Sample records for equivalent binder concept

  1. Development of silane-hydrolysate binder for UV-resistant thermal control coatings

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1981-01-01

    Detailed characterizaton and formulation studies were performed on a methyltriakoxysilane hydrolysate as a binder for thermal control coatings. The binder was optimized by varying hydrolysis temperature, time, catalyst type, and water concentration. The candidate coating formulations, based on this binder with TiO2 pigment, were optimized via a detailed series of sprayed test panels that included the parameters of binder/pigment ratio, ethanol content, pigment particle size, coating thickness and cure conditions. A typical optimized coating was prepared by acetic acid catalyzed hydrolysis of methyltriethoxysilane with 3.25 mol-equivalents of water over a 24 hour period at room temperature. The resulting hydrolysate was directly mixed with pre-milled TiO2 (12 grams pigment/26 grams binder) to yield a sprayable consistency. Panels were sprayed to result in a nominal cure coating thickness of 2 mils. Cure was affected by air drying for 24 hr at room temperature plus 72 hr at 150 F. These coatings are typically extremely tough and abrasion-resistant, with an absorptance (alpha) of 0.20 and emittance (e) of 0.89. No significant coating damage was observed in the mandrel bend test, even after exposure to thermal cycling from -160 to 160 F. Vacuum exposure of the coatings for 930 hours at 1 equivalent UV sun resulted in no visible degradation and no significant increase in absorptance.

  2. Binder enhanced refuse derived fuel

    DOEpatents

    Daugherty, Kenneth E.; Venables, Barney J.; Ohlsson, Oscar O.

    1996-01-01

    A refuse derived fuel (RDF) pellet having about 11% or more particulate calcium hydroxide which is utilized in a combustionable mixture. The pellets are used in a particulate fuel bring a mixture of 10% or more, on a heat equivalent basis, of the RDF pellet which contains calcium hydroxide as a binder, with 50% or more, on a heat equivalent basis, of a sulphur containing coal. Combustion of the mixture is effective to produce an effluent gas from the combustion zone having a reduced SO.sub.2 and polycyclic aromatic hydrocarbon content of effluent gas from similar combustion materials not containing the calcium hydroxide.

  3. Chelating effect in short polymers for the design of bidentate binders of increased affinity and selectivity

    PubMed Central

    Fortuna, Sara; Fogolari, Federico; Scoles, Giacinto

    2015-01-01

    The design of new strong and selective binders is a key step towards the development of new sensing devices and effective drugs. Both affinity and selectivity can be increased through chelation and here we theoretically explore the possibility of coupling two binders through a flexible linker. We prove the enhanced ability of double binders of keeping their target with a simple model where a polymer composed by hard spheres interacts with a spherical macromolecule, such as a protein, through two sticky spots. By Monte Carlo simulations and thermodynamic integration we show the chelating effect to hold for coupling polymers whose radius of gyration is comparable to size of the chelated particle. We show the binding free energy of flexible double binders to be higher than that of two single binders and to be maximized when the binding sites are at distances comparable to the mean free polymer end-to-end distance. The affinity of two coupled binders is therefore predicted to increase non linearly and in turn, by targeting two non-equivalent binding sites, this will lead to higher selectivity. PMID:26496975

  4. Pretreated densified biomass products

    DOEpatents

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  5. Crossing borders to bind proteins--a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set.

    PubMed

    Baltzer, Lars

    2011-06-01

    A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation.

  6. Effect of HMX on the combustion response function

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Cohen, N. S.

    1980-01-01

    Over a pressure range of 3.5-7 MPa and a frequency range of 500-2000 Hz and compared to propellants having equivalent energy and burn rate, HMX produces less pressure-coupled acoustic driving than AP and is equivalent to NC/TMETN. Formation of carbonaceous combustion products indicates that binder decomposition does not follow equilibrium thermochemistry, and that this is aggravated by fuel richness or the absence of AP.

  7. A "Sticky" Mucin-Inspired DNA-Polysaccharide Binder for Silicon and Silicon-Graphite Blended Anodes in Lithium-Ion Batteries.

    PubMed

    Kim, Sunjin; Jeong, You Kyeong; Wang, Younseon; Lee, Haeshin; Choi, Jang Wook

    2018-05-14

    New binder concepts have lately demonstrated improvements in the cycle life of high-capacity silicon anodes. Those binder designs adopt adhesive functional groups to enhance affinity with silicon particles and 3D network conformation to secure electrode integrity. However, homogeneous distribution of silicon particles in the presence of a substantial volumetric content of carbonaceous components (i.e., conductive agent, graphite, etc.) is still difficult to achieve while the binder maintains its desired 3D network. Inspired by mucin, the amphiphilic macromolecular lubricant, secreted on the hydrophobic surface of gastrointestine to interface aqueous serous fluid, here, a renatured DNA-alginate amphiphilic binder for silicon and silicon-graphite blended electrodes is reported. Mimicking mucin's structure comprised of a hydrophobic protein backbone and hydrophilic oligosaccharide branches, the renatured DNA-alginate binder offers amphiphilicity from both components, along with a 3D fractal network structure. The DNA-alginate binder facilitates homogeneous distribution of electrode components in the electrode as well as its enhanced adhesion onto a current collector, leading to improved cyclability in both silicon and silicon-graphite blended electrodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Prediction of crosslink density of solid propellant binders. [curing of elastomers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.

    1976-01-01

    A quantitative theory is outlined which allows calculation of crosslink density of solid propellant binders from a small number of predetermined parameters such as the binder composition, the functionality distributions of the ingredients, and the extent of the curing reaction. The parameter which is partly dependent on process conditions is the extent of reaction. The proposed theoretical model is verified by independent measurement of effective chain concentration and sol and gel fractions in simple compositions prepared from model compounds. The model is shown to correlate tensile data with composition in the case of urethane-cured polyether and certain solid propellants. A formula for the branching coefficient is provided according to which if one knows the functionality distributions of the ingredients and the corresponding equivalent weights and can measure or predict the extent of reaction, he can calculate the branching coefficient of such a system for any desired composition.

  9. Space stable thermal control coatings

    NASA Technical Reports Server (NTRS)

    Harada, Y.

    1982-01-01

    A specification quality zinc orthotitanate coating was developed. This silicate-bonded Zn2TiO4 coating is discussed. The effects of precursor chemistry, precursor mixing procedures, stoichiometry variations, and of different heat treatments on the physical and optical properties of Zn2TiO4 are investigated. Inorganic silicates are compared to organic silicone binder systems. The effects of pigment to binder ratio, water content, and of different curing procedures on the optical and physical properties of Zn2TiO4 potassium silicate coatings are also studied. Environmental tests were conducted to determine the UV vacuum stability of coatings for durations up to 5000 equivalent Sun hours.

  10. New Concept Study for Repair of Bomb-Damaged Runways. Volume I. Concept Identification.

    DTIC Science & Technology

    1979-09-01

    Expanded polystyrene beads would be pneumatically mixed with the cement to form a low density material. Initially, the ratio of foam to cement would...the combinations are presented with this concept. PRIMARY MATERIALS 0 Expanded polystyrene foam beads * Graded aggregate * Quick setting cement 61 E-4...probability of success - high ALTERNATE MATERIALS * Expanded polystyrene foam beads * Organic binders Furan Methyl Methacrylate Epoxy Aminos * Graded

  11. Superpave binder implementation : final report.

    DOT National Transportation Integrated Search

    1999-01-01

    Oregon Department of Transportation (ODOT) has specified performance-based asphalts (PBAs) since 1991. Developed by the Pacific Coast Conference on Asphalt Specifications (PCCAS) in 1990, the PBA concept uses conventional test methods for classificat...

  12. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operationmore » agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of heap leaching.« less

  13. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor); Ashcraft, A. C., Jr.; Wise, E. W.

    1971-01-01

    The results of curing vinyl alcohol terpolymers of ethylene, propylene and vinyl acetate are reported for an average functionality of 1.24 when reacted with an equivalent amount of diisocynate, and saturated polyisoprene derivative is described having terminal methyl ester functionality. The development is reported of two hydroxy-telechelic polyisoprenes prepared by DEAB initiated free radical polymerization followed by LiAlH4 reduction of the end groups.

  14. Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells.

    PubMed

    Kubota, Ryou; Hamachi, Itaru

    2015-07-07

    Chemical sensing of amino acids, peptides, and proteins provides fruitful information to understand their biological functions, as well as to develop the medical and technological applications. To detect amino acids, peptides, and proteins in vitro and in vivo, vast kinds of chemical sensors including small synthetic binders/sensors, genetically-encoded fluorescent proteins and protein-based semisynthetic biosensors have been intensely investigated. This review deals with concepts, strategies, and applications of protein recognition and sensing using small synthetic binders/sensors, which are now actively studied but still in the early stage of investigation. The recognition strategies for peptides and proteins can be divided into three categories: (i) recognition of protein substructures, (ii) protein surface recognition, and (iii) protein sensing through protein-ligand interaction. Here, we overview representative examples of protein recognition and sensing, and discuss biological or diagnostic applications such as potent inhibitors/modulators of protein-protein interactions.

  15. Predicting the Effective Elastic Properties of Polymer Bonded Explosives based on Micromechanical Methods

    NASA Astrophysics Data System (ADS)

    Wang, Jingcheng; Luo, Jingrun

    2018-04-01

    Due to the extremely high particle volume fraction (greater than 85%) and damage feature of polymer bonded explosives (PBXs), conventional micromechanical methods lead to inaccurate estimates on their effective elastic properties. According to their manufacture characteristics, a multistep approach based on micromechanical methods is proposed. PBXs are treated as pseudo poly-crystal materials consisting of equivalent composite particles (explosive crystals with binder coating), rather than two-phase composites composed of explosive particles and binder matrix. Moduli of composite spheres are obtained by generalized self-consistent method first, and the self-consistent method is modified to calculate the effective moduli of PBX. Defects and particle size distribution are considered by Mori-Tanaka method. Results show that when the multistep approach is applied to PBX 9501, estimates are far more accurate than the conventional micromechanical results. The bulk modulus is 5.75% higher, and shear modulus is 5.78% lower than the experimental values. Further analyses discover that while particle volume fraction and the binder's property have significant influences on the effective moduli of PBX, the moduli of particles present minor influences. Investigation of another particle size distribution indicates that the use of more fine particles will enhance the effective moduli of PBX.

  16. Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lei, Chunhong; Wilson, Peter; Lekakou, Constantina

    Electrochemical double layer supercapacitor cells were fabricated and tested using composite electrodes of activated carbon with carbon black and poly(3,4-ethylenedioxythiophene) (PEDOT), and an organic electrolyte 1 M TEABF 4/PC solution. The effect of PEDOT on the performance of the EDLC cells was explored and the cells were characterised by electrochemical impedance spectroscopy (EIS), cyclic voltammetry and galvanostatic charge-discharge. A generalised equivalent circuit model was developed for which numerical simulations were performed to determine the properties and parameters of its components from the EIS data. It was found that the proposed model fitted successfully the data of all tested cells. PEDOT enhanced the electrode and cell capacitance via its pseudo-capacitance effect up to a maximum value for an optimum PEDOT loading and greatly increased the energy density of the cell while the maximum power density has been still maintained at supercapacitor levels. Furthermore, PEDOT replaced PVDF as a binder and harmful solvent release was reduced during electrode processing. Activated carbon-carbon black composite electrodes with PEDOT as binder were found to have specific capacitance superior to that of activated carbon-carbon black electrodes with PVDF binder.

  17. Real time in-situ sensing of damage evolution in nanocomposite bonded surrogate energetic materials

    NASA Astrophysics Data System (ADS)

    Sengezer, Engin C.; Seidel, Gary D.

    2016-04-01

    The current work aims to explore the potential for in-situ structural health monitoring in polymer bonded energetic materials through the introduction of carbon nanotubes (CNTs) into the binder phase as a means to establish a significant piezoresistive response through the resulting nanocomposite binder. The experimental effort herein is focused towards electro-mechanical characterization of surrogate materials in place of actual energetic (explosive) materials in order to provide proof of concept for the strain and damage sensing. The electrical conductivity and the piezoresistive behavior of samples containing randomly oriented MWCNTs introduced into the epoxy (EPON 862) binder of 70 wt% ammonium perchlorate-epoxy hybrid composites are quantitatively and qualitatively evaluated. Brittle failure going through linear elastic behavior, formation of microcracks leading to reduction in composite load carrying capacity and finally macrocracks resulting in eventual failure are observed in the mechanical response of MWNT-ammonium perchlorateepoxy hybrid composites. Incorporating MWNTs into local polymer binder improves the effective stiffness about 40% compared to neat ammonium perchlorate-polymer samples. The real time in-situ relative change in resistance for MWNT hybrid composites was detected with the applied strains through piezoresistive response.

  18. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries.

    PubMed

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E C; Matic, Aleksandar

    2016-12-23

    Societies' increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of "no battery without binder" and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm 2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  19. Non-detonable explosive simulators

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  20. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection

    PubMed Central

    Li, Zhenzhen; Xin, Yanmei; Zhang, Zhonghai; Wu, Hongjun; Wang, Peng

    2015-01-01

    One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO. PMID:26068705

  1. Method for fabricating non-detonable explosive simulants

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1995-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  2. Non-detonable explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  3. Explicating the Concept of Contrapositive Equivalence

    ERIC Educational Resources Information Center

    Dawkins, Paul Christian; Hub, Alec

    2017-01-01

    This paper sets forth a concept (Simon, 2017) of contrapositive equivalence and explores some related phenomena of learning through a case study of Hugo's learning in a teaching experiment guiding the reinvention of mathematical logic. Our proposed concept of contrapositive equivalence rests upon set-based meanings for mathematical categories and…

  4. Using the Concept of Transient Complex for Affinity Predictions in CAPRI Rounds 20–27 and Beyond

    PubMed Central

    Qin, Sanbo; Zhou, Huan-Xiang

    2013-01-01

    Predictions of protein-protein binders and binding affinities have traditionally focused on features pertaining to the native complexes. In developing a computational method for predicting protein-protein association rate constants, we introduced the concept of transient complex after mapping the interaction energy surface. The transient complex is located at the outer boundary of the bound-state energy well, having near-native separation and relative orientation between the subunits but not yet formed most of the short-range native interactions. We found that the width of the binding funnel and the electrostatic interaction energy of the transient complex are among the features predictive of binders and binding affinities. These ideas were very promising for the five affinity-related targets (T43–45, 55, and 56) of CAPRI rounds 20–27. For T43, we ranked the single crystallographic complex as number 1 and were one of only two groups that clearly identified that complex as a true binder; for T44, we ranked the only design with measurable binding affinity as number 4. For the nine docking targets, continuing on our success in previous CAPRI rounds, we produced 10 medium-quality models for T47 and acceptable models for T48 and T49. We conclude that the interaction energy landscape and the transient complex in particular will complement existing features in leading to better prediction of binding affinities. PMID:23873496

  5. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    NASA Astrophysics Data System (ADS)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to find the critical limit of binder when the output of the SCB declines. The binder was evaluated at 13, 17 and 20% and it was found that the limit amount of binder falls between 17 and 20% by weight of material. Scaling of the SCB bridge was evaluated using a 36x15 mum bridge size and tested using 5, 7 and 9% nAl/Bi2O 3 FC 2175 slurry, creating a functioning SCB compared to previous no-ignition results using TSPP. It was also postulated that the compaction of a secondary material onto the SCB would alter the SCB output during testing. It was found that increased energy values where required for both the 5 and 7% binder amounts and no change was seen at the 9% level.

  6. Method for fabricating non-detonable explosive simulants

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1995-05-09

    A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  7. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach.

    PubMed

    Hurst, Sarah J; Han, Min Su; Lytton-Jean, Abigail K R; Mirkin, Chad A

    2007-09-15

    We have developed a novel competition assay that uses a gold nanoparticle (Au NP)-based, high-throughput colorimetric approach to screen the sequence selectivity of DNA-binding molecules. This assay hinges on the observation that the melting behavior of DNA-functionalized Au NP aggregates is sensitive to the concentration of the DNA-binding molecule in solution. When short, oligomeric hairpin DNA sequences were added to a reaction solution consisting of DNA-functionalized Au NP aggregates and DNA-binding molecules, these molecules may either bind to the Au NP aggregate interconnects or the hairpin stems based on their relative affinity for each. This relative affinity can be measured as a change in the melting temperature (Tm) of the DNA-modified Au NP aggregates in solution. As a proof of concept, we evaluated the selectivity of 4',6-diamidino-2-phenylindone (an AT-specific binder), ethidium bromide (a nonspecific binder), and chromomycin A (a GC-specific binder) for six sequences of hairpin DNA having different numbers of AT pairs in a five-base pair variable stem region. Our assay accurately and easily confirmed the known trends in selectivity for the DNA binders in question without the use of complicated instrumentation. This novel assay will be useful in assessing large libraries of potential drug candidates that work by binding DNA to form a drug/DNA complex.

  8. Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

    PubMed

    Walter, Xavier Alexis; Greenman, John; Ieropoulos, Ioannis

    2018-04-19

    The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroethylene (PTFE) mixture. Here, we explored the possibility to substitute PTFE with either polyvinyl-alcohol (PVA) or PlastiDip (CPD; i.e. synthetic rubber) as binder for AC-based cathode in SSM-MFC. Sintered activated carbon (SAC) was also tested due to its ease of manufacturing and the fact that no stainless steel collector is needed. Results indicate that the SSM-MFC having PTFE cathodes were the most powerful measuring 1617 μW (11 W·m -3 or 101 mW·m -2 ). SSM-MFC with PVA and CPD as binders were producing on average the same level of power (1226 ± 90 μW), which was 24% less than the SSM-MFC having PTFE-based cathodes. When balancing the power by the cost and environmental impact, results clearly show that PVA was the best alternative. Power wise, the SAC cathodes were shown being the less performing (≈1070 μW). Nonetheless, the lower power of SAC was balanced by its inexpensiveness. Overall results indicate that (i) PTFE is yet the best binder to employ, and (ii) SAC and PVA-based cathodes are promising alternatives that would benefit from further improvements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1997-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  10. Students' Conceptions of Models of Fractions and Equivalence

    ERIC Educational Resources Information Center

    Jigyel, Karma; Afamasaga-Fuata'i, Karoline

    2007-01-01

    A solid understanding of equivalent fractions is considered a steppingstone towards a better understanding of operations with fractions. In this article, 55 rural Australian students' conceptions of equivalent fractions are presented. Data collected included students' responses to a short written test and follow-up interviews with three students…

  11. Increase in the dosage amount of vitamin D3 preparations by switching from calcium carbonate to lanthanum carbonate.

    PubMed

    Hyodo, Toru; Kawakami, Junko; Mikami, Noriko; Wakai, Haruki; Ishii, Daisuke; Yoshida, Kazunari; Iwamura, Masatsugu; Hida, Miho; Kurata, Yasuhisa

    2014-06-01

    It is widely known that dialysis patients who are administered vitamin D preparations have a better prognosis than patients who are not. In this study, of 22 patients on maintenance dialysis who had been administered calcium (Ca) carbonate in our hospital, we investigated the dosage amount of vitamin D3 preparations after the phosphorus (P) binder was switched from Ca carbonate to the newly developed lanthanum carbonate (LC). After completely switching to LC, the dosage amount of oral vitamin D3 preparation (alfacalcidol equivalent) was significantly increased from 0.094 μg/day to 0.375 μg/day (P = 0.0090). No significant changes were observed in the values of serum corrected Ca, alkaline phosphatase, intact parathyroid hormone and P after switching. The administration of LC enabled complete cessation of the administration of Ca carbonate preparations, and increased the dosage amount of vitamin D3 preparations. Therefore, LC may be a useful P binder to improve patient prognosis. © 2014 The Authors. Therapeutic Apheresis and Dialysis © 2014 International Society for Apheresis.

  12. Downstream processing from melt granulation towards tablets: In-depth analysis of a continuous twin-screw melt granulation process using polymeric binders.

    PubMed

    Grymonpré, W; Verstraete, G; Vanhoorne, V; Remon, J P; De Beer, T; Vervaet, C

    2018-03-01

    The concept of twin-screw melt granulation (TSMG) has steadily (re)-gained interest in pharmaceutical formulation development as an intermediate step during tablet manufacturing. However, to be considered as a viable processing option for solid oral dosage forms there is a need to understand all critical sources of variability which could affect this granulation technique. The purpose of this study was to provide an in-depth analysis of the continuous TSMG process in order to expose the critical process parameters (CPP) and elucidate the impact of process and formulation parameters on the critical quality attributes (CQA) of granules and tablets during continuous TSMG. A first part of the study dealt with the screening of various amorphous polymers as binder for producing high-dosed melt granules of two model drug (i.e. acetaminophen and hydrochlorothiazide). The second part of this study described a quality-by-design (QbD) approach for melt granulation of hydrochlorothiazide in order to thoroughly evaluate TSMG, milling and tableting stage of the continuous TSMG line. Using amorphous polymeric binders resulted in melt granules with high milling efficiency due to their brittle behaviour without producing excessive amounts of fines, providing high granule yields with low friability. Therefore, it makes them extremely suitable for further downstream processing. One of the most important CPP during TSMG with polymeric binders was the granulation-torque, which - in case of polymers with high T g - increased during longer granulation runs to critical levels endangering the continuous process flow. However, by optimizing both screw speed and throughput or changing to polymeric binders with lower T g it was possible to significantly reduce this risk. This research paper highlighted that TSMG must be considered as a viable option during formulation development of solid oral dosage forms based on the robustness of the CQA of both melt granules and tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  14. Ternary carbon composite films for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Hai; Jeong, Hae Kyung

    2017-09-01

    A simple, binder-free, method of making supercapacitor electrodes is introduced, based on modification of activated carbon with graphite oxide and carbon nanotubes. The three carbon precursors of different morphologies support each other to provide outstanding electrochemical performance, such as high capacitance and high energy density. The ternary carbon composite shows six times higher specific capacitance compared to that of activated carbon itself with high retention. The excellent electrochemical properties of the ternary composite attribute to the high surface area of 1933 m2 g-1 and low equivalent series resistance of 2 Ω, demonstrating that it improve the electrochemical performance for supercapacitor applications.

  15. Thermal explosion violence of HMX-based explosives -- effect of composition, confinement and phase transition using the scaled thermal explosion experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F; Reaugh, J E

    We developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion of explosives of interest. A cylinder of explosive, 1, 2 or 4 inches in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until it explodes. Reaction violence is quantified by micropower radar measurement of the cylinder wall velocity, and by strain gauge data at reaction onset. Here we describe the test concept and design, show that the conditions are well understood, and present initial data with HMX-based explosives. The HMX results show that anmore » explosive with high binder content yields less-violent reactions that an explosive with low binder content, and that the HMX phase at the time of explosion plays a key role in reaction violence.« less

  16. Equivalence: A Crucial Financial Concept for Extension, Consumer, and Investor Education

    ERIC Educational Resources Information Center

    Straka, Thomas J.

    2010-01-01

    Equivalence is a fundamental concept that is the basis of personal financial planning. Any Extension consumer financial education program would need the concept to explain financial products that involve a series of payments over some length of time (pensions, fixed annuities, and mortgages). A table of annuity factors is presented that can be…

  17. Development of a discriminative biphasic in vitro dissolution test and correlation with in vivo pharmacokinetic studies for differently formulated racecadotril granules.

    PubMed

    Deng, Jia; Staufenbiel, Sven; Hao, Shilei; Wang, Bochu; Dashevskiy, Andriy; Bodmeier, Roland

    2017-06-10

    The purpose of this study was to discriminate the release behavior from three differently formulated racecadotril (BCS II) granules and to establish an in vitro-in vivo correlation. Three granule formulations of the lipophilic drug were prepared with equivalent composition but prepared with different manufacturing processes (dry granulation, wet granulation with or without binder). In vitro release of the three granules was investigated using a biphasic dissolution system (phosphate buffer pH6.8 and octanol) and compared to the conventional single phase USP II dissolution test performed under sink and non-sink conditions. In vivo studies with each granule formulation were performed in rats. Interestingly, the granule formulations exhibited pronouncedly different behavior in the different dissolution systems depending on different wetting and dissolution conditions. Single phase USP II dissolution tests lacked discrimination. In contrast, remarkable discrimination between the granule formulations was observed in the octanol phase of biphasic dissolution system with a rank order of release from granules prepared by wet granulation with binder>wet granulation without binder>dry granulation. This release order correlated well with the wettability of these granules. An excellent correlation was also established between in vitro release in the octanol phase of the biphasic test and in vivo data (R 2 =0.999). Compared to conventional dissolution methods, the biphasic method provides great potential to discriminate between only minor formulation and process changes within the same dosage form for poorly soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Progress in the development of immunoanalytical methods incorporating recombinant antibodies to small molecular weight biotoxins.

    PubMed

    Kavanagh, Owen; Elliott, Christopher T; Campbell, Katrina

    2015-04-01

    Rapid immunoanalytical screening of food and environmental samples for small molecular weight (hapten) biotoxin contaminations requires the production of antibody reagents that possess the requisite sensitivity and specificity. To date animal-derived polyclonal (pAb) and monoclonal (mAb) antibodies have provided the binding element of the majority of these assays but recombinant antibodies (rAb) isolated from in vitro combinatorial phage display libraries are an exciting alternative due to (1) circumventing the need for experimental animals, (2) speed of production in commonly used in vitro expression systems and (3) subsequent molecular enhancement of binder performance. Short chain variable fragments (scFv) have been the most commonly employed rAb reagents for hapten biotoxin detection over the last two decades but antibody binding fragments (Fab) and single domain antibodies (sdAb) are increasing in popularity due to increased expression efficiency of functional binders and superior resistance to solvents. rAb-based immunochromatographic assays and surface plasmon resonance (SPR) biosensors have been reported to detect sub-regulatory levels of fungal (mycotoxins), marine (phycotoxins) and aquatic biotoxins in a wide range of food and environmental matrices, however this technology has yet to surpass the performances of the equivalent mAb- and pAb-based formats. As such the full potential of rAb technology in hapten biotoxin detection has yet to be achieved, but in time the inherent advantages of engineered rAb are set to provide the next generation of ultra-high performing binder reagents for the rapid and specific detection of hapten biotoxins.

  19. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2013-10-01

    There is an emerging concept of using non-cellular solid state compartment as a source for therapeutic targets and for selective imaging of micro ... using second harmonic generation and two-photon micros - copy. J. Biomed. Opt. 14, 044013. Bioconjugate Chemistry Communication dx.doi.org/10.1021...Chiu WC, Lai CC, Liou GG, Li HC, Chou MY: Production of multivalent protein binders using a self- trimerizing collagen-like peptide scaffold. FASEB J

  20. Field performance testing of improved engineered wood fiber surfaces for accessible playground areas

    Treesearch

    Theodore L. Laufenberg; Jerrold E. Winandy

    2003-01-01

    Some engineered wood fiber (EWF) surfaces on playgrounds are soft and uneven, which creates difficulties for those who use mobility aids, such as wheelchairs and walkers. The outdoor field testing reported in this study is part of an effort to stabilize EWF to improve accessibility. The concept is to mix a binder with the upper surface of EWF to create a stiff (firm)...

  1. Method Of Characterizing An Electrode Binder

    DOEpatents

    Cocciantelli, Jean-Michel; Coco, Isabelle; Villenave, Jean-Jacques

    1999-05-11

    In a method of characterizing a polymer binder for cell electrodes in contact with an electrolyte and including a current collector and a paste containing an electrochemically active material and said binder, a spreading coefficient of the binder on the active material is calculated from the measured angle of contact between standard liquids and the active material and the binder, respectively. An interaction energy of the binder with the electrolyte is calculated from the measured angle of contact between the electrolyte and the binder. The binder is selected such that the spreading coefficient is less than zero and the interaction energy is at least 60 mJ/m.sup.2.

  2. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    NASA Astrophysics Data System (ADS)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  3. The principle of equivalence reconsidered: assessing the relevance of the principle of equivalence in prison medicine.

    PubMed

    Jotterand, Fabrice; Wangmo, Tenzin

    2014-01-01

    In this article we critically examine the principle of equivalence of care in prison medicine. First, we provide an overview of how the principle of equivalence is utilized in various national and international guidelines on health care provision to prisoners. Second, we outline some of the problems associated with its applications, and argue that the principle of equivalence should go beyond equivalence to access and include equivalence of outcomes. However, because of the particular context of the prison environment, third, we contend that the concept of "health" in equivalence of health outcomes needs conceptual clarity; otherwise, it fails to provide a threshold for healthy states among inmates. We accomplish this by examining common understandings of the concepts of health and disease. We conclude our article by showing why the conceptualization of diseases as clinical problems provides a helpful approach in the delivery of health care in prison.

  4. High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.

    Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.

  5. Stress and Strain in Silicon Electrode Models

    DOE PAGES

    Higa, Kenneth; Srinivasan, Venkat

    2015-03-24

    While the high capacity of silicon makes it an attractive negative electrode for Li-ion batteries, the associated large volume change results in fracture and capacity fade. Composite electrodes incorporating silicon have additional complexity, as active material is attached to surrounding material which must likewise experience significant volume change. In this paper, a finite-deformation model is used to explore, for the first time, mechanical interactions between a silicon particle undergoing lithium insertion, and attached binder material. Simulations employ an axisymmetric model system in which solutions vary in two spatial directions and shear stresses develop at interfaces between materials. The mechanical responsemore » of the amorphous active material is dependent on lithium concentration, and an equation of state incorporating reported volume expansion data is used. Simulations explore the influence of active material size and binder stiffness, and suggest delamination as an additional mode of material damage. Computed strain energies and von Mises equivalent stresses are in physically-relevant ranges, comparable to reported yield stresses and adhesion energies, and predicted trends are largely consistent with reported experimental results. It is hoped that insights from this work will support the design of more robust silicon composite electrodes.« less

  6. Evaluation of hybrid binder for use in surface mixtures in Florida : final report, June 2009.

    DOT National Transportation Integrated Search

    2009-06-01

    Binder and mixture tests were performed to evaluate the relative performance of a PG 67-22 base binder and six other commercially available binders produced by modifying the same base binder with the following modifiers: one Styrene Butadiene Styrene...

  7. FROM CONCEPT TO EQUIVALENCY: GETTING YOUR INNOVATIVE SLUDGE DISINFECTION PROCESS CLASSIFIED AS A OR B IS NOW LESS OF A MYSTERY

    EPA Science Inventory

    The Pathogen Equivalency Committee has updated the criteria it uses to make recommendations of equivalency on innovative or alternative sludge pathogen reduction processes. To assist new applicants through the equivalency recommendation process the pathogen equivalency committee ...

  8. The Otto-engine-equivalent vehicle concept

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Couch, M. D.

    1978-01-01

    A vehicle comparison methodology based on the Otto-Engine Equivalent (OEE) vehicle concept is described. As an illustration of this methodology, the concept is used to make projections of the fuel economy potential of passenger cars using various alternative power systems. Sensitivities of OEE vehicle results to assumptions made in the calculational procedure are discussed. Factors considered include engine torque boundary, rear axle ratio, performance criteria, engine transient response, and transmission shift logic.

  9. Binder free MnO2/PIn electrode material for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Purty, B.; Choudhary, R. B.; Kandulna, R.; Singh, R.

    2018-05-01

    Electrochemically stable MnO2/PIn nanocomposite was synthesized via in-situ chemical oxidative polymerization process. The structural and morphological properties were studied through FTIR and FESEM characterizing techniques. Sphere like PIn and MnO2 nanorods offers interacting surface for charge transfer action. The electrochemical properties were investigated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The significant enhancement in capacitance value with 95% coulombic efficiency and relatively low equivalent series resistance (ESR)˜0.4 Ω proved that MnO2/PIn nanocomposite is an excellent performer as an electrode material in the spectrum of supercapcitors and optoelectronic devices.

  10. Near Identifiability of Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.

  11. Evaluation of Thermal Oxidative Aging Effect on the Rheological Performance of Modified Asphalt Binders

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng

    Modified asphalt binder, which is combined by base binder and additive modifier, has been implemented in pavement industry for more than 30 years. Recently, the oxidative aging mechanism of asphalt binder has been studied for several decades, and appreciable finding results of asphalt binder aging mechanism were achieved from the chemistry and rheological performance aspects. However, most of these studies were conducted with neat binders, the research of aging mechanism of modified asphalt binder was limited. Nowadays, it is still highly necessary to clarify how the asphalt binder aging happens with the modified asphalt binder, what is the effect of the different modifiers (additives) on the binder aging process, how the rheological performance changes under the thermal oxidative aging conditions and so on. The objective of this study was to investigate the effect of isothermal oxidative aging conditions on the rheological performance change of the modified and controlled asphalt binders. There were totally 14 different sorts of asphalt binders had been aged in the PAV pans in the air-force drafted ovens at 50°C, 60°C and 85°C for 0.5 day to 240 days. The Fourier-Transform Infrared Spectroscopy (FT-IR) and Dynamic Shear Rheometer (DSR) were used to perform the experiments. The analysis of rheological indices (Low shear viscosity-LSV, Crossover modulus-G*c, Glover-Rowe Parameter-G-R, DSR function-DSR Fn) as a function of carbonyl area (CA) was conducted. With the SBS modification, both of the hardening susceptibility of the rheological index-LSV and G-R decreases compared with the corresponding base binder. The TR increased the hardening susceptibility of all the rheological indexes. While for the G*c, SBS increases the slope of the most modified asphalt binders except A and B_TR_X series binders. The multiple linear regression statistical analysis results indicate that the oxidative aging conditions play an important role on the CA, and rheological performance indexes. The modifiers-SBS and TR have different directional effect on these parameters. The field asphalt binder carbonyl area prediction was conducted. The pavement temperatures which were calculated by TEMP software were input into MATLAB(TM) as a parameter with other factors, e.g the asphalt binder oxidative aging parameters, the binder film thickness, the air void radius, etc., to calculate the field asphalt CA value as a function of time out to 20 years. It was found that the different rheological index method resulted different conclusion with the asphalt binder. The SBS modified asphalt binders of A, C version and B version had close average increasing rate of LSV, higher average decreasing rate of G*c, lower average increasing rate of DSR Fn compared with the corresponding base binders. D_HPM had lower average increasing rate of LSV, G*c and DSR Fn than base binder Base D. The tire rubber modified binder B_TR had higher average increasing rate of LSV, DSR Fn, and higher average decreasing rate of G*c than base binder Base B. The main finding of this study was that the modifier SBS and tire rubber can reduce the thermal oxidation aging rate (kf and kc) compared with the corresponding base binder, the activation energy was asphalt binder source dependent. For the hardening susceptibility, the modifiers-SBS, X, Y, Z reduced the HS of LSV and G-R. The tire rubber slightly increased the HS of LSV and G-R. A_PM, B_TR_X_PM reduced the HS of G*c and other modified binders increased the HS of G*c.

  12. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12

    NASA Astrophysics Data System (ADS)

    Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping

    2015-01-01

    Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm-3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems.

  13. 14 CFR 198.15 - Non-premium insurance-payment of registration binders.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...

  14. 14 CFR 198.15 - Non-premium insurance-payment of registration binders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...

  15. 14 CFR 198.15 - Non-premium insurance-payment of registration binders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...

  16. 14 CFR 198.15 - Non-premium insurance-payment of registration binders.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...

  17. Do oral aluminium phosphate binders cause accumulation of aluminium to toxic levels?

    PubMed Central

    2011-01-01

    Background Aluminium (Al) toxicity was frequent in the 1980s in patients ingesting Al containing phosphate binders (Alucaps) whilst having HD using water potentially contaminated with Al. The aim of this study was to determine the risk of Al toxicity in HD patients receiving Alucaps but never exposed to contaminated dialysate water. Methods HD patients only treated with Reverse Osmosis(RO) treated dialysis water with either current or past exposure to Alucaps were given standardised DFO tests. Post-DFO serum Al level > 3.0 μmol/L was defined to indicate toxic loads based on previous bone biopsy studies. Results 39 patients (34 anuric) were studied. Mean dose of Alucap was 3.5 capsules/d over 23.0 months. Pre-DFO Al levels were > 1.0 μmol/L in only 2 patients and none were > 3.0 μmol/L. No patients had a post DFO Al levels > 3.0 μmol/L. There were no correlations between the serum Al concentrations (pre-, post- or the incremental rise after DFO administration) and the total amount of Al ingested. No patients had unexplained EPO resistance or biochemical evidence of adynamic bone. Conclusions Although this is a small study, oral aluminium exposure was considerable. Yet no patients undergoing HD with RO treated water had evidence of Al toxicity despite doses equivalent to 3.5 capsules of Alucap for 2 years. The relationship between the DFO-Al results and the total amount of Al ingested was weak (R2 = 0.07) and not statistically significant. In an era of financial prudence, and in view of the recognised risk of excess calcium loading in dialysis patients, perhaps we should re-evaluate the risk of using Al-based phosphate binders in HD patients who remain uric. PMID:21992770

  18. Development and demonstration of a lignite-pelletizing process. Phase II report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    The current work began with scale-up of laboratory equipment to commercial size equipment. For this purpose, BCI used an existing pilot plant that had been assembled to pelletize and indurate taconite ore. BCI determined therewith that lignite pellets can be produced continuously on a pilot scale using the basic process developed in the laboratory. The resulting pellets were found to be similar to the laboratory pellets at equivalent binder compositions. Tests of product made during a 5-ton test run are reported. A 50-ton demonstration test run was made with the pilot plant. Pellet production was sustained for a two-week period.more » The lignite pelletizing process has, therefore, been developed to the point of demonstration in a 50-ton test. BCI has completed and cost estimated a conceptually designed 4000 TPD facility. BCI believes it has demonstrated a technically feasible process to agglomerate lignite by using an asphalt emulsion binder. Product quality is promising. Capital and operating costs appear acceptable to justify continuing support and development. The next step should focus on three areas: production development, process refinement, and cost reduction. For further development, BCI recommends consideration of a 5 to 10 ton/h pilot plant or a 20 to 40 ton/h module of a full sized plant, the lower first cost of the former being offset by the ability to incorporate the latter into a future production unit. Other specific recommendations are made for future study that could lead to process and cost improvements: Binder Formulation, disc Sizing, Drier Bed Depth, and Mixing Approach. Pellet use other than power plant fuel is considered.« less

  19. Observation of asphalt binder microstructure with ESEM.

    PubMed

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. The value of 'binder-off' imaging to identify occult and unexpected pelvic ring injuries.

    PubMed

    Fagg, James A C; Acharya, Mehool R; Chesser, Tim J S; Ward, Anthony J

    2018-02-01

    To determine the effectiveness of 'binder-off' plain pelvic radiographs in the assessment of pelvic ring injuries. All patients requiring operative intervention at our tertiary referral pelvic unit/major trauma centre for high-energy pelvic injuries between April 2012 and December 2014 were retrospectively identified. Pre-operative pelvic imaging with and without pelvic binder was reviewed with respect to fracture pattern and pelvic stability. The frequency with which the imaging without pelvic binder changed the opinion of the pelvic stability and need for operative intervention, when compared with the computed tomography (CT) scans and anteroposterior (AP) radiographs with the binder on, was assessed. Seventy-three percent (71 of 97) of patients had initial imaging with a pelvic binder in situ. Of these, 76% (54 of 71) went on to have 'binder-off' imaging. Seven percent (4 of 54) of patients had unexpected unstable pelvic ring injuries identified on 'binder-off' imaging that were not identified on CT imaging in binder. Trauma CT imaging of the pelvis with a pelvic binder in place is inadequate at excluding unstable pelvic ring injuries, and, based on the original findings in this paper, we recommend additional plain film 'binder-off' radiographs, when there is any clinical concern. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The use of displacement damage dose to correlate degradation in solar cells exposed to different radiations

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Burke, Edward A.; Shapiro, Philip; Statler, Richard; Messenger, Scott R.; Walters, Robert J.

    1994-01-01

    It has been found useful in the past to use the concept of 'equivalent fluence' to compare the radiation response of different solar cell technologies. Results are usually given in terms of an equivalent 1 MeV electron or an equivalent 10 MeV proton fluence. To specify cell response in a complex space-radiation environment in terms of an equivalent fluence, it is necessary to measure damage coefficients for a number of representative electron and proton energies. However, at the last Photovoltaic Specialist Conference we showed that nonionizing energy loss (NIEL) could be used to correlate damage coefficients for protons, using measurements for GaAs as an example. This correlation means that damage coefficients for all proton energies except near threshold can be predicted from a measurement made at one particular energy. NIEL is the exact equivalent for displacement damage of linear energy transfer (LET) for ionization energy loss. The use of NIEL in this way leads naturally to the concept of 10 MeV equivalent proton fluence. The situation for electron damage is more complex, however. It is shown that the concept of 'displacement damage dose' gives a more general way of unifying damage coefficients. It follows that 1 MeV electron equivalent fluence is a special case of a more general quantity for unifying electron damage coefficients which we call the 'effective 1 MeV electron equivalent dose'.

  2. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Wenjun; Wang, Feijun; Wang, Jianquan

    2014-10-13

    Novel water-based binder CMC-Li is synthesized using cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and CMC-Li as a water-soluble binder are investigated. CMC-Li is a novel lithium-ion binder. Compare with conventional poly(vinylidene fluoride) (PVDF) binder, and the battery with CMC-Li as the binder retained 97.8% of initial reversible capacity after 200 cycles at 176 mAh g(-1), which is beyond the theoretical specific capacity of LFP. Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, follow closely by that using PVDF binder. The batteries have good electrochemical property, outstanding pollution-free and excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Induction technique in manufacturing preforms

    NASA Astrophysics Data System (ADS)

    Frauenhofer, M.; Ströhlein, T.; Fabig, S.; Böhm, S.; Herbeck, L.; Dilger, K.

    2008-09-01

    The prepreg technology is a state-of-the-art method to produce high-performance CFRP parts. Due to the high material prices, the restricted process rate, and limitations to the component complexity, in future, more and more parts will be assembled by using liquid composite moulding. Especially in the case of series larger than 100 parts per year, the LCM technology offers the best cost-effectiveness. This technology is based on resin injection into dry multilayer fibre textiles (preforms). The Institute of Joining and Welding (TU, Braunschweig), together with the Institute of Composite Structures and Adaptive Systems (DLR), has elaborated a new technology to speed up the preform process, which is the most labour-intensive step within the LCM process chain. A novel concept to consolidate binder-coated fabrics is under development. By applying the high energy transfer rate of induction technology, it is possible to heat up a preform with rates up to 50 K/s to melt the binder and consolidate the preform.

  4. A Hydrazine Leak Sensor Based on Chemically Reactive Thermistors

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.; Mast, Dion J.; Baker, David L.

    1999-01-01

    Leaks in the hydrazine supply system of the Shuttle APU can result in hydrazine ignition and fire in the aft compartment of the Shuttle. Indication of the location of a leak could provide valuable information required for operational decisions. WSTF has developed a small, single use sensor for detection of hydrazine leaks. The sensor is composed of a thermistor bead coated with copper(II) oxide (CuO) dispersed in a clay or alumina binder. The CuO-coated thermistor is one of a pair of closely located thermistors, the other being a reference. On exposure to hydrazine the CuO reacts exothermically with the hydrazine and increases the temperature of the coated-thermistor by several degrees. The temperature rise is sensed by a resistive bridge circuit and an alarm registered by data acquisition software. Responses of this sensor to humidity changes, hydrazine concentration, binder characteristics, distance from a liquid leak, and ambient pressure levels as well as application of this sensor concept to other fluids are presented.

  5. Ignition behavior of an aluminum-bonded explosive (ABX)

    NASA Astrophysics Data System (ADS)

    Hardin, D. Barrett; Zhou, Min; Horie, Yasuyuki

    2017-01-01

    We report the results of a study on the ignition behavior of a novel concept and design of a heterogeneous energetic material system called ABX, or aluminum-bonded explosives. The idea is to replace the polymeric binder in polymer-bonded explosives (PBX) with aluminum. The motivation of this study is that a new design may have several desirable attributes, including, among others, electrical conductivity, higher mechanical strength, enhanced integrity, higher energy content, and enhanced thermal stability at elevated temperatures. The analysis carried out concerns the replacement of the Estane binder in a HMX/Estane PBX by aluminum. The HMX volume fraction in the PBX and HMX is approximately 81%. 2D mesoscale simulations are carried out, accounting for elasticity, viscoelasticity, elasto-viscoplasticity, fracture, internal friction, and thermal conduction. Results show that, relative to the PBX, the aluminum bonded explosives (ABX) show significantly less heating and lower ignition sensitivity under the same loading conditions. The findings appear to confirm the expected promise of ABX as a next-generation heterogeneous energetic material system with more desirable attributes.

  6. Is type 2 diabetes really a coronary heart disease risk equivalent?

    PubMed

    Saely, Christoph H; Drexel, Heinz

    2013-01-01

    The concept of diabetes as a coronary heart risk (CHD) equivalent postulates that patients with diabetes who do not yet have CHD are at an equally high cardiovascular risk as non-diabetic patients with CHD. This implies important therapeutic, psychological, and economical consequences. However, whereas several reports support the concept of diabetes as a CHD risk equivalent, others refute it, and several investigations find that the cardiovascular risk conferred by diabetes is strongly modulated by sex (with diabetes conferring a greater risk increase in women), diabetes duration, concomitant risk factors, or the presence of subclinical atherosclerosis. A detailed review of the literature shows that the concept of diabetes as a CHD risk equivalent is overly simplistic, because not all patients with diabetes are at the same cardiovascular risk. An individualized approach to cardiovascular risk estimation and management appears mandatory in patients with diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Electrochemical components employing polysiloxane-derived binders

    DOEpatents

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  8. The effect of a new formaldehyde-free binder on the dissolution rate of glass wool fibre in physiological saline solution.

    PubMed

    Potter, Russell M; Olang, Nassreen

    2013-04-12

    The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating.

  9. The effect of a new formaldehyde-free binder on the dissolution rate of glass wool fibre in physiological saline solution

    PubMed Central

    2013-01-01

    The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating. PMID:23587247

  10. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    PubMed Central

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-01-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3–5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications. PMID:28008981

  11. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  12. After Decentralization: Delimitations and Possibilities within New Fields

    ERIC Educational Resources Information Center

    Wahlstrom, Ninni

    2008-01-01

    The shift from a centralized to a decentralized school system can be seen as a solution to an uncertain problem. Through analysing the displacements in the concept of equivalence within Sweden's decentralized school system, this study illustrates how the meaning of the concept of equivalence shifts over time, from a more collective target…

  13. Alkali-metal silicate binders and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Schutt, J. B. (Inventor)

    1979-01-01

    A paint binder is described which uses a potassium or sodium silicate dispersion having a silicon dioxide to alkali-metal oxide mol ratio of from 4.8:1 to 6.0:1. The binder exhibits stability during both manufacture and storage. The process of making the binder is predictable and repeatable and the binder may be made with inexpensive components. The high mol ratio is achieved with the inclusion of a silicon dioxide hydrogel. The binder, which also employs a silicone, is in the final form of a hydrogel sol.

  14. Phosphate binder usage in kidney failure patients.

    PubMed

    Bleyer, Anthony J

    2003-06-01

    Phosphorus binders are used in patients with kidney failure because of the incomplete removal of phosphorus with dialysis and the inability to exclude phosphorus from the diet. Aluminium was the initial phosphorus binder used, but was replaced by calcium-containing binders because of the development of aluminium toxicity. Calcium-based binders have been the mainstay of therapy for many years, but recent investigations have pointed to increased rates of vascular calcification in patients taking calcium-containing binders. For this reason, alternative agents have been developed. Sevelamer (Renagel), GelTex Pharmaceuticals Inc.) is a polymer which has been found to effectively bind phosphorus. It has resulted in a decreased rate of vascular calcification compared to calcium-containing binders. Other agents under development include lanthanum carbonate and iron-complex preparations. Further research will likely concentrate on identifying binders that bind phosphate more efficiently, have minimal gastrointestinal side effects and provide other benefits to dialysis patients.

  15. Enhanced/synthetic vision and head-worn display technologies for terminal maneuvering area NextGen operations

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Bailey, Randall E.; Shelton, Kevin J.; Norman, R. Mike

    2011-06-01

    NASA is researching innovative technologies for the Next Generation Air Transportation System (NextGen) to provide a "Better-Than-Visual" (BTV) capability as adjunct to "Equivalent Visual Operations" (EVO); that is, airport throughputs equivalent to that normally achieved during Visual Flight Rules (VFR) operations rates with equivalent and better safety in all weather and visibility conditions including Instrument Meteorological Conditions (IMC). These new technologies build on proven flight deck systems and leverage synthetic and enhanced vision systems. Two piloted simulation studies were conducted to access the use of a Head-Worn Display (HWD) with head tracking for synthetic and enhanced vision systems concepts. The first experiment evaluated the use a HWD for equivalent visual operations to San Francisco International Airport (airport identifier: KSFO) compared to a visual concept and a head-down display concept. A second experiment evaluated symbology variations under different visibility conditions using a HWD during taxi operations at Chicago O'Hare airport (airport identifier: KORD). Two experiments were conducted, one in a simulated San Francisco airport (KSFO) approach operation and the other, in simulated Chicago O'Hare surface operations, evaluating enhanced/synthetic vision and head-worn display technologies for NextGen operations. While flying a closely-spaced parallel approach to KSFO, pilots rated the HWD, under low-visibility conditions, equivalent to the out-the-window condition, under unlimited visibility, in terms of situational awareness (SA) and mental workload compared to a head-down enhanced vision system. There were no differences between the 3 display concepts in terms of traffic spacing and distance and the pilot decision-making to land or go-around. For the KORD experiment, the visibility condition was not a factor in pilot's rating of clutter effects from symbology. Several concepts for enhanced implementations of an unlimited field-of-regard BTV concept for low-visibility surface operations were determined to be equivalent in pilot ratings of efficacy and usability.

  16. Enhanced/Synthetic Vision and Head-Worn Display Technologies for Terminal Maneuvering Area NextGen Operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzell, Lawrence J.; Williams, Steven P.; Bailey, Randall E.; Shelton, Kevin J.; Norman, R. Mike

    2011-01-01

    NASA is researching innovative technologies for the Next Generation Air Transportation System (NextGen) to provide a "Better-Than-Visual" (BTV) capability as adjunct to "Equivalent Visual Operations" (EVO); that is, airport throughputs equivalent to that normally achieved during Visual Flight Rules (VFR) operations rates with equivalent and better safety in all weather and visibility conditions including Instrument Meteorological Conditions (IMC). These new technologies build on proven flight deck systems and leverage synthetic and enhanced vision systems. Two piloted simulation studies were conducted to access the use of a Head-Worn Display (HWD) with head tracking for synthetic and enhanced vision systems concepts. The first experiment evaluated the use a HWD for equivalent visual operations to San Francisco International Airport (airport identifier: KSFO) compared to a visual concept and a head-down display concept. A second experiment evaluated symbology variations under different visibility conditions using a HWD during taxi operations at Chicago O'Hare airport (airport identifier: KORD). Two experiments were conducted, one in a simulated San Francisco airport (KSFO) approach operation and the other, in simulated Chicago O'Hare surface operations, evaluating enhanced/synthetic vision and head-worn display technologies for NextGen operations. While flying a closely-spaced parallel approach to KSFO, pilots rated the HWD, under low-visibility conditions, equivalent to the out-the-window condition, under unlimited visibility, in terms of situational awareness (SA) and mental workload compared to a head-down enhanced vision system. There were no differences between the 3 display concepts in terms of traffic spacing and distance and the pilot decision-making to land or go-around. For the KORD experiment, the visibility condition was not a factor in pilot's rating of clutter effects from symbology. Several concepts for enhanced implementations of an unlimited field-of-regard BTV concept for low-visibility surface operations were determined to be equivalent in pilot ratings of efficacy and usability.

  17. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking.

    PubMed

    Yoon, Jihee; Oh, Dongyeop X; Jo, Changshin; Lee, Jinwoo; Hwang, Dong Soo

    2014-12-14

    Si-based anodes in lithium ion batteries (LIBs) have exceptionally high theoretical capacity, but the use of a Si-based anode in LIBs is problematic because the charging-discharging process can fracture the Si particles. Alginate and its derivatives show promise as Si particle binders in the anode. We show that calcium-mediated "egg-box" electrostatic cross-linking of alginate improves toughness, resilience, electrolyte desolvation of the alginate binder as a Si-binder for LIBs. Consequently, the improved mechanical properties of the calcium alginate binder compared to the sodium alginate binder and other commercial binders extend the lifetime and increase the capacity of Si-based anodes in LIBs.

  18. Effect of recovered binders from recycled shingles and increased RAP percentages on resultant binder PG.

    DOT National Transportation Integrated Search

    2011-12-01

    This research evaluated the properties of recycled asphalt binders from Wisconsin sources. Continuous grading : properties were measured for 18 recycled binder sources: 12 reclaimed asphalt pavement (RAP) sources and 6 recycled : asphalt shingle sour...

  19. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor)

    2006-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

  20. Distribution of a viscous binder during high shear granulation--sensitivity to the method of delivery and its impact on product properties.

    PubMed

    Tan, Bernice Mei Jin; Loh, Zhi Hui; Soh, Josephine Lay Peng; Liew, Celine Valeria; Heng, Paul Wan Sia

    2014-01-02

    Binder distribution in the powder mass during high shear granulation is especially critical with the use of viscous liquid binders and with short processing times. A viscous liquid binder was delivered into the powder mass at two flow rates using three methods: pouring, pumping and spraying from a pressure pot. Binder content analyses at the scale of individual granules were conducted to investigate the impact of different delivery conditions on the homogeneity of binder distribution. There was clear evidence of non-uniformity of binder content among individual granules across all delivery conditions, particularly for the fast rates of delivery. Poorer reproducibility values of tablet thickness and disintegration time were observed when binder was poured but this may be overcome by pumping or spraying from the pressure pot. Greater homogeneity of binder distribution occurred with the slow rates of delivery and led to the earlier onset of granule growth and a consequent increase in granule size. Larger granule size and lower proportion of fines were in turn associated with increased granule bulk density and improvement of granule flow. In conclusion, delivery of a viscous binder at a slow rate either by pumping or via a pressure pot was most desirable during granulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less

  2. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    DOE PAGES

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    2017-10-05

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less

  3. Effects of a Supplemental Intervention Focused in Equivalency Concepts for Students with Varying Abilities

    ERIC Educational Resources Information Center

    Hunt, Jessica H.

    2014-01-01

    The purpose of this study was to examine the effects of a Tier 2 supplemental intervention focused on rational number equivalency concepts and applications on the mathematics performance of third-grade students with and without mathematics difficulties. The researcher used a pretest-posttest control group design and random assignment of 19…

  4. Minásbate Equivalents of Mathematical Concepts: Their Socio-Cultural Undertones

    ERIC Educational Resources Information Center

    Balbuena, Sherwin E.; Cantoria, Uranus E.; Cantoria, Amancio L., Jr.; Ferriol, Eny B.

    2015-01-01

    This paper presents the collection and analysis of Minásbate equivalents of some concepts used in the study of arithmetic, counting, and geometry as provided by the elderly residents of the province of Masbate. The glossary of mathematical terms derived from interviews would serve as an authoritative reference for mother tongue teachers in the…

  5. EFFICIENTLY ESTABLISHING CONCEPTS OF INFERENTIAL STATISTICS AND HYPOTHESIS DECISION MAKING THROUGH CONTEXTUALLY CONTROLLED EQUIVALENCE CLASSES

    PubMed Central

    Fienup, Daniel M; Critchfield, Thomas S

    2010-01-01

    Computerized lessons that reflect stimulus equivalence principles were used to teach college students concepts related to inferential statistics and hypothesis decision making. Lesson 1 taught participants concepts related to inferential statistics, and Lesson 2 taught them to base hypothesis decisions on a scientific hypothesis and the direction of an effect. Lesson 3 taught the conditional influence of inferential statistics over decisions regarding the scientific and null hypotheses. Participants entered the study with low scores on the targeted skills and left the study demonstrating a high level of accuracy on these skills, which involved mastering more relations than were taught formally. This study illustrates the efficiency of equivalence-based instruction in establishing academic skills in sophisticated learners. PMID:21358904

  6. Fatigue and fracture properties of aged binders in the context of reclaimed asphalt mixes.

    DOT National Transportation Integrated Search

    2014-08-01

    Evidence in the literature indicates that the stiffness of the asphalt binder increases and ductility of the binder decreases : with oxidative aging. Typically for unmodified asphalt binders, increase in stiffness or decrease in ductility is regarded...

  7. Development of non-petroleum-based binders for use in flexible pavements - phase II.

    DOT National Transportation Integrated Search

    2015-10-01

    Bio-binders can be utilized as asphalt modifiers, extenders, and replacements for conventional asphalt in bituminous binders. : From the rheology results of Phase I of this project, it was found that the bio-binders tested had good performance, simil...

  8. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  9. A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators

    NASA Astrophysics Data System (ADS)

    Lee, Hoogil; Jeon, Hyunkyu; Gong, Seokhyeon; Ryou, Myung-Hyun; Lee, Yong Min

    2018-01-01

    To enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene (PE) separators, their surfaces were treated with thin and hydrophilic polydopamine layers. As a result, an aqueous ceramic coating slurry consisting of Al2O3 particles, carboxyl methyl cellulose (CMC) binders, and water solvent was easily spread on the separator surface, and a uniform ceramic layer was formed after solvent drying. Moreover, the ceramic coating layer showed greatly improved adhesion properties to the PE separator surface. Whereas the adhesion strength within the bulk coating layer (Fmid) ranged from 43 to 86 N m-1 depending on the binder content of 1.5-3.0 wt%, the adhesion strength at the interface between the ceramic coating layer and PE separator (Fsepa-Al2O3) was 245-360 N m-1, a value equivalent to an increase of four or five times. Furthermore, an additional ceramic coating layer of approximately 7 μm did not degrade the ionic conductivity and electrochemical properties of the bare PE separators. Thus, all the LiMn2O4/graphite cells with ceramic-coated separators delivered an improved cycle life and rate capability compared with those of the control cells with bare PE separators.

  10. Investigation of the Effect of Oil Modification on Critical Characteristics of Asphalt Binders

    NASA Astrophysics Data System (ADS)

    Golalipour, Amir

    Thermally induced cracking of asphalt pavement continues to be a serious issue in cold climate regions as well as in areas which experience extreme daily temperature differentials. Low temperature cracking of asphalt pavements is attributed to thermal stresses and strains developed during cooling cycles. Improving asphalt binder low temperature fracture and stiffness properties continues to be a subject of particular concern. Therefore, significant amount of research has been focused on improving asphalt binder properties through modification. In recent years, wide ranges of oil based modifications have been introduced to improve asphalt binder performance, especially at the low service temperatures. Although, significant use of these oils is seen in practice, knowledge of the fundamental mechanisms of oil modification and their properties for achieving optimum characteristics is limited. Hence, this study focuses on better understanding of the effect of oil modifiers which would help better material selection and achieve optimum performance in terms of increasing the life span of pavements. In this study, the effect of oil modification on the rheological properties of the asphalt binder is investigated. To examine the effect of oil modification on binder characteristics, low temperature properties as well as high temperature performance of oil modified binders were evaluated. It is found that oils vary in their effects on asphalt binder performance. However, for all oils used in the study, adding an oil to binder can improve binder low temperature performance, and this result mainly attributed to the softening effect. In addition to that, a simple linear model is proposed to predict the performance grade of oil modified binder based on the properties of its constituents at high and low temperatures. Another part of this study focuses on the oil modification effect on asphalt binder thermal strain and stresses. A viscoelastic analytical procedure is combined with experimentally derived failure stress and strain envelopes to determine the controlling failure mechanism, strain tolerance or critical stress, in thermal cracking of oil modified binders. The low temperature failure results depict that oil modification has a good potential of improving the cracking resistance of asphalt binders during thermal cycles.

  11. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    PubMed

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-07

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

  12. Effects of binders on the electrochemical performance of rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Wang, Nan; NuLi, Yanna; Su, Shuojian; Yang, Jun; Wang, Jiulin

    2017-02-01

    A comparative study on the effects of different binders on the electrochemical performance of rechargeable magnesium batteries with Mo6S8 cathode is conducted for the first time. The selected binders are commercial organic-soluble polyvinylidene fluoride (PVDF), water-soluble poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), gelatin, sodium alginate (SA) and Beta-cyclodextrin (β-CD). The binders significantly affect the physical properties, thus the electrochemical performance of Mo6S8 cathode. Compared with those using traditional PVDF binder, Mo6S8 electrodes with PAA and PVA exhibit enhanced cycling stabilities and rate capabilities, which are attributed to the improved cohesion among the electrode constituents and adhesion between the electrode laminate and the current collector. In addition, the anodic stability of these binders is not only related to the chemical structure of binders, but also to the uniformity of electrode surface. SA binder shows low anodic stability duo to containing easily oxidized groups. Non-uniform electrode surface decreases the anodic stability of PVDF based Mo6S8 electrode. Gelatin can be used as a binder in the formulation of high voltage cathodes for rechargeable magnesium batteries.

  13. 21 CFR 880.5160 - Therapeutic medical binder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Therapeutic medical binder. 880.5160 Section 880...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5160 Therapeutic medical binder. (a) Identification. A therapeutic medical binder is a...

  14. 21 CFR 880.5160 - Therapeutic medical binder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Therapeutic medical binder. 880.5160 Section 880...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5160 Therapeutic medical binder. (a) Identification. A therapeutic medical binder is a...

  15. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12

    PubMed Central

    Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping

    2015-01-01

    Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm−3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems. PMID:25586374

  16. Investigation of newly discovered lobate scarps: Implications for the tectonic and thermal evolution of the Moon

    NASA Astrophysics Data System (ADS)

    Clark, Jaclyn D.; Hurtado, José M.; Hiesinger, Harald; van der Bogert, Carolyn H.; Bernhardt, Hannes

    2017-12-01

    Using observations of lunar scarps in Apollo Panoramic Camera photos, Binder and Gunga (1985) tested competing models for the initial thermal state of the Moon, i.e., whether it was initially completely molten or if the molten portion was limited to a global magma ocean. Binder and Gunga (1985) favored the concept of an initially molten Moon that had entered into a late-stage epoch of global tectonism. Since the start of the Lunar Reconnaissance Orbiter mission, thousands of new small lobate scarps have been identified across the lunar surface with high-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC). As such, we selected spatially random scarps and reevaluated the fault dynamical calculations presented by Binder and Gunga (1985). Additionally, we examined the geometry and properties of these fault scarps and place better constraints on the amount of scarp-related crustal shortening. We found that these low angle thrust faults (∼23˚) have an average relief of ∼40 m and average depths of 951 m. Using crater size-frequency distribution (CSFD) measurements, we derived absolute model ages for the scarp surfaces proximal to the trace of the fault and found that the last slip event occurred in the last ∼132 Ma. Along with young model ages, lunar lobate scarps exhibit a youthful appearance with their crisp morphologies which is indicative of late-stage horizontal shortening. In conclusion, interior secular cooling and tidal stresses cause global contraction of the Moon.

  17. Elastic and Sorption Characteristics of an Epoxy Binder in a Composite During Its Moistening

    NASA Astrophysics Data System (ADS)

    Aniskevich, K.; Glaskova, T.; Jansons, J.

    2005-07-01

    Results of an experimental investigation into the elastic and sorption characteristics of a model composite material (CM) — epoxy resin filled with LiF crystals — during its moistening are presented. Properties of the binder in the CM with different filler contents ( v f = 0, 0.05, 0.11, 0.23, 0.28, 0.33, 0.38, and 0.46) were evaluated indirectly by using known micromechanical models of CMs. It was revealed that, for the CM in a conditionally initial state, the elastic modulus of the binder in it and the filler microstrain (change in the interplanar distance in the crystals, measured by the X-ray method) as functions of filler content had the same character. The elastic modulus of the binder in the CM with a low filler content was equal to that for the binder in a block; the elastic modulus of the binder in the CM decreased with increasing filler content. The maximum (corresponding to water saturation of the CM) stresses in the binder and the filler microstresses as functions of filler content were of the same character. Moreover, the absolute values of maximum stresses in the binder and of filler microstresses coincided for high and low contents of the filler. At v f = 0.2-0. 3, the filler microstrains exceeded the stresses in the binder. The effect of moisture on the epoxy binder in the CM with a high filler content was not entirely reversible: the elastic characteristics of the binder increased, the diffusivity decreased, and the ultimate water content increased after a moistening-drying cycle.

  18. 47 CFR 51.232 - Binder group management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Binder group management. 51.232 Section 51.232... Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops..., segregating or reserving particular loops or binder groups for use solely by any particular advanced services...

  19. 47 CFR 51.232 - Binder group management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Binder group management. 51.232 Section 51.232... Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops..., segregating or reserving particular loops or binder groups for use solely by any particular advanced services...

  20. 47 CFR 51.232 - Binder group management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Binder group management. 51.232 Section 51.232... Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops..., segregating or reserving particular loops or binder groups for use solely by any particular advanced services...

  1. 46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...

  2. 46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...

  3. 46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...

  4. 46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...

  5. Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete

    NASA Astrophysics Data System (ADS)

    Najimi, Meysam

    This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied alkali-activated concretes, workability and setting times were in the acceptable ranges. Overall, a 50/50 combination of natural Pozzolan and slag developed the highest strengths. Increasing slag content to 70%, however, was useful for mixtures with high NaOH concentrations (2.5M) and for acceleration of initial reactions. The strength of alkali-activated concretes improved with increases in sodium silicate portion of activator. Regarding effects of sodium hydroxide concentration on strength properties, there were optimum NaOH molarities which increased with an increase in slag portion of the binder. A 50/50 combination of natural Pozzolan and slag also proved to be the optimum combination for the results of absorption test. NaOH concentration and sodium silicate dosage had marginal effects on the absorption and volume of permeable voids. The chloride penetration depth reduced with decreases in natural Pozzolan portion of the binder (particularly from 70 to 50%), sodium silicate dosage, and NaOH concentration. A nearly similar trend was seen for the drying shrinkage of studied alkali-activated natural Pozzolan/slag concretes, as reduction of these variables also reduced the drying shrinkage. The mass loss of alkali-activated concretes subjected to acid attack increased with increases in slag content, sodium silicate dosage, and sodium hydroxide concentration. The failure time in corrosion test improved (increased) with increases in natural Pozzolan content, sodium silicate dosage, and sodium hydroxide concentration. The frost resistance of alkali-activated concretes improved as slag portion of the binder was increased. An increase in sodium silicate dosage was beneficial in improving frost resistance of concretes made with binders having 50 and 70% slag. An opposite trend was seen when slag portion of the binder was reduced to 30%. The mechanical properties (compressive strength, tensile strength and elastic modulus) of alkali-activated concretes made with activators having 20 and 25% sodium silicate were lower than those of the reference Portland cement concrete. As sodium silicate dosage of activator was increased to 30%, the compressive strengths of alkali-activated concretes were similar to those of the reference Portland cement concrete. Absorption of the studied alkali-activated natural Pozzolan/slag concretes was averagely 26% lower than that of the reference Portland cement concrete. Their chloride penetration depths were significantly lower (averagely about 80%) than that of the reference Portland cement concrete. The average drying shrinkage of alkali-activated natural Pozzolan/slag concretes was lower than that of reference PC concrete by nearly 26%. While the drying shrinkage of the worst performed alkali-activated natural Pozzolan/slag concrete was about 25% higher than that of the reference Portland cement concrete, there were several alkali-activated concretes that shrank considerably less than the reference Portland cement concrete. The corrosion and acid attack resistances of alkali-activated natural Pozzolan/slag concretes were significantly higher than that of the reference Portland cement concrete. The frost resistance of alkali-activated concretes having binders made with 50 and 70% slag was significantly higher than that of the reference Portland cement concrete. On the other hand, the frost resistance of concretes made with binders having 30% slag was similar to or less than (depending on sodium silicate content) that of the reference Portland cement concrete.

  6. Microstructure of the combustion zone: Thin-binder AP-polymer sandwiches

    NASA Technical Reports Server (NTRS)

    Price, E. W.; Panyam, R. R.; Sigman, R. K.

    1980-01-01

    Experimental results are summarized for systematic quench-burning tests on ammonium perchlorate-HC binder sandwiches with binder thicknesses in the range 10 - 150 microns. Tests included three binders (polysulfide, polybutadiene-acrylonitrile, and hydroxy terminated polybutadiene), and pressures from 1.4 to 14 MPa. In addition, deflagration limits were determined in terms of binder thickness and pressure. Results are discussed in terms of a qualitative theory of sandwich burning consolidated from various sources. Some aspects of the observed results are explained only speculatively.

  7. Influence of Mycotoxin Binders on the Oral Bioavailability of Doxycycline in Pigs.

    PubMed

    De Mil, Thomas; Devreese, Mathias; De Saeger, Sarah; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska

    2016-03-16

    Mycotoxin binders are feed additives that aim to adsorb mycotoxins in the gastrointestinal tract of animals, making them unavailable for systemic absorption. The antimicrobial drug doxycycline (DOX) is often used in pigs and is administered through feed or drinking water; hence, DOX can come in contact with mycotoxin binders in the gastrointestinal tract. This paper describes the effect of four mycotoxin binders on the absorption of orally administered DOX in pigs. Two experiments were conducted: The first used a setup with bolus administration to fasted pigs at two different dosages of mycotoxin binder. In the second experiment, DOX and the binders were mixed in the feed at dosages recommended by the manufacturers (= field conditions). Interactions are possible between some of the mycotoxin binders dosed at 10 g/kg feed but not at 2 g/kg feed. When applying field conditions, no influences were seen on the plasma concentrations of DOX.

  8. The effect of crumb rubber particle size to the optimum binder content for open graded friction course.

    PubMed

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.

  9. Influence of solidification accelerators on structure formation of anhydrite-containing binders

    NASA Astrophysics Data System (ADS)

    Anikanova, L.; Volkova, O.; Kudyakov, A.; Sarkisov, Y.; Tolstov, D.

    2016-01-01

    The article presents results of scientific analysis of chemical additives influence on acid fluoride binder. It was found that the influence of sulfate nature additives on the process of hydration and solidification of the binder is similar to influence of additives on indissoluble anhydrite. Additives with SO42- anion NO- are more efficient. The mentioned additives according to accelerating effect belong to the following succession: K2SO4 > Na2SO4 > FeSO4 > MgSO4. Facilitation of the process of hydration and solidification of the binder, increase in density and durability of the binder (32 MPa) is to the greatest extent achieved with the introduction of 2% sodium sulfate additive of the binder's mass into the composition of the binder along with the ultrasonic treatment of water solution. Directed crystal formation process with healing of porous structure by new growths presented as calcium sulfate dehydrate and hydroglauberite provides positive effect.

  10. Comparison of influence of ageing on low-temperature characteristics of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Vacková, Pavla; Valentin, Jan; Benešová, Lucie

    2017-09-01

    Ability of relaxation of asphalt mixtures and thus its resilience to climate change and traffic load is decreasing by influence of aging - in this case aging of bituminous binder. Binder exposed to climate and UV ages and becomes more fragile and susceptible to damage. The results of the research presented in this paper are aimed to finding a correlation between low-temperature properties of referential and aged asphalt mixture specimens and characteristics (not low-temperature) of bituminous binders. In this research there were used conventional road binders, commonly used modified binders and binders additionally modified in the laboratory. The low-temperature characteristics were determined by strength flexural test, commonly used in the Czech Republic for High Modulus Asphalt Mixtures (TP 151), and semi-cylindrical bending test (EN 12697-44). Both of the tests were extended by specimens exposed to artificial long-term aging (EN 12697-52) - storing at 85° C for 5 days. The results were compared with characteristics of binders for finding a suitable correlation between characteristics of binders and asphalt mixtures.

  11. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    NASA Astrophysics Data System (ADS)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  12. Development of a green binder system for paper products.

    PubMed

    Flory, Ashley R; Vicuna Requesens, Deborah; Devaiah, Shivakumar P; Teoh, Keat Thomas; Mansfield, Shawn D; Hood, Elizabeth E

    2013-03-26

    It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of "green" binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found.

  13. Evaluation of moisture-induced damage of dense graded and gap graded asphalt mixture with nanopolymer modified binder

    NASA Astrophysics Data System (ADS)

    Shaffie, E.; Arshad, A. K.; Ahmad, J.; Hashim, W.

    2018-04-01

    The purpose of this research is to study the moisture induce damage performance of dense graded (AC14) and stone mastic asphalt (SMA14) asphalt pavement using Nanolyacrylate polymer modified asphalt binder. The physical properties of aggregate, volumetric and performance of asphalt mixes were assessed and evaluated with the laboratory tests. The study investigates fourteenth different asphalt mixtures consisting of NP modified asphalt binder formulations at 2%, 4% and 6%. Two types of asphalt binder, penetration grade PEN 80-100 and performance grade PG 76 were added with Nanopolyacrylate as asphalt modifier. The modified asphalt binder was prepared by adding 6 percent of Nanopolyacrylate (NP) to the asphalt binder. Both AC14 and SMA14 mixtures passed the Marshall requirements which indicate that these mixtures were good with respect to durability and flexibility. In terms of moisture induce damage, it was observed that the strength of the asphalt mixes increased with the addition of NP polymer modified asphalt binder. Similar trend could also be seen for SMA14 mixes, where the ITS value of SMA14 showed a significant difference compared to AC14 and all the mixtures exceeded the minimum requirement value as specified in the specification. Thus, addition of nanopolyacrylate polymer to the asphalt binder has significantly improved the cohesion as well as adhesion properties of the asphalt binder, and hence the stripping performance. Therefore, it can be concluded that the nanopolyacylate is suitable to be used as a modifier to the modified asphalt binder in order to enhance the properties of the asphalt binder and thus improving the performance of asphalt in both AC14 and SMA14 mixes.

  14. Development of a green binder system for paper products

    PubMed Central

    2013-01-01

    Background It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. Results In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. Conclusions These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of “green” binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found. PMID:23531016

  15. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    PubMed

    Mudge, David W; Johnson, David W; Hawley, Carmel M; Campbell, Scott B; Isbel, Nicole M; van Eps, Carolyn L; Petrie, James J B

    2011-05-13

    Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of calcium binders, which continue to be widely used. The paper seeks to answer whether the continued use of aluminium is justifiable in the absence of prospective data establishing its safety, and we call for prospective trials to be conducted comparing the available binders both in terms of efficacy and safety. © 2011 Mudge et al; licensee BioMed Central Ltd.

  16. The use of abdominal binders to treat over-shunting headaches.

    PubMed

    Sklar, Frederick H; Nagy, Laszlo; Robertson, Brian D

    2012-06-01

    Headaches are common in children with shunts. Headaches associated with over-shunting are typically intermittent and tend to occur later in the day. Lying down frequently makes the headaches better. This paper examines the efficacy of using abdominal binders to treat over-shunting headaches. Over an 18-year period, the senior author monitored 1027 children with shunts. Office charts of 483 active patients were retrospectively reviewed to identify those children with headaches and, in particular, those children who were thought to have headaches as a result of over-shunting. Abdominal binders were frequently used to treat children with presumed over-shunting headaches, and these data were analyzed. Of the 483 patients undergoing chart review, 258 (53.4%) had headache. A clinical diagnosis of over-shunting was made in 103 patients (21.3% overall; 39.9% of patients with headache). In 14 patients, the headaches were very mild (1-2 on a 5-point scale) and infrequent (1 or 2 per month), and treatment with an abdominal binder was not thought indicated. Eighty-nine patients were treated with a binder, but 19 were excluded from this retrospective study for noncompliance, interruption of the binder trial, or lack of follow-up. The remaining 70 pediatric patients, who were diagnosed with over-shunting headaches and were treated with abdominal binders, were the subjects of a more detailed retrospective study. Significant headache improvement was observed in 85.8% of patients. On average, the patients wore the binders for approximately 1 month, and headache relief usually persisted even after the binders were discontinued. However, the headaches eventually did recur in many of the patients more than a year later. In these patients, reuse of the abdominal binder was successful in relieving headaches in 78.9%. The abdominal binder is an effective, noninvasive therapy to control over-shunting headaches in most children. This treatment should be tried before any surgery is considered. It is suggested that the abdominal binder may modulate abnormally increased intracranial pulse pressures associated with over-shunting. Interactions with the cerebrovascular bed are suspected to account for persistent headache relief after the binder is discontinued.

  17. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    PubMed Central

    2011-01-01

    Background Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. Discussion The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. Summary This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of calcium binders, which continue to be widely used. The paper seeks to answer whether the continued use of aluminium is justifiable in the absence of prospective data establishing its safety, and we call for prospective trials to be conducted comparing the available binders both in terms of efficacy and safety. PMID:21569446

  18. Phosphate binder use and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS): evaluation of possible confounding by nutritional status.

    PubMed

    Lopes, Antonio Alberto; Tong, Lin; Thumma, Jyothi; Li, Yun; Fuller, Douglas S; Morgenstern, Hal; Bommer, Jürgen; Kerr, Peter G; Tentori, Francesca; Akiba, Takashi; Gillespie, Brenda W; Robinson, Bruce M; Port, Friedrich K; Pisoni, Ronald L

    2012-07-01

    Poor nutritional status and both hyper- and hypophosphatemia are associated with increased mortality in maintenance hemodialysis (HD) patients. We assessed associations of phosphate binder prescription with survival and indicators of nutritional status in maintenance HD patients. Prospective cohort study (DOPPS [Dialysis Outcomes and Practice Patterns Study]), 1996-2008. 23,898 maintenance HD patients at 923 facilities in 12 countries. Patient-level phosphate binder prescription and case-mix-adjusted facility percentage of phosphate binder prescription using an instrumental-variable analysis. All-cause mortality. Overall, 88% of patients were prescribed phosphate binders. Distributions of age, comorbid conditions, and other characteristics showed small differences between facilities with higher and lower percentages of phosphate binder prescription. Patient-level phosphate binder prescription was associated strongly at baseline with indicators of better nutrition, ie, higher values for serum creatinine, albumin, normalized protein catabolic rate, and body mass index and absence of cachectic appearance. Overall, patients prescribed phosphate binders had 25% lower mortality (HR, 0.75; 95% CI, 0.68-0.83) when adjusted for serum phosphorus level and other covariates; further adjustment for nutritional indicators attenuated this association (HR, 0.88; 95% CI, 0.80-0.97). However, this inverse association was observed for only patients with serum phosphorus levels ≥3.5 mg/dL. In the instrumental-variable analysis, case-mix-adjusted facility percentage of phosphate binder prescription (range, 23%-100%) was associated positively with better nutritional status and inversely with mortality (HR for 10% more phosphate binders, 0.93; 95% CI, 0.89-0.96). Further adjustment for nutritional indicators reduced this association to an HR of 0.95 (95% CI, 0.92-0.99). Results were based on phosphate binder prescription; phosphate binder and nutritional data were cross-sectional; dietary restriction was not assessed; observational design limits causal inference due to possible residual confounding. Longer survival and better nutritional status were observed for maintenance HD patients prescribed phosphate binders and in facilities with a greater percentage of phosphate binder prescription. Understanding the mechanisms for explaining this effect and ruling out possible residual confounding require additional research. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. FROM CONCEPT TO EQUIVALENCY: THE 503 REGULATIONS AND THE PATHOGEN EQUIVALENCY COMMITTEE

    EPA Science Inventory

    Since its creation in 1985, the Pathogen Equivalency Committee (PEC) has been reviewing innovative and alternative sludge disinfection technologies with regards to their abilities to protect human health and the environment. The PEC is charged to make recommendations on whether t...

  20. Phosphate-bonded ceramic–wood composites : R&D project overview and invitation to participate

    Treesearch

    Theodore L. Laufenberg; Matt Aro

    2004-01-01

    We are developing chemically bonded ceramic phosphate binders for the production of biofiber-based composite materials. These binders promise to have better processing and properties than some current cement and polymer resin binder systems. The ceramic phosphate binders (termed Ceramicrete), if used in place of cement and polymers, will significantly reduce the...

  1. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries.

    PubMed

    Luo, Shu; Wang, Ke; Wang, Jiaping; Jiang, Kaili; Li, Qunqing; Fan, Shoushan

    2012-05-02

    Binder-free LiCoO(2) -SACNT cathodes with excellent flexibility and conductivity are obtained by constructing a continuous three-dimensional super-aligned carbon nanotube (SACNT) framework with embedded LiCoO(2) particles. These binder-free cathodes display much better cycling stability, greater rate performance, and higher energy density than classical cathodes with binder. Various functional binder-free SACNT composites can be mass produced by the ultrasonication and co-deposition method described in this paper. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor); Boysen, Dane (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2002-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting. The solid acid material has the general form M.sub.a H.sub.b (XO.sub.t).sub.c.

  3. FROM CONCEPT TO EQUIVALENCY: THE 503 REGULATIONS AND THE PATHOGEN EQUIVALENCY COMMITTEE (PAPER)

    EPA Science Inventory

    Since its creation in 1985, the Pathogen Equivalency Committee (PEC) has been reviewing innovative and alternative sludge disinfection technologies with regards to their abilities to protect human health and the environment. The PEC is charged to make recommendations on whether t...

  4. Characterizing and modeling organic binder burnout from green ceramic compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewsuk, K.G.; Cesarano, J. III; Cochran, R.J.

    New characterization and computational techniques have been developed to evaluate and simulate binder burnout from pressed powder compacts. Using engineering data and a control volume finite element method (CVFEM) thermal model, a nominally one dimensional (1-D) furnace has been designed to test, refine, and validate computer models that simulate binder burnout assuming a 1-D thermal gradient across the ceramic body during heating. Experimentally, 1-D radial heat flow was achieved using a rod-shaped heater that directly heats the inside surface of a stack of ceramic annuli surrounded by thermal insulation. The computational modeling effort focused on producing a macroscopic model formore » binder burnout based on continuum approaches to heat and mass conservation for porous media. Two increasingly complex models have been developed that predict the temperature and mass of a porous powder compact as a function of time during binder burnout. The more complex model also predicts the pressure within a powder compact during binder burnout. Model predictions are in reasonably good agreement with experimental data on binder burnout from a 57--65% relative density pressed powder compact of a 94 wt% alumina body containing {approximately}3 wt% binder. In conjunction with the detailed experimental data from the prototype binder burnout furnace, the models have also proven useful for conducting parametric studies to elucidate critical i-material property data required to support model development.« less

  5. Effect of binder liquid type on spherical crystallization.

    PubMed

    Maghsoodi, Maryam; Hajipour, Ali

    2014-11-01

    Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.

  6. Effects of POE-g-MAH on properties of PP-based binder in metal injection molding

    NASA Astrophysics Data System (ADS)

    Li, Duxin; Zhang, Chenming; Ding, Chuxiong; Pan, Donghua; Lu, Renwei; Yang, Zhongchen

    2018-06-01

    The objective of this study is to explore the effects of maleic anhydride-grafted polyolefin elastomer (POE-g-MAH) on properties of polypropylene (PP)-based binder. The viscosity of feedstocks as well as properties of green parts, brown parts and sintered parts were investigated. Through the analysis of viscosity, the feedstock containing 8 vol% POE-g-MAH in binder was supposed to be more suitable for the injection molding. The impact absorbed energy at break increased with increasing POE-g-MAH content in binder while the bending strength decreased first and then increased. The introduction of POE-g-MAH improve the density distribution and increased the density of green parts. After debinding, most binder components were removed regardless of the POE-g-MAH content in binder. As for the parts after sintering, the carbon content decreased with an increase in POE-g-MAH content. The results suggest that POE-g-MAH act as a toughening agent as well as compatibilizer for PP-based binder/metal powder system. The mechanical properties of the green parts could be enhanced even after multiple injection and in addition the powder-binder separation trend could be decreased.

  7. Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration

    PubMed Central

    De Mil, Thomas; Devreese, Mathias; De Baere, Siegrid; Van Ranst, Eric; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska

    2015-01-01

    The aim of this study was to characterize 27 feed additives marketed as mycotoxin binders and to screen them for their in vitro zearalenone (ZEN) adsorption. Firstly, 27 mycotoxin binders, commercially available in Belgium and The Netherlands, were selected and characterized. Characterization was comprised of X-ray diffraction (XRD) profiling of the mineral content and d-spacing, determination of the cation exchange capacity (CEC) and the exchangeable base cations, acidity, mineral fraction, relative humidity (RH) and swelling volume. Secondly, an in vitro screening experiment was performed to evaluate the adsorption of a single concentration of ZEN in a ZEN:binder ratio of 1:20,000. The free concentration of ZEN was measured after 4 h of incubation with each of the 27 mycotoxin binders at a pH of 2.5, 6.5 and 8.0. A significant correlation between the free concentration of ZEN and both the d-spacing and mineral fraction of the mycotoxin binders was seen at the three pH levels. A low free concentration of ZEN was demonstrated using binders containing mixed-layered smectites and binders containing humic acids. PMID:25568976

  8. The Influence of Phosphor and Binder Chemistry on the Aging Characteristics of Remote Phosphor Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Yaga, Robert; Lamvik, Michael

    The influence of phosphor and binder layer chemistries on the lumen maintenance and color stability of remote phosphor disks were examined using wet high-temperature operational lifetime testing (WHTOL). As part of the experimental matrix, two different correlated color temperature (CCT) values, 2700 K and 5000 K, were studied and each had a different binder chemistry. The 2700 K samples used a urethane binder whereas the 5000 K samples used an acrylate binder. Experimental conditions were chosen to enable study of the binder and phosphor chemistries and to minimize photo-oxidation of the polycarbonate substrate. Under the more severe WHTOL conditions ofmore » 85°C and 85% relative humidity (RH), absorption in the binder layer significantly reduced luminous flux and produced a blue color shift. The milder WHTOL conditions of 75°C and 75% RH, resulted in chemical changes in the binder layer that may alter its index of refraction. As a result, lumen maintenance remained high, but a slight yellow shift was found. The aging of remote phosphor products provides insights into the impact of materials on the performance of phosphors in an LED lighting system.« less

  9. The impact of nurse-led education on haemodialysis patients' phosphate binder medication adherence.

    PubMed

    Sandlin, Kimberly; Bennett, Paul N; Ockerby, Cherene; Corradini, Ann-Marie

    2013-03-01

    Phosphate binder medication adherence is required to maintain optimal phosphate levels and minimise bone disease in people with end stage kidney disease. To examine the impact of a nurse-led education intervention on bone disorder markers, adherence to phosphate binder medication and medication knowledge. Descriptive study with a paired pre-post intervention survey. Adults receiving haemodialysis. Twelve-week intervention where patients self-administered their phosphate binder medication at each dialysis treatment. Nurses provided individualised education. Patients completed a pre- and post-intervention survey designed to explore their knowledge of phosphate binders. There were no statistically significant changes in clinical markers but a significant improvement in the proportion of patients who took their phosphate binder correctly, increasing from 44 to 72% (p = 0.016). There were moderate to large effect size changes for improved knowledge. A nurse-led intervention education programme can increase patients' phosphate binder adherence. However, this does not necessarily manifest into improved serum phosphate levels. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  10. The Effect of Crumb Rubber Particle Size to the Optimum Binder Content for Open Graded Friction Course

    PubMed Central

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S.

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%–7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC. PMID:24574875

  11. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Feng, Lili; Yang, Wenrong; Zhang, Yinyin; Zhang, Yanli; Bai, Wei; Liu, Bo; Zhang, Wei; Chuan, Yongming; Zheng, Ziguang; Guan, Hongjin

    2017-10-01

    When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, the mixture of styrene butadiene rubber and sodium carboxymethyl cellulose (SBR+CMC), and polyacrylonitrile (LA133) were studied to make anode electrodes (compared to the full battery). The electrochemical tests show that using SBR+CMC and LA133 binder which use water as solution were significantly better than PVDF. The SBR+CMC binder remarkably improve the bonding capacity, cycle stability, and rate performance of battery anode, and the capacity retention was about 87% after 50th cycle relative to the second cycle. SBR+CMC binder was more suitable for making transition metal oxides anodes of LIBs.

  12. REFractions: The Representing Equivalent Fractions Game

    ERIC Educational Resources Information Center

    Tucker, Stephen I.

    2014-01-01

    Stephen Tucker presents a fractions game that addresses a range of fraction concepts including equivalence and computation. The REFractions game also improves students' fluency with representing, comparing and adding fractions.

  13. Transportability of Equivalence-Based Programmed Instruction: Efficacy and Efficiency in a College Classroom

    ERIC Educational Resources Information Center

    Fienup, Daniel M.; Critchfield, Thomas S.

    2011-01-01

    College students in a psychology research-methods course learned concepts related to inferential statistics and hypothesis decision making. One group received equivalence-based instruction on conditional discriminations that were expected to promote the emergence of many untaught, academically useful abilities (i.e., stimulus equivalence group). A…

  14. Assessing Knowledge of Mathematical Equivalence: A Construct-Modeling Approach

    ERIC Educational Resources Information Center

    Rittle-Johnson, Bethany; Matthews, Percival G.; Taylor, Roger S.; McEldoon, Katherine L.

    2011-01-01

    Knowledge of mathematical equivalence, the principle that 2 sides of an equation represent the same value, is a foundational concept in algebra, and this knowledge develops throughout elementary and middle school. Using a construct-modeling approach, we developed an assessment of equivalence knowledge. Second through sixth graders (N = 175)…

  15. Metal-phosphate binders

    DOEpatents

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  16. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    PubMed

    Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng

    2016-04-01

    In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication bone scaffolds and understanding the interaction mechanism between binder and HA bioceramics power. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of dietary supplementation with clay-based binders on biochemical and histopathological changes in organs of turkey fed with aflatoxin-contaminated diets.

    PubMed

    Lala, A O; Ajayi, O L; Oso, A O; Ajao, M O; Oni, O O; Okwelum, N; Idowu, O M O

    2016-12-01

    This study was carried out to investigate the effect of dietary supplementation with molecular or nano-clay binders on biochemical and histopathological examination of organs of turkeys fed diets contaminated with aflatoxin B 1. Two hundred and sixteen unsexed 1-day-old British United Turkeys were randomly allotted to nine diets in a 3 × 3 factorial arrangement of diets supplemented with no toxin binder, molecular toxin binder (MTB) and nano-clay toxin binder, each contaminated with 0, 60 and 110 ppb aflatoxin B 1 respectively. There were three replicates per treatment with eight turkeys per replicate. Biochemical analyses, organ weights and histopathological changes of some organs were examined at the end of the study which lasted for 84 days. Turkeys fed diets supplemented with molecular and nano-binders showed higher (p < 0.001) total serum protein, reduced (p < 0.001) serum uric acid and GGT concentration values when compared with those fed aflatoxin-contaminated diets supplemented with no binder. Turkeys fed aflatoxin-contaminated diets supplemented with no binder had increased (p < 0.001) AST and ALT concentration when compared with other treatments. The heaviest (p < 0.001) liver and intestinal weight was noticed with turkeys fed diets supplemented with no binder and contaminated with 110 ppb aflatoxin B 1 . Pathologically, there was no visible morphological alteration noticed in all turkeys fed uncontaminated diets and nano-clay-supplemented group. Hepatic paleness, hepatomegaly and yellowish discolouration of the liver were observed with turkeys fed diets containing no binder but contaminated with 60 and 110 ppb aflatoxin B1. Intestinal histopathological changes such as goblet cell hyperplasia, villous atrophy and diffuse lymphocytic enteritis were more prominent in turkeys fed diets containing no toxin binder and MTB. In conclusion, there were improved biochemical parameters and reduced deleterious effects of aflatoxin B 1 in turkeys fed diet supplemented with clay binders. However, the improvement was more conspicuous in the nano-clay-supplemented group than molecular clay group. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  18. Effect of different binders on the physico-chemical, textural, histological, and sensory qualities of retort pouched buffalo meat nuggets.

    PubMed

    Devadason, I Prince; Anjaneyulu, A S R; Babji, Y

    2010-01-01

    The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.

  19. Cohesive finite element modeling of the delamination of HTPB binder and HMX crystals under tensile loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, David J.; Luscher, Darby J.; Yeager, John D.

    Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less

  20. Cohesive finite element modeling of the delamination of HTPB binder and HMX crystals under tensile loading

    DOE PAGES

    Walters, David J.; Luscher, Darby J.; Yeager, John D.; ...

    2018-02-27

    Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less

  1. New point of view on materials development

    NASA Astrophysics Data System (ADS)

    Elistratkin, M. Y.; Lesovik, V. S.; Zagorodnjuk, L. H.; Pospelova, E. A.; Shatalova, S. V.

    2018-03-01

    The paper considers the issue of improving the existing materials and developing new ones from the standpoint of their health and psycho-emotional impact. And not only from the point of view of their safety; the focus should be shifted to their active beneficial effect. The materials properties forming features in accordance with the proposed concept are considered. The targeted formation of material pore space at various scale levels is considered as effective implementation tools using specially created composite binders, in particular, in the production of non-autoclaved aerated concrete.

  2. Ferric Citrate Controls Phosphorus and Delivers Iron in Patients on Dialysis

    PubMed Central

    Sika, Mohammed; Koury, Mark J.; Chuang, Peale; Schulman, Gerald; Smith, Mark T.; Whittier, Frederick C.; Linfert, Douglas R.; Galphin, Claude M.; Athreya, Balaji P.; Nossuli, A. Kaldun Kaldun; Chang, Ingrid J.; Blumenthal, Samuel S.; Manley, John; Zeig, Steven; Kant, Kotagal S.; Olivero, Juan Jose; Greene, Tom; Dwyer, Jamie P.

    2015-01-01

    Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of −2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin. PMID:25060056

  3. Influence of pH on in vitro disintegration of phosphate binders.

    PubMed

    Stamatakis, M K; Alderman, J M; Meyer-Stout, P J

    1998-11-01

    Hyperphosphatemia, a common complication in patients with end-stage renal disease, is treated with oral phosphate-binding medications that restrict phosphorus absorption from the gastrointestinal (GI) tract. Impaired product performance, such as failure to disintegrate and/or dissolve in the GI tract, could limit the efficacy of the phosphate binder. Disintegration may be as important as dissolution for predicting in vitro product performance for medications that act locally on the GI tract, such as phosphate binders. Furthermore, patients with end-stage renal disease have a wide range in GI pH, and pH can influence a product's performance. The purpose of this study was to determine the effect of pH on in vitro disintegration of phosphate binders. Fifteen different commercially available phosphate binders (seven calcium carbonate tablet formulations, two calcium acetate tablet formulations, three aluminum hydroxide capsule formulations, and three aluminum hydroxide tablet formulations) were studied using the United States Pharmacopeia (USP) standard disintegration apparatus. Phosphate binders were tested in simulated gastric fluid (pH 1.5), distilled water (pH 5.1), and simulated intestinal fluid (pH 7.5). Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within 30 minutes. Results indicate that 9 of the 15 phosphate binders tested showed statistically significant differences in disintegration time (DT) based on pH. The percentage of binders that passed the disintegration study test in distilled water, gastric fluid, and intestinal fluid were 80%, 80%, and 73%, respectively. The findings of this study show that the disintegration of commercially available phosphate binders is highly variable. The pH significantly affected in vitro disintegration in the majority of phosphate binders tested; how significantly this affects in vivo performance has yet to be studied.

  4. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.

    PubMed

    Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-01

    The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Seal coat binder performance specifications.

    DOT National Transportation Integrated Search

    2013-11-01

    Need to improve seal coat binder specs: replace empirical tests (penetration, ductility) with : performance-related tests applicable to both : unmodified and modified binders; consider temperatures that cover entire in service : range that are tied t...

  6. Polysiloxane binder for lithium ion battery electrodes

    DOEpatents

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2015-10-13

    An electrode includes a binder and an electroactive material, wherein the binder includes a polymer including a linear polysiloxane or a cyclic polysiloxane. The polymer may be generally represented by Formula I: ##STR00001##

  7. Practical experiences with new types of highly modified asphalt binders

    NASA Astrophysics Data System (ADS)

    Špaček, Petr; Hegr, Zdeněk; Beneš, Jan

    2017-09-01

    As a result of steadily increasing traffic load on the roads in the Czech Republic, we should be focused on the innovative technical solutions, which will lead to extending the life time of asphalt pavements. One of these ways could be the future use of bitumen with a higher degree of polymer modification. This paper discusses experience with comparison of new highly polymer modified asphalt binder type with conventional polymer modified asphalt binder and unmodified binder with penetration grade 50/70. There are compared the results of various types laboratory tests of asphalt binders, as well as the results of asphalt mixtures laboratory tests. The paper also mentions the experience with workability and compactability of asphalt mixture with highly polymer modified asphalt binder during the realization of the experimental reference road section by the Skanska company in the Czech Republic.

  8. The influence of metakaolin substitution by slag in alkali-activated inorganic binders for civil engineering

    NASA Astrophysics Data System (ADS)

    Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.

    2017-02-01

    In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.

  9. On the Concept of Energy: Eclecticism and Rationality

    NASA Astrophysics Data System (ADS)

    Coelho, Ricardo Lopes

    2014-06-01

    In the theory of heat of the first half of the nineteenth century, heat was a substance. Mayer and Joule contradicted this thesis but developed different concepts of heat. Heat was a force for Mayer and a motion for Joule. Both Mayer and Joule determined the mechanical equivalent of heat. This result was, however, justified in accordance with those concepts of heat. Mayer's characterisation of force reappears in the very common textbook definition `energy cannot be created or destroyed but only transformed' and his theory led to a phenomenological approach to energy. Joule and Thomson's concept of heat led to a mechanistic approach to energy and to the common definition `energy is the capacity of doing work'. One and the same term `energy' subsumed these two approaches. The problematic concept of energy, energy as a substance, appears then as a result of an eclectic development of the concept. Another approach, which appeared in the 1860s, is directly based on the mechanical equivalent of heat and can be characterized by the use of `principle of equivalence' instead of `principle of energy conservation'. Unlike the others, this approach, which has been lost, poses no problems with the concept of energy. The problems with the energy concept as to the kind of phenomena dealt with in the present paper can, however, be overcome, as we shall see, in distinguishing between that which comes from experiments and that which is an interpretation of the experimental results within a conceptual framework.

  10. Modified binders on the basis of flotation tailings

    NASA Astrophysics Data System (ADS)

    Shapovalov, N. A.; Zagorodnyuk, L. Kh; Shchekina, A. Yu; Gorodov, A. I.

    2018-03-01

    The article proposes compositions of efficient modified composite binders on the basis of portland cement and flotation tailings; the new binders attain the ultimate compressive stress that is twice as high as that of the cement stone. At that, use of annually growing volume of flotation tailings in the production of the composite binder is a rational way for recycling this type of waste and allows saving the planet's natural resources.

  11. The effects of two thick film deposition methods on tin dioxide gas sensor performance.

    PubMed

    Bakrania, Smitesh D; Wooldridge, Margaret S

    2009-01-01

    This work demonstrates the variability in performance between SnO(2) thick film gas sensors prepared using two types of film deposition methods. SnO(2) powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 - 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis.

  12. The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance

    PubMed Central

    Bakrania, Smitesh D.; Wooldridge, Margaret S.

    2009-01-01

    This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 – 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis. PMID:22399977

  13. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    PubMed

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.

  14. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives.

    PubMed

    Qu, Xin; Liu, Quan; Wang, Chao; Wang, Dawei; Oeser, Markus

    2018-02-06

    Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately.

  15. Capital Budgeting Decisions with Post-Audit Information

    DTIC Science & Technology

    1990-06-08

    estimates that were used during project selection. In similar fashion, this research introduces the equivalent sample size concept that permits the... equivalent sample size is extended to include the user’s prior beliefs. 4. For a management tool, the concepts for Cash Flow Control Charts are...Acoxxting Research , vol. 7, no. 2, Autumn 1969, pp. 215-244. [9] Gaynor, Edwin W., "Use of Control Charts in Cost Control ", National Association of Cost

  16. Experimentally validated computational modeling of organic binder burnout from green ceramic compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewsuk, K.G.; Cochran, R.J.; Blackwell, B.F.

    The properties and performance of a ceramic component is determined by a combination of the materials from which it was fabricated and how it was processed. Most ceramic components are manufactured by dry pressing a powder/binder system in which the organic binder provides formability and green compact strength. A key step in this manufacturing process is the removal of the binder from the powder compact after pressing. The organic binder is typically removed by a thermal decomposition process in which heating rate, temperature, and time are the key process parameters. Empirical approaches are generally used to design the burnout time-temperaturemore » cycle, often resulting in excessive processing times and energy usage, and higher overall manufacturing costs. Ideally, binder burnout should be completed as quickly as possible without damaging the compact, while using a minimum of energy. Process and computational modeling offer one means to achieve this end. The objective of this study is to develop an experimentally validated computer model that can be used to better understand, control, and optimize binder burnout from green ceramic compacts.« less

  17. Texas cracking performance prediction, simulation, and binder recommendation.

    DOT National Transportation Integrated Search

    2014-10-01

    Recent studies show some mixes with softer binders used outside of Texas (e.g., Minnesotas Cold Weather Road Research Facility mixes) have both good rutting and cracking performance. However, the current binder performance grading (PG) system fail...

  18. 76 FR 81487 - Agency Information Collection Extension; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... to Kathleen Binder at kathleen.binder@hq.doe.gov . Correction In the Federal Register of December 16... corrected to read: (1) OMB No. 1910-5118; Issued in Washington, DC on December 21, 2011. Kathleen M. Binder...

  19. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young

    1998-01-01

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.

  20. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1998-11-03

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.

  1. Study of chloride ion transport of composite by using cement and starch as a binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less

  2. In Vitro Adsorption and in Vivo Pharmacokinetic Interaction between Doxycycline and Frequently Used Mycotoxin Binders in Broiler Chickens.

    PubMed

    De Mil, Thomas; Devreese, Mathias; Broekaert, Nathan; Fraeyman, Sophie; De Backer, Patrick; Croubels, Siska

    2015-05-06

    Mycotoxin binders are readily mixed in feeds to prevent uptake of mycotoxins by the animal. Concerns were raised for nonspecific binding with orally administered veterinary drugs by the European Food Safety Authority in 2010. This paper describes the screening for in vitro adsorption of doxycycline-a broad-spectrum tetracycline antibiotic-to six different binders that were able to bind >75% of the doxycycline. Next, an in vivo pharmacokinetic interaction study of doxycycline with two of the binders, which demonstrated significant in vitro binding, was performed in broiler chickens using an oral bolus model. It was shown that two montmorillonite-based binders were able to lower the area under the plasma concentration-time curve of doxycycline by >60% compared to the control group. These results may indicate a possible risk for reduced efficacy of doxycycline when used concomitantly with montmorillonite-based mycotoxin binders.

  3. Binder-induced surface structure evolution effects on Li-ion battery performance

    NASA Astrophysics Data System (ADS)

    Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.

    2018-03-01

    A comparative investigation on binder induced chemical and morphological evolution of Li4Ti5O12 electrodes was performed via X-ray photoemission spectroscopy, scanning electron microscopy, and electrochemical measurements. Composite electrodes were obtained using three different binders (PAA, PVdF, and CMC) with 80:10:10 ratio of active material:carbon:binder. The electrochemical performances of the electrodes, were found to be intimately correlated with the evolution of the microstructure of the electrodes, probed by XPS and SEM analysis. Our analysis shows that the surface chemistry, thickness of the passivation layers and the morphology of the electrodes are strongly dependent on the type of binders that significantly influence the electrochemical properties of the electrodes. These results point to a key role played by binders in optimization of the battery performance and improve our understanding of the previously observed and unexplained electrochemical properties of these electrodes.

  4. Influence of Binder in Iron Matrix Composites

    NASA Astrophysics Data System (ADS)

    Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.

    2010-03-01

    The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100° C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.

  5. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    NASA Astrophysics Data System (ADS)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-08-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  6. Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders.

    PubMed

    Tlatli, Rym; Nozach, Hervé; Collet, Guillaume; Beau, Fabrice; Vera, Laura; Stura, Enrico; Dive, Vincent; Cuniasse, Philippe

    2013-01-01

    Artificial miniproteins that are able to target catalytic sites of matrix metalloproteinases (MMPs) were designed using a functional motif-grafting approach. The motif corresponded to the four N-terminal residues of TIMP-2, a broad-spectrum protein inhibitor of MMPs. Scaffolds that are able to reproduce the functional topology of this motif were obtained by exhaustive screening of the Protein Data Bank (PDB) using STAMPS software (search for three-dimensional atom motifs in protein structures). Ten artificial protein binders were produced. The designed proteins bind catalytic sites of MMPs with affinities ranging from 450 nm to 450 μm prior to optimization. The crystal structure of one artificial binder in complex with the catalytic domain of MMP-12 showed that the inter-molecular interactions established by the functional motif in the artificial binder corresponded to those found in the MMP-14-TIMP-2 complex, albeit with some differences in geometry. Molecular dynamics simulations of the ten binders in complex with MMP-14 suggested that these scaffolds may allow partial reproduction of native inter-molecular interactions, but differences in geometry and stability may contribute to the lower affinity of the artificial protein binders compared to the natural protein binder. Nevertheless, these results show that the in silico design method used provides sets of protein binders that target a specific binding site with a good rate of success. This approach may constitute the first step of an efficient hybrid computational/experimental approach to protein binder design. © 2012 The Authors Journal compilation © 2012 FEBS.

  7. The evaluation and specification development of alternate modified asphalt binders in South Carolina : final report.

    DOT National Transportation Integrated Search

    2014-11-01

    In this research project, asphalt binders containing various polymer modifiers were investigated through : examining both binder and mixture properties.Two additional topics were also investigated, including: a) the : effects of liquid antistr...

  8. Evaluation of new binders using newly developed fracture energy test : [summary].

    DOT National Transportation Integrated Search

    2013-07-01

    The flexibility and cohesion that give asphalt concrete its performance characteristics largely derive from the properties of binders. The durability of binders affects the function and lifetime of paving, and considering how extensive Floridas ro...

  9. 78 FR 73503 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...: 7510-01-462-1383--Binder, Loose-leaf, View Framed, Navy Blue, 1/2''. NSN: 7510-01-462-1385--Binder, Loose-leaf, Frame View, Navy Blue, 1-1/2''. NSN: 7510-01-462-1386--Binder, Loose-leaf, View Framed...

  10. Laboratory evaluation of asphalt binder rutting, fracture, and adhesion tests.

    DOT National Transportation Integrated Search

    2014-04-01

    The current performance grading (PG) specification for asphalt binders was developed based on the Strategic Highway : Research Program (SHRP) and is based primarily on the study of unmodified asphalt binders. Over the years, experience has : proven t...

  11. Investigating the Doping Mechanism of Pyrene Based Methacrylate Functional Conductive Binder in Silicon Anodes for Lithium-Ion Batteries

    DOE PAGES

    Ling, Min; Liu, Michael; Zheng, Tianyue; ...

    2017-01-01

    The doping mechanism of poly (1-pyrenemethyl methacrylate) (PPy) is investigated through electrochemical analytical and spectroscopic method. The performance of PPy as a Si materials binder is studied and compared with that of a commercial available lithium polyacrylate (PAALi) binder. The pyrene moiety consumes lithium ions according to the cyclic voltammogram (CV) measurement, as a doping to the PPy binder. Based on the lithium consumption, PPy based Si/graphite electrode doping is quantified at 1.1 electron/pyrene moiety. Lastly, the PPy binder based electrodes surface are uniform and crack free during lithiation/delithiation, which is revealed through Scanning electron microscope (SEM) imaging.

  12. Development of bio-sourced binder to metal injection moulding

    NASA Astrophysics Data System (ADS)

    Royer, Alexandre; Barrière, Thierry; Gelin, Jean-Claude

    2016-10-01

    In the MIM process the binder play the most important role. It provides fluidity of the feedstock mixture for injection molding and adhesion of the powder to keep the molded shape. The binder must provide strength and cohesion for the molded part, must be easy to be removed from the molded part, and must be the recyclable, environmentally friendly and economical ones. The goal of this study is to develop a binder environmentally friendly. For this, a study of formulation based on polyethylene glycol, because of is water debinding properties, was made. Polylactic acid and Polyhydroxyalkanoates were investigated as bio sourced polymers. The chemical, miscibility and rheological behavior of the binder formulation were investigated.

  13. Phosphate binders for the treatment of hyperphosphatemia in chronic kidney disease patients on dialysis: a comparison of safety profiles.

    PubMed

    Locatelli, Francesco; Del Vecchio, Lucia; Violo, Leano; Pontoriero, Giuseppe

    2014-05-01

    Hyperphosphatemia is common in the late stages of chronic kidney disease (CKD) and is associated with elevated parathormone levels, abnormal bone mineralization, extraosseous calcification and increased risk of cardiovascular events and death. Several classes of oral phosphate binders are available to help control phosphorus levels. Although effective at lowering serum phosphorus, they all have safety issues that need to be considered when selecting which one to use. This paper reviews the use of phosphate binders in patients with CKD on dialysis, with a focus on safety and tolerability. In addition to the more established agents, a new resin-based phosphate binder, colestilan, is discussed. Optimal phosphate control is still an unmet need in CKD. Nonetheless, we now have an extending range of phosphate binders available. Aluminium has potentially serious toxic risks. Calcium-based binders are still very useful but can lead to hypercalcemia and/or positive calcium balance and cardiovascular calcification. No long-term data are available for the new calcium acetate/magnesium combination product. Lanthanum is an effective phosphate binder, but there is insufficient evidence about possible long-term effects of tissue deposition. The resin-based binders, colestilan and sevelamer, appear to have profiles that would lead to less vascular calcification, and the main adverse events seen with these agents are gastrointestinal effects.

  14. Reuse potential of low-calcium bottom ash as aggregate through pelletization.

    PubMed

    Geetha, S; Ramamurthy, K

    2010-01-01

    Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.

  15. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  16. In situ imaging during compression of plastic bonded explosives for damage modeling

    DOE PAGES

    Manner, Virginia Warren; Yeager, John David; Patterson, Brian M.; ...

    2017-06-10

    Here, the microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowingmore » for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.« less

  17. In situ imaging during compression of plastic bonded explosives for damage modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manner, Virginia Warren; Yeager, John David; Patterson, Brian M.

    Here, the microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowingmore » for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.« less

  18. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content

    PubMed Central

    Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi

    2015-01-01

    We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ≥21 MPa and a flexural strength of ≥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ≥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.29. The mixture exhibited a flexural strength of ≥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ≤0.29. PMID:28793596

  19. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling.

    PubMed

    Manner, Virginia W; Yeager, John D; Patterson, Brian M; Walters, David J; Stull, Jamie A; Cordes, Nikolaus L; Luscher, Darby J; Henderson, Kevin C; Schmalzer, Andrew M; Tappan, Bryce C

    2017-06-10

    The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.

  20. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives

    PubMed Central

    Qu, Xin; Liu, Quan; Wang, Chao; Oeser, Markus

    2018-01-01

    Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately. PMID:29415421

  1. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling

    PubMed Central

    Manner, Virginia W.; Yeager, John D.; Patterson, Brian M.; Walters, David J.; Stull, Jamie A.; Cordes, Nikolaus L.; Luscher, Darby J.; Henderson, Kevin C.; Schmalzer, Andrew M.; Tappan, Bryce C.

    2017-01-01

    The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination. PMID:28772998

  2. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content.

    PubMed

    Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi

    2015-10-01

    We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ¥21 MPa and a flexural strength of ¥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ¥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.29. The mixture exhibited a flexural strength of ¥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ¤0.29.

  3. Installation and laboratory evaluation of alternatives to conventional polymer modification for asphalt.

    DOT National Transportation Integrated Search

    2015-01-01

    The Virginia Department of Transportation (VDOT) specifies polymer-modified asphalt binders for certain asphalt : mixtures used on high-volume, high-priority routes. These binders must meet performance grade (PG) requirements for a PG : 76-22 binder ...

  4. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...

  5. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...

  6. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...

  7. Evaluation of the Texas tier system for seal coat binder specification.

    DOT National Transportation Integrated Search

    2012-09-01

    The Texas Department of Transportation (TxDOT) instituted a change in their seal coat binder specification in 2010 which allowed districts to select multiple binders within specified traffic levels or tiers for the purposes of allowing contractors to...

  8. Impact of Recycled Asphalt Shingles (RAS) on Asphalt Binder Performance

    DOT National Transportation Integrated Search

    2018-01-01

    This study evaluated the effect of reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) on virgin binder true grade and fracture energy density (FED). A mortar approach, which avoids the need for binder extraction, was adopted to quan...

  9. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  10. Guidelines on design and construction of high performance thin HMA overlays.

    DOT National Transportation Integrated Search

    2016-08-01

    Key Components of Mix Design and Material Properties: : High-quality aggregate - SAC A for high : volume roads : - PG 70 or 76 (Polymer Modified binders) : - RAP and RAS (shingles) not allowed : - Minimum binder content ( Over 6%) : - Pay for binder ...

  11. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  12. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  13. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  14. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  15. Evaluation of new binders using newly developed fracture energy test.

    DOT National Transportation Integrated Search

    2013-07-01

    This study evaluated a total of seven asphalt binders with various additives : using the newly developed binder fracture energy test. The researchers prepared and : tested PAV-aged and RTFO-plus-PAV-aged specimens. This study confirmed previous : res...

  16. Comparison of a Stimulus Equivalence Protocol and Traditional Lecture for Teaching Single-Subject Designs

    ERIC Educational Resources Information Center

    Lovett, Sadie; Rehfeldt, Ruth Anne; Garcia, Yors; Dunning, Johnna

    2011-01-01

    This study compared the effects of a computer-based stimulus equivalence protocol to a traditional lecture format in teaching single-subject experimental design concepts to undergraduate students. Participants were assigned to either an equivalence or a lecture group, and performance on a paper-and-pencil test that targeted relations among the…

  17. Development of an MgO-based binder for stabilizing fine sediments and storing CO2.

    PubMed

    Hwang, Kyung-Yup; Ahn, Jun-Young; Kim, Cheolyong; Seo, Jeong-Yun; Hwang, Inseong

    2015-12-01

    An MgO-based binder was developed that could stabilize fine dredged sediments for reuse and store CO2. Initially, a binder consisting of fly ash (FA) and blast furnace slag (BFS) was developed by using alkaline activators such as KOH, NaOH, and lime. The FA0.4-BFS0.6 binder (mixed at a FA-to-BFS weight ratio of 4:6) showed the highest compressive strength of 10.7 MPa among FA/BFS binders when 5 M KOH was used. When lime (L) was tested as an alkaline activator, the strength was comparable with those obtained when KOH or NaOH was used. The L0.1-(FA0.4BFS0.6)0.9 binder (10 % lime mixed with the FA/BFS binder) showed the highest strength of 11.0 MPa. Finally, by amending this L0.1-(FA0.4BFS0.6)0.9 binder with MgO, a novel MgO-based binder (MgO0.5-(L0.1-(FA0.4BFS0.6)0.9) 0.5) was developed, which demonstrated the 28th day strength of 11.9 MPa. The MgO-based binder was successfully applied to stabilize a fine sediment to yield a compressive strength of 4.78 MPa in 365 days, which was higher than that obtained by the Portland cement (PC) system (3.22 MPa). Carbon dioxide sequestration was evidenced by three observations: (1) the decrease in pH of the treated sediment from 12.2 to 11.0; (2) the progress of the carbonation front inward the treated sediment; and (3) the presence of magnesium carbonates. The thermogravimetric analysis (TGA) results showed that 67.2 kg of CO2 per ton of the treated sediment could be stored under the atmospheric condition during 1 year.

  18. Viscoelastic behaviour of cold recycled asphalt mixes

    NASA Astrophysics Data System (ADS)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  19. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    NASA Astrophysics Data System (ADS)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  20. Analysis of the binder yield energy test as an indicator of fatigue behaviour of asphalt mixes

    NASA Astrophysics Data System (ADS)

    O'Connell, Johan; Mturi, Georges A. J.; Komba, Julius; Du Plessis, Louw

    2017-09-01

    Empirical binder testing has increasingly failed to predict pavement performance in South Africa, with fatigue cracking being one of the major forms of premature pavement distress. In response, it has become a national aspiration to incorporate a performance related fatigue test into the binder specifications for South Africa. The Binder Yield Energy Test (BYET) was the first in a series of tests analysed for its potential to predict the fatigue performance of the binder. The test is performed with the dynamic shear rheometer, giving two key parameters, namely, yield energy and shear strain at maximum shear stress (γτmax). The objective of the investigation was to perform a rudimentary evaluation of the BYET; followed by a more in-depth investigation should the initial BYET results prove promising. The paper discusses the results generated from the BYET under eight different conditions, using six different binders. The results are then correlated with four point bending beam fatigue test results obtained from asphalt mix samples that were manufactured from the same binders. Final results indicate that the BYET is not ideal as an indicator of fatigue performance.

  1. Effects of ageing on different binders for retouching and on some binder-pigment combinations used for restoration of wall paintings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ropret, P.; Zoubek, R.; Skapin, A. Sever

    2007-11-15

    In restoration of colour layers, the selection of the most appropriate retouching binder is a very important step that may have a crucial impact on materials durability. As different weather conditions can have versatile influence on stability of colour layers, we determined the effect of ageing on carefully selected samples of binders (Tylose, Klucel, ammonium caseinate, gum arabicum, fish and skin glues and some other synthetic binders) as well as on several binder-pigment combinations (the pigments in combinations being cinnabar, green earth and smalt). The samples were subjected to accelerated ageing tests in climatic chambers. In these tests the temperaturemore » and the relative humidity were daily oscillating between - 20 deg. C and 50 deg. C and 50% to 90%, respectively, for a period of one month. Then the samples were exposed to UV and visible light generated by a metal halide lamp for a month. The differences in microstructure before and after ageing were determined by optical and scanning electron microscopy, while the ageing of the organic structures in binders was investigated by Fourier transform infrared (FTIR) microscopy.« less

  2. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : final report 564.

    DOT National Transportation Integrated Search

    2017-09-01

    Numerous studies have shown that G*/Sin, the high temperature specification parameter for current Performance Graded (PG) asphalt binder is not adequate to reflect the rutting characteristics of polymer-modified binders. Consequently, many state De...

  3. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : technical summary.

    DOT National Transportation Integrated Search

    2017-09-01

    Higher traffic coupled with heavier loads led the asphalt industry to introduce polymer-modified binders to enhance the durability and strength of hot mix asphalt (HMA) pavements. When the Superpave Performance Graded (PG) binder specification (AASHT...

  4. Self-healing composites and applications thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tee, Chee Keong; Wang, Chao; Cui, Yi

    A battery electrode includes an electrochemically active material and a binder covering the electrochemically active material. The binder includes a self-healing polymer and conductive additives dispersed in the self-healing polymer to provide an electrical pathway across at least a portion of the binder.

  5. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description of...

  6. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description of...

  7. Grade determination of crumb rubber-modified performance graded asphalt binder.

    DOT National Transportation Integrated Search

    2013-08-01

    Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. Asphalt binder testing an...

  8. Grade determination of crumb rubber-modified performance graded asphalt binder.

    DOT National Transportation Integrated Search

    2013-08-01

    Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic : Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. : Asphalt binder testin...

  9. Effect of asphalt rejuvenating agent on aged reclaimed asphalt pavement and binder properties.

    DOT National Transportation Integrated Search

    2016-11-01

    Hot in-place recycling (HIR) preserves distressed asphalt pavements while minimizing use of virgin binder : and aggregates. The final quality of an HIR mixture depends on the characteristics of the original binder, aging of the : pavement surface dur...

  10. Wetting characteristics of asphalt binders at mixing temperatures.

    DOT National Transportation Integrated Search

    2013-10-01

    Conventional hot mix asphalt (HMA) is produced by heating the aggregate and the asphalt binder to elevated : temperatures that are typically in the range of 150C to 160C. These temperatures ensure that the viscosity of the : asphalt binder is low eno...

  11. Development of binder test to determine fracture energy [summary].

    DOT National Transportation Integrated Search

    2012-04-01

    Asphalt binder makes up a relatively small percentage 4% to 8% of the hot mix asphalt used in pavements, but its performance as a binder is critical to the longevity of road surfaces. Asphalt is : a material whose flexibility changes with : t...

  12. New agent to treat elevated phosphate levels: magnesium carbonate/calcium carbonate tablets.

    PubMed

    Meyer, Caitlin; Cameron, Karen; Battistella, Marisa

    2012-01-01

    In summary, Binaphos CM, a magnesium carbonate/calcium carbonate combination phosphate binder, is marketed for treating elevated phosphate levels in dialysis patients. Although studies using magnesium/calcium carbonate as a phosphate binder are short term with small numbers of patients, this phosphate binder has shown some promising results and may provide clinicians with an alternative for phosphate binding. Using a combination phosphate binder may reduce pill burden and encourage patient compliance. In addition to calcium and phosphate, it is imperative to diligently monitor magnesium levels in patients started on this medication, as magnesium levels may increase with longer duration of use. Additional randomized controlled trials are necessary to evaluate long-term efficacy and safety of this combination phosphate binder.

  13. Aluminum hydroxide, calcium carbonate and calcium acetate in chronic intermittent hemodialysis patients.

    PubMed

    Janssen, M J; van der Kuy, A; ter Wee, P M; van Boven, W P

    1996-02-01

    Prevention of secondary hyperparathyroidism in uremia necessitates correction of hyperphosphatemia and hypocalcemia. In order to avoid aluminum toxicity, calcium containing phosphate binders are used increasingly, instead of aluminium hydroxide. Recent studies have shown that calcium acetate has many characteristics of an ideal phosphate binder. It is, for instance, a more readily soluble salt compared with calcium carbonate. This advantage might, however, disappear if calcium carbonate is taken on an empty stomach, a few minutes before meals. We examined the efficacy of three different phosphate binding agents in a randomized prospective study of 53 patients on regular hemodialysis. Bicarbonate dialyses were performed with a dialysate calcium concentration of 1.75 mmol/l. After a three-week wash-out period, patients received either aluminum hydroxide (control group), calcium acetate, or calcium carbonate as their phosphate binder. Patients were instructed to take the calcium salts a few minutes before meals on an empty stomach, and aluminum hydroxide during meals. Serum calcium, phosphate, intact parathormone, and alkaline phosphatase levels were determined every month. Patient compliance was estimated every month by asking the patients which phosphate binder and what daily dose they had used. Aluminum hydroxide tended to be the most effective phosphate binder. The mean +/- SEM required daily dose of calcium acetate at 12 months was 5.04 +/- 0.60 g, corresponding to 10.1 +/- 1.20 tablets of 500 mg. Co-medication with aluminum hydroxide, however, was needed (1.29 +/- 0.54 g per day, corresponding to 2.6 +/- 1.08 tablets of 500 mg). The required daily calcium carbonate dose appeared to be 2.71 +/- 0.48 g, corresponding to 5.4 +/- 0.95 capsules of 500 mg, with an adjuvant daily aluminum hydroxide dose of 0.69 +/- 0.27 g, corresponding to 1.4 +/- 0.55 tablets of 500 mg (p = 0.0055). Thus, the mean daily doses of elemental calcium were comparable between the calcium acetate and calcium carbonate-treated patients (1.28 +/- 0.15 g versus 1.09 +/- 0.19 g; n.s.). The incidence of hypercalcemic episodes (albumin-corrected serum calcium levels above 2.80 mmol/l) in the calcium acetate-treated group was 18% versus 31% in the calcium carbonate-treated group (p < 0.005). None of the aluminum hydroxide-treated patients experienced hypercalcemic episodes. Mean serum concentrations of alkaline phosphatase, intact parathormone, and aluminum did not differ between the groups. In chronic intermittent hemodialysis patients, per gram administered elemental calcium phosphate binding with either calcium acetate or calcium carbonate is equivalent, provided that calcium carbonate is taken on an empty stomach a few minutes before meals. The number of capsules calcium carbonate, but also the total amount in grams, necessary to keep serum phosphate and intact parathormone levels into an acceptable range then is significantly less. This might improve patient compliance.

  14. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the...

  15. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the...

  16. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the...

  17. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper...

  18. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper...

  19. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders : Executive Summary Report

    DOT National Transportation Integrated Search

    2011-03-01

    Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...

  20. Mechanical properties of warm mix asphalt prepared using foamed asphalt binders : executive summary report.

    DOT National Transportation Integrated Search

    2011-03-01

    Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...

  1. Validity of multiple stress creep recovery test for LADOTD asphalt binder specification.

    DOT National Transportation Integrated Search

    2010-09-01

    The objectives of this research are to characterize the elastic response of various binders used by LADOTD to determine the feasibility of the Multiple Stress Creep Recovery (MSCR) test to be included in the LADOTD asphalt binder specification and to...

  2. Effect of asphalt rejuvenating agent on aged reclaimed asphalt pavement and binder properties : technical summary.

    DOT National Transportation Integrated Search

    2016-11-01

    Hot in-place recycling (HIR) preserves distressed asphalt pavements while minimizing use of virgin binder and aggregates. The final quality of an HIR mixture depends on the characteristics of the original binder, aging of the pavement surface during ...

  3. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from MARAD's...

  4. 47 CFR 51.232 - Binder group management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Binder group management. 51.232 Section 51.232 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops...

  5. Rheological and thermal performance of newly developed binder systems for ceramic injection molding

    NASA Astrophysics Data System (ADS)

    Hausnerova, Berenika; Kasparkova, Vera; Hnatkova, Eva

    2016-05-01

    In a novel binder system, carnauba wax was considered to replace the synthetic backbone polymers (polyolefins) enhancing the environmental sustainability of Ceramic Injection Molding (CIM) technology. The paper presents comparison of the rheological performance and thermal behavior of the aluminum oxide CIM feedstocks based on a binder containing carnauba wax with those consisting of a commercial binder. Further, acrawax (N, N'-Ethylene Bis-stearamide) has been considered as another possible substitute of polyolefins. For both proposed substitutes there is a significant reduction in viscosity, and in case of carnauba wax based feedstock also in processing temperature, which is essential for injection molding of reactive powders. Thermal characterization comprised analyses of single neat binders, their mixtures and mixtures with aluminum oxide. The presence of powder lowered melting temperatures of all tested binders except of polyolefin. Further depression in melting point of poly(ethylene glycol) is observed in combination with polyolefin in the presence of powder, and it is related to changes in size of the crystalline domains.

  6. Cortisol-21-sulfate (FS) is a specific ligand for intracellular transcortin: demonstration of three types of high affinity corticosteroid binders in bovine aortic cytosol by a combined use of FS and RU 28362.

    PubMed

    Hayashi, T; Kornel, L

    1990-01-01

    This paper reports the results of a study on the binding of adrenal steroids in bovine aortic tissue. Using the same method as in our previous study of mineralocorticoid and glucocorticoid binding in rabbit arterial cytosol, we could not demonstrate in the bovine aorta the three types of high affinity binders for these steroids, which we found in the rabbit arteries. In the search for specific markers for each of the three types of binders (glucocorticoid and mineralocorticoid receptors and the transcortin-like intracellular binder), we have found that a conjugated steroid, cortisol-21-sulfate, binds preferentially to the transcortin-like binder, but not to the two receptors. Using this steroid, in combination with the pure synthetic glucocorticoid RU 28362, we were able to clearly discriminate between the three types of corticosteroid binders in bovine aorta.

  7. Performance analysis of flexible DSSC with binder addition

    NASA Astrophysics Data System (ADS)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur

    2016-04-01

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  8. Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO2 as High-Performance Anode in Sodium Ion Batteries.

    PubMed

    Ling, Liming; Bai, Ying; Wang, Zhaohua; Ni, Qiao; Chen, Guanghai; Zhou, Zhiming; Wu, Chuan

    2018-02-14

    Sodium alginate (SA) is investigated as the aqueous binder to fabricate high-performance, low-cost, environmentally friendly, and durable TiO 2 anodes in sodium-ion batteries (SIBs) for the first time. Compared to the conventional polyvinylidene difluoride (PVDF) binder, electrodes using SA as the binder exhibit significant promotion of electrochemical performances. The initial Coulombic efficiency is as high as 62% at 0.1 C. A remarkable capacity of 180 mAh g -1 is achieved with no decay after 500 cycles at 1 C. Even at 10 C (3.4 A g -1 ), it remains 82 mAh g -1 after 3600 cycles with approximate 100% Coulombic efficiency. TiO 2 electrodes with SA binder display less electrolyte decomposition, fewer side reactions, high electrochemistry reaction activity, effective suppression of polarization, and good electrode morphology, which is ascribed to the rich carboxylic groups, high Young's modulus, and good electrochemical stability of SA binder.

  9. Effect of microstructure on the coupled electromagnetic-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates to infrared laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Judith A.; Zikry, M. A., E-mail: zikry@ncsu.edu

    2015-09-28

    The coupled electromagnetic (EM)-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates under laser irradiation and high strain rate loads has been investigated for various aggregate sizes and binder volume fractions. The cyclotrimethylenetrinitramine (RDX) crystals are modeled with a dislocation density-based crystalline plasticity formulation and the estane binder is modeled with finite viscoelasticity through a nonlinear finite element approach that couples EM wave propagation with laser heat absorption, thermal conduction, and inelastic deformation. Material property and local behavior mismatch at the crystal-binder interfaces resulted in geometric scattering of the EM wave, electric field and laser heating localization, high stress gradients, dislocation density, andmore » crystalline shear slip accumulation. Viscous sliding in the binder was another energy dissipation mechanism that reduced stresses in aggregates with thicker binder ligaments and larger binder volume fractions. This investigation indicates the complex interactions between EM waves and mechanical behavior, for accurate predictions of laser irradiation of heterogeneous materials.« less

  10. A new method of estimating thermal performance of embryonic development rate yields accurate prediction of embryonic age in wild reptile nests.

    PubMed

    Rollinson, Njal; Holt, Sarah M; Massey, Melanie D; Holt, Richard C; Nancekivell, E Graham; Brooks, Ronald J

    2018-05-01

    Temperature has a strong effect on ectotherm development rate. It is therefore possible to construct predictive models of development that rely solely on temperature, which have applications in a range of biological fields. Here, we leverage a reference series of development stages for embryos of the turtle Chelydra serpentina, which was described at a constant temperature of 20 °C. The reference series acts to map each distinct developmental stage onto embryonic age (in days) at 20 °C. By extension, an embryo taken from any given incubation environment, once staged, can be assigned an equivalent age at 20 °C. We call this concept "Equivalent Development", as it maps the development stage of an embryo incubated at a given temperature to its equivalent age at a reference temperature. In the laboratory, we used the concept of Equivalent Development to estimate development rate of embryos of C. serpentina across a series of constant temperatures. Using these estimates of development rate, we created a thermal performance curve measured in units of Equivalent Development (TPC ED ). We then used the TPC ED to predict developmental stage of embryos in several natural turtle nests across six years. We found that 85% of the variation of development stage in natural nests could be explained. Further, we compared the predictive accuracy of the model based on the TPC ED to the predictive accuracy of a degree-day model, where development is assumed to be linearly related to temperature and the amount of accumulated heat is summed over time. Information theory suggested that the model based on the TPC ED better describes variation in developmental stage in wild nests than the degree-day model. We suggest the concept of Equivalent Development has several strengths and can be broadly applied. In particular, studies on temperature-dependent sex determination may be facilitated by the concept of Equivalent Development, as development age maps directly onto the developmental series of the organism, allowing critical periods of sex determination to be delineated without invasive sampling, even under fluctuating temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Y. S.; Zhao, T. S.; Liang, Z. X.

    In preparing low-temperature fuel cell electrodes, a polymer binder is essential to bind discrete catalyst particles to form a porous catalyst layer that simultaneously facilitates the transfer of ions, electrons, and reactants/products. For two types of polymer binder, namely, an A3-an anion conducting ionomer and a PTFE-a neutral polymer, an investigation is made of the effect of the content of each binder in the anode catalyst layer on the performance of an alkaline direct ethanol fuel cell (DEFC) with an anion-exchange membrane and non-platinum (non-Pt) catalysts. Experiments are performed by feeding either ethanol (C 2H 5OH) solution or ethanol-potassium hydroxide (C 2H 5OH-KOH) solution. The experimental results for the case of feeding C 2H 5OH solution without added KOH indicate that the cell performance varies with the A3 ionomer content in the anode catalyst layer, and a content of 10 wt.% exhibits the best performance. When feeding C 2H 5OH-KOH solution, the results show that: (i) in the region of low current density, the best performance is achieved for a membrane electrode assembly without any binder in the anode catalyst layer; (ii) in the region of high current density, the performance is improved with incorporation of PTFE binder in the anode catalyst layer; (iii) the PTFE binder yields better performance than does the A3 binder.

  12. The cross-cultural equivalence of participation instruments: a systematic review.

    PubMed

    Stevelink, S A M; van Brakel, W H

    2013-07-01

    Concepts such as health-related quality of life, disability and participation may differ across cultures. Consequently, when assessing such a concept using a measure developed elsewhere, it is important to test its cultural equivalence. Previous research suggested a lack of cultural equivalence testing in several areas of measurement. This paper reviews the process of cross-cultural equivalence testing of instruments to measure participation in society. An existing cultural equivalence framework was adapted and used to assess participation instruments on five categories of equivalence: conceptual, item, semantic, measurement and operational equivalence. For each category, several aspects were rated, resulting in an overall category rating of 'minimal/none', 'partial' or 'extensive'. The best possible overall study rating was five 'extensive' ratings. Articles were included if the instruments focussed explicitly on measuring 'participation' and were theoretically grounded in the ICIDH(-2) or ICF. Cross-validation articles were only included if it concerned an adaptation of an instrument developed in a high or middle-income country to a low-income country or vice versa. Eight cross-cultural validation studies were included in which five participation instruments were tested (Impact on Participation and Autonomy, London Handicap Scale, Perceived Impact and Problem Profile, Craig Handicap Assessment Reporting Technique, Participation Scale). Of these eight studies, only three received at least two 'extensive' ratings for the different categories of equivalence. The majority of the cultural equivalence ratings given were 'partial' and 'minimal/none'. The majority of the 'none/minimal' ratings were given for item and measurement equivalence. The cross-cultural equivalence testing of the participation instruments included leaves much to be desired. A detailed checklist is proposed for designing a cross-validation study. Once a study has been conducted, the checklist can be used to ensure comprehensive reporting of the validation (equivalence) testing process and its results. • Participation instruments are often used in a different cultural setting than initial developed for. • The conceptualization of participation may vary across cultures. Therefore, cultural equivalence – the extent to which an instrument is equally suitable for use in two or more cultures – is an important concept to address. • This review showed that the process of cultural equivalence testing of the included participation instruments was often addressed insufficiently. • Clinicians should be aware that application of participations instruments in a different culture than initially developed for needs prior testing of cultural validity in the next context.

  13. SNAP dendrimers: multivalent protein display on dendrimer-like DNA for directed evolution.

    PubMed

    Kaltenbach, Miriam; Stein, Viktor; Hollfelder, Florian

    2011-09-19

    Display systems connect a protein with the DNA encoding it. Such systems (e.g., phage or ribosome display) have found widespread application in the directed evolution of protein binders and constitute a key element of the biotechnological toolkit. In this proof-of-concept study we describe the construction of a system that allows the display of multiple copies of a protein of interest in order to take advantage of avidity effects during affinity panning. To this end, dendrimer-like DNA is used as a scaffold with docking points that can join the coding DNA with multiple protein copies. Each DNA construct is compartmentalised in water-in-oil emulsion droplets. The corresponding protein is expressed, in vitro, inside the droplets as a SNAP-tag fusion. The covalent bond between DNA and the SNAP-tag is created by reaction with dendrimer-bound benzylguanine (BG). The ability to form dendrimer-like DNA straightforwardly from oligonucleotides bearing BG allowed the comparison of a series of templates differing in size, valency and position of BG. In model selections the most efficient constructs show recoveries of up to 0.86 % and up to 400-fold enrichments. The comparison of mono- and multivalent constructs suggests that the avidity effect enhances enrichment by up to fivefold and recovery by up to 25-fold. Our data establish a multivalent format for SNAP-display based on dendrimer-like DNA as the first in vitro display system with defined tailor-made valencies and explore a new application for DNA nanostructures. These data suggest that multivalent SNAP dendrimers have the potential to facilitate the selection of protein binders especially during early rounds of directed evolution, allowing a larger diversity of candidate binders to be recovered. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Field test of a polyphosphoric acid (PPA) modified asphalt binder on Rt. 1 in Perry.

    DOT National Transportation Integrated Search

    2013-04-01

    The Maine Department of Transportation (MaineDOT) uses the Superpave hot mix asphalt process and : specifies asphalt binder grades using the Performance Grade criteria. The Department mainly uses asphalt : binder grade PG 64-28. This is an asphalt bi...

  15. 0-6674 : improving fracture resistance measurement in asphalt binder specification with verification on asphalt mixture cracking performance.

    DOT National Transportation Integrated Search

    2014-08-01

    The current performance grading (PG) specification for asphalt binders is based primarily on the study of unmodified asphalt binders. Over the years, experience has proven that the PG grading system, while good for ensuring overall quality, fails in ...

  16. 44 CFR 61.13 - Standard Flood Insurance Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... use. (e) Oral and written binders. No oral binder or contract shall be effective. No written binder shall be effective unless issued with express authorization of the Federal Insurance Administrator. (f...” (WYO) property insurance companies, based upon flood insurance applications and renewal forms, all of...

  17. Evaluation of binder aging and its influence in aging of hot mix asphalt concrete : literature review and experimental design.

    DOT National Transportation Integrated Search

    2009-02-01

    Binder oxidation in pavements and its impact on pavement performance has been addressed by : numerous laboratory studies of binder oxidation chemistry, reaction kinetics, and hardening and its impact on : mixture fatigue. Studies also have included s...

  18. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  19. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  20. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  1. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  2. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  3. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  4. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  5. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  6. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  7. Theme Binders: One Size Fits All.

    ERIC Educational Resources Information Center

    Baskwill, Steve

    1996-01-01

    Describes theme binders designed by sixth graders as an independent study component that unites the class as a learning community, showcases student work, and illustrates developmental milestones for parents. Details theme binder components: (1) cover page; (2) introductory page outlining the theme and contents; (3) evaluation sections indicating…

  8. Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors' electrodes

    NASA Astrophysics Data System (ADS)

    Varzi, Alberto; Raccichini, Rinaldo; Marinaro, Mario; Wohlfahrt-Mehrens, Margret; Passerini, Stefano

    2016-09-01

    Casein from bovine milk is evaluated in this work as binding agent for electrochemical double layer capacitors (EDLCs) electrodes. It is demonstrated that casein provides excellent adhesion strength to the current collector (1187 kPa compared to 51 kPa achieved with PVdF), thus leading to mechanically stable electrodes. At the same time, it offers high thermal stability (above 200 °C) and electrochemical stability in organic electrolytes. Apparently though, the casein-based electrodes offer lower electronic conductivity than those based on other state-of-the-art binders, which can limit the rate performance of the resulting EDLC. In the attempt of improving the electrochemical performance, it is found that the application of a pressing step can solve this issue, leading to excellent rate capability (up to 84% capacitance retention at 50 mA cm-2) and cycling stability (96.8% after 10,000 cycles at 10 mA cm-2) in both PC- and ACN-based electrolytes. Although the adhesive power casein is known since ancient times, this report presents the first proof of concept of its employment in electrochemical power sources.

  9. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Testing of Hypothesis in Equivalence and Non Inferiority Trials-A Concept.

    PubMed

    Juneja, Atul; Aggarwal, Abha R; Adhikari, Tulsi; Pandey, Arvind

    2016-04-01

    Establishing the appropriate hypothesis is one of the important steps for carrying out the statistical tests/analysis. Its understanding is important for interpreting the results of statistical analysis. The current communication attempts to provide the concept of testing of hypothesis in non inferiority and equivalence trials, where the null hypothesis is just reverse of what is set up for conventional superiority trials. It is similarly looked for rejection for establishing the fact the researcher is intending to prove. It is important to mention that equivalence or non inferiority cannot be proved by accepting the null hypothesis of no difference. Hence, establishing the appropriate statistical hypothesis is extremely important to arrive at meaningful conclusion for the set objectives in research.

  11. Cultural adaptation and translation of measures: an integrated method.

    PubMed

    Sidani, Souraya; Guruge, Sepali; Miranda, Joyal; Ford-Gilboe, Marilyn; Varcoe, Colleen

    2010-04-01

    Differences in the conceptualization and operationalization of health-related concepts may exist across cultures. Such differences underscore the importance of examining conceptual equivalence when adapting and translating instruments. In this article, we describe an integrated method for exploring conceptual equivalence within the process of adapting and translating measures. The integrated method involves five phases including selection of instruments for cultural adaptation and translation; assessment of conceptual equivalence, leading to the generation of a set of items deemed to be culturally and linguistically appropriate to assess the concept of interest in the target community; forward translation; back translation (optional); and pre-testing of the set of items. Strengths and limitations of the proposed integrated method are discussed. (c) 2010 Wiley Periodicals, Inc.

  12. VISCOSITY AND BINDER COMPOSITION EFFECTS ON TYROSINASE-BASED CARBON PASTE ELECTRODE FOR DETECTION OF PHENOL AND CATECHOL

    EPA Science Inventory

    The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...

  13. Field test of a polyphosphoric acid (PPA) modified asphalt binder on Rt. 1 in Perry : [second interim report, April 2012].

    DOT National Transportation Integrated Search

    2012-04-01

    The Maine Department of Transportation (MaineDOT) uses the Superpave hot mix asphalt process and : specifies asphalt binder grades using the Performance Grade criteria. The Department mainly uses asphalt : binder grade PG64-28. This is an asphalt bin...

  14. Redox-Active Supramolecular Polymer Binders for Lithium–Sulfur Batteries That Adapt Their Transport Properties in Operando

    DOE PAGES

    Frischmann, Peter D.; Hwa, Yoon; Cairns, Elton J.; ...

    2016-10-25

    π-Stacked perylene bisimide (PBI) molecules are implemented here as highly networked, redox-active supramolecular polymer binders in sulfur cathodes for lightweight and energy-dense Li-S batteries. We show that the in operando reduction and lithiation of these PBI binders sustainably reduces Li-S cell impedance relative to nonredox active conventional polymer binders. This lower impedance enables high-rate cycling in Li-S cells with excellent durability, a critical step toward unlocking the full potential of Li-S batteries for electric vehicles and aviation.

  15. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    NASA Astrophysics Data System (ADS)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  16. Binder-Free V 2 O 5 Cathode for Greener Rechargeable Aluminum Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huali; Bai, Ying; Chen, Shi

    This letter reports on the investigation of a binder-free cathode material to be used in rechargeable aluminum batteries. This cathode is synthesized by directly depositing V2O5 on a Ni foam current collector. Rechargeable aluminum coin cells fabricated using the as-synthesized binder-free cathode delivered an initial discharge capacity of 239 mAh/g, which is much higher than that of batteries fabricated using a cathode composed of V2O5 nanowires and binder. An obvious discharge voltage plateau appeared at 0.6 V in the discharge curves of the Ni–V2O5 cathode, which is slightly higher than that of the V2O5 nanowire cathodes with common binders. Thismore » improvement is attributed to reduced electrochemical polarization.« less

  17. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  18. Method of making bonded or sintered permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-08-31

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  19. Method of making bonded or sintered permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1995-11-28

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density. 14 figs.

  20. Method of making bonded or sintered permanent magnets

    DOEpatents

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1995-11-28

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  1. A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Jiao, Yu; Chen, Wei; Lei, Tianyu; Dai, Liping; Chen, Bo; Wu, Chunyang; Xiong, Jie

    2017-03-01

    High energy density, low cost and environmental friendliness are the advantages of lithium-sulfur (Li-S) battery which is regarded as a promising device for electrochemical energy storage systems. As one of the important ingredients in Li-S battery, the binder greatly affects the battery performance. However, the conventional binder has some drawbacks such as poor capability of absorbing hydrophilic lithium polysulfides, resulting in severe capacity decay. In this work, we reported a multi-functional polar binder (AHP) by polymerization of hexamethylene diisocyanate (HDI) with ethylenediamine (EDA) bearing a large amount of amino groups, which were successfully used in electrode preparation with commercial sulfur powder cathodes. The abundant amide groups of the binder endow the cathode with multidimensional chemical bonding interaction with sulfur species within the cathode to inhibit the shuttling effect of polysulfides, while the suitable ductility to buffer volume change. Utilizing these advantageous features, composite C/S cathodes based the binder displayed excellent capacity retention at 0.5 C, 1 C, 1.5 C, and 3 C over 200 cycles. Accompany with commercial binder, AHP may act as an alternative feedstock to open a promising approach for sulfur cathodes in rechargeable lithium battery to achieve commercial application.

  2. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  3. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE PAGES

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.; ...

    2017-07-26

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  4. Flight Deck-Based Delegated Separation: Evaluation of an On-Board Interval Management System with Synthetic and Enhanced Vision Technology

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.

    2011-01-01

    An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.

  5. Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-Ion Batteries

    PubMed Central

    He, Jun; Wei, Yaqing; Hu, Lintong; Li, Huiqiao; Zhai, Tianyou

    2018-01-01

    GeP5 is a recently reported new anode material for lithium ion batteries (LIBs), it holds a large theoretical capacity about 2300 mAh g−1, and a high rate capability due to its bi-active components and superior conductivity. However, it undergoes a large volume change during its electrochemical alloying and de-alloying with Li, a suitable binder is necessary to stable the electrode integrity for improving cycle performance. In this work, we tried to apply aqueous binders LiPAA and NaCMC to GeP5 anode, and compared the difference in electrochemical performance between them and traditional binder PVDF. As can be seen from the test result, GeP5 can keep stable in both common organic solvents and proton solvents such as water and alcohol solvents, it meets the application requirements of aqueous binders. The electrochemistry results show that the use of LiPAA binder can significantly improve the initial Coulombic efficiency, reversible capacity, and cyclability of GeP5 anode as compared to the electrodes based on NaCMC and PVDF binders. The enhanced electrochemical performance of GeP5 electrode with LiPAA binder can be ascribed to the unique high strength long chain polymer structure of LiPAA, which also provide numerous uniform distributed carboxyl groups to form strong ester groups with active materials and copper current collector. Benefit from that, the GeP5 electrode with LiPAA can also exhibit excellent rate capability, and even at low temperature, it still shows attractive electrochemical performance. PMID:29484292

  6. Wear and corrosion behaviour of tungsten carbide based coatings with different metallic binder

    NASA Astrophysics Data System (ADS)

    Kamdi, Z.; Apandi, M. N. M.; Ibrahim, M. D.

    2017-12-01

    Tungsten carbide based coating has been well known as wear and corrosion resistance materials. However, less study is done on comparing the coating with different binder. Thus, in this work the wear and corrosion behaviour of high velocity oxy-fuel (HVOF) coatings, namely (i) tungsten carbide cobalt and (ii) tungsten carbide nickel will be evaluated. Both coatings were characterised using X-ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The wear behaviour has been examined using the modified grinder machine by weight loss measurement. Two types of abrasive have been used that include 3 g by weight alumina and silica. While for the corrosion behaviour, it is monitored by three electrodes of electrochemical test and immersion test for 30 days in an acidic environment. The electrolyte used was 0.5 M sulphuric acids (H2SO4). It was found that the cobalt binder shows higher wear resistance compares to the nickel binder for both slurry types. The harder alumina compared to silica results in higher wear rate with removal of carbide and binder is about the same rate. For silica abrasive, due to slightly lower hardness compared to the carbide, the wear is dominated by binder removal followed by carbide detachment. For corrosion, the nickel binder shows four times higher wear resistance compared to the cobalt binder as expected due to its natural behaviour. These finding demonstrate that the selection of coating to be used in different application in this case, wear and corrosion shall be chosen carefully to maximize the usage of the coating.

  7. Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    He, Jun; Wei, Yaqing; Hu, Lintong; Li, Huiqiao; Zhai, Tianyou

    2018-02-01

    GeP5 is a recently reported new anode material for lithium ion batteries (LIBs), it holds a large theoretical capacity about 2300 mAh g-1, and a high rate capability due to its bi-active components and superior conductivity. However, it undergoes a large volume change during its electrochemical alloying and de-alloying with Li, a suitable binder is necessary to stable the electrode integrity for improving cycle performance. In this work, we tried to apply aqueous binders LiPAA and NaCMC to GeP5 anode, and compared the difference in electrochemical performance between them and traditional binder PVDF. As can be seen from the test result, GeP5 can keep stable in both common organic solvents and proton solvents such as water and alcohol solvents, it meets the application requirements of aqueous binders. The electrochemistry results show that the use of LiPAA binder can significantly improve the initial Coulombic efficiency, reversible capacity, and cyclability of GeP5 anode as compared to the electrodes based on NaCMC and PVDF binders. The enhanced electrochemical performance of GeP5 electrode with LiPAA binder can be ascribed to the unique high strength long chain polymer structure of LiPAA, which also provide numerous uniform distributed carboxyl groups to form strong ester groups with active meterials and copper current collector. Benefit from that, the GeP5 electrode with LiPAA can also exhibit excellent rate capability, and even at low temperature, it still shows attractive electrochemical performance.

  8. 40 CFR 63.10886 - What are my management practices for binder formulations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Area Sources Pollution Prevention Management Practices for New and Existing Affected Sources § 63.10886 What are my management practices for binder formulations? For each furfuryl alcohol warm box mold or... does not apply to the resin portion of the binder system. Requirements for New and Existing Affected...

  9. 40 CFR 63.10886 - What are my management practices for binder formulations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Area Sources Pollution Prevention Management Practices for New and Existing Affected Sources § 63.10886 What are my management practices for binder formulations? For each furfuryl alcohol warm box mold or... does not apply to the resin portion of the binder system. Requirements for New and Existing Affected...

  10. 40 CFR 63.10886 - What are my management practices for binder formulations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Area Sources Pollution Prevention Management Practices for New and Existing Affected Sources § 63.10886 What are my management practices for binder formulations? For each furfuryl alcohol warm box mold or... does not apply to the resin portion of the binder system. Requirements for New and Existing Affected...

  11. 40 CFR 63.10886 - What are my management practices for binder formulations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Area Sources Pollution Prevention Management Practices for New and Existing Affected Sources § 63.10886 What are my management practices for binder formulations? For each furfuryl alcohol warm box mold or... does not apply to the resin portion of the binder system. Requirements for New and Existing Affected...

  12. Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries.

    PubMed

    Kwon, Tae-woo; Jeong, You Kyeong; Lee, Inhwa; Kim, Taek-Soo; Choi, Jang Wook; Coskun, Ali

    2014-12-17

    Covalent or Noncovalent? Systematic investigation of polymeric binders incorporating Meldrum's acid reveals most critical binder properties for silicon -anodes in lithium ion batteries, that is self-healing effect facilitated by a series of noncovalent interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 46 CFR 308.6 - Period of interim binders, updating application information and new applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... information and new applications. 308.6 Section 308.6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.6 Period of interim binders, updating... interim binders are required to notify the American War Risk Agency annually, by June 30th, of any change...

  14. 46 CFR 308.6 - Period of interim binders, updating application information and new applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... information and new applications. 308.6 Section 308.6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.6 Period of interim binders, updating... interim binders are required to notify the American War Risk Agency annually, by June 30th, of any change...

  15. 46 CFR 308.6 - Period of interim binders, updating application information and new applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... information and new applications. 308.6 Section 308.6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.6 Period of interim binders, updating... interim binders are required to notify the American War Risk Agency annually, by June 30th, of any change...

  16. 46 CFR 308.6 - Period of interim binders, updating application information and new applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... information and new applications. 308.6 Section 308.6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.6 Period of interim binders, updating... interim binders are required to notify the American War Risk Agency annually, by June 30th, of any change...

  17. 7 CFR 1755.200 - RUS standard for splicing copper and fiber optic cables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Color coded plastic tie wraps shall be placed loosely around each binder group of cables before splicing... conform to the same color designations as the binder ribbons. Twisted wire pigtails shall not be used to identify binder groups due to potential transmission degradation. (ii) The standard insulation color code...

  18. Binders for Energetics - Modelling and Synthesis in Harmony

    NASA Astrophysics Data System (ADS)

    Dossi, Licia; Cleaver, Doug; Gould, Peter; Dunnett, Jim; Cavaye, Hamish; Ellison, Laurence; Luppi, Federico; Hollands, Ron; Bradley, Mark

    The Binders by Design UK programme develop new polymeric materials for energetic applications that can overcome problems related to chemico-physical properties, aging, additives, environmental and performance of energetic compositions. Combined multi-scale modelling and experiment is used for the development of a new modelling tool and with the aim to produce novel materials with great confidence and fast turnaround. New synthesised binders with attractive properties for energetic applications used to provide a high level of confidence in the results of developed models. Molecular dynamics simulations investigate the thermal behaviour and the results directly feed into a Group Interaction Model (GIM). A viscoelastic constitutive model has been developed examining stress development in energetic/binder configurations. GIM data has been used as the basis for developing hydrocode equations of state, which then applied in run-to-detonation type investigations to examine the effect of the shock properties of a binder on the reactivity of a typical Polymer Bonded Explosive in a high-velocity impact type scenario. The Binders by Design UK programme is funded through the Weapons Science and Technology Centre by DSTL.

  19. Influence of solidification accelerators on structure formation of anhydrite-containing binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anikanova, L., E-mail: alasmit@mail.ru; Volkova, O., E-mail: v.olga.nikitina@gmail.com; Kudyakov, A.

    2016-01-15

    The article presents results of scientific analysis of chemical additives influence on acid fluoride binder. It was found that the influence of sulfate nature additives on the process of hydration and solidification of the binder is similar to influence of additives on indissoluble anhydrite. Additives with SO{sub 4}{sup 2−} anion NO{sup −} are more efficient. The mentioned additives according to accelerating effect belong to the following succession: K{sub 2}SO{sub 4} > Na{sub 2}SO{sub 4} > FeSO{sub 4} > MgSO{sub 4}. Facilitation of the process of hydration and solidification of the binder, increase in density and durability of the binder (32 MPa)more » is to the greatest extent achieved with the introduction of 2% sodium sulfate additive of the binder’s mass into the composition of the binder along with the ultrasonic treatment of water solution. Directed crystal formation process with healing of porous structure by new growths presented as calcium sulfate dehydrate and hydroglauberite provides positive effect.« less

  20. Performance analysis of flexible DSSC with binder addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com

    2016-04-19

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyzemore » morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.« less

  1. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  2. Method And Apparatus For Detecting Chemical Binding

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.

    2005-02-22

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  3. Method and apparatus for detecting chemical binding

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2007-07-10

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  4. Development and Application of Functionalized Protein Binders in Multicellular Organisms.

    PubMed

    Bieli, D; Alborelli, I; Harmansa, S; Matsuda, S; Caussinus, E; Affolter, M

    2016-01-01

    Protein-protein interactions are crucial for almost all biological processes. Studying such interactions in their native environment is critical but not easy to perform. Recently developed genetically encoded protein binders were shown to function inside living cells. These molecules offer a new, direct way to assess protein function, distribution and dynamics in vivo. A widely used protein binder scaffold are the so-called nanobodies, which are derived from the variable domain of camelid heavy-chain antibodies. Another commonly used scaffold, the DARPins, is based on Ankyrin repeats. In this review, we highlight how these binders can be functionalized in order to study proteins in vivo during the development of multicellular organisms. It is to be anticipated that many more applications for such synthetic protein binders will be developed in the near future. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Rutting resistance of asphalt mixture with cup lumps modified binder

    NASA Astrophysics Data System (ADS)

    Shaffie, E.; Hanif, W. M. M. Wan; Arshad, A. K.; Hashim, W.

    2017-11-01

    Rutting is the most common pavement distress in pavement structures which occurs mainly due to several factors such as increasing of traffic volume, climatic conditions and also due to construction design errors. This failure reduced the service life of the pavement, reduced driver safety and increase cost of maintenance. Polymer Modified Binder has been observed for a long time in improving asphalt pavement performance. Research shows that the use of polymer in bituminous mix not only improve the resistance to rutting but also increase the life span of the pavement. This research evaluates the physical properties and rutting performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified binder mix (UMB) and cup lumps rubber (liquid form) modified binder mix (CLMB). Natural rubber polymer modified binder was prepared from addition of 8 percent of cup lumps into binder. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicate that these mixtures were good with respect to durability and flexibility. Furthermore, rutting results from APA rutting test was determined to evaluate the performance of these mixtures. The rutting result of CLMB demonstrates better resistance to rutting than those prepared using UMB mix. Addition of cup lumps rubber in asphalt mixture was found to be significant, where the cup lumps rubber has certainly improves the binder properties and enhanced its rutting resistance due to greater elasticity offered by the cup lumps rubber particles. It shows that the use of cup lumps rubber can significantly reduce the rut depth of asphalt mixture by 41% compared to the minimum rut depth obtained for the UMB mix. Therefore, it can be concluded that the cup lumps rubber is suitable to be used as a modifier to modified binder in order to enhance the properties of the binder and thus improves the performance of asphalt mixes.

  6. Managing oral phosphate binder medication expenditures within the Medicare bundled end-stage renal disease prospective payment system: economic implications for large U.S. dialysis organizations.

    PubMed

    Park, Haesuk; Rascati, Karen L; Keith, Michael S

    2015-06-01

    From January 2016, payment for oral-only renal medications (including phosphate binders and cinacalcet) was expected to be included in the new Medicare bundled end-stage renal disease (ESRD) prospective payment system (PPS). The implementation of the ESRD PPS has generated concern within the nephrology community because of the potential for inadequate funding and the impact on patient quality of care. To estimate the potential economic impact of the new Medicare bundled ESRD PPS reimbursement from the perspective of a large dialysis organization in the United States. We developed an interactive budget impact model to evaluate the potential economic implications of Medicare payment changes to large dialysis organizations treating patients with ESRD who are receiving phosphate binders. In this analysis, we focused on the budget impact of the intended 2016 integration of oral renal drugs, specifically oral phosphate binders, into the PPS. We also utilized the model to explore the budgetary impact of a variety of potential shifts in phosphate binder market shares under the bundled PPS from 2013 to 2016. The base model predicts that phosphate binder costs will increase to $34.48 per dialysis session in 2016, with estimated U.S. total costs for phosphate binders of over $682 million. Based on these estimates, a projected Medicare PPS $33.44 reimbursement rate for coverage of all oral-only renal medications (i.e., phosphate binders and cinacalcet) would be insufficient to cover these costs. A potential renal drugs and services budget shortfall for large dialysis organizations of almost $346 million was projected. Our findings suggest that large dialysis organizations will be challenged to manage phosphate binder expenditures within the planned Medicare bundled rate structure. As a result, large dialysis organizations may have to make treatment choices in light of potential inadequate funding, which could have important implications for the quality of care for patients with ESRD.

  7. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the performance of pellet binders, and have directly saved energy by increasing filtration rates of the pelletization feed by as much as 23%.« less

  8. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Nagasubramanian, Ganesan (Inventor)

    1997-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a cosolvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  9. Nanosized carbon modifier used to control plastic deformations of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Vysotskaya, M. A.; Shekhovtsova, S. Yu; Barkovsky, D. V.

    2018-03-01

    Aspects related to plastic track, the formation of which directly depends on the properties of the binder in the composition of asphalt concrete, are considered in this article. The effect of primary carbon nanomaterials on the quality of polymer and bitumen binder in comparison with the traditional binder including cross-linking agent is evaluated. The influence of binders on the resistance to the track formation of type B asphalt concrete is studied. To quantify the service life of surfacing, a calculation method based on the criteria for the resistance of surfacing material to plastic deformations is used.

  10. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)

    1994-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a co-solvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  11. Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process

    NASA Astrophysics Data System (ADS)

    Dandang, N. A. N.; Harun, W. S. W.; Khalil, N. Z.; Ahmad, A. H.; Romlay, F. R. M.; Johari, N. A.

    2017-10-01

    One of the most crucial and time consuming phase in metal injection moulding (MIM) process is “debinding”. These days, in metal injection moulding process, they had recounted that first debinding practice was depend on thermal binder degradation, which demanding more than 200 hours for complete removal of binder. Fortunately, these days world had introduced multi-stage debinding techniques to simplified the debinding time process. This research study variables for solvent debinding which are temperature and soaking time for samples made by MIM CoCrMo powder. Since wax as the key principal in the binder origination, paraffin wax will be removed together with stearic acid from the green bodies. Then, debinding process is conducted at 50, 60 and 70°C for 30-240 minutes. It is carried out in n-heptane solution. Percentage weight loss of the binder were measured. Lastly, scanning electron microscope (SEM) analysis and visual inspection were observed for the surface of brown compact. From the results, samples debound at 70°C exhibited a significant amount of binder loss; nevertheless, sample collapse, brittle surface and cracks were detected. But, at 60°C temperature and time of 4 hours proven finest results as it shows sufficient binder loss, nonappearance of surface cracks and easy to handle. Overall, binder loss is directly related to solvent debinding temperature and time.

  12. The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil.

    PubMed

    Wang, Fei; Wang, Hailing; Jin, Fei; Al-Tabbaa, Abir

    2015-03-21

    This paper presents an investigation of the effects of novel binders and pH values on the effectiveness of the in-situ stabilisation/solidification technique in treating heavy metals and organic contaminated soils after 1.5-year treatment. To evaluate the performance of different binders, made ground soils of SMiRT site, upto 5 m depth, were stabilised/solidified with the triple auger system and cores were taken for laboratory testing after treatment. Twenty four different binders were used including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and zeolite. Unconfined compressive strength (UCS), leachate pH and the leachability of heavy metals and total organics were applied to study the behaviours of binders in treating site soils. Under various contaminant level and binder level, the results show that UCS values were 22-3476 kPa, the leachability of the total organics was in the range of 22-241 mg/l and the heavy metals was in the range of 0.002-0.225 mg/l. In addition, the combination of GGBS and MgO at a ratio of 9:1 shows better immobilisation efficiency in treating heavy metals and organic contaminated soils after 1.5-year treatment, and the binding mechanisms under different binders were also discussed in this paper. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  14. Effect of treatment temperature on the microstructure of asphalt binders: insights on the development of dispersed domains.

    PubMed

    Menapace, I; Masad, E; Bhasin, A

    2016-04-01

    This paper offers important insights on the development of the microstructure in asphalt binders as a function of the treatment temperature. Different treatment temperatures are useful to understand how dispersed domains form when different driving energies for the mobility of molecular species are provided. Small and flat dispersed domains, with average diameter between 0.02 and 0.70 μm, were detected on the surface of two binders at room temperature, and these domains were observed to grow with an increase in treatment temperature (up to over 2 μm). Bee-like structures started to appear after treatment at or above 100°C. Moreover, the effect of the binder thickness on its microstructure at room temperature and at higher treatment temperatures was investigated and is discussed in this paper. At room temperature, the average size of the dispersed domains increased as the binder thickness decreased. A hypothesis that conciliates current theories on the origin and development of dispersed domains is proposed. Small dispersed domains (average diameter around 0.02 μm) are present in the bulk of the binder, whereas larger domains and bee-like structures develop on the surface, following heat treatment or mechanical disturbance that reduces the film thickness. Molecular mobility and association are the key factors in the development of binder microstructure. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. Anisotropic fibrous thermal insulator of relatively thick cross section and method for making same

    DOEpatents

    Reynolds, Carl D.; Ardary, Zane L.

    1979-01-01

    The present invention is directed to an anisotropic thermal insulator formed of carbon-bonded organic or inorganic fibers and having a thickness or cross section greater than about 3 centimeters. Delaminations and deleterious internal stresses generated during binder curing and carbonizing operations employed in the fabrication of thick fibrous insulation of thicknesses greater than 3 centimeters are essentially obviated by the method of the present invention. A slurry of fibers, thermosetting resin binder and water is vacuum molded into the selected insulator configuration with the total thickness of the molded slurry being less than about 3 centimeters, the binder is thermoset to join the fibers together at their nexaes, and then the binder is carbonized to form the carbon bond. A second slurry of the fibers, binder and water is then applied over the carbonized body with the vacuum molding, binder thermosetting and carbonizing steps being repeated to form a layered insulator with the binder providing a carbon bond between the layers. The molding, thermosetting and carbonizing steps may be repeated with additional slurries until the thermal insulator is of the desired final thickness. An additional feature of the present invention is provided by incorporating opacifying materials in any of the desired layers so as to provide different insulating properties at various temperatures. Concentration and/or type of additive can be varied from layer-to-layer.

  16. The Effect of Abdominal Support on Functional Outcomes in Patients Following Major Abdominal Surgery: A Randomized Controlled Trial

    PubMed Central

    Cheifetz, Oren; Overend, Tom J.; Crowe, Jean

    2010-01-01

    ABSTRACT Purpose: Immobility and pain are modifiable risk factors for development of venous thromboembolism and pulmonary morbidity after major abdominal surgery (MAS). The purpose of this study was to investigate the effect of abdominal incision support with an elasticized abdominal binder on postoperative walk performance (mobility), perceived distress, pain, and pulmonary function in patients following MAS. Methods: Seventy-five patients scheduled to undergo MAS via laparotomy were randomized to experimental (binder) or control (no binder) groups. Sixty (33 male, 27 female; mean age 58±14.9 years) completed the study. Preoperative measurements of 6-minute walk test (6MWT) distance, perceived distress, pain, and pulmonary function were repeated 1, 3, and 5 days after surgery. Results: Surgery was associated with marked postoperative reductions (p<0.001) in walk distance (∼75–78%, day 3) and forced vital capacity (35%, all days) for both groups. Improved 6MWT distance by day 5 was greater (p<0.05) for patients wearing a binder (80%) than for the control group (48%). Pain and symptom-associated distress remained unchanged following surgery with binder usage, increasing significantly (p<0.05) only in the no binder group. Conclusion: Elasticized abdominal binders provide a non-invasive intervention for enhancing recovery of walk performance, controlling pain and distress, and improving patients' experience following MAS. PMID:21629603

  17. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries.

    PubMed

    Prasanna, K; Subburaj, T; Jo, Yong Nam; Lee, Won Jong; Lee, Chang Woo

    2015-04-22

    The biopolymer chitosan has been investigated as a potential binder for the fabrication of LiFePO4 cathode electrodes in lithium ion batteries. Chitosan is compared to the conventional binder, polyvinylidene fluoride (PVDF). Dispersion of the active material, LiFePO4, and conductive agent, Super P carbon black, is tested using a viscosity analysis. The enhanced structural and morphological properties of chitosan are compared to the PVDF binder using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FE-SEM). Using an electrochemical impedance spectroscopy (EIS) analysis, the LiFePO4 electrode with the chitosan binder is observed to have a high ionic conductivity and a smaller increase in charge transfer resistance based on time compared to the LiFePO4 electrode with the PVDF binder. The electrode with the chitosan binder also attains a higher discharge capacity of 159.4 mAh g(-1) with an excellent capacity retention ratio of 98.38% compared to the electrode with the PVDF binder, which had a discharge capacity of 127.9 mAh g(-1) and a capacity retention ratio of 85.13%. Further, the cycling behavior of the chitosan-based electrode is supported by scrutinizing its charge-discharge behavior at specified intervals and by a plot of dQ/dV.

  18. Conductivity degradation of polyvinylidene fluoride composite binder during cycling: Measurements and simulations for lithium-ion batteries

    DOE PAGES

    Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; ...

    2016-07-02

    The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling ofmore » lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.« less

  19. Hunger promotes acquisition of nonfood objects.

    PubMed

    Xu, Alison Jing; Schwarz, Norbert; Wyer, Robert S

    2015-03-03

    Hunger motivates people to consume food, for which finding and acquiring food is a prerequisite. We test whether the acquisition component spills over to nonfood objects: Are hungry people more likely to acquire objects that cannot satisfy their hunger? Five laboratory and field studies show that hunger increases the accessibility of acquisition-related concepts and the intention to acquire not only food but also nonfood objects. Moreover, people act on this intention and acquire more nonfood objects (e.g., binder clips) when they are hungry, both when these items are freely available and when they must be paid for. However, hunger does not influence how much they like nonfood objects. We conclude that a basic biologically based motivation can affect substantively unrelated behaviors that cannot satisfy the motivation. This presumably occurs because hunger renders acquisition-related concepts and behaviors more accessible, which influences decisions in situations to which they can be applied.

  20. Hunger promotes acquisition of nonfood objects

    PubMed Central

    Xu, Alison Jing; Schwarz, Norbert; Wyer, Robert S.

    2015-01-01

    Hunger motivates people to consume food, for which finding and acquiring food is a prerequisite. We test whether the acquisition component spills over to nonfood objects: Are hungry people more likely to acquire objects that cannot satisfy their hunger? Five laboratory and field studies show that hunger increases the accessibility of acquisition-related concepts and the intention to acquire not only food but also nonfood objects. Moreover, people act on this intention and acquire more nonfood objects (e.g., binder clips) when they are hungry, both when these items are freely available and when they must be paid for. However, hunger does not influence how much they like nonfood objects. We conclude that a basic biologically based motivation can affect substantively unrelated behaviors that cannot satisfy the motivation. This presumably occurs because hunger renders acquisition-related concepts and behaviors more accessible, which influences decisions in situations to which they can be applied. PMID:25730858

  1. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  2. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    NASA Astrophysics Data System (ADS)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement-based binders without taking into account the viscoelastic effects. For the first time, model based on poromechanics was used to calculate the macroscopic tensile stress that develops in CSA cement-based binders due to crystallization of ettringite. The models enabled a reasonable prediction of tensile stress due to crystallization of ettringite including the failure of an OPC-CSA binder which had high CSA cement content. Elastic strain based on crystallization stress was calculated and compared with the observed strain. A mismatch between observed and calculated elastic strain indicated the presence of early-age creep. Lastly, the application of CSA cement in concretes is discussed to link the paste and concrete behavior.

  3. Stabilisation/solidification of synthetic petroleum drill cuttings.

    PubMed

    Al-Ansary, Marwa S; Al-Tabbaa, Abir

    2007-03-15

    This paper presents the results of an experimental investigation into the use of stabilisation/solidification (S/S) to treat synthetic drill cuttings as a pre-treatment to landfilling or for potential re-use as construction products. Two synthetic mixes were used based on average concentrations of specific contaminates present in typical drill cuttings from the North Sea and the Red Sea areas. The two synthetic drill cuttings contained similar chloride content of 2.03% and 2.13% by weight but different hydrocarbon content of 4.20% and 10.95% by weight, respectively; hence the mixes were denoted as low and high oil content mixes, respectively. A number of conventional S/S binders were tested including Portland cement (PC), lime and blast-furnace slag (BFS), in addition to novel binders such as microsilica and magnesium oxide cement. Physical, chemical and microstructural analyses were used to compare the relative performance of the different binder mixes. The unconfined compressive strength (UCS) values were observed to cover a wide range depending on the binder used. Despite the significant difference in the hydrocarbon content in the two synthetic cuttings, the measured UCS values of the mixes with the same binder type and content were similar. The leachability results showed the reduction of the synthetic drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the binders for chloride concentrations, and (b) by the 20% BFS-PC and 30% PC binders for the low oil content mix. The 30% BFS-PC binder successfully reduced the leached oil concentration of the low oil content mix to inert levels. Finally, the microstructural analysis offered valuable information on the morphology and general behaviour of the mixes that were not depicted by the other tests.

  4. In-situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens.

    PubMed

    Liang, Huei-Chen; Liu, Yi-Chen; Chen, Hsin; Ku, Ming Chun; Do, Quynh-Trang; Wang, Chih-Yen; Tzeng, Shun-Fen; Chen, Shu-Hui

    2018-06-13

    Catechol estrogens (CEs) are metabolic electrophiles that actively undergo covalent interaction with cellular proteins, influencing molecular function. There is no feasible method to identify their binders in a living system. Herein, we developed a click chemistry-based approach using ethinylestradiol (EE2) as the precursor probe coupled with quantitative proteomics to identify protein targets of CEs and classify their binding strengths. Using in-situ metabolic conversion and click reaction in liver microsomes, CEs-protein complex was captured by the probe, digested by trypsin, stable isotope labeled via reductive amination, and analyzed by liquid chromatography-mass spectrometry (LC-MS). A total of 334 liver proteins were repeatedly identified (n  2); 274 identified proteins were classified as strong binders based on precursor mass mapping. The binding strength was further scaled by D/H ratio (activity probe/solvent): 259 strong binders had D/H > 5.25; 46 weak binders had 5.25 > D/H > 1; 5 non-specific binders (keratins) had D/H < 1. These results were confirmed using spiked covalent control (strong binder) and noncovalent control (weak binder), as well as in vitro testing of cytochrome c (D/H = 5.9) which showed covalent conjugation with CEs. Many identified strong binders, such as glutathione transferase, catechol-O-methyl transferase, superoxide dismutase, catalase, glutathione peroxidase, and cytochrome c, are involved in cellular redox processes or detoxification activities. CE conjugation was shown to suppress the superoxide oxidase activity of cytochrome c, suggesting that CEs modification may alter the redox action of cellular proteins. Due to structural similarity and inert alkyne group, EE2 probe is very likely to capture protein targets of CEs in general. Thus, this strategy can be adopted to explore the biological impact of CEs modification in living systems.

  5. DNA-Encoded Dynamic Combinatorial Chemical Libraries.

    PubMed

    Reddavide, Francesco V; Lin, Weilin; Lehnert, Sarah; Zhang, Yixin

    2015-06-26

    Dynamic combinatorial chemistry (DCC) explores the thermodynamic equilibrium of reversible reactions. Its application in the discovery of protein binders is largely limited by difficulties in the analysis of complex reaction mixtures. DNA-encoded chemical library (DECL) technology allows the selection of binders from a mixture of up to billions of different compounds; however, experimental results often show low a signal-to-noise ratio and poor correlation between enrichment factor and binding affinity. Herein we describe the design and application of DNA-encoded dynamic combinatorial chemical libraries (EDCCLs). Our experiments have shown that the EDCCL approach can be used not only to convert monovalent binders into high-affinity bivalent binders, but also to cause remarkably enhanced enrichment of potent bivalent binders by driving their in situ synthesis. We also demonstrate the application of EDCCLs in DNA-templated chemical reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Criteria for asphalt-rubber concrete in civil airport pavements: Mixture design

    NASA Astrophysics Data System (ADS)

    Roberts, F. L.; Lytton, R. L.; Hoyt, D.

    1986-07-01

    A mixture design procedure is developed to allow the use of asphalt-rubber binders in concrete for flexible airport pavement. The asphalt-rubber is produced by reacting asphalt with ground, scrap tire rubber to produce the binder for the asphalt-rubber concrete. Procedures for laboratory preparation of alsphalt-rubber binders using an equipment setup that was found by researchers to produce laboratory binders with similar properties to field processes are included. The rubber-asphalt concrete mixture design procedure includes adjustments to the aggregate gradation to permit space for the rubber particles in the asphalt-rubber binder as well as suggested mixing and compaction temperatures, and compaction efforts. While the procedure was used in the laboratory to successfully produce asphalt-rubber concrete mixtures, it should be evaluated in the field to ensure that consistent results can be achieved in a production environment.

  7. Research on preparation of phosphate-modified animal glue binder for foundry use

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Shu; Liu, Wei-Hua; Li, Ying-Min

    2018-03-01

    In this paper, three phosphates were used as modifiers to modify animal glue binder. The structural characteristics and thermal properties of animal glue binder treated with phosphates were studied by Fourier transform-infrared spectroscopy, gel permeation chromatography and derivative thermogravimetric analysis. The results showed that the modified animal glue binder had better sand tensile strength and lower viscosity than untreated animal glue binder. The best modification process was as follows: the optimal amount of sodium carbonate was 4 wt% to animal glue; the optimal weight ratio of the modifiers was sodium pyrophosphate : sodium tripolyphosphate : sodium hexametaphosphate : animal glue = 3 : 3 : 4 : 100, and the optimal reaction should be performed at 80°C for a reaction time of 120 min. A final tensile strength of approximately 3.20 MPa was achieved and the viscosity value was approximately 880 mPa s.

  8. Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles

    PubMed Central

    Lytton-Jean, Abigail K. R.; Han, Min Su; Mirkin, Chad A.

    2008-01-01

    We have designed a chip-based assay, using microarray technology, for determining the relative binding affinities of duplex and triplex DNA binders. This assay combines the high discrimination capabilities afforded by DNA-modified Au nanoparticles with the high-throughput capabilities of DNA microarrays. The detection and screening of duplex DNA binders are important because these molecules, in many cases, are potential anticancer agents as well as toxins. Triplex DNA binders are also promising drug candidates. These molecules, in conjunction with triplex forming oligonucleotides, could potentially be used to achieve control of gene expression by interfering with transcription factors that bind to DNA. Therefore, the ability to screen for these molecules in a high-throughput fashion could dramatically improve the drug screening process. The assay reported here provides excellent discrimination between strong, intermediate, and weak duplex and triplex DNA binders in a high-throughput fashion. PMID:17614366

  9. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    NASA Astrophysics Data System (ADS)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  10. Gas Retention in a Heated Plastic Bonded Explosive (LX-14).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, Michael L.; Kaneshige, Michael J.; Erikson, William W.

    In prior work, we found that the nitroplasticizer in the plastic bonded explosive PBX 9501 played a crucial role in cookoff, especially when predicting response in larger systems [1]. We have recently completed experiments with a similar explosive, LX-14, that has a relatively nonreactive binder. We expected the ignition times for LX-14 to be longer than PBX 9501 since PBX 9501 has a more reactive binder. However, our experiments show the opposite trend. This paradox can be explained by retention of reactive gases within the interior of LX-14 by the higher strength binder resulting in faster ignition times. In contrast,more » the binder in PBX 9501 melts at low temperatures and does not retain decomposition gases as well as the LX-14 binder. Retention of reactive gases in LX-14 may also explain the more violent response in oblique impact tests [2] when compared to PBX 9501.« less

  11. Testing of Binders Toxicological Effects

    NASA Astrophysics Data System (ADS)

    Strokova, V.; Nelyubova, V.; Rykunova, M.

    2017-11-01

    The article presents the results of a study of the toxicological effect of binders with different compositions on the vital activity of plant and animal test-objects. The analysis of the effect on plant cultures was made on the basis of the phytotesting data. The study of the effect of binders on objects of animal origin was carried out using the method of short-term testing. Based on the data obtained, binders are ranked according to the degree of increase in the toxic effect: Gypsum → Portland cement → Slag Portland cement. Regardless of the test-object type, the influence of binders is due to the release of various elements (calcium ions or heavy metals) into the solution. In case of plant cultures, the saturation of the solution with elements has a positive effect (there is no inhibitory effect), and in case of animal specimens - an increase in the toxic effect.

  12. Studies of organic paint binders by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spyros, A.; Anglos, D.

    2006-06-01

    Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.

  13. In situ multi-length scale approach to understand the mechanics of soft and rigid binder in composite lithium ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Jäckel, Nicolas; Dargel, Vadim; Shpigel, Netanel; Sigalov, Sergey; Levi, Mikhael D.; Daikhin, Leonid; Aurbach, Doron; Presser, Volker

    2017-12-01

    Intercalation-induced dimensional changes of composite battery electrodes containing either a stiff or a soft polymeric binder is one of the many factors determining the cycling performance and ageing. Herein, we report dimensional changes in bulk composite electrodes by in situ electrochemical dilatometry (eD) combined with electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D). The latter tracks the mechanical properties on the level of the electrode particle size. Lithium iron phosphate (LiFePO4, LFP) electrodes with a stiff binder (PVdF) and a soft binder (NaCMC) were investigated by cycling in lithium sulfate (Li2SO4) aqueous solution. The electrochemical and mechanical electrode performances depend on the electrode cycling history. Based on combined eD and EQCM-D measurements we provide evidence which properties are preferred for a binder used for a composite Li-ion battery electrode.

  14. Graphene nanocomposites for electrochemical cell electrodes

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  15. Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery.

    PubMed

    Lee, Sang Ha; Lee, Jeong Hun; Nam, Dong Ho; Cho, Misuk; Kim, Jaehoon; Chanthad, Chalathorn; Lee, Youngkwan

    2018-05-16

    Polymeric binder is extremely important for Si-based anode in lithium-ion batteries due to large volume variation during charging/discharging process. Here, natural rubber-incorporated chitosan networks were designed as a binder material to obtain both adhesion and elasticity. Chitosan could strongly anchor Si particles through hydrogen bonding, while the natural rubber could stretch reversibly during the volume variation of Si particles, resulting in high cyclic performance. The prepared electrode exhibited the specific capacities of 1350 mAh/g after 1600 cycles at the current density of 8 A/g and 2310 mAh/g after 500 cycles at the current density of 1 A/g. Furthermore, the cycle test with limiting lithiation capacity was conducted to study the optimal binder properties at varying degree of the volume expansion of silicon, and it was found that the elastic property of binder material was strongly required when the large volume expansion of Si occurred.

  16. Developing a Livebinder as Teaching Resource in Family & Consumer Sciences

    ERIC Educational Resources Information Center

    Miller, Cynthia L.

    2015-01-01

    The primary purpose of this paper is to explain how a digital tool, "LiveBinder," can be used for organizing online content and learning. The article explains why this digital tool should be utilized as a teaching resource and describes common uses. It also addresses how LiveBinders can be organized using shelves. A model LiveBinder of…

  17. Ductile Binder Phase For Use With Almgb14 And Other Hard Ceramic Materials

    DOEpatents

    Cook, Bruce A.; Russell, Alan; Harringa, Joel

    2005-07-26

    This invention relates to a ductile binder phase for use with AlMgB14 and other hard materials. The ductile binder phase, a cobalt-manganese alloy, is used in appropriate quantities to tailor good hardness and reasonable fracture toughness for hard materials so they can be used suitably in industrial machining and grinding applications.

  18. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    PubMed

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  19. Matrices of radiation-protective composites using bismuth oxide

    NASA Astrophysics Data System (ADS)

    Yashkina, S. Yu; Doroganov, V. A.; Trepalina, Yu N.; Loktionov, V. A.; Evtushenko, E. I.

    2018-03-01

    The article presents the results of investigations of radiation-protective composites with two types of matrices based on chamotte and aluminous binders. The synthesis of binders was carried out according to the principles of the production of ceramic concrete based on the artificial ceramic binders (ACB). Bismuth oxide was selected as filler. Basic physical and mechanical, as well as radiation-protective characteristics, of composites with different ratios of ACB and Bi2O3 were shown. It was found out that binder of high-alumina chamotte can be used as an optimal matrix base. Composites on its basis have higher structural and radiation-protective properties.

  20. Combinatorially Screened Peptide as Targeted Covalent Binder: Alteration of Bait-Conjugated Peptide to Reactive Modifier.

    PubMed

    Uematsu, Shuta; Tabuchi, Yudai; Ito, Yuji; Taki, Masumi

    2018-06-01

    A peptide-type covalent binder for a target protein was obtained by combinatorial screening of fluoroprobe-conjugated peptide libraries on bacteriophage T7. The solvatochromic fluoroprobe works as a bait during the affinity selection process of phage display. To obtain the targeted covalent binder, the bait in the selected consensus peptide was altered into a reactive warhead possessing a sulfonyl fluoride. The reaction efficiency and site/position specificity of the covalent conjugation between the binder and the target protein were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and rationalized by a protein-ligand docking simulation.

  1. OncoBinder facilitates interpretation of proteomic interaction data by capturing coactivation pairs in cancer.

    PubMed

    Van Coillie, Samya; Liang, Lunxi; Zhang, Yao; Wang, Huanbin; Fang, Jing-Yuan; Xu, Jie

    2016-04-05

    High-throughput methods such as co-immunoprecipitationmass spectrometry (coIP-MS) and yeast 2 hybridization (Y2H) have suggested a broad range of unannotated protein-protein interactions (PPIs), and interpretation of these PPIs remains a challenging task. The advancements in cancer genomic researches allow for the inference of "coactivation pairs" in cancer, which may facilitate the identification of PPIs involved in cancer. Here we present OncoBinder as a tool for the assessment of proteomic interaction data based on the functional synergy of oncoproteins in cancer. This decision tree-based method combines gene mutation, copy number and mRNA expression information to infer the functional status of protein-coding genes. We applied OncoBinder to evaluate the potential binders of EGFR and ERK2 proteins based on the gastric cancer dataset of The Cancer Genome Atlas (TCGA). As a result, OncoBinder identified high confidence interactions (annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) or validated by low-throughput assays) more efficiently than co-expression based method. Taken together, our results suggest that evaluation of gene functional synergy in cancer may facilitate the interpretation of proteomic interaction data. The OncoBinder toolbox for Matlab is freely accessible online.

  2. Effect of solvents on the electrochemical properties of binder-free sulfur cathode films in lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Ho-Suk; Kim, Byeong-Wook; Park, Jin-Woo

    Highlights: • The binder-free sulfur electrode with high sulfur contents of 75 wt.% was fabricated. • The binder-free sulfur electrode using NMP solvents showed 784 mAh g{sup −1} after 40 cycles. • The solvent affect the electrochemical properties of binder-free sulfur electrode films. - Abstract: The effects of solvents on the preparation of sulfur cathodes were investigated by fabricating binder-free sulfur electrode films using three different solvents: 1-methyl-2-pyrrolidinone (NMP), acetonitrile, and deionized water. These solvents are commonly employed to dissolve binders used to prepare sulfur cathodes for lithium–sulfur batteries. The sulfur electrode fabricated with NMP had a higher discharge capacitymore » and longer cycle life than the ones fabricated with acetonitrile and deionized water. Better adhesion between the current collector and the sulfur electrode accounted for the improved capacity and cycle life of the battery. In addition, the stability of the electrode in the electrolyte was a result of the solubility of sulfur in the solvent. We thus concluded that the solvents used in the fabrication of sulfur electrodes had a positive influence on the electrochemical properties of Li–S batteries.« less

  3. Use of Adhesion Promoters in Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Cihlářová, Denisa; Fencl, Ivan; Cápayová, Silvia; Pospíšil, Petr

    2018-03-01

    The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt's binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt's binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  4. Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ku, Jun-Hwan; Hwang, Seung-Sik; Ham, Dong-Jin; Song, Min-Sang; Shon, Jeong-Kuk; Ji, Sang-Min; Choi, Jae-Man; Doo, Seok-Gwang

    2015-08-01

    Anode materials including graphite are known to be thermodynamically unstable toward organic solvents and salts and become covered by a passivating film (Solid electrolyte interphase, SEI) which retards the kinetics because of the high electronic resistivity. To achieve high performance in lithium ion batteries (LIBs), the SEIs are required to be mechanically stable during repeated cycling and possess highly ion-conductive. In this work, we have investigated an artificial pre-SEI on graphite electrode using a polymer binder containing lithium (i.e., a Li-copolymer of isobutylene and maleic anhydride, Li-PIMA) and its effect on the anode performances. During charging, the polymer binder with the functional group (-COOLi) acts as a SEI component, reducing the electrolyte decomposition and providing a stable passivating layer for the favorable penetration of lithium ions. Hence, by using the binder containing lithium, we have been able to obtain the first Coulombic efficiency of 84.2% (compared to 77.2% obtained using polyvinylidene fluoride as the binder) and a capacity retention of 99% after 100 cycles. The results of our study demonstrate that binder containing lithium we have used is a favorable candidate for the development of high-performance LIBs.

  5. Abdominal binders may reduce pain and improve physical function after major abdominal surgery - a systematic review.

    PubMed

    Rothman, Josephine Philip; Gunnarsson, Ulf; Bisgaard, Thue

    2014-11-01

    Evidence for the effect of post-operative abdominal binders on post-operative pain, seroma formation, physical function, pulmonary function and increased intra-abdominal pressure among patients after surgery remains largely un-investigated. A systematic review was conducted. The PubMed, EMBASE and Cochrane databases were searched for studies on the use of abdominal binders after abdominal surgery or abdominoplasty. All types of clinical studies were included. Two independent assessors evaluated the scientific quality of the studies. The primary outcomes were pain, seroma formation and physical function. A total of 50 publications were identified; 42 publications were excluded leaving eight publications counting a total of 578 patients for analysis. Generally, the scientific quality of the studies was poor. Use of abdominal binder revealed a non-significant tendency to reduce seroma formation after laparoscopic ventral herniotomy and a non-significant reduction in pain. Physical function was improved, whereas evidence supports a beneficial effect on psychological distress after open abdominal surgery. Evidence also supports that intra-abdominal pressure increases with the use of abdominal binders. Reduction of pulmonary function during use of abdominal binders has not been revealed. Abdominal binders reduce post-operative psychological distress, but their effect on post-operative pain after laparotomy and seroma formation after ventral hernia repair remains unclear. Due to the sparse evidence and poor quality of the literature, solid conclusions may be difficult to make, and procedure-specific, high-quality randomised clinical trials are warranted.

  6. Development of an advanced, continuous mild gasification process for the production of co-products. Quarterly report, October 30, 1991--January 2, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Neal, G.W.

    1991-12-31

    During this quarter the work on Task 3, char upgrading, was in two areas; upgrading Penelec char made from Penelec filter cake to blast furnace formed coke, and evaluating various bituminous pitch binders. The formed coke from Penelec filter cake was of good quality with a high crush strength of 3000 pounds. The reactivity was not equal to that of conventional coke but it is felt that it could be made to equal conventional coke with further study, specifically by adding binder coal to the raw material recipe. The work evaluating bituminous pitch binders confirmed earlier thinking that will bemore » valuable to a commercial scale-up. Asphalt binders are compatible with coal tar binders and produce a coke of equal quality. Hence asphalt binders can be used to supply deficiencies of tar production in units employing coals with insufficient volatile matter to supply enough tar for the coking process. Asphalt binders have about a 50% savings from coal tar pitch. During the 4th Quarter of 1991, a total of 15 Continuous Mild Gasification Unit (CMGU) test runs were made. Efforts continued to determine the optimum forward/reverse ratio to maximize coal feed rate. The success of these efforts has been limited with a maximum coal feed rate of 400 lbs/hr obtainable with a caking coal. The handicap of not having screw shaft heaters cannot be overcome by adjustment of the forward/reverse ratio.« less

  7. Development of an advanced, continuous mild gasification process for the production of co-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neal, G.W.

    1991-01-01

    During this quarter the work on Task 3, char upgrading, was in two areas; upgrading Penelec char made from Penelec filter cake to blast furnace formed coke, and evaluating various bituminous pitch binders. The formed coke from Penelec filter cake was of good quality with a high crush strength of 3000 pounds. The reactivity was not equal to that of conventional coke but it is felt that it could be made to equal conventional coke with further study, specifically by adding binder coal to the raw material recipe. The work evaluating bituminous pitch binders confirmed earlier thinking that will bemore » valuable to a commercial scale-up. Asphalt binders are compatible with coal tar binders and produce a coke of equal quality. Hence asphalt binders can be used to supply deficiencies of tar production in units employing coals with insufficient volatile matter to supply enough tar for the coking process. Asphalt binders have about a 50% savings from coal tar pitch. During the 4th Quarter of 1991, a total of 15 Continuous Mild Gasification Unit (CMGU) test runs were made. Efforts continued to determine the optimum forward/reverse ratio to maximize coal feed rate. The success of these efforts has been limited with a maximum coal feed rate of 400 lbs/hr obtainable with a caking coal. The handicap of not having screw shaft heaters cannot be overcome by adjustment of the forward/reverse ratio.« less

  8. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.« less

  9. Method for fabricating ceramic filaments and high density tape casting method

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1990-01-01

    An apparatus and method is disclosed for fabricating mats of ceramic material comprising preparing a slurry of ceramic particles in a binder/solvent, charging the slurry into a vessel, forcing the slurry from the vessel into spinneret nozzles, discharging the slurry from the nozzles into the path of airjets to enhance the sinuous character of the slurry exudate and to dry it, collecting the filaments on a moving belt so that the filaments overlap each other thereby forming a mat, curing the binder therein, compressing and sintering the mat to form a sintered mat, and crushing the sintered mat to produce filament shaped fragments. A process is also disclosed for producing a tape of densely packed, bonded ceramic particles comprising forming a slurry of ceramic particles and a binder/solvent, applying the slurry to a rotating internal molding surface, applying a large centrifugal force to the slurry to compress it and force excess binder/solvent from the particles, evaporating solvent and curing the binder thereby forming layers of bonded ceramic particles and cured binder, and separating the binder layer from the layer of particles. Multilayers of ceramic particles are cast in an analogous manner on top of previously formed layers. When all of the desired layers have been cast the tape is fired to produce a sintered tape. For example, a three-layer tape is produced having outer layers of highly compressed filament shaped fragments of strontium doped lanthanum (LSM) particles and a center layer of yttria stabilized zicronia (YSZ) particles.

  10. The Concept of Equivalent Radon Concentration for Practical Consideration of Indoor Exposure to Thoron

    PubMed Central

    Chen, Jing; Moir, Deborah

    2012-01-01

    To consider the total exposure to indoor radon and thoron, a concept of equivalent radon concentration for thoron is introduced, defined as the radon concentration that delivers the same annual effective dose as that resulting from the thoron concentration. The total indoor exposure to radon and thoron is then the sum of the radon concentration and the equivalent radon concentration for thoron. The total exposure should be compared to the radon guideline value, and if it exceeds the guideline value, appropriate remedial action is required. With this concept, a separate guideline for indoor thoron exposure is not necessary. For homes already tested for radon with radon detectors, Health Canada’s recommendation of a 3-month radon test performed during the fall/winter heating season not only ensures a conservative estimate of the annual average radon concentration but also covers well any potentially missing contribution from thoron exposure. In addition, because the thoron concentration is much lower than the radon concentration in most homes in Canada, there is no real need to re-test homes for thoron. PMID:22470292

  11. The equivalence between dislocation pile-ups and cracks

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Gao, Q.

    1990-01-01

    Cracks and dislocation pile-ups are equivalent to each other. In this paper, the physical equivalence between cracks and pile-ups is delineated, and the relationshps between crack-extension force, force on the leading dislocation, stress-intensity factor, and dislocation density are reviewed and summarized. These relations make it possible to extend quantitatively the recent advances in the concepts and practices of fracture mechanics to the studies of microfractures and microplastic deformations.

  12. Non-Sintered Nickel Electrode

    DOEpatents

    Bernard, Patrick; Dennig, Corinne; Cocciantelli, Jean-Michel; Alcorta, Jose; Coco, Isabelle

    2002-01-01

    A non-sintered nickel electrode contains a conductive support and a paste comprising an electrochemically active material containing nickel hydroxide and a binder which is a mixture of an elastomer and a crystalline polymer. The proportion of the elastomer is in the range 25% to 60% by weight of the binder and the proportion of the crystalline polymer is in the range 40% to 75% by weight of the binder.

  13. Characterization and Modeling of Asphalt Binder Fatigue

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz

    Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of radial location. Past efforts have neglected the radial strain gradient, using the apparent shear stress at the sample edge to infer fatigue damage and derive S-VECD model parameters. Apparent edge stress is calculated using linear mapping to the total torque, which is erroneous in the presence of material or geometric nonlinearities (such as cracking). This study seeks to overcome the aforementioned shortcomings of past efforts to improve the ability to characterize and predict asphalt binder fatigue.

  14. Equivalence and Relational Thinking: Opportunities for Professional Learning

    ERIC Educational Resources Information Center

    Vale, Colleen

    2013-01-01

    Colleen Vale makes the case for professional learning teams collaborating together to improve their teaching and hence children's achievement. In this article she describes how this may be done. Along the way the teachers explored the idea of equivalence and the common conceptions and misconceptions held by children in their classes.

  15. Knowledge Hierarchies in Transnational Education: Staging Dissensus. Routledge Research in International and Comparative Education

    ERIC Educational Resources Information Center

    Qi, Jing

    2015-01-01

    Transnational education seeks equivalence in standards and/or relevance of outcomes through the transfer of Western theories, concepts and methods. Utilising a critique-interpretative approach, Jing Qi argues that equivalence/relevance-oriented approaches to transnational education assume the legitimacy of the global knowledge hierarchy.…

  16. Final Report on Initial Samples Supplied by LLNL for Task 3.3 Binder Burnout and Sintering Schedule Optimisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walls, P

    Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Runmore » 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A combination of: (1) use of a higher forming pressure, (2) reduction of organics content, (3) improvement in the distribution of the organic wax and binder components throughout the green body, could possibly alleviate cracking. Ultrasonic emulsification of the binder and wax with a small quantity of water prior to adding to the ball or attrition mill is advised to ensure more even distribution of the wax/binder system. This would also reduce the proportion of organic additives required. The binder burnout stage of the operation must first be optimized (i.e. production of pucks with no cracks) prior to optimization of the sintering stage.« less

  17. Animated and Static Concept Maps Enhance Learning from Spoken Narration

    ERIC Educational Resources Information Center

    Adesope, Olusola O.; Nesbit, John C.

    2013-01-01

    An animated concept map represents verbal information in a node-link diagram that changes over time. The goals of the experiment were to evaluate the instructional effects of presenting an animated concept map concurrently with semantically equivalent spoken narration. The study used a 2 x 2 factorial design in which an animation factor (animated…

  18. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  19. Advancements in Binder Systems for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul (Technical Monitor)

    2002-01-01

    Paper will present recent developments in advanced material binder systems for solid freeform fabrication (SFF) technologies. The advantage of SFF is the capability to custom fabricate complex geometries directly from computer aided design data in layer- by-layer fashion, eliminated the need for traditional fixturing and tooling. Binders allow for the low temperature processing of 'green' structural materials, either metal, ceramic or composite, in traditional rapid prototyping machines. The greatest obstacle comes when green parts must then go through a sintering or burnout process to remove the binders and fully densify the parent material, without damaging or distorting the original part geometry. Critical issues and up-to-date assessments will be delivered on various material systems.

  20. Shock initiation of an ɛ-CL-20-estane formulation

    NASA Astrophysics Data System (ADS)

    Tarver, C. M.; Simpson, R. L.; Urtiew, P. A.

    1996-05-01

    The shock sensitivity of a pressed solid explosive formulation, LX-19, containing 95.2% by weight epsilon phase 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) and 4.8% Estane binder, was determined using the wedge test and embedded manganin pressure gauge techniques. This formulation was shown to be slightly more sensitive than LX-14, which contains 95.5% HMX and 4.5% Estane binder. The measured pressure histories for LX-19 were very similar to those obtained using several HMX-inert binder formulations. An Ignition and Growth reactive flow model for LX-19 was developed which differed from those for HMX-inert binder formulations only by a 25% higher hot spot growth rate.

  1. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    PubMed

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development and Design of Binder Systems for Titanium Metal Injection Molding: An Overview

    NASA Astrophysics Data System (ADS)

    Wen, Guian; Cao, Peng; Gabbitas, Brian; Zhang, Deliang; Edmonds, Neil

    2013-03-01

    Titanium metal injection molding (Ti-MIM) has been practiced since the late 1980s. Logically, the Ti-MIM practice follows the similar processes developed for the antecedent materials such as stainless steel and ceramics. Although Ti-MIM is a favorite research topic today, the issue of convincing the designers to use Ti injection-molded parts still exists. This is mainly because of the concern about contamination which seems unavoidable during the Ti-MIM process. Much information about the binder formulation, powder requirements, debinding, and sintering is available in the literature. There are several powder vendors and feedstock suppliers. However, most of the binders in the feedstock are proprietarily protected. The disclosed information on the binders used for formulating powder feedstock is very limited, which in turn discourages their adoption by engineering designers. This overview intends to discuss some of major binder systems for Ti-MIM available in the literature. It serves to provide a guideline for the Ti-MIM practitioners to choose a suitable powder feedstock.

  3. [New potassium binders effective: treatment of hyperkalaemia secondary to RAAS inhibitors].

    PubMed

    Hoorn, Ewout J

    2015-01-01

    This commentary discusses two recent publications by Weir et al. and Packham et al. in The New England Journal of Medicine on the efficacy of two novel potassium binders, sodium zirconium cyclosilicate and patiromer. In a similar manner to existing potassium binders, these drugs exchange dietary potassium for either sodium or calcium in the gut, thereby preventing absorption of potassium. Both drugs were tested against placebo in patients with chronic kidney disease who developed hyperkalaemia because they were also using renin-angiotensin-aldosterone system (RAAS) inhibitors. Both drugs lowered serum potassium effectively and were tolerated reasonably well. A strong point in the trials is that the new potassium binders allow patients to continue using RAAS inhibitors. By doing so, these patients with high cardiovascular risk may continue to benefit from the protective effects of RAAS inhibitors. Limitations include the relatively short treatment period, the lack of a control group using existing potassium binders, and the exclusion of patients with severe or symptomatic hyperkalaemia.

  4. Influence of Mycotoxins and a Mycotoxin Adsorbing Agent on the Oral Bioavailability of Commonly Used Antibiotics in Pigs

    PubMed Central

    Goossens, Joline; Vandenbroucke, Virginie; Pasmans, Frank; De Baere, Siegrid; Devreese, Mathias; Osselaere, Ann; Verbrugghe, Elin; Haesebrouck, Freddy; De Saeger, Sarah; Eeckhout, Mia; Audenaert, Kris; Haesaert, Geert; De Backer, Patrick; Croubels, Siska

    2012-01-01

    It is recognized that mycotoxins can cause a variety of adverse health effects in animals, including altered gastrointestinal barrier function. It is the aim of the present study to determine whether mycotoxin-contaminated diets can alter the oral bioavailability of the antibiotics doxycycline and paromomycin in pigs, and whether a mycotoxin adsorbing agent included into diets interacts with those antibiotics. Experiments were conducted with pigs utilizing diets that contained blank feed, mycotoxin-contaminated feed (T-2 toxin or deoxynivalenol), mycotoxin-contaminated feed supplemented with a glucomannan mycotoxin binder, or blank feed supplemented with mycotoxin binder. Diets with T-2 toxin and binder or deoxynivalenol and binder induced increased plasma concentrations of doxycycline administered as single bolus in pigs compared to diets containing blank feed. These results suggest that complex interactions may occur between mycotoxins, mycotoxin binders, and antibiotics which could alter antibiotic bioavailability. This could have consequences for animal toxicity, withdrawal time for oral antibiotics, or public health. PMID:22606377

  5. Characterization of polymeric binders for Metal Injection Molding (MIM) process

    NASA Astrophysics Data System (ADS)

    Adames, Juan M.

    The Metal Injection Molding (MIM) process is an economically attractive method of producing large amounts of small and complex metallic parts. This is achieved by combining the productivity of injection molding with the versatility of sintering of metal particulates. In MIM, the powdered metal is blended with a plastic binder to obtain the feedstock. The binder imparts flowability to the blend at injection molding conditions and strength at ambient conditions. After molding, the binder is removed in a sequence of steps that usually involves solvent-extraction and polymer burn-out. Once the binder is removed, the metal particles are sintered. In this research several topics of the MIM process were studied to understand how the polymeric binder, similar to the one used in the sponsoring company, works. This was done by examining the compounding and water debinding processes, the rheological and thermal properties, and the microstructure of the binder/metal composite at different processing stages. The factors studied included the metal contents, the composition of the binder and the processing conditions. The three binders prepared during the course of this research were blends of a polyolefin, polyoxymethylene copolymer (POM) and a water-soluble polymer (WSP). The polyolefin resins included polypropylene (PP), high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE). The powdered metal in the feedstocks was 316 L stainless steel. The compounding studies were completed in an internal mixer under different conditions of temperature, rotational speed and feedstock composition. It was found that the metal concentration was the most important factor in determining the torque evolution curves. The observation of microstructure with Scanning Electron Microscope (SEM) at different stages during compounding revealed that the metal particles neither agglomerate nor touch each other. The liquid extraction of the water-soluble polymer (WSP) from the molded parts (or water debinding) was investigated using two configurations of flow of water relative to the samples. Both permitted the reduction of the mass transfer resistance outside the parts, revealing information on the diffusion of the WSP inside the part exclusively. The debinding studies showed that a single effective diffusivity could be used to model the extraction process of the binder from molded parts. This approach is more accurate when the debinding time is above 2 hours. Steady shear and dynamic experiments were conducted on the binder and feedstocks samples containing LLDPE. The results of both experiments revealed that the feedstocks did not show yield stress even though the highest metal content was 64% by volume. Therefore, it was concluded that there were only hydrodynamic interactions between the metal particles. The thermal characterization of binders, polymers and feedstocks included differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC tests were performed after preheating and quenching of the samples. The heating rate was 20°C/min. The TGA scans were conducted from room temperature to 700°C at 20°C/min. The DSC tests revealed that the melting point of the polymers depressed when blended in the binders and feedstocks. The depression was more intense for POM and the water-soluble polymer than for the polyolefins. Therefore, it was concluded that the melting point depression of POM and the water-soluble polymer was caused by their entrapment in the polyolefin matrix and in between the metal particles. The TGA scans showed that the feedstocks with higher metal concentration had higher final decomposition temperature, but similar onset temperature. The reason was that the higher the metal concentration the more difficult the diffusion of the products of the decomposition of the binder out of the samples. The morphological studies revealed that the binders were heterogeneous showing domains of the polar resins, embedded in a continuous phase composed of polyolefin. This distribution of phases was the result of the immiscibility between the polymeric components, and of the higher concentration (>70 vol%) of the polyolefin with respect to the polar components (polyoxymethylene and water-soluble polymer). The deformation during steady shear testing and compounding of the binder with the metal modified the size of the dispersed domains. The steady shearing increased the size of the dispersed domains by coalescence of the particles. On the other hand, the presence of powdered metal during compounding forced a redistribution of the dispersed phases. Apparently, a thin heterogeneous layer of binder surrounded the metal particles while most of the polyolefin occupied the space between the coated metal particles. The SEM study on samples obtained after water debinding revealed that the water-soluble polymer did not distribute uniformly on the surface of the molded disk of feedstock used for water debinding tests.

  6. Imaging Neuroinflammation in Post Traumatic Stress Disorder

    DTIC Science & Technology

    2012-11-01

    Metabolite B = 0-30%), without evidence of lipophilic metabolites which can confound the analysis. 8 Figure 2 Left graph : Mean PSTD... graph : There is similar plasma protein binding of 18-F PBR111 in healthy and PTSD participants. Individual subject are data are indicated on the... graph . TSPO Binder status Both mixed and high afffinity TSPO binders were evident in the PTSD (4 high affinity binders, 4 mixed affinity

  7. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE PAGES

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia; ...

    2018-01-04

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

  8. [Study of the strength of compacts of mixed dry binders consisting of powdered cellulose and directly compressible lactose].

    PubMed

    Muzíková, J; Hájková, P; Vinklarová, S

    2004-07-01

    The paper studied the strength of compacts of dry binders consisting of powdered cellulose and directly compressible lactose. The powdered cellulose employed was Arbocel A300, the directly compressible lactose, Pharmatosa DCL 21. The first step of the evaluation comprised the tensile strength of compacts and sensitivity of dry binders alone to an addition of magnesium stearate. The same method of evaluation was then used for mixed dry binders from Arbocel A300 and Pharmatosa DCL 21 in ratios of 3:1, 1:1 and 1:3. The tested concentrations of magnesium stearate were 0.4 and 0.8%. Sensitivity of dry binders to an addition of the lubricant was evaluated by means of lubricant sensitivity ratio (LSR) values. The compacts with the highest strength and at the same time the lowest sensitivity to an addition of magnesium stearate were produced using a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3. The evaluation also included the commercially produced mixed dry binder Cellactosa 80, in which higher sensitivity to an addition of stearate than in a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3 was found.

  9. A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries.

    PubMed

    Lacey, Matthew J; Österlund, Viking; Bergfelt, Andreas; Jeschull, Fabian; Bowden, Tim; Brandell, Daniel

    2017-07-10

    We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAh cm -2 capacity and 97-98 % coulombic efficiency are achievable in electrodes with a 65 % total sulfur content and a poly(ethylene oxide):poly(vinylpyrrolidone) (PEO:PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Wang, Yikai; Hu, Jiazhi; Lu, Bo; Dang, Dingying; Zhang, Junqian; Cheng, Yang-Tse

    2018-05-01

    This work focuses on understanding the role of various binders, including sodium alginate (SA), Nafion, and polyvinylidene fluoride (PVDF), on the mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. In situ curvature measurement of bilayer electrodes, consisting of a silicon-binder-carbon black composite layer on a copper foil, is used to determine the effects of binders on bending deformation, elastic modulus, and stress on the composite electrodes. It is found that the lithiation induced curvature and the modulus of the silicon/SA electrodes are larger than those of electrodes with Nafion and PVDF as binders. Although the modulus of Nafion is smaller than that of PVDF, the curvature and the modulus of silicon/Nafion composite are larger than those of silicon/PVDF electrodes. The moduli of all three composites decrease not only during lithiation but also during delithiation. Based on the measured stress and scanning electron microscopy observations of cracking in the composite electrodes, we conclude that the stress required to crack the composite electrodes with SA and Nafion binders is considerably higher than that of the silicon/PVDF electrode during electrochemical cycling. Thus, the cracking resistance of silicon/SA and silicon/Nafion composite electrodes is higher than that of silicon/PVDF electrodes.

  11. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Keun; Jeon, Jaebeom; Kang, Kisuk; Jung, Yeon Sik

    2017-03-01

    Recently, investigation of Si-based anode materials for rechargeable battery applications garnered much interest due to its exceptionally high capacity. High-capacity Si anode ( 4,200 mAhg-1) is highly desirable for the replacement of conventional graphite anode (< 400 mAhg-1) for large-scale energy-storage applications such as in electric vehicles (EVs) and energy storage systems (ESSs) for renewable energy sources. However, Si-based anodes suffer from poor cycling stability due to their large volumetric changes during repeated Li insertion. Therefore, development of highly efficient binder materials that can suppress the volume change of Si is one of the most essential parts of improving the performance of batteries. We herein demonstrate highly cross-linked polymeric binder (glyoxalated polyacrylamide) with an enhanced mechanical property by applying wet-strengthening chemistry used in paper industry. We found that the degree of cross-linking can be systematically adjusted by controlling the acidity of the slurry and has a profound effect on the cell performance using Si anode. The enhanced cycle performance of Si nanoparticles obtained by treating the binder at pH 4 can be explained by its strong interaction between the binder and Si surface and current collector, and also rigidity of binder by cross-linking.

  12. Asphalt mixtures with a high amount of RAP - case study

    NASA Astrophysics Data System (ADS)

    Koudelka, Tomas; Varaus, Michal

    2017-09-01

    A case study of one trial section in the Pilsen region is presented. The pavement in the section was newly constructed in 2015 using one type of an asphalt concrete mixtures with varying RAP content. The constructed surface course comprises of 0% to 50% RAP. In order to restore the aged binder properties and to avoid the embrittlement of the produced mixtures, a rubber-based modifier/rejuvenator was employed. For technological reasons during manufacturing processes, which engage a parallel drying drum, a crude oil-based rejuvenator was also added. This article contains the preliminary data from an on-going project focused on monitoring the properties of bituminous binders contained in asphalt mixtures. The actual bituminous binders were extracted straight after production, after 6 months and after 12 months. The binder characteristics are evaluated using empirical testing as well as functional tests. Low temperature properties are measured by a Bending Beam Rheometer (BBR). The preliminary results show, that the bituminous binders properties change significantly in a relatively short period of time. The progress in binder’ characteristics is contradictory to up-to date knowledge. The probability that the phenomenon of diffusion between aged binder and rejuvenator agents occurs exists. Moreover, the data might indicate that the process of rejuvenator evaporation takes place.

  13. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

  14. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler

    2005-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will workmore » satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.« less

  15. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.« less

  16. Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm

    NASA Astrophysics Data System (ADS)

    Hasan, Mohd Rosli Mohd; Hamzah, Meor Othman; Yee, Teh Sek

    2017-10-01

    Experimental works were conducted to evaluate the properties of asphalt binders and mixtures produced using a relatively new silane additive, named ZycoTherm. In this study, 0.1wt% ZycoTherm was blended with asphalt binder to enable production of asphalt mixture at lower than normal temperatures, as well as improve mix workability and compactability. Asphalt mixture performances towards pavement distresses in tropical climate region were also investigated. The properties of control asphalt binders (60/70 and 80/10 penetration grade) and asphalt binders incorporating 0.1% ZycoTherm were reported based on the penetration, softening point, rotational viscosity, complex modulus and phase angle. Subsequently, to compare the performance of asphalt mixture incorporating ZycoTherm with the control asphalt mixture, cylindrical samples were prepared at recommended temperatures and air voids depending on the binder types and test requirements. The samples were tested for indirect tensile strength (ITS), resilient modulus, dynamic creep, Hamburg wheel tracking and moisture induced damage. From compaction data using the Servopak gyratory compactor, specimen prepared using ZycoTherm exhibit higher workability and compactability compared to the conventional mixture. From the mixture performance test results, mixtures prepared with ZycoTherm showed comparable if not better performance than the control sample in terms of the resistance to moisture damage, permanent deformation and cracking.

  17. Effect of rapid set binder on early strength and permeability of HES latex modified road repair pre-packed concrete

    NASA Astrophysics Data System (ADS)

    Han, J. W.; Lee, S. K.; Yu, C.; Park, C. G.

    2015-12-01

    The early strength development characteristics and permeability resistance of high early strength (HES) pre-packed road repair concrete incorporating a rapid-set binder material were evaluated for emergency repairs to road pavement. The rapid-set binder is a mixture of rapid-set cement and silica sands whose fluidity improves with the addition of styrene butadiene latex (latex). The resulting mixture has a compressive strength of 21 MPa or higher and a flexural strength of greater than 3.5 MPa after 4 hours, the maximum curing age allowed for emergency repair materials. This study examines the strength development properties and permeability resistance of HES latex-modified pre-packed road repair concrete using a rapid- set binder as a function of the latex-to-binder mixing ratio at values of 0.40, 0.33, 0.29 and 0.25. Both early strength development properties and permeability resistance increased as the ratio of latex to rapid-set binder decreased. The mixture showed a compressive strength of 21 MPa or higher after 4 hours, which is the design standard of emergency repair concrete, only when this ratio was 0.29 or lower. A flexural strength of 3.5 MPa or greater was observed after hours only when this ratio was 0.33 or lower. The standard for permeability resistance, less than 2,000 C of chloride after 7 days of curing, was satisfied by all ratios. The ratio of latex to rapid-set binder satisfying all of the conditions for an emergency road repair material was 0.29 or less.

  18. The role of bentonite binders in single or concomitant mycotoxin contamination of chicken diets.

    PubMed

    Pappas, A C; Tsiplakou, E; Tsitsigiannis, D I; Georgiadou, M; Iliadi, M K; Sotirakoglou, K; Zervas, G

    2016-08-01

    Concomitant presence of mycotoxins is more likely to appear than a single mycotoxicosis since many mycotoxigenic fungi grow and produce their toxic metabolites under similar conditions. The present study was designed to evaluate the efficacy of 4 mycotoxin binders to protect meat-type chickens against single and concomitant administration in the feed of two mycotoxins, namely aflatoxin B1 (AFB1) and ochratoxin A (OTA) both at concentration of 0.1 mg/kg. A total of 440 as hatched, d-old, Ross 308 broilers were reared for 42 d. There were 11 dietary treatments. Chickens were fed on either an uncontaminated basal diet, basal diet and AFB1, basal with concomitant presence of AFB1 and OTA, basal diet and three binders A, B and C (1%) with or without AFB1 or basal diet and binder D (0.5%) with or without concomitant presence of AFB1 and OTA. Performance, carcass yield and several biochemical parameters were examined. Mycotoxin concentration in liver and breast muscle samples was determined. Broiler performance under concomitant mycotoxin contamination was poorer than that under single mycotoxicosis. Mycotoxin presence increased relative heart weight compared to that of broilers fed on uncontaminated diets. Only OTA and not AFB1 was detected and only in the liver. OTA concentration was four-fold lower in broilers fed on a diet with binder compared to those fed on contaminated diets without binder. In conclusion, the study revealed that binder composition and presence or not of multiple toxins may be important factors for optimum broiler performance under mycotoxicosis.

  19. Improvements in Fabrication of Sand/Binder Cores for Casting

    NASA Technical Reports Server (NTRS)

    Bakhitiyarov, Sayavur I.; Overfelt, Ruel A.; Adanur, Sabit

    2005-01-01

    Three improvements have been devised for the cold-box process, which is a special molding process used to make sand/binder cores for casting hollow metal parts. These improvements are: The use of fiber-reinforced composite binder materials (in contradistinction to the non-fiber-reinforced binders used heretofore), The substitution of a directed-vortex core-blowing subprocess for a prior core-blowing process that involved a movable gassing plate, and The use of filters made from filtration-grade fabrics to prevent clogging of vents. For reasons that exceed the scope of this article, most foundries have adopted the cold-box process for making cores for casting metals. However, this process is not widely known outside the metal-casting industry; therefore, a description of pertinent aspects of the cold-box process is prerequisite to a meaningful description of the aforementioned improvements. In the cold-box process as practiced heretofore, sand is first mixed with a phenolic resin (considered to be part 1 of a three-part binder) and an isocyanate resin (part 2 of the binder). Then by use of compressed air, the mixture is blown into a core box, which is a mold for forming the core. Next, an amine gas (part 3 of the binder) that acts as a catalyst for polymerization of parts 1 and 2 is blown through the core box. Alternatively, a liquid amine that vaporizes during polymerization can be incorporated into the sand/resin mixture. Once polymerization is complete, the amine gas is purged from the core box by use of compressed air. The finished core is then removed from the core box.

  20. Intensive Hemodialysis, Mineral and Bone Disorder, and Phosphate Binder Use.

    PubMed

    Copland, Michael; Komenda, Paul; Weinhandl, Eric D; McCullough, Peter A; Morfin, Jose A

    2016-11-01

    Mineral and bone disorder is a common complication of end-stage renal disease. Notably, hyperphosphatemia likely promotes calcification of the myocardium, valves, and arteries. Hyperphosphatemia is associated with higher risk for cardiovascular mortality and morbidity along a gradient beginning at 5.0mg/dL. Among contemporary hemodialysis (HD) patients, mean serum phosphorus level is 5.2mg/dL, although 25% of patients have serum phosphorus levels of 5.5 to 6.9mg/dL; and 13%, >7.0mg/dL. Treatment of hyperphosphatemia is burdensome. Dialysis patients consume a mean of 19 pills per day, half of which are phosphate binders. Medicare Part D expenditures on binders for dialysis patients approached $700 million in 2013. Phosphorus removal with thrice-weekly HD (4 hours per session) is ∼3,000mg/wk. However, clearance is unlikely to counterbalance dietary intake, which varies around a mean of 7,000mg/wk. Dietary restriction and phosphate binders are important interventions, but each has limitations. Dietary control is complicated by limited access to healthy food choices and unclear labeling. Meanwhile, adherence to phosphate binders is poor, especially in younger patients and those with high pill burden. Multiple randomized clinical trials show that intensive HD reduces serum phosphorus levels. In the Frequent Hemodialysis Network (FHN) trial, short daily and nocturnal schedules reduced serum phosphorus levels by 0.6 and 1.6mg/dL, respectively, relative to 3 sessions per week. A similar effect of nocturnal HD was observed in an earlier trial. In the daily arm of the FHN trial, intensive HD significantly lowered estimated phosphate binder dose per day, whereas in the nocturnal arm, intensive HD led to binder discontinuation in 75% of patients. However, intensive HD appears to have no meaningful effects on serum calcium and parathyroid hormone concentrations. In conclusion, intensive HD, especially nocturnal HD, lowers serum phosphorus levels and decreases the need for phosphate binders. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less

  2. Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mill

    DOE PAGES

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-06-15

    Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less

  3. A novel approach to support formulation design on twin screw wet granulation technology: Understanding the impact of overarching excipient properties on drug product quality attributes.

    PubMed

    Willecke, N; Szepes, A; Wunderlich, M; Remon, J P; Vervaet, C; De Beer, T

    2018-04-21

    The overall objective of this work is to understand how excipient characteristics influence the drug product quality attributes and process performance of a continuous twin screw wet granulation process. The knowledge gained in this study is intended to be used for Quality by Design (QbD)-based formulation design and formulation optimization. Three principal components which represent the overarching properties of 8 selected pharmaceutical fillers were used as factors, whereas factors 4 and 5 represented binder type and binder concentration in a design of experiments (DoE). The majority of process parameters were kept constant to minimize their influence on the granule and drug product quality. 27 DoE batches consisting of binary filler/binder mixtures were processed via continuous twin screw wet granulation followed by tablet compression. Multiple linear regression models were built providing understanding of the impact of filler and binder properties on granule and tablet quality attributes (i.e. 16 DoE responses). The impact of fillers on the granule and tablet responses was more dominant compared to the impact of binder type and concentration. The filler properties had a relevant effect on granule characteristics, such as particle size, friability and specific surface area. Binder type and concentration revealed a relevant influence on granule flowability and friability as well as on the compactability (required compression force during tableting to obtain target hardness). In order to evaluate the DoE models' validity, a verification of the DoE models was performed with new formulations (i.e. a new combination of filler, binder type and binder concentration) which were initially not included in the dataset used to build the DoE models. The combined PCA (principle component analysis)/DoE approach allowed to link the excipient properties with the drug product quality attributes. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Process for producing silicon nitride based articles of high fracture toughness and strength

    DOEpatents

    Huckabee, Marvin; Buljan, Sergej-Tomislav; Neil, Jeffrey T.

    1991-01-01

    A process for producing a silicon nitride-based article of improved fracture toughness and strength. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12 m.sup.2 /g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.

  5. Process for producing silicon nitride based articles of high fracture toughness and strength

    DOEpatents

    Huckabee, M.; Buljan, S.T.; Neil, J.T.

    1991-09-10

    A process for producing a silicon nitride-based article of improved fracture toughness and strength is disclosed. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12 m[sup 2]/g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.

  6. Power mixture and green body for producing silicon nitride base articles of high fracture toughness and strength

    DOEpatents

    Huckabee, M.L.; Buljan, S.T.; Neil, J.T.

    1991-09-17

    A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength are disclosed. The powder mixture includes (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12m[sup 2]g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder. No Drawings

  7. Power mixture and green body for producing silicon nitride base & articles of high fracture toughness and strength

    DOEpatents

    Huckabee, Marvin L.; Buljan, Sergej-Tomislav; Neil, Jeffrey T.

    1991-01-01

    A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength. The powder mixture includes 9a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon mitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12m.sup.2 g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified articel an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder.

  8. Establishment of an equivalence acceptance criterion for accelerated stability studies.

    PubMed

    Burdick, Richard K; Sidor, Leslie

    2013-01-01

    In this article, the use of statistical equivalence testing for providing evidence of process comparability in an accelerated stability study is advocated over the use of a test of differences. The objective of such a study is to demonstrate comparability by showing that the stability profiles under nonrecommended storage conditions of two processes are equivalent. Because it is difficult at accelerated conditions to find a direct link to product specifications, and hence product safety and efficacy, an equivalence acceptance criterion is proposed that is based on the statistical concept of effect size. As with all statistical tests of equivalence, it is important to collect input from appropriate subject-matter experts when defining the acceptance criterion.

  9. The economic impact of improving phosphate binder therapy adherence and attainment of guideline phosphorus goals in hemodialysis patients: a Medicare cost-offset model.

    PubMed

    Ramakrishnan, Karthik; Braunhofer, Peter; Newsome, Britt; Lubeck, Deborah; Wang, Steven; Deuson, Jennifer; Claxton, Ami J

    2014-12-01

    Hyperphosphatemia (serum phosphorus >5.5 mg/dL) in hemodialysis patients is a key factor in mineral and bone disorders and is associated with increased hospitalization and mortality risks. Treatment with oral phosphate binders offers limited benefit in achieving target serum phosphorus concentrations due to high daily pill burden (7-10 pills/day) and associated poor medication adherence. The economic value of improving phosphate binder adherence and increasing percent time in range (PTR) for target phosphorus concentrations has not been previously assessed in dialysis patients. The current retrospective analysis was conducted to summarize health care cost savings to United States (US) payers associated with improved phosphate binder adherence and increased PTR for target phosphorus concentrations in adult end-stage renal disease (ESRD) patients receiving hemodialysis therapy. Phosphate binder adherence and PTR were derived from hemodialysis patients who were treated at a large dialysis organization between January 2007 and December 2011. Cost model inputs were derived from US Renal Data System data between July 2007 and December 2009. A cost-offset model was constructed to estimate monthly and annual incremental health care costs (total Medicare; inpatient, outpatient, and Medicare Part B) associated with different levels of phosphate binder adherence and PTR. Model inputs included number of ESRD patients, population adherence to phosphate binders, PTR associated with adherence to phosphate binders, and per-patient per-month cost associated with PTR. A base case model estimated monthly and annual costs of phosphate binder therapy in the population using estimated model inputs. The estimated adherence rate was used to determine number of patients in compliant and noncompliant groups. Monthly costs were calculated as the sum of per-patient per-month cost times the number of patients in adherent and nonadherent groups. Annual costs were monthly costs times 12 and assumed the same level of adherence, PTR, and per-patient per-month costs over time. To study the impact of improving phosphate binder adherence and PTR on cost outcomes, we hypothetically and simultaneously increased both base phosphate binders adherence and PTR for adherent patients (adherence/PTR: 10/20%, 20/40%, 30/60%). Monthly and annual costs were derived for each scenario and compared against the results of the base case model. One-way sensitivity analysis was performed to test model robustness. The base case model estimated total Medicare and inpatient costs of $5,152,342 and $1,435,644, respectively (N = 1,000). When base case model costs were compared to results of each extended model scenario, overall Medicare cost savings (range 0.3-1.9%) and inpatient cost savings (range 1.2-5.7%) were observed. The one-way sensitivity analysis indicated that results were sensitive to PTR for adherent and nonadherent patients and the factor used to increase adherence rate and PTR associated with adherence in the hypothetical scenarios. However, cost savings in overall Medicare costs and inpatient costs were still noted. Increasing phosphate binder adherence and improving phosphorus control were associated with increased cost savings in total Medicare costs and inpatient costs.

  10. Experimental Investigation of Bio-Sealants Used for Pavement Preservation and Development of a New Strength Test for Asphalt Binders at Low Temperature

    NASA Astrophysics Data System (ADS)

    Ghosh, Debaroti

    Surface treatment using sealants as a mean of pavement preservation is an important tool for cost-effectively extending service life of pavement. Sealants have become an important tool for cost-effectively extending the service life pavements. Due to the combined negative effects of asphalt aging and thermal cracking, it is always more challenging to choose an appropriate preservation technique for pavements built in cold-regions. Asphalt aging and thermal cracking negatively affect pavements built in cold climates. Therefore, it is important to evaluate the effects of sealants in laboratory conditions before application in the field to ensure effective performance. However, preservation activities cannot effectively address major distresses, such as low-temperature cracking, that can occur when the pavement was built from the very beginning with less durable materials. Therefore, an essential requirement to mitigate low-temperature cracking of pavements for asphalt materials used in the construction of pavement built in cold- regions is ensuring proper fracture properties of the asphalt materials used in construction. This study has two parts. In the first part, a laboratory evaluation of the effects of adding bio-sealants to both asphalt binder and mixture is performed. The goal is to obtain relevant properties of treated asphalt materials to understand the mechanism by which sealants improve pavement performance. For asphalt binders, a dynamic shear rheometer and a bending beam rheometer were used to obtain rheological properties of treated and untreated asphalt binders. For asphalt mixtures, field cores from both untreated and treated sections were collected and thin beam specimens were prepared from the cores to compare the creep and strength properties of the field-treated and laboratory-treated mixture. It is observed that the oil-based sealants have a significant softening effect on the control binder compared to the water-based sealant and traditional emulsion. Oil-based sealants increased rutting and fatigue potential of the binder and helped the low-temperature cracking resistance. For asphalt mixtures, different trends are observed for the field samples compared to the laboratory prepared samples. Similar to binder results, significant differences are observed between the asphalt mixtures treated with oil-based and water-based sealants, respectively. Additional analyses were performed to better understand the sealant effects. Fourier transform infrared spectroscopy (FTIR) analysis showed that the sealant products could not be detected in mixture samples collected from the surface of the treated section. Semi-empirical Hirsch model was able to predict asphalt mixture creep stiffness from binder stiffness. The results of a distress survey of the test sections correlated well with the laboratory findings. In the second part, a news binder strength testing method is proposed with the goal to provide an effective tool for selecting asphalt binders that are crack resistant. A modified Bending Beam Rheometer (BBR) is used to perform three-point bending strength tests, at constant loading rate, on asphalt binder beams at low temperature. Based on the results, a protocol for selecting the most crack resistant material from binders with similar rheological properties is proposed.

  11. Evaluation of the physicochemical properties and compaction behavior of melt granules produced in microwave-induced and conventional melt granulation in a single pot high shear processor.

    PubMed

    Loh, Z H; Sia, B Y; Heng, Paul W S; Lee, C C; Liew, Celine V

    2011-12-01

    Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.

  12. Equivalent Expressions Using CAS and Paper-and-Pencil Techniques

    ERIC Educational Resources Information Center

    Fonger, Nicole L.

    2014-01-01

    How can the key concept of equivalent expressions be addressed so that students strengthen their representational fluency with symbols, graphs, and numbers? How can research inform the synergistic use of both paper-and-pencil analysis and computer algebra systems (CAS) in a classroom learning environment? These and other related questions have…

  13. One-to-One Play Promotes Numerical Equivalence Concepts

    ERIC Educational Resources Information Center

    Mix, Kelly S.; Moore, Julie A.; Holcomb, Erin

    2011-01-01

    Young children spontaneously engage in a variety of one-to-one correspondence activities during play. The present study tested whether one of these activities--pairing objects with containers--supported the development of numerical equivalence judgments. Three-year-olds were given sets of toys to take home. In one condition, the toys were…

  14. Writing on the Threshold: Investigating New Media Concerns in Composition Textbooks

    ERIC Educational Resources Information Center

    Etlinger, Sarah A.

    2012-01-01

    This dissertation examines three recent first-year composition textbooks' treatments of new media. These textbooks treat new media as equivalent to print media; I offer "media equivalency" to describe the problem. This concept suggests that one medium is understood by the same methods as another. I argue that the media equivalency…

  15. Elastomeric binders for electrodes. [in secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D. H.; Somoano, R. B.

    1983-01-01

    The poor mechanical integrity of the cathode represents an important problem which affects the performance of ambient temperature secondary lithium cells. Repeated charge of a TiS2 cathode may give rise to stresses which disturb the electrode structure and can contribute to capacity loss. An investigation indicates that the use of an inelastic binder material, such as Teflon, aggravates the problem, and can lead to electrode disruption and poor TiS2 particle-particle contact. The feasibility of a use of elastomers as TiS2 binder materials has, therefore, been explored. It was found that elastomeric binders provide an effective approach for simplifying rechargeable cathode fabrication. A pronounced improvement in the mechanical integrity of the cathode structure contributes to a prolonged cycle life.

  16. Composition for forming an optically transparent, superhydrophobic coating

    DOEpatents

    Simpson, John T.; Lewis, Linda A.

    2015-12-29

    A composition for producing an optically clear, well bonded superhydrophobic coating includes a plurality of hydrophobic particles comprising an average particle size of about 200 nm or less, a binder at a binder concentration of from about 0.1 wt. % to about 0.5 wt. %, and a solvent. The hydrophobic particles may be present in the composition at a particle concentration of from about 0.1 wt. % to about 1 wt. %. An optically transparent, superhydrophobic surface includes a substrate, a plurality of hydrophobic particles having an average particle size of about 200 nm or less dispersed over the substrate, and a discontinuous binder layer bonding the hydrophobic particles to the substrate, where the hydrophobic particles and the binder layer form an optically transparent, superhydrophobic coating.

  17. The micromechanics model analysis of the viscosity regulation of ultra-high strength concrete with low viscosity

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.

    2017-02-01

    The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.

  18. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    NASA Astrophysics Data System (ADS)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  19. Die Starter: A New System to Manage Early Feasibility in Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Narainen, Rodrigue; Porzner, Harald

    2016-08-01

    Die Starter, a new system developed by ESI Group, allows the user to drastically reduce the number of iterations during the early tool process feasibility. This innovative system automatically designs the first quick die face, generating binder and addendum surfaces (NURBS surfaces) by taking account the full die process. Die Starter also improves the initial die face based on feasibility criteria (avoiding splits, wrinkles) by automatically generating the geometrical modifications of the binder and addendum and the bead restraining forces with minimal material usage. This paper presents a description of the new system and the methodology of Die Starter. Some industrial examples are presented from the part geometry to final die face including automatic developed flanges, part on binder and inner binder.

  20. The Use of Instructional Animations in a College Algebra Course: Can It Facilitate Learning of Concepts and Skill Development?

    ERIC Educational Resources Information Center

    Serfaty de Markus, Alicia

    2018-01-01

    This quasi-treatment study, using a non-equivalent group design, explored how a set of animations related to various concepts in algebra impacted students' ability to learn as measured by changes in quiz and test scores. The concepts that were investigated were addition and subtraction of rational expressions, solving equations involving rational…

  1. Negotiating for more: the multiple equivalent simultaneous offer.

    PubMed

    Heller, Richard E

    2014-02-01

    Whether a doctor, professional baseball manager, or a politician, having successful negotiation skills is a critical part of being a leader. Building upon prior journal articles on negotiation strategy, the author presents the concept of the multiple equivalent simultaneous offer (MESO). The concept of a MESO is straightforward: as opposed to making a single offer, make multiple offers with several variables. Each offer alters the different variables, such that the end result of each offer is equivalent from the perspective of the party making the offer. Research has found several advantages to the use of MESOs. For example, using MESOs, an offer was more likely to be accepted, and the counterparty was more likely to be satisfied with the negotiated deal. Additional benefits have been documented as well, underscoring why a prepared radiology business leader should understand the theory and practice of MESO. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. The Multimedia Piers-Harris Children's Self-Concept Scale 2: Its Psychometric Properties, Equivalence with the Paper-and-Pencil Version, and Respondent Preferences.

    PubMed

    Flahive, Mon-hsin Wang; Chuang, Ying-Chih; Li, Chien-Mo

    2015-01-01

    A multimedia version of Piers-Harris Children's Self-Concept Scale 2 (Piers-Harris 2) was created with audio and cartoon animation to facilitate the measurement of self-concept among younger children. This study aimed to assess the psychometric qualities of the computer version of Piers-Harris 2 scores, examine its score equivalence with the paper-and-pencil version, and survey the respondent preference of the two versions. Two hundred and forty eight Taiwanese students from the first to fourth grade were recruited. In regard to the psychometric properties, high internal consistency (α = .91) was found for the total score of multimedia Piers-Harris 2. High interscale correlations (.77 to .83) of the multimedia Piers-Harris 2 scores and the results of confirmatory factor analysis suggested the multimedia Piers-Harris 2 contained good structural characteristics. The scores of the multimedia Piers-Harris 2 also had significant correlations with the scores of the Elementary School Children's Self Concept Scale. The equality of convergence and criterion-related validities of Piers-Harris 2 scores for the multimedia and paper-and-pencil versions and the results of ICCs between the scores of the multimedia and paper-and-pencil Piers-Harris 2 suggested their high level of equivalence. Participants showed more positive attitudes towards the multimedia version.

  3. The Multimedia Piers-Harris Children's Self-Concept Scale 2: Its Psychometric Properties, Equivalence with the Paper-and-Pencil Version, and Respondent Preferences

    PubMed Central

    Flahive, Mon-hsin Wang; Chuang, Ying-Chih; Li, Chien-Mo

    2015-01-01

    A multimedia version of Piers-Harris Children's Self-Concept Scale 2 (Piers-Harris 2) was created with audio and cartoon animation to facilitate the measurement of self-concept among younger children. This study aimed to assess the psychometric qualities of the computer version of Piers-Harris 2 scores, examine its score equivalence with the paper-and-pencil version, and survey the respondent preference of the two versions. Two hundred and forty eight Taiwanese students from the first to fourth grade were recruited. In regard to the psychometric properties, high internal consistency (α = .91) was found for the total score of multimedia Piers-Harris 2. High interscale correlations (.77 to .83) of the multimedia Piers-Harris 2 scores and the results of confirmatory factor analysis suggested the multimedia Piers-Harris 2 contained good structural characteristics. The scores of the multimedia Piers-Harris 2 also had significant correlations with the scores of the Elementary School Children’s Self Concept Scale. The equality of convergence and criterion-related validities of Piers-Harris 2 scores for the multimedia and paper-and-pencil versions and the results of ICCs between the scores of the multimedia and paper-and-pencil Piers-Harris 2 suggested their high level of equivalence. Participants showed more positive attitudes towards the multimedia version. PMID:26252499

  4. Concept Learning versus Problem Solving: Is There a Difference?

    ERIC Educational Resources Information Center

    Nurrenbern, Susan C.; Pickering, Miles

    1987-01-01

    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  5. On The Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Fiske, Michael; Edmunson, Jennifer; Khoshnevis, Behrokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in-situ materials will become increasingly critical. As man's presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in-situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. This is important because gamma and particle radiation constitute a serious but reducible threat to long-term survival of human beings, electronics, and other materials in space environments. Also, it is anticipated that surface structures will constitute the primary mass element of lunar or Martian launch requirements. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for self-sufficiency necessary for long-duration habitation. Previously, under the auspices of the MSFC In Situ Fabrication and Repair (ISFR) project and more recently, under the joint MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in situ resources. One such technology, known as Contour Crafting (additive construction), is shown in Figure 1, along with a typical structure fabricated using this technology. This paper will present the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using the Contour Crafting process. This process, conceived initially for rapid development of cementitious structures on Earth, also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and imported binder material or binders developed from in situ materials. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. These binder materials have resulted from extensive evaluation and include both "imported" binder materials that might be launched from Earth as well as some binder materials that can theoretically also be derived from existing regolith materials. They were chosen to 1) reduce penetrating radiation as much as possible, primarily with hydrogen-bearing polymers, 2) attempt to provide an air-tight structure, 3) sufficiently mix and adsorb to regolith grains for strength, 4) maximize tolerance to day-night thermal cycling, 5) possibly increase electrical conductivity to dissipate any accumulated static charge, and 6) ease their application on planetary surfaces (specifically, the accommodation of reduced atmosphere and lack of heat sinks). Some of these materials have been tested with respect to radiation mitigation, micrometeorite resistance, and resistance to larger, slower-traveling pieces of regolith impinging on the surface, simulating nearby launch and landing activities. Conceptual designs for a Continuous Feedstock Delivery/Mixing System (CFDMS) will also be presented and future planned activities will be discussed as well.

  6. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1982-01-01

    The development of a rugged portable instrument to evaluate dose and dose equivalent is described. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume was operated satisfactorily for over a year. The basic elements of the electronic system were designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument was selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway.

  7. Transformation to equivalent dimensions—a new methodology to study earthquake clustering

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw

    2014-05-01

    A seismic event is represented by a point in a parameter space, quantified by the vector of parameter values. Studies of earthquake clustering involve considering distances between such points in multidimensional spaces. However, the metrics of earthquake parameters are different, hence the metric in a multidimensional parameter space cannot be readily defined. The present paper proposes a solution of this metric problem based on a concept of probabilistic equivalence of earthquake parameters. Under this concept the lengths of parameter intervals are equivalent if the probability for earthquakes to take values from either interval is the same. Earthquake clustering is studied in an equivalent rather than the original dimensions space, where the equivalent dimension (ED) of a parameter is its cumulative distribution function. All transformed parameters are of linear scale in [0, 1] interval and the distance between earthquakes represented by vectors in any ED space is Euclidean. The unknown, in general, cumulative distributions of earthquake parameters are estimated from earthquake catalogues by means of the model-free non-parametric kernel estimation method. Potential of the transformation to EDs is illustrated by two examples of use: to find hierarchically closest neighbours in time-space and to assess temporal variations of earthquake clustering in a specific 4-D phase space.

  8. Equivalent air depth: fact or fiction.

    PubMed

    Berghage, T E; McCraken, T M

    1979-12-01

    In mixed-gas diving theory, the equivalent air depth (EAD) concept suggests that oxygen does not contribute to the total tissue gas tension and can therefore be disregarded in calculations of the decompression process. The validity of this assumption has been experimentally tested by exposing 365 rats to various partial pressures of oxygen for various lengths of time. If the EAD assumption is correct, under a constant exposure pressure each incremental change in the oxygen partial pressure would produce a corresponding incremental change in pressure reduction tolerance. Results of this study suggest that the EAD concept does not adequately describe the decompression advantages obtained from breathing elevated oxygen partial pressures. The authors suggest that the effects of breathing oxygen vary in a nonlinear fashion across the range from anoxia to oxygen toxicity, and that a simple inert gas replacement concept is no longer tenable.

  9. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  10. Economic Evaluation of Sevelamer versus Calcium-Based Phosphate Binders in Hemodialysis Patients: A Secondary Analysis using Centers for Medicare & Medicaid Services Data

    PubMed Central

    Fan, Qiao; Weinhandl, Eric; Liu, Jiannong

    2009-01-01

    Background and objectives: A secondary analysis of the Dialysis Clinical Outcomes Revisited (DCOR) trial suggested that sevelamer reduced hospitalizations relative to calcium-based phosphate binders. However, whether changed medical costs associated with reduced hospitalizations or other medical services offset the higher cost of sevelamer is unclear. This DCOR secondary analysis aimed to (1) evaluate Medicare total, inpatient, outpatient, skilled nursing facility, and other costs in sevelamer-treated versus calcium-treated patients; (2) examine Medicare costs in specific categories to determine cost drivers; and (3) estimate and incorporate sevelamer and calcium binder costs. Design, setting, participants, & measurements: DCOR trial participants were linked to the Centers for Medicare & Medicaid Services ESRD database. Medicare costs for 1895 dosed Medicare-primary-payer participants were evaluated. Phosphate binder costs were incorporated. Costs were indexed to 2001 (study base year). Sensitivity analyses were performed with randomized participants, two follow-up periods, and 2004 as index year. Results: Inflation-adjusted Medicare per member per month (PMPM) costs were lower for sevelamer-treated than for calcium-treated participants by a mean differential of $199 PMPM (mean, $5236 versus $5435; median, $4653 versus $4933), mainly because of lower inpatient costs for the sevelamer group (mean, $1461 versus $1644; median, $909 versus $1144). However, after phosphate binder costs were incorporated, costs trended lower for calcium-treated than for sevelamer-treated patients (differential −$81, 95% confidence interval −$321 to $157 PMPM, using average wholesale price; −$25, −$256 to $213 PMPM, using wholesale acquisition cost). Conclusions: Sevelamer reduced inpatient Medicare costs compared with calcium binders. However, when binder costs were added, overall PMPM costs favored calcium-treated over sevelamer-treated participants. PMID:19833904

  11. Effect of Warm Asphalt Additive on the Creep and Recovery Behaviour of Aged Binder Containing Waste Engine Oil

    NASA Astrophysics Data System (ADS)

    Hassan, Norhidayah Abdul; Kamaruddin, Nurul Hidayah Mohd; Rosli Hainin, Mohd; Ezree Abdullah, Mohd

    2017-08-01

    The use of waste engine oil as an additive in asphalt mixture has been reported to be able to offset the stiffening effect caused by the recycled asphalt mixture. Additionally, the fumes and odor of the waste engine oil has caused an uncomfortable condition for the workers during road construction particularly at higher production temperature. Therefore, this problem was addressed by integrating chemical warm asphalt additive into the mixture which functions to reduce the mixing and compaction temperature. This study was initiated by blending the additive in the asphalt binder of bitumen penetration grade 80/100 prior to the addition of pavement mixture. The effect of chemical warm asphalt additive, Rediset WMX was investigated by modifying the aged binder containing waste engine oil with 0%, 1%, 2% and 3% by weight of the binder. The samples were then tested for determining the rutting behaviour under different loading stress levels of 3Pa (low), 10Pa (medium) and 50Pa (high) using Dynamic Shear Rheometer (DSR). A reference temperature of 60 °C was fixed to reflect the maximum temperature of the pavement. The results found that the addition of Rediset did not affect the creep and recovery behavior of the modified binder under different loading. On the other hand, 2% Rediset resulted a slight decrease in its rutting resistance as shown by the reduction of non-recoverable compliance under high load stress. However, overall, the inclusion of chemical warm asphalt additive to the modified binder did not adversely affect the rutting resistance which could be beneficial in lowering the temperature of asphalt production and simultaneously not compromising the binder properties.

  12. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    NASA Astrophysics Data System (ADS)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  13. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feizollahi, F.; Shropshire, D.

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less

  14. Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.

    2013-01-01

    Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.

  15. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    DOEpatents

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  16. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    PubMed

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  17. Collagen-based proteinaceous binder-pigment interaction study under UV ageing conditions by MALDI-TOF-MS and principal component analysis.

    PubMed

    Romero-Pastor, Julia; Navas, Natalia; Kuckova, Stepanka; Rodríguez-Navarro, Alejandro; Cardell, Carolina

    2012-03-01

    This study focuses on acquiring information on the degradation process of proteinaceous binders due to ultra violet (UV) radiation and possible interactions owing to the presence of historical mineral pigments. With this aim, three different paint model samples were prepared according to medieval recipes, using rabbit glue as proteinaceus binders. One of these model samples contained only the binder, and the other two were prepared by mixing each of the pigments (cinnabar or azurite) with the binder (glue tempera model samples). The model samples were studied by applying Principal Component Analysis (PCA) to their mass spectra obtained with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). The complementary use of Fourier Transform Infrared Spectroscopy to study conformational changes of secondary structure of the proteinaceous binder is also proposed. Ageing effects on the model samples after up to 3000 h of UV irradiation were periodically analyzed by the proposed approach. PCA on MS data proved capable of identifying significant changes in the model samples, and the results suggested different aging behavior based on the pigment present. This research represents the first attempt to use this approach (PCA on MALDI-TOF-MS data) in the field of Cultural Heritage and demonstrates the potential benefits in the study of proteinaceous artistic materials for purposes of conservation and restoration. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges

    DOE PAGES

    Nandwana, Peeyush; Elliott, Amy M.; Siddel, Derek; ...

    2017-01-03

    Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition,more » existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. In conclusion, the role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.« less

  19. Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul A. Lessing; W.R. Cannon; Gerald W. Egeland

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 withmore » MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.« less

  20. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Haoxiang; He, Aiqin; Lu, Jidian; Sun, Minghao; He, Jiarong; Zhang, Lingzhi

    2016-12-01

    A water-soluble conductive composite binder consisting of carboxymethyl chitosan (CCTS) as a binder and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a conduction-promoting agent is reported for the LiFePO4 (LFP) cathode in Li-ion batteries. The introduction of conductive PEDOT:PSS as a conductive composite binder facilitates the formation of homogeneous and continuous conducting bridges throughout the electrode and raises the compaction density of the electrode sheet by decreasing the amounts of the commonly used conducting agent of acetylene black. The optimized replacement ratios of acetylene black with PEDOT:PSS (acetylene black/PEDOT:PSS = 1:1, by weight) are obtained by measuring electrical conductivity, peel strength and compaction density of the electrode sheets. The LFP half-cell with the optimized conductive binder exhibits better cycling and rate performance and more favorable electrochemical kinetics than that using only acetylene black conducting agent. The pilot application of PEDOT:PSS/CCTS binder in 10 Ah CCTS-LFP prismatic cell exhibits a comparable cycling performance, retaining 89.7% of capacity at 1 C/2 C (charge/discharge) rate as compared with 90% for commercial PVDF-LFP over 1000 cycles, and better rate capability than that of commercial PVDF-LFP, retaining 98% capacity of 1 C at 7 C rate as compared with 95.4% for PVDF-LFP.

  1. Experimental study of the maximum resolution and packing density achievable in sintered and non-sintered binder-jet 3D printed steel microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael

    2015-01-01

    Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into amore » bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.« less

  2. The Effect of Water or Wax-based Binders on the Chemical and Morphological Characteristics of the Margin Ceramic-Framework Interface.

    PubMed

    Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu

    2015-09-01

    This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.

  3. Lipid metabolism of commercial layers fed diets containing aflatoxin, fumonisin, and a binder.

    PubMed

    Siloto, E V; Oliveira, E F A; Sartori, J R; Fascina, V B; Martins, B A B; Ledoux, D R; Rottinghaus, G E; Sartori, D R S

    2013-08-01

    Aflatoxins (AF) and fumonisins (FU) are a major problem faced by poultry farmers, leading to huge economic losses. This experiment was conducted to determine the effects of AF (1 mg/kg of feed) and FU (25 mg/kg of feed), singly or in combination, on the lipid metabolism in commercial layers and investigate the efficacy of a commercial binder (2 kg/t of feed) on reducing the toxic effects of these mycotoxins. A total of 168 Hisex Brown layer hens, 37 wk of age, were randomized into a 3 × 2 + 1 factorial arrangement (3 diets with no binder containing AF, FU, and AF+FU; 3 diets with binder containing AF, FU, and AF+FU; and a control diet with no mycotoxins and binders), totaling 7 treatments. The hens contaminated with AF showed the characteristic effects of aflatoxicosis, such as a yellow liver, resulting from the accumulation of liver fat, lower values of plasma very low-density lipoprotein and triglycerides, and higher relative weight of the kidneys and liver. Hepatotoxic and nephrotoxic effects of FU were not observed in this study. On the other hand, the FU caused a reduction in small intestine length and an increase in abdominal fat deposition. The glucan-based binder prevented some of the deleterious effects of these mycotoxins, particularly the effects of AF on hepatic lipid metabolism, kidney relative weight, and FU in the small intestine.

  4. Graphene Oxides Used as a New "Dual Role" Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery.

    PubMed

    Shan, Changsheng; Wu, Kaifeng; Yen, Hung-Ju; Narvaez Villarrubia, Claudia; Nakotte, Tom; Bo, Xiangjie; Zhou, Ming; Wu, Gang; Wang, Hsing-Lin

    2018-05-09

    For the first time, we report that graphene oxide (GO) can be used as a new "dual-role" binder for Si nanoparticles (SiNPs)-based lithium-ion batteries (LIBs). GO not only provides a graphene-like porous 3D framework for accommodating the volume changes of SiNPs during charging/discharging cycles, but also acts as a polymer-like binder that forms strong chemical bonds with SiNPs through its Si-OH functional groups to trap and stabilize SiNPs inside the electrode. Leveraging this unique dual-role of GO binder, we fabricated GO/SiNPs electrodes with remarkably improved performances as compared to using the conventional polyvinylidene fluoride (PVDF) binder. Specifically, the GO/SiNPs electrode showed a specific capacity of 2400 mA h g -1 at the 50th cycle and 2000 mA h g -1 at the 100th cycle, whereas the SiNPs/PVDF electrode only showed 456 mAh g -1 at the 50th cycle and 100 mAh g -1 at 100th cycle. Moreover, the GO/SiNPs film maintained its structural integrity and formed a stable solid-electrolyte interphase (SEI) film after 100 cycles. These results, combined with the well-established facile synthesis of GO, indicate that GO can be an excellent binder for developing high performance Si-based LIBs.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    K., S C; M., T C

    Plastic bonded explosives (PBX) generally consist of 85 - 95 % by weight energetic material, such as HMX, and 5 - 15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX {beta}-phase to {delta}-phase transition in PBX 9501 is similar to that inmore » neat HMX. However, in the presence of the PBX 9501 binder, {delta}-phase HMX readily converts back to {beta}-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of {delta}-phase to {beta}-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the surface molecules of the {delta}-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the {delta}-phase to {beta}-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.« less

  6. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  7. Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit

    NASA Astrophysics Data System (ADS)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2017-09-01

    Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.

  8. Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries

    DOE PAGES

    Zhao, Hui; Wei, Yang; Wang, Cheng; ...

    2018-01-15

    The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less

  9. Relating monolithic and granular leaching from contaminated soil treated with different cementitious binders.

    PubMed

    Kogbara, Reginald B; Al-Tabbaa, Abir; Stegemann, Julia A

    2013-01-01

    This work employed a clayey, silty, sandy gravel contaminated with a mixture of metals (Cd, Cu, Pb, Ni and Zn) and diesel. The contaminated soil was treated with 5 and 10% dosages of different cementitious binders. The binders include Portland cement, cement-fly ash, cement-slag and lime-slag mixtures. Monolithic leaching from the treated soils was evaluated over a 64-day period alongside granular leachability of 49- and 84-day old samples. Surface wash-off was the predominant leaching mechanism for monolithic samples. In this condition, with data from different binders and curing ages combined, granular leachability as a function of monolithic leaching generally followed degrees 4 and 6 polynomial functions. The only exception was for Cu, which followed the multistage dose-response model. The relationship between both leaching tests varied with the type of metal, curing age/residence time of monolithic samples in the leachant, and binder formulation. The results provide useful design information on the relationship between leachability of metals from monolithic forms of S/S treated soils and the ultimate leachability in the eventual breakdown of the stabilized/solidified soil.

  10. Investigating Deformation and Mesoscale Void Creation in HMX Based Composites using Tomography Based Grain Scale Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Walters, David J.; Luscher, Darby J.; Manner, Virginia; Yeager, John D.; Patterson, Brian M.

    2017-06-01

    The microstructure of plastic bonded explosives (PBXs) significantly affects their macroscale mechanical characteristics. Imaging and modeling of the mesoscale constituents allows for a detailed examination of the deformation of mechanically loaded PBXs. In this study, explosive composites, formulated with HMX crystals and various HTPB based polymer binders have been imaged using micro Computed Tomography (μCT). Cohesive parameters for simulation of the crystal/binder interface are determined by comparing numerical and experimental results of the delamination of a polymer bound bi-crystal system. Similarly, polycrystalline samples are discretized into a finite element mesh using the mesoscale geometry captured by in-situ μCT imaging. Experimentally, increasing the stiffness of the HTPB binder in the polycrystalline system resulted in a transition from ductile flow with little crystal/binder delamination to brittle behavior with increased void creation along the interfaces. Simulating the macroscale compression of these samples demonstrates the effects that the mesoscale geometry, cohesive properties, and binder stiffness have on the creation and distribution of interfacial voids. Understanding void nucleation is critical for modeling damage in these complex materials.

  11. Influence of selected test parameters on measured values during the MSCR test

    NASA Astrophysics Data System (ADS)

    Benešová, Lucie; Valentin, Jan

    2017-09-01

    One of today’s most commonly used test on a Dynamic Shear Rheometer (DSR) is the Multiple Stress Creep Recovery (MSCR) test. The test is described in the standard EN 16659, which is valid in the Czech Republic since October 2016. The principle of the test is based on repeated loading and recovering of a bitumen sample, according to which it is possible to determine the percentage of elastic recovery (R) and non-recoverable creep compliance (Jnr) of the bituminous binder. This method has been recently promoted as the most suitable test for assessing the resistance of bituminous binders to permanent deformation. The test is performed at higher temperatures and is particularly suitable for modified bituminous binders. The paper deals with the comparison of the different input parameters set on the DSR device - different levels of stress, temperature of test, the geometry of the measuring device and also a comparison of the results for a different number of loading cycles. The research study was focused mainly on modified bituminous binders, but to compare the MSCR test it is performed even with conventional paving grade binders.

  12. Battery components employing a silicate binder

    DOEpatents

    Delnick, Frank M [Albuquerque, NM; Reinhardt, Frederick W [Albuquerque, NM; Odinek, Judy G [Rio Rancho, NM

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  13. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  14. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  15. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  16. Dividing the Force Concept Inventory into two equivalent half-length tests

    NASA Astrophysics Data System (ADS)

    Han, Jing; Bao, Lei; Chen, Li; Cai, Tianfang; Pi, Yuan; Zhou, Shaona; Tu, Yan; Koenig, Kathleen

    2015-06-01

    The Force Concept Inventory (FCI) is a 30-question multiple-choice assessment that has been a building block for much of the physics education research done today. In practice, there are often concerns regarding the length of the test and possible test-retest effects. Since many studies in the literature use the mean score of the FCI as the primary variable, it would be useful then to have different shorter tests that can produce FCI-equivalent scores while providing the benefits of being quicker to administer and overcoming the test-retest effects. In this study, we divide the 1995 version of the FCI into two half-length tests; each contains a different subset of the original FCI questions. The two new tests are shorter, still cover the same set of concepts, and produce mean scores equivalent to those of the FCI. Using a large quantitative data set collected at a large midwestern university, we statistically compare the assessment features of the two half-length tests and the full-length FCI. The results show that the mean error of equivalent scores between any two of the three tests is within 3%. Scores from all tests are well correlated. Based on the analysis, it appears that the two half-length tests can be a viable option for score based assessment that need to administer tests quickly or need to measure short-term gains where using identical pre- and post-test questions is a concern.

  17. Incorporating the transverse profile of the wearing course into the control of the hot in-place recycling of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Makowska, Michalina; Huuskonen-Snicker, Eeva; Alanaatu, Pauli; Aromaa, Kalle; Savarnya, Abhishek; Pellinen, Terhi; Das, Animesh

    2018-05-01

    The hot in-place recycling (HIR) of asphalt concrete (AC) is one of the least CO2 emissive reuse techniques. It allows for 100% reuse of material in-situ in the same application, at a reduced need for the material transport to and back from the construction site, as well as the reduced price in comparison with the fresh wearing course overlay. Finland uses the technique predominantly to fill wheel path ruts caused by the studded tire abrasion, to retain structural capacity and prevent hydroplaning. During the HIR process, the aged AC material is heated up in-situ, milled to the approximate depth of 40 mm, blended with fresh AC admixture and rejuvenator. However, the amount of the aged material and the amount of the aged bitumen that undergoes rejuvenation depends on the pavement transverse profile. The rut depth, width and shape determine the minimum volume of admixture necessary for refill during the process in order to retain the structural capacity, as well as the amount of the aged binder requiring rejuvenation. In favor of achieving homogenous rheological properties in the final product, the proportion between the aged binder and the fresh binder should be controlled, as it influences the required amount of rejuvenator. Therefore, the rut cross-sectional area and furthermore, the rut volume is one of the previously unrecognized or ignored major variables of the hot in-place recycling process in Finland that should be incorporated to the HIR process control. This article demonstrates the methodology of incorporating the transverse road profile measurements by 17 vehicle-mounted laser sensors into the calculation of required rejuvenator amounts. This can be done during the procurement preparation phase or during the paving work as a continuous in-situ process control. In the rheological optimization the apparent Newtonian viscosity concept and the rotational viscosity are utilized in the viscosity based blending equation, which then allows the use of oily rejuvenators. The method reduces the need for aged pavement sampling compared with the determination of the calibration curve between rejuvenator concentration and the rheological response. Additionally, the apparent Newtonian viscosity corrects the complex viscosity by the phase angle derived correction factor, opening a previously unexplored opportunity of targeting desired viscoelastic characteristics. The approach is less sensitive to the frequencies and temperatures at which the shear measurements are conducted. This makes proposed calculative method of the desired proportioning of the aged binder, the fresh binder and the rejuvenator a promising tool for the industry. The combined algorithm presented allows for: the discrimination of sites where HIR type maintenance of pavement in question would result in a substandard product; the choice of the most promising material combination of the admixture and rejuvenator, as well as for the adjustment of the admixture and rejuvenator amount in-place.

  18. From the Laboratory to the Classroom: The Effects of Equivalence-Based Instruction on Neuroanatomy Competencies

    ERIC Educational Resources Information Center

    Fienup, Daniel M.; Mylan, Sanaa E.; Brodsky, Julia; Pytte, Carolyn

    2016-01-01

    Equivalence-based instruction (EBI) has been used to successfully teach college-level concepts in research laboratories, but few studies have examined the results of such instruction on classroom performance. The current study answered a basic question about the ordering of training stimuli as well as an applied question regarding the effects of…

  19. Maternal predictive factors for fetal congenital heart block in pregnant mothers positive for anti-SS-A antibodies.

    PubMed

    Tsuboi, Hiroto; Sumida, Takayuki; Noma, Hisashi; Yamagishi, Kazumasa; Anami, Ai; Fukushima, Kotaro; Horigome, Hitoshi; Maeno, Yasuki; Kishimoto, Mitsumasa; Takasaki, Yoshinari; Nakayama, Masahiro; Waguri, Masako; Sago, Haruhiko; Murashima, Atsuko

    2016-07-01

    To determine the maternal predictive factors for fetal congenital heart block (CHB) in pregnancy in mothers positive for anti-SS-A antibodies. The Research Team for Surveillance of Autoantibody-Exposed Fetuses and Treatment of Neonatal Lupus Erythematosus, the Research Program of the Japan Ministry of Health, Labor and Welfare, performed a national survey on pregnancy of mothers positive for anti-SS-A antibodies. We analyzed 635 pregnant mothers who tested positive for anti-SS-A antibodies before conception but had no previous history of fetal CHB. We performed univariate and multivariate analysis (models 1, 2, and 3 using different set of independent variables) investigated the relation between risk of fetal CHB and maternal clinical features. Of the 635 pregnant mothers, fetal CHB was detected in 16. Univariate analysis showed that fetal CHB associated with use of corticosteroids before conception (OR 3.72, p = 0.04), and negatively with use of corticosteroids (equivalent doses of prednisolone (PSL), at ≥10 mg/day) after conception before 16-week gestation (OR 0.17, p = 0.03). In multivariate analysis, model 1 identified the use of corticosteroids before conception (OR 4.28, p = 0.04) and high titer of anti-SS-A antibodies (OR 3.58, p = 0.02) as independent and significant risk factors, and model 3 identified use of corticosteroids (equivalent doses of PSL, at ≥10 mg/day) after conception before 16-week gestation as independent protective factor against the development of fetal CHB (OR 0.16, p = 0.03). Other maternal clinical features did not influence the development of fetal CHB. The results identified high titers of anti-SS-A antibodies and use of corticosteroids before conception as independent risk factors, and use of corticosteroids (equivalent doses of PSL, at ≥10 mg/day) after conception before 16-week gestation as an independent protective factor for fetal CHB.

  20. The cohesive law of particle/binder interfaces in solid propellants

    NASA Astrophysics Data System (ADS)

    Tan, H.

    2011-10-01

    Solid propellants are treated as composites with high volume fraction of particles embedded in the polymeric binder. A micromechanics model is developed to establish the link between the microscopic behavior of particle/binder interfaces and the macroscopic constitutive information. This model is then used to determine the tension/shearing coupled interface cohesive law of a redesigned solid rocket motor propellant, based on the experimental data of the stress-strain and dilatation-strain curves for the material under slow rate uniaxial tension.

  1. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2009-04-14

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  2. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2011-04-26

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  3. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Mann, Grace

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  4. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  5. High-discharge-rate lithium ion battery

    DOEpatents

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  6. Formation of polymer micro-agglomerations in ultralow-binder-content composite based on lunar soil simulant

    NASA Astrophysics Data System (ADS)

    Chen, Tzehan; Chow, Brian J.; Zhong, Ying; Wang, Meng; Kou, Rui; Qiao, Yu

    2018-02-01

    We report results from an experiment on high-pressure compaction of lunar soil simulant (LSS) mixed with 2-5 wt% polymer binder. The LSS grains can be strongly held together, forming an inorganic-organic monolith (IOM) with the flexural strength around 30-40 MPa. The compaction pressure, the number of loadings, the binder content, and the compaction duration are important factors. The LSS-based IOM remains strong from -200 °C to 130 °C, and is quite gas permeable.

  7. Fuel agglomerates and method of agglomeration

    DOEpatents

    Wen, Wu-Wey

    1986-01-01

    Solid fuel agglomerates are prepared of particulate coal or other carbonaceous material with a binder having a high humic acid or humate salt content. The humic acid is extracted from oxidized carbonaceous material with a mild aqueous alkali solution of, for instance, ammonia. The particulate material is blended with the extract which serves as the binder for the agglomerates. The water-resistant agglomerates are formed such as by pelletizing, followed by drying to remove moisture and solidify the humic acid binder throughout the agglomerate.

  8. Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening

    NASA Astrophysics Data System (ADS)

    Hsieh, Jui-Hua; Wang, Xiang S.; Teotico, Denise; Golbraikh, Alexander; Tropsha, Alexander

    2008-09-01

    The use of inaccurate scoring functions in docking algorithms may result in the selection of compounds with high predicted binding affinity that nevertheless are known experimentally not to bind to the target receptor. Such falsely predicted binders have been termed `binding decoys'. We posed a question as to whether true binders and decoys could be distinguished based only on their structural chemical descriptors using approaches commonly used in ligand based drug design. We have applied the k-Nearest Neighbor ( kNN) classification QSAR approach to a dataset of compounds characterized as binders or binding decoys of AmpC beta-lactamase. Models were subjected to rigorous internal and external validation as part of our standard workflow and a special QSAR modeling scheme was employed that took into account the imbalanced ratio of inhibitors to non-binders (1:4) in this dataset. 342 predictive models were obtained with correct classification rate (CCR) for both training and test sets as high as 0.90 or higher. The prediction accuracy was as high as 100% (CCR = 1.00) for the external validation set composed of 10 compounds (5 true binders and 5 decoys) selected randomly from the original dataset. For an additional external set of 50 known non-binders, we have achieved the CCR of 0.87 using very conservative model applicability domain threshold. The validated binary kNN QSAR models were further employed for mining the NCGC AmpC screening dataset (69653 compounds). The consensus prediction of 64 compounds identified as screening hits in the AmpC PubChem assay disagreed with their annotation in PubChem but was in agreement with the results of secondary assays. At the same time, 15 compounds were identified as potential binders contrary to their annotation in PubChem. Five of them were tested experimentally and showed inhibitory activities in millimolar range with the highest binding constant Ki of 135 μM. Our studies suggest that validated QSAR models could complement structure based docking and scoring approaches in identifying promising hits by virtual screening of molecular libraries.

  9. Cold in-place recycling characterization framework for single or multiple component binder systems

    NASA Astrophysics Data System (ADS)

    Cox, Benjamin C.

    Cold in-place recycling (CIR) is a pavement rehabilitation technique which has gained momentum in recent years. This momentum is due partly to its economic and sustainability characteristics, which has led to CIR market expansion. When pavement network deterioration is considered alongside increasing material costs, it is not beyond reason to expect demands on CIR to continue to increase. Historically, single component binder (SCB) systems, those with one stabilization binder (or two if the secondary binder dosage is 1% or less), have dominated the CIR market and could be considered the general state of practice. Common stabilization binders are either bituminous or cementitious. Two example SCB systems would be: 1) 3% portland cement, or 2) 3% asphalt emulsion with 1% hydrated lime. While traditional SCB systems have demonstrated positive economic and sustainability impacts, this dissertation focuses on multiple component binder (MCB) systems (bituminous and cementitious combined) which exhibit the potential to provide better overall economics and performance. Use of MCBs has the potential to alleviate SCB issues to some extent (e.g. cracking with cementitious SCBs, rutting with bituminous SCBs). Furthermore, to fairly represent both binders in an MCB system a universal design method which can accommodate multiple binder types is needed. The main objectives of this dissertation are to develop a universal CIR design framework and, using this framework, characterize multiple SCB and MCB systems. Approximately 1500 CIR specimens were tested herein along with approximately 300 asphalt concrete specimens which serve as a reference data set for CIR characterization. A case study of a high-traffic Mississippi CIR project which included cement SCB and emulsion SCB sections is also presented to support laboratory efforts. Individual components needed to comprise a universal design framework, such as curing protocols, were developed. SCB and MCB characterization indicated that cement SCBs yielded low cracking resistance, high rutting resistance, and lower costs. Emulsion SCBs yielded the opposite. MCBs demonstrated the ability to balance rutting, cracking, and economics. Overall, the universal framework presented appears promising as it could offer agencies flexibility and, in some cases, improved overall performance beyond that of current SCB design methods.

  10. Elucidation of the internal physical and chemical microstructure of pharmaceutical granules using X-ray micro-computed tomography, Raman microscopy and infrared spectroscopy.

    PubMed

    Crean, Barry; Parker, Andrew; Roux, Delphine Le; Perkins, Mark; Luk, Shen Y; Banks, Simon R; Melia, Colin D; Roberts, Clive J

    2010-11-01

    X-ray micro-computed tomography (XMCT) was used in conjunction with confocal Raman mapping to measure the intra-granular pore size, binder volumes and to provide spatial and chemical maps of internal granular components in α-lactose monohydrate granules formulated with different molecular weights of polyvinyl pyrrolidone (PVP). Infrared spectroscopy was used to understand the molecular association of binder domains. Granules were prepared by high-shear aqueous granulation from α-lactose monohydrate and PVP K29/32 or K90. XMCT was used to visualise the granule microstructure, intra-granular binder distribution and measure intra-granular porosity, which was subsequently related to intrusion porosimetry measurements. Confocal Raman microscopy and infrared microscopy were employed to investigate the distribution of components within the granule and explore the nature of binder substrate interactions. XMCT data sets of internal granule microstructure provided values of residual porosity in the lactose:PVP K29/32 and lactose:PVP K90 granules of 32.41 ± 4.60% and 22.40 ± 0.03%, respectively. The binder volumes of the lactose:PVP K29/32 and lactose:PVP K90 granules were 2.98 ± 0.10% and 3.38 ± 0.07%, respectively, and were attributed to PVP-rich binder domains within the granule. Confocal Raman microscopy revealed anisotropic domains of PVP between 2 μm and 20 μm in size surrounded by larger particles of lactose, in both granule types. Raman data showed that PVP domains contained various amounts of lactose, whilst IR microscopy determined that the PVP was molecularly associated with lactose, rather than residual water. The work shows that XMCT can be applied to investigate granular microstructure and resolve the porosity and the excipient and binder volumes. Combining this technique with vibrational techniques provides further structural information and aids the interpretations of the XMCT images. When used complementarily, these techniques highlighted that porosity and binder volume were the most significant microstructural differences between the α-lactose monohydrate granules formulated with the different grades of PVP. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. EFFICACY OF SERVO-CONTROLLED SPLANCHNIC VENOUS COMPRESSION IN THE TREATMENT OF ORTHOSTATIC HYPOTENSION. A RANDOMIZED COMPARISON WITH MIDODRINE

    PubMed Central

    Okamoto, Luis E.; Diedrich, André; Baudenbacher, Franz J.; Harder, René; Whitfield, Jonathan S.; Iqbal, Fahad; Gamboa, Alfredo; Shibao, Cyndya A.; Black, Bonnie K.; Raj, Satish R.; Robertson, David; Biaggioni, Italo

    2016-01-01

    Splanchnic venous pooling is a major hemodynamic determinant of orthostatic hypotension (OH), but is not specifically targeted by pressor agents, the mainstay of treatment. We developed an automated inflatable abdominal binder that provides sustained servo-controlled venous compression (40 mmHg) and can be activated only on standing. We tested the efficacy of this device against placebo and compared it to midodrine in nineteen autonomic failure patients randomized to receive either placebo, midodrine (2.5–10 mg) or placebo combined with binder on separate days in a single-blind, crossover study. Systolic blood pressure (SBP) was measured seated and standing before and 1-hour post-medication; the binder was inflated immediately before standing. Only midodrine increased seated SBP (31±5 vs. 9±4 placebo and 7±5 binder, P=0.003); whereas orthostatic tolerance (defined as area under the curve of upright SBP [AUCSBP]) improved similarly with binder and midodrine (AUCSBP, 195±35 and 197±41 vs. 19±38 mmHg*min for placebo, P=0.003). Orthostatic symptom burden decreased with the binder (from 21.9±3.6 to 16.3±3.1, P=0.032) and midodrine (from 25.6±3.4 to 14.2±3.3, P<0.001), but not with placebo (from 19.6±3.5 to 20.1±3.3, P=0.756). We also compared the combination of midodrine and binder, with midodrine alone. The combination produced a greater increase in orthostatic tolerance (AUCSBP, 326±65 vs. 140±53 mmHg*min for midodrine alone, P=0.028, n=21), and decreased orthostatic symptoms (from 21.8±3.2 to 12.9±2.9, P<0.001). In conclusion, servo-controlled abdominal venous compression with an automated inflatable binder is as effective as midodrine, the standard of care, in the management of OH. Combining both therapies produces greater improvement in orthostatic tolerance. PMID:27271310

  12. Cross-Genotypic Examination of Hepatitis C Virus Polymerase Inhibitors Reveals a Novel Mechanism of Action for Thumb Binders

    PubMed Central

    Eltahla, Auda A.; Tay, Enoch; Douglas, Mark W.

    2014-01-01

    Direct-acting antivirals (DAAs) targeting proteins encoded by the hepatitis C virus (HCV) genome have great potential for the treatment of HCV infections. However, the efficacy of DAAs designed to target genotype 1 (G1) HCV against non-G1 viruses has not been characterized fully. In this study, we investigated the inhibitory activities of nonnucleoside inhibitors (NNIs) against the HCV RNA-dependent RNA polymerase (RdRp). We examined the ability of six NNIs to inhibit G1b, G2a, and G3a subgenomic replicons in cell culture, as well as in vitro transcription by G1b and G3a recombinant RdRps. Of the six G1 NNIs, only the palm II binder nesbuvir demonstrated activity against G1, G2, and G3 HCV, in both replicon and recombinant enzyme models. The thumb I binder JTK-109 also inhibited G1b and G3a replicons and recombinant enzymes but was 41-fold less active against the G2a replicon. The four other NNIs, which included a palm I binder (setrobuvir), two thumb II binders (lomibuvir and filibuvir), and a palm β-hairpin binder (tegobuvir), all showed at least 40-fold decreases in potency against G2a and G3a replicons and the G3a enzyme. This antiviral resistance was largely conferred by naturally occurring amino acid residues in the G2a and G3a RdRps that are associated with G1 resistance. Lomibuvir and filibuvir (thumb II binders) inhibited primer-dependent but not de novo activity of the G1b polymerase. Surprisingly, these compounds instead specifically enhanced the de novo activity at concentrations of ≥100 nM. These findings highlight a potential differential mode of RdRp inhibition for HCV NNIs, depending on their prospective binding pockets, and also demonstrate a surprising enhancement of de novo activity for thumb RdRp binders. These results also provide a better understanding of the antiviral coverage for these polymerase inhibitors, which will likely be used in future combinational interferon-free therapies. PMID:25246395

  13. Binder characterisation of mortars used at different ages in the San Lorenzo church in Milan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Luca, E-mail: luca.bertolini@polimi.it; Carsana, Maddalena, E-mail: maddalena.carsana@polimi.it; Gastaldi, Matteo, E-mail: matteo.gastaldi@polimi.it

    The paper describes a study on the mortars of the basilica of San Lorenzo in Milan, which was carried out to support an archaeological study aimed at dating and documenting the construction techniques used throughout the centuries. The church, which was founded between the 4th and 5th century, at the end of the period when Milan was the capital of the Roman Empire, was subjected in time to extensions, collapses and reconstructions that lasted until the Renaissance period and even later on. Thanks to the good state of conservation, San Lorenzo church is a collection of materials and construction techniquesmore » throughout a period of more than a millennium. Mortars were investigated in order to compare the binders used for structural elements built in different historical ages. From an archaeological study, samples of mortars attributed to the late Roman period, the Middle Ages and the Renaissance were available. The binder of each sample was separated by the aggregates and it was characterised on the basis of X-ray diffraction analysis, thermogravimetric analysis and scanning electron microscopy. Constituents of the binder were identified and their origin is discussed in order to investigate if they could be attributed to the original composition of the binder or to possible alteration in time due to atmospheric pollution. Results show that, even though the binder is mainly based on magnesian lime, there are significant differences in the microstructure of the binding matrix used in mortars ascribed to the different historical periods. In the Roman period, in correspondence of the structural elements that required higher strength, also hydraulic cocciopesto mortars were detected. Gypsum was found in most samples, which was maybe added intentionally. - Highlights: • Binders of mortars of San Lorenzo church in Milan were investigated. • Roman, Middle Ages and Renaissance samples were studied by XRD, TG and SEM. • Magnesian-lime binders containing silico-aluminates were used in all periods. • Cocciopesto hydraulic mortars were used only in the Roman period. • Gypsum was found in most samples, which was maybe added intentionally.« less

  14. Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder.

    PubMed

    Wohlleben, Wendel; Waindok, Hubert; Daumann, Björn; Werle, Kai; Drum, Melanie; Egenolf, Heiko

    2017-08-07

    Man-made vitreous fibres (MMVF) are produced on a large scale for thermal insulation purposes. After extensive studies of fibre effects in the 1980ies and 1990ies, the composition of MMVF was modified to reduce the fibrotic and cancerogenic potential via reduced biopersistence. However, occupational risks by handling, applying, disposing modern MMVF may be underestimated as the conventional regulatory classification -combining composition, in-vivo clearance and effects- seems to be based entirely on MMVF after removal of the binder. Here we report the oxide composition of 23 modern MMVF from Germany, Finland, UK, Denmark, Russia, China (five different producers) and one pre-1995 MMVF. We find that most of the investigated modern MMVF can be classified as "High-alumina, low-silica wool", but several were on or beyond the borderline to "pre-1995 Rock (Stone) wool". We then used well-established flow-through dissolution testing at pH 4.5 and pH 7.4, with and without binder, at various flow rates, to screen the biosolubility of 14 MMVF over 32 days. At the flow rate and acidic pH of reports that found 47 ng/cm 2 /h dissolution rate for reference biopersistent MMVF21 (without binder), we find rates from 17 to 90 ng/cm 2 /h for modern MMVF as customary in trade (with binder). Removing the binder accelerates the dissolution significantly, but not to the level of reference biosoluble MMVF34. We finally simulated handling or disposing of MMVF and measured size fractions in the aerosol. The respirable fraction of modern MMVF is low, but not less than pre-1995 MMVF. The average composition of modern stone wool MMVF is different from historic biopersistent MMVF, but to a lesser extent than expected. The dissolution rates measured by abiotic methods indicate that the binder has a significant influence on dissolution via gel formation. Considering the content of respirable fibres, these findings imply that the risk assessment of modern stone wool may need to be revisited based on in-vivo studies of MMFV as marketed (with binder).

  15. Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Le, Daniel

    2008-01-01

    This paper introduces a tool called BOSS (Boom Optimization using Smoothest Shape modifications). BOSS utilizes interactive inverse design optimization to develop a fuselage shape that yields a low-boom aircraft configuration. A fundamental reason for developing BOSS is the need to generate feasible low-boom conceptual designs that are appropriate for further refinement using computational fluid dynamics (CFD) based preliminary design methods. BOSS was not developed to provide a numerical solution to the inverse design problem. Instead, BOSS was intended to help designers find the right configuration among an infinite number of possible configurations that are equally good using any numerical figure of merit. BOSS uses the smoothest shape modification strategy for modifying the fuselage radius distribution at 100 or more longitudinal locations to find a smooth fuselage shape that reduces the discrepancies between the design and target equivalent area distributions over any specified range of effective distance. For any given supersonic concept (with wing, fuselage, nacelles, tails, and/or canards), a designer can examine the differences between the design and target equivalent areas, decide which part of the design equivalent area curve needs to be modified, choose a desirable rate for the reduction of the discrepancies over the specified range, and select a parameter for smoothness control of the fuselage shape. BOSS will then generate a fuselage shape based on the designer's inputs in a matter of seconds. Using BOSS, within a few hours, a designer can either generate a realistic fuselage shape that yields a supersonic configuration with a low-boom ground signature or quickly eliminate any configuration that cannot achieve low-boom characteristics with fuselage shaping alone. A conceptual design case study is documented to demonstrate how BOSS can be used to develop a low-boom supersonic concept from a low-drag supersonic concept. The paper also contains a study on how perturbations in the equivalent area distribution affect the ground signature shape and how new target area distributions for low-boom signatures can be constructed using superposition of equivalent area distributions derived from the Seebass-George-Darden (SGD) theory.

  16. The Convergence of Kuhn and Cognitive Psychology.

    ERIC Educational Resources Information Center

    Gibson, Bradley S.

    Psychology stands in the paradoxical position of adhering to outmoded conceptions of knowledge while being looked upon as providing an instrument for a more adequate conception. Cognitive psychology's schema theory provides a conceptual equivalent to Kuhn's learned perception of similarity and the related notion of exemplar, which serves to…

  17. The Concept of Fractional Number among Hearing-Impaired Students.

    ERIC Educational Resources Information Center

    Titus, Janet C.

    This study investigated hearing-impaired students' understanding of the mathematical concept of fractional numbers, as measured by their ability to determine the order and equivalence of fractional numbers. Twenty-one students (ages 10-16) with hearing impairments were compared with 26 students with normal hearing. The study concluded that…

  18. 78 FR 26376 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... Person: Roberta Binder, Ph.D., Scientific Review Officer, Scientific Review Program, Division of... Person: Roberta Binder, Ph.D., Scientific Review Officer, Scientific Review Program, Division of...

  19. A molecular dynamics study of the role of molecular water on the structure and mechanics of amorphous geopolymer binders.

    PubMed

    Sadat, Mohammad Rafat; Bringuier, Stefan; Asaduzzaman, Abu; Muralidharan, Krishna; Zhang, Lianyang

    2016-10-07

    In this paper, molecular dynamics simulations are used to study the effect of molecular water and composition (Si/Al ratio) on the structure and mechanical properties of fully polymerized amorphous sodium aluminosilicate geopolymer binders. The X-ray pair distribution function for the simulated geopolymer binder phase showed good agreement with the experimentally determined structure in terms of bond lengths of the various atomic pairs. The elastic constants and ultimate tensile strength of the geopolymer binders were calculated as a function of water content and Si/Al ratio; while increasing the Si/Al ratio from one to three led to an increase in the respective values of the elastic stiffness and tensile strength, for a given Si/Al ratio, increasing the water content decreased the stiffness and strength of the binder phase. An atomic-scale analysis showed a direct correlation between water content and diffusion of alkali ions, resulting in the weakening of the AlO 4 tetrahedral structure due to the migration of charge balancing alkali ions away from the tetrahedra, ultimately leading to failure. In the presence of water molecules, the diffusion behavior of alkali cations was found to be particularly anomalous, showing dynamic heterogeneity. This paper, for the first time, proves the efficacy of atomistic simulations for understanding the effect of water in geopolymer binders and can thus serve as a useful design tool for optimizing composition of geopolymers with improved mechanical properties.

  20. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, Susan A., E-mail: s.bernal@sheffield.ac.uk; Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD; Provis, John L., E-mail: j.provis@sheffield.ac.uk

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclearmore » magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.« less

  1. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  2. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  3. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.

    PubMed

    Jin, Fei; Al-Tabbaa, Abir

    2014-12-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. International Validation of Two Human Recombinant Estrogen ...

    EPA Pesticide Factsheets

    An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay using a ligand-binding domain of the human ER. Twenty three compounds were tested in 6 laboratories for the FW assay and 5 for the CERJ assay, which included three controls (used with every run), 9 uncoded, and 14 coded chemicals across 3 subtasks. The overall goal of this validation study was to demonstrate the ability of each of the two assays to reliably classify the test chemicals as binders or non-binders. Laboratories had little trouble with the ER binders that produced a full binding curve when using either the CERI or FW assays. As is typical with all ER competitive binding assays, the weak binders proved to be more challenging. However, overall results from both the FW and CERI assays were consistent and in agreement with expected classifications regardless of the form of the hrER (i.e., full length ER versus an ER ligand binding domain) or the subtle differences in the protocols for conducting each assay. The reproducibility and accuracy for classification of chemicals as potential ER binders and non- binders using the FW and CERI hrER binding assays were comparable to that of the U.S.EPA’s existing ER binding test guideline OPPTS 890.1250, while providing an improved, highe

  5. Use of hydraulic binders for reducing sulphate leaching: application to gypsiferous soil sampled in Ile-de-France region (France).

    PubMed

    Trincal, Vincent; Thiéry, Vincent; Mamindy-Pajany, Yannick; Hillier, Stephen

    2018-06-01

    Polluted soils are a serious environmental risk worldwide and consist of millions of tons of mineral waste to be treated. In order to ensure their sustainable management, various remediation options must be considered. Hydraulic binder treatment is one option that may allow a stabilisation of pollution and thus offer a valorisation as secondary raw materials rather than considering them as waste. In this study, we focused on sulphate-polluted soil and tested the effectiveness of several experimental hydraulic binders. The aim was to transform gypsum into ettringite, a much less soluble sulphate, and therefore to restrict the potential for sulphate pollutant release. The environmental assessment of five formulations using hydraulic binders was compared to the gypsiferous soil before treatment (contaminated in sulphate). The approach was to combine leaching tests with mineralogical quantifications using among others thermogravimetric and XRD methods. In the original soil and in the five formulations, leaching tests indicate sulphate release above environmental standards. However, hydraulic binders promote ettringite formation, as well as a gypsum content reduction as observed by SEM. The stabilisation of sulphates is, however, insufficient, probably as a result of the very high content of gypsum in the unusual soil used. The mineralogical reactions highlighted during the hydration of hydraulic binders are promising; they could pave the way for the development of new industrial mixtures that would have a positive environmental impact by allowing reuse of soils that would otherwise be classified as waste.

  6. How Equivalent Are the Action Execution, Imagery, and Observation of Intransitive Movements? Revisiting the Concept of Somatotopy during Action Simulation

    ERIC Educational Resources Information Center

    Lorey, Britta; Naumann, Tim; Pilgramm, Sebastian; Petermann, Carmen; Bischoff, Matthias; Zentgraf, Karen; Stark, Rudolf; Vaitl, Dieter; Munzert, Jorn

    2013-01-01

    Jeannerod (2001) hypothesized that action execution, imagery, and observation are functionally equivalent. This led to the major prediction that these motor states are based on the same action-specific and even effector-specific motor representations. The present study examined whether hand and foot movements are represented in a somatotopic…

  7. Identification of Proteinaceous Binders in Ancient Tripitaka by the Use of an Enzyme-linked Immunosorbent Assay.

    PubMed

    Liu, Yi; Li, Yi; Chang, Runxing; Zheng, Hailing; Li, Menglu; Hu, Zhiwen; Zhou, Yang; Wang, Bing

    2016-01-01

    Proteinaceous materials, such as ovabumin and collagen, were commonly used as binding media, and as adhesives and protective coatings. However, the identification of ancient proteinaceous binders is a great challenge for archaeologists, due to their limited sample size, complex combinations of various ingredients and reduced availability of the binder during the process of protein degradation. In this paper, an enzyme-linked immunosorbent assay (ELISA) provides to be a particularly promising method for the detection of proteinaceous binding materials in ancient relics. The present work focused on the specific identification of proteins in archaeological binders, which was brushed on the Tripitaka. Two samples, the adhesion area (S1) and the ink area (S2), were tested by ELISA. The results showed that both S1 and S2 reacted positively when treated with an anti-collagen-I antibody. It proved the existence of proteinaceous binders in Ancient Tripitaka, and the percentage of collagen in S1 and S2 was 61.44 and 15.4%, respectively. Compared with other conventional techniques, ELISA has advantages of high specificity, sensitivity, rapidity and low cost, making it especially suitable for the protein detection in the archaeological field.

  8. Efficacy of colestilan in the treatment of hyperphosphataemia in renal disease patients.

    PubMed

    Locatelli, Francesco; Dimkovic, Nada; Spasovski, Goce

    2014-07-01

    Hyperphosphataemia is common in chronic kidney disease (CKD), particularly in the late stages and is associated with secondary hyperparathyroidism, abnormal bone mineralisation and increased cardiovascular morbidity/mortality. At present, there is a range of phosphate binders designed to keep serum phosphate at normal or near normal levels. Colestilan is a new binder that offers additional actions that may afford further benefits over simply lowering phosphate. This paper reviews the pharmacology and clinical data currently available in the use of colestilan to treat hyperphosphataemia in CKD stage 5 patients on dialysis. Available phosphate binders lower serum phosphorus levels to a clinically relevant extent. The balance between the risks and the potential benefits associated with each agent must be considered when choosing a binder. Calcium-based binders can lead to hypercalcaemia and/or positive calcium balance and cardiovascular calcification. Like sevelamer, colestilan is not absorbed and there is no evidence of any risk of hypercalcaemia. In addition, a significant lowering of low-density lipoprotein-cholesterol, similar to simvastatin, a reduction in plasma uric acid and a reduction in high glycosylated haemoglobin values suggest additional beneficial actions that may convert to reductions in mortality.

  9. Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry.

    PubMed

    Kuckova, Stepanka; Hynek, Radovan; Kodicek, Milan

    2007-05-01

    Proper identification of proteinaceous binders in artworks is essential for specification of the painting technique and thus also for selection of the restoration method; moreover, it might be helpful for the authentication of the artwork. This paper is concerned with the optimisation of analysis of the proteinaceous binders contained in the colour layers of artworks. Within this study, we worked out a method for the preparation and analysis of solid samples from artworks using tryptic cleavage and subsequent analysis of the acquired peptide mixture by matrix-assisted laser desorption/ionisation time of flight mass spectrometry. To make this approach rational and efficient, we created a database of commonly used binders (egg yolk, egg white, casein, milk, curd, whey, gelatine, and various types of animal glues); certain peaks in the mass spectra of these binders, formed by rich protein mixtures, were matched to amino acid sequences of the individual proteins that were found in the Internet database ExPASy; their cleavage was simulated by the program Mass-2.0-alpha4. The method developed was tested on model samples of ground layers prepared by an independent laboratory and then successfully applied to a real sample originating from a painting by Edvard Munch.

  10. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application.

    PubMed

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao

    2015-12-09

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.

  11. Optimal use of phosphate binders in chronic kidney disease.

    PubMed

    Sonikian, Makrouhi; Papachristou, Evangelos; Goumenos, Dimitrios S

    2013-12-01

    Hyperphosphatemia is one of the major factors associated with the development of vascular calcification in patients with chronic kidney disease (CKD). Since phosphate is retained in such patients, pharmacological treatment and other measures are necessary to control hyperphosphatemia. Several phosphate binders (calcium salts, magnesium salts, non-calcium-based binders and aluminium) are available for the treatment of hyperphosphatemia. Nevertheless, none of the above mentioned agents has shown an overall superiority over others, while potency and side effects are quite variable among them creating difficulties in choosing the optimal drug for each patient. The authors discuss the disturbed phosphate metabolism, the available phosphate binders, as well as the general therapeutic principles of treating hyperphosphatemia in CKD patients. The literature used for this review had been retrieved from PubMed and covers a large number of original and retrospective studies as well as prospective cohort studies, meta-analyses and international clinical guidelines. Lowering serum phosphate levels in CKD patients may potentially have a positive impact on cardiovascular morbidity and mortality. Factors that should be taken into consideration when selecting a specific drug include CKD stage, cardiovascular disease, severity of secondary hyperparathyroidism, concomitant medications, life expectancy and patient compliance. Therefore, when selecting a specific phosphate binder, individualisation is mandatory.

  12. Effects of additives on solidification of API separator sludge.

    PubMed

    Faschan, A; Tittlebaum, M; Cartledge, F; Eaton, H

    1991-08-01

    API separator sludge was solidified with various combinations of binders and absorbent soil additives. The binders utilized were Type I Portland Cement, Type C Flyash, and a 1:1 combination of the two. The soil additives used were bentonite, diatomite, Fuller's earth, and two brands of chemically altered bentonites, or organoclays. The effectiveness of the solidification materials was based on their effect on the physical and leaching characteristics of the sludge.It was determined the Portland cement and combination binders provided the sludge with adequate physical and strength characteristics. It was also determined the affinity of each additive for water had an important influence on the physical characteristics of the solidified sludge. The results of the leaching procedure indicated the binders alone reduced the leachability of organic constituents from the sludge by 1/5 to 1/10. It appeared the use of the additives with the binders may have further reduced the leachability of constituents from sludge, with the incorporation of the organoclay additives further reducing leachability by up to 1/2. Also, it appeared the absorbing capacity of the additives was directly related to their ability to reduce the leachability of organic constituents from the sludge.

  13. Hyperscaling breakdown and Ising spin glasses: The Binder cumulant

    NASA Astrophysics Data System (ADS)

    Lundow, P. H.; Campbell, I. A.

    2018-02-01

    Among the Renormalization Group Theory scaling rules relating critical exponents, there are hyperscaling rules involving the dimension of the system. It is well known that in Ising models hyperscaling breaks down above the upper critical dimension. It was shown by Schwartz (1991) that the standard Josephson hyperscaling rule can also break down in Ising systems with quenched random interactions. A related Renormalization Group Theory hyperscaling rule links the critical exponents for the normalized Binder cumulant and the correlation length in the thermodynamic limit. An appropriate scaling approach for analyzing measurements from criticality to infinite temperature is first outlined. Numerical data on the scaling of the normalized correlation length and the normalized Binder cumulant are shown for the canonical Ising ferromagnet model in dimension three where hyperscaling holds, for the Ising ferromagnet in dimension five (so above the upper critical dimension) where hyperscaling breaks down, and then for Ising spin glass models in dimension three where the quenched interactions are random. For the Ising spin glasses there is a breakdown of the normalized Binder cumulant hyperscaling relation in the thermodynamic limit regime, with a return to size independent Binder cumulant values in the finite-size scaling regime around the critical region.

  14. Alkaline Activator Impact on the Geopolymer Binders

    NASA Astrophysics Data System (ADS)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  15. Efficiency of Composite Binders with Antifreezing Agents

    NASA Astrophysics Data System (ADS)

    Ogurtsova, Y. N.; Zhernovsky, I. V.; Botsman, L. N.

    2017-11-01

    One of the non-heating methods of cold-weather concreting is using concretes hardening at negative temperatures. This method consists in using chemical additives which reduce the freezing temperature of the liquid phase and provide for concrete hardening at negative temperatures. The non-heating cold-weather concreting, due to antifreezing agents, allows saving heat and electric energy at the more flexible work performance technology. At selecting the antifreezing components, the possibility of concreting at temperatures up to minus 20 °C and combination with a plasticizer contained in the composite binder were taken into account. The optimal proportions of antifreezing and complex agents produced by MC-Bauchemie Russia for fine-grained concretes were determined. So, the introduction of antifreezing and complex agents allows obtaining a structure of composite characteristic for cement stone in the conditions of below zero temperatures at using different binders; the hydration of such composite proceeded naturally. Low-water-demand binders (LWDB) based composites are characterized by a higher density and homogeneity due to a high dispersity of a binder and its complicated surface providing for a lot of crystallization centers. LWDB contains small pores keeping water in a liquid form and promoting a more complete hydration process.

  16. Effect of Carbon and Binder on High Sulfur Loading Electrode for Li-S Battery Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke; Cama, Christina A.; Huang, Jian

    For the Lithium-Sulfur (Li-S) battery to be competitive in commercialization, it is requested that the sulfur electrode must have deliverable areal capacity > 8 mAh cm -2, which corresponds to a sulfur loading > 6 mg cm -2. At this relatively high sulfur loading, we evaluated the impact of binder and carbon type on the mechanical integrity and the electrochemical properties of sulfur electrodes. We identified hydroxypropyl cellulose (HPC) as a new binder for the sulfur electrode because it offers better adhesion between the electrode and the aluminum current collector than the commonly used polyvinylidene fluoride (PVDF) binder. In combinationmore » with the binder study, multiple types of carbon with high specific surface area were evaluated as sulfur hosts for high loading sulfur electrodes. A commercial microporous carbon derived from wood with high pore volume showed the best performance. An electrode with sulfur loading up to 10 mg cm -2 was achieved with the optimized recipe. Based on systematic electrochemical studies, the soluble polysulfide to insoluble Li 2S 2/Li 2S conversion was identified to be the major barrier for high loading sulfur electrodes to achieve high sulfur utilization.« less

  17. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders.

    PubMed

    Mostafaei, Amir; Hughes, Eamonn T; Hilla, Colleen; Stevens, Erica L; Chmielus, Markus

    2017-02-01

    Binder jet printing (BJP) is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016) [1-3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017) [4].

  18. High solid loading aqueous base metal/ceramic feedstock for injection molding

    NASA Astrophysics Data System (ADS)

    Behi, Mohammad

    2001-07-01

    Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.

  19. Effect of Carbon and Binder on High Sulfur Loading Electrode for Li-S Battery Technology

    DOE PAGES

    Sun, Ke; Cama, Christina A.; Huang, Jian; ...

    2017-03-10

    For the Lithium-Sulfur (Li-S) battery to be competitive in commercialization, it is requested that the sulfur electrode must have deliverable areal capacity > 8 mAh cm -2, which corresponds to a sulfur loading > 6 mg cm -2. At this relatively high sulfur loading, we evaluated the impact of binder and carbon type on the mechanical integrity and the electrochemical properties of sulfur electrodes. We identified hydroxypropyl cellulose (HPC) as a new binder for the sulfur electrode because it offers better adhesion between the electrode and the aluminum current collector than the commonly used polyvinylidene fluoride (PVDF) binder. In combinationmore » with the binder study, multiple types of carbon with high specific surface area were evaluated as sulfur hosts for high loading sulfur electrodes. A commercial microporous carbon derived from wood with high pore volume showed the best performance. An electrode with sulfur loading up to 10 mg cm -2 was achieved with the optimized recipe. Based on systematic electrochemical studies, the soluble polysulfide to insoluble Li 2S 2/Li 2S conversion was identified to be the major barrier for high loading sulfur electrodes to achieve high sulfur utilization.« less

  20. Adherence to phosphate binder therapy is the primary determinant of hyperphosphatemia incidence in patients receiving peritoneal dialysis.

    PubMed

    Hung, Kai-Yin; Liao, Shang-Chih; Chen, Tzu-Hsiu; Chao, Mei-Chen; Chen, Jin-Bor

    2013-02-01

    We investigated the major determinant of hyperphosphatemia incidence among patients receiving peritoneal dialysis. Seventy-six patients aged 25-55 years who had received peritoneal dialysis for more than 3 months were recruited. The patients were divided into three groups according to their serum phosphorus levels (Group 1, ≥ 6 mg/dL; Group 2, 5.9-4.8 mg/dL; and Group 3, <4.8 mg/dL). Renal dietitians interviewed the patients to determine their phosphate intake and adherence to phosphate binder therapy. No statistical differences in demographics or phosphate intake were identified among the groups. However, adherence to phosphate binders was greater in Group 3 than in Groups 1 and 2 (96.3% vs. 21.4% and 52.4%, respectively; P < 0.001). Multivariate analysis showed that adherence to phosphate binder therapy was the only significant contributor to serum phosphorus levels (P= 0.0001). Adherence to diet was better than adherence to phosphate binder therapy among patients receiving peritoneal dialysis, and the latter determined the incidence of hyperphosphatemia. © 2012 The Authors. Therapeutic Apheresis and Dialysis © 2012 International Society for Apheresis.

  1. Fracture properties and fatigue cracking resistance of asphalt binders.

    DOT National Transportation Integrated Search

    2012-03-01

    Several different types of modifiers are increasingly bring used to improve the performance of asphalt binders or to : achieve desired mixture production characteristics (e.g., Warm Mix Asphalt). However, current Superpave : performance specification...

  2. 7 CFR 30.15 - Cigar binder.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.15 Cigar binder. A portion of a tobacco leaf rolled around the filler of a cigar to bind or hold it...

  3. 7 CFR 30.15 - Cigar binder.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.15 Cigar binder. A portion of a tobacco leaf rolled around the filler of a cigar to bind or hold it...

  4. 7 CFR 30.15 - Cigar binder.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.15 Cigar binder. A portion of a tobacco leaf rolled around the filler of a cigar to bind or hold it...

  5. 7 CFR 30.15 - Cigar binder.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.15 Cigar binder. A portion of a tobacco leaf rolled around the filler of a cigar to bind or hold it...

  6. 7 CFR 30.15 - Cigar binder.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.15 Cigar binder. A portion of a tobacco leaf rolled around the filler of a cigar to bind or hold it...

  7. Routine Testing of Bitumen Binders

    NASA Astrophysics Data System (ADS)

    Holý, Michal; Remišová, Eva

    2017-12-01

    The quality of bituminous binders used in the construction and maintenance of road surfaces is currently assessed by empirical testing based on obtaining one value for specific boundary conditions, which were designed about 100 years ago. Basic empirical tests include the softening point and penetration, but the practice shows that these tests appear to be inadequate. The evaluation of changes of bitumen properties during the production and paving process of bituminous mixture is also important. The paper points out how the "traditional" tests as softening point and penetration and viscosity are sufficient to evaluate properties of bitumen binders.

  8. Aromaticity Parameters in Asphalt Binders Calculated From Profile Fitting X-ray Line Spectra Using Pearson VII and Pseudo-Voigt Functions

    NASA Astrophysics Data System (ADS)

    Shirokoff, J.; Lewis, J. Courtenay

    2010-10-01

    The aromaticity and crystallite parameters in asphalt binders are calculated from data obtained after profile fitting x-ray line spectra using Pearson VII and pseudo-Voigt functions. The results are presented and discussed in terms of the peak profile fit parameters used, peak deconvolution procedure, and differences in calculated values that can arise owing to peak shape and additional peaks present in the pattern. These results have implications concerning the evaluation and performance of asphalt binders used in highways and road applications.

  9. Computational exploration of zinc binding groups for HDAC inhibition.

    PubMed

    Chen, Kai; Xu, Liping; Wiest, Olaf

    2013-05-17

    Histone deacetylases (HDACs) have emerged as important drug targets in epigenetics. The most common HDAC inhibitors use hydroxamic acids as zinc binding groups despite unfavorable pharmacokinetic properties. A two-stage protocol of M05-2X calculations of a library of 48 fragments in a small model active site, followed by QM/MM hybrid calculations of the full enzyme with selected binders, is used to prospectively select potential bidentate zinc binders. The energetics and interaction patterns of several zinc binders not previously used for the inhibition of HDACs are discussed.

  10. Modification of the epoxy binder for glass and basalt rebar. Mechanical test results

    NASA Astrophysics Data System (ADS)

    Brusentseva, T. A.

    2017-10-01

    The paper presents the results of experimental studies on the modification of the epoxy binder LE-828 for the manufacture of glass and basalt rebar. The nano-size silica powder is used as a filler. The filler mass content ranged from 0% to 2%. It is shown that the nano-disperse filler introduced in the binder leads to the increasing breaking stress and tensile strength by 33% and 34%, respectively; the failure strain increased by 39% at the filler mass content of 0.6%.

  11. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill

    PubMed Central

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875

  12. Cost-Effectiveness of First-Line Sevelamer and Lanthanum versus Calcium-Based Binders for Hyperphosphatemia of Chronic Kidney Disease.

    PubMed

    Habbous, Steven; Przech, Sebastian; Martin, Janet; Garg, Amit X; Sarma, Sisira

    2018-03-01

    Phosphate binders are used to treat hyperphosphatemia among patients with chronic kidney disease (CKD). To conduct an economic evaluation comparing calcium-free binders sevelamer and lanthanum with calcium-based binders for patients with CKD. Effectiveness data were obtained from a recent meta-analysis of randomized trials. Effectiveness was measured as life-years gained and translated to quality-adjusted life-years (QALYs) using utility weights from the literature. A Markov model consisting of non-dialysis-dependent (NDD)-CKD, dialysis-dependent (DD)-CKD, and death was developed to estimate the incremental costs and effects of sevelamer and lanthanum versus those of calcium-based binders. A lifetime horizon was used and both costs and effects were discounted at 1.5%. All costs are presented in 2015 Canadian dollars from the Canadian public payer perspective. Results of probabilistic sensitivity analysis were presented using cost-effectiveness acceptability curves. Sensitivity analyses were conducted for risk pooling methods, omission of dialysis costs, and persistence of drug effects on mortality. Sevelamer resulted in an incremental cost-effectiveness ratio of $106,522/QALY for NDD-CKD and $133,847/QALY for DD-CKD cohorts. Excluding dialysis costs, sevelamer was cost-effective in the NDD-CKD cohort ($5,847/QALY) and the DD-CKD cohort ($11,178/QALY). Lanthanum was dominated regardless of whether dialysis costs were included. Existing evidence does not clearly support the cost-effectiveness of non-calcium-containing phosphate binders (sevelamer and lanthanum) relative to calcium-containing phosphate binders in DD-CKD patients. Our study suggests that sevelamer may be cost-effective before dialysis onset. Because of the remaining uncertainty in several clinically relevant outcomes over time in DD-CKD and NDD-CKD patients, further research is encouraged. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  13. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill.

    PubMed

    Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N

    2016-06-15

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.

  14. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    NASA Astrophysics Data System (ADS)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.

  15. Toward Head-Up and Head-Worn Displays for Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Arthur, Jarvis J.; Bailey, Randall E.; Shelton, Kevin J.; Kramer, Lynda J.; Jones, Denise R.; Williams, Steven P.; Harrison, Stephanie J.; Ellis, Kyle K.

    2015-01-01

    A key capability envisioned for the future air transportation system is the concept of equivalent visual operations (EVO). EVO is the capability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. Enhanced Flight Vision Systems (EFVS) offer a path to achieve EVO. NASA has successfully tested EFVS for commercial flight operations that has helped establish the technical merits of EFVS, without reliance on natural vision, to runways without category II/III ground-based navigation and lighting requirements. The research has tested EFVS for operations with both Head-Up Displays (HUDs) and "HUD equivalent" Head-Worn Displays (HWDs). The paper describes the EVO concept and representative NASA EFVS research that demonstrate the potential of these technologies to safely conduct operations in visibilities as low as 1000 feet Runway Visual Range (RVR). Future directions are described including efforts to enable low-visibility approach, landing, and roll-outs using EFVS under conditions as low as 300 feet RVR.

  16. Cross-cultural adaptation of an environmental health measurement instrument: Brazilian version of the health-care waste management • rapid assessment tool.

    PubMed

    Cozendey-Silva, Eliana Napoleão; da Silva, Cintia Ribeiro; Larentis, Ariane Leites; Wasserman, Julio Cesar; Rozemberg, Brani; Teixeira, Liliane Reis

    2016-09-05

    Periodic assessment is one of the recommendations for improving health-care waste management worldwide. This study aimed at translating and adapting the Health-Care Waste Management - Rapid Assessment Tool (HCWM-RAT), proposed by the World Health Organization, to a Brazilian Portuguese version, and resolving its cultural and legal issues. The work focused on the evaluation of the concepts, items and semantic equivalence between the original tool and the Brazilian Portuguese version. A cross-cultural adaptation methodology was used, including: initial translation to Brazilian Portuguese; back translation to English; syntheses of these translation versions; formation of an expert committee to achieve consensus about the preliminary version; and evaluation of the target audience's comprehension. Both the translated and the original versions' concepts, items and semantic equivalence are presented. The constructs in the original instrument were considered relevant and applicable to the Brazilian context. The Brazilian version of the tool has the potential to generate indicators, develop official database, feedback and subsidize political decisions at many geographical and organizational levels strengthening the Monitoring and evaluation (M&E) mechanism. Moreover, the cross-cultural translation expands the usefulness of the instrument to Portuguese-speaking countries in developing regions. The translated and original versions presented concept, item and semantic equivalence and can be applied to Brazil.

  17. Effect of Computer-Assisted Instruction on Secondary School Students' Achievement in Ecological Concepts

    ERIC Educational Resources Information Center

    Nkemdilim, Egbunonu Roseline; Okeke, Sam O. C.

    2014-01-01

    This study investigated the effects of computer-assisted instruction (CAI) on students' achievement in ecological concepts. Quasi-experimental design, specifically the pre-test post test non-equivalent control group design was adopted. The sample consisted of sixty-six (66) senior secondary year two (SS II) biology students, drawn from two…

  18. Anxiety and Self-Concept Among American and Chinese College Students

    ERIC Educational Resources Information Center

    Paschal, Billy J.; You-Yuh, Kuo

    1973-01-01

    In this study, 60 pairs of Ss were randomly selected and individually matched on age, sex, grade equivalence, and birth order. The seven null hypotheses dealt with culture, sex, birth order, and their interactions. The main self-rating scales employed were the IPAT Anxiety Scale and the Tennessee Self Concept Scale. (Author/EK)

  19. Toward "Constructing" the Concept of Statistical Power: An Optical Analogy.

    ERIC Educational Resources Information Center

    Rogers, Bruce G.

    This paper presents a visual analogy that may be used by instructors to teach the concept of statistical power in statistical courses. Statistical power is mathematically defined as the probability of rejecting a null hypothesis when that null is false, or, equivalently, the probability of detecting a relationship when it exists. The analogy…

  20. Detection of polymer modifiers in asphalt binder.

    DOT National Transportation Integrated Search

    2006-01-01

    This study addressed the evaluation of alternative test methods to identify the presence of polymer modifiers in performance-graded binders for the purpose of quality assurance. A method of identification is presented in AASHTO T302, Polymer Content ...

  1. Development of a binder fracture test to determine fracture energy.

    DOT National Transportation Integrated Search

    2012-04-01

    It has been found that binder testing methods in current specifications do not accurately predict cracking performance at intermediate temperatures. Fracture energy has been determined to be strongly correlated to fracture resistance of asphalt mixtu...

  2. [Phosphate binders in chronic kidney disease: the positions of sevelamer].

    PubMed

    Fomin, V V; Shilov, E M; Svistunov, A A; Milovanov, Iu S

    2013-01-01

    The paper shows the role of phosphate binders in the correction of phosphorus and calcium metabolic disturbances in chronic kidney disease. The results of clinical trials demonstrating the efficacy and safety of sevelamer are discussed.

  3. Research notes : June 1995.

    DOT National Transportation Integrated Search

    1995-06-01

    The Research Unit recently published the construction report entitled Evaluation of PBA-6GR Binder for Open-Graded Asphalt Concrete. The report covers construction of open-graded concrete ("F" Mix) pavements with an asphalt-rubber binder, PBA-6GR. Th...

  4. Field evaluation of modified asphalt binder guidelines : [brief].

    DOT National Transportation Integrated Search

    2014-04-01

    This project assessed the suitability of Wisconsins asphalt binder modification guidelines. It follows up on a previous Wisconsin Highway Research Program (WHRP) study (0092-03-13) which served as an initial step towards validating WisDOTs asph...

  5. Developing a laboratory protocol for asphalt binder recovery.

    DOT National Transportation Integrated Search

    2014-10-01

    Asphalt binder extraction and recovery are common laboratory procedures used to provide material for research and quality : assurance testing. The most common methods of recovery performed today include the Abson method and the rotary evaporator : (o...

  6. Determination of usable residual asphalt binder in RAP.

    DOT National Transportation Integrated Search

    2009-01-01

    For current recycled mix designs, the Illinois Department of Transportation (IDOT) assumes 100% contribution of : working binder from Recycled Asphalt Pavement (RAP) materials when added to Hot Mix Asphalt (HMA). However, it is : unclear if this assu...

  7. Carbonized asphaltene-based carbon-carbon fiber composites

    DOEpatents

    Bohnert, George; Lula, James; Bowen, III, Daniel E.

    2016-12-27

    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  8. One Binder to Bind Them All.

    PubMed

    Hayden, Oliver

    2016-10-10

    High quality binders, such as antibodies, are of critical importance for chemical sensing applications. With synthetic alternatives, such as molecularly imprinted polymers (MIPs), less sensor development time and higher stability of the binder can be achieved. In this feature paper, I will discuss the impact of synthetic binders from an industrial perspective and I will challenge the molecular imprinting community on the next step to leapfrog the current status quo of MIPs for (bio)sensing. Equally important, but often neglected as an effective chemical sensor, is a good match of transducer and MIP coating for a respective application. To demonstrate an application-driven development, a biosensing use case with surface-imprinted layers on piezoacoustic sensors is reported. Depending on the electrode pattern for the transducer, the strong mechanical coupling of the analyte with the MIP layer coated device allows the adoption of the sensitivity from cell mass to cell viability with complete reversibility.

  9. Ternary blends containing demercurated lighting phosphor and MSWI fly ash as high-performance binders for stabilizing and recycling electroplating sludge.

    PubMed

    Huang, Wu-Jang; Wu, Chia-Teng; Wu, Chang-En; Hsieh, Lin-Huey; Li, Chang-Chien; Lain, Chi-Yuan; Chu, Wei

    2008-08-15

    This paper describes the solidification and stabilization of electroplating sludge treated with a high-performance binder made from portland type-I cement, municipal solid waste incineration fly ash, and lighting phosphor powder (called as cement-fly ash-phosphor binder, CFP). The highest 28-day unconfined compressive strength of the CFP-treated paste was 816 kg/cm(2) at a ratio of cement to fly ash to lighting phosphor powder of 90:5:5; the strength of this composition also fulfilled the requirement of a high-strength concrete (>460 kg/cm(2) at 28 days). The CFP-stabilized sludge paste samples passed the Taiwanese EPA toxicity characteristic leaching procedure test and, therefore, could be used either as a building material or as a controlled low-strength material, depending on the sludge-to-CFP binder ratio.

  10. Physical-Mechanical Properties of a Fiber-Reinforced Composite Based on an ELUR-P Carbon Tape and XT-118 Binder

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Kholmogorov, S. A.

    2018-03-01

    A series of tests to identify the physical-mechanical properties of a unidirectional carbon-fiber-reinforced composite based on an ELUR-P carbon fibers and an XT-118 epoxy binder were performed. The form of the stress-strain diagrams of specimens loaded in tension in the longitudinal, transverse, and ±45° directions and in compression in the longitudinal and ±45° directions were examined. Tensile diagrams were also determined for the XT-118 binder alone. The relation between the tangential shear modulus and shear strains of the composite was highly nonlinear from the very beginning of loading and depended on the loading type. Such a nonlinear response of the carbon-fiber-reinforced composite in shear cannot be the result of plastic deformation of binder, but can be explained only by structural changes caused by the inner buckling instability of the composite at micro- and mesolevels..

  11. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode.

  12. Investigation of the Bitumen Modification Process Regime Parameters Influence on Polymer-Bitumen Bonding Qualitative Indicators

    NASA Astrophysics Data System (ADS)

    Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Belousov, O. A.; Frolov, V. A.

    2018-04-01

    The objects of this study are petroleum road bitumen and polymeric bituminous binder for road surfaces obtained by polymer materials. The subject of the study is monitoring the polymer-bitumen binder quality changes as a result of varying the bitumen modification process. The purpose of the work is to identify the patterns of the modification process and build a mathematical model that provides the ability to calculate and select technological equipment. It is shown that the polymer-bitumen binder production with specified quality parameters can be ensured in apparatuses with agitators in turbulent mode without the colloidal mills use. Bitumen mix and modifying additives limiting indicators which can be used as restrictions in the form of mathematical model inequalities are defined. A mathematical model for the polymer-bitumen binder preparation has been developed and its adequacy has been confirmed.

  13. Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses.

    PubMed

    De Colibus, Luigi; Wang, Xiangxi; Tijsma, Aloys; Neyts, Johan; Spyrou, John A B; Ren, Jingshan; Grimes, Jonathan M; Puerstinger, Gerhard; Leyssen, Pieter; Fry, Elizabeth E; Rao, Zihe; Stuart, David I

    2015-10-01

    The replication of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), which are the major cause of hand, foot and mouth disease (HFMD) in children, can be inhibited by the capsid binder GPP3. Here, we present the crystal structure of CVA16 in complex with GPP3, which clarifies the role of the key residues involved in interactions with the inhibitor. Based on this model, in silico docking was performed to investigate the interactions with the two next-generation capsid binders NLD and ALD, which we show to be potent inhibitors of a panel of enteroviruses with potentially interesting pharmacological properties. A meta-analysis was performed using the available structural information to obtain a deeper insight into those structural features required for capsid binders to interact effectively and also those that confer broad-spectrum anti-enterovirus activity.

  14. The thermal response of HMX-TATB charges

    NASA Astrophysics Data System (ADS)

    Drake, R. C.

    2017-01-01

    One approach to achieving charge safety and performance requirements is to prepare formulations containing two (or more) explosives. The intention of this approach is that by judicious choice of explosives and binder the formulation will have the desirable features of the constituent materials. HMX and TATB have very different properties. In an attempt to achieve a formulation which has the safety and performance characteristics of TATB and HMX, respectively, a range of formulations were prepared. The thermal response of the formulations were measured in the One-Dimensional Time To Explosion (ODTX) configuration and compared to those of formulations containing only HMX and TATB. The response of the mixed formulations was found to be largely determined by the HMX component with the binder making a small contribution. A formulation with a Kel-F 800 binder had a much higher critical temperature than would have been expected based on the critical temperatures of formulations with HTPB-IPDI as the binder.

  15. Mechanism of interactions between CMC binder and Si single crystal facets.

    PubMed

    Vogl, U S; Das, P K; Weber, A Z; Winter, M; Kostecki, R; Lux, S F

    2014-09-02

    Interactions of the active material particles with the binder are crucial in tailoring the properties of composite electrodes used in lithium-ion batteries. The dependency of the protonation degree of the carboxyl group in the carboxymethyl cellulose (CMC) structure on the pH value of the preparation solution was investigated by Fourier transform infrared spectroscopy (FTIR). Three different distinctive chemical states of CMC binder were chosen (protonated, deprotonated, and half-half), and their interactions with different silicon single crystal facets were investigated. The different Si surface orientations display distinct differences of strength of interactions with the CMC binder. The CMC/Si adhesion forces in solution and Si wettability of the silicon are also strongly dependent on the protonation degree of the CMC. This work provides an insight into the nature of these interactions, which determine the electrochemical performance of silicon composite electrodes.

  16. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  17. Binder-free NiFe2O4/C nanofibers as air cathodes for Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Chengyi; Chen, Ya-Nan; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen

    2018-02-01

    Rechargeable Li-O2 batteries have aroused much attention for their high energy density. However, the poor rechargeability and low efficiency hinder their practical applications. To solve these issues, free-standing carbon films combined with high-activity NiFe2O4 catalysts are prepared by electrospinning method, and directly used as air cathodes for Li-O2 batteries. The obtained films have 3D networks formed by stacking and interlacing massive nanofibers with uniformly dispersed NiFe2O4 nanoparticles on them. The Li-O2 batteries with such binder-free air cathodes show low charging overpotential even comparable to precious metal cathodes, and can sustain excellent discharge/charge cyclic stability. The unique structure and binder-free superiority greatly facilitates the Li+ and O2 diffusion, accelerates the decomposition of Li2O2, and avoid the disturbance of polymer binders.

  18. Possibilities of using aluminate cements in high-rise construction

    NASA Astrophysics Data System (ADS)

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  19. In silico design of smart binders to anthrax PA

    NASA Astrophysics Data System (ADS)

    Sellers, Michael; Hurley, Margaret M.

    2012-06-01

    The development of smart peptide binders requires an understanding of the fundamental mechanisms of recognition which has remained an elusive grail of the research community for decades. Recent advances in automated discovery and synthetic library science provide a wealth of information to probe fundamental details of binding and facilitate the development of improved models for a priori prediction of affinity and specificity. Here we present the modeling portion of an iterative experimental/computational study to produce high affinity peptide binders to the Protective Antigen (PA) of Bacillus anthracis. The result is a general usage, HPC-oriented, python-based toolkit based upon powerful third-party freeware, which is designed to provide a better understanding of peptide-protein interactions and ultimately predict and measure new smart peptide binder candidates. We present an improved simulation protocol with flexible peptide docking to the Anthrax Protective Antigen, reported within the context of experimental data presented in a companion work.

  20. Dynamic SEM wear studies of tungsten carbide cermets

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

Top