Energy Systems Test Area (ESTA). Power Systems Test Facilities
NASA Technical Reports Server (NTRS)
Situ, Cindy H.
2010-01-01
This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.
1991-08-01
insert various jamming signals. The criterion for classifying radio equipment under test is the quality of transferred information , that is the SINAD...UNCLASSFED) This report describes a test facility for measuring the behaviour and quality of radio communication equipment in a simulated operational...formation FEL has the disposal of a facility to test the quality of radio equipment in a simulated operational situation. (Y .. ,. -’ , / " " ’ TNO mppon 4
SP-100 ground engineering system test site description and progress update
NASA Astrophysics Data System (ADS)
Baxter, William F.; Burchell, Gail P.; Fitzgibbon, Davis G.; Swita, Walter R.
1991-01-01
The SP-100 Ground Engineering System Test Site will provide the facilities for the testing of an SP-100 reactor, which is technically prototypic of the generic design for producing 100 kilowatts of electricity. This effort is part of the program to develop a compact, space-based power system capable of producing several hundred kilowatts of electrical power. The test site is located on the U.S. Department of Energy's Hanford Site near Richland, Washington. The site is minimizing capital equipment costs by utilizing existing facilities and equipment to the maximum extent possible. The test cell is located in a decommissioned reactor containment building, and the secondary sodium cooling loop will use equipment from the Fast Flux Test Facility plant which has never been put into service. Modifications to the facility and special equipment are needed to accommodate the testing of the SP-100 reactor. Definitive design of the Ground Engineering System Test Site facility modifications and systems is in progress. The design of the test facility and the testing equipment will comply with the regulations and specifications of the U.S. Department of Energy and the State of Washington.
46 CFR 162.050-15 - Designation of facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (2) Each type of equipment the facility proposes to test. (3) A description of the facility's... concentrations and the values obtained by the facility with their equipment. The value of X d for the 12... conduct approval tests— (1) A facility must have the management organization, equipment for conducting...
The test facility for the short prototypes of the LHC superconducting magnets
NASA Astrophysics Data System (ADS)
Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.
2002-05-01
The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come.
Realistic Development and Testing of Fission System at a Non-Nuclear Testing Facility
NASA Technical Reports Server (NTRS)
Godfroy, Tom; VanDyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike
2000-01-01
The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems.
Realistic development and testing of fission systems at a non-nuclear testing facility
NASA Astrophysics Data System (ADS)
Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike
2000-01-01
The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .
Standards for material handling and facilities equipment proofload testing
NASA Technical Reports Server (NTRS)
Bonn, S. P.
1970-01-01
Document provides information on verifying the safety of material handling and facilities equipment /MH/FE/, ranging from monorail systems to ladders and non-powered mobile equipment. Seven catagories of MH/FE equipment are defined.
Ground Handling of Batteries at Test and Launch-site Facilities
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Hohl, Alan R.
2008-01-01
Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.
46 CFR 160.062-8 - Procedures for acceptance of testing facility.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Procedures for acceptance of testing facility. 160.062-8 Section 160.062-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment...
LPT. Shield test facility (TAN645) interior. Mechanical equipment room with ...
LPT. Shield test facility (TAN-645) interior. Mechanical equipment room with switchgear and control boards. Photographer: Jack L. Anderson. Date: February 20, 1959. INEEL negative no. 59-858 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
LPT. Shield test facility (TAN645) interior. Mechanical equipment room with ...
LPT. Shield test facility (TAN-645) interior. Mechanical equipment room with airwasher and refrigeration compressor. Photographer: Jack L. Anderson. Date: February 20, 1959. INEEL negative no. 59-855 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDade, Mark
2016-12-01
The Department of Energy/National Renewable Energy Laboratory (DOE/NREL) owns and operates a megawatt-scale dynamometer used for testing wind turbine drive trains up to 1.5 megawatt (MW) in rated capacity. At this time, this unit is the only unit of its type in the United States, available for use by the American Wind Industry. Currently this dynamometer is heavily backlogged and unavailable to provide testing needed by various wind industry members. DOE/NREL is in possession of two critical pieces of equipment that may be used to develop an alternative Dynamometer facility, but does not have the funds or other resources necessarymore » to develop such a facility. The Participant possesses complimentary facilities and infrastructure that when combined with the NREL equipment can create such a test facility. The Participant is also committed to expending funds to develop and operate such a facility to the subsequent benefit of the Wind Industry and DOE Wind Energy program. In exchange for DOE/NREL providing the critical equipment, the Participant will grant DOE/NREL a minimum of 90 days of testing time per year in the new facility while incurring no facilities fees.« less
20. VIEW OF TEST FACILITY IN 1967 WHEN EQUIPPED FOR ...
20. VIEW OF TEST FACILITY IN 1967 WHEN EQUIPPED FOR DOSIMETER TEST BY HEALTH PHYSICISTS. CAMERA FACING EAST. INEL PHOTO NUMBER 76-2853, TAKEN MAY 16, 1967. PHOTOGRAPHER: CAPEK. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
High Vacuum Creep Facility in the Materials Processing Laboratory
1973-01-21
Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.
Development and applications of nondestructive evaluation at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.
1990-01-01
A brief description of facility design and equipment, facility usage, and typical investigations are presented for the following: Surface Inspection Facility; Advanced Computer Tomography Inspection Station (ACTIS); NDE Data Evaluation Facility; Thermographic Test Development Facility; Radiographic Test Facility; Realtime Radiographic Test Facility; Eddy Current Research Facility; Acoustic Emission Monitoring System; Advanced Ultrasonic Test Station (AUTS); Ultrasonic Test Facility; and Computer Controlled Scanning (CONSCAN) System.
Laboratory Resources Management in Manufacturing Systems Programs
ERIC Educational Resources Information Center
Obi, Samuel C.
2004-01-01
Most, if not all, industrial technology (IT) programs have laboratories or workshops. Often equipped with modern equipment, tools, materials, and measurement and test instruments, these facilities constitute a major investment for IT programs. Improper use or over use of program facilities may result in dirty lab equipment, lost or damaged tools,…
15. INTERIOR VIEW TO THE NORTHEAST OF EQUIPMENT IN ROOM ...
15. INTERIOR VIEW TO THE NORTHEAST OF EQUIPMENT IN ROOM 4, EQUIPMENT AND GENERATOR ROOM, BUILDING 3113/3113A. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
New NREL Research Facility Slashes Energy Use by 66 Percent
Thermal Test Facility, which serves as a showcase of energy-saving features and the home of NREL's cutting technologies now being developed at the Thermal Test Facility will help us reach this goal." The facility energy-efficient building design, NREL's Thermal Test Facility houses sophisticated equipment for
An inventory of aeronautical ground research facilities. Volume 3: Structural
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.
1971-01-01
An inventory of test facilities for conducting acceleration, environmental, impact, structural shock, load, heat, vibration, and noise tests is presented. The facility is identified with a description of the equipment, the testing capabilities, and cost of operation. Performance data for the facility are presented in charts and tables.
Space power distribution system technology. Volume 3: Test facility design
NASA Technical Reports Server (NTRS)
Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.
1983-01-01
The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... approval process for all lifesaving equipment required under the various vessel and facility regulations in... buoyant apparatuses. If the proposed rule is made final, all equipment approved after the effective date... Equipment: Production Testing and Harmonization With International Standards; Proposed Rule #0;#0;Federal...
12. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO ...
12. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO TAPE EQUIPMENT AND VOICE INTERCOM EQUIPMENT. THE MONITORS ABOVE GLASS WALL DISPLAY UNDERWATER TEST VIDEO TO CONTROL ROOM. FARTHEST CONSOLE ROW CONTAINS CAMERA SWITCHING, PANNING, TILTING, FOCUSING, AND ZOOMING. MIDDLE CONSOLE ROW CONTAINS TEST CONDUCTOR CONSOLES FOR MONITORING TEST ACTIVITIES AND DATA. THE CLOSEST CONSOLE ROW IS NBS FACILITY CONSOLES FOR TEST DIRECTOR, SAFETY AND QUALITY ASSURANCE REPRESENTATIVES. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
13. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO ...
13. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO TAPE EQUIPMENT AND VOICE INTERCOM EQUIPMENT. THE MONITORS ABOVE GLASS WALL DISPLAY UNDERWATER TEST VIDEO TO CONTROL ROOM. FARTHEST CONSOLE ROW CONTAINS CAMERA SWITCHING, PANNING, TILTING, FOCUSING, AND ZOOMING. MIDDLE CONSOLE ROW CONTAINS TEST CONDUCTOR CONSOLES FOR MONITORING TEST ACTIVITIES AND DATA. THE CLOSEST CONSOLE ROW IS NBC FACILITY CONSOLES FOR TEST DIRECTOR, SAFETY AND QUALITY ASSURANCE REPRESENTATIVES. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
10. INTERIOR VIEW TO THE SOUTHEAST OF INSTRUMENTS AND EQUIPMENT ...
10. INTERIOR VIEW TO THE SOUTHEAST OF INSTRUMENTS AND EQUIPMENT IN ROOM 1. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
11. INTERIOR VIEW TO THE SOUTH OF INSTRUMENTS AND EQUIPMENT ...
11. INTERIOR VIEW TO THE SOUTH OF INSTRUMENTS AND EQUIPMENT IN ROOM 1. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
40 CFR 267.33 - What are the testing and maintenance requirements for the equipment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Preparedness and Prevention § 267.33 What are the testing and maintenance requirements for the equipment? You must test and maintain all required facility communications or...
40 CFR 267.33 - What are the testing and maintenance requirements for the equipment?
Code of Federal Regulations, 2014 CFR
2014-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Preparedness and Prevention § 267.33 What are the testing and maintenance requirements for the equipment? You must test and maintain all required facility communications or...
40 CFR 267.33 - What are the testing and maintenance requirements for the equipment?
Code of Federal Regulations, 2013 CFR
2013-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Preparedness and Prevention § 267.33 What are the testing and maintenance requirements for the equipment? You must test and maintain all required facility communications or...
40 CFR 267.33 - What are the testing and maintenance requirements for the equipment?
Code of Federal Regulations, 2012 CFR
2012-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Preparedness and Prevention § 267.33 What are the testing and maintenance requirements for the equipment? You must test and maintain all required facility communications or...
40 CFR 267.33 - What are the testing and maintenance requirements for the equipment?
Code of Federal Regulations, 2011 CFR
2011-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Preparedness and Prevention § 267.33 What are the testing and maintenance requirements for the equipment? You must test and maintain all required facility communications or...
Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.
NASA Technical Reports Server (NTRS)
Hinners, A. H., Jr.; Correale, J. V.
1973-01-01
This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.
13. INTERIOR VIEW TO THE WEST OF EQUIPMENT IN ROOM ...
13. INTERIOR VIEW TO THE WEST OF EQUIPMENT IN ROOM 2, RADIATION EFFECTS ROOM. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raimondo, E.; Capman, J.L.; Herovard, M.
1985-05-01
Requirements for qualification of electrical equipment used in French-built nuclear power plants are stated in a national code, the RCC-E, or Regles de Construction et de Conception des Materiels Electriques. Under the RCC-E, safety related equipment is assigned to one of three different categories, according to location in the plant and anticipated normal, accident and post-accident behavior. Qualification tests differ for each category and procedures range in scope from the standard seismic test to the highly stringent VISA program, which specifies a predetermined sequence of aging, radiation, seismic and simulated accident testing. A network of official French test facilities wasmore » developed specifically to meet RCC-E requirements.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Health maintenance facility: Dental equipment requirements
NASA Technical Reports Server (NTRS)
Young, John; Gosbee, John; Billica, Roger
1991-01-01
The objectives were to test the effectiveness of the Health Maintenance Facility (HMF) dental suction/particle containment system, which controls fluids and debris generated during simulated dental treatment, in microgravity; to test the effectiveness of fiber optic intraoral lighting systems in microgravity, while simulating dental treatment; and to evaluate the operation and function of off-the-shelf dental handheld instruments, namely a portable dental hand drill and temporary filling material, in microgravity. A description of test procedures, including test set-up, flight equipment, and the data acquisition system, is given.
14. INTERIOR VIEW TO THE EAST OF EQUIPMENT IN ROOM ...
14. INTERIOR VIEW TO THE EAST OF EQUIPMENT IN ROOM 3, FLOW CONTROL ROOM, BUILDING 3113/3113A. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility is prepared to conduct a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
40 CFR 112.6 - Qualified Facilities Plan Requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Self-Certification of the Plan. If you are an owner or operator of a facility that meets the Tier I... unloading equipment, tank overflow, rupture, or leakage, or any other equipment known to be a source of... the system or procedure in the SPCC Plan and regularly test to ensure proper operation or efficacy. (b...
40 CFR 112.6 - Qualified Facilities Plan Requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Self-Certification of the Plan. If you are an owner or operator of a facility that meets the Tier I... unloading equipment, tank overflow, rupture, or leakage, or any other equipment known to be a source of... the system or procedure in the SPCC Plan and regularly test to ensure proper operation or efficacy. (b...
40 CFR 112.6 - Qualified Facilities Plan Requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Self-Certification of the Plan. If you are an owner or operator of a facility that meets the Tier I... unloading equipment, tank overflow, rupture, or leakage, or any other equipment known to be a source of... the system or procedure in the SPCC Plan and regularly test to ensure proper operation or efficacy. (b...
40 CFR 112.6 - Qualified Facilities Plan Requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Self-Certification of the Plan. If you are an owner or operator of a facility that meets the Tier I... unloading equipment, tank overflow, rupture, or leakage, or any other equipment known to be a source of... the system or procedure in the SPCC Plan and regularly test to ensure proper operation or efficacy. (b...
40 CFR 112.6 - Qualified Facilities Plan Requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Self-Certification of the Plan. If you are an owner or operator of a facility that meets the Tier I... unloading equipment, tank overflow, rupture, or leakage, or any other equipment known to be a source of... the system or procedure in the SPCC Plan and regularly test to ensure proper operation or efficacy. (b...
40 CFR 270.310 - What equipment information must I keep at my facility?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (e.g., identify the hazardous waste management unit on a facility plot plan). (3) Type of equipment... compliance test required by 40 CFR 264.1033(j). (3) A design analysis, specifications, drawings, schematics... acceptable to the Director that present basic control device design information. The design analysis must...
Facility and Laboratory Equipment | Energy Systems Integration Facility |
Energy Systems Integration Facility is its infrastructure. In addition to extensive fixed laboratory . Photo of researchers testing building loads and power networks in the Systems Performance Laboratory
Ground Software Maintenance Facility (GSMF) user's manual
NASA Technical Reports Server (NTRS)
Aquila, V.; Derrig, D.; Griffith, G.
1986-01-01
Instructions for the Ground Software Maintenance Facility (GSMF) system user is provided to operate the GSMF in all modes. The GSMF provides the resources for the Automatic Test Equipment (ATE) computer program maintenance (GCOS and GOAL). Applicable reference documents are listed. An operational overview and descriptions of the modes in terms of operator interface, options, equipment, material utilization, and operational procedures are contained. Test restart procedures are described. The GSMF documentation tree is presented including the user manual.
Test results: Halon 1301 versus water sprinkler fire protection for essential electronic equipment
NASA Astrophysics Data System (ADS)
Reichelt, E. F.; Walker, J. L.; Vickers, R. N.; Kwan, A. J.
1982-07-01
This report describes results of testing two contending extinguishants, Halon 1301 and water, for fire protection of essential electronic equipment. A series of controlled fires in a facility housing an operational electronic data processing system sought to establish immediate and long term effects of exposure of sensitive electronic equipment and stored data to fire extinguishment atmospheres. Test results lead to the conclusion that Halon 1301 is superior to water as an extinguishant for fires occurring in essential electronic equipment installations.
8. VIEW OF RADIOGRAPHY EQUIPMENT, TEST METHODS INCLUDED RADIOGRAPHY AND ...
8. VIEW OF RADIOGRAPHY EQUIPMENT, TEST METHODS INCLUDED RADIOGRAPHY AND BETA BACKSCATTERING. (7/13/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO
LPT. Shield test facility test building interior (TAN646). Camera facing ...
LPT. Shield test facility test building interior (TAN-646). Camera facing south. Distant pool contained EBOR reactor; near pool was intended for fuel rod storage. Other post-1970 activity equipment remains in pool. INEEL negative no. HD-40-9-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
LPT. Shield test facility test building interior (TAN646). Camera points ...
LPT. Shield test facility test building interior (TAN-646). Camera points down into interior of north pool. Equipment on wall is electronical bus used for post-1970 experiment. Personnel ladder at right. INEEL negative no. HD-40-9-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
CHALLENGES IN SETTING UP QUALITY CONTROL IN DIAGNOSTIC RADIOLOGY FACILITIES IN NIGERIA.
Inyang, S O; Egbe, N O; Ekpo, E
2015-01-01
The Nigerian Nuclear Regulatory Authority (NNRA) was established to regulate and control the use of radioactive and radiation emitting sources in Nigeria. Quality control (QC) on diagnostic radiology equipment form part of the fundamental requirements for the authorization of diagnostic radiology facilities in the Country. Some quality control tests (output, exposure linearity and reproducibility) were measured on the x-ray machines in the facilities that took part in the study. Questionnaire was developed to evaluate the frequencies at which QC tests were conducted in the facilities and the challenges in setting up QC. Results show great variation in the values of the QC parameters measured. Inadequate cooperation by facilities management, lack of QC equipment and insufficient staff form the major challenges in setting up QC in the facilities under study. The responses on the frequencies at which QC tests should be conducted did not correspond to the recommended standards; indicating that personnel were not familiar with QC implementation and may require further training on QC.
Research study on stellar X-ray imaging experiment, volume 2
NASA Technical Reports Server (NTRS)
Wilson, H. H.; Vanspeybroeck, L. P.
1972-01-01
A review of the scientific objectives of an integrated X-ray orbiting telescope facility is presented. A set of observations to be conducted to achieve the objectives of the research are described. The techniques and equipment used in the experiment are defined. The configuration of the facility and the specifications of the test equipment are included.
76 FR 68376 - Recoupment of Nonrecurring Costs (NCs) on Sales of U.S. Items
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... expenditures for machine tools, capital equipment, or facilities for which contractor rental payments are made.... Major defense equipment. Any item of significant military equipment on the United States Munitions List... the major defense equipment dollar threshold for research, development, test, and evaluation shall be...
A radiant heating test facility for space shuttle orbiter thermal protection system certification
NASA Technical Reports Server (NTRS)
Sherborne, W. D.; Milhoan, J. D.
1980-01-01
A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.
Direct sunlight facility for testing and research in HCPV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano
2014-09-26
A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in severalmore » locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.« less
NASA Technical Reports Server (NTRS)
Wieland, P. O.; Roman, M. C.; Miller, L.
2007-01-01
On board the International Space Station, heat generated by the crew and equipment is removed by the internal active thermal control system to maintain a comfortable working environment and prevent equipment overheating. Test facilities simulating the internal active thermal control system (IATCS) were constructed at the Marshall Space Flight Center as part of the sustaining engineering activities to address concerns related to operational issues, equipment capability, and reliability. A full-scale functional simulator of the Destiny lab module IATCS was constructed and activated prior to launch of Destiny in 2001. This facility simulates the flow and thermal characteristics of the flight system and has a similar control interface. A subscale simulator was built, and activated in 2000, with special attention to materials and proportions of wetted surfaces to address issues related to changes in fluid chemistry, material corrosion, and microbial activity. The flight issues that have arisen and the tests performed using the simulator facilities are discussed in detail. In addition, other test facilities at the MSFC have been used to perform specific tests related to IATCS issues. Future testing is discussed as well as potential modifications to the simulators to enhance their utility.
Functional Testing Communication Equipment (Avionics).
1980-07-31
Yes No . Comment : 2. Were the facilities, test equipment, instrumentation, and support accommodations adequate to accomplish the test objectives...Yes No . Comment : 3. Have all data collected been reviewed for correctness and completeness? Yes No . Comment : 4. Were the test results compromised in...any way due to insufficient test planning? Yes No . Comment : 5. Were the test results compromised in any way due to test performance procedures? Yes No
Quantitative Image Analysis Techniques with High-Speed Schlieren Photography
NASA Technical Reports Server (NTRS)
Pollard, Victoria J.; Herron, Andrew J.
2017-01-01
Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.
Cryogenic testing of Planck sorption cooler test facility
NASA Technical Reports Server (NTRS)
Zhang, B.; Pearson, D.; Borders, J.; Franklin, B.; Prina, M.; Hardy, J.; Crumb, D.
2004-01-01
A test facility has been upgraded in preparation for testing of two hydrogen sorption cryocoolers operating at 18/20 K. these sorption coolers are currently under development at the Jet Propulsion Laboratory. This work summarizes the scope of the test facility upgrade, including design for cryogenic cooling power delivery, system thermal management, insulation schemes, and data acquisition techniques. Ground support equipment for the sorption coolers, structural features of the test chamber, and the vacuum system involved for system testing will also be described in detail.
Thermal Radiation Source Test Facility, Kirtland Air Force Base, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.F.
This report describes the Thermal Radiation Source (TRS) Test Facility at Kirtland AF Base, New Mexico. It lists the instrumentation and equipment available for use by DOD and other government agencies studying the effects produced by nuclear weapons.
Emergency and trauma care in Pakistan: a cross-sectional study of healthcare levels
Razzak, Junaid A; Baqir, Syed M; Khan, Uzma Rahim; Heller, David; Bhatti, Junaid; Hyder, Adnan A
2015-01-01
Background The importance of emergency medical care for the successful functioning of health systems has been increasingly recognised. This study aimed to evaluate emergency and trauma care facilities in four districts of the province of Sindh, Pakistan. Method We conducted a cross-sectional health facility survey in four districts of the province of Sindh in Pakistan using a modified version of WHO’s Guidelines for essential trauma care. 93 public health facilities (81 primary care facilities, nine secondary care hospitals, three tertiary hospitals) and 12 large private hospitals were surveyed. Interviews of healthcare providers and visual inspections of essential equipment and supplies as per guidelines were performed. A total of 141 physicians providing various levels of care were tested for their knowledge of basic emergency care using a validated instrument. Results Only 4 (44%) public secondary, 3 (25%) private secondary hospitals and all three tertiary care hospitals had designated emergency rooms. The majority of primary care health facilities had less than 60% of all essential equipments overall. Most of the secondary level public hospitals (78%) had less than 60% of essential equipments, and none had 80% or more. A fourth of private secondary care facilities and all tertiary care hospitals (n=3; 100%) had 80% or more essential equipments. The average percentage score on the physician knowledge test was 30%. None of the physicians scored above 60% correct responses. Conclusions The study findings demonstrated a gap in both essential equipment and provider knowledge necessary for effective emergency and trauma care. PMID:24157684
Coal feed component testing for CDIF
NASA Technical Reports Server (NTRS)
Pearson, C. V.; Snyder, B. K.; Fornek, T. E.
1977-01-01
Investigations conducted during the conceptual design of the Montana MHD Component Development and Integration Facility (CDIF) identified commercially available processing and feeding equipment potentially suitable for use in a reference design. Tests on sub-scale units of this equipment indicated that they would perform as intended.
