Equivalent Quantum Equations in a System Inspired by Bouncing Droplets Experiments
NASA Astrophysics Data System (ADS)
Borghesi, Christian
2017-07-01
In this paper we study a classical and theoretical system which consists of an elastic medium carrying transverse waves and one point-like high elastic medium density, called concretion. We compute the equation of motion for the concretion as well as the wave equation of this system. Afterwards we always consider the case where the concretion is not the wave source any longer. Then the concretion obeys a general and covariant guidance formula, which leads in low-velocity approximation to an equivalent de Broglie-Bohm guidance formula. The concretion moves then as if exists an equivalent quantum potential. A strictly equivalent free Schrödinger equation is retrieved, as well as the quantum stationary states in a linear or spherical cavity. We compute the energy (and momentum) of the concretion, naturally defined from the energy (and momentum) density of the vibrating elastic medium. Provided one condition about the amplitude of oscillation is fulfilled, it strikingly appears that the energy and momentum of the concretion not only are written in the same form as in quantum mechanics, but also encapsulate equivalent relativistic formulas.
Rouge, Clémence; Lhémery, Alain; Ségur, Damien
2013-10-01
An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered.
Elastic medium equivalent to Fresnel's double-refraction crystal.
Carcione, José M; Helbig, Klaus
2008-10-01
In 1821, Fresnel obtained the wave surface of an optically biaxial crystal, assuming that light waves are vibrations of the ether in which longitudinal vibrations (P waves) do not propagate. An anisotropic elastic medium mathematically analogous to Fresnel's crystal exists. The medium has four elastic constants: a P-wave modulus, associated with a spherical P wave surface, and three elastic constants, c(44), c(55), and c(66), associated with the shear waves, which are mathematically equivalent to the three dielectric permittivity constants epsilon(11), epsilon(22), and epsilon(33) as follows: mu(0)epsilon(11)<==>rho/c(44), mu(0)epsilon(22)<==>rho/c(55), mu(0)epsilon(33)<==>rho/c(66), where mu(0) is the magnetic permeability of vacuum and rho is the mass density. These relations also represent the equivalence between the elastic and electromagnetic wave velocities along the principal axes of the medium. A complete mathematical equivalence can be obtained by setting the P-wave modulus equal to zero, but this yields an unstable elastic medium (the hypothetical ether). To obtain stability the P-wave velocity has to be assumed infinite (incompressibility). Another equivalent Fresnel's wave surface corresponds to a medium with anomalous polarization. This medium is physically unstable even for a nonzero P-wave modulus.
Non-affine deformations in polymer hydrogels
Wen, Qi; Basu, Anindita; Janmey, Paul A.; Yodh, A. G.
2012-01-01
Most theories of soft matter elasticity assume that the local strain in a sample after deformation is identical everywhere and equal to the macroscopic strain, or equivalently that the deformation is affine. We discuss the elasticity of hydrogels of crosslinked polymers with special attention to affine and non-affine theories of elasticity. Experimental procedures to measure non-affine deformations are also described. Entropic theories, which account for gel elasticity based on stretching out individual polymer chains, predict affine deformations. In contrast, simulations of network deformation that result in bending of the stiff constituent filaments generally predict non-affine behavior. Results from experiments show significant non-affine deformation in hydrogels even when they are formed by flexible polymers for which bending would appear to be negligible compared to stretching. However, this finding is not necessarily an experimental proof of the non-affine model for elasticity. We emphasize the insights gained from experiments using confocal rheoscope and show that, in addition to filament bending, sample micro-inhomogeneity can be a significant alternative source of non-affine deformation. PMID:23002395
Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics
NASA Astrophysics Data System (ADS)
Haney, Matthew M.; Matoza, Robin S.; Fee, David; Aldridge, David F.
2018-04-01
We establish analogies between equivalent source theory in seismology (moment-tensor and single-force sources) and acoustics (monopoles, dipoles and quadrupoles) in the context of volcanic eruption signals. Although infrasound (acoustic waves < 20 Hz) from volcanic eruptions may be more complex than a simple monopole, dipole or quadrupole assumption, these elementary acoustic sources are a logical place to begin exploring relations with seismic sources. By considering the radiated power of a harmonic force source at the surface of an elastic half-space, we show that a volcanic jet or plume modelled as a seismic force has similar scaling with respect to eruption parameters (e.g. exit velocity and vent area) as an acoustic dipole. We support this by demonstrating, from first principles, a fundamental relationship that ties together explosion, torque and force sources in seismology and highlights the underlying dipole nature of seismic forces. This forges a connection between the multipole expansion of equivalent sources in acoustics and the use of forces and moments as equivalent sources in seismology. We further show that volcanic infrasound monopole and quadrupole sources exhibit scalings similar to seismicity radiated by volume injection and moment sources, respectively. We describe a scaling theory for seismic tremor during volcanic eruptions that agrees with observations showing a linear relation between radiated power of tremor and eruption rate. Volcanic tremor over the first 17 hr of the 2016 eruption at Pavlof Volcano, Alaska, obeyed the linear relation. Subsequent tremor during the main phase of the eruption did not obey the linear relation and demonstrates that volcanic eruption tremor can exhibit other scalings even during the same eruption.
Equivalence between short-time biphasic and incompressible elastic material responses.
Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A
2007-06-01
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltat
EQUIVALENCE BETWEEN SHORT-TIME BIPHASIC AND INCOMPRESSIBLE ELASTIC MATERIAL RESPONSES
Ateshian, Gerard A.; Ellis, Benjamin J.; Weiss, Jeffrey A.
2009-01-01
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response δt≪Δ2/‖C4‖||K||, where Δ is a characteristic dimension, C4 is the elasticity tensor and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components. PMID:17536908
1989-05-22
Stress- Strain Relation . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Equivalent Transversely Isotropic Elastic Constants for Periodi- cally...a vertical wavenumber parameters for compressional waves. # : vertical wavenumber parameters for shear waves. 6 dip angle, refer to Fig 3.2. E strain ...been pursued along two different lines[1] : First, in terms of body forces ; second, in terms of disconti- nuities in displacement or strain across a
Micromechanical analysis on anisotropy of structured magneto-rheological elastomer
NASA Astrophysics Data System (ADS)
Li, R.; Zhang, Z.; Chen, S. W.; Wang, X. J.
2015-07-01
This paper investigates the equivalent elastic modulus of structured magneto-rheological elastomer (MRE) in the absence of magnetic field. We assume that both matrix and ferromagnetic particles are linear elastic materials, and ferromagnetic particles are embedded in matrix with layer-like structure. The structured composite could be divided into matrix layer and reinforced layer, in which the reinforced layer is composed of matrix and the homogenously distributed ferromagnetic particles in matrix. The equivalent elastic modulus of reinforced layer is analysed by the Mori-Tanaka method. Finite Element Method (FEM) is also carried out to illustrate the relationship between the elastic modulus and the volume fraction of ferromagnetic particles. The results show that the anisotropy of elastic modulus becomes noticeable, as the volume fraction of particles increases.
An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses.
Yuan, Tao; Li, Chaodong; Fan, Pingqing
2018-03-22
Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses-elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason's model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably.
An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses
Yuan, Tao; Li, Chaodong; Fan, Pingqing
2018-01-01
Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses—elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason’s model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably. PMID:29565825
On the mechanics of stress analysis of fiber-reinforced composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, V.G.
A general mathematical formulation is developed for the three-dimensional inclusion and inhomogeneity problems, which are practically important in many engineering applications such as fiber pullout of reinforced composites, load transfer behavior in the stiffened structural components, and material defects and impurities existing in engineering materials. First, the displacement field (Green's function) for an elastic solid subjected to various distributions of ring loading is derived in closed form using the Papkovich-Neuber displacement potentials and the Hankel transforms. The Green's functions are used to derive the displacement and stress fields due to a finite cylindrical inclusion of prescribed dilatational eigenstrain such asmore » thermal expansion caused by an internal heat source. Unlike an elliptical inclusion, the interior stress field in the cylindrical inclusion is not uniform. Next, the three-dimensional inhomogeneity problem of a cylindrical fiber embedded in an infinite matrix of different material properties is considered to study load transfer of a finite fiber to an elastic medium. By using the equivalent inclusion method, the fiber is modeled as an inclusion with distributed eigenstrains of unknown strength, and the inhomogeneity problem can be treated as an equivalent inclusion problem. The eigenstrains are determined to simulate the disturbance due to the existing fiber. The equivalency of elastic field between inhomogeneity and inclusion problems leads to a set of integral equations. To solve the integral equations, the inclusion domain is discretized into a finite number of sub-inclusions with uniform eigenstrains, and the integral equations are reduced to a set of algebraic equations. The distributions of eigenstrains, interior stress field and axial force along the fiber are presented for various fiber lengths and the ratio of material properties of the fiber relative to the matrix.« less
Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples
NASA Technical Reports Server (NTRS)
Hsu, Su-Yuen; Chang, Chau-Lyan
2007-01-01
Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion
Research on the equivalence between digital core and rock physics models
NASA Astrophysics Data System (ADS)
Yin, Xingyao; Zheng, Ying; Zong, Zhaoyun
2017-06-01
In this paper, we calculate the elastic modulus of 3D digital cores using the finite element method, systematically study the equivalence between the digital core model and various rock physics models, and carefully analyze the conditions of the equivalence relationships. The influences of the pore aspect ratio and consolidation coefficient on the equivalence relationships are also further refined. Theoretical analysis indicates that the finite element simulation based on the digital core is equivalent to the boundary theory and Gassmann model. For pure sandstones, effective medium theory models (SCA and DEM) and the digital core models are equivalent in cases when the pore aspect ratio is within a certain range, and dry frame models (Nur and Pride model) and the digital core model are equivalent in cases when the consolidation coefficient is a specific value. According to the equivalence relationships, the comparison of the elastic modulus results of the effective medium theory and digital rock physics is an effective approach for predicting the pore aspect ratio. Furthermore, the traditional digital core models with two components (pores and matrix) are extended to multiple minerals to more precisely characterize the features and mineral compositions of rocks in underground reservoirs. This paper studies the effects of shale content on the elastic modulus in shaly sandstones. When structural shale is present in the sandstone, the elastic modulus of the digital cores are in a reasonable agreement with the DEM model. However, when dispersed shale is present in the sandstone, the Hill model cannot describe the changes in the stiffness of the pore space precisely. Digital rock physics describes the rock features such as pore aspect ratio, consolidation coefficient and rock stiffness. Therefore, digital core technology can, to some extent, replace the theoretical rock physics models because the results are more accurate than those of the theoretical models.
Dentin biomodification potential depends on polyphenol source.
Aguiar, T R; Vidal, C M P; Phansalkar, R S; Todorova, I; Napolitano, J G; McAlpine, J B; Chen, S N; Pauli, G F; Bedran-Russo, A K
2014-04-01
Although proanthocyanidins (PACs) modify dentin, the effectiveness of different PAC sources and the correlation with their specific chemical composition are still unknown. This study describes the chemical profiling of natural PAC-rich extracts from 7 plants using ultra high pressure/performance liquid chromatography (UHPLC) to determine the overall composition of these extracts and, in parallel, comprehensively evaluate their effect on dentin properties. The total polyphenol content of the extracts was determined (as gallic acid equivalents) using Folin-Ciocalteau assays. Dentin biomodification was assessed by the modulus of elasticity, mass change, and resistance to enzymatic biodegradation. Extracts with a high polyphenol and PAC content from Vitis vinifera, Theobroma cacao, Camellia sinensis, and Pinus massoniana induced a significant increase in modulus of elasticity and mass. The UHPLC analysis showed the presence of multiple types of polyphenols, ranging from simple phenolic acids to oligomeric PACs and highly condensed tannins. Protective effect against enzymatic degradation was observed for all experimental groups; however, statistically significant differences were observed between plant extracts. The findings provide clear evidence that the dentin bioactivities of PACs are source dependent, resulting from a combination of concentration and specific chemical constitution of the complex PAC mixtures.
Elastic behavior of brain simulants in comparison to porcine brain at different loading velocities.
Falland-Cheung, Lisa; Scholze, Mario; Hammer, Niels; Waddell, J Neil; Tong, Darryl C; Brunton, Paul A
2018-01-01
Blunt force impacts to the head and the resulting internal force transmission to the brain and other cranial tissue are difficult to measure. To model blunt force impact scenarios, the compressive properties resembling tissue elasticity are of importance. Therefore, this study investigated and compared the elastic behavior of gelatin, alginate, agar/glycerol and agar/glycerol/water simulant materials to that of porcine brain in a fresh and unfixed condition. Specimens, 10 × 10 × 10mm 3 , were fabricated and tested at 22°C, apart from gelatin which was conditioned to 4°C prior to testing. For comparison, fresh porcine brains were sourced and prepared to the same dimensions as the simulants. Specimens underwent compression tests at crosshead displacement rates of 2.5, 10 and 16mms -1 (equivalent to strain rates of 0.25, 1 and 1.6s -1 ), obtaining apparent elastic moduli values at different strain rate intervals (0-0.2, 0.2-0.4 and 0.4-0.5). The results of this study indicate that overall all simulant materials had an apparent elastic moduli similar in magnitude across all strain ranges compared to brain, even though comparatively higher, especially the apparent elastic moduli values of alginate. In conclusion, while agar/glycerol/water and agar/glycerol had similar apparent elastic moduli in magnitude and the closest apparent elastic moduli in the initial strain range (E 1 ), gelatin showed the most similar values to fresh porcine brain at the transitional (E 2 ) and higher strain range (E 3 ). The simulant materials and the fresh porcine brain exhibited strain rate dependent behavior, with increasing elastic moduli upon increasing loading velocities. Copyright © 2017 Elsevier Ltd. All rights reserved.
A note on the revised galactic neutron spectrum of the Ames collaborative study
NASA Technical Reports Server (NTRS)
Schaefer, H. J.
1980-01-01
Energy distributions of the neutron dose equivalents in the 0.1 to 300 Mev interval for the Ames and Hess spectra are compared. The Ames spectrum shows no evaporation peak, moves the bulk of the flux away from the region of elastic collision and spreads it more evenly over higher energies. The neutron spectrum in space does not seem to hear out the Ames model. Emulsion findings on all manned missions of the past consistently indicate that evaporation events are a prolific source of neutrons in space.
NASA Astrophysics Data System (ADS)
Patel, Namu; Patankar, Neelesh A.
2017-11-01
Aquatic locomotion relies on feedback loops to generate the flexural muscle moment needed to attain the reference shape. Experimentalists have consistently reported a difference between the electromyogram (EMG) and curvature wave speeds. The EMG wave speed has been found to correlate with the cross-sectional moment wave. The correlation, however, remains unexplained. Using feedback dependent controller models, we demonstrate two scenarios - one at higher passive elastic stiffness and another at lower passive elastic stiffness of the body. The former case becomes equivalent to the penalty type mathematical model for swimming used in prior literature and it does not reproduce neuromechanical wave speed discrepancy. The latter case at lower elastic stiffness does reproduce the wave speed discrepancy and appears to be biologically most relevant. These findings are applied to develop testable hypotheses about control mechanisms that animals might be using at during low and high Reynolds number swimming. This work is supported by NSF Grants DMS-1547394, CBET-1066575, ACI-1460334, and IOS-1456830. Travel for NP is supported by Institute for Defense Analyses.
Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo
2016-07-01
The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yuan, Shihao; Fuji, Nobuaki; Singh, Satish; Borisov, Dmitry
2017-06-01
We present a methodology to invert seismic data for a localized area by combining source-side wavefield injection and receiver-side extrapolation method. Despite the high resolving power of seismic full waveform inversion, the computational cost for practical scale elastic or viscoelastic waveform inversion remains a heavy burden. This can be much more severe for time-lapse surveys, which require real-time seismic imaging on a daily or weekly basis. Besides, changes of the structure during time-lapse surveys are likely to occur in a small area rather than the whole region of seismic experiments, such as oil and gas reservoir or CO2 injection wells. We thus propose an approach that allows to image effectively and quantitatively the localized structure changes far deep from both source and receiver arrays. In our method, we perform both forward and back propagation only inside the target region. First, we look for the equivalent source expression enclosing the region of interest by using the wavefield injection method. Second, we extrapolate wavefield from physical receivers located near the Earth's surface or on the ocean bottom to an array of virtual receivers in the subsurface by using correlation-type representation theorem. In this study, we present various 2-D elastic numerical examples of the proposed method and quantitatively evaluate errors in obtained models, in comparison to those of conventional full-model inversions. The results show that the proposed localized waveform inversion is not only efficient and robust but also accurate even under the existence of errors in both initial models and observed data.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1972-01-01
A computer program is presented by which the effects of nonlinear suspension-system elastic characteristics on parachute inflation loads and motions can be investigated. A mathematical elastic model of suspension-system geometry is coupled to the planar equations of motion of a general vehicle and canopy. Canopy geometry and aerodynamic drag characteristics and suspension-system elastic properties are tabular inputs. The equations of motion are numerically integrated by use of an equivalent fifth-order Runge-Kutta technique.
The two Faces of Equipartition
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.; Perton, M.; Rodriguez-Castellanos, A.; Campillo, M.; Weaver, R. L.; Rodriguez, M.; Prieto, G.; Luzon, F.; McGarr, A.
2008-12-01
Equipartition is good. Beyond its philosophical implications, in many instances of statistical physics it implies that the available kinetic and potential elastic energy, in phase space, is distributed in the same fixed proportions among the possible "states". There are at least two distinct and complementary descriptions of such states in a diffuse elastic wave field u(r,t). One asserts that u may be represented as an incoherent isotropic superposition of incident plane waves of different polarizations. Each type of wave has an appropriate share of the available energy. This definition introduced by Weaver is similar to the room acoustics notion of a diffuse field, and it suffices to permit prediction of field correlations. The other description assumes that the degrees of freedom of the system, in this case, the kinetic energy densities, are all incoherently excited with equal expected amplitude. This definition, introduced by Maxwell, is also familiar from room acoustics using the normal modes of vibration within an arbitrarily large body. Usually, to establish if an elastic field is diffuse and equipartitioned only the first description has been applied, which requires the separation of dilatational and shear waves using carefully designed experiments. When the medium is bounded by an interface, waves of other modes, for example Rayleigh waves, complicate the measurement of these energies. As a consequence, it can be advantageous to use the second description. Moreover, each spatial component of the energy densities is linked, when an elastic field is diffuse and equipartitioned, to the component of the imaginary part of the Green function at the source. Accordingly, one can use the second description to retrieve the Green function and obtain more information about the medium. The equivalence between the two descriptions of equipartition are given for an infinite space and extended to the case of a half-space. These two descriptiosn are equivalent thanks to the relationship of average autocorrelations with the imaginary part of Green function at the source. Preliminary results are displayed in data sets from Chilpancingo, Mexico, and the Tautona Gold Mine, South Africa, that strongly suggest that equipartition, that guarantees the diffuse nature of seismic fields, has more than one face. Acknowledgements. Partial supports from DGAPA-UNAM, Project IN114706, Mexico; from Proyect MCyT CGL2005-05500-C02/BTE, Spain; from project DyETI of INSU-CNRS, France, and from the Instituto Mexicano del Petróleo are greatly appreciated.
Non-contact rapid optical coherence elastography by high-speed 4D imaging of elastic waves
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Yoon, Soon Joon; Ambroziński, Łukasz; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; O'Donnell, Matthew; Wang, Ruikang K.
2017-02-01
Shear wave OCE (SW-OCE) uses an OCT system to track propagating mechanical waves, providing the information needed to map the elasticity of the target sample. In this study we demonstrate high speed, 4D imaging to capture transient mechanical wave propagation. Using a high-speed Fourier domain mode-locked (FDML) swept-source OCT (SS-OCT) system operating at 1.62 MHz A-line rate, the equivalent volume rate of mechanical wave imaging is 16 kvps (kilo-volumes per second), and total imaging time for a 6 x 6 x 3 mm volume is only 0.32 s. With a displacement sensitivity of 10 nanometers, the proposed 4D imaging technique provides sufficient temporal and spatial resolution for real-time optical coherence elastography (OCE). Combined with a new air-coupled, high-frequency focused ultrasound stimulator requiring no contact or coupling media, this near real-time system can provide quantitative information on localized viscoelastic properties. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine cornea under various intra-ocular pressures. In addition, elasticity anisotropy in the cornea is observed. Images of the mechanical wave group velocity, which correlates with tissue elasticity, show velocities ranging from 4-20 m/s depending on pressure and propagation direction. These initial results strong suggest that 4D imaging for real-time OCE may enable high-resolution quantitative mapping of tissue biomechanical properties in clinical applications.
Wang, Y; Lin, D; Fu, T
1997-03-01
Morphology of inorganic material powders before and after being treated by ultrafine crush was observed by transformite electron microscope. The length and diameter of granules were measured. Polymers inorganic material powders before and after being treated by ultrafine crush were used for preparing radiological equivalent materials. Blending compatibility of inorganic meterials with polymer materials was observed by scanning electron microscope. CT values of tissue equivalent materials were measured by X-ray CT. Distribution of inorganic materials was examined. The compactness of materials was determined by the water absorbed method. The elastic module of materials was measured by laser speckle interferementry method. The results showed that the inorganic material powders treated by the ultrafine crush blent well with polymer and the distribution of these powders in the polymer was homogeneous. The equivalent errors of linear attenuation coefficients and CT values of equivalent materials were small. Their elastic modules increased one order of magnitude from 6.028 x 10(2) kg/cm2 to 9.753 x 10(3) kg/cm2. In addition, the rod inorganic material powders having rod granule blent easily with polymer. The present study provides a theoretical guidance and experimental basis for the design and synthesis of radiological equivalent materials.
Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes
NASA Astrophysics Data System (ADS)
Pan, E.
2004-03-01
This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.
Fillet Weld Stress Using Finite Element Methods
NASA Technical Reports Server (NTRS)
Lehnhoff, T. F.; Green, G. W.
1985-01-01
Average elastic Von Mises equivalent stresses were calculated along the throat of a single lap fillet weld. The average elastic stresses were compared to initial yield and to plastic instability conditions to modify conventional design formulas is presented. The factor is a linear function of the thicknesses of the parent plates attached by the fillet weld.
The second Eshelby problem and its solvability
NASA Astrophysics Data System (ADS)
Zou, Wen-Nan; Zheng, Quan-Shui
2012-10-01
It is still a challenge to clarify the dependence of overall elastic properties of heterogeneous materials on the microstructures of non-elliposodal inhomogeneities (cracks, pores, foreign particles). From the theory of elasticity, the formulation of the perturbance elastic fields, coming from a non-ellipsoidal inhomogeneity embedded in an infinitely extended material with remote constant loading, inevitably involve one or more integral equations. Up to now, due to the mathematical difficulty, there is almost no explicit analytical solution obtained except for the ellipsoidal inhomogeneity. In this paper, we point out the impossibility to transform this inhomogeneity problem into a conventional Eshelby problem by the equivalent inclusion method even if the eigenstrain is chosen to be non-uniform. We also build up an equivalent model, called the second Eshelby problem, to investigate the perturbance stress. It is probably a better template to make use of the profound methods and results of conventional Eshelby problems of non-ellipsoidal inclusions.
NASA Astrophysics Data System (ADS)
He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe
2013-11-01
Ferromagnetic materials will affect not only the electromagnetic response but also the mechanical behaviors of coated conductors. The influence of soft ferromagnetic substrate on magneto-elastic behavior in a superconductor/ferromagnetic (SC/FM) bilayer exposed to a transverse magnetic field is investigated theoretically. The ferromagnetic substrate is regarded as ideal soft magnets with high permeability and small magnetic hysteresis. Due to the composite structure of SC/FM hybrids, magneto-elastic behavior will be subjected to combined effect of equivalent force and flexural moment. Analytical expressions for internal stress and strain components are derived by virtue of a two-dimensional elasticity analysis. It is worth pointing out that the y component of strain has much larger positive value during field ascent, which may result in the delamitation at the interface. Irreversible magnetostrictive behaviors are observed both along x direction and along y direction. For the thickness dependence of magnetostriction, the flexural moment dominates when the SC thickness is small while the equivalent force plays a critical role at higher SC thickness.
A structural dynamics study of a wing-pylon-tiltrotor system
NASA Astrophysics Data System (ADS)
Khader, N.; Abu-Mallouh, R.
1992-12-01
A simple structural model for a three-bladed tiltrotor-pylon-wing assembly is presented, which accounts for chordwise, transverse, and torsional wing deformations, rigid pylon pitching motion with respect to the wing tip cross-section in its deformed position, lead-lag, flap, and torsional deformations of rotor blades. The model considers equivalent viscous damping associated with blade and wing elastic deformations and with rigid pylon pitching motion. It is established that blade-to wing bending rigidity ratio, pylon pitching frequency, equivalent viscous damping associated with blade elastic deformations, and rotational speed, are the most important design parameters, whose effect on system frequencies and stability boundaries is evaluated.
Juan, Pierre -Alexandre; Dingreville, Remi
2016-10-31
Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan, Pierre -Alexandre; Dingreville, Remi
Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less
Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.
1982-01-01
Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.
Macroscopic Source Properties from Dynamic Rupture Styles in Plastic Media
NASA Astrophysics Data System (ADS)
Gabriel, A.; Ampuero, J. P.; Dalguer, L. A.; Mai, P. M.
2011-12-01
High stress concentrations at earthquake rupture fronts may generate an inelastic off-fault response at the rupture tip, leading to increased energy absorption in the damage zone. Furthermore, the induced asymmetric plastic strain field in in-plane rupture modes may produce bimaterial interfaces that can increase radiation efficiency and reduce frictional dissipation. Off-fault inelasticity thus plays an important role for realistic predictions of near-fault ground motion. Guided by our previous studies in the 2D elastic case, we perform rupture dynamics simulations including rate-and-state friction and off-fault plasticity to investigate the effects on the rupture properties. We quantitatively analyze macroscopic source properties for different rupture styles, ranging from cracks to pulses and subshear to supershear ruptures, and their transitional mechanisms. The energy dissipation due to off-fault inelasticity modifies the conditions to obtain each rupture style and alters macroscopic source properties. We examine apparent fracture energy, rupture and healing front speed, peak slip and peak slip velocity, dynamic stress drop and size of the process and plastic zones, slip and plastic seismic moment, and their connection to ground motion. This presentation focuses on the effects of rupture style and off-fault plasticity on the resulting ground motion patterns, especially on characteristic slip velocity function signatures and resulting seismic moments. We aim at developing scaling rules for equivalent elastic models, as function of background stress and frictional parameters, that may lead to improved "pseudo-dynamic" source parameterizations for ground-motion calculation. Moreover, our simulations provide quantitative relations between off-fault energy dissipation and macroscopic source properties. These relations might provide a self-consistent theoretical framework for the study of the earthquake energy balance based on observable earthquake source parameters.
NASA Astrophysics Data System (ADS)
Miyake, Susumu; Kasashima, Takashi; Yamazaki, Masato; Okimura, Yasuyuki; Nagata, Hajime; Hosaka, Hiroshi; Morita, Takeshi
2018-07-01
The high power properties of piezoelectric transducers were evaluated considering a complex nonlinear elastic constant. The piezoelectric LCR equivalent circuit with nonlinear circuit parameters was utilized to measure them. The deformed admittance curve of piezoelectric transducers was measured under a high stress and the complex nonlinear elastic constant was calculated by curve fitting. Transducers with various piezoelectric materials, Pb(Zr,Ti)O3, (K,Na)NbO3, and Ba(Zr,Ti)O3–(Ba,Ca)TiO3, were investigated by the proposed method. The measured complex nonlinear elastic constant strongly depends on the linear elastic and piezoelectric constants. This relationship indicates that piezoelectric high power properties can be controlled by modifying the linear elastic and piezoelectric constants.
NASA Astrophysics Data System (ADS)
Ni, Yong; He, Linghui; Khachaturyan, Armen G.
2010-07-01
A phase field method is proposed to determine the equilibrium fields of a magnetoelectroelastic multiferroic with arbitrarily distributed constitutive constants under applied loadings. This method is based on a developed generalized Eshelby's equivalency principle, in which the elastic strain, electrostatic, and magnetostatic fields at the equilibrium in the original heterogeneous system are exactly the same as those in an equivalent homogeneous magnetoelectroelastic coupled or uncoupled system with properly chosen distributed effective eigenstrain, polarization, and magnetization fields. Finding these effective fields fully solves the equilibrium elasticity, electrostatics, and magnetostatics in the original heterogeneous multiferroic. The paper formulates a variational principle proving that the effective fields are minimizers of appropriate close-form energy functional. The proposed phase field approach produces the energy minimizing effective fields (and thus solving the general multiferroic problem) as a result of artificial relaxation process described by the Ginzburg-Landau-Khalatnikov kinetic equations.
Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models
Savage, J.C.
1990-01-01
By virtue of the images used in the dislocation solution, the deformation at the free surface produced throughout the earthquake cycle by slippage on a long strike-slip fault in an Earth model consisting of an elastic plate (lithosphere) overlying a viscoelastic half-space (asthenosphere) can be duplicated by prescribed slip on a vertical fault embedded in an elastic half-space. Inversion of 1973-1988 geodetic measurements of deformation across the segment of the San Andreas fault in the Transverse Ranges north of Los Angeles for the half-space equivalent slip distribution suggests no significant slip on the fault above 30 km and a uniform slip rate of 36 mm/yr below 30 km. One equivalent lithosphere-asthenosphere model would have a 30-km thick lithosphere and an asthenosphere relaxation time greater than 33 years, but other models are possible. -from Author
A Theoretical Investigation into the Inelastic Behavior of Metal-Matrix Composites
1990-06-01
Part 13. Abstract (continued): for the constraining power of the matrix due to eigenstrain accumulation and anisotropy due to fiber reinforcement. The...1 CHAPTER II ELAS Method with Elastic Constraint ......................... 10 * 2.1 Eigenstrain Terminology...10 2.2 Fundamental Equations of Elasticity with Eigenstrains ......... 11 2.3 Eshelby’s Equivalent Inclusion Problem
Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Frank, Scott D; Odom, Robert I; Collis, Jon M
2013-03-01
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.
Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation
NASA Astrophysics Data System (ADS)
Deng, Wubing; Morozov, Igor B.
2017-10-01
The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the necessity of extremely detailed models of the elastic structure apply to other types of Q measurements.
Comparison of formation of visco-elastic masses and their properties between zeins and kafirins.
Taylor, Janet; Anyango, Joseph O; Muhiwa, Peter J; Oguntoyinbo, Segun I; Taylor, John R N
2018-04-15
Zeins of differing sub-class composition much more readily formed visco-elastic masses in water or acetic acid solutions than equivalent kafirin preparations. Visco-elastic masses could be formed from both zein and kafirin preparations by coacervation from glacial acetic acid. Dissolving the prolamins in glacial acetic acid apparently enabled protonation and complete solvation. Stress-relaxation analysis of coacervated zein and kafirin visco-elastic masses showed they were initially soft. With storage, they became much firmer. Zein masses exhibited predominantly viscous flow properties, whereas kafirin masses were more elastic. The γ-sub-class is apparently necessary for the retention of visco-elastic mass softness with kafirin and zein, and for elastic recovery of kafirin. Generally, regardless of water or acetic acid treatment, all the zein preparations had similar FTIR spectra, with greater α-helical conformation, than the kafirin preparations which were also similar to each other. Kafirin visco-elastic masses have a much higher elastic character than zein masses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiphoid Process-Derived Chondrocytes: A Novel Cell Source for Elastic Cartilage Regeneration
Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun
2014-01-01
Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage. PMID:25205841
Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: Design and realization
NASA Astrophysics Data System (ADS)
Oh, Joo Hwan; Seung, Hong Min; Kim, Yoon Young
2017-12-01
In spite of much progress in elastic metamaterials, tuning the effective density and stiffness to desired values ranging from negatives to large positives is still difficult. In particular, simultaneous realization of double negativity and isotropy, critical in sub-wavelength focusing, is very challenging since anisotropy is usually unavoidable in resonance-based metamaterials. The main difficulty is that there is no established systematic design method for simultaneous achieving of double negativity and isotropy. Thus, we propose a unique elastic metamaterial unit cell with which simultaneous realization can be achieved by an explicit step-by-step approach. The unit cell of the proposed metamaterial can be accurately modeled as an equivalent mass-spring system so that the effective properties can be easily controlled with the design parameters. The actual realization was carried out by acquiring the desired properties in sequential steps which is in detail. The specific application for this study is on sub-wavelength focusing, which will be demonstrated by waves from a single point source focused on a region smaller than half the wavelength. Actual experiments were performed on an aluminum plate where the designed metamaterial flat lens was imbedded. The results acquired through simulations and experiments suggest potential applications of the proposed metamaterial and the systematic design approach in advanced acoustic surgery or non-destructive testing.
Impedance loading and radiation of finite aperture multipole sources in fluid filled boreholes
NASA Astrophysics Data System (ADS)
Geerits, Tim W.; Kranz, Burkhard
2017-04-01
In the exploration of oil and gas finite aperture multipole borehole acoustic sources are commonly used to excite borehole modes in a fluid-filled borehole surrounded by a (poro-) elastic formation. Due to the mutual interaction of the constituent sources and their immediate proximity to the formation it has been unclear how and to what extent these effects influence radiator performance. We present a theory, based on the equivalent surface source formulation for fluid-solid systems that incorporates these 'loading' effects and allows for swift computation of the multipole source dimensionless impedance, the associated radiator motion and the resulting radiated wave field in borehole fluid and formation. Dimensionless impedance results are verified through a comparison with finite element modeling results in the cases of a logging while drilling tool submersed in an unbounded fluid and a logging while drilling tool submersed in a fluid filled borehole surrounded by a fast and a slow formation. In all these cases we consider a monopole, dipole and quadrupole excitation, as these cases are relevant to many borehole acoustic applications. Overall, we obtain a very good agreement.
Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan, Pierre -Alexandre; Dingreville, Remi
Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less
Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity
Juan, Pierre -Alexandre; Dingreville, Remi
2017-09-13
Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less
Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.
Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.
Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J
2017-09-08
Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.
Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation
NASA Astrophysics Data System (ADS)
Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla
2014-07-01
Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.
A time reversal algorithm in acoustic media with Dirac measure approximations
NASA Astrophysics Data System (ADS)
Bretin, Élie; Lucas, Carine; Privat, Yannick
2018-04-01
This article is devoted to the study of a photoacoustic tomography model, where one is led to consider the solution of the acoustic wave equation with a source term writing as a separated variables function in time and space, whose temporal component is in some sense close to the derivative of the Dirac distribution at t = 0. This models a continuous wave laser illumination performed during a short interval of time. We introduce an algorithm for reconstructing the space component of the source term from the measure of the solution recorded by sensors during a time T all along the boundary of a connected bounded domain. It is based at the same time on the introduction of an auxiliary equivalent Cauchy problem allowing to derive explicit reconstruction formula and then to use of a deconvolution procedure. Numerical simulations illustrate our approach. Finally, this algorithm is also extended to elasticity wave systems.
ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Newman, J. C., Jr.
1990-01-01
ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.
ERIC Educational Resources Information Center
Braeken, Johan; Blömeke, Sigrid
2016-01-01
Using data from the international Teacher Education and Development Study: Learning to Teach Mathematics (TEDS-M), the measurement equivalence of teachers' beliefs across countries is investigated for the case of "mathematics-as-a fixed-ability". Measurement equivalence is a crucial topic in all international large-scale assessments and…
NASA Technical Reports Server (NTRS)
Sheu, Y. C.; Fu, L. S.
1983-01-01
The extended method of equivalent inclusions is applied to study the specific wave problems: (1) the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and (2) the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. Eigenstrains are expanded as a geometric series and a method of integration based on the inhomogeneous Helmholtz operator is adopted. This study compares results, obtained by using limited number of terms in the eigenstrain expansion, with exact solutions for the layer problem and that for a perfect sphere.
The Effect of Chemical Functionalization on Mechanical Properties of Nanotube/Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Frankland, S. J. V.; Gates, T. S.
2003-01-01
The effects of the chemical functionalization of a carbon nanotube embedded in a nanotube/polyethylene composite on the bulk elastic properties are presented. Constitutive equations are established for both functionalized and non-functionalized nanotube composites systems by using an equivalent-continuum modeling technique. The elastic properties of both composites systems are predicted for various nanotube lengths, volume fractions, and orientations. The results indicate that for the specific composite material considered in this study, most of the elastic stiffness constants of the functionalized composite are either less than or equal to those of the non-functionalized composite.
Investigation of feet functions of large ruminants with a decoupled model of equivalent mechanism
Zhang, Qun; Ding, Xilun
2017-01-01
ABSTRACT Cloven hooves of ruminants adapt to diverse terrain, provide propulsive force and support the whole body during movement in natural environments. To reveal how the feet ensure terrain adaptability by choosing the proper configurations and terrain conditions, we model the feet of ruminants as an equivalent mechanism with flexion-extension and lateral movement decoupled. The upper part of the equivalent mechanism can flex and extend, while the lower part performs the lateral movement. Combination of the two parts can adapt to longitudinal slope (anterior-posterior) and transverse slope (medial-lateral), respectively. When one of two digits closes laterally, the workspace of the other decreases. The distal interdigital ligament between two digits limits their motion by elastic force and stores energy during movement. Differences in elastic energy variation of the ligament on different transverse slopes are characterized based on the configurations of two digits and the elastic energy between them. If the upper one of two symmetric digits is fixed, the foot landing on the grade surface (2°) shows greater capacity for absorbing energy; otherwise, level ground is the best choice for ruminants. As for the asymmetric digits, longer lateral digits enhance the optimal adaptive lateral angle. The asymmetry predisposes the feet to damage on the hard ground, which indicates soft ground is more suitable. PMID:28412713
Flexural bending of the Zagros foreland basin
NASA Astrophysics Data System (ADS)
Pirouz, Mortaza; Avouac, Jean-Philippe; Gualandi, Adriano; Hassanzadeh, Jamshid; Sternai, Pietro
2017-09-01
We constrain and model the geometry of the Zagros foreland to assess the equivalent elastic thickness of the northern edge of the Arabian plate and the loads that have originated due to the Arabia-Eurasia collision. The Oligo-Miocene Asmari formation, and its equivalents in Iraq and Syria, is used to estimate the post-collisional subsidence as they separate passive margin sediments from the younger foreland deposits. The depth to these formations is obtained by synthesizing a large database of well logs, seismic profiles and structural sections from the Mesopotamian basin and the Persian Gulf. The foreland depth varies along strike of the Zagros wedge between 1 and 6 km. The foreland is deepest beneath the Dezful embayment, in southwest Iran, and becomes shallower towards both ends. We investigate how the geometry of the foreland relates to the range topography loading based on simple flexural models. Deflection of the Arabian plate is modelled using point load distribution and convolution technique. The results show that the foreland depth is well predicted with a flexural model which assumes loading by the basin sedimentary fill, and thickened crust of the Zagros. The model also predicts a Moho depth consistent with Free-Air anomalies over the foreland and Zagros wedge. The equivalent elastic thickness of the flexed Arabian lithosphere is estimated to be ca. 50 km. We conclude that other sources of loading of the lithosphere, either related to the density variations (e.g. due to a possible lithospheric root) or dynamic origin (e.g. due to sublithospheric mantle flow or lithospheric buckling) have a negligible influence on the foreland geometry, Moho depth and topography of the Zagros. We calculate the shortening across the Zagros assuming conservation of crustal mass during deformation, trapping of all the sediments eroded from the range in the foreland, and an initial crustal thickness of 38 km. This calculation implies a minimum of 126 ± 18 km of crustal shortening due to ophiolite obduction and post-collisional shortening.
NASA Technical Reports Server (NTRS)
Palko, James W.; Sayir, Ali; Sinogeikin, Stanislav V.; Kriven, Waltraud M.; Bass, Jay D.; Farmer, Serene C. (Technical Monitor)
2001-01-01
The complete elastic tensor of mullite has been determined by brillouin spectroscopy at room temperature and elevated temperatures up to 1200C. Equivalent, isotropic moduli (bulk, shear, and Young's) have been calculated. The room temperature values obtained using Voigt-Reuss-Hill averaging are: K(sub VRH) = 173.5 + 6.9 GPa, G(sub VRH) = 88.0 + 3.5 GPa, E(sub VRH) = 225.9 + 9.0 GPa. All moduli show relatively gradual decreases with temperature. The temperature derivatives obtained for the equivalent, isotropic moduli are: dK(sub VRH)/dT = - 17.5 + 2.5 MPa/deg. C, dG(sub VRH)/dT = -8.8 + 1.4 MPa/deg. C, dE(sub VRH)/dT = -22.6 + 2.8 MPa/deg C. Substantial differences between bulk properties calculated from the single crystal measurements in this study and the properties reported in the literature for polycrystalline sintered mullite are identified, indicating the importance of factors such as microstructure, intergranular phases, and composition to the elasticity of mullite ceramics.
From local to global measurements of nonclassical nonlinear elastic effects in geomaterials
Lott, Martin; Remillieux, Marcel C.; Le Bas, Pierre-Yves; ...
2016-09-07
Here, the equivalence between local and global measures of nonclassical nonlinear elasticity is established in a slender resonant bar. Nonlinear effects are first measured globally using nonlinear resonance ultrasound spectroscopy (NRUS), which monitors the relative shift of the resonance frequency as a function of the maximum dynamic strain in the sample. Subsequently, nonlinear effects are measured locally at various positions along the sample using dynamic acousto elasticity testing (DAET). Finally, after correcting analytically the DAET data for three-dimensional strain effects and integrating numerically these corrected data along the length of the sample, the NRUS global measures are retrieved almost exactly.
Micromechanics of Interfaces in High Temperature Composites
1992-05-30
the development of analytical solutions to solve the eigenstrain problem of both a single fiber (treated as a cylindrical inclusion) in an elastic... eigenstrain in a half space by using Green’s functions. Green’s functions were obtained for problems of an elastic half space with a free surface or rigidly...normal to the crack surface, the eigenstrain £3, for the equivalent inclusion method is introduced to simulate the bridged crack. Specially £33 in DO
In-plane elastic properties of auxetic multilattices
NASA Astrophysics Data System (ADS)
Berinskii, Igor E.
2018-07-01
Numerous studies proposed the possible use of auxetic periodic structures in engineering applications. The regular cellular structures with several nodes in a unit cell of the lattice are referred to as multilattices. In this work, a homogenization procedure was applied to three types of plane multilattices: conventional and re-entrant honeycombs (REH), double arrowheads, and semi REH constructed from elastic ribs. It was shown, that for all considered lattices the components of effective tensors of elasticity can be obtained in an explicit way in the frames of the same approach taking stretching, bending and shear of the ribs into account. As a result, equivalent elastic in-plane properties were found analytically as the functions of geometrical parameters of the lattices and the elastic parameters of the ribs. The estimation of the limits for the elastic properties was also performed. It was investigated how the condition of constant density changes the dependence of the elastic constants on the angles between the nodes. Also, different lattices were investigated at the same reference density taken equal to the density of the honeycomb lattice. The most typical cases from the practical point of view were considered and the corresponding elastic parameters were calculated for them.
Geometric charges in theories of elasticity and plasticity
NASA Astrophysics Data System (ADS)
Moshe, Michael
The mechanics of many natural systems is governed by localized sources of stresses. Examples include ''plastic events'' that occur in amorphous solids under external stress, defects formation in crystalline material, and force-dipoles applied by cells adhered to an elastic substrate. Recent developments in a geometric formulation of elasticity theory paved the way for a unifying mathematical description of such singular sources of stress, as ''elastic charges''. In this talk I will review basic results in this emerging field, focusing on the geometry and mechanics of elastic charges in two-dimensional solid bodies. I will demonstrate the applicability of this new approach in three different problems: failure of an amorphous solid under load, mechanics of Kirigami, and wrinkle patterns in geometrically-incompatible elastic sheets.
Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian; Robertson, Amy; Jonkman, Jason
2016-08-01
The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less
Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian F.; Andersen, Morten T.; Robertson, Amy N.
2016-07-01
The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less
Computational micromechanics of woven composites
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Saigal, Sunil; Zeng, Xiaogang
1991-01-01
The bounds on the equivalent elastic material properties of a composite are presently addressed by a unified energy approach which is valid for both unidirectional and 2D and 3D woven composites. The unit cell considered is assumed to consist, first, of the actual composite arrangement of the fibers and matrix material, and then, of an equivalent pseudohomogeneous material. Equating the strain energies due to the two arrangements yields an estimate of the upper bound for the material equivalent properties; successive increases in the order of displacement field that is assumed in the composite arrangement will successively produce improved upper bound estimates.
NASA Technical Reports Server (NTRS)
Sheu, Y. C.; Fu, L. S.
1982-01-01
The extended method of equivalent inclusion developed is applied to study the specific wave problems of the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and of the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. The eigenstrains are expanded as a geometric series and the method of integration for the inhomogeneous Helmholtz operator given by Fu and Mura is adopted. The results obtained by using a limited number of terms in the eigenstrain expansion are compared with exact solutions for the layer problem and for a perfect sphere. Two parameters are singled out for this comparison: the ratio of elastic moduli, and the ratio of the mass densities. General trends for three different situations are shown.
NASA Astrophysics Data System (ADS)
Wadhwa, Ajay
2013-05-01
We studied the motion of a bouncing ball by representing it through an equivalent mass-spring system executing damped harmonic oscillations. We represented the elasticity of the system through the spring constant ‘k’ and the viscous damping effect, causing loss of energy, through damping constant ‘c’. By including these two factors we formed a differential equation for the equivalent mass-spring system of the bouncing ball. This equation was then solved to study the elastic and dynamic properties of its motion by expressing them in terms of experimentally measurable physical quantities such as contact time, coefficient of restitution, etc. We used our analysis for different types of ball material: rubber (lawn-tennis ball, super ball, soccer ball and squash ball) and plastic (table-tennis ball) at room temperature. Since the effect of temperature on the bounce of a squash ball is significant, we studied the temperature dependence of its elastic properties. The experiments were performed using audio and surface-temperature sensors interfaced with a computer through a USB port. The work presented here is suitable for undergraduate laboratories. It particularly emphasizes the use of computer interfacing for conducting conventional physics experiments.
NASA Astrophysics Data System (ADS)
Schaperow, J.; Cooper, M. G.; Cooley, S. W.; Alam, S.; Smith, L. C.; Lettenmaier, D. P.
2017-12-01
As climate regimes shift, streamflows and our ability to predict them will change, as well. Elasticity of summer minimum streamflow is estimated for 138 unimpaired headwater river basins across the maritime western US mountains to better understand how climatologic variables and geologic characteristics interact to determine the response of summer low flows to winter precipitation (PPT), spring snow water equivalent (SWE), and summertime potential evapotranspiration (PET). Elasticities are calculated using log log linear regression, and linear reservoir storage coefficients are used to represent basin geology. Storage coefficients are estimated using baseflow recession analysis. On average, SWE, PET, and PPT explain about 1/3 of the summertime low flow variance. Snow-dominated basins with long timescales of baseflow recession are least sensitive to changes in SWE, PPT, and PET, while rainfall-dominated, faster draining basins are most sensitive. There are also implications for the predictability of summer low flows. The R2 between streamflow and SWE drops from 0.62 to 0.47 from snow-dominated to rain-dominated basins, while there is no corresponding increase in R2 between streamflow and PPT.
Analytical Expressions for Deformation from an Arbitrarily Oriented Spheroid in a Half-Space
NASA Astrophysics Data System (ADS)
Cervelli, P. F.
2013-12-01
Deformation from magma chambers can be modeled by an elastic half-space with an embedded cavity subject to uniform pressure change along its interior surface. For a small number of cavity shapes, such as a sphere or a prolate spheroid, closed-form, analytical expressions for deformation have been derived, although these only approximate the uniform-pressure-change boundary condition, with the approximation becoming more accurate as the ratio of source depth to source dimension increases. Using the method of Elshelby [1957] and Yang [1988], which consists of a distribution of double forces and centers of dilatation along the vertical axis, I have derived expressions for displacement from a finite spheroid of arbitrary orientation and aspect ratio that are exact in an infinite elastic medium and approximate in a half-space. The approximation, like those for other cavity shapes, becomes increasingly accurate as the depth to source ratio grows larger, and is accurate to within a few percent in most real-world cases. I have also derived expressions for the deformation-gradient tensor, i.e., the derivatives of each component of displacement with respect to each coordinate direction. These can be transformed easily into the strain and stress tensors. The expressions give deformation both at the surface and at any point within the half-space, and include conditional statements that account for limiting cases that would otherwise prove singular. I have developed MATLAB code for these expressions (and their derivatives), which I use to demonstrate the accuracy of the approximation by showing how well the uniform-pressure-change boundary condition is satisfied in a variety of cases. I also show that a vertical, oblate spheroid with a zero-length vertical axis is equivalent to the penny-shaped crack of Fialko [2001] in an infinite medium and an excellent approximation in a half-space. Finally, because, in many cases, volume change is more tangible than pressure change, I have derived an equation that relates these two quantities for the spheroid: volume change equals pressure change × 2/3 × π/μ × a constant that depends on Poisson's ratio and the spheroid geometry. Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc. London, Ser. A, 241, 376-396, 1957. Fialko, Y., Khazan, Y, and Simons, M. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy, Geophys. J. Int., no. 146, 181-190, 2001. Yang, X., Davis, P. M., and Dieterich, J.H, Deformation from inflation of a dipping finite prolate spheroid in an Elastic Half-Space as a model for volcanic stressing, J. Geophys. Res., vol. 93, no. B5, 4249-4257, 1988.
Asymptotic quantum inelastic generalized Lorenz Mie theory
NASA Astrophysics Data System (ADS)
Gouesbet, G.
2007-10-01
The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane wave illumination. In a recent paper, we consider (i) elastic cross-sections in electromagnetic generalized Lorenz-Mie theory and (ii) elastic cross-sections in an associated quantum generalized Lorenz-Mie theory. We demonstrated that the electromagnetic problem is equivalent to a superposition of two effective quantum problems. We now intend to generalize this result from elastic cross-sections to inelastic cross-sections. A prerequisite is to build an asymptotic quantum inelastic generalized Lorenz-Mie theory, which is presented in this paper.
Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry
NASA Technical Reports Server (NTRS)
Macon, David J.
2006-01-01
An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.
Equivalent orthotropic elastic moduli identification method for laminated electrical steel sheets
NASA Astrophysics Data System (ADS)
Saito, Akira; Nishikawa, Yasunari; Yamasaki, Shintaro; Fujita, Kikuo; Kawamoto, Atsushi; Kuroishi, Masakatsu; Nakai, Hideo
2016-05-01
In this paper, a combined numerical-experimental methodology for the identification of elastic moduli of orthotropic media is presented. Special attention is given to the laminated electrical steel sheets, which are modeled as orthotropic media with nine independent engineering elastic moduli. The elastic moduli are determined specifically for use with finite element vibration analyses. We propose a three-step methodology based on a conventional nonlinear least squares fit between measured and computed natural frequencies. The methodology consists of: (1) successive augmentations of the objective function by increasing the number of modes, (2) initial condition updates, and (3) appropriate selection of the natural frequencies based on their sensitivities on the elastic moduli. Using the results of numerical experiments, it is shown that the proposed method achieves more accurate converged solution than a conventional approach. Finally, the proposed method is applied to measured natural frequencies and mode shapes of the laminated electrical steel sheets. It is shown that the method can successfully identify the orthotropic elastic moduli that can reproduce the measured natural frequencies and frequency response functions by using finite element analyses with a reasonable accuracy.
Elasticity improves handgrip performance and user experience during visuomotor control
Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne
2017-01-01
Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human–machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9–14% mean range; p < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices. PMID:28386448
Elasticity improves handgrip performance and user experience during visuomotor control.
Mace, Michael; Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne
2017-02-01
Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human-machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9-14% mean range; p < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices.
Frequency, pressure and strain dependence of nonlinear elasticity in Berea Sandstone
Riviere, Jacques; Johnson, Paul Allan; Marone, Chris; ...
2016-04-14
Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static ( f → 0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2–3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1fmore » appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. Furthermore, these findings can be used to improve theories relating the macroscopic elastic response to microstructural features.« less
Marangoni-induced symmetry-breaking pattern selection on viscous fluids
NASA Astrophysics Data System (ADS)
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2016-11-01
Symmetry breaking transitions on curved surfaces are found in a wide range of dissipative systems, ranging from asymmetric cell divisions to structure formation in thin films. Inherent within the nonlinearities are the associated curvilinear geometry, the elastic stretching, bending and the various fluid dynamical processes. We present a generalised Swift-Hohenberg pattern selection theory on a thin, curved and viscous films in the presence of non-trivial Marangoni effect. Testing the theory with experiments on soap bubbles, we observe the film pattern selection to mimic that of the elastic wrinkling morphology on a curved elastic bilayer in regions of slow viscous flow. By examining the local state of damping of surface capillary waves we attempt to establish an equivalence between the Marangoni fluid dynamics and the nonlinear elastic shell theory above the critical wavenumber of the instabilities and propose a possible explanation for the perceived elastic-fluidic duality. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
The effect of dissipation on the resistive admittance of an elastic medium.
Photiadis, Douglas M
2012-03-01
The effect of dissipation on the real part of the admittance of an elastic half-space is typically thought to be unimportant if the loss factor ζ of the elastic medium is small. However, dissipation induces losses in the near field of the source and, provided the size of the source is small enough, this phenomenon can be more important than elastic wave radiation. Such losses give rise to a fundamental limit in the quality factor of an oscillator attached to a substrate. Near field losses associated with strains in the elastic substrate can actually be larger than intrinsic losses in the oscillator itself if the internal friction of the substrate is larger than the internal friction of the oscillator. For a uniform stress applied to a disk of radius a, a monopole source, such phenomena become significant for k(L)a<ζ, while for higher order multipole sources of order l, near field losses are important for (k(L)a)(l+1)<ζ, a far less restrictive constraint. © 2012 Acoustical Society of America
Osanai, Osamu; Ohtsuka, Mayumi; Hotta, Mitsuyuki; Kitaharai, Takashi; Takema, Yoshinori
2011-08-01
Skin elasticity has been assessed previously only in the surface layer. We developed a new method that uses tissue strain imaging (TSI) technology, and the aim of this study was to test this new method to assess internal skin elasticity. Using a pressure device with a 12 MHz ultrasound transducer, constant and linear compressions were applied to the cheek skin of 35 volunteers (aged: 20-60 years). The elasticity of each layer (dermis, subcutaneous and muscle) was measured and analyzed using the TSI application software incorporated into the Toshiba Aplio(™) XV ultrasound system. A skin tissue-equivalent phantom, which is a block of material with the acoustic velocity (1530 m/s) of human skin, was collaboratively developed by OST Inc. This phantom was placed between the skin and the transducer as a reference material. Skin elasticity was clearly visualized and quantified in each layer of the skin. Age-dependent decreases in elasticity were determined in all layers of the skin. Among the three internal skin layers, the highest elasticity was determined in the subcutaneous layer followed by the muscle layer. These findings support the validity and sensitivity of the TSI method to assess the elasticity of various layers of skin. © 2011 John Wiley & Sons A/S.
Elastic Bottom Propagation Mechanisms Investigated by Parabolic Equation Methods
2014-09-30
channel propagation of oceanic T waves from seismic sources in the presence of intervening seamounts or coral reef barriers is established using elastic PE...environments in the form of scattering at an elastic interface, oceanic T - waves , and Scholte waves . OBJECTIVES To implement explosive and earthquake...oceanic T - waves , which are acoustic waves that result from earthquake or buried explosive sources, and Rayleigh-type waves along the ocean floor, whose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagunov, A.S.; Seryakov, V.M.
1985-07-01
This paper presents results of a study which indicates that as a result of the solution for a nonuniform rock mass by the FEM it is established that, first, from the direction of the hanging wall of workings and at the surface, the nature of elastic deformation of the rock is equivalent to that observed under natural conditions, and from the direction of the lying wall of workings and close to their ends there is short-lived rotational creation of elastic displacements, extinguished as plastic deformation develops. Second, the superposition principle, taken as the basis for algebraic summation of displacements andmore » deformations due to individual workings, is not entirely observed in their joint effect on the rock mass in the elastic stage, and with plastic and shear deformation of rocks (partial or complete), depending on their bedding conditions.« less
New equivalent lumped electrical circuit for piezoelectric transformers.
Gonnard, Paul; Schmitt, P M; Brissaud, Michel
2006-04-01
A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.
Asymptotic quantum elastic generalized Lorenