C) are characterized by two- phase ... equilibria existing between the phase pairs W2B + W2C, W2B + WC, WC + WB, WB + C, W2B5 + C, W2B5 + B4C, and WB approximately 4 + B4C. The two-phase

  8. Experimental and modelling study of the plasma vapour-phase synthesis of ultrafine aluminum nitride powders

    NASA Astrophysics Data System (ADS)

    da Cruz, Antonio-Carlos

    An experimental and theoretical study of the fundamentals of the vapour phase synthesis of ultrafine aluminum nitride (AIN) particles using thermal plasma was carried out. The study used the concept of a transferred-arc reactor which produces AlN ultrafine powders in two stages: evaporation of aluminum (Al) metal by the transferred-arc in non nitriding conditions; and the reaction between Al vapour and ammonia (NH3) in a separate tubular reactor. A new version of this reactor concept was built in which the transferred-arc chamber and tubular reactor were vertically aligned. This reactor design allowed the study of both radial and axial mixing of ammonia with the plasma chamber off-gas. Ultrafine powders with a specific surface area (SSA) in the range of 38--270 m2/g were produced in two plasma chamber off-gas temperature levels (1800 and 2000 K), with different quenching intensities, and two different plasma gas compositions (pure Ar and Ar/H2 mixture). The dependence of the particle size and composition on the reactor operating conditions was investigated. Depending on the plasma gas composition, two different trends were observed for the SSA as a function of quenching intensity, with the radial injection of NH3. A two-dimensional numerical model was developed for the nucleation and growth of ultrafine particles in this system, using the method of moments. A new equation for the nucleation rate for the AlN system was developed. This equation considers the effect of reaction on the surface of clusters of the new phase. This new modelling approach could explain the trends observed experimentally. The importance of the mechanisms for the gas-to-condensed phase transition in the AlN system were examined. The sinterability of the powder produced was examined. Sintering to full density was achieved at 1550°C. Because of the high oxygen content of the powder, a second phase identified as aluminum oxynitride (ALON) was observed to form.

  9. Kinetic Studies on the Reaction of Chlorosulfonyl Isocyanate with Monofluoralkenes: Experimental Evidence for Both Stepwise and Concerted Mechanisms, and a Pre-equilibrium Complex on the Reaction Pathway

    DTIC Science & Technology

    2012-12-14

    lactams that are readily reduced to β-lactams. Substitution of a vinyl hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so...hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so that a concerted pathway is favored. Rate constants were measured for...step pathway has not been demonstrated experimentally.3c In a recent paper, we found that substituting a hydrogen for a fluorine on the π-bond of an

  10. Ion mixing and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  11. Micro-solid phase equilibrium extraction with highly ordered TiO2 nanotube arrays: a new approach for the enrichment and measurement of organochlorine pesticides at trace level in environmental water samples.

    PubMed

    Zhou, Qingxiang; Huang, Yunrui; Xiao, Junping; Xie, Guohong

    2011-04-01

    Ordered TiO(2) nanotube arrays have been widely used in many fields such as photocatalysis, self-cleaning, solar cells, gas sensing, and catalysis. This present study exploited a new functional application of the ordered TiO(2) nanotube arrays. A micro-solid phase equilibrium extraction using ordered TiO(2) nanotube arrays was developed for the enrichment and measurement of organochlorine pesticides prior to gas chromatography-electron capture detection. Ordered TiO(2) nanotube arrays exhibited excellent merits on the pre-concentration of organochlorine pesticides and lower detection limits of 0.10, 0.10, 0.10, 0.098, 0.0076, 0.0097, 0.016, and 0.023 μg L(-1) for α-HCH, β-HCH, γ-HCH, δ-HCH, p,p'-DDE, p,p'-DDD, o,p'-DDT, and p,p'-DDT, respectively, were achieved. Four real water samples were used for validation, and the spiked recoveries were in the range of 78-102.8%. These results demonstrated that the developed micro-solid phase equilibrium extraction using ordered TiO(2) nanotube arrays would be very constructive and have a great beginning with a brand new prospect in the analysis of environmental pollutants.

  12. Determination of unbound vismodegib (GDC-0449) concentration in human plasma using rapid equilibrium dialysis followed by solid phase extraction and high-performance liquid chromatography coupled to mass spectrometry.

    PubMed

    Deng, Yuzhong; Wong, Harvey; Graham, Richard A; Liu, Wenbin; Shen, Heuy-shin; Shi, Yao; Wang, Laixin; Meng, Min; Malhi, Vikram; Ding, Xiao; Dean, Brian

    2011-07-15

    A rapid equilibrium dialysis (RED) assay followed by a solid phase extraction (SPE) high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of unbound vismodegib in human plasma was developed and validated. The equilibrium dialysis was carried out using 0.3 mL plasma samples in the single-use plate RED system at 37°C for 6h. The dialysis samples (0.1 mL) were extracted using a Strata-X-C 33u Polymeric Strong Cation SPE plate and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization (ESI) mass spectrometry. The standard curve, which ranged from 0.100 to 100 ng/mL for vismodegib, was fitted to a 1/x(2) weighted linear regression model. The lower limit of quantitation (LLOQ, 0.100 ng/mL) was sufficient to quantify unbound concentrations of vismodegib after dialysis. The intra-assay precision of the LC-MS/MS assay, based on the four analytical QC levels (LLOQ, low, medium and high), was within 7.7% CV and inter-assay precision was within 5.5% CV. The assay accuracy, expressed as %Bias, was within ±4.0% of the nominal concentration values. Extraction recovery of vismodegib was between 77.9 and 84.0%. The assay provides a means for accurate assessment of unbound vismodegib plasma concentrations in clinical studies.

  13. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoit

    2015-03-01

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  14. Experimental implementation of a nonlinear beamsplitter based on a phase-sensitive parametric amplifier

    NASA Astrophysics Data System (ADS)

    Fang, Yami; Feng, Jingliang; Cao, Leiming; Wang, Yaxian; Jing, Jietai

    2016-03-01

    Beamsplitters have played an important role in quantum optics experiments. They are often used to split and combine two beams, especially in the construct of an interferometer. In this letter, we experimentally implement a nonlinear beamsplitter using a phase-sensitive parametric amplifier, which is based on four-wave mixing in hot rubidium vapor. Here we show that, despite the different frequencies of the two input beams, the output ports of the nonlinear beamsplitter exhibit interference phenomena. We make measurements of the interference fringe visibility and study how various parameters, such as the intensity gain of the amplifier, the intensity ratio of the two input beams, and the one and two photon detunings, affect the behavior of the nonlinear beamsplitter. It may find potential applications in quantum metrology and quantum information processing.

  15. Experimental and Numerical Study of Pore-Scale Multi-Phase Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A. M.; Ling, B.; Oostrom, M.; Bao, J.; Kim, K.; Trask, N.; Battiato, I.

    2015-12-01

    Understanding multiphase fluid flow is critical for many applications, including CO2 sequestration, bioremediation, and oil recovery. Micro-fluidic experiments and pore-scale simulations become important tools in studying multiphase flow in porous media. At the same time, many pore-scale numerical models lack rigorous validation and verification, and micro-fluidic experiments are hard to reproduce due to physical instabilities and challenges in precisely controlling the experiments. We performed a set of microcell experiments and determined conditions necessary to obtain reproducible pore-scale evolution of the fluid-fluid interfaces during both infiltration and drainage phases. Next, we modeled the experiments using Finite Volume and Smoothed Particle Hydrodynamics codes. The point-by-point comparison of the experimental results and numerical simulations revealed advantages and disadvantages of these two methods in capturing the overall behavior and pore-scale phenomena, including residual saturations, formation of thin films, fluid bridges and various fluid trapping mechanisms.

  16. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    SciTech Connect

    Le Bourdais, Florian Marchand, Benoit

    2015-03-31

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  17. The Langley Research Center CSI phase-0 evolutionary model testbed-design and experimental results

    NASA Technical Reports Server (NTRS)

    Belvin, W. K.; Horta, Lucas G.; Elliott, K. B.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology is described. The design philosophy, capabilities, and early experimental results are presented to introduce some of the ongoing CSI research at NASA-Langley. The testbed, referred to as the Phase 0 version of the CSI Evolutionary model (CEM), is the first stage of model complexity designed to show the benefits of CSI technology and to identify weaknesses in current capabilities. Early closed loop test results have shown non-model based controllers can provide an order of magnitude increase in damping in the first few flexible vibration modes. Model based controllers for higher performance will need to be robust to model uncertainty as verified by System ID tests. Data are presented that show finite element model predictions of frequency differ from those obtained from tests. Plans are also presented for evolution of the CEM to study integrated controller and structure design as well as multiple payload dynamics.

  18. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light.

    PubMed

    Clarke, Patrick J; Collins, Robert J; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S

    2012-01-01

    Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called 'one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm.

  19. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light

    PubMed Central

    Clarke, Patrick J.; Collins, Robert J.; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2012-01-01

    Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called ‘one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm. PMID:23132024

  20. Experimental study on the performance characteristics of an enhanced two-phase loop thermosyphon

    NASA Astrophysics Data System (ADS)

    Ziapour, Behrooz M.; Baygan, Majid; Mohammadnia, Ali

    2015-10-01

    A two-phase loop thermosyphon (TPLT) is an apparatus for heat transmission from the hot section of system (evaporator) to the cold part (condenser), with relatively small temperature differences. The setup used in this study consists of a TPLT, including evaporator, riser, an advanced condenser and downcomer. The condenser inlet has a nozzle. The steam rises from evaporator, flows through the nozzle and sprays on a vertical copper surface inside the condenser. To cool the copper sheet, then a cooler system was installed rear of it. The experimental tests were performed for presence of the nozzle and without it. The results showed that the TPLT efficiency increases for the modified condenser using nozzle. Also, the overall heat transfer coefficient of TPLT is enhanced by the nozzle. In the case of the nozzle with distance of 13 mm from copper sheet, and T e, sat > 55 °C, the value of suddenly increased.

  1. Experimental passive round-robin differential phase-shift quantum key distribution.

    PubMed

    Guan, Jian-Yu; Cao, Zhu; Liu, Yang; Shen-Tu, Guo-Liang; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Ma, Xiongfeng; Zhang, Qiang; Pan, Jian-Wei

    2015-05-08

    In quantum key distribution (QKD), the bit error rate is used to estimate the information leakage and hence determines the amount of privacy amplification-making the final key private by shortening the key. In general, there exists a threshold of the error rate for each scheme, above which no secure key can be generated. This threshold puts a restriction on the environment noises. For example, a widely used QKD protocol, the Bennett-Brassard protocol, cannot tolerate error rates beyond 25%. A new protocol, round-robin differential phase-shifted (RRDPS) QKD, essentially removes this restriction and can in principle tolerate more environment disturbance. Here, we propose and experimentally demonstrate a passive RRDPS QKD scheme. In particular, our 500 MHz passive RRDPS QKD system is able to generate a secure key over 50 km with a bit error rate as high as 29%. This scheme should find its applications in noisy environment conditions.

  2. Experimental Passive Round-Robin Differential Phase-Shift Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Guan, Jian-Yu; Cao, Zhu; Liu, Yang; Shen-Tu, Guo-Liang; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Ma, Xiongfeng; Zhang, Qiang; Pan, Jian-Wei

    2015-05-01

    In quantum key distribution (QKD), the bit error rate is used to estimate the information leakage and hence determines the amount of privacy amplification—making the final key private by shortening the key. In general, there exists a threshold of the error rate for each scheme, above which no secure key can be generated. This threshold puts a restriction on the environment noises. For example, a widely used QKD protocol, the Bennett-Brassard protocol, cannot tolerate error rates beyond 25%. A new protocol, round-robin differential phase-shifted (RRDPS) QKD, essentially removes this restriction and can in principle tolerate more environment disturbance. Here, we propose and experimentally demonstrate a passive RRDPS QKD scheme. In particular, our 500 MHz passive RRDPS QKD system is able to generate a secure key over 50 km with a bit error rate as high as 29%. This scheme should find its applications in noisy environment conditions.

  3. Experimental research of phase transition's kinetics in a liquid melt of high-purity aluminum

    NASA Astrophysics Data System (ADS)

    Vorontsov, V. B.; Zhuravlev, D. V.; Cherepanov, A. S.

    2015-08-01

    This scientific work is devoted to the studying of the genetic connection structures of solid and liquid phases. Fourier analysis of signals of acoustic emission (AE) accompanying melting high purity aluminum from the melting point up to t = 860°C was performed. Based on the results of previous studies cluster formations in the melt - the micro-regions, those retain crystallinity (areas with short-range order of symmetry) were considered as the source of AE. The experimental data allowed to follow the dynamics of disorder zones range order in the melt with increasing melt temperature up to their complete destruction. The presented results of spectral analysis of the signals were analyzed from the standpoint of the theory of cluster melting metals.

  4. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  5. Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System

    NASA Astrophysics Data System (ADS)

    Paik, Hanhee; Mezzacapo, A.; Sandberg, Martin; McClure, D. T.; Abdo, B.; Córcoles, A. D.; Dial, O.; Bogorin, D. F.; Plourde, B. L. T.; Steffen, M.; Cross, A. W.; Gambetta, J. M.; Chow, Jerry M.

    2016-12-01

    The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.

  6. Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System.

    PubMed

    Paik, Hanhee; Mezzacapo, A; Sandberg, Martin; McClure, D T; Abdo, B; Córcoles, A D; Dial, O; Bogorin, D F; Plourde, B L T; Steffen, M; Cross, A W; Gambetta, J M; Chow, Jerry M

    2016-12-16

    The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.

  7. Experimental study of nanofluidics and phase transitions of normal and superfluid 4He

    NASA Astrophysics Data System (ADS)

    Velasco, Angel Enriques

    This thesis addresses the experimental results of two different research topics. The first is the experimental work of pressure driven flows in the smallest, single nanotubes ever investigated. The nanotube boundary conditions and slip lengths from argon, nitrogen, water, and helium experiments were analyzed and compared to macroscopic boundary conditions. The second research topic discusses the work on ellipsometric and quartz microbalance measurements of the 2D superfluid phase diagram of 4He on alkali substrates. Ellipsometric results of sodium on HOPG provide the first evidence of the existence of the 2D critical point on an intermediate strength substrate. Pressure driven flows through single nanopores and microtubes were measured with a calibrated mass spectrometer with pressure drops up to 30 Atm. The nanopores were between 30 nm to 600 nm in diameter and etched in mica and PET membranes of several microns thickness. Microtubes several inches long of fused quartz and nickel material were tested with diameters between 1.8 micron and 25 micron. For 4He and argon gas we observed the flow transition between the free molecular and continuum regimes at 293 K and 77 K. No discrepancy between the macroscopic theory and the 30 nm nanopore data was found. Because of the exceptionally low viscosity of gaseous helium the laminar-turbulent transition could also be observed within these submicron channels. The small viscosity of 4He was too small to dampen inertial effects at a Reynolds number of 2000. In addition to single phase gas flows, our experimental technique also allows us to investigate flows in which the nano or micro scale pipe is either partially or completely filled with liquids. The position of the intrinsic liquid/vapor interface was important for understanding this type of flow. Strong evaporation and cooling at the liquid-vapor interface can lead to freezing for conventional fluids such as nitrogen and water, which in turn leads to complex intermittent

  8. Experimental round-robin differential phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Yu-Huai; Cao, Yuan; Dai, Hui; Lin, Jin; Zhang, Zhen; Chen, Wei; Xu, Yu; Guan, Jian-Yu; Liao, Sheng-Kai; Yin, Juan; Zhang, Qiang; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2016-03-01

    In conventional quantum key distribution (QKD) protocols, security is guaranteed by estimating the amount of leaked information. Such estimation tends to overrate, leading to a fundamental threshold of the bit error rate, which becomes a bottleneck of practical QKD development. This bottleneck is broken through by the recent work of round-robin differential phase-shift (RRDPS) protocol, which eliminates the fundamental threshold of the bit error rate. The key challenge for the implementation of the RRDPS scheme lies in the realization of a variable-delay Mach-Zehnder interferometer, which requires active and random choice of many delays. By designing an optical system with multiple switches and employing an active phase stabilization technology, we successfully construct a variable-delay interferometer with 127 actively selectable delays. With this measurement, we experimentally demonstrate the RRDPS protocol and obtain a final key rate of 15.54 bps with a total loss of 18 dB and an error rate of 8.9%.

  9. Experimental investigation of a phased-locked harmonic multiplying inverted gyrotwystron

    SciTech Connect

    Guo, H.; Rodgers, J.; Chen, S.; Walter, M.; Granatstein, V.L.

    1996-12-31

    The University of Maryland is investigating harmonic multiplication as a means of generating high frequency, large bandwidth, high power microwaves with reduced magnetic field and high subharmonic injection gain. The current experimental efforts are concentrated don two-stage devices. One of them is the phase-locked, harmonic-multiplying inverted gyrotwystron (phigtron) which uses a MIG produced electron beam (60 kV, 10 A), a combined mode launcher/input coupler, a Ku band fundamental gyro-TWT prebunching section, a radiation-free drift section, and a Ka band special complex cavity as output section. The bandwidth of this phigtron is expected to be improved over that of a gyroklystron since the input cavity is replaced by a traveling wave interaction structure. The second harmonic content of the beam may develop within both the input section and the drift space, and this allows the use of a smaller input signal. For a proof-of-principle experiment, a hot test tube was built. Initial experimental data will be provided in this presentation and will be compared with theoretical predictions. Finally, the feasibility of using a phigtron configuration with second harmonic prebunching and fourth harmonic output to realize a compact, high performance MMW power source at 94 GHz is discussed.

  10. Experimental investigation of a phase-locked harmonic multiplying inverted gyrotwystron

    SciTech Connect

    Guo, H.; Rodgers, J.; Chen, S.; Walter, M.; Granatstein, V.L.

    1996-12-31

    The University of Maryland is investigating harmonic multiplication as a means of generating high frequency, large bandwidth, high power microwaves with reduced magnetic fields and high subharmonic injection gain. The current experimental efforts are concentrated on two-stage devices. One of them is the phase-locked, harmonic-multiplying inverted gyrotwystron (phigtron) which uses a MIG produced electron beam (60 kV, 10 A), a combined mode launcher/input coupler, a Ku band fundamental gyro-TWT prebunching section, a radiation-free drift section, and a Ka band special complex cavity as output section. The bandwidth of this phigtron is expected to be improved over that of a gyroklystron since the input cavity is replaced by a traveling wave interaction structure. The second harmonic content of the beam may develop within both the input section and the drift space, and this allows the use of a smaller input signal. For a proof-of-principle experiment, a hot test tube was built. Initial experimental data will be provided in this presentation and will be compared with theoretical predictions. Finally, the feasibility of sing a phigtron configuration with second harmonic prebunching and fourth harmonic output to realize a compact, high performance MMW power source at 94 GHz will be discussed.

  11. Experimental investigation of the dissolution of fractures. From early stage instability to phase diagram

    NASA Astrophysics Data System (ADS)

    Osselin, Florian; Budek, Agnieszka; Cybulski, Olgierd; Kondratiuk, Pawel; Garstecki, Piotr; Szymczak, Piotr

    2016-04-01

    Dissolution of natural rocks is a fundamental geological process and a key part of landscape formation and weathering processes. Moreover, in current hot topics like Carbon Capture and Storage or Enhanced Oil Recovery, mastering dissolution of the host rock is fundamental for the efficiency and the security of the operation. The basic principles of dissolution are well-known and the theory of the reactive infiltration instability has been extensively studied. However, the experimental aspect has proved very challenging because of the strong dependence of the outcome with pore network, chemical composition, flow rate... In this study we are trying to tackle this issue by using a very simple and efficient device consisting of a chip of pure gypsum inserted between two polycarbonate plates and subjected to a constant flow rate of pure water. Thanks to this device, we are able to control all parameters such as flow rate, fracture aperture, roughness of the walls... but also to observe in situ the progression of the dissolution thanks to the transparency of the polycarbonate which is impossible with 3D rocks. We have been using this experimental set-up to explore and investigate all aspects of the dissolution in a fracture, such as initial instability and phase diagram of different dissolution patterns, and to compare it with theory and simulations, yielding very good agreement and interesting feedbacks on the coupling between flow and chemistry in geological media

  12. Experimental study on pressure drop of bends in dense phase pneumatic conveying under high pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Gaoyang; Liang, Cai; Chen, Xiaoping; Xu, Pan; Xu, Guiling; Shen, Liu

    2014-04-01

    The transport test using nitrogen as conveying gas are carried out at high operating pressure up to 4MPa in the experimental equipment for dense phase pneumatic conveying. The transport powders in the experiment are anthracite coal and petroleum coke. The pressure drop characteristics in bends are acquired with the different transport powder. The experimental results show that under the similar mass flow, the pressure drop of vertical upward bend is greater than the horizontal bend and the horizontal bend is greater than the vertical downward bend at the same superficial gas velocity, while there is a best superficial gas velocity minimizes the pressure drop of the bend. Under the similar mass flow rate and the similar particle size, the pressure drop of the bend with the petroleum coke is greater than the pressure drop with the anthracite coal as the same superficial gas velocity. According to Barth's additional pressure drop method, the pressure drop fitting formulas of the vertical upward bend, the horizontal bend and the vertical downward bend are obtained, and the predicted results are in accordance with that of the experiments.

  13. A combined experimental and theoretical study of supercooling by two-phase mist flows

    SciTech Connect

    Yang Zhihua.

    1991-01-01

    A combined experimental and theoretical study of cooling enhancement by mist flow was performed for a square channel with a smooth wall. A new method is proposed for the turbulent deposition of droplets from two-phase mist flow into the wall of the channel. The proposed analytical model shows satisfactory agreement with observations from an experimental measurement using a particle-sizing two-dimensional reference-model laser-Doppler anemometry technique. Supercooling is defined as the simultaneous attainment of high heat flux and a low temperature of a surface to be cooled. Surface cooling is by evaporation from the exposed side of the film. The film is maintained by the continuous deposition of a stream of turbulent mist. An analytical model is provided for the heat-transfer enhancement coefficient due to mist supercooling. Also, experiments were carried out to investigate cooling enhancement. A substantial supercooling by mist flow is reported. The effects on supercooling of flow rate, droplet concentration and size, and wall heat flux are also reported.

  14. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Martin, S. T.; Koop, T.; Pöschl, U.

    2009-12-01

    Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA) to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5-95% at 298 K). The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions: (1) Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids. (2) Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts. (3) In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks) and undergo transitions between swollen and collapsed network structures. (4) Organic gels or (semi-)solid amorphous shells (glassy, rubbery, ultra-viscous) with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN) and ice nuclei (IN). Moreover, (semi-)solid amorphous phases may influence the uptake of gaseous photo-oxidants and the chemical transformation and aging of

  15. Experimental evaluation of the isotopic exchange equilibrium 10B(OH) 3+ 11B(OH) 4-= 11B(OH) 3+ 10B(OH) 4- in aqueous solution

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Yao, Wensheng; Klochko, Kateryna; Tossell, John A.; Kaufman, Alan J.

    2006-04-01

    The precision of spectrophotometric measurements of indicator absorbance ratios is sufficient to allow evaluation of small isotopically induced differences in the dissociation constant of boric acid ( KB). The quotient of 11KB and 10KB, obtained using isotopically ⩾99% pure borate/boric acid buffers, provides an equilibrium constant for the reaction 10B(OH) 3+ 11B(OH) 4-⇔ 11B(OH) 3+ 10B(OH) 4- which heretofore had not been experimentally determined. Previous theoretical and semi-empirical evaluations of this equilibrium, which is important for assessments of the paleo-pH of seawater and the paleo- pCO 2 of the atmosphere, have yielded constants, 11-10KB= 10KB/ 11KB, that have ranged between 1.0194 and approximately 1.033. The experimentally determined value 11-10KB=1.028 5±0.001 6 (mean±95% confidence interval) obtained at 25 °C and 0.63 molal (mol kg -1 H 2O) ionic strength is in much better agreement with recent theoretical assessments of 11-10KB that have ranged between 1.026 and 1.033, than the much-cited original estimate (1.0194) of Kakihana et al. (1977) [Fundamental studies on the ion-exchange separation of boron isotopes. Bulletin of Chemical Society of Japan 50, 158-163]. Since the activity quotient for the fractionation reaction is almost equal to unity, it is expected that the 11-10KB value obtained in this study will be applicable over a wide range of solution compositions and ionic strengths.

  16. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  17. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  18. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  19. Numerical simulation and experimental study of transient liquid phase bonding of single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Ghoneim, Adam

    The primary goals of the research in this dissertation are to perform a systematic study to identify and understand the fundamental cause of prolonged processing time during transient liquid phase bonding of difficult-to-bond single crystal Ni-base materials, and use the acquired knowledge to develop an effective way to reduce the isothermal solidification time without sacrificing the single crystalline nature of the base materials. To achieve these objectives, a multi-scale numerical modeling approach, that involves the use of a 2-D fully implicit moving-mesh Finite Element method and a Cellular Automata method, was developed to theoretically investigate the cause of long isothermal solidification times and determine a viable way to minimize the problem. Subsequently, the predictions of the theoretical models are experimentally validated. Contrary to previous suggestions, numerical calculations and experimental verifications have shown that enhanced intergranular diffusivity has a negligible effect on solidification time in cast superalloys and that another important factor must be responsible. In addition, it was found that the concept of competition between solute diffusivity and solubility as predicted by standard analytical TLP bonding models and reported in the literature as a possible cause of long solidification times is not suitable to explain salient experimental observations. In contrast, however, this study shows that the problem of long solidification times, which anomalously increase with temperature is fundamentally caused by departure from diffusion controlled parabolic migration of the liquid-solid interface with holding time during bonding due to a significant reduction in the solute concentration gradient in the base material. Theoretical analyses showed it is possible to minimize the solidification time and prevent formation of stray-grains in joints between single crystal substrates by using a composite powder mixture of brazing alloy and base

  20. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    SciTech Connect

    Rucker, Gregory G.

    2007-07-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  1. ESTIMATING FATE AND TRANSPORT OF MULTIPLE CONTAMINANTS IN THE VADOSE ZONE USING A MULTI-LAYERED SOIL COLUMN AND THREE-PHASE EQUILIBRIUM PARTITIONING MODEL

    SciTech Connect

    Rucker, G

    2007-05-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and contaminate drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminates. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: contaminant decay, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use.

  2. Experimental determination of some equilibrium parameter of Damavand tokamak by magnetic probe measurements for representing a physical model for plasma vertical movement.

    PubMed

    Farahani, N Darestani; Davani, F Abbasi

    2015-10-01

    This investigation is about plasma modeling for the control of vertical instabilities in Damavand tokamak. This model is based on online magnetic measurement. The algebraic equation defining the vertical position in this model is based on instantaneous force-balance. Two parameters in this equation, including decay index, n, and lambda, Λ, have been considered as functions of time-varying poloidal field coil currents and plasma current. Then these functions have been used in a code generated for modeling the open loop response of plasma. The main restriction of the suitability analysis of the model is that the experiments always have to be performed in the presence of a control loop for stabilizing vertical position. As a result, open loop response of the system has been identified from closed loop experimental data by nonlinear neural network identification method. The results of comparison of physical model with identified open loop response from closed loop experiments show root mean square error percentage less than 10%. The results are satisfying that the physical model is useful as a Damavand tokamak vertical movement simulator.

  3. Experimental determination of some equilibrium parameter of Damavand tokamak by magnetic probe measurements for representing a physical model for plasma vertical movement

    NASA Astrophysics Data System (ADS)

    Darestani Farahani, N.; Abbasi Davani, F.

    2015-10-01

    This investigation is about plasma modeling for the control of vertical instabilities in Damavand tokamak. This model is based on online magnetic measurement. The algebraic equation defining the vertical position in this model is based on instantaneous force-balance. Two parameters in this equation, including decay index, n, and lambda, Λ, have been considered as functions of time-varying poloidal field coil currents and plasma current. Then these functions have been used in a code generated for modeling the open loop response of plasma. The main restriction of the suitability analysis of the model is that the experiments always have to be performed in the presence of a control loop for stabilizing vertical position. As a result, open loop response of the system has been identified from closed loop experimental data by nonlinear neural network identification method. The results of comparison of physical model with identified open loop response from closed loop experiments show root mean square error percentage less than 10%. The results are satisfying that the physical model is useful as a Damavand tokamak vertical movement simulator.

  4. A non-equilibrium thermodynamics model of multicomponent mass and heat transport in pervaporation processes

    NASA Astrophysics Data System (ADS)

    Villaluenga, Juan P. G.; Kjelstrup, Signe

    2012-12-01

    The framework of non-equilibrium thermodynamics (NET) is used to derive heat and mass transport equations for pervaporation of a binary mixture in a membrane. In this study, the assumption of equilibrium of the sorbed phase in the membrane and the adjacent phases at the feed and permeate sides of the membrane is abandoned, defining the interface properties using local equilibrium. The transport equations have been used to model the pervaporation of a water-ethanol mixture, which is typically encountered in the dehydration of organics. The water and ethanol activities and temperature profiles are calculated taking mass and heat coupling effects and surfaces into account. The NET approach is deemed good because the temperature results provided by the model are comparable to experimental results available for water-alcohol systems.

  5. Response Theory for Equilibrium and Non-Equilibrium Statistical Mechanics: Causality and Generalized Kramers-Kronig Relations

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio

    2008-05-01

    We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external

  6. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a

  7. Experimental study on the existence and properties of speckle phase vortices in the diffraction region near random surfaces.

    PubMed

    Chen, Xiaoyi; Li, Zhenhua; Li, Haixia; Zhang, Meina; Cheng, Chuanfu

    2012-07-30

    We design an optical setup to extract phase vortices in which the interference intensity of reference light wave and speckle fields produced by random screens with different roughness values in the diffraction region near random screens is obtained. Random screens with different roughness are used as samples. Fourier transform is used to extract speckle phase vortices from the interference intensity, and the experimental results show that the phase vortices can be produced when the roughness of the screen is large enough, and they even may appear on the surface. The density of phase vortices would become larger with an increase of the distances in the diffraction region near the random screen. When the distance is certain, the density of phase vortices becomes larger with the increase of roughness. These results would be helpful for understanding the formation of phase vortices.

  8. Solubility and Reaction Rates of Aluminum Solid Phases Under Geothermal Conditions

    SciTech Connect

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.; Anovitz, L.M.

    2000-05-28

    Experimental studies involving equilibrium solubility and dissolution/precipitation rates were initiated on aluminum hydroxide phases prevalent under geothermal reservoir conditions. A large capacity, hydrogen-electrode concentration cell (HECC) was constructed specifically for this purpose.

  9. Bioslurry phase remediation of chlorpyrifos contaminated soil: process evaluation and optimization by Taguchi design of experimental (DOE) methodology.

    PubMed

    Venkata Mohan, S; Sirisha, K; Sreenivasa Rao, R; Sarma, P N

    2007-10-01

    Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was applied to evaluate the influence of eight biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature, soil microflora load, application of bioaugmentation and humic substance concentration) on the soil bound chlorpyrifos bioremediation in bioslurry phase reactor. The selected eight factors were considered at three levels (18 experiments) in the experimental design. Substrate-loading rate showed significant influence on the bioremediation process among the selected factors. Derived optimum operating conditions obtained by the methodology showed enhanced chlorpyrifos degradation from 1479.99 to 2458.33microg/g (over all 39.82% enhancement). The proposed method facilitated systematic mathematical approach to understand the complex bioremediation process and the optimization of near optimum design parameters, only with a few well-defined experimental sets.

  10. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    SciTech Connect

    Neeraj Gupta; Bruce Sass; Jennifer Ickes

    2000-11-28

    In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as

  11. Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA

    NASA Astrophysics Data System (ADS)

    Haghgouyan, Behrouz; Shafaghi, Nima; Aydıner, C. Can; Anlas, Gunay

    2016-07-01

    A comprehensive, multi-method experimental characterization of fracture is conducted on shape memory alloy NiTi that exhibits superelasticity due to austenite-to-martensite stress induced phase transformation. This characterization includes (i) load-based measurement of critical stress intensity factor (K max) using ASTM standard E399, (ii) measurement of crack tip opening displacement (CTOD) per ASTM standard E1290, (iii) the digital image correlation (DIC) characterization of the transformation zone as well as the displacement-field based measurement of K max from the DIC data. Samples have also been tested at T = 100 °C to suppress the martensitic transformation to investigate transformation toughening. The experimental investigation is complemented with finite element (FE) analysis that uses Auricchio-Taylor-Lubliner constitutive model. A direct observation with DIC revealed a small scale transformation (K-dominance). K max of the transforming material is higher than that of the transformation-suppressed material tested at 100 °C, suggesting transformation toughening. At 100 °C, the material becomes quite brittle with a very small crack-tip plastic zone when the transformation mechanism is blocked. By measures of critical CTOD, the gap widens even more between the superelastic and transformation-suppressed cases, particularly because of the side effect that, in this very interesting material, material modulus increases with temperature. Evaluating the transformation zone from the DIC strains with reference to the uniaxial stress-strain curve, an equivalent strain form is proposed in conjunction with the plane stress FE prediction.

  12. Napoleon Is in Equilibrium

    NASA Astrophysics Data System (ADS)

    Phillips, Rob

    2015-03-01

    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

  13. Napoleon Is in Equilibrium.

    PubMed

    Phillips, Rob

    2015-03-01

    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

  14. Information-theoretic equilibrium and observable thermalization

    PubMed Central

    Anzà, F.; Vedral, V.

    2017-01-01

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light. PMID:28266646

  15. Information-theoretic equilibrium and observable thermalization

    NASA Astrophysics Data System (ADS)

    Anzà, F.; Vedral, V.

    2017-03-01

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.

  16. Information-theoretic equilibrium and observable thermalization.

    PubMed

    Anzà, F; Vedral, V

    2017-03-07

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.

  17. Development of an Experimental Phased Array Feed System and Algorithms for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Landon, Jonathan C.

    Phased array feeds (PAFs) are a promising new technology for astronomical radio telescopes. While PAFs have been used in other fields, the demanding sensitivity and calibration requirements in astronomy present unique new challenges. This dissertation presents some of the first astronomical PAF results demonstrating the lowest noise temperature and highest sensitivity at the time (66 Kelvin and 3.3 m^2/K, respectively), obtained using a narrowband (425 kHz bandwidth)prototype array of 19 linear co-polarized L-band dipoles mounted at the focus of the Green Bank 20 Meter Telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. Results include spectral line detection of hydroxyl (OH) sources W49N and W3OH, and some of the first radio camera images made using a PAF, including an image of the Cygnus X region. A novel array Y-factor technique for measuring the isotropic noise response of the array is shown along with experimental measurements for this PAF. Statistically optimal beamformers (Maximum SNR and MVDR) are used throughout the work. Radio-frequency interference (RFI) mitigation is demonstrated experimentally using spatial cancelation with the PAF. Improved RFI mitigation is achieved in the challenging cases of low interference-to-noise ratio (INR) and moving interference by combining subspace projection (SP) beamforming with a polynomial model to track a rank 1 subspace. Limiting factors in SP are investigated including sample estimation error, subspace smearing, noise bias, and spectral scooping; each of these factors is overcome with the polynomial model and prewhitening. Numerical optimization leads to the polynomial subspace projection (PSP) method, and least-squares fitting to the series of dominant eigenvectors over a series of short term integrations (STIs) leads to the eigenvector polynomial subspace projection (EPSP) method. Expressions for the gradient, Hessian, and Jacobian are given for use in numerical optimization

  18. Subcontracted R and D final report: SRC-I phase equilibrium and enthalpy data for coal liquefaction and solvent recovery areas. Vol. 3

    SciTech Connect

    Mehta, D.C.; Chu, I.C.; Kidnay, A.J.; Yesavage, V.F.

    1984-03-01

    The Enthalpy Program was a 20-month project initiated on January 18, 1982 by the International Coal Refining Company (ICRC) and under the technical direction of Professor Arthur J. Kidnay and Professor V.F. Yesavage at the Colorado School of Mines (CSM), Golden, Colorado. The objective of the program was to gather enthalpy data on representative pure model compounds, mixtures of model compounds, and selected coal-derived liquid samples furnished by ICRC. A copy of the technical agreement between ICRC and CSM is included in this report as Appendix A. This final report contains a complete description of the calorimeter and the experimental procedures used, separate data sections for each experimental task, and a copy of the technical agreement between ICRC and CSM. Data are presented for 11 coal liquid fractions. Each section of this report is organized to stand alone; thus, there are no general lists of references, tables of notation, or overall data tables.

  19. Getting Freshman in Equilibrium.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Various aspects of chemical equilibrium were discussed in six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). These include student problems in understanding hydrolysis, helping students discover/uncover topics, equilibrium demonstrations, instructional strategies, and flaws to kinetic…

  20. Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies

    NASA Astrophysics Data System (ADS)

    Cipiccia, S.; Reboredo, D.; Vittoria, Fabio A.; Welsh, G. H.; Grant, P.; Grant, D. W.; Brunetti, E.; Wiggins, S. M.; Olivo, A.; Jaroszynski, D. A.

    2015-05-01

    X-ray phase contrast imaging (X-PCi) is a very promising method of dramatically enhancing the contrast of X-ray images of microscopic weakly absorbing objects and soft tissue, which may lead to significant advancement in medical imaging with high-resolution and low-dose. The interest in X-PCi is giving rise to a demand for effective simulation methods. Monte Carlo codes have been proved a valuable tool for studying X-PCi including coherent effects. The laser-plasma wakefield accelerators (LWFA) is a very compact particle accelerator that uses plasma as an accelerating medium. Accelerating gradient in excess of 1 GV/cm can be obtained, which makes them over a thousand times more compact than conventional accelerators. LWFA are also sources of brilliant betatron radiation, which are promising for applications including medical imaging. We present a study that explores the potential of LWFA-based betatron sources for medical X-PCi and investigate its resolution limit using numerical simulations based on the FLUKA Monte Carlo code, and present preliminary experimental results.

  1. EXPERIMENTAL INFECTION WITH Toxocara cati IN PIGS: MIGRATORY PATTERN AND PATHOLOGICAL RESPONSE IN EARLY PHASE

    PubMed Central

    Sommerfelt, Irma Estela; Duchene, Adriana; Daprato, Betina; Lopez, Clara María; Cardillo, Natalia; Franco, Aníbal Juan

    2014-01-01

    Experimental inoculations of approximately 100,000 infective Toxocara cati larval eggs were done in twelve pigs. The T. cati eggs used for inoculation were collected from cat's feces. Another group of three pigs served as an uninfected control. Groups of infected pigs were euthanized at seven, 14, 21, and 28 days post-inoculation (dpi). Tissue samples were taken for digestion and histopathology changes in early phase. The number of larvae recovered from the lungs peaked at seven and 14 dpi and were also present at 21, and 28 dpi. Larvae of T. cati were present in the lymph nodes of the small and large intestine at seven, 14, and 28 dpi and at seven, 14, 21, and 28 dpi respectively. In other studied tissues, no larvae or less than one larva per gram was detected. The pathological response observed in the liver and lungs at seven and 14 dpi, showed white spots on the liver surface and areas of consolidation were observed in the lungs. The lungs showed an inflammatory reaction with larvae in center at 28 dpi. In the liver we observed periportal and perilobular hepatitis. The lymph nodes of the intestines displayed eosinophil lymphadenitis with reactive centers containing parasitic forms in some of them. The granulomatous reaction was not observed in any tissues. The role of the other examined tissues had less significance. The relevance of this parasite as an etiological agent that leads to disease in paratenic hosts is evident. PMID:25076437

  2. Experimental and Computational Investigations of Phase Change Thermal Energy Storage Canisters

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Kerslake, Thomas; Sokolov, Pavel; Tolbert, Carol

    1996-01-01

    Two sets of experimental data are examined in this paper, ground and space experiments, for cylindrical canisters with thermal energy storage applications. A 2-D computational model was developed for unsteady heat transfer (conduction and radiation) with phase-change. The radiation heat transfer employed a finite volume method. The following was found in this study: (1) Ground Experiments: the convection heat transfer is equally important to that of the radiation heat transfer; radiation heat transfer in the liquid is found to be more significant than that in the void; including the radiation heat transfer in the liquid resulted in lower temperatures (about 15 K) and increased the melting time (about 10 min.); generally, most of the heat flow takes place in the radial direction. (2) Space Experiments: radiation heat transfer in the void is found to be more significant than that in the liquid (exactly the opposite to the Ground Experiments); accordingly, the location and size of the void affects the performance considerably; including the radiation heat transfer in the void resulted in lower temperatures (about 40 K).

  3. Experimental Study on Melting and Solidification of Phase Change Material Thermal Storage

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Abdullah, I.; Siregar, C. A.; Siregar, R. E. T.; Ronowikarto, A. D.

    2017-03-01

    Melting and solidification process of Phase Change Materials (PCMs) are investigated experimentally. The tested PCMs are Paraffin wax and Steric acid which typically used for solar water heater. The objective is to explore the characteristics of the PCM when it is being melted and solidified. The experiments are performed in a glass box. One side of the box wall is heated while the opposite wall is kept constant and other walls are insulated. Temperature of the heated wall are kept constant at 80°C, 85°C, and 90°C, respectively. Every experiment is carried out for 600 minutes. Temperatures are recorded and the melting and solidification processes are pictured by using camera. The results show that the melting process starts from the upper part of the thermal storage. In the solidification process, it starts from the lower part of the thermal storage. As a thermal energy storage, Paraffin wax is better than Steric acid. This is because Paraffin wax can store more energy. At heat source temperature of 90°C, thermal energy stored by Paraffin wax and Stearic acid is 61.84 kJ and 57.39 kJ, respectively. Thus it is better to used Paraffin wax in the solar water heater as thermal energy storage.

  4. Experimental infection with Toxocara cati in pigs: migratory pattern and pathological response in early phase.

    PubMed

    Sommerfelt, Irma Estela; Duchene, Adriana; Daprato, Betina; Lopez, Clara María; Cardillo, Natalia; Franco, Aníbal Juan

    2014-01-01

    Experimental inoculations of approximately 100,000 infective Toxocara cati larval eggs were done in twelve pigs. The T. cati eggs used for inoculation were collected from cat's feces. Another group of three pigs served as an uninfected control. Groups of infected pigs were euthanized at seven, 14, 21, and 28 days post-inoculation (dpi). Tissue samples were taken for digestion and histopathology changes in early phase. The number of larvae recovered from the lungs peaked at seven and 14 dpi and were also present at 21, and 28 dpi. Larvae of T. cati were present in the lymph nodes of the small and large intestine at seven, 14, and 28 dpi and at seven, 14, 21, and 28 dpi respectively. In other studied tissues, no larvae or less than one larva per gram was detected. The pathological response observed in the liver and lungs at seven and 14 dpi, showed white spots on the liver surface and areas of consolidation were observed in the lungs. The lungs showed an inflammatory reaction with larvae in center at 28 dpi. In the liver we observed periportal and perilobular hepatitis. The lymph nodes of the intestines displayed eosinophil lymphadenitis with reactive centers containing parasitic forms in some of them. The granulomatous reaction was not observed in any tissues. The role of the other examined tissues had less significance. The relevance of this parasite as an etiological agent that leads to disease in paratenic hosts is evident.

  5. Local equilibrium in bird flocks

    NASA Astrophysics Data System (ADS)

    Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene

    2016-12-01

    The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

  6. Equilibrium of KSTAR Plasma

    NASA Astrophysics Data System (ADS)

    You, K.-I.; Lee, D.-K.; Lee, S. G.; Bak, J. G.; Hahn, S. H.; Lao, L.; Kstar Team

    2011-10-01

    We have installed the EFIT code on our computing system and made some modification to reconstruct the plasma equilibrium of KSTAR (Korea Superconducting Tokamak Advanced Research). KSTAR PF and TF coil systems use a CICC (Cable-In-Conduit Conductor) type superconductor. The CICC jacket material for most PF and all TF coils is Incoloy 908, which is a magnetic material with relative magnetic permeability greater than 10 in low external field. We newly introduced Diamagnetic Loop and variational Motion Stark Effect signals to equilibrium reconstruction. In this paper, we present some results of equilibrium reconstruction with the EFIT code, assess the effects of newly introduced diagnsotics signal on the equilibrium reconstruction and compare the EFIT results with the various diagnostics data in various plasma conditions including H- and L- modes. In addition, we will show the Incoloy908 effects on the plasma equilibrium.

  7. Experimental demonstration of phase-sensitive regeneration of a binary phase-shift keying channel without a phase-locked loop using Brillouin amplification.

    PubMed

    Almaiman, Ahmed; Cao, Yinwen; Ziyadi, Morteza; Mohajerin-Ariaei, Amirhossein; Liao, Peicheng; Bao, Changjing; Alishahi, Fatemeh; Fallahpour, Ahmad; Shamee, Bishara; Ahmed, Nisar; Willner, Asher J; Akasaka, Youichi; Ikeuchi, Tadashi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Wilkinson, Steven; Touch, Joseph D; Tur, Moshe; Willner, Alan E

    2016-12-01

    All-optical phase regeneration of a binary phase-shift keying signal is demonstrated at 10-30 Gb/s without a phase-locked loop in a phase-sensitive amplification-based system using Brillouin amplification of the idler. The system achieves phase noise reduction of up to 56% and up to 11 dB OSNR gain at 10-5 bit error rate for the 10 Gb/s signal. The system's sensitivity to different parameters and stability is also evaluated.

  8. Equilibrium capillary forces with atomic force microscopy.

    PubMed

    Sprakel, J; Besseling, N A M; Leermakers, F A M; Cohen Stuart, M A

    2007-09-07

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin and dextran, with interfacial tensions around 10 microN/m. The equilibrium nature of the capillary forces is attributed to the combination of a low interfacial tension and a microscopic confinement geometry, based on nucleation and growth arguments.

  9. Effect of the cosolutes trehalose and methanol on the equilibrium and phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations.

    PubMed

    Laner, Monika; Horta, Bruno A C; Hünenberger, Philippe H

    2014-11-01

    The influence of the cosolutes trehalose and methanol on the structural, dynamic and thermodynamic properties of a glycerol-1-monopalmitate (GMP) bilayer and on its main transition temperature [Formula: see text] is investigated using atomistic molecular dynamics simulations (600 ns) of a GMP bilayer patch (2 × 8 × 8 lipids) at different temperatures in the range of 302 to 338 K and considering three different cosolute concentrations. Depending on the environment and temperature, these simulations present no or a single GL[Formula: see text]LC, LC[Formula: see text]GL or LC[Formula: see text]ID transition, where LC, GL and ID are the liquid crystal, gel and interdigitated phases, respectively. The trehalose molecules form a coating layer at the bilayer surface, promote the hydrogen-bonded bridging of the lipid headgroups, preserve the interaction of the headgroups with trapped water and induce a slight lateral expansion of the bilayer in the LC phase, observations that may have implications for the phenomenon of anhydrobiosis. However, this cosolute does not affect [Formula: see text] and its dependence on hydration in the concentration range considered. On the other hand, methanol molecules intercalate between the lipid headgroups, promote a lateral expansion of the bilayer in the LC phase and induce a concentration dependent decrease of [Formula: see text], observations that may have implications for the phenomenon of anesthesia. The occurrence of an ID phase in the presence of this cosolute may be viewed as an extreme consequence of lateral expansion. The analysis of the simulations also suggests the existence of two basic conservation principles: (1) the hydrogen-bond saturation principle rests on the observation that for all species present in the different systems, the total numbers of hydrogen-bonds per molecule is essentially constant, the only factor of variability being their distribution among different partners; (2) the densest packing principle

  10. Study of the thymine molecule: equilibrium structure from joint analysis of gas-phase electron diffraction and microwave data and assignment of vibrational spectra using results of ab initio calculations.

    PubMed

    Vogt, Natalja; Khaikin, Leonid S; Grikina, Olga E; Rykov, Anatolii N; Vogt, Jürgen

    2008-08-21

    Thymine is one of the nucleobases which forms the nucleic acid (NA) base pair with adenine in DNA. The study of molecular structure and dynamics of nucleobases can help to understand and explain some processes in biological systems and therefore it is of interest. Because the scattered intensities on the C, N, and O atoms as well as some bond lengths in thymine are close to each other the structural problem cannot been solved by the gas phase electron diffraction (GED) method alone. Therefore the rotational constants from microvawe (MW) studies and differences in the groups of N-C, C=O, N-H, and C-H bond lengths from MP2 (full)/cc-pVQZ calculations were used as supplementary data. The analysis of GED data was based on the C(s) molecular symmetry according to results of the structure optimizations at the MP2 (full) level using 6-311G (d,p), cc-pVTZ, and cc-pVQZ basis sets confirmed by vibrational frequency calculations with 6-311G (d,p) and cc-pVTZ basis sets. Mean-square amplitudes as well as harmonic and anharmonic vibrational corrections to the internuclear distances (r(e)-r(a)) and to the rotational constants (B(e)(k)-B(0)(k), where k = A, B, C) were calculated from the quadratic (MP2 (full)/cc-pVTZ) and cubic (MP2 (full)/6-311G (d,p)) force constants (the latter were used only for anharmonic corrections). The harmonic force field was scaled using published IR and Raman spectra of the parent and N1,N3-dideuterated species, which were for the first time completely assigned in the present work. The main equilibrium structural parameters of the thymine molecule determined from GED data supplemented by MW rotational constants and results of MP2 calculations are the following (bond lengths in Angstroms and bond angles in degrees with 3sigma in parentheses): r(e) (C5=C6) = 1.344 (16), r(e) (C5-C9) = 1.487 (8), r(e) (N1-C6) = 1.372 (3), r(e) (N1-C2) = 1.377 (3), r(e) (C2-N3) = 1.378 (3), r(e) (N3-C4) = 1.395 (3), r(e) (C2=O7) = 1.210 (1), r(e) (C4=O8) = 1.215 (1

  11. The phase diagram of charged colloidal lipid A-diphosphate dispersions.

    PubMed

    Reichelt, Hendrik; Faunce, Chester A; Paradies, Henrich H

    2008-03-20

    Small-angle X-ray-scattering, light-scattering, and electron microscope experiments were used to determine the phase transitions of colloidal lipid A-diphosphate aqueous dispersions. The phases detected were a correlated liquid phase, a face-centered cubic (Fd3m) and a body-centered cubic (Im3m) colloidal crystal phase and a new glass phase. These experimentally determined phases were shown to be in accord with theoretically predicted equilibrium phases.

  12. Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue

    SciTech Connect

    Lang, S.; Schulz, G.; Müller, B.; Zanette, I.; Dominietto, M.; Langer, M.; Rack, A.; Le Duc, G.; David, C.; Mohr, J.; Pfeiffer, F.; Weitkamp, T.

    2014-10-21

    When imaging soft tissues with hard X-rays, phase contrast is often preferred over conventional attenuation contrast due its superior sensitivity. However, it is unclear which of the numerous phase tomography methods yields the optimized results at given experimental conditions. Therefore, we quantitatively compared the three phase tomography methods implemented at the beamline ID19 of the European Synchrotron Radiation Facility: X-ray grating interferometry (XGI), and propagation-based phase tomography, i.e., single-distance phase retrieval (SDPR) and holotomography (HT), using cancerous tissue from a mouse model and an entire heart of a rat. We show that for both specimens, the spatial resolution derived from the characteristic morphological features is about a factor of two better for HT and SDPR compared to XGI, whereas the XGI data generally exhibit much better contrast-to-noise ratios for the anatomical features. Moreover, XGI excels in fidelity of the density measurements, and is also more robust against low-frequency artifacts than HT, but it might suffer from phase-wrapping artifacts. Thus, we can regard the three phase tomography methods discussed as complementary. The application will decide which spatial and density resolutions are desired, for the imaging task and dose requirements, and, in addition, the applicant must choose between the complexity of the experimental setup and the one of data processing.

  13. Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue

    NASA Astrophysics Data System (ADS)

    Lang, S.; Zanette, I.; Dominietto, M.; Langer, M.; Rack, A.; Schulz, G.; Le Duc, G.; David, C.; Mohr, J.; Pfeiffer, F.; Müller, B.; Weitkamp, T.

    2014-10-01

    When imaging soft tissues with hard X-rays, phase contrast is often preferred over conventional attenuation contrast due its superior sensitivity. However, it is unclear which of the numerous phase tomography methods yields the optimized results at given experimental conditions. Therefore, we quantitatively compared the three phase tomography methods implemented at the beamline ID19 of the European Synchrotron Radiation Facility: X-ray grating interferometry (XGI), and propagation-based phase tomography, i.e., single-distance phase retrieval (SDPR) and holotomography (HT), using cancerous tissue from a mouse model and an entire heart of a rat. We show that for both specimens, the spatial resolution derived from the characteristic morphological features is about a factor of two better for HT and SDPR compared to XGI, whereas the XGI data generally exhibit much better contrast-to-noise ratios for the anatomical features. Moreover, XGI excels in fidelity of the density measurements, and is also more robust against low-frequency artifacts than HT, but it might suffer from phase-wrapping artifacts. Thus, we can regard the three phase tomography methods discussed as complementary. The application will decide which spatial and density resolutions are desired, for the imaging task and dose requirements, and, in addition, the applicant must choose between the complexity of the experimental setup and the one of data processing.

  14. Systemic acute phase proteins response in calves experimentally infected with Eimeria zuernii.

    PubMed

    Lassen, Brian; Bangoura, Berit; Lepik, Triin; Orro, Toomas

    2015-09-15

    Acute phase proteins (APPs) have been demonstrated to be useful in evaluating general health stress and diseases in cattle. Serum amyloid A (SAA) and haptoglobin (Hp) are APPs that are produced during inflammation, and likely play a role in host immunological defence against Eimeria infection and the associated intestinal tissue damage. We investigated the involvement of SAA and HP in an experimental study, including three groups of calves: a control group (group 0, n=11), and two groups infected with either 150,000 or 250,000 Eimeria zuernii oocysts (group 1 (n=11) and group 2 (n=12), respectively). The calves were monitored for 28 days and data was collected on oocyst excretion, faecal score, animal weight, and SAA and Hp serum concentrations. Generalized linear mixed models showed that the clinical symptoms, indicated by an increase in the number of oocysts in the faeces and severe diarrhoea, manifested at patency for group 1 and 2. Serum Hp and SAA levels also increased during this period. Hp appeared to be a more sensitive marker than SAA, and differences between groups 1 and 2 were observed only for Hp. Linear regression models showed a negative association between weight gain and Hp concentrations, calculated as the area under the curve (AUC) during the overall experimental period and the patency period. A similar result was seen for SAA only during the patency period. This result supports the assumption that reduced weight gain due to E. zuernii infection is an immunologically driven process that involves an increase in APPs. A random intercept regression model of oocyst shedding groups showed that calves shedding 1-500 oocysts had reduced concentrations of Hp, indicating that a different immunological reaction occurs during mild shedding of E. zuernii oocysts than during more intensive shedding. A similar model was used to examine associations between faecal scores and Hp concentrations for each group. Group 2 calves with haemorrhagic diarrhoea displayed

  15. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  16. Experimental Evaluation of an Adaptive Focusing Algorithm for a Microwave Planar Phased-Array Hyperthermia System at UCSF

    DTIC Science & Technology

    1993-05-17

    ESC"--=AD-A267 004 DT1C Tecnical Report EECTESAL 13 1993 I Experimental Evaluation of an Adaptive Focusing Algorithim for a Microwave Planar Phased... surgery , chemo-, and x-ray therapy [15]. One particular method used by itself or in conjunction with another is "tissue heating" or hyperthermia [15-19], a

  17. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    NASA Technical Reports Server (NTRS)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    than possible with hydrogen storage; however, a systematic experimental hydrogenation study has not been reported. A combination of the two approaches may be explored to provide yet higher hydrogen content. The hydrogen containing BNNT produced in our study will be characterized for hydrogen content and thermal stability in simulated space service environments. These new materials systems will be tested for their radiation shielding effectiveness against high energy protons and high energy heavy ions at the HIMAC facility in Japan, or a comparable facility. These high energy particles simulate exposure to SEP and GCR environments. They will also be tested in the LaRC Neutron Exposure Laboratory for their neutron shielding effectiveness, an attribute that determines their capability to shield against the secondary neutrons found inside structures and on lunar and planetary surfaces. The potential significance is to produce a radiation protection enabling technology for future exploration missions. Crew on deep space human exploration missions greater than approximately 90 days cannot remain below current crew Permissible Exposure Limits without shielding and/or biological countermeasures. The intent of this research is to bring the Agency closer to extending space missions beyond the 90-day limit, with 1 year as a long-term goal. We are advocating a systems solution with a structural materials component. Our intent is to develop the best materials system for that materials component. In this Phase I study, we have shown, computationally, that hydrogen containing BNNT is effective for shielding against GCR, SEP, and neutrons over a wide range of energies. This is why we are focusing on hydrogen containing BNNT as an innovative advanced concept. In our future work, we plan to demonstrate, experimentally, that hydrogen, boron, and nitrogen based materials can provide mechanically strong, thermally stable, structural materials with effective radiation shielding against GCR

  18. Stimulus Presentation at Specific Neuronal Oscillatory Phases Experimentally Controlled with tACS: Implementation and Applications

    PubMed Central

    ten Oever, Sanne; de Graaf, Tom A.; Bonnemayer, Charlie; Ronner, Jacco; Sack, Alexander T.; Riecke, Lars

    2016-01-01

    In recent years, it has become increasingly clear that both the power and phase of oscillatory brain activity can influence the processing and perception of sensory stimuli. Transcranial alternating current stimulation (tACS) can phase-align and amplify endogenous brain oscillations and has often been used to control and thereby study oscillatory power. Causal investigation of oscillatory phase is more difficult, as it requires precise real-time temporal control over both oscillatory phase and sensory stimulation. Here, we present hardware and software solutions allowing temporally precise presentation of sensory stimuli during tACS at desired tACS phases, enabling causal investigations of oscillatory phase. We developed freely available and easy to use software, which can be coupled with standard commercially available hardware to allow flexible and multi-modal stimulus presentation (visual, auditory, magnetic stimuli, etc.) at pre-determined tACS-phases, opening up a range of new research opportunities. We validate that stimulus presentation at tACS phase in our setup is accurate to the sub-millisecond level with high inter-trial consistency. Conventional methods investigating the role of oscillatory phase such as magneto-/electroencephalography can only provide correlational evidence. Using brain stimulation with the described methodology enables investigations of the causal role of oscillatory phase. This setup turns oscillatory phase into an independent variable, allowing innovative, and systematic studies of its functional impact on perception and cognition. PMID:27803651

  19. Chemical Principles Revisited: Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1980-01-01

    Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)

  20. Automated method for determination of dissolved organic carbon-water distribution constants of structurally diverse pollutants using pre-equilibrium solid-phase microextraction.

    PubMed

    Ripszam, Matyas; Haglund, Peter

    2015-02-01

    Dissolved organic carbon (DOC) plays a key role in determining the environmental fate of semivolatile organic environmental contaminants. The goal of the present study was to develop a method using commercially available hardware to rapidly characterize the sorption properties of DOC in water samples. The resulting method uses negligible-depletion direct immersion solid-phase microextraction (SPME) and gas chromatography-mass spectrometry. Its performance was evaluated using Nordic reference fulvic acid and 40 priority environmental contaminants that cover a wide range of physicochemical properties. Two SPME fibers had to be used to cope with the span of properties, 1 coated with polydimethylsiloxane and 1 coated with polystyrene divinylbenzene polydimethylsiloxane, for nonpolar and semipolar contaminants, respectively. The measured DOC-water distribution constants showed reasonably good reproducibility (standard deviation ≤ 0.32) and good correlation (R(2)  = 0.80) with log octanol-water partition coefficients for nonpolar persistent organic pollutants. The sample pretreatment is limited to filtration, and the method is easy to adjust to different DOC concentrations. These experiments also utilized the latest SPME automation that largely decreases total cycle time (to 20 min or shorter) and increases sample throughput, which is advantageous in cases when many samples of DOC must be characterized or when the determinations must be performed quickly, for example, to avoid precipitation, aggregation, and other changes of DOC structure and properties. The data generated by this method are valuable as a basis for transport and fate modeling studies.

  1. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.

  2. Formation of metastable phases by spinodal decomposition

    PubMed Central

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2016-01-01

    Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science. PMID:27713406

  3. Formation of metastable phases by spinodal decomposition

    NASA Astrophysics Data System (ADS)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2016-10-01

    Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science.

  4. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  5. Shock induced alpha-epsilon phase transition in iron: Analysis of MD simulations and experimental data

    NASA Astrophysics Data System (ADS)

    Hawreliak, James; Belak, J. F.; Davies, H. M.; Germann, T. C.; Meyers, M. A.

    2005-07-01

    Multi-million atom non-equilibrium molecular dynamics (MD) simulations for shock compressed iron are analyzed using Fourier methods to determine the long scale ordering of the crystal. By analyzing the location of the maxima in k-space we can determine the crystal structure and compression due to the shock. This poster will present results from different shock pressures and compare them to recent experiments of shock compressed iron where the crystal structure was determined using in-situ wide angle x-ray diffraction.

  6. Study of the Fundamental Bands of 70GeD 4 by High-Resolution Raman and Infrared Spectroscopy: First Experimental Determination of the Equilibrium Bond Length of Germane

    NASA Astrophysics Data System (ADS)

    Pierre, G.; Boudon, V.; MKadmi, E. B.; Bürger, H.; Bermejo, D.; Martínez, R.

    2002-12-01

    The four fundamental bands of 70GeD 4 have been analyzed using the STDS software developed in Dijon (http://www.u-bourgogne.fr/LPUB/sTDS.html). Both infrared and Raman spectra were used to observe all fundamental bands. Infrared spectra of monoisotopic 70GeD 4 were recorded in the regions 600 and 1500 cm -1 using the Bruker 120HR interferometer at Wuppertal. The resolution (1/maximum optical path difference) was between 2.3 and 3.3×10 -3 cm -1 for the ν 3 and ν 4 infrared-active fundamental bands as well as for the interacting ν 2 band. A high-resolution stimulated Raman spectrum of the ν 1 band has been recorded in Madrid. The instrumental resolution of the Raman spectrum was 3.3×10 -3 cm -1. We have performed a global fit of the ground state, ν 2/ν 4 bending dyad, and ν 1/ν 3 stretching dyad. We have used 1146, 139, and 676 assigned lines for ν 2/ν 4, ν 1, and ν 3, respectively. The standard deviation is 2.2×10 -3 cm -1 for the bending dyad, 1.6×10 -3 cm -1 for the ν 3 infrared lines, and 1.7×10 -3 cm -1 for the ν 1 Raman lines. These results enabled us to perform the first experimental determination of the equilibrium bond length of germane as re=1.5173(1) Å.

  7. Experimental and theoretical methods to study structural phase transition mechanisms in K3WO3F3 oxyfluoride

    NASA Astrophysics Data System (ADS)

    Krylov, A. S.; Sofronova, S. N.; Kolesnikova, E. M.; Ivanov, Yu. N.; Sukhovsky, A. A.; Goryainov, S. V.; Ivanenko, A. A.; Shestakov, N. P.; Kocharova, A. G.; Vtyurin, A. N.

    2014-10-01

    The results of structural phase transitions mechanisms study in K3WO3F3oxyfluoride are represented by different experimental and theoretical methods. The structural phase transition anomalies at T1=452 K and T2=414 K of Raman and IR spectra have been analyzed. Using vibrational spectroscopy methods, the NMR-experiment has been done to clarify the nature of found phase transitions: displacive types or order-disorder types. The model of “disordered” crystal was proposed, and the results of lattice dynamics calculation in frameworks of the generalized Gordon-Kim method of ordered (R3) and “disordered” crystals were compared. The high pressure phases were studied by the Raman technique too.

  8. Experimental investigation of the equalization-enhanced phase noise in long haul 56 Gbaud DP-QPSK systems.

    PubMed

    Zhuge, Qunbi; Xu, Xian; El-Sahn, Ziad A; Mousa-Pasandi, Mohammad E; Morsy-Osman, Mohamed; Chagnon, Mathieu; Qiu, Meng; Plant, David V

    2012-06-18

    We experimentally demonstrate the impact of equalization-enhanced phase noise (EEPN) on the performance of 56 Gbaud dual-polarization (DP) QPSK long haul transmission systems. Although EEPN adds additional noise to the received symbols, we show that this reduces the phase variance introduced by the LO laser, and therefore should be considered when designing the carrier phase recovery (CPR) algorithms and estimating system performance. Further, we experimentally demonstrate the performance degradation caused by EEPN when a LO laser with a large linewidth is used at the receiver. When using a 2.6 MHz linewidth distributed feedback (DFB) laser instead of a ~100 kHz linewidth external-cavity laser (ECL) as a LO, the transmission distance is reduced from 4160 km to 2640 km due to EEPN. We also confirm the reduction of the phase variance of the received symbols for longer transmission distances showing its impact on the CPR algorithm optimization when a DFB laser is used at the receiver. Finally, the relationship between the EEPN-induced penalty versus the signal baud rate and the LO laser linewidth is experimentally evaluated, and numerically validated by simulations.

  9. Numerical and Experimental Investigation of Stratified Gas-Liquid Two-Phase Flow in Horizontal Circular Pipes

    SciTech Connect

    Faccini, J.L.H.; Sampaio, P.A.B. de

    2006-07-01

    This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. The Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)

  10. Experimental study of Gas Phase Formation and Evolution in Low fO2 Planetary Basalts.

    NASA Astrophysics Data System (ADS)

    Rutherford, M. J.; Wetzel, D. T.; Saal, A. E.; Hauri, E. H.

    2012-12-01

    The existence of a gas phase in planetary basaltic magmas is demonstrated by the ubiquitous presence of vesicles in returned lunar samples and meteorites as well as basalts from Earth and Mars. Additionally, formation of the fine-grained glass bead deposits during eruption of lunar picritic glasses required a large gas-bubble volume (> 90%) at the time of eruption/fragmentation. Up to 100-200 ppm levels of H, S, Cl and F still remain as diffusion-loss profiles in individual lunar glass beads SIMS (1), and higher volatile concentrations occur in olivine melt inclusions (2). The composition and origin of such volcanic gases were investigated by experiments on a volatile (C-O-H-S-Cl-F)-bearing picritic glass composition as a function of fO2 near iron-wustite (IW). The C-O-H species dissolved in gas-saturated basaltic melt above IW-0.5 are carbonate, OH and H2O with 100 to 10,000 ppm H2O in the sample; below IW-0.5, the C-species present (Raman and FTIR) are Fe(CO)5 (iron pentacarbonyl) and lesser CH4 [3]. The change in melt speciation in part reflects a change in calculated speciation in the coexisting gas [4]. The carbon solubility in these experimental melts increases linearly with increasing pressure; the more oxidized glasses contain 32-620 ppm C for pressures of 98 to 980 MPa, the reduced glasses contain 8-240 ppm C for pressures between 36 and 900 MPa. Thus, the C solubility of the more reduced Fe-carbonyl and CH4 is about one-half that of carbonate at the same pressure, and indicates the carrying capacity for C in reduced (i.e., lunar) magmas is much lower than it is in present day terrestrial magmas. Varioles up to 200 um in diameter formed in some experiments with higher dissolved water contents (1%); they have radiating crystalline textures (olivine, glass and poorly crystallized graphite) initiated at a central nucleation site. A sharp peak in the variole Ramen spectra indicates methane as well as CO is released during variole formation and a reaction such

  11. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  12. Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis

    PubMed Central

    Williams, Alex H.; Kwiatkowski, Molly A.; Mortimer, Adam L.; Marder, Eve; Zeeman, Mary Lou

    2013-01-01

    The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: “small cells” (SCs) and “large cells” (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. PMID:23446690

  13. Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis.

    PubMed

    Williams, Alex H; Kwiatkowski, Molly A; Mortimer, Adam L; Marder, Eve; Zeeman, Mary Lou; Dickinson, Patsy S

    2013-05-01

    The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: "small cells" (SCs) and "large cells" (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations.

  14. An Experimental Evaluation of Hyperactivity and Food Additives. 1977-Phase II.

    ERIC Educational Resources Information Center

    Harley, J. Preston; And Others

    Phase II of a study on the effectiveness of B. Feingold's recommended diet for hyperactive children involved the nine children (mean age 9 years) who had shown the "best" response to diet manipulation in Phase I. Each child served as his own control and was challenged with specified amounts of placebo and artificial color containing food…

  15. Solution and gas-phase acidities of all-trans (all-E) retinoic acid: an experimental and computational study.

    PubMed

    Abboud, José-Luis M; Koppel, Ilmar A; Uggerud, Einar; Leito, Ivo; Koppel, Ivar; Sekiguchi, Osamu; Kaupmees, Karl; Saame, Jaan; Kütt, Karl; Mishima, Masaaki

    2015-07-27

    Retinoic acid is of fundamental biological importance. Its acidity was determined in the gas phase and in acetonitrile solution by means of mass spectrometry and UV/Vis spectrophotometry, respectively. The intrinsic acidity is slightly higher than that of benzoic acid. In solution, the situation is opposite. The experimental systems were described theoretically applying quantum chemical methods (wave function theory and density functional theory). This allowed the determination of the molecular structure of the acid and its conjugate base, both in vacuo and in solution, and for computational estimates of its acidity in both phases.

  16. Comparison between phase field simulations and experimental data from intragranular bubble growth in UO{sub 2}

    SciTech Connect

    Tonks, M. R.; Biner, S. B.; Mille, P. C.; Andersson, D. A.

    2013-07-01

    In this work, we used the phase field method to simulate the post-irradiation annealing of UO{sub 2} described in the experimental work by Kashibe et al., 1993 [1]. The simulations were carried out in 2D and 3D using the MARMOT FEM-based phase-field modeling framework. The 2-D results compared fairly well with the experiments, in spite of the assumptions made in the model. The 3-D results compare even more favorably to experiments, indicating that diffusion in all three directions must be considered to accurate represent the bubble growth. (authors)

  17. Experimental continuous-variable entanglement from a phase-difference-locked optical parametric oscillator

    SciTech Connect

    Jing Jietai; Feng Sheng; Bloomer, Russell; Pfister, Olivier

    2006-10-15

    We observed continuous-variable entanglement between the bright beams emitted above threshold by an ultrastable optical parametric oscillator (OPO), classically phase locked at a frequency difference of 161.827 324 0(5) MHz. The amplitude-difference squeezing is -3 dB and the phase-sum one is -1.35 dB. Besides proving entanglement in a phase-locked OPO, such outstanding frequency-difference stability paves the way for transferring entanglement between different optical frequencies and densely implementing continuous-variable quantum information in the frequency domain.

  18. Experimental study of flow oscillations in parallel evaporators of a carbon dioxide two-phase loop

    NASA Astrophysics Data System (ADS)

    Sun, Xihui; He, Zhenhui; Huang, Zhencheng

    2013-07-01

    Stability is a key factor that limits the application of liquid-vapor two-phase loop. in this paper, we investigated the two-phase flow stability boundaries of two evaporators in parallel in a mechanically pumped CO2 two-phase loop(MPTL), which distinguish steady flow, flow oscillations at the inlet, and temperature oscillations at the outlets of the evaporators. We inferred that the instability is the result of density wave oscillation (DWO), and found that the periods of the flow oscillations are comparable with the residence time of CO2 fluid particle in the evaporator.

  19. Universality in equilibrium and away from it: A personal perspective

    SciTech Connect

    Munoz, Miguel A.

    2011-03-24

    In this talk/paper I discuss the concept of universality in phase transitions and the question of whether universality classes are more robust in equilibrium than away from it. In both of these situations, the main ingredients determining universality are symmetries, conservation laws, the dimension of the space and of the order-parameter and the presence of long-range interactions or quenched disorder. The existence of detailed-balance and fluctuation-dissipation theorems imposes severe constraints on equilibrium systems, allowing to define universality classes in a very robust way; instead, non-equilibrium allows for more variability. Still, quite robust non-equilibrium universality classes have been identified in the last decades. Here, I discuss some examples in which (i) non-equilibrium phase transitions are simply controlled by equilibrium critical points, i.e. non-equilibrium ingredients turn out to be irrelevant in the renormalization group sense and (ii) non-equilibrium situations in which equilibrium seems to come out of the blue, generating an adequate effective description of intrinsically non-equilibrium problems. Afterwards, I shall describe different genuinely non-equilibrium phase transitions in which introducing small, apparently innocuous changes (namely: presence or absence of an underlying lattice, parity conservation in the overall number of particles, existence of an un-accessible vacuum state, deterministic versus stochastic microscopic rules, presence or absence of a Fermionic constraint), the critical behavior is altered, making the case for lack of robustness. However, it will be argued that in all these examples, there is an underlying good reason (in terms of general principles) for universality to be altered. The final conclusions are that: (i) robust universality classes exist both in equilibrium and non-equilibrium; (ii) symmetry and conservation principles are crucial in both, (iii) non-equilibrium allows for more variability (i

  20. Equilibrium structure of ferrofluid aggregates.

    PubMed

    Yoon, Mina; Tománek, David

    2010-11-17

    We study the equilibrium structure of large but finite aggregates of magnetic dipoles, representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing system size, the structural motif evolves from chains and rings to multi-chain and multi-ring assemblies. Very large systems form single- and multi-wall coils, tubes and scrolls. These structural changes result from a competition between various energy terms, which can be approximated analytically within a continuum model. We also study the effect of external parameters such as magnetic field on the relative stability of these structures. Our results may give insight into experimental data obtained during solidification of ferrofluid aggregates at temperatures where thermal fluctuations become negligible in comparison to inter-particle interactions. These data may also help to experimentally control the aggregation of magnetic particles.