48 CFR 242.202 - Assignment of contract administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., charting, and geodesy services; (F) Base, post, camp, and station purchases; (G) Operation or maintenance... installation, test, and checkout of the missiles and associated equipment); (Q) Operation and maintenance of, or installation of equipment at, military test ranges, facilities, and installations; and (R) The...
48 CFR 242.202 - Assignment of contract administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., charting, and geodesy services; (F) Base, post, camp, and station purchases; (G) Operation or maintenance... installation, test, and checkout of the missiles and associated equipment); (Q) Operation and maintenance of, or installation of equipment at, military test ranges, facilities, and installations; and (R) The...
48 CFR 242.202 - Assignment of contract administration.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., charting, and geodesy services; (F) Base, post, camp, and station purchases; (G) Operation or maintenance... installation, test, and checkout of the missiles and associated equipment); (Q) Operation and maintenance of, or installation of equipment at, military test ranges, facilities, and installations; and (R) The...
48 CFR 242.202 - Assignment of contract administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., charting, and geodesy services; (F) Base, post, camp, and station purchases; (G) Operation or maintenance... installation, test, and checkout of the missiles and associated equipment); (Q) Operation and maintenance of, or installation of equipment at, military test ranges, facilities, and installations; and (R) The...
48 CFR 242.202 - Assignment of contract administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., charting, and geodesy services; (F) Base, post, camp, and station purchases; (G) Operation or maintenance... installation, test, and checkout of the missiles and associated equipment); (Q) Operation and maintenance of, or installation of equipment at, military test ranges, facilities, and installations; and (R) The...
NASA Astrophysics Data System (ADS)
Lewis, B. E.
1982-12-01
The primary decontamination extraction section product (HAP) heat exchanger will be located between the extracting section (HA) and scrubbing section (HS) of centrifugal solvent extraction contactors in the Integrated Equipment Test (IET) facility. The heat exchanger is required to raise the temperature of the organic product stream from the HA contactor from 40 to 500 C. Tests were conducted under prototypic IET operating conditions to determine the head requirements for gravity flow and the overall heat transfer coefficient for the heat exchanger. Results from the tests indicated that the specified heat exchanger would perform satisfactorily under normal operating conditions.
1. West elevations of barrier (Building 4216/E17) and Monitor Building ...
1. West elevations of barrier (Building 4216/E-17) and Monitor Building (4203/E-4). Barrier is built of wood infilled with earth, intended to protect Monitor Building from flying debris should anything at Test Stand 'A' explode. Building 4203/E-4 is built of reinforced concrete; equipment on top of it is cooling tower for refrigeration equipment in Test Stand 'A' machinery room. Electrical utility poles are typical at the facility, and carry 4,800 volts 3-phase alternating current. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Control Center, Edwards Air Force Base, Boron, Kern County, CA
A facility for training Space Station astronauts
NASA Technical Reports Server (NTRS)
Hajare, Ankur R.; Schmidt, James R.
1992-01-01
The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.
33 CFR 106.255 - Security systems and equipment maintenance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintained according to manufacturers' recommendations. (b) Security systems must be regularly tested in... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Security systems and equipment... Shelf (OCS) Facility Security Requirements § 106.255 Security systems and equipment maintenance. (a...
A&M. Jet engine test building (TAN609). Exterior. Equipment inside rollup ...
A&M. Jet engine test building (TAN-609). Exterior. Equipment inside roll-up door is blowdown test facility, part of loft-semiscale program. Note width of central section serving as blast protection for operator on left side. Photographer: Cahoon. Date: July 22, 1965. INEEL negative no. 65-3703 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A guideline for heavy ion radiation testing for Single Event Upset (SEU)
NASA Technical Reports Server (NTRS)
Nichols, D. K.; Price, W. E.; Malone, C.
1984-01-01
A guideline for heavy ion radiation testing for single event upset was prepared to assist new experimenters in preparing and directing tests. How to estimate parts vulnerability and select an irradiation facility is described. A broad brush description of JPL equipment is given, certain necessary pre-test procedures are outlined and the roles and testing guidelines for on-site test personnel are indicated. Detailed descriptions of equipment needed to interface with JPL test crew and equipment are not provided, nor does it meet the more generalized and broader requirements of a MIL-STD document. A detailed equipment description is available upon request, and a MIL-STD document is in the early stages of preparation.
2010-07-15
Electromagnetic Interference ( EMI ), Transportability, Environmental, Human Factors Engineering (HFE), Reliability, Availability and Maintainability (RAM), and...vehicles and trailers to store, protect, and secure equipment, tools, and other theft-prone items. CBCs are designed not to interfere with the carrier’s...Transportability Test Facility. d. Electromagnetic Interference ( EMI ) Test Facility. e. Areas capable of conducting Blackout, Sound, Sand and Dust tests
40 CFR 160.45 - Test system supply facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Test system supply facilities. 160.45 Section 160.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... be storage areas, as needed, for feed, nutrients, soils, bedding, supplies, and equipment. Storage...
Integrated Biorefinery Research Facility | Bioenergy | NREL
industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard intellectual property and helping industrial partners commercialize technologies. Testing Facilities and
A carbon fiber exposure test facility and instrumentation
NASA Technical Reports Server (NTRS)
Newcomb, A. L., Jr.
1980-01-01
A facility to evaluate the risk associated with the exposure of electrical and electronic equipment to airborne carbon/graphite fibers was constructed. A wide variety of instrumentation is described and illustrated.
Bidirectional power converter control electronics
NASA Technical Reports Server (NTRS)
Mildice, J. W.
1987-01-01
The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.
Cold Regions Logistic Supportability Testing of Electronic, Avionic and Communications Equipment.
1985-06-20
Comment : 2. Have all data collected been reviewed for correctness and completeness? YES NO . Comment : 3. Were the facilities, test equipment...insufficient test planning? YES NO . Comment : 5. Were the test results compromised in any way due to test performance procedures? YES NO . Comment : 6. Were the...test results compromised in any way due to test control pro- cedures? YES NO Comment : 7. Were the test results compromised in any way due to data
Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Ernst, E. W.; Sass, J. P.; Lobemeyer, D. A.; Sojourner, S. J.; Hatfield, W. H.; Rewinkel, D. A.
2007-01-01
The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facility
Attitude and articulation control system testing for Project Galileo
NASA Technical Reports Server (NTRS)
Rasmussen, R. D.
1981-01-01
A type of facility required to integrate and test a complex autonomous spacecraft subsystem is presented, using the attitude and articulation control subsystem (AACS) of Project Galileo as an example. The equipment created for testing the AACS at both the subsystem and spacecraft system levels is described, including a description of the support equipment (SE) architecture in its two main configurations, closed loop simulation techniques, the user interface to the SE, and plans for the use of the facility beyond the test period. This system is capable of providing a flight-like functional environment through the use of accurate real-time models and carefully chosen points of interaction, and flexible control capability and high visibility to the test operator.
Using Facility Condition Assessments to Identify Actions Related to Infrastructure
NASA Technical Reports Server (NTRS)
Rubert, Kennedy F.
2010-01-01
To support cost effective, quality research it is essential that laboratory and testing facilities are maintained in a continuous and reliable state of availability at all times. NASA Langley Research Center (LaRC) and its maintenance contractor, Jacobs Technology, Inc. Research Operations, Maintenance, and Engineering (ROME) group, are in the process of implementing a combined Facility Condition Assessment (FCA) and Reliability Centered Maintenance (RCM) program to improve asset management and overall reliability of testing equipment in facilities such as wind tunnels. Specific areas are being identified for improvement, the deferred maintenance cost is being estimated, and priority is being assigned against facilities where conditions have been allowed to deteriorate. This assessment serves to assist in determining where to commit available funds on the Center. RCM methodologies are being reviewed and enhanced to assure that appropriate preventive, predictive, and facilities/equipment acceptance techniques are incorporated to prolong lifecycle availability and assure reliability at minimum cost. The results from the program have been favorable, better enabling LaRC to manage assets prudently.
Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baktash, C.; Lee, I.Y.; Rehm, K.E.
This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less
Lustbader, J.; Andreas, A.
2012-04-01
This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.
Federal Research and Development Funding: FY2017
2016-06-24
facilities and equipment; does not include physical assets for R&D such as R&D equipment and facilities or routine product testing, quality control...multiagency R&D initiative to advance understanding and control of matter at the nanoscale, where the physical , chemical, and biological properties of...nuclear programs that dated back to the Manhattan Project. Today, DOE conducts basic scientific research in areas ranging from nuclear physics to the
Network Extender for MIL-STD-1553 Bus
NASA Technical Reports Server (NTRS)
Marcus, Julius; Hanson, T. David
2003-01-01
An extender system for MIL-STD-1553 buses transparently couples bus components at multiple developer sites. The bus network extender is a relatively inexpensive system that minimizes the time and cost of integration of avionic systems by providing a convenient mechanism for early testing without the need to transport the usual test equipment and personnel to an integration facility. This bus network extender can thus alleviate overloading of the test facility while enabling the detection of interface problems that can occur during the integration of avionic systems. With this bus extender in place, developers can correct and adjust their own hardware and software before products leave a development site. Currently resident at Johnson Space Center, the bus network extender is used to test the functionality of equipment that, although remotely located, is connected through a MILSTD- 1553 bus. Inasmuch as the standard bus protocol for avionic equipment is that of MIL-STD-1553, companies that supply MIL-STD-1553-compliant equipment to government or industry and that need long-distance communication support might benefit from this network bus extender
1985-05-20
APPENDIX B - POST-TEST CHECKLIST 1. Have test data been collected, recorded, and presented in accordance with this TOP? YES NO . Comment : 2. Have all...data collected been reviewed for correctness and completeness? YES NO . Comment : 3. Were the facilities, test equipment, instrumentation, and support...YES NO . Comment : 5. Were the test results compromised in any way due to test performance procedures? YES_ NO . Comment : 6. Were the test results
NASA Technical Reports Server (NTRS)
Jackola, Arthur S.; Hartjen, Gary L.
1992-01-01
The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
1959-07-01
Nevada Test Site. ditions, available equipment and material , and late criteria changes requesifd by the partici- "The Nevada tests will e held during...by visory personnel. H&N Field Engineers or the H&N Material TestsResident Engineer. The majority of material tests consisted of 3. Reports and...procurement of material and hol, date of request, date rquired, work to be equipment to be used in the test facilities pro- performed, and site or station
7 CFR 58.406 - Starter facility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... precaution shall be taken to prevent contamination of the facility, equipment and the air therein. A filtered air supply with a minimum average efficiency of 90 percent when tested in accordance with the ASHRAE....406 Starter facility. A separate starter room or properly designed starter tanks and satisfactory air...
Acceptance test procedure for the L-070 project mechanical equipment and instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loll, C.M.
1996-04-19
This document contains the acceptance test procedure for the mechanical equipment and instrumentation installed per the L-070 Project. The specific system to be tested are the pump controls for the 3906 Lift Station and 350-A Lift Station. In addition, verification that signals are being received by the 300 Area Treated Effluent Disposal Facility control system, is also performed.
Department of Defense In-House RDT and E Activities
1976-10-30
BALLISTIC TESTS.FAC AVAL FCR TESIS OF SP ELELTRONIC’ FIl’ CON EQUIP 4 RELATED SYSTEMS E COMPONFNTZ, 35 INSTALLATION: MEDICAL BIOENGINEERINC- R&D LABORATORY...ANALYSIS OF CHEMICAL AND METALLOGRAPHIC EFFECTS, MICROBIOLOGICAL EFFECTS, CLIMATIC ENVIRONMENTAL EFFECTS. TEST AND EVALUATE WARHEADS AND SPECIAL...CCMMUNICATI’N SYST:M INSTRUMENTED DROP ZONES ENGINEERING TEST FACILITY INSTRUMENTATION CALIBRATICN FACILITY SCIENTIFIC COMPUTER CENTER ENVIRONMENTAL TESY
2. EXTERIOR VIEW TO THE NORTH OF WATER FILTERING EQUIPMENT ...
2. EXTERIOR VIEW TO THE NORTH OF WATER FILTERING EQUIPMENT AND BROCK HOUSES ALONG THE EAST SIDE OF THE COMPOUND. - Nevada Test Site, Pluto Facility, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
21. INTERIOR VIEW TO THE WEST OF EQUIPMENT ABOVE THE ...
21. INTERIOR VIEW TO THE WEST OF EQUIPMENT ABOVE THE OFFICE SPACE AT THE WEST END OF ROOM 101. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
29 CFR 1960.7 - Financial management.
Code of Federal Regulations, 2011 CFR
2011-07-01
... levels, including necessary administrative costs such as training, travel, and personal protective equipment; (2) Abatement of unsafe or unhealthful working conditions related to agency operations or facilities; (3) Safety and health sampling, testing, and diagnostic and analytical tools and equipment...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2014 CFR
2014-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2013 CFR
2013-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
National Transonic Facility Fan Blade prepreg material characterization tests
NASA Technical Reports Server (NTRS)
Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.
1981-01-01
The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.
Hanford spent nuclear fuel hot conditioning system test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, K.J.
1997-09-16
This document provides the test procedures for cold testing of the prototype Hot Conditioning System (HCS) at the 306E Facility. The primary objective of this testing is to confirm design choices and provide data for the detailed design package prior to procurement of the process equipment. The current scope of testing in this document includes a fabricability study of the HCS, equipment performance testing of the HCS components, heat-up and cool-down cycle simulation, and robotic arm testing.
47 CFR 87.199 - Special requirements for 406.0-406.1 MHz ELTs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... certified by a test facility recognized by one of the COSPAS/SARSAT Partners that the equipment satisfies the design characteristics associated with the COSPAS/SARSAT document COSPAS/SARSAT 406 MHz Distress Beacon Type Approval Standard (C/S T.007). Additionally, an independent test facility must certify that...
2006-04-25
KENNEDY SPACE CENTER, FLA. - Mission Specialist Michael Fossum looks at the pump module at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements
NASA Technical Reports Server (NTRS)
Thaxton, Eric A.
2014-01-01
KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D
2014-01-01
Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess themore » performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.« less
NASA Technical Reports Server (NTRS)
Roskam, J.; Muirhead, V. U.; Smith, H. W.; Henderson, T. D.
1977-01-01
The design, construction, and costs of a test facility for determining the sound transmission loss characteristics of various panels and panel treatments are described. The pressurization system and electronic equipment used in experimental testing are discussed as well as the reliability of the facility and the data gathered. Tests results are compared to pertinent acoustical theories for panel behavior and minor anomalies in the data are examined. A method for predicting panel behavior in the stiffness region is also presented.
ERIC Educational Resources Information Center
Day, C. William
1999-01-01
Examines the planning process to identify equipment or systems within an educational facility that could be Y2K sensitive. Discusses developing a contingency plan to prevent operational shutdown. Concluding comments describe a simple Y2K equipment-testing procedure. (GR)
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
Autoclave Meltout of Cast Explosives
1996-08-22
various tanks , kettles , and pelletizing equipment a usable product was recovered. This process creates large amounts of pink water requiring...vacuum treatment melt kettles , flaker belts, and improved material handling equipment in an integrated system. During the 1976/1977 period, AED...McAlester Army Ammo Plant , Oklahoma, to discuss proposed workload and inspect available facilities and equipment . Pilot model production and testing
Fuel-Flexible Gas Turbine Combustor Flametube Facility
NASA Technical Reports Server (NTRS)
Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.
2004-01-01
Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members watch as Japanese Aerospace Exploration Agency, or JAXA, technicians maneuver the antenna in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing at right are Mission Specialists Dave Wolf, Christopher Cassidy, Tim Kopra and Tom Marshburn. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the antenna in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician at left are Mission Specialists Dave Wolf and Christopher Cassidy and Commander Mark Polansky. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
A simulated lightning effects test facility for testing live and inert missiles and components
NASA Technical Reports Server (NTRS)
Craven, Jeffery D.; Knaur, James A.; Moore, Truman W., Jr.; Shumpert, Thomas H.
1991-01-01
Details of a simulated lightning effects test facility for testing live and inert missiles, motors, and explosive components are described. The test facility is designed to simulate the high current, continuing current, and high rate-of-rise current components of an idealized direct strike lightning waveform. The Lightning Test Facility was in operation since May, 1988, and consists of: 3 separate capacitor banks used to produce the lightning test components; a permanently fixed large steel safety cage for retaining the item under test (should it be ignited during testing); an earth covered bunker housing the control/equipment room; a charge/discharge building containing the charging/discharging switching; a remotely located blockhouse from which the test personnel control hazardous testing; and interconnecting cables.
Automated rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.; Roe, Fred; Coker, Cynthia
1992-01-01
The facilities at Marshall Space Flight Center and JSC to be utilized to develop and test an autonomous rendezvous and capture (ARC) system are described. This includes equipment and personnel facility capabilities to devise, develop, qualify, and integrate ARC elements and subsystems into flight programs. Attention is given to the use of a LEO test facility, the current concept and unique system elements of the ARC, and the options available to develop ARC technology.
Augmentor transient capability of an F100 engine equipped with a digital electronic engine control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Pai, G. D.
1984-01-01
An F100 augmented turbofan engine equipped with digital electronic engine control (DEEC) system was evaluated. The engine was equipped with a specially modified augmentor to provide improved steady state and transient augmentor capability. The combination of the DEEC and the modified augmentor was evaluated in sea level and altitude facility tests and then in four different flight phases in an F-15 aircraft. The augmentor configuration, logic, and test results are presented.
2006-04-25
KENNEDY SPACE CENTER, FLA. - Mission Specialist Piers Sellers (left) and Commander Steven Lindsey work with the pump module at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
Acquisition of specialized testing equipment for advanced cement-based materials : addendum.
DOT National Transportation Integrated Search
2014-07-01
The purpose of this addendum is to cover the installation cost associated with several of the specialized pieces of : equipment purchased in project 00038844. See report below from Missouri S&T Physical Facilities itemizing the scope of : work and as...
NASA Technical Reports Server (NTRS)
Springer, Darlene
1989-01-01
Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.
Research study on multi-KW-DC distribution system
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1975-01-01
A detailed definition of the HVDC test facility and the equipment required to implement the test program are provided. The basic elements of the test facility are illustrated, and consist of: the power source, conventional and digital supervision and control equipment, power distribution harness and simulated loads. The regulated dc power supplies provide steady-state power up to 36 KW at 120 VDC. Power for simulated line faults will be obtained from two banks of 90 ampere-hour lead-acid batteries. The relative merits of conventional and multiplexed power control will be demonstrated by the Supervision and Monitor Unit (SMU) and the Automatically Controlled Electrical Systems (ACES) hardware. The distribution harness is supported by a metal duct which is bonded to all component structures and functions as the system ground plane. The load banks contain passive resistance and reactance loads, solid state power controllers and active pulse width modulated loads. The HVDC test facility is designed to simulate a power distribution system for large aerospace vehicles.
40 CFR 267.193 - What testing must I do?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.193 What testing must I do? You must test all new tanks and ancillary equipment...
40 CFR 267.193 - What testing must I do?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.193 What testing must I do? You must test all new tanks and ancillary equipment...
40 CFR 267.193 - What testing must I do?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.193 What testing must I do? You must test all new tanks and ancillary equipment...
40 CFR 267.193 - What testing must I do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.193 What testing must I do? You must test all new tanks and ancillary equipment...
40 CFR 267.193 - What testing must I do?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.193 What testing must I do? You must test all new tanks and ancillary equipment...
A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, D.; Carcagno, R.; Nogiec, J.
2013-09-01
Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-01-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system continues.« less
The infrared spectrograph during the SIRTF pre-definition phase
NASA Technical Reports Server (NTRS)
Houck, James R.
1988-01-01
A test facility was set up to evaluate back-illuminated impurity band detectors constructed for an infrared spectrograph to be used on the Space Infrared Telescope Facility (SIRTF). Equipment built to perform the tests on these arrays is described. Initial tests have been geared toward determining dark current and read noise for the array. Four prior progress reports are incorporated into this report. They describe the first efforts in the detector development and testing effort; testing details and a new spectrograph concept; a discussion of resolution issues raised by the new design; management activities; a review of computer software and testing facility hardware; and a review of the preamplifier constructed as well as a revised schematic of the detector evaluation facility.
Identification of Ways to Improve Military Construction for Energy-Efficient Facilities.
1987-12-01
inservice . Thus, it is necessary to control techniques, materials, and equip- S ment as part of the Military Construction, Army (MCA) process to ensure...Moreover, USACE often lacks proper test equipment and trained personnel at many construction sites. The 0 result is that acceptance testing often is...on a few diagnostic procedures. USACE quality assurance inspectors would be trained to do the tests. .-. Objectives 0 The overall objective of this
40 CFR 63.743 - Standards: General.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Standards for Aerospace Manufacturing and Rework Facilities § 63.743 Standards: General. (a... of the device or equipment, test data verifying the performance of the device or equipment in... chemical milling maskants, as determined in accordance with the applicable procedures set forth in § 63.750...
40 CFR 63.743 - Standards: General.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emission Standards for Aerospace Manufacturing and Rework Facilities § 63.743 Standards: General. (a... of the device or equipment, test data verifying the performance of the device or equipment in... chemical milling maskants, as determined in accordance with the applicable procedures set forth in § 63.750...
40 CFR 63.743 - Standards: General.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Standards for Aerospace Manufacturing and Rework Facilities § 63.743 Standards: General. (a... of the device or equipment, test data verifying the performance of the device or equipment in... chemical milling maskants, as determined in accordance with the applicable procedures set forth in § 63.750...
40 CFR 63.743 - Standards: General.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emission Standards for Aerospace Manufacturing and Rework Facilities § 63.743 Standards: General. (a... of the device or equipment, test data verifying the performance of the device or equipment in... chemical milling maskants, as determined in accordance with the applicable procedures set forth in § 63.750...
40 CFR 63.743 - Standards: General.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Standards for Aerospace Manufacturing and Rework Facilities § 63.743 Standards: General. (a... of the device or equipment, test data verifying the performance of the device or equipment in... chemical milling maskants, as determined in accordance with the applicable procedures set forth in § 63.750...
40 CFR 90.119 - Certification procedure-testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... must select the duty cycle that will result in worst-case emission results for certification. For any... facility, in which case instrumentation and equipment specified by the Administrator must be made available... manufacturers may not use any equipment, instruments, or tools to identify malfunctioning, maladjusted, or...
40 CFR 51.354 - Adequate tools and resources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of... supply of vehicles for covert auditing, test equipment and facilities for program evaluation, and computers capable of data processing, analysis, and reporting. Equipment or equivalent services may be...
Labhardt, Niklaus Daniel; Manga, Engelbert; Ndam, Mama; Balo, Jean-Richard; Bischoff, Alexandre; Stoll, Beat
2009-03-01
To assess the availability of equipment and the staff's knowledge to prevent Mother-To-Child Transmission (PMTCT) in rural healthcare facilities recently covered by the national PMTCT programme in Cameroon. In eight districts inventories of antiviral drugs and HIV test kits were made on site, using a standardised check-list. Knowledge of HIV and PMTCT was evaluated with a multiple-choice (MC) questionnaire based on typical clinical PMTCT cases. Staff participated subsequently in a 2-day training on HIV/AIDS and the Cameroon PMTCT guidelines. Immediately after training and after 7 months, retention of knowledge was tested with the same questions but in different order and layout. Sixty two peripheral nurse-led clinics and the eight district hospitals were assessed. Whereas all district hospitals presented complete equipment, only six of the peripheral clinics (10%) were equipped with both complete testing materials and a full set of drugs to provide PMTCT. Thirty six peripheral facilities (58%) possessed full equipment for HIV-testing and 8 (13%) stocked all PMTCT drugs. Of 137 nurses, 102 (74%) agreed to the two knowledge tests. Fewer than 66% knew that HIV-diagnosis requires positive results in two different types of rapid tests and only 19% chose the right recommendation on infant-feeding for HIV-positive mothers. Correct answers on drug regimens in different PMTCT settings varied from 25% to 56%. All percentages of correct answers improved greatly with training (P < 0.001) and retention remained high 7 months after training (P < 0.001). Prevent Mother-To-Child Transmission programmes in settings such as rural Cameroon need to be adapted to the special needs of peripheral nurse-led clinics. Appropriate short training may considerably improve nurses' competence in PMTCT. Other important components are regular supervision and measures to guarantee supply of equipment in rural areas.
LPT. Shield test facility (TAN645 and 646). Sections show relationships ...
LPT. Shield test facility (TAN-645 and -646). Sections show relationships among control rooms, coupling station, counting rooms, pools, equipment rooms, data room and other areas. Ralph M. Parsons 1229-17 ANP/GE-6-645-A-4. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645/0646-00-693-107350 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Hazard Analysis for Building 34 Vacuum Glove Box Assembly
NASA Technical Reports Server (NTRS)
Meginnis, Ian
2014-01-01
One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to prevent injury to personnel, and to prevent damage to facilities and equipment. The primary purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Building 34 Vacuum Glove Box Assembly, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments and activities while interfacing with facility test systems, equipment and hardware. In fulfillment of the stated purposes, the goal of this hazard analysis is to identify all hazards that have the potential to harm personnel, damage the facility or its test systems or equipment, test articles, Government or personal property, or the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in Appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, "JSC Safety and Health Handbook" and JSC 17773 Rev D "Instructions for Preparation of Hazard Analysis for JSC Ground Operations".
Facilities and support systems for a 90-day test of a regenerative life support system
NASA Technical Reports Server (NTRS)
Malin, R. L.
1972-01-01
A 90-day test is reported of a regenerative life support system which was completed in a space station simulator. The long duration of the test and the fact that it was manned, imposed rigid reliability and safety requirements on the facility. Where adequate reliability could not be built into essential facility systems, either backup systems or components were provided. Awareness was intensified by: (1) placing signs on every piece of equipment that could affect the test, (2) painting switches on all breaker panels a bright contrasting color, (3) restricting access to the test control area, and (4) informing personnel in the facility (other than test personnel) of test activities. It is concluded that the basic facility is satisfactory for conducting long-duration manned tests, and it is recommended that all monitor and alarm functions be integrated into a single operation.
2006-04-25
KENNEDY SPACE CENTER, FLA. - Mission Specialist Piers Sellers (left) and Commander Steven Lindsey (right) are working with the pump module at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
Thermal Vacuum Control Systems Options for Test Facilities
NASA Technical Reports Server (NTRS)
Marchetti, John
2008-01-01
This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the extended antenna in the Inter Orbit Communication System Extended Facility, or ICS-EF, across from them. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician at left are Mission Specialists Christopher Cassidy and Dave Wolf and Commander Mark Polansky (pointing). Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members get a look at the extended antenna (upper left) in the Inter Orbit Communication System Extended Facility, or ICS-EF. Standing next to a Japanese Aerospace Exploration Agency, or JAXA, technician (at center) are (from left) Mission Specialists Dave Wolf and Christopher Cassidy and Commander Mark Polansky. Equipment familiarization is part of a Crew Equipment Interface Test. The antenna and a pointing mechanism will be used to communicate with JAXA’s Data Relay Test Satellite, or DRTS. The ICS-EF will be launched, along with the Extended Facility and Experiment Logistics Module-Exposed Section, to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
Use of personal protective equipment for respiratory protection.
Sargent, Edward V; Gallo, Frank
2003-01-01
Management of hazards in biomedical research facilities requires the application of the traditional industrial hygiene responsibilities of anticipation, recognition, evaluation, and control to characterize the work environment, evaluate tasks and equipment, identify hazards, define exposure groups, and recommend controls. Generally, the diversity and unique characteristics of hazards faced by laboratory and animal facility employees and the short-term and low-level nature of the exposures factor into the selection of proper exposure control measures in the laboratory. The proper selection of control measures is based on a hierarchy of elimination and minimization by engineering controls, followed last by personal protective equipment when exposures cannot be eliminated. Once it is decided that personal protective equipment is needed, specific regulations and guidelines define safety standards for research facilities, including the elements of a sound respiratory protection program. These elements include respirator selection (including appropriate protection factors), medical evaluation, fit testing, training, inspection, maintenance and care, quality, quantity and flow of breathing air, and routine and emergency use procedures.
Workers in SSPF monitor Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility control room check documentation during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
Workers in SSPF monitor Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
Code of Federal Regulations, 2010 CFR
2010-10-01
... equipment, or track motor car, singly or in combination with other equipment, on the track of a railroad... systems, electric traction systems, roadway facilities or roadway maintenance machinery on or near track... one or more locomotives coupled with or without cars, requiring an air brake test in accordance with...
HEDL FACILITIES CATALOG 400 AREA
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAYANCSIK BA
1987-03-01
The purpose of this project is to provide a sodium-cooled fast flux test reactor designed specifically for irradiation testing of fuels and materials and for long-term testing and evaluation of plant components and systems for the Liquid Metal Reactor (LMR) Program. The FFTF includes the reactor, heat removal equipment and structures, containment, core component handling and examination, instrumentation and control, and utilities and other essential services. The complex array of buildings and equipment are arranged around the Reactor Containment Building.
STS-93 crew takes part in a Crew Equipment Interface Test
NASA Technical Reports Server (NTRS)
1998-01-01
In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT), Mission Specialist Catherine G. Coleman (left) and Mission Commander Eileen M. Collins (right) check equipment that will fly on mission STS-93. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X- ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. Collins is the first woman to serve as a shuttle mission commander. The other STS-93 crew members are Pilot Jeffrey S. Ashby, Mission Specialist Steven A. Hawley and Mission Specialist Michel Tognini of France. Targeted date for the launch of STS-93 is March 18, 1999.
NASA Astrophysics Data System (ADS)
Perin, A.; Dhalla, F.; Gayet, P.; Serio, L.
2017-12-01
SM18 is CERN main facility for testing superconducting accelerator magnets and superconducting RF cavities. Its cryogenic infrastructure will have to be significantly upgraded in the coming years, starting in 2019, to meet the testing requirements for the LHC High Luminosity project and for the R&D program for superconducting magnets and RF equipment until 2023 and beyond. This article presents the assessment of the cryogenic needs based on the foreseen test program and on past testing experience. The current configuration of the cryogenic infrastructure is presented and several possible upgrade scenarios are discussed. The chosen upgrade configuration is then described and the characteristics of the main newly required cryogenic equipment, in particular a new 35 g/s helium liquefier, are presented. The upgrade implementation strategy and plan to meet the required schedule are then described.
48 CFR 1852.245-79 - Use of Government-owned property.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-owned facilities (real property or plant equipment), special test equipment, or special tooling... property. 1852.245-79 Section 1852.245-79 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND... and Clauses 1852.245-79 Use of Government-owned property. As prescribed in 1845.106-70(i), insert the...
Engineering monitoring expert system's developer
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1991-01-01
This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
While checking out equipment during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny, astronaut James Voss (center) and STS-98 crew members Commander Kenneth D. Cockrell (foreground) and Pilot Mark Polansky (right) pause for the camera. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
2006-04-25
KENNEDY SPACE CENTER, FLA. - Mission STS-121 Pilot Mark Kelly (left) and Mission Specialist Piers Sellers (kneeling) get a close look at the Integrated Cargo Carrier at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
2006-04-25
KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Piers Sellers (left) and Commander Steven Lindsey (right)are practicing removing the cover on the pump module at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
2006-04-25
KENNEDY SPACE CENTER, FLA. - STS-121 Commander Steven Lindsey (left) and Mission Specialist Piers Sellers (right) are removing a cover on the trailing umbilical assembly at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1979-01-01
During NASA's Apollo program, it was necessary to subject the mammoth Saturn V launch vehicle to extremely forceful vibrations to assure the moonbooster's structural integrity in flight. Marshall Space Flight Center assigned vibration testing to a contractor, the Scientific Services and Systems Group of Wyle Laboratories, Norco, California. Wyle-3S, as the group is known, built a large facility at Huntsville, Alabama, and equipped it with an enormously forceful shock and vibration system to simulate the liftoff stresses the Saturn V would encounter. Saturn V is no longer in service, but Wyle-3S has found spinoff utility for its vibration facility. It is now being used to simulate earthquake effects on various kinds of equipment, principally equipment intended for use in nuclear power generation. Government regulations require that such equipment demonstrate its ability to survive earthquake conditions. In upper left photo, Wyle3S is preparing to conduct an earthquake test on a 25ton diesel generator built by Atlas Polar Company, Ltd., Toronto, Canada, for emergency use in a Canadian nuclear power plant. Being readied for test in the lower left photo is a large circuit breaker to be used by Duke Power Company, Charlotte, North Carolina. Electro-hydraulic and electro-dynamic shakers in and around the pit simulate earthquake forces.
Oil Pharmacy at the Thermal Protection System Facility
2017-08-08
An overall view of the Oil Pharmacy operated under the Test and Operations Support Contract, or TOSC. The facility consolidated storage and distribution of petroleum products used in equipment maintained under the contract. This included standardized naming, testing processes and provided a central location for distribution of oils used in everything from simple machinery to the crawler-transporter and cranes in the Vehicle Assembly Building.
2014-08-30
management) Long term care (e.g., home health care, hospice, integrated personal care, intermediate care facilities for the mentally retarded, nurse ... aide training and testing, and nursing facilities) Medical equipment (e.g., medically necessary supplies, including oxygen, catheters, and reusable
Development of Army Facility Functionality Assessment Criteria and Procedures
2010-09-01
critical facility types: the Tactical Equipment Main- tenance Facility (TEMF), the Company Operations Facility (COF), the Bat- talion Headquarters...Criteria for Company Operations Facilities (COF) ................ 56 Appendix G: Army Standard Design Criteria for Tactical Equipment Maintenance...1 mission-critical facility types: the Tactical Equipment Mainten- ance Facility (TEMF), the Company Operations Facility (COF), the Batta- lion
Operating environmental laboratories--an overview of analysis equipment procurement and management.
Pandya, G H; Shinde, V M; Kanade, G S; Kondawar, V K
2003-10-01
Management of equipment in an environmental laboratory requires planning involving assessment of the workload on a particular equipment, establishment of criteria and specification for the purchase of equipment, creation of infrastructure for installation and testing of the equipment, optimization of analysis conditions, development of preventive maintenance procedures and establishment of in-house repair facilities. The paper reports the results of such an analysis carried for operating environmental laboratories associated with R& D work, serving as an Govt. laboratory or attached to an Industry for analysing industrial emissions.
Nondestructive Tire Testing Studies
DOT National Transportation Integrated Search
1972-10-01
A number of nondestructive testing procedures are being investigated in depth to determine the feasibility of each individually, and in combination, to detect and identify defects in tires that can lead to failure. The facility, equipment, and data h...
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is an exterior view of the U.S. Laboratory Module Simulator containing the ECLSS Internal Thermal Control System (ITCS) testing facility at MSFC. At the bottom right is the data acquisition and control computers (in the blue equipment racks) that monitor the testing in the facility. The ITCS simulator facility duplicates the function, operation, and troubleshooting problems of the ITCS. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.
NASA Technical Reports Server (NTRS)
Mcpherron, R. L.
1977-01-01
Procedures are described for the calibration of a vector magnetometer of high absolute accuracy. It is assumed that the calibration will be performed in the magnetic test facility of Goddard Space Flight Center (GSFC). The first main section of the report describes the test equipment and facility calibrations required. The second presents procedures for calibrating individual sensors. The third discusses the calibration of the sensor assembly. In a final section recommendations are made to GSFC for modification of the test facility required to carry out the calibration procedures.
Transuranic Waste Test Facility Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looper, M.G.
1987-05-05
This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less
Design Criteria for Controlling Stress Corrosion Cracking
NASA Technical Reports Server (NTRS)
Franklin, D. B.
1987-01-01
This document sets forth the criteria to be used in the selection of materials for space vehicles and associated equipment and facilities so that failure resulting from stress corrosion will be prevented. The requirements established herein apply to all metallic components proposed for use in space vehicles and other flight hardware, ground support equipment, and facilities for testing. These requirements are applicable not only to items designed and fabricated by MSFC (Marshall Space Flight Center) and its prime contractors, but also to items supplied to the prime contractor by subcontractors and vendors.
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism, including the longeron trunnion/scuff plate, Payload Disconnect Assembly and WIF socket. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
42 CFR 37.43 - Protection against radiation emitted by roentgenographic equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... specified in § 37.41, roentgenographic equipment, its use and the facilities (including mobile facilities... facilities (including mobile facilities) in which such equipment is used shall conform to the recommendations... roentgenographic equipment. 37.43 Section 37.43 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN...
46 CFR 160.151-45 - Equipment required for servicing facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Equipment required for servicing facilities. 160.151-45 Section 160.151-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...) § 160.151-45 Equipment required for servicing facilities. Each servicing facility approved by the Coast...
NASA Technical Reports Server (NTRS)
Burns, H. D.; Mitchell, M. A.; McMillian, J. H.; Farner, B. R.; Harper, S. A.; Peralta, S. F.; Lowrey, N. M.; Ross, H. R.; Juarez, A.
2015-01-01
Since the 1990's, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have used hydrochlorofluorocarbon-225 (HCFC-225), a Class II ozone-depleting substance, to safety clean and verify the cleanliness of large scale propulsion oxygen systems and associated test facilities. In 2012 through 2014, test laboratories at MSFC, SSC, and Johnson Space Center-White Sands Test Facility collaborated to seek out, test, and qualify an environmentally preferred replacement for HCFC-225. Candidate solvents were selected, a test plan was developed, and the products were tested for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Honewell Soltice (TradeMark) Performance Fluid (trans-1-chloro-3,3, 3-trifluoropropene) was selected to replace HCFC-225 at NASA's MSFC and SSC rocket propulsion test facilities.
Brief, Why the Launch Equipment Test Facility Needs a Laser Tracker
NASA Technical Reports Server (NTRS)
Yue, Shiu H.
2011-01-01
The NASA Kennedy Space Center Launch Equipment Test Facility (LETF) supports a wide spectrum of testing and development activities. This capability was originally established in the 1970's to allow full-scale qualification of Space Shuttle umbilicals and T-O release mechanisms. The LETF has leveraged these unique test capabilities to evolve into a versatile test and development area that supports the entire spectrum of operational programs at KSC. These capabilities are historically Aerospace related, but can certainly can be adapted for other industries. One of the more unique test fixtures is the Vehicle Motion Simulator or the VMS. The VMS simulates all of the motions that a launch vehicle will experience from the time of its roll-out to the launch pad, through roughly the first X second of launch. The VMS enables the development and qualification testing of umbilical systems in both pre-launch and launch environments. The VMS can be used to verify operations procedures, clearances, disconnect systems performance &margins, and vehicle loads through processing flow motion excursions.
Calibration and use of filter test facility orifice plates
NASA Astrophysics Data System (ADS)
Fain, D. E.; Selby, T. W.
1984-07-01
There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.
Testing of electrical equipment for a commercial grade dedication program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.L.; Srinivas, N.
1995-10-01
The availability of qualified safety related replacement parts for use in nuclear power plants has decreased over time. This has caused many nuclear power plants to purchase commercial grade items (CGI) and utilize the commercial grade dedication process to qualify the items for use in nuclear safety related applications. The laboratories of Technical and Engineering Services (the testing facility of Detroit Edison) have been providing testing services for verification of critical characteristics of these items. This paper presents an overview of the experience in testing electrical equipment with an emphasis on fuses.
30 CFR 254.42 - Exercises for your response personnel and equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES LOCATED SEAWARD OF THE... facility or at a corporate location designated in the plan. Records showing that OSRO's and oil spill...) An annual spill management team tabletop exercise. The exercise must test the spill management team's...
30 CFR 254.42 - Exercises for your response personnel and equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES LOCATED SEAWARD OF THE... facility or at a corporate location designated in the plan. Records showing that OSRO's and oil spill...) An annual spill management team tabletop exercise. The exercise must test the spill management team's...
ERIC Educational Resources Information Center
Ashton, Dudley, Ed.; Irey, Charlotte, Ed.
This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
..., LLC, Subsidiary of Mag Industrial Automation Systems, Machesney Park, IL; Notice of Negative... automation equipment and machine tools did not contribute to worker separations at the subject facility and...' firm's declining customers. The survey revealed no imports of automation equipment and machine tools by...
46 CFR 160.151-45 - Equipment required for servicing facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and bulletins in effect as indicated on the annual list issued in accordance with § 160.151-35(b)(2...) A source of clean, dry, pressurized air; hoses; and attachments for inflating liferafts; (h) A..., except for items of equipment that are readily available; (p) A means for load-testing davit-launched...
2006-04-25
KENNEDY SPACE CENTER, FLA. - Members of the STS-121 crew are at the SPACEHAB facility in Cape Canaveral to participate in a Crew Equipment Interface Test. On the top of the stand are Mission Specialists Piers Sellers (left) and Michael Fossum. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
2006-04-25
KENNEDY SPACE CENTER, FLA. - Mission STS-121 Pilot Mark Kelly, and Mission Specialist Piers Sellers (kneeling) and Commander Steven Lindsey (right) get a close look at the Integrated Cargo Carrier at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
2006-04-25
KENNEDY SPACE CENTER, FLA. - While STS-121 Mission Specialist Michael Fossum (center) fixes his glove, Commander Steven Lindsey (left) and Mission Specialist Piers Sellers (right) talk about their next step in the Crew Equipment Interface Test at the SPACEHAB facility in Cape Canaveral. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
2006-04-25
KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Piers Sellers (left) and Commander Steven Lindsey (right) are practicing removing the cover and strap on the trailing umbilical assembly at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
...-AA26 Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative... a final rule entitled ``Vessel and Facility Response Plans for Oil: 2003 Removal Equipment... responders for each vessel or facility with appropriate equipment and resources located in each zone of...
Automation of electromagnetic compatability (EMC) test facilities
NASA Technical Reports Server (NTRS)
Harrison, C. A.
1986-01-01
Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.
NASA Technical Reports Server (NTRS)
1978-01-01
Sea level, static, ground testing of the over-the-wing engine and boilerplate nacelle components was performed. The equipment tested and the test facility are described. Summaries of the instrumentations, the chronological history of the tests, and the test results are presented.
48 CFR 252.239-7011 - Special construction and equipment charges.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the Contractor stops using facilities or equipment which the Government has, in whole or part... equipment attributable to the Government's contribution. Determine the value of the facilities and equipment...— (1) Recurring charges for the services, facilities, and equipment do not include in the rate base any...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... operation of facilities, infrastructure, and equipment for use by DoD military or civilian should be...-7004, Safety of Facilities, Infrastructure, and Equipment for Military Operations. DFARS 246.270-1... operation of facilities. This includes contracts for facilities, infrastructure, and equipment configured...
47 CFR 5.402 - Eligibility and usage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Medical Testing Experimental... health care facilities as defined in § 95.1103(b) of this chapter. (b) Medical testing experimental radio... limited to testing equipment designed to comply with the rules in part 15, Radio Frequency Devices; part...
47 CFR 5.402 - Eligibility and usage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Medical Testing Experimental... health care facilities as defined in § 95.1103(b) of this chapter. (b) Medical testing experimental radio... limited to testing equipment designed to comply with the rules in part 15, Radio Frequency Devices; part...
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Inside a darkened U.S. Lab module, in the Space Station Processing Facility (SSPF), astronaut James Voss (left) joins STS-98 crew members Commander Kenneth D. Cockrell (foreground), and Pilot Mark Polansky (right) to check out equipment in the Lab. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
Understanding reverberating chambers as an alternative facility for EMC testing
NASA Astrophysics Data System (ADS)
Ma, M. T.
A relatively new facility called a reverberating chamber designed for EMC testing is described. The purpose is to create a statistically uniform electric field inside a metal enclosure for testing radiated susceptibility or immunity of equipment. Design criteria in terms of the number of cavity modes, mode density, and composite quality factor are presented in details in order to understand the physical insight and to enhance interpretations of measurement results. Recent experimental data are included to illustrate the underlying principle.
48 CFR 215.404-71-4 - Facilities capital employed.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and equipment, as derived in DD Form 1861, Contract Facilities Capital Cost of Money. (i) In addition... facilities capital, the allocated facilities capital attributable to the buildings and equipment of those... Equipment 17.5 10 to 25 (g) Evaluation criteria. (1) In evaluating facilities capital employed, the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... facilities, infrastructure, and equipment that are intended for use by military or civilian personnel of the..., maintenance, or operation of facilities, infrastructure, and equipment for use by DoD military or civilian... facilities. This includes contracts for facilities, infrastructure, and equipment configured for occupancy...
4.5-kW Hall Effect Thruster Evaluated
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2000-01-01
As part of an Interagency Agreement with the Air Force Research Lab (AFRL), a space simulation test of a Russian SPT 140 Hall Effect Thruster was completed in September 1999 at Vacuum Facility 6 at the NASA Glenn Research Center at Lewis Field. The thruster was subjected to a three-part test sequence that included thrust and performance characterization, electromagnetic interference, and plume contamination. SPT 140 is a 4.5-kW thruster developed under a joint agreement between AFRL, Atlantic Research Corp, and Space Systems/Loral, and was manufactured by the Fakal Experimental Design Bureau of Russia. All objectives were satisfied, and the thruster performed exceptionally well during the 120-hr test program, which comprised 33 engine firings. The Glenn testing provided a critical contribution to the thruster development effort, and the large volume and high pumping speed of this vacuum facility was key to the test s success. The low background pressure (1 10 6 torr) provided a more accurate representation of space vacuum than is possible in most vacuum chambers. The facility had been upgraded recently with new cryogenic pumps and sputter shielding to support the active electric propulsion program at Glenn. The Glenn test team was responsible for all test support equipment, including the thrust stand, power supplies, data acquisition, electromagnetic interference measurement equipment, and the contamination measurement system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willoner, T.; Turlington, R.; Koenig, R.
The U.S. Department of Energy (DOE) (Environmental Management [EM], Office of Packaging and Transportation [EM-45]) Packaging and Certification Program (DOE PCP) has developed a Radio Frequency Identification (RFID) tracking and monitoring system, called ARG-US, for the management of nuclear materials packages during transportation and storage. The performance of the ARG-US RFID equipment and system has been fully tested in two demonstration projects in April 2008 and August 2009. With the strong support of DOE-SR and DOE PCP, a field testing program was completed in Savannah River Site's K-Area Material Storage (KAMS) Facility, an active Category I Plutonium Storage Facility, inmore » 2010. As the next step (Phase II) of continued vault testing for the ARG-US system, the Savannah River Site K Area Material Storage facility has placed the ARG-US RFIDs into the 910B storage vault for operational testing. This latest version (Mark III) of the Argonne RFID system now has the capability to measure radiation dose and dose rate. This paper will report field testing progress of the ARG-US RFID equipment in KAMS, the operability and reliability trend results associated with the applications of the system, and discuss the potential benefits in enhancing safety, security and materials accountability. The purpose of this Phase II K Area test is to verify the accuracy of the radiation monitoring and proper functionality of the ARG-US RFID equipment and system under a realistic environment in the KAMS facility. Deploying the ARG-US RFID system leads to a reduced need for manned surveillance and increased inventory periods by providing real-time access to status and event history traceability, including environmental condition monitoring and radiation monitoring. The successful completion of the testing program will provide field data to support a future development and testing. This will increase Operation efficiency and cost effectiveness for vault operation. As the next step (Phase II) of continued vault testing for the ARG-US system, the Savannah River Site K Area Material Storage facility has placed the ARG-US RFIDs into the 910B storage vault. Deploying the ARG-US RFID system lends to a reduced need for manned surveillance and increased inventory periods by providing real-time access to status and event history traceability, including radiation and environmental monitoring. The successful completion of the testing program will provide field data to support future development and testing.« less
, testing, and commissioning of electrical infrastructure, facilities, and equipment. Education M.S ., Electrical Engineering, University of Arizona B.S., Electrical Engineering, University of Arizona
77 FR 6915 - Medical Diagnostic Equipment Accessibility Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... Israel Deaconess Medical Center (October 22, 2009) accessible facilities and accessible medical equipment... of types of accessible medical equipment required in different types of health care facilities. If... facilities, accessible medical equipment, and auxiliary aids and services; University of Southern California...
Altitude Test Cell in the Four Burner Area
1947-10-21
One of the two altitude simulating-test chambers in Engine Research Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The two chambers were collectively referred to as the Four Burner Area. NACA Lewis’ Altitude Wind Tunnel was the nation’s first major facility used for testing full-scale engines in conditions that realistically simulated actual flight. The wind tunnel was such a success in the mid-1940s that there was a backlog of engines waiting to be tested. The Four Burner chambers were quickly built in 1946 and 1947 to ease the Altitude Wind Tunnel’s congested schedule. The Four Burner Area was located in the southwest wing of the massive Engine Research Building, across the road from the Altitude Wind Tunnel. The two chambers were 10 feet in diameter and 60 feet long. The refrigeration equipment produced the temperatures and the exhauster equipment created the low pressures present at altitudes up to 60,000 feet. In 1947 the Rolls Royce Nene was the first engine tested in the new facility. The mechanic in this photograph is installing a General Electric J-35 engine. Over the next ten years, a variety of studies were conducted using the General Electric J-47 and Wright Aeronautical J-65 turbojets. The two test cells were occasionally used for rocket engines between 1957 and 1959, but other facilities were better suited to the rocket engine testing. The Four Burner Area was shutdown in 1959. After years of inactivity, the facility was removed from the Engine Research Building in late 1973 in order to create the High Temperature and Pressure Combustor Test Facility.
Medical surveillance and programs on industrial hygiene at RCRA facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, T.E.
1994-12-31
Some special areas where much progress in industrial hygiene and safety has been made in the past few years are; training, personal protective equipment, uniforms, personal monitoring, area monitoring, and medical surveillance. Before one can begin to construct programs for worker protection, some knowledge of potential exposures must be gained. The best place to start is the Waste Analysis Plan, and the list of wastes that a particular site is authorized to receive. Waste Codes are listed within a facility`s Part A and Part B permits. Actual facility receipt of wastes are well documented within Load Records and other documentation.more » A facility`s training program forms the heart of a health and safety program. Every TSD facility should have developed a matrix of job titles and required training. Every facility must also make a commitment to providing a wide range of personal protective equipment, including a wide array of disposables. Some facilities will benefit from the occasional use of the newer respirator quantitative fit-testing devices. All facilities are urged to rent or borrow this type of equipment periodically. Quantitative respirator fit-testers are capable of revealing important deficiencies in a respirator program. Providing uniforms is a newer means of protecting workers. The use of uniforms is an effective means for addressing the idea of carry-home-waste. The use of disposables including boots, must be integrated into a Uniform Program if the program is to be effective. In addition, employees must strictly understand that uniforms must not leave the facility at any time, including lunch time.« less
Skylab parasol material evaluation
NASA Technical Reports Server (NTRS)
Jacobs, S.
1975-01-01
Results of experimental work to evaluate the degradation rate of a parasol that was used as a means of alleviating thermal problems encountered soon after the launch of the Skylab 1 space vehicle are presented. Material selection criteria are discussed; the material chosen is described, and results of tests performed after environmental exposure at five facilities are given. The facilities used for exposure to ultraviolet radiation/thermal-vacuum environments and the equipment used for testing physical properties before and after exposure are described. Comparisons of ground test and flight test data are included.
US Army Proposed Automatic Test Equipment Software Development and Support Facility.
1982-10-29
programs would be prepared as weapon and prime system operating software. The ATE Software Development and Support Facility will help prevent the TPS...ONE AS A STANDARD **Partially being Developed (2) UNDER DEVELOP- by Navy CSS Prgram MENT (3) NEEDS TAILOR- (5) NEEDS ING FOR ARMY DEVELOPMENT A- 2
2006-04-25
KENNEDY SPACE CENTER, FLA. - Members of the STS-121 crew pose with workers in the SPACEHAB facility in Cape Canaveral during the Crew Equipment Interface Test. The astronauts (in blue suits) are Mission Specialists Piers Sellers and Michael Fossum, Pilot Mark Kelly and Commander Steven Lindsey. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett
10 CFR 55.45 - Operating tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... significance of facility instrument readings. (5) Observe and safely control the operating behavior... equipment that could affect reactivity or the release of radioactive materials to the environment. (9...
NASA Technical Reports Server (NTRS)
Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.
1988-01-01
The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.
Oil Pharmacy at the Thermal Protection System Facility
2017-08-08
Tim King of Jacobs at NASA's Kennedy Space Center in Florida, explains operations in the Oil Pharmacy operated under the Test and Operations Support Contract, or TOSC. The facility consolidated storage and distribution of petroleum products used in equipment maintained under the contract. This included standardized naming, testing processes and provided a central location for distribution of oils used in everything from simple machinery to the crawler-transporter and cranes in the Vehicle Assembly Building.
Unique life sciences research facilities at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.
1994-01-01
The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.
Pilot statewide study of pediatric emergency department alignment with national guidelines.
Costich, Julia F; Fallat, Mary E; Scaggs, C Morgan; Bartlett, Richard
2013-07-01
The American Academy of Pediatrics, American College of Emergency Physicians, and Emergency Nursing Association have developed consensus guidelines for pediatric emergency department policies, procedures, supplies, and equipment. Kentucky received funding from the Health Resources and Services Administration through the Emergency Medical Services for Children program to pilot test the guidelines with the state's hospitals. In addition to providing baseline data regarding institutional alignment with the guidelines, the survey supported development of grant funding to procure missing items. Survey administration was undertaken by staff and members of the Kentucky Board of Emergency Medical Services Emergency Medical Services for Children work group and faculty and staff of the University of Kentucky College of Public Health and the University of Louisville School of Medicine. Responses were solicited primarily online with repeated reminders and offers of assistance. Seventy respondents completed the survey section on supplies and equipment either online or by fax. Results identified items unavailable at 20% or more of responding facilities, primarily the smallest sizes of equipment. The survey section addressing policy and procedure received only 16 responses. Kentucky facilities were reasonably well equipped by national standards, but rural facilities and small hospitals did not stock the smallest equipment sizes because of low reported volume of pediatric emergency department cases. Thus, a centralized procurement process that gives them access to an adequate range of pediatric supplies and equipment would support capacity building for the care of children across the entire state. Grant proposals were received from 28 facilities in the first 3 months of funding availability.
2000-09-16
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialists Joe Tanner (left) and Carlos Noriega (right) practice working parts of the Orbital Docking System (ODS) in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
2000-09-16
In Orbiter Processing Facility bay 2 during a Crew Equipment Interface Test (CEIT), STS-97 Pilot Michael Bloomfied (left) and Commander Brent Jett (right) check out the cockpit of orbiter Endeavour as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
2000-09-16
In Orbiter Processing Facility bay 2 during a Crew Equipment Interface Test (CEIT), STS-97 Pilot Michael Bloomfied (left) and Commander Brent Jett (right) check out the cockpit of orbiter Endeavour as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
2000-09-16
In Orbiter Processing Facility bay 2 during a Crew Equipment Interface Test (CEIT), STS-97 Commander Brent Jett (left) and Pilot Michael Bloomfied (right) check out the cockpit of orbiter Endeavour as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
2000-09-16
During a Crew Equipment Interface Test (CEIT), STS-97 Commander Brent Jett (left) and Pilot Michael Bloomfied (right) check out the cockpit of orbiter Endeavour in Orbiter Processing Facility bay 2 as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
2000-09-16
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialists Joe Tanner (left) and Carlos Noriega (right) practice working parts of the Orbital Docking System (ODS) in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
2000-09-16
During a Crew Equipment Interface Test (CEIT), STS-97 Commander Brent Jett (left) and Pilot Michael Bloomfied (right) check out the cockpit of orbiter Endeavour in Orbiter Processing Facility bay 2 as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
2000-09-16
In Orbiter Processing Facility bay 2 during a Crew Equipment Interface Test (CEIT), STS-97 Commander Brent Jett (left) and Pilot Michael Bloomfied (right) check out the cockpit of orbiter Endeavour as part of preflight preparations. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
The STS-97 crew take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialists Joe Tanner (left) and Carlos Noriega (right) practice working parts of the Orbital Docking System (ODS) in Endeavour's payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundy, D; Tryggestad, E; Beltran, C
Purpose: To develop daily and monthly quality assurance (QA) programs in support of a new spot-scanning proton treatment facility using a combination of commercial and custom equipment and software. Emphasis was placed on efficiency and evaluation of key quality parameters. Methods: The daily QA program was developed to test output, spot size and position, proton beam energy, and image guidance using the Sun Nuclear Corporation rf-DQA™3 device and Atlas QA software. The program utilizes standard Atlas linear accelerator tests repurposed for proton measurements and a custom jig for indexing the device to the treatment couch. The monthly QA program wasmore » designed to test mechanical performance, image quality, radiation quality, isocenter coincidence, and safety features. Many of these tests are similar to linear accelerator QA counterparts, but many require customized test design and equipment. Coincidence of imaging, laser marker, mechanical, and radiation isocenters, for instance, is verified using a custom film-based device devised and manufactured at our facility. Proton spot size and position as a function of energy are verified using a custom spot pattern incident on film and analysis software developed in-house. More details concerning the equipment and software developed for monthly QA are included in the supporting document. Thresholds for daily and monthly tests were established via perturbation analysis, early experience, and/or proton system specifications and associated acceptance test results. Results: The periodic QA program described here has been in effect for approximately 9 months and has proven efficient and sensitive to sub-clinical variations in treatment delivery characteristics. Conclusion: Tools and professional guidelines for periodic proton system QA are not as well developed as their photon and electron counterparts. The program described here efficiently evaluates key quality parameters and, while specific to the needs of our facility, could be readily adapted to other proton centers.« less
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the STS-98 crew check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, the crew will install the Lab in the International Space Station during a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Making up the five-member crew on STS-98 are Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
STS-98 Commander Kenneth D. Cockrell (left) and Mission Specialist Thomas D. Jones (Ph.D.) check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, Jones will help install the Lab on the International Space Station in a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Others in the five-member crew on STS-98 are Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
NASA Astrophysics Data System (ADS)
Shi, Sheng-bing; Chen, Zhen-xing; Qin, Shao-gang; Song, Chun-yan; Jiang, Yun-hong
2014-09-01
With the development of science and technology, photoelectric equipment comprises visible system, infrared system, laser system and so on, integration, information and complication are higher than past. Parallelism and jumpiness of optical axis are important performance of photoelectric equipment,directly affect aim, ranging, orientation and so on. Jumpiness of optical axis directly affect hit precision of accurate point damage weapon, but we lack the facility which is used for testing this performance. In this paper, test system which is used fo testing parallelism and jumpiness of optical axis is devised, accurate aim isn't necessary and data processing are digital in the course of testing parallelism, it can finish directly testing parallelism of multi-axes, aim axis and laser emission axis, parallelism of laser emission axis and laser receiving axis and first acuualizes jumpiness of optical axis of optical sighting device, it's a universal test system.
40 CFR 1068.450 - What records must I send to EPA?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., send us a written request with justification for a waiver. (e) We may post test results on publicly..., send us a report with the following information: (1) Describe any facility used to test production-line... of tests for each family. (3) Describe your test engines/equipment, including the family's...
40 CFR 1068.450 - What records must I send to EPA?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., send us a written request with justification for a waiver. (e) We may post test results on publicly..., send us a report with the following information: (1) Describe any facility used to test production-line... of tests for each family. (3) Describe your test engines/equipment, including the family's...
40 CFR 1068.450 - What records must I send to EPA?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., send us a written request with justification for a waiver. (e) We may post test results on publicly..., send us a report with the following information: (1) Describe any facility used to test production-line... of tests for each family. (3) Describe your test engines/equipment, including the family's...
NASA Technical Reports Server (NTRS)
2009-01-01
This Interim Standard establishes requirements for evaluation, testing, and selection of materials that are intended for use in space vehicles, associated Ground Support Equipment (GSE), and facilities used during assembly, test, and flight operations. Included are requirements, criteria, and test methods for evaluating the flammability, offgassing, and compatibility of materials.
DOT National Transportation Integrated Search
1978-03-01
This report deals with the selection of a test site, the design of a test installation, equipment selection, the installation and start-up of a pneumatic pipeline system for the transportation of tunnel muck. A review of prior pneumatic applications ...
2013-08-06
CAPE CANAVERAL, Fla. – In Hangar N at Cape Canaveral Air Force Station, ceramic materials are positioned for Advanced Partial Angle Computed Tomography testing. The activity is part of work performed by PaR Systems, Inc. under a partnership agreement with NASA. NASA's Kennedy Space Center in Florida recently established a partnership agreement with PaR Systems, Inc. of Shoreview, Minn., for operation of the Hangar N facility and its nondestructive testing and evaluation equipment. As the spaceport transitions from a historically government-only launch facility to a multi-user spaceport for both federal and commercial customers, partnerships between the space agency and other organizations will be a key element in that effort. Hangar N is located at Cape Canaveral Air Force Station adjacent to Kennedy and houses a unique inventory of test and evaluation equipment and the capability for current and future mission spaceflight support. Photo credit: NASA/ Dimitri Gerondidakis
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... Equipment, Training and Drills Onboard Offshore Facilities and Mobile Offshore Drilling Units (MODUs... lifesaving and fire-fighting equipment, training and drills on board offshore facilities and MODUs operating... guidance concerning lifesaving and fire-fighting equipment, training, and drills onboard manned offshore...
2013-08-06
CAPE CANAVERAL, Fla. – In Hangar N at Cape Canaveral Air Force Station, PaR Systems, Inc. operations engineer Lu Bell conducts a phase array ultrasonic inspection. NASA's Kennedy Space Center in Florida recently established a partnership agreement with PaR Systems, Inc. of Shoreview, Minn., for operation of the Hangar N facility and its nondestructive testing and evaluation equipment. As the spaceport transitions from a historically government-only launch facility to a multi-user spaceport for both federal and commercial customers, partnerships between the space agency and other organizations will be a key element in that effort. Hangar N is located at Cape Canaveral Air Force Station adjacent to Kennedy and houses a unique inventory of test and evaluation equipment and the capability for current and future mission spaceflight support. Photo credit: NASA/ Dimitri Gerondidakis
1997-01-22
KENNEDY SPACE CENTER, FLA. - STS-82 crew members examine part of the Flight Support System during the Crew Equipment Integration Test (CEIT) in KSC's Vertical Processing Facility. From left are Mission Specialists Steven L. Smith and Gregory J. Harbaugh and Payload Commander Mark C. Lee. Liftoff of STS-82, the second Hubble Space Telescope (HST) servicing mission, is scheduled Feb. 11 aboard Discovery with a crew of seven.
Orbital construction support equipment - Manned remote work station
NASA Technical Reports Server (NTRS)
Nassiff, S. H.
1978-01-01
The Manned Remote Work Station (MRWS) is a versatile piece of orbital construction support equipment which can support in-space construction in various modes of operation. Proposed near-term Space Shuttle mission support and future large orbiting systems support, along with the various construction modes of MRWS operation, are discussed. Preliminary flight subsystems requirements and configuration design are presented. Integration of the MRWS development test article with the JSC Mockup and Integration Facility, including ground-test objectives and techniques for zero-g simulations, is also presented.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) gets a closeup view of the cover on the window of the U.S. Lab Destiny. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
KSC ground operations planning for Space Station
NASA Technical Reports Server (NTRS)
Lyon, J. R.; Revesz, W., Jr.
1993-01-01
At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.
Improved E-ELT subsystem and component specifications, thanks to M1 test facility
NASA Astrophysics Data System (ADS)
Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.
2014-07-01
During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.
Development of a facility using robotics for testing automation of inertial instruments
NASA Technical Reports Server (NTRS)
Greig, Joy Y.; Lamont, Gary B.; Biezad, Daniel J.; Lewantowicz, Zdsislaw H.; Greig, Joy Y.
1987-01-01
The Integrated Robotics System Simulation (ROBSIM) was used to evaluate the performance of the PUMA 560 arm as applied to testing of inertial sensors. Results of this effort were used in the design and development of a feasibility test environment using a PUMA 560 arm. The implemented facility demonstrated the ability to perform conventional static inertial instrument tests (rotation and tumble). The facility included an efficient data acquisitions capability along with a precision test servomechanism function resulting in various data presentations which are included in the paper. Analysis of inertial instrument testing accuracy, repeatability and noise characteristics are provided for the PUMA 560 as well as for other possible commercial arm configurations. Another integral aspect of the effort was an in-depth economic analysis and comparison of robot arm testing versus use of contemporary precision test equipment.
Amoakoh-Coleman, Mary; Agyepong, Irene Akua; Kayode, Gbenga A; Grobbee, Diederick E; Klipstein-Grobusch, Kerstin; Ansah, Evelyn K
2016-09-21
Lack of resources has been identified as a reason for non-adherence to clinical guidelines. Our aim was to describe public health facility resource availability in relation to provider adherence to first antenatal visit guidelines. A cross-sectional analysis of the baseline data of a prospective cohort study on adherence to first antenatal care visit guidelines was carried out in 11 facilities in the Greater Accra Region of Ghana. Provider adherence was studied in relation to health facility resource availability such as antenatal workload for clinical staffs, routine antenatal drugs, laboratory testing, protocols, ambulance and equipment. Eleven facilities comprising 6 hospitals (54.5 %), 4 polyclinics (36.4 %) and 1 health center were randomly sampled. Complete provider adherence to first antenatal guidelines for all the 946 participants was 48.1 % (95 % CI: 41.8-54.2 %), varying significantly amongst the types of facilities, with highest rate in the polyclinics. Average antenatal workload per month per clinical staff member was higher in polyclinics compared to the hospitals. All facility laboratories were able to conduct routine antenatal tests. Most routine antenatal drugs were available in all facilities except magnesium sulphate and sulphadoxine-pyrimethamine which were lacking in some. Antenatal service protocols and equipment were also available in all facilities. Although antenatal workload varies across different facility types in the Greater Accra region, other health facility resources that support implementation of first antenatal care guidelines are equally available in all the facilities. These factors therefore do not adequately account for the low and varying proportions of complete adherence to guidelines across facility types. Providers should be continually engaged for a better understanding of the barriers to their adherence to these guidelines.
Development of Technology for Image-Guided Proton Therapy
2011-10-01
testing proton RBE in the Penn proton beam facility Assemble equipment and develop data analysis software Install and test tablet PCs...production Use dual-energy CT and MRI to determine the composition of materials Year 4 ending 9/30/2011 Measurement of RBE for protons using the...Penn proton beam facility Measure LET for scattered and scanned beams Enter forms on tablet PCs Phase 5 Scope of Work Year 1 ending 9
Circuits Protect Against Incorrect Power Connections
NASA Technical Reports Server (NTRS)
Delombard, Richard
1992-01-01
Simple circuits prevent application of incorrectly polarized or excessive voltages. Connected temporarily or permanently at power-connecting terminals. Devised to protect electrical and electronic equipment installed in spacecraft and subjected to variety of tests in different facilities prior to installation. Basic concept of protective circuits also applied easily to many kinds of electrical and electronic equipment that must be protected against incorrect power connections.
Logistics Operations Management Center: Maintenance Support Baseline (LOMC-MSB)
NASA Technical Reports Server (NTRS)
Kurrus, R.; Stump, F.
1995-01-01
The Logistics Operations Management Center Maintenance Support Baseline is defined. A historical record of systems, applied to and deleted from, designs in support of future management and/or technical analysis is provided. All Flight elements, Ground Support Equipment, Facility Systems and Equipment and Test Support Equipment for which LOMC has responsibilities at Kennedy Space Center and other locations are listed. International Space Station Alpha Program documentation is supplemented. The responsibility of the Space Station Launch Site Support Office is established.
Facility for generating crew waste water product for ECLSS testing
NASA Technical Reports Server (NTRS)
Buitekant, Alan; Roberts, Barry C.
1990-01-01
An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.
Human Factors and Safety Evaluation of the Automatic Test and Repair System (AN/MSM-105(V)1)
1984-07-01
box and the main breaker box In both the ETF and ERF did not conform to military standards In that they consisted of black letters on a gold ...transportable test and repair system for electronic equipment that consists of an electronic test facility ( ETF ) and an electronic repair facility (ERF...personal gear in both the ETF and the ERF, and in the ETF there was not nearly enough room for the storage of the interconnect devices, tapes and manuals
Australian national networked tele-test facility for integrated systems
NASA Astrophysics Data System (ADS)
Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh
2001-11-01
The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.
Computer program determines performance efficiency of remote measuring systems
NASA Technical Reports Server (NTRS)
Merewether, E. K.
1966-01-01
Computer programs control and evaluate instrumentation system performance for numerous rocket engine test facilities and prescribe calibration and maintenance techniques to maintain the systems within process specifications. Similar programs can be written for other test equipment in an industry such as the petrochemical industry.
KSC facilities status and planned management operations. [for Shuttle launches
NASA Technical Reports Server (NTRS)
Gray, R. H.; Omalley, T. J.
1979-01-01
A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.
Fixed Equipment in the Energy Systems Integration Facility | Energy Systems
dynamic simulation of future energy systems. Photo of a robot used to test hydrogen coupling hardware. At test chambers (rated up to 60°C) for testing HVAC systems under simulated loading conditions Two bench performance Test stand for measuring performance of receiver tubes for concentrating solar power applications
NACA Photographer Films a Ramjet Test
1946-10-21
A National Advisory Committee for Aeronautics (NACA) photographer films the test of a ramjet engine at the Lewis Flight Propulsion Laboratory. The laboratory had an arsenal of facilities to test the engines and their components, and immersed itself in the study of turbojet and ramjet engines during the mid-1940s. Combustion, fuel injection, flameouts, and performance at high altitudes were of particular interest to researchers. They devised elaborate schemes to instrument the engines in order to record temperature, pressure, and other data. Many of the tests were also filmed so Lewis researchers could visually review the combustion performance along with the data. The photographer in this image was using high-speed film to document a thrust augmentation study at Lewis’ Jet Static Propulsion Laboratory. The ramjet in this photograph was equipped with a special afterburner as part of a general effort to improve engine performance. Lewis’ Photo Lab was established in 1942. The staff was expanded over the next few years as more test facilities became operational. The Photo Lab’s staff and specialized equipment have been key research tools for decades. They accompany pilots on test flights, use high-speed cameras to capture fleeting processes like combustion, and work with technology, such as the Schlieren camera, to capture supersonic aerodynamics. In addition, the group has documented construction projects, performed publicity work, created images for reports, and photographed data recording equipment.
Flat panel display test and evaluation: procedures, standards, and facilities
NASA Astrophysics Data System (ADS)
Jackson, Timothy W.; Daniels, Reginald; Hopper, Darrel G.
1997-07-01
This paper addresses flat panel display test and evaluation via a discussion of procedures, standards and facilities. Procedures need to be carefully developed and documented to ensure that test accomplished in separate laboratories produce comparable results. The tests themselves must not be a source of inconsistency in test results when such comparisons are made in the course of procurements or new technology prototype evaluations. Standards are necessary to expedite the transition of the new display technologies into applications and to lower the costs of custom parts applied across disparate applications. The flat panel display industry is in the course of ascertaining and formulating such standards as they are of value to designers, manufacturers, marketers and users of civil and military products and equipment. Additionally, in order to inform the DoD and industry, the test and evaluation facilities of the Air Force Research Laboratory Displays Branch are described. These facilities are available to support procurements involving flat panel displays and to examine new technology prototypes. Finally, other government display testing facilities within the Navy and the Army are described.
40 CFR 1068.450 - What records must I send to EPA?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., send us a written request with justification for a waiver. (e) We may post test results on publicly... with the following information: (1) Describe any facility used to test production-line engines/equipment and state its location. (2) State the total U.S.-directed production volume and number of tests...
40 CFR 1068.450 - What records must I send to EPA?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., send us a written request with justification for a waiver. (e) We may post test results on publicly... with the following information: (1) Describe any facility used to test production-line engines/equipment and state its location. (2) State the total U.S.-directed production volume and number of tests...
9 CFR 71.21 - Tissue and blood testing at slaughter.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Tissue and blood testing at slaughter... GENERAL PROVISIONS § 71.21 Tissue and blood testing at slaughter. (a) Any person moving livestock or... this section 9 within their facility for blood and tissue sample collection; 9 FSIS also has equipment...
Software and System Warranty Issues and Generic Warranty Clause.
1987-06-01
communications networks and other government-furnished equipment. Special attention . must also be paid to software packages, such as operating...34 :- ’.-’".,:., ",’., . .’.’ . ’ -.’ -. ., .- . 0;/ .’.. ,; .’ ’.’...’. • . .. . * Phose A - Devekpment Test and Evaluation conducted at a test facility. * Phaie - Devopment Test and
Paczkowski, Magdalena; Mbaruku, Godfrey; de Pinho, Helen; Galea, Sandro
2009-01-01
Objectives. We fielded a population-based discrete choice experiment (DCE) in rural western Tanzania, where only one third of women deliver children in a health facility, to evaluate health-system factors that influence women's delivery decisions. Methods. Women were shown choice cards that described 2 hypothetical health centers by means of 6 attributes (distance, cost, type of provider, attitude of provider, drugs and equipment, free transport). The women were then asked to indicate which of the 2 facilities they would prefer to use for a future delivery. We used a hierarchical Bayes procedure to estimate individual and mean utility parameters. Results. A total of 1203 women completed the DCE. The model showed good predictive validity for actual facility choice. The most important facility attributes were a respectful provider attitude and availability of drugs and medical equipment. Policy simulations suggested that if these attributes were improved at existing facilities, the proportion of women preferring facility delivery would rise from 43% to 88%. Conclusions. In regions in which attended delivery rates are low despite availability of primary care facilities, policy experiments should test the effect of targeted quality improvements on facility use. PMID:19608959
2008-01-24
KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett
2008-01-24
KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett
2008-01-24
KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett
2008-01-24
KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician (right) adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett
2008-01-24
KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett
2008-01-24
KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician monitors equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett
2008-01-24
KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett
32 CFR Appendix A to Part 223 - Procedures for Identifying and Controlling DoD UCNI
Code of Federal Regulations, 2010 CFR
2010-07-01
... security measures, including security plans, procedures, and equipment, for the physical protection of DoD... sabotage of DoD SNM, equipment, or facilities (e.g., relative importance of a facility or the location... equipment, for the physical protection of DoD SNM, equipment, or facilities. c. Meet the adverse effects...
2000-09-16
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialist Joe Tanner (left) gets instruction from a worker while Mission Specialist Carlos Noriega (right) practices working latches on the Orbital Docking System in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
2000-09-16
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), Mission Specialist Joe Tanner (left) gets instruction from a worker while Mission Specialist Carlos Noriega (right) practices working latches on the Orbital Docking System in Endeavour’s payload bay. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission
48. Historic photo of Building 202 test cell interior, test ...
48. Historic photo of Building 202 test cell interior, test stand A with zone injector engine; technician is working on equipment panel in foreground, June 3, 1966. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-66-2397. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. E.; Newell, J. D.; Johnson, F. C.
The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the Savannah River Site. It is not expected that the exact equipment used during this testing will be used during the waste feed qualification testing for WTP, but functionally similar equipment will be used such that the techniques demonstrated would be applicable. For example, the mixing apparatus could use any suitable mixer capable of being remoted and achieving similar mixing speeds to those tested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report is concerned with the nature and scope of the technical services to be rendered and the general plan proposed for operation of Building 3525, High Radiation Level Examination Laboratory (HRLEL). The role of postirradiation examination in implementing the over- all task of irradiation testing for various programs under way at the Oak Ridge National Laboratory (ORNL) and the importance of this effort to the United Stat es reactor development program are stressed . The shielded-cell complex with provisions for remote decontamination, hot-equipment storage, and maintenance is described, as well as other supporting activities which are incorporated into themore » facility. The proposed technical functions include general observation, mensuration, nondestructive testing, burnup and induced-activity measurements, fission-gas sampling and analysis, corrosion evaluation and related measurements, disassembly and cutup, metallographic examination, mechanical-property determinations , and x -ray diffraction analyses. Equipment design and operational features to improve detection and measurement of selected properties in radioactive material s are described, also. The current status on design, procurement, construction, and preoperational testing of in- cell equipment in the mockup is presented along with a forecast of future needs. The mode of operation, manpower requirements, and management of the facility are discussed.« less
3. Credit PSR. This view looks south southwest (206°) at ...
3. Credit PSR. This view looks south southwest (206°) at the north and east elevations. The large wing dominating this view contains a machine shop and other facilities used to build or maintain test equipment. A small gasoline facility for automobiles was formerly located near the east end of the building; it was removed in 1995. - Jet Propulsion Laboratory Edwards Facility, Administration & Shops Building, Edwards Air Force Base, Boron, Kern County, CA
Weightless Environment Training Facility (WETF) materials coating evaluation, volume 3
NASA Technical Reports Server (NTRS)
1995-01-01
This volume consists of Appendices C, D, E, and F to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix C is the photographic appendix of the test panels. Appendix D details methods and procedures. Appendix E lists application equipment costs. Appendix F is a compilation of the solicitation of the candidate coating systems.
NASA Technical Reports Server (NTRS)
2012-01-01
One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to protect our personnel from injury and our equipment from damage. The purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Z1 Suit Port Test in Chamber B located in building 32, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments, and activities while interfacing with facility test systems, equipment, and hardware. The goal of this hazard analysis is to identify all hazards that have the potential to harm personnel and/or damage facility equipment, flight hardware, property, or harm the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, JSC Safety and Health Handbook.
7 CFR 3300.43 - Application for approval.
Code of Federal Regulations, 2011 CFR
2011-01-01
... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...
7 CFR 3300.43 - Application for approval.
Code of Federal Regulations, 2012 CFR
2012-01-01
... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...
7 CFR 3300.43 - Application for approval.
Code of Federal Regulations, 2013 CFR
2013-01-01
... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...
7 CFR 3300.43 - Application for approval.
Code of Federal Regulations, 2014 CFR
2014-01-01
... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...
7 CFR 3300.43 - Application for approval.
Code of Federal Regulations, 2010 CFR
2010-01-01
... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
... consumer protection, the Agency issued GLP regulations. The regulations specify minimum standards for the proper conduct of safety testing and contain sections on facilities, personnel, equipment, standard operating procedures (SOPs), test and control articles, quality assurance, protocol and conduct of a safety...
NASA Technical Reports Server (NTRS)
Bjorn, L. C.; Martin, M. L.; Murphy, C. W.; Niebla, J. F., V
1971-01-01
This document defines the facilities, equipment, and operational plans required to support the MSS Program at KSC. Included is an analysis of KSC operations, a definition of flow plans, facility utilization and modifications, test plans and concepts, activation, and tradeoff studies. Existing GSE and facilities that have a potential utilization are identified, and new items are defined where possible. The study concludes that the existing facilities are suitable for use in the space station program without major modification from the Saturn-Apollo configuration.
5. Credit BG. View looking northwest at eastern facade of ...
5. Credit BG. View looking northwest at eastern facade of Test Stand 'E' (Building 4259/E-60), solid rocket motor test facility. Central bay (high concrete walls) was used for testing large solid motors in a vertical position. A second smaller bay to the north fired smaller motors horizontally. Just south of the large bay is an equipment room with access to the tunnel system; entrance is by small single door on east side. The large double doors lead to a third bay used for X-raying solid rocket motors before testing. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... activities, facilities, safety equipment, inspections and tests, and natural and manmade hazards near the... one line on BOEM-0005 to match language on a similar form for the oil and gas program; this does not.... 111 Within 30 days of .5 4 fee submissions. 2 receiving bill, submit processing fee payments for BOEM...
The George C. Marshall Space Flight Center High Reynolds Number Wind Tunnel Technical Handbook
NASA Technical Reports Server (NTRS)
Gwin, H. S.
1975-01-01
The High Reynolds Number Wind Tunnel at the George C. Marshall Space Flight Center is described. The following items are presented to illustrate the operation and capabilities of the facility: facility descriptions and specifications, operational and performance characteristics, model design criteria, instrumentation and data recording equipment, data processing and presentation, and preliminary test information required.
MSFC Respiratory Protection Services
NASA Technical Reports Server (NTRS)
CoVan, James P.
1999-01-01
An overview of the Marshall Space Flight Center Respiratory Protection program is provided in this poster display. Respiratory protection personnel, building, facilities, equipment, customers, maintenance and operational activities, and Dynatech fit testing details are described and illustrated.
7 CFR 70.15 - Equipment and facilities for graders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... drill holes in frozen product for inserting the metal thermometer stem to determine temperature. (3... or less for weighing bulk containers of poultry and test weights for such scales. (b) Furnished...
Design and Implementation of USAF Avionics Integration Support Facilities
1981-12-01
specification for taking the bbranch Vt -Routing indicator (No activity): Allocate Node: All’ocation of resources: R= Allocation rule. Res Resource type number...problems, and the integration and testing of the ECS. The purpose of this investigation is to establish a standard software development system...Corrections to equipment problems. -Compensation for equipment degradation. -New Developments . This approach is intended to centralize essential
NASA Technical Reports Server (NTRS)
1998-01-01
In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT), Mission Specialist Catherine G. Coleman (left) and Mission Commander Eileen M. Collins (right) check equipment that will fly on mission STS-93. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. Collins is the first woman to serve as a shuttle mission commander. The other STS-93 crew members are Pilot Jeffrey S. Ashby, Mission Specialist Steven A. Hawley and Mission Specialist Michel Tognini of France. Targeted date for the launch of STS-93 is March 18, 1999
NASA Astrophysics Data System (ADS)
Akers, James C.; Passe, Paul J.; Cooper, Beth A.
2005-09-01
The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.
Protoflight photovoltaic power module system-level tests in the space power facility
NASA Technical Reports Server (NTRS)
Rivera, Juan C.; Kirch, Luke A.
1989-01-01
Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.
NASA Astrophysics Data System (ADS)
Hoke, Melvin D., Jr.
1988-04-01
The President's Blue Ribbon Commission on Defense Management has recommended that the military should make greater use of off-the-shelf components, systems, and services (also know as Non-Developmental Items or NDI). This recommendation, if blindly implemented, could have an adverse impact on the survivability of critical command, control, and communications assets. The study evaluates how the electromagnetic pulse (EMP) survivability of a strategic, time-urgent, fixed, ground-based, Command, Control, and Communications (C3) facility would be impacted by the use of off-the-shelf C3 equipments. The study concludes that to have a quantifiable measure of confidence in the facility's EMP survivability, the piece of off-the-shelf equipment under consideration will first have to be subjected to some degree of EMP testing.
1981-02-11
1. Have test data been collected, recorded, and presented in accordance with this TOP? Yes No Comment : 2. Were the facilities, test equipment...instrumentation, and support accommodations adequate to accomplish the test objectives? Yes No Comment : 3. Have all data collected been reviewed for...correctness and completeness? Yes No Comment : 4. Were the test results compromised in any way due to insufficient test planning? Yes No Comment : 5. Were the
Functional Testing Airborne Radars
1981-03-27
recorded, and presented in accordance with this TOP? Yes No Comment : 2. Were the facilities, test equipment, instrumentation, and support accommo- dations...adequate to accomplish the test objectives? Yes No Comment : 3. Have all data collected been reviewed for correctness and completeness? Yes No ... Comment : 4. Were the test results compromised in any way due to insufficient test planning? Yes No . Comment : 5. Were the test results compromised in any
COLUMBUS as Engineering Testbed for Communications and Multimedia Equipment
NASA Astrophysics Data System (ADS)
Bank, C.; Anspach von Broecker, G. O.; Kolloge, H.-G.; Richters, M.; Rauer, D.; Urban, G.; Canovai, G.; Oesterle, E.
2002-01-01
The paper presents ongoing activities to prepare COLUMBUS for communications and multimedia technology experiments. For this purpose, Astrium SI, Bremen, has studied several options how to best combine the given system architecture with flexible and state-of-the-art interface avionics and software. These activities have been conducted in coordination with, and partially under contract of, DLR and ESA/ESTEC. Moreover, Astrium SI has realized three testbeds for multimedia software and hardware testing under own funding. The experimental core avionics unit - about a half double rack - establishes the core of a new multi-user experiment facility for this type of investigation onboard COLUMBUS, which shall be available to all users of COLUMBUS. It allows for the connection of 2nd generation payload, that is payload requiring broadband data transfer and near-real-time access by the Principal Investigator on ground, to test highly interactive and near-realtime payload operation. The facility is also foreseen to test new equipment to provide the astronauts onboard the ISS/COLUMBUS with bi- directional hi-fi voice and video connectivity to ground, private voice coms and e-mail, and a multimedia workstation for ops training and recreation. Connection to an appropriate Wide Area Network (WAN) on Earth is possible. The facility will include a broadband data transmission front-end terminal, which is mounted externally on the COLUMBUS module. This Equipment provides high flexibility due to the complete transparent transmit and receive chains, the steerable multi-frequency antenna system and its own thermal and power control and distribution. The Equipment is monitored and controlled via the COLUMBUS internal facility. It combines several new hardware items, which are newly developed for the next generation of broadband communication satellites and operates in Ka -Band with the experimental ESA data relay satellite ARTEMIS. The equipment is also TDRSS compatible; the open loop antenna tracking system employing star sensors enables usability with any other GEO data relay satellite system. In order to be prepared for the upcoming telecom standards for ground distribution of spacecraft generated data, the interface avionics allows for testing ATM-based data formatting and routing. Three testbeds accompany these studies and designs: i)a cable-and-connector testbed measures the signal characteristics for data transfer of up to 200 Mbps through the ii)an avionics &embedded software testbed prepares for data formatting, routing, and storage in CCSDS and ATM; iii)a software testbed tests newly developed S/W man-machine interfaces and simulates bandwidth limitations, on- This makes COLUMBUS a true technology testbed for a variety of engineering topics: - application of terrestrial standard data formats for broadband, near-real-time applications in space - qualification &test of off-the-shelf multimedia equipment in manned spacecraft - secure data transmission in flexible VPNs - in-orbit demonstration of advanced data transmission technology - elaboration of efficient crew and ground operations and training procedures - evaluation of personalized displays (S/W HFI) for long-duration space missions
33 CFR 143.120 - Floating OCS facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.120 Floating OCS facilities... (Marine Engineering) and J (Electrical Engineering) of 46 CFR chapter I and 46 CFR part 108 (Design and Equipment). Where unusual design or equipment needs make compliance impracticable, alternative proposals...
9 CFR 71.21 - Tissue and blood testing at slaughter.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., taking into account whether APHIS will be conducting complete tests at the facility, or only collecting..., until after the post-mortem examination is completed; (4) Includes tables, benches, and other equipment on which sample collection and processing are to be performed, of such design, material, and...
NREL Research Proves Wind Can Provide Ancillary Grid Fault Response | News
controllable grid interface (CGI) test facility, which simulates the real-time conditions of a utility-scale power grid. This began an ongoing, Energy Department-funded research effort to test how wind turbines test their equipment under any possible grid fault condition. Researchers such as Mark McDade, project
Biotechnology Protein Expression and Purification Facility
NASA Technical Reports Server (NTRS)
2003-01-01
The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.
DOT National Transportation Integrated Search
2002-08-09
This document mandates standard lightning protection, transient protection, electrostatic discharge (ESD), grounding, bonding and shielding configurations and procedures for new facilities, facility modifications, facility up grades, new equipment in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Lisa; Lekov, Alex; McKane, Aimee
2010-08-20
This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions ofmore » 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.« less
48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
...: SAFETY OF FACILITIES, INFRASTRUCTURE, AND EQUIPMENT FOR MILITARY OPERATIONS (OCT 2010) (a) Definition... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Safety of Facilities, Infrastructure, and Equipment for Military Operations. 252.246-7004 Section 252.246-7004 Federal Acquisition...
48 CFR 246.270 - Safety of facilities, infrastructure, and equipment for military operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ASSURANCE Contract Quality Requirements 246.270 Safety of facilities, infrastructure, and equipment for... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Safety of facilities, infrastructure, and equipment for military operations. 246.270 Section 246.270 Federal Acquisition Regulations...
2004-03-05
KENNEDY SPACE CENTER, FLA. - At the SRB Assembly and Refurbishment Facility, STS-114 Mission Specialists Stephen Robinson and Wendy Lawrence look at a test panel of insulation material cut in a liquid nitrogen process. The STS-114 crew is at KSC for familiarization with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment, plus the external stowage platform, to the International Space Station.
NASA Technical Reports Server (NTRS)
Glover, R. D.
1983-01-01
The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks over documents as part of a Multi-Equipment Interface Test (MEIT) on the U.S. Lab Destiny. Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth.. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
During a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny, which is in the Space Station Processing Facility, astronaut James Voss (left) joins STS-98 Pilot Mark Polansky (center) and Commander Kenneth D. Cockrell (right) in checking wiring against documentation on the floor. Also participating in the MEIT is Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
2008-07-11
CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-125 Mission Specialists Mike Massimino (center) and Michael Good (right) check out equipment in space shuttle Atlantis' payload bay. Equipment familiarization is part of the crew equipment interface test, which provides hands-on experience with hardware and equipment for the mission. Atlantis is targeted to launch Oct. 8 on the STS-125 mission to service the Hubble Space Telescope. The mission crew will perform history-making, on-orbit “surgery” on two important science instruments aboard the telescope. After capturing the telescope, two teams of spacewalking astronauts will perform the repairs during five planned spacewalks. Photo credit: NASA/Kim Shiflett
2008-07-11
CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-125 Mission Specialist Michael Good checks out part of the equipment in space shuttle Atlantis' payload bay. Equipment familiarization is part of the crew equipment interface test, which provides hands-on experience with hardware and equipment for the mission. Atlantis is targeted to launch Oct. 8 on the STS-125 mission to service the Hubble Space Telescope. The mission crew will perform history-making, on-orbit “surgery” on two important science instruments aboard the telescope. After capturing the telescope, two teams of spacewalking astronauts will perform the repairs during five planned spacewalks. Photo credit: NASA/Kim Shiflett
Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff
2015-01-01
Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.
A user's guide to the Langley 16- by 24-inch water tunnel
NASA Technical Reports Server (NTRS)
Pendergraft, Odis C., Jr.; Neuhart, Dan H.; Kariya, Timmy T.
1992-01-01
The Langley 16 x 24 inch Water Tunnel is described in detail, along with all the supporting equipment used in its operation as a flow visualization test facility. These include the laser and incandescent lighting systems; and the photographic, video, and laser fluorescence anemometer systems used to make permanent records of the test results. This facility is a closed return water tunnel capable of test section velocities from 0 to 0.75 feet per second with flow through the 16 x 24 inch test section in a downward (vertical) direction. The velocity normally used for testing is 0.25 feet per second where the most uniform flow occurs, and is slow enough to easily observe flow phenomena such as vortex flow with the unaided eye. An overview is given of the operational characteristics, procedures, and capabilities of the water tunnel to potential users of the facility so that they may determine if the facility meets their needs for a planned study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, T.W.; Selvage, R.D.; Courtney, K.H.
This manual is the guide for initiating change at the Plutonium Facility, which handles the processing of plutonium as well as research on plutonium metallurgy. It describes the change and work control processes employed at TA-55 to ensure that all proposed changes are properly identified, reviewed, approved, implemented, tested, and documented so that operations are maintained within the approved safety envelope. All Laboratory groups, their contractors, and subcontractors doing work at TA-55 follow requirements set forth herein. This manual applies to all new and modified processes and experiments inside the TA-55 Plutonium Facility; general plant project (GPP) and line itemmore » funded construction projects at TA-55; temporary and permanent changes that directly or indirectly affect structures, systems, or components (SSCs) as described in the safety analysis, including Facility Control System (FCS) software; and major modifications to procedures. This manual does not apply to maintenance performed on process equipment or facility SSCs or the replacement of SSCs or equipment with documented approved equivalents.« less
Mixed Oxide Fresh Fuel Package Auxiliary Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yapuncich, F.; Ross, A.; Clark, R.H.
2008-07-01
The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less
Indian LSSC (Large Space Simulation Chamber) facility
NASA Technical Reports Server (NTRS)
Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.
1988-01-01
The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSalle, F.R.; Golbeg, P.R.; Chenault, D.M.
For reactor and nuclear facilities, both Title 10, Code of Federal Regulations, Part 50, and US Department of Energy Order 6430.1A require assessments of the interaction of non-Safety Class 1 piping and equipment with Safety Class 1 piping and equipment during a seismic event to maintain the safety function. The safety class systems of nuclear reactors or nuclear facilities are designed to the applicable American Society of Mechanical Engineers standards and Seismic Category 1 criteria that require rigorous analysis, construction, and quality assurance. Because non-safety class systems are generally designed to lesser standards and seismic criteria, they may become missilesmore » during a safe shutdown earthquake. The resistance of piping, tubing, and equipment to seismically generated missiles is addressed in the paper. Gross plastic and local penetration failures are considered with applicable test verification. Missile types and seismic zones of influence are discussed. Field qualification data are also developed for missile evaluation.« less
Poster - Thur Eve - 02: Regulatory oversight of the robotic radiosurgery facilities.
Broda, K
2012-07-01
Following a recent review of the Class II Nuclear Facilities and Prescribed Equipment Regulations and regulatory oversight of particle accelerators, the Canadian Nuclear Safety Commission (CNSC) has changed its policy concerning the regulation of particle accelerators. In November 2011, the CNSC began to exercise its regulatory authority with respect to all particle accelerators operating at a beam energy of 1 (one) MeV or greater. The CNSC already licences and inspects particle accelerators capable of operating at or above 10 MeV. The decision to now include low energy particle accelerators (i.e., those operating at or above 1 MeV) ensures adequate, uniform and consistent regulatory oversight for all Class II accelerators. The CNSC expects these facilities to comply with CNSC requirements by December 2013. Besides conventional linear accelerators of lower energy (6 MeV or below) typically found in cancer clinics, two types of equipment now fall under the CNSC's regulatory oversight as a result of the above change: robotic radiosurgery and tomotherapy equipment and facilities. A number of clinics in Canada already operates these types of equipment and facilities. The safety aspects of radiosurgery equipment differ slightly from those for conventional linear accelerators. This poster aims to present an approach taken by the CNSC to regulate robotic radiosurgery equipment and facilities. The presentation will explain how to meet regulatory requirements of the Class II Nuclear Facilities and Prescribed Equipment Regulations by licensees operating or planning to acquire these types of equipment and facilities. © 2012 American Association of Physicists in Medicine.
Acquisition of equipment for composite manufacturing laboratory.
DOT National Transportation Integrated Search
2009-12-01
An interdisciplinary team of faculty was formed to upgrade the Composite Manufacturing and Testing Facilities at Missouri S&T. The Metering Unit is useful to manufacture composite pultruded parts using two part polyurethane resin system. Prior to the...
48 CFR 1852.228-72 - Cross-waiver of liability for space shuttle services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... from space to develop further a payload's product or process except when such development is for Space..., test, training, simulation, or guidance and control equipment and related facilities or services. (6...
1. Exterior view of Components Test Laboratory (T27), looking southeast ...
1. Exterior view of Components Test Laboratory (T-27), looking southeast from hill north of structure. The building wing in the right foreground houses Test Cell 8 (oxidizer) and the oxidizer storage pit or vault. Test Cell 10 is located in the center background, Test Cell 9 is at the far left, and the equipment room is in the immediate left foreground. The control room is in the center of the structure and abuts the aforementioned test cell and equipment room wings. This structure served as a facility for testing, handling, and storage of Titan II's hydrazine- and nitrogen teteroxide-based propellant system components for compatability determinations. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Cold Regions Logistic Supportability Testing of Armament and Individual Weapons
1983-10-07
CHECKLIST 1. Have test data been collected, recorded, and presented in accordance with this TOP? YES NO Comment : 2. Have all data collected been reviewed...for correctness and completeness? YES NO Comment : 3. Were the facilities, test equipment, instrumentation, and support accommodations adequate to...test results compromised in any way due to test performance procedures? YES NO . Comment : 6. Were the test results compromised in any way due to test
Cold Regions Logistic Supportability Testing of Missiles and Rocket Systems.
1984-10-26
006 APPENDIX B - POST-TEST CHECKLIST 1. Have test data been collected, recorded, and presented in accordance with this TOP? YES NO Comment : 2. Have all...data collected been reviewed for correctness and completeness? YES_ NO Comment : 3. Were the facilities, test equipment, instrumentation, and support...YES NO Comment : 5. Were the test results compromised in any way due to test performance procedures? YES_ NO Comment : 6. Were the test results
2011-11-21
CAPE CANAVERAL, Fla. – Members of the media tour several facilities, including the Multi-Payload Processing Facility, during the 21st Century Ground Systems Program Tour at Kennedy Space Center in Florida. Other tour stops were the Launch Equipment Test Facility, the Operations & Checkout Building and the Canister Rotation Facility. NASA’s 21st Century Ground Systems Program was initiated at Kennedy Space Center to establish the needed launch and processing infrastructure to support the Space Launch System Program and to work toward transforming the landscape of the launch site for a multi-faceted user community. Photo credit: NASA/Jim Grossmann
2011-11-21
CAPE CANAVERAL, Fla. – Members of the media tour several facilities, including the Launch Equipment Test Facility in the Industrial Area, during the 21st Century Ground Systems Program Tour at Kennedy Space Center in Florida. Other tour stops were the Operations & Checkout Building, the Multi-Payload Processing Facility and the Canister Rotation Facility. NASA’s 21st Century Ground Systems Program was initiated at Kennedy Space Center to establish the needed launch and processing infrastructure to support the Space Launch System Program and to work toward transforming the landscape of the launch site for a multi-faceted user community. Photo credit: NASA/Jim Grossmann
2011-11-21
CAPE CANAVERAL, Fla. – Members of the media tour several facilities, including the Launch Equipment Test Facility in the Industrial Area, during the 21st Century Ground Systems Program Tour at Kennedy Space Center in Florida. Other tour stops were the Operations & Checkout Building, the Multi-Payload Processing Facility and the Canister Rotation Facility. NASA’s 21st Century Ground Systems Program was initiated at Kennedy Space Center to establish the needed launch and processing infrastructure to support the Space Launch System Program and to work toward transforming the landscape of the launch site for a multi-faceted user community. Photo credit: NASA/Jim Grossmann
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2013 CFR
2013-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2012 CFR
2012-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
7 CFR 70.15 - Equipment and facilities for graders.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Scales graduated in tenths of a pound or less for weighing carcasses, parts, or products individually in containers up to 100 pounds, and test weights for such scales. (4) Scales graduated in one-pound graduation or less for weighing bulk containers of poultry and test weights for such scales. (b) Furnished...
40 CFR 745.225 - Accreditation of training programs: target housing and child-occupied facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... equipment to be used for lecture and hands-on training. (B) A copy of the course test blueprint for each..., the delivery of the lecture, course test, hands-on training, and assessment activities. This includes... containment and cleanup methods, and post-renovation cleaning verification. (vii) The dust sampling technician...
40 CFR 745.225 - Accreditation of training programs: target housing and child-occupied facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... equipment to be used for lecture and hands-on training. (B) A copy of the course test blueprint for each..., the delivery of the lecture, course test, hands-on training, and assessment activities. This includes... containment and cleanup methods, and post-renovation cleaning verification. (vii) The dust sampling technician...
47 CFR 80.1061 - Special requirements for 406.0-406.1 MHz EPIRB stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for a 406.0-406.1 MHz radiobeacon, the radiobeacon must be certified by a test facility recognized by one of the COSPAS-SARSAT Partners that the equipment satisfies the design characteristics associated...). Additionally, the radiobeacon must be subjected to the environmental and operational tests associated with the...
47 CFR 80.1061 - Special requirements for 406.0-406.1 MHz EPIRB stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for a 406.0-406.1 MHz radiobeacon, the radiobeacon must be certified by a test facility recognized by one of the COSPAS-SARSAT Partners that the equipment satisfies the design characteristics associated...). Additionally, the radiobeacon must be subjected to the environmental and operational tests associated with the...
47 CFR 80.1061 - Special requirements for 406.0-406.1 MHz EPIRB stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for a 406.0-406.1 MHz radiobeacon, the radiobeacon must be certified by a test facility recognized by one of the COSPAS-SARSAT Partners that the equipment satisfies the design characteristics associated...). Additionally, the radiobeacon must be subjected to the environmental and operational tests associated with the...
Floor Plans Engine Removal Platform, Hold Down Arm Platform, ...
Floor Plans - Engine Removal Platform, Hold Down Arm Platform, Hydraulic Equipment Platforms, Isometric Cutaway of Engine Removal Platform, Isometric Cutaway of Hold Down Arm Platform, Isometric Cutaway of Hydraulic Platforms and Engine Support System Access - Marshall Space Flight Center, Saturn V S-IC Static Test Facility, West Test Area, Huntsville, Madison County, AL
Braking, steering, and wear performance of radial-belted and bias-ply aircraft tires
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Davis, Pamela A.; Stubbs, Sandy M.; Martinson, Veloria J.
1992-01-01
Preliminary steering, braking, and tread wear performance results from testing of radial-belted and bias-ply aircraft tires at NASA Langley are described. An overview of the joint NASA/FAA/industry START program is presented. Attention is given to the Langley Test Facility, equipment and future activities.
2. View looking southeast at north and west facades of ...
2. View looking southeast at north and west facades of Test Stand 'D' workshop 4222/E-23, with Test Stand 'D' tower in background and tunnel access shed to the right. Equipment on 4222/E-23 roof is for air conditioning. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA
Applicability of Monte-Carlo Simulation to Equipment Design of Radioactive Noble Gas Monitor
NASA Astrophysics Data System (ADS)
Sakai, Hirotaka; Hattori, Kanako; Umemura, Norihiro
In the nuclear facilities, radioactive noble gas is continuously monitored by using the radioactive noble gas monitor with beta-sensitive plastic scintillation radiation detector. The detection efficiency of the monitor is generally calibrated by using a calibration loop and standard radioactive noble gases such as 85Kr. In this study, the applicability of PHITS to the equipment design of the radioactive noble gas monitor was evaluated by comparing the calculated results to the test results obtained by actual calibration loop tests to simplify the radiation monitor design evaluation. It was confirmed that the calculated results were well matched to the test results of the monitor after the modeling. In addition, the key parameters for equipment design, such as thickness of detector window or depth of the sampler, were also specified and evaluated.
Application of a Systems Engineering Approach to Support Space Reactor Development
NASA Astrophysics Data System (ADS)
Wold, Scott
2005-02-01
In 1992, approximately 25 Russian and 12 U.S. engineers and technicians were involved in the transport, assembly, inspection, and testing of over 90 tons of Russian equipment associated with the Thermionic System Evaluation Test (TSET) Facility. The entire Russian Baikal Test Stand, consisting of a 5.79 m tall vacuum chamber and related support equipment, was reassembled and tested at the TSET facility in less than four months. In November 1992, the first non-nuclear operational test of a complete thermionic power reactor system in the U.S. was accomplished three months ahead of schedule and under budget. A major factor in this accomplishment was the application of a disciplined top-down systems engineering approach and application of a spiral development model to achieve the desired objectives of the TOPAZ International Program (TIP). Systems Engineering is a structured discipline that helps programs and projects conceive, develop, integrate, test and deliver products and services that meet customer requirements within cost and schedule. This paper discusses the impact of Systems Engineering and a spiral development model on the success of the TOPAZ International Program and how the application of a similar approach could help ensure the success of future space reactor development projects.
NASA Technical Reports Server (NTRS)
Scholl, R. E. (Editor)
1979-01-01
Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.
Automated Heat-Flux-Calibration Facility
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Weikle, Donald H.
1989-01-01
Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.
Terminal configured vehicle program: Test facilities guide
NASA Technical Reports Server (NTRS)
1980-01-01
The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.
Autonomous rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.
1991-01-01
In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.
The Berkeley extreme ultraviolet calibration facility
NASA Technical Reports Server (NTRS)
Welsh, Barry Y.; Jelinsky, Patrick; Malina, Roger F.
1988-01-01
The vacuum calibration facilities of the Space Sciences Laboratory, University of California at Berkeley are designed for the calibration and testing of EUV and FUV spaceborne instrumentation (spectral range 44-2500 A). The facility includes one large cylindrical vacuum chamber (3 x 5 m) containing two EUV collimators, and it is equipped with a 4-axis manipulator of angular-control resolution 1 arcsec for payloads weighing up to 500 kg. In addition, two smaller cylindrical chambers, each 0.9 x 1.2 m, are available for vacuum and thermal testing of UV detectors, filters, and space electronics hardware. All three chambers open into class-10,000 clean rooms, and all calibrations are referred to NBS secondary standards.
Field Training Exercise FIREX 88: A Study in Large Scale Unit Training
1989-05-01
concerns. De -confliction with other training and testing activities Participation in Battle Book 87. (3:1) Duway Provin Ground (DPG): DPG was used as...were only that simple, how simple planning would be. The first funding issue faced was the transportation of exercise equipment. Traditionally, National...gallons of fuel and 250,000 meals would be needed, along with laundry and bath facilities, equipment repair, supply issue, and transportation services
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- During Crew Equipment Interface Test activities in the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn-Piper and Joseph Tanner look at equipment. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.
77 FR 18151 - Discharge Removal Equipment for Vessels Carrying Oil
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative Technology Revisions... ``Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative... CGD 90-068] RIN 1625-AA02, Formerly 2115-AD66 Discharge Removal Equipment for Vessels Carrying Oil...
78 FR 37760 - Electrical Equipment in Hazardous Locations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... floating facilities engaged in OCS activities, however, equipment could be installed in hazardous locations... composition and the extent of equipment replacement. The myriad types of MODUs and facilities operating on the.... USCG-2012-0850] RIN 1625-AC00 Electrical Equipment in Hazardous Locations AGENCY: Coast Guard, DHS...
4. EXTERIOR VIEW TO THE NORTH OF THE WATER TOWER ...
4. EXTERIOR VIEW TO THE NORTH OF THE WATER TOWER AND MISCELLANEOUS EQUIPMENT ALONG THE EAST SIDE OF THE COMPOUND. - Nevada Test Site, Pluto Facility, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
Tritium systems test assembly stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasen, W. G.; Michelotti, R. A.; Anast, K. R.
The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R&D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S&M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S&M. At the start of the stabilization project, withmore » an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now designated as a Radiological Facility. Innovative approaches were employed for characterization and removal of legacy wastes and high inventory components. Major accomplishments included: (1) Reduction of tritium inventory, elimination of chemical hazards, and identification and posting of remaining hazards. (2) Removal of legacy wastes. (3) Transferred equipment for reuse in other DOE projects, including some at other DOE facilities. (4) Transferred facility in a safe and stable condition to the S&M organization. The project successfully completed all project goals and the TSTA facility was transferred into S&M on August 1,2003. This project demonstrates the benefit of radiological inventory reduction and the removal of legacy wastes to achieve a safe and stable end state that protects workers and the environment pending eventual demolition of the facility.« less
Advancing Sensor Technology for Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Mercer, Carolyn R.
2002-01-01
NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.
Cold Regions Logistic Supportability Testing of Wheeled, Tracked and Special Purpose Vehicles
1985-06-24
NO . Comment : 2. Have all data collected been reviewed for correctness and completeness? YES NO . Comment : 3. Were the facilities, test equipment...insufficient test planning? YES NO . Comment : 5. Were the test results compromised in any way due to test performance procedures? YES NO . Comment : 6...Were the test results compromised in any way due to test control pro- cedures? YES NO Comment : 7. Were the test results compromised in any way due to
Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran
Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad
2016-01-01
Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative. PMID:27766238
Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran.
Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad
2016-01-01
Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative.
Relocation of the Cryo-Test Facility to NASA-MSFC
NASA Technical Reports Server (NTRS)
Sisco, Jimmy D.; McConnaughey, Paul K. (Technical Monitor)
2002-01-01
The Environmental Test Facility (ETF), located at NASA-Marshall Space Flight Center, Huntsville, Alabama, has provided thermal vacuum testing for several major programs since the 1960's. The ETF consists of over 13 thermal vacuum chambers sized and configured to handle the majority of test payloads. Testing is performed around the clock with multiple tests being conducted simultaneously. Chamber selection to achieve the best match with test articles and juggling program schedules, at times, can be a challenge. The ETF's Sunspot chamber has had tests scheduled and operated back-to-back for several years and provides the majority of schedule conflicts. Future test programs have been identified which surpass the current Sunspot availability. This paper describes a very low cost alternate to reduce schedule conflicts by utilizing government excess equipment
Kapongo, Remy Y; Lulebo, Aimée M; Mafuta, Eric M; Mutombo, Paulin B; Dimbelolo, Jean Claude M; Bieleli, Isidore E
2015-01-22
Democratic Republic of the Congo (DRC) is experiencing an increase in the morbi-mortality related to Non Communicable Diseases (NCD). The reform of DRC health system, based on Health District model, is needed in order to tackle this public issue. This article used 2006 International Diabetes Federation (IDF)'s guidelines to assess the capacities of health facilities belonging to Kinshasa Primary Health Care Network (KPHCN) in terms of equipments, as well as the knowledge, and the practice of their health providers related to type 2 diabetes care. A multicentric cross-sectional study was carried in 18 Health Facilities (HF) of KPHCN in charge of the follow-up of diabetic patients. The presence of IDF recommended materials and equipment was checked and 28 health providers were interviewed about their theoretical knowledge about patients' management and therapeutic objectives during recommended visits. Chi square test or Fisher exact test was used to compare proportions and the Student t-test to compare means. The integration of NCD healthcare in the KPHC network is feasible. The majority of HF possessed IDF recommended materials except for the clinical practice guidelines, urinary test strips, and monofilament, available in only one, two and four HF, respectively. KPHCN referral facilities had required materials for biochemical analyses, the ECG and for the fundus oculi test. Patients' management is characterized by a lack of attention on the impairment of renal function during the first visits and a poor respect of recommended practices during quarterly and annual visits. A poor knowledge of the reduction of cardiovascular risk factors-related therapeutic objectives has been also reported. The capacities, knowledge, and practice of T2D care were poor among HF of KPHCN. The lack of equipment and training of healthcare professionals should be supplied even to those who are not medical doctors. Special attention must to be put on the clinical practice guidelines formulation and sensitization and on supervision.
An Overview of the Annual NASA Tire/Runway Friction Workshop and Lessons Learned
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
2005-01-01
This paper summarizes the organization efforts, objectives, scope, agenda, test procedures and results from eleven years of conducting the NASA Tire/Runway Friction Workshop. The paper will also summarize the lessons learned between 1994 and 2004. A description of the various friction, texture and roughness equipment used during these workshops at NASA Wallops Flight Facility on the eastern shore of Virginia will be provided together with the range of test surfaces available for evaluation. The need for friction measuring equipment calibration centers is discussed and plans for future workshops are identified.
David Florida Laboratory: Support for mobile satellite communications
NASA Technical Reports Server (NTRS)
Dumoulin, Jean-Guy; Mamen, Rolf
1995-01-01
The comprehensive integration and environmental (including RF) test facilities of the Canadian Space Agency's David Florida Laboratory (CSA)(DFL) were used extensively for the MSAT Program. Following a description of the facilities, the paper outlines their application to the qualification of the two MSAT satellites following an overview of the test plan. Particular emphasis is given to passive intermodulation measurement (PIM) demands, which for the MSAT satellites, contributed to the need to extend the anechoic chamber. The extended chamber was also used for an EMC test and SAR signature test of the RADARSAT satellite. The DFL's facilities are being used for additional aspects of mobile satellite communications. One shielded anechoic Extra High Frequency (EHF) chamber and associated test equipment are employed predominantly for measuring the performance of the IRIDIUM satellites' Engineering Model Gateway Moveable Antennas (EM)(GMA). Other chambers are used for testing aeronautical antennas on behalf of Inmarsat. Still others combine thermal and PIM testing. The paper concludes with a review of the test requirements of evolving satcom missions such as Inmarsat Aero-1.
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
Radiation Challenges for Electronics in the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2006-01-01
The slides present a brief snapshot discussing electronics and exploration-related challenges. Radiation effects have been the prime target, however, electronic parts reliability issues must also be considered. Modern electronics are designed with a 3-5 year lifetime. Upscreening does not improve reliability, merely determines inherent levels. Testing costs are driven by device complexity; they increase tester complexity, beam requirements, and facility choices. Commercial devices may improve performance, but are not cost panaceas. There is need for a more cost-effective access to high energy heavy ion facilities such as NSCL and NSRL. Costs for capable test equipment can run more than $1M for full testing.
Nondestructive testing techniques
NASA Astrophysics Data System (ADS)
Bray, Don E.; McBride, Don
A comprehensive reference covering a broad range of techniques in nondestructive testing is presented. Based on years of extensive research and application at NASA and other government research facilities, the book provides practical guidelines for selecting the appropriate testing methods and equipment. Topics discussed include visual inspection, penetrant and chemical testing, nuclear radiation, sonic and ultrasonic, thermal and microwave, magnetic and electromagnetic techniques, and training and human factors. (No individual items are abstracted in this volume)
2012-02-17
Industrial Area Construction: Located 5 miles south of Launch Complex 39, construction of the main buildings -- Operations and Checkout Building, Headquarters Building, and Central Instrumentation Facility – began in 1963. In 1992, the Space Station Processing Facility was designed and constructed for the pre-launch processing of International Space Station hardware that was flown on the space shuttle. Along with other facilities, the industrial area provides spacecraft assembly and checkout, crew training, computer and instrumentation equipment, hardware preflight testing and preparations, as well as administrative offices. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
High-tech rural clinics and hospitals in Japan: a comparison to the Japanese average.
Matsumoto, Masatoshi; Okayama, Masanobu; Inoue, Kazuo; Kajii, Eiji
2004-10-01
Japanese medical facilities are noted for being heavily equipped with high-tech equipment compared to other industrialised countries. Rural facilities are anecdotally said to be better equipped than facilities in other areas due to egalitarian health resource diffusion policies by public sectors whose goal is to secure fair access to modern medical technologies among the entire population. To show the technology status of rural practice and compare it to the national level. Nationwide postal survey. Questionnaires were sent to the directors of 1362 public hospitals and clinics (of the 1723 municipalities defined as 'rural' by four national laws). Information was collected about the technologies they possessed. The data were compared with figures from a national census of all hospitals and clinics. A total of 766 facilities responded (an effective response rate of 56%). Rural facilities showed higher possession rates in most comparable technologies than the national level. It is noted that almost all rural hospitals had gastroscopes and colonoscopes and their possession rates of bronchoscopes and dialysis equipment were twice as high as the national level. The discrepancy in possession rates between rural and national was even more remarkable in clinics than in hospitals. Rural clinics owned twice as many abdominal ultrasonographs, and three times as many gastroscopes, colonoscopes, defibrillators and computed tomography scanners as the national level. Rural facilities are equipped with more technology than urban ones. Government-led, tax based, technology diffusion in the entire country seems to have attained its goal. What is already known on this subject: As a general tendency in both developing and developed countries, rural medical facilities are technologically less equipped than their urban counterparts. What does this paper add?: In Japan, rural medical facilities are technologically better equipped than urban facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, Chris; Dann, Geoff
Recent increases in photovoltaic (PV) systems on Department of the Navy (DON) land and potential siting near airfields prompted Commander, Naval Installations Command to fund the Naval Facilities Engineering Command to evaluate the impact of electromagnetic interference (EMI) from PV systems on airfield electronic equipment. Naval Facilities Engineering and Expeditionary Warfare Center tasked Department of Energy National Renewable Energy laboratory (NREL) to conduct the assessment. PV systems often include high-speed switching semiconductor circuits to convert the voltage produced by the PV arrays to the voltage needed by the end user. Switching circuits inherently produce electromagnetic radiation at harmonics of themore » switching frequency. In this report, existing literature is summarized and tests to measure emissions and mitigation methods are discussed. The literature shows that the emissions from typical PV systems are low strength and unlikely to cause interference to most airfield electronic systems. With diligent procurement and siting of PV systems, including specifications for FCC Part 15 Class A compliant equipment and a 250-foot setback from communication equipment, NREL anticipates little to no EMI impact on nearby communications or telemetry equipment.« less
Tiltrotor Acoustic Flight Test: Terminal Area Operations
NASA Technical Reports Server (NTRS)
SantaMaria, O. L.; Wellman, J. B.; Conner, D. A.; Rutledge, C. K.
1991-01-01
This paper provides a comprehensive description of an acoustic flight test of the XV- 15 Tiltrotor Aircraft with Advanced Technology Blades (ATB) conducted in August and September 1991 at Crows Landing, California. The purpose of this cooperative research effort of the NASA Langley and Ames Research Centers was to obtain a preliminary, high quality database of far-field acoustics for terminal area operations of the XV-15 at a takeoff gross weight of approximately 14,000 lbs for various glide slopes, airspeeds, rotor tip speeds, and nacelle tilt angles. The test also was used to assess the suitability of the Crows Landing complex for full scale far-field acoustic testing. This was the first acoustic flight test of the XV-15 aircraft equipped with ATB involving approach and level flyover operations. The test involved coordination of numerous personnel, facilities and equipment. Considerable effort was made to minimize potential extraneous noise sources unique to the region during the test. Acoustic data from the level flyovers were analyzed, then compared with data from a previous test of the XV-15 equipped with Standard Metal Blades
25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection
NASA Technical Reports Server (NTRS)
Packard, Edward
2008-01-01
Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated to Acquire, Process, Trend Data and Produce Radiometric System Assessment Reports; Exhaustive Thresholds and Resistance Checkpoints; Reconfigurable HIL Testing of Earth Satellites; FPGA Control System for the Automated Test of MicroShutters; Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM; Operationally Responsive Space Standard Bus Battery Thermal Balance Testing and Heat Dissipation Analysis; Galileo - The Serial-Production AIT Challenge; The Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Simulated Reentry Heating by Torching; Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum; High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber; The Planning and Implementation of Test Facility Improvements; and Development of a Silicon Carbide Molecular Beam Nozzle for Simulation Planetary Flybys and Low-Earth Orbit.
Energy Systems Integration Facility Named Lab of the Year | News | NREL
series of LEED Platinum high-performance buildings at NREL. Constructed by the design-build team of medium voltage outdoor testing areas. The total cost to build and equip ESIF was $135 million. "To
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2013 CFR
2013-10-01
...); installation; systems testing; FCC filing costs; site acquisition and civil works; zoning costs; training... upgrades for interference control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities...
2011-04-07
JSC2011-E-040337 (7 April 2011) --- The STS-135 crew members participate in the Crew Equipment Interface Test (CEIT) in the Space Station Processing Facility at NASA?s Kennedy Space Center, Florida on April 7, 2011. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
The STS-97 crew take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
In Orbiter Processing Facility (OPF) bay 2 during Crew Equipment Interface Test (CEIT), members of the STS-97 crew look over the Orbital Docking System (ODS) in Endeavour's payload bay. At left, standing, is Mission Specialist Joe Tanner. At right is Mission Specialist Carlos Noriega, with his hands on the ODS. The others are workers in the OPF. The CEIT provides an opportunity for crew members to check equipment and facilities that will be on board the orbiter during their mission. The STS-97 mission will be the sixth construction flight to the International Space Station. The payload includes a photovoltaic (PV) module, providing solar power to the Station. STS-97 is scheduled to launch Nov. 30 from KSC for the 10-day mission.
Construction bidding cost of KSC's space shuttle facilities
NASA Technical Reports Server (NTRS)
Brown, Joseph Andrew
1977-01-01
The bidding cost of the major Space Transportation System facilities constructed under the responsibility of the John F. Kennedy Space Center (KSC) is described and listed. These facilities and Ground Support Equipment (GSE) are necessary for the receiving, assembly, testing, and checkout of the Space Shuttle for launch and landing missions at KSC. The Shuttle launch configuration consists of the Orbiter, the External Tank, and the Solid Rocket Boosters (SRB). The reusable Orbiter and SRB's is the major factor in the program that will result in lowering space travel costs. The new facilities are the Landing Facility; Orbiter Processing Facility; Orbiter Approach and Landing Test Facility (Dryden Test Center, California); Orbiter Mating Devices; Sound Suppression Water System; and Emergency Power System for LC-39. Also, a major factor was to use as much Apollo facilities and hardware as possible to reduce the facilities cost. The alterations to existing Apollo facilities are the VAB modifications; Mobile Launcher Platforms; Launch Complex 39 Pads A and B (which includes a new concept - the Rotary Service Structure), which was featured in ENR, 3 Feb. 1977, 'Hinged Space Truss will Support Shuttle Cargo Room'; Launch Control Center mods; External Tank and SRB Processing and Storage; Fluid Test Complex mods; O&C Spacelab mods; Shuttle mods for Parachute Facility; SRB Recovery and Disassembly Facility at Hangar 'AF'; and an interesting GSE item - the SRB Dewatering Nozzle Plug Sets (Remote Controlled Submarine System) used to inspect and acquire for reuse of SRB's.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Looking over equipment inside the U.S. Lab Destiny as part of a Multi-Equipment Interface Test are STS-98 Pilot Mark Polansky (left) and Commander Kenneth D. Cockrell (center). They are joined by astronaut James Voss (right), who will be among the first crew to inhabit the International Space Station on a flight in late 2000. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Others in the five-member crew on STS-98 are Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
1980-06-05
N-231 High Reynolds Number Channel II Facility In this timeframe the test section was designed specifically to test two-dimensional airfoil models. It is equipped with 'through-the-wall' turntables that remotely position the airfoil, with flexible upper and lower walls that can be adjusted to minimize wall interference. Porous side-wall panels provide boundary-layer removal.
Clean Room in the Zero Gravity Research Facility
1968-07-21
A technician prepares a test sample in the Zero Gravity Research Facility clean room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Zero Gravity Research Facility contained a drop tower which provided five seconds of microgravity during freefall in its 450-foot deep vacuum chamber. The facility has been used for a variety of studies relating to the behavior of fluids and flames in microgravity. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the special ten-second drops in which the package was pneumatically shot to the top of the tower then dropped. The facility also contained a control room, shop offices, tool and equipment rooms, and this clean room. The 242.5-foot long and 19.5-foot wide clean room was equipped with specialized cleaning equipment. In the 1960s the room was rated as a class 10,000 clean room, but I was capable of meeting the class 100 requirements. The room included a fume hood, ultrasonic cleaner, and a laminar flow station which operated as a class 100 environment. The environment in the clean room was maintained at 71° F and a relative humidity of 45- percent.
Gravitational Biology Facility on Space Station: Meeting the needs of space biology
NASA Technical Reports Server (NTRS)
Allen, Katherine; Wade, Charles
1992-01-01
The Gravitational Biology Facility (GBF) is a set of generic laboratory equipment needed to conduct research on Space Station Freedom (SSF), focusing on Space Biology Program science (Cell and Developmental Biology and Plant Biology). The GBF will be functional from the earliest utilization flights through the permanent manned phase. Gravitational biology research will also make use of other Life Sciences equipment on the space station as well as existing equipment developed for the space shuttle. The facility equipment will be developed based on requirements derived from experiments proposed by the scientific community to address critical questions in the Space Biology Program. This requires that the facility have the ability to house a wide variety of species, various methods of observation, and numerous methods of sample collection, preservation, and storage. The selection of the equipment will be done by the members of a scientific working group (5 members representing cell biology, 6 developmental biology, and 6 plant biology) who also provide requirements to design engineers to ensure that the equipment will meet scientific needs. All equipment will undergo extensive ground based experimental validation studies by various investigators addressing a variety of experimental questions. Equipment will be designed to be adaptable to other space platforms. The theme of the Gravitational Biology Facility effort is to provide optimal and reliable equipment to answer the critical questions in Space Biology as to the effects of gravity on living systems.
49 CFR 605.12 - Use of project equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., facilities or equipment funded under the Acts. A grantee or operator may, however, use such buses, facilities... 49 Transportation 7 2010-10-01 2010-10-01 false Use of project equipment. 605.12 Section 605.12..., DEPARTMENT OF TRANSPORTATION SCHOOL BUS OPERATIONS School Bus Agreements § 605.12 Use of project equipment...
NASA Technical Reports Server (NTRS)
1977-01-01
The design and testing of high bypass geared turbofan engines with nacelles forming the propulsion systems for short haul passenger aircraft are considered. The test results demonstrate the technology required for externally blown flap aircraft for introduction into passenger service in the 1980's. The equipment tested is described along with the test facility and instrumentation. A chronological history of the test and a summary of results are given.
1975-12-01
139 APPENDIX A* BASIC CONCEPT OF MILITARY TECHNICAL CONTROL.142 6 APIENDIX Es TEST EQUIPMENI REQUIRED FOR lEASURF.4ENr OF 1AF’AMETE RS...Control ( SATEC ) Automatic Facilities heport Army Automated Quality Monitoring Reporting System (AQMPS) Army Autcmated Technical Control-Semi (ATC-Semi...technical control then beco.. es equipment status monitoring. All the major equipment in a system wculd have internal sensors with properly selected parameters
Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
1998-01-01
The Microgravity Science Glovebox is a facility for performing microgravity research in the areas of materials, combustion, fluids and biotechnology science. The facility occupies a full ISPR, consisting of: the ISPR rack and infrastructure for the rack, the glovebox core facility, data handling, rack stowage, outfitting equipment, and a video subsystem. MSG core facility provides the experiment developers a chamber with air filtering and recycling, up to two levels of containment, an airlock for transfer of payload equipment to/from the main volume, interface resources for the payload inside the core facility, resources inside the airlock, and storage drawers for MSG support equipment and consumables.
1998-05-01
The Microgravity Science Glovebox is a facility for performing microgravity research in the areas of materials, combustion, fluids and biotechnology science. The facility occupies a full ISPR, consisting of: the ISPR rack and infrastructure for the rack, the glovebox core facility, data handling, rack stowage, outfitting equipment, and a video subsystem. MSG core facility provides the experiment developers a chamber with air filtering and recycling, up to two levels of containment, an airlock for transfer of payload equipment to/from the main volume, interface resources for the payload inside the core facility, resources inside the airlock, and storage drawers for MSG support equipment and consumables.
14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...
14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...
14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...
14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...
14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...
2008-01-24
KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, elements of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett
2008-01-24
KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians get ready to begin testing elements of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett
The Infrastructure of Academic Research.
ERIC Educational Resources Information Center
Davey, Ken
1996-01-01
Canadian university infrastructures have eroded as seen in aging equipment, deteriorating facilities, and fewer skilled personnel to maintain and operate research equipment. Research infrastructure includes administrative overhead, facilities and equipment, and research personnel including faculty, technicians, and students. The biggest erosion of…
34 CFR 395.6 - Vendor ownership of vending facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facility in good repair and in an attractive condition and replace worn-out or obsolete equipment; and if... facility in good repair and in an attractive condition and replace worn-out or obsolete equipment, or...
34 CFR 395.6 - Vendor ownership of vending facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facility in good repair and in an attractive condition and replace worn-out or obsolete equipment; and if... facility in good repair and in an attractive condition and replace worn-out or obsolete equipment, or...
33 CFR 127.601 - Fire equipment: General.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...
33 CFR 127.601 - Fire equipment: General.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...
Interim Stabilization Equipment Essential and Support Drawing Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
KOCH, M.R.
The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings: Those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. Support Drawings: Those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings.
Cryogenic vertical test facility for the SRF cavities at BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Than, R.; Liaw, CJ; Porqueddu, R.
2011-03-28
A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars.more » The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.« less
1999-02-17
Various materials are ready for testing in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development
1999-02-17
Materials are being tested in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development
Reduction of Environmental Listeria Using Gaseous Ozone in a Cheese Processing Facility.
Eglezos, Sofroni; Dykes, Gary A
2018-05-01
A cheese processing facility seeking to reduce environmental Listeria colonization initiated a regime of ozonation across all production areas as an adjunct to its sanitation regimes. A total of 360 environmental samples from the facility were tested for Listeria over a 12-month period. A total of 15 areas before and 15 areas after ozonation were tested. Listeria isolations were significantly ( P < 0.001) reduced from 15.0% in the preozonation samples to 1.67% in the postozonation samples in all areas. No deleterious effects of ozonation were noted on the wall paneling, seals, synthetic floors, or cheese processing equipment. The ozonation regime was readily incorporated by sanitation staff into the existing good manufacturing practice program. The application of ozone may result in a significant reduction in the prevalence of Listeria in food processing facilities.
Environmental Control and Life Support Systems Test Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.
Electromagnetic Test-Facility characterization: an identification approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zicker, J.E.; Candy, J.V.
The response of an object subjected to high energy, transient electromagnetic (EM) fields sometimes called electromagnetic pulses (EMP), is an important issue in the survivability of electronic systems (e.g., aircraft), especially when the field has been generated by a high altitude nuclear burst. The characterization of transient response information is a matter of national concern. In this report we discuss techniques to: (1) improve signal processing at a test facility; and (2) parameterize a particular object response. First, we discuss the application of identification-based signal processing techniques to improve signal levels at the Lawrence Livermore National Laboratory (LLNL) EM Transientmore » Test Facility. We identify models of test equipment and then use these models to deconvolve the input/output sequences for the object under test. A parametric model of the object is identified from this data. The model can be used to extrapolate the response to these threat level EMP. Also discussed is the development of a facility simulator (EMSIM) useful for experimental design and calibration and a deconvolution algorithm (DECONV) useful for removing probe effects from the measured data.« less
Test of a coaxial blade tuner at HTS FNAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pischalnikov, Y.; Barbanotti, S.; Harms, E.
2011-03-01
A coaxial blade tuner has been selected for the 1.3GHz SRF cavities of the Fermilab SRF Accelerator Test Facility. Results from tuner cold tests in the Fermilab Horizontal Test Stand are presented. Fermilab is constructing the SRF Accelerator Test Facility, a facility for accelerator physics research and development. This facility will contain a total of six cryomodules, each containing eight 1.3 GHz nine-cell elliptical cavities. Each cavity will be equipped with a Slim Blade Tuner designed by INFN Milan. The blade tuner incorporates both a stepper motor and piezo actuators to allow for both slow and fast cavity tuning. Themore » stepper motor allows the cavity frequency to be statically tuned over a range of 500 kHz with an accuracy of several Hz. The piezos provide up to 2 kHz of dynamic tuning for compensation of Lorentz force detuning and variations in the He bath pressure. The first eight blade tuners were built at INFN Milan, but the remainder are being manufactured commercially following the INFN design. To date, more than 40 of the commercial tuners have been delivered.« less
Swirl, Expansion Ratio and Blockage Effects on Confined Turbulent Flow. M.S. Thesis
NASA Technical Reports Server (NTRS)
Scharrer, G. L.
1982-01-01
A confined jet test facility, a swirles, flow visualization equipment, five-hole pitot probe instrumentation; flow visualization; and effects of swirl on open-ended flows, of gradual expansion on open-ended flows, and blockages of flows are addressed.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Scope. 162.050-1 Section 162.050-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND... facility authorized to conduct approval tests; (5) Marking requirements; and (6) Factory inspection...
18. INTERIOR VIEW TO THE WEST OF ROOM 141, THE ...
18. INTERIOR VIEW TO THE WEST OF ROOM 141, THE HVAC EQUIPMENT ROOM FOR COOLING AND HEATING OF THE BUILDING. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
49 CFR 190.341 - Special permits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... information including operating pressure, leak history, and most recent testing or assessment results; (3) A... equipment, insufficient manpower); (3) A statement indicating how operating the pipeline pursuant to an... damages a pipeline facility resulting in death, serious bodily harm, or property damage exceeding $50,000...
15 CFR 971.602 - Significant adverse environmental effects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... testing of recovery equipment, the recovery of manganese nodules in commercial quantities from the deep seabed, and the construction and operation of commercial-scale processing facilities as activities which...
A Selected Bibliography on Microbiological Laboratory Design.
ERIC Educational Resources Information Center
Laboratory Design Notes, 1967
1967-01-01
Reference sources on microbiological laboratory design are cited. Subjects covered include--(1) policies and general requirements, (2) ventilated cabinets, (3) animal isolation equipment, (4) air handling, ventilation, and filtration, (5) germicidal ultraviolet irradiation, (6) aerosol test facilities, (7) process production of microorganisms, and…
Planning and Equipping a New Machine Shop
ERIC Educational Resources Information Center
Bloom, Nick
1978-01-01
The author describes the planning and equipping of a new machine shop facility at the East Los Angeles Occupational Center. Lists of machine shop and classroom equipment, a floor plan of the facility, and some new shop curriculum approaches are included. (MF)
630A MARITIME NUCLEAR STEAM GENERATOR. Progress Report No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-07-31
Work on the 630A Maritime Nuclear Steam Generator Scoping Study is summarized. The objective of the program is to establish a specific 630A configuration and to develop specifications for components and test equipment. During the period, work was initiated in critical experiment design and fabrication, additional fuel and materials investigations, boiler-test design and fabrication; blower studies; design of component tests; nuclear, thermodynamic, mechanical and safety analysis, and test facility and equipment studies. Design of the critical experiment mockup and test equipment was completed and fabrication of the parts is approximately 50% complete. A rough draft of the critical experiment hazardsmore » report was completed. A fuel test in the ORR completed 876.5 hr of testing out of a planned 2200-hr test without indication of failure. The burnup was equivalent to about 6000 hr of 630A operation. Damage to the capsule during refueling of the ORR caused termination of the test. The design of an MTR fuel-burnup test was completed and fabrication of the sample initiated. Ni-Cr fuel sheet and cladding stock are being tested for creep and oxidation properties at temperatures up to 1750 deg F and have accumulated times up to 5000 hr; no failures have occurred. These tests are continuing. Specimens of Ni-Cr were fabricated and will be tested to determine the effect of neutron irradiation. Cycle operating conditions with 120O deg F reactor-discharge-air temperature were studied and found to be acceptable for the proposed maritime application. Increases in cycle efficiency above 30.2% appear to be possible and practical. Studies during the period indicate that an acceptable power distribution can be maintained through the life of the reactor and the maximum hot spot temperature and maximum burnup location would not coincide. Specifications for the fuel loading of the critical experiment are being prepared. Study of the pressure vessel resulted in selection of 304 SS. Containment studies indfcated the practicality of designing the shield tank outer shell as part of the containment vessel. A blower scoping study subcontract was completed. The study verified the feasibility of the main and afterblower concept. Alternate shaft-seal designs were proposed. The design of a performance test for the two seal types has been initiated. The design of the boiler test from which control characteristics will be determined was completed and fabrication started. The decision was made that the Low Power Test Facility (LPTF) will be the site used for the critical experiment. A preliminary study of the power test facility requirements were completed. The study indicated that locating the facility adjacent to the LPTF would be operationally and economically feasible. (auth)« less
NASA tire/runway friction projects
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1995-01-01
The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opalka, K.O.
1989-08-01
The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) examines a power data grapple fixture outside the U.S. Lab Destiny. Jones is taking part in a Multi-Equipment Interface Test (MEIT), along with other crew members Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The grapple fixture will be the base of operations for the robotic arm on later flights The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
Demonstration/Validation of Environmentally-Preferable Coatings for Launch Facilities
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2011-01-01
Kennedy Space Center (KSC) is responsible for a number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. Applied coating systems work via a variety of methods (barrier, galvanic and/or inhibitor) and adhere to the substrate through a combination of chemical and physical bonds. Maintenance at KSC and other NASA Centers is governed by NASA-STD-50088 (Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment) which establishes practices for the protective coating of ground support equipment and related facilities used by or for NASA programs and projects. The Standard is for the design of non-flight hardware used to support the operations of receiving, transportation, handling, assembly, inspection, test, checkout, service, and launch of space vehicles and payloads at NASA launch, landing, or retrieval sites. These criteria and practices contained within the Standard may be used for items used at the manufacturing, development, and test sites upstream of the launch, landing, or retrieval sites. The objective of this effort is to demonstrate and validate environmentally-preferable alternatives in accordance with NASA-STD-50088 and KSC requirements which can then be added to the Approved Products List. This Test Protocol contains the critical requirements and tests necessary to qualify alternatives for structural steel applications. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of KSC participants. A Test Report will document the results of the testing as well as any test modifications made during the execution of the testing. Users of this Test Protocol should check the project's Test Report for additional test details or minor modifications that may have been necessary in the execution of the testing. The technical stakeholders will have agreed upon test procedures modifications documented in the Test Report.
Autonomous rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.
1991-01-01
In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.
1986-10-01
opeational test and evaluation (OT&R). The OT&B Is comprised of Initial operational test and evaluation ( IOT &R) and follow-on test and evaluation (FOT&R). OT&I...BP HYL FVAC beating, ventilation and air conditioning am. ICBM Intercntinental ballistic missile an. IOT &R Initial operational test and *valuation so...and maintenance vehicles (stop- B pod, engine idle-exterior), facility equipment utility rooms, heating, ventilation and air conditioning ( HVAC
NASA Technical Reports Server (NTRS)
Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei
2015-01-01
Hardness assurance test results of Intel state-of-the-art 14nm Broadwell U-series processor System-on-a-Chip (SoC) for total dose are presented, along with first-look exploratory results from trials at a medical proton facility. Test method builds upon previous efforts by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).
MPLM Donatello is offloaded at the SLF
NASA Technical Reports Server (NTRS)
2001-01-01
At the Shuttle Landing Facility, cranes help offload the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane. The third of three for the International Space Station, the module will be moved on a transporter to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
Role of EIS in Materials and Coatings Selection for NASA's Launch Facilities
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2004-01-01
Corrosion studies began at NASA's John F. Kennedy Space Center (KSC) in 1966, during the Gemini/Apollo Programs, with the evaluation of long-term anti-corrosion coatings for carbon steel structures. NASAIKSC's Atmospheric Exposure Test Site was established at that time on the beach near the launch pad. In the years that followed, numerous studies at the site have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. The atmosphere at the launch pad is highly corrosive due to the proximity of the Atlantic Ocean, high heat from rocket exhaust, and since the introduction of the Space Shuttle, the acidic combustion products of the Solid Rocket Boosters (SRBs). Currently, NASAIKSC maintains about $2 billion worth of unique equipment and facilities, not including the orbiters, each valued at about $1.8 billion. Among the items: two launch complexes, two crawler transporters, three mobile launch platforms, and specialized testing equipment. Atmospheric exposure provides very valuable data but it takes a long time and relies on human visual inspection. NASA Technical Standard for Protective Coatings requires 18 months of good performance at the Atmospheric Exposure Test Site for preliminary approval and continued good performance for 5 years for final approval of a coating system. The use of electrochemical impedance spectroscopy (EIS) was introduced at KSC in 1989 as a supplement to the traditional dc electrochemical techniques and atmospheric exposure studies. This paper presents and overview of several projects in which EIS was used in order to select materials and coatings to be used at NASA's launch facilities [1-2].
Code of Federal Regulations, 2010 CFR
2010-07-01
... Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities Emission... equipment leak inspections if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station... if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station, or pipeline...
9 CFR 590.506 - Candling and transfer-room facilities and equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...
9 CFR 590.506 - Candling and transfer-room facilities and equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...
9 CFR 590.506 - Candling and transfer-room facilities and equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...
9 CFR 590.506 - Candling and transfer-room facilities and equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...
US quality control in Italy: present and future
NASA Astrophysics Data System (ADS)
Balbis, S.; Musacchio, C.; Guiot, C.; Spagnolo, R.
2011-02-01
US diagnostic equipments are widely diffused in Italy but, in spite of recommendations (e.g. ISPESL-Ministry of Health (1999) and SIRM (Società Italiana di Radiologia Medica, 2004), US quality controls are restricted to only a few public sanitary structure and a national (or even regional) quality assurance program for testing the performances of the US equipments is still missing. A joint Research Centre among the three Piedmontese Universities and INRIM, partially funded by Regione Piemonte, has been established in 2009 as Reference Centre for Medical Ultrasounds (CRUM). In addition to research, development and training tasks, the Centre aims at the local diffusion of the quality assurance in clinical US equipments. According to data from the Ministry of Health (2006), around 7 % of the Italian US diagnostic equipments (946 over 13526) are located in Piedmont: mostly (75.6%) in public hospitals, 9.3 % in conventionated hospitals, 4.3% in public and 10.8% in private territorial structures. The goal is the provision of a regional database, which progressively includes data related to acceptance test, status and QC tests and maintenance, in order to drive equipment turnover and carefully monitoring the overall equipment efficiency. Moreover, facilities are available at CRUM for monitoring both beam geometry and acoustic power and performing quantitative assessment of the delivered energy intensity.
Expedition 18 Station Development Test Objectives (STDO) Session 1
2009-02-19
ISS018-E-033816 (19 Feb. 2009) --- Astronaut Michael Fincke, Expedition 18 commander, removes, cleans and replaces electronic test components on a single test card using Component Repair Equipment (CRE-1) hardware in a portable glovebox facility in the Harmony node of the International Space Station. Fincke unsoldered 1 1/2 components from an integrated circuit board and re-soldered new components including an integrated circuit chip.
Expedition 18 Station Development Test Objectives (STDO) Session 1
2009-02-19
ISS018-E-033818 (19 Feb. 2009) --- Astronaut Michael Fincke, Expedition 18 commander, removes, cleans and replaces electronic test components on a single test card using Component Repair Equipment (CRE-1) hardware in a portable glovebox facility in the Harmony node of the International Space Station. Fincke unsoldered 1 1/2 components from an integrated circuit board and re-soldered new components including an integrated circuit chip.
NASA Technical Reports Server (NTRS)
1982-01-01
A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.
The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...
The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...
2009-06-05
CAPE CANAVERAL, Fla. – TIn Orbiter Processing Facility 3 at NASA's Kennedy Space Center in Florida, STS-128 crew members are lowered into space shuttle Discovery's payload bay to check equipment. At center is Mission Specialist John "Danny" Olivas. The crew is at Kennedy for a crew equipment interface test, or CEIT, which provides hands-on training and observation of shuttle and flight hardware. The STS-128 flight will carry science and storage racks to the International Space Station on Discovery. Launch is targeted for Aug. 7. Photo credit: NASA/Jim Grossmann
2008-06-26
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, STS-126 crew members check out the interior of the multi-purpose logistics module that will fly on the mission. Shuttle crews frequently visit Kennedy to get hands-on experience, called a crew equipment interface test, with hardware and equipment for their missions. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett
Protection of the electronic components of measuring equipment from the X-ray radiation
NASA Astrophysics Data System (ADS)
Perez Vasquez, N. O.; Kostrin, D. K.; Uhov, A. A.
2018-02-01
In this work the effect of X-ray radiation on the operation of integrated circuits of the measurement equipment is discussed. The results of the calculations of a shielding system, allowing using integrated circuits with a high degree of integration in the vicinity of the X-ray source, are shown. The results of the verification of two measurement devices that was used for more than five years in the facility for training and testing of X-ray tubes are presented.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Joseph Tanner (center) works a piece of equipment during Crew Equipment Interface Test activities in the Space Station Processing Facility. On the right is Mission Specialist Heidemarie Stefanyshyn-Piper. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.
NASA Astrophysics Data System (ADS)
Khomenok, L. A.
2007-09-01
Problems related to efficient afterburning of fuel in the medium of gas-turbine unit exhaust gases, as well as new design arrangements of gas-jet burners used in the chambers for afterburning fuel in heat-recovery boilers at cogeneration stations equipped with combined-cycle plants, are considered. Results obtained from comparative experimental investigations of different gas-jet flame stabilizers at a test facility are presented, and the advantages of jet-ejector stabilizers are demonstrated.
2007-09-28
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 Mission Specialist Rex Walheim reaches toward the wing of space shuttle Atlantis. The crew is at Kennedy to take part in a crew equipment interface test, or CEIT, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett
The STS-92 crew is ready to leave KSC after CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Pilot Pam Melroy poses at the Shuttle Landing Facility before flying back to Houston. She and other crew members completed their Crew Equipment Interface Test activities, looking over their mission payload and related equipment. STS-92 is scheduled to launch Oct. 5 on Shuttle Discovery from Launch Pad 39A on the fifth flight to the International Space Station. Discovery will carry the Integrated Truss Structure (ITS) Z1, the PMA-3, Ku-band Communications System, and Control Moment Gyros (CMGs).
Usability Testing and Analysis Facility (UTAF)
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2010-01-01
This slide presentation reviews the work of the Usability Testing and Analysis Facility (UTAF) at NASA Johnson Space Center. It is one of the Space Human Factors Laboratories in the Habitability and Human Factors Branch (SF3) at NASA Johnson Space Center The primary focus pf the UTAF is to perform Human factors evaluation and usability testing of crew / vehicle interfaces. The presentation reviews the UTAF expertise and capabilities, the processes and methodologies, and the equipment available. It also reviews the programs that it has supported detailing the human engineering activities in support of the design of the Orion space craft, testing of the EVA integrated spacesuit, and work done for the design of the lunar projects of the Constellation Program: Altair, Lunar Electric Rover, and Outposts
Thermochemical Users Facility | Bioenergy | NREL
collaborate on research and development efforts or to use our equipment to test their materials and processes NREL's thermochemical process integration, scale-up, and piloting research. Schematic diagram of NRELs about NREL's thermochemical process integration, scale-up, and piloting research. Thermochemical
Sparn Photo of Bethany Sparn Bethany Sparn Researcher IV-Systems Engineering Bethany.Sparn@nrel.gov , residential HVAC equipment, heat pump water heaters, automated home energy management devices, and whole-house Energy Systems Integration Facility which provides a test bed for evaluating home energy management
Quantitative assessment of anthrax vaccine immunogenicity using the dried blood spot matrix.
Schiffer, Jarad M; Maniatis, Panagiotis; Garza, Ilana; Steward-Clark, Evelene; Korman, Lawrence T; Pittman, Phillip R; Mei, Joanne V; Quinn, Conrad P
2013-03-01
The collection, processing and transportation to a testing laboratory of large numbers of clinical samples during an emergency response situation present significant cost and logistical issues. Blood and serum are common clinical samples for diagnosis of disease. Serum preparation requires significant on-site equipment and facilities for immediate processing and cold storage, and significant costs for cold-chain transport to testing facilities. The dried blood spot (DBS) matrix offers an alternative to serum for rapid and efficient sample collection with fewer on-site equipment requirements and considerably lower storage and transport costs. We have developed and validated assay methods for using DBS in the quantitative anti-protective antigen IgG enzyme-linked immunosorbent assay (ELISA), one of the primary assays for assessing immunogenicity of anthrax vaccine and for confirmatory diagnosis of Bacillus anthracis infection in humans. We have also developed and validated high-throughput data analysis software to facilitate data handling for large clinical trials and emergency response. Published by Elsevier Ltd.
The BGO Calorimeter of BGO-OD Experiment
NASA Astrophysics Data System (ADS)
Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Bieling, J.; Bleckwenn, M.; Böse, S.; Braghieri, A.; Brinkmann, K.-Th; Burdeynyi, D.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.-F.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Mei, P.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.
2015-02-01
The BGO Rugby Ball is a large solid angle electromagnetic calorimeter now installed in the ELSA Facility in Bonn. The BGO is operating in the BGO-OD experiment aiming to study meson photoproduction off proton and neutron induced by a Bremsstrahlung polarized gamma beam of energies from 0.2 to 3.2 GeV and an intensity of 5 × 107 photons per second. The scintillating material characteristics and the photomultiplier read-out make this detector particularly suited for the detection of medium energy photons and electrons with very good energy resolution. The detector has been equipped with a new electronics read-out system, consisting of 30 sampling ADC Wie-Ne-R modules which perform the off-line reconstruction of the signal start-time allowing for a good timing resolution. Performances in linearity, resolution and time response have been carefully tested at the Beam Test Facility of the INFN National Laboratories in Frascati by using a matrix of 7 BGO crystals coupled to photomultipliers and equipped with the Wie-Ne-R sampling ADCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.J.; Phillips, M.; Etheridge, D.
2012-07-01
Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less
Fuel conditioning facility electrorefiner start-up results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Vaden, D.
1996-05-01
At ANL-West, there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will make use of an electrometallurgical process employing molten salts and liquid metals. The treatment equipment is presently undergoing testing with depleted uranium. Operations with irradiated fuel will commence when the environmental evaluation for FCF is complete.
Common Risk Criteria Standards for National Test Ranges
2017-09-01
critical assets. Equipment and facilities that comprise part of an on- or off-base renewable energy system, such as wind turbine generation facilities...to be protected. As an example, for a wind turbine farm, the unit component would be a single wind turbine . A unit component can be considered...functionality of the larger system to which the unit component belongs. For example, a single wind turbine is a unit component of a wind turbine farm. A
7 CFR 1710.106 - Uses of loan funds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... generation facilities to serve RE Act beneficiaries. (3) Warehouse and garage facilities. The purchase, remodeling, or construction of warehouse and garage facilities required for the operation of a borrower's... equipment, including furniture, office, transportation, data processing and other work equipment; and (3...
New methodology to baseline and match AME polysilicon etcher using advanced diagnostic tools
NASA Astrophysics Data System (ADS)
Poppe, James; Shipman, John; Reinhardt, Barbara E.; Roussel, Myriam; Hedgecock, Raymond; Fonda, Arturo
1999-09-01
As process controls tighten in the semiconductor industry, the need to understand the variables that determine system performance become more important. For plasma etch systems, process success depends on the control of key parameters such as: vacuum integrity, pressure, gas flows, and RF power. It is imperative to baseline, monitor, and control these variables. This paper presents an overview of the methods and tools used by Motorola BMC fabrication facility to characterize an Applied Materials polysilicon etcher. Tool performance data obtained from our traditional measurement techniques are limited in their scope and do not provide a complete picture of the ultimate tool performance. Presently the BMC traditional characterization tools provide a snapshot of the static operation of the equipment under test (EUT); however, complete evaluation of the dynamic performance cannot be monitored without the aid of specialized diagnostic equipment. To provide us with a complete system baseline evaluation of the polysilicon etcher, three diagnostic tools were utilized: Lucas Labs Vacuum Diagnostic System, Residual Gas Analyzer, and the ENI Voltage/Impedance Probe. The diagnostic methodology used to baseline and match key parameters of qualified production equipment has had an immense impact on other equipment characterization in the facility. It has resulted in reduced cycle time for new equipment introduction as well.
Mars mission science operations facilities design
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.
2002-01-01
A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.
NASA Astrophysics Data System (ADS)
Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, P.; Sedghi, B.; Mueller, M.
2012-09-01
During the advanced design phase of the European Extremely Large Telescope (E-ELT) several critical components have been prototyped. During the last year some of them have been tested in dedicated test stands. In particular, a representative section of the E-ELT primary mirror has been assembled with 2 active and 2 passive segments. This test stand is equipped with complete prototype segment subunits, i.e. including support mechanisms, glass segments, edge sensors, position actuators as well as additional metrology for monitoring. The purpose is to test various procedures such as calibration, alignment and handling and to study control strategies. In addition the achievable component and subsystem performances are evaluated, and interface issues are identified. In this paper an overview of the activities related to the E-ELT M1 Test Facility will be given. Experiences and test results are presented.
49 CFR 192.171 - Compressor stations: Additional safety equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Additional safety equipment... Pipeline Components § 192.171 Compressor stations: Additional safety equipment. (a) Each compressor station must have adequate fire protection facilities. If fire pumps are a part of these facilities, their...
46 CFR 160.062-7 - Procedures for acceptance of repair facility.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Procedures for acceptance of repair facility. 160.062-7 Section 160.062-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment...
Food Service Equipment. Third Edition.
ERIC Educational Resources Information Center
Jernigan, Anna Katherine; Ross, Lynne Nannen
This book provides information that will help in purchasing the kind of food service equipment most useful in any given facility. Hence, it should be of value to architects, contractors, administrators, dietitians, managers, and others involved in remodeling a facility, replacing equipment, and/or improving the efficiency of food service…
NASA Astrophysics Data System (ADS)
Kishkovich, Oleg P.; Bolgov, Dennis; Goodwin, William
1999-06-01
In this paper, the authors discuss the requirements for chemical air filtration system used in conjunction with modern DUV photolithography equipment. Among the topics addressed are the scope of pollutants, their respective internal and external sources, and an overview of different types of filtration technologies currently in use. Key filtration parameters, including removal efficiency, service life, and spill protection capacity, are discussed and supported by actual data, reflection the total molecular base concentration in operational IC manufacturing facilities. The authors also describe a time-accelerated testing procedure for comparing and evaluating different filtration technologies and designs, and demonstrate how this three-day test procedure can reliably predict an effective filter service life up to ten years.
Space transportation system payload interface verification
NASA Technical Reports Server (NTRS)
Everline, R. T.
1977-01-01
The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).
Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor/System-on-a-Chip
NASA Technical Reports Server (NTRS)
Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei
2015-01-01
Hardness assurance test results of Intel state-of-the-art 14nm “Broadwell” U-series processor / System-on-a-Chip (SoC) for total ionizing dose (TID) are presented, along with exploratory results from trials at a medical proton facility. Test method builds upon previous efforts [1] by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).
Payload/GSE/data system interface: Users guide for the VPF (Vertical Processing Facility)
NASA Technical Reports Server (NTRS)
1993-01-01
Payload/GSE/data system interface users guide for the Vertical Processing Facility is presented. The purpose of the document is three fold. First, the simulated Payload and Ground Support Equipment (GSE) Data System Interface, which is also known as the payload T-0 (T-Zero) System is described. This simulated system is located with the Cargo Integration Test Equipment (CITE) in the Vertical Processing Facility (VPF) that is located in the KSC Industrial Area. The actual Payload T-0 System consists of the Orbiter, Mobile Launch Platforms (MLPs), and Launch Complex (LC) 39A and B. This is referred to as the Pad Payload T-0 System (Refer to KSC-DL-116 for Pad Payload T-0 System description). Secondly, information is provided to the payload customer of differences between this simulated system and the actual system. Thirdly, a reference guide of the VPF Payload T-0 System for both KSC and payload customer personnel is provided.
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Smith, C. A.; Johnson, W.
1985-01-01
The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, training takes place atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
2011-02-15
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training on a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
... specially designed parts, components, accessories, and attachments therefor (a) in production, (b... production, testing and inspection equipment, and tooling, specially designed for plants or facilities..., a definition for specially designed, and responses to public comments and changes to other sections...
33 CFR 106.210 - OCS Facility Security Officer (FSO).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., testing and maintenance of security equipment and systems. (c) Responsibilities. In addition to any other... compliance with this part; (2) Ensure the maintenance of and supervision of the implementation of the FSP... of stores and industrial supplies in compliance with this part; (4) Where applicable, propose...
30 CFR 585.706 - How do I nominate a CVA for BOEM approval?
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering current commitments; (6) Previous... facilities; (2) Technical capabilities of the individual or the primary staff for the specific project; (3...
30 CFR 585.706 - How do I nominate a CVA for BOEM approval?
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering current commitments; (6) Previous... facilities; (2) Technical capabilities of the individual or the primary staff for the specific project; (3...
30 CFR 585.706 - How do I nominate a CVA for BOEM approval?
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering current commitments; (6) Previous... facilities; (2) Technical capabilities of the individual or the primary staff for the specific project; (3...
14 CFR 147.37 - Maintenance of facilities, equipment, and material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS... maintenance technician school shall provide facilities, equipment, and material equal to the standards...
46 CFR 160.151-47 - Requirements for owners or operators of servicing facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... facilities. 160.151-47 Section 160.151-47 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Liferafts (SOLAS) § 160.151-47 Requirements for owners or operators of servicing facilities. To maintain...
Evaluation of high-voltage, high-power, solid-state remote power controllers for amps
NASA Technical Reports Server (NTRS)
Callis, Charles P.
1987-01-01
The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.
Hydrazine Catalyst Production: Sustaining S-405 Technology
NASA Technical Reports Server (NTRS)
Wucherer, E. J.; Cook, Timothy; Stiefel, Mark; Humphries, Randy, Jr.; Parker, Janet
2003-01-01
The development of the iridium-based Shell 405 catalyst for spontaneous decomposition of hydrazine was one of the key enabling technologies for today's spacecraft and launch vehicles. To ensure that this crucial technology was not lost when Shell elected to exit the business, Aerojet, supported by NASA, has developed a dedicated catalyst production facility that will supply catalyst for future spacecraft and launch vehicle requirements. We have undertaken a program to transfer catalyst production from Shell Chemical USA (Houston, TX) to Aerojet's Redmond, WA location. This technology transition was aided by Aerojet's 30 years of catalyst manufacturing experience and NASA diligence and support in sustaining essential technologies. The facility has produced and tested S-405 catalyst to existing Shell 405 specifications and standards. Our presentation will describe the technology transition effort including development of the manufacturing facility, capture of the manufacturing process, test equipment validation, initial batch build and final testing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombard, K.H.
1994-08-01
The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing newmore » and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.« less
An Airbus arrives at KSC with third MPLM
NASA Technical Reports Server (NTRS)
2001-01-01
An Airbus '''Beluga''' air cargo plane, The Super Transporter, lands at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
An Airbus arrives at KSC with third MPLM
NASA Technical Reports Server (NTRS)
2001-01-01
An Airbus '''Beluga''' air cargo plane, The Super Transporter, arrives at KSC's Shuttle Landing Facility from the factory of Alenia Aerospazio in Turin, Italy. Its cargo is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.
The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...
The prevalence of visible and/or occult blood on anesthesia and monitoring equipment.
Perry, S M; Monaghan, W P
2001-02-01
The Occupational Safety and Health Administration (OSHA) and the Centers for Disease Control and Prevention (CDC) have attempted to stop the spread of blood-borne pathogens by issuing several recommendations and regulations. However, unless healthcare workers comply with these standards, they are not effective. In the anesthesia care environment, the anesthetist is responsible for ensuring that the equipment is clean, and disinfected, before use. We studied the prevalence of visible and occult blood on 6 types of anesthesia and monitoring equipment identified as ready for use in 28 operating suites, in 2 facilities. The sample consisted of 336 observations of the 6 types of equipment. The equipment was inspected for visible blood and then tested for occult blood using a 3-stage phenolphthalein test. Of the 336 observations, 110 (32.7%), were positive for occult blood with only 6 showing visible blood. The presence of blood on this equipment may be in direct violation of the OSHA Blood-borne Pathogen Standard and the infection control guidelines of the American Association of Nurse Anesthetists. Furthermore, the presence of blood on this equipment may increase the risk for nosocomial and occupational exposure to viral and bacterial pathogens. Recommendations were made to decrease the risks from this contamination by redesigning equipment, increasing the use of disposable equipment, and ensuring compliance with effective infection control practices.
48 CFR 811.107 - Contract clauses.
Code of Federal Regulations, 2014 CFR
2014-10-01
... facility unless the facility Chief, Engineering Service, indicates that the service data manuals are not... mechanical equipment (other than technical medical and other technical equipment and devices) issued by a...
48 CFR 811.107 - Contract clauses.
Code of Federal Regulations, 2013 CFR
2013-10-01
... facility unless the facility Chief, Engineering Service, indicates that the service data manuals are not... mechanical equipment (other than technical medical and other technical equipment and devices) issued by a...
48 CFR 811.107 - Contract clauses.
Code of Federal Regulations, 2012 CFR
2012-10-01
... facility unless the facility Chief, Engineering Service, indicates that the service data manuals are not... mechanical equipment (other than technical medical and other technical equipment and devices) issued by a...
48 CFR 811.107 - Contract clauses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... facility unless the facility Chief, Engineering Service, indicates that the service data manuals are not... mechanical equipment (other than technical medical and other technical equipment and devices) issued by a...
NASA Astrophysics Data System (ADS)
Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.
2011-06-01
This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.
NASA Technical Reports Server (NTRS)
Krupa, Debra T.; Gosbee, John; Murphy, Linda; Kizzee, Victor D.
1991-01-01
The purpose is to evaluate the prototype Advanced Life Support (ALS) Pack which was developed for the Health Maintenance Facility (HMF). This pack will enable the Crew Medical Officer (CMO) to have ready access to advanced life support supplies and equipment for time critical responses to any situation within the Space Station Freedom. The objectives are: (1) to evaluate the design of the pack; and (2) to collect comments for revision to the design of the pack. The in-flight test procedures and other aspects of the KC-135 parabolic test flight to simulate weightlessness are presented.
48 CFR 252.239-7012 - Title to telecommunication facilities and equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Title to telecommunication... CLAUSES Text of Provisions And Clauses 252.239-7012 Title to telecommunication facilities and equipment. As prescribed in 239.7411(b), use the following clause: Title to Telecommunication Facilities and...
48 CFR 252.239-7012 - Title to telecommunication facilities and equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Title to telecommunication... CLAUSES Text of Provisions And Clauses 252.239-7012 Title to telecommunication facilities and equipment. As prescribed in 239.7411(b), use the following clause: Title to Telecommunication Facilities and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Supplement No. 1 to Part 774 (the Commerce Control List), Category 0--Nuclear Materials, Facilities, and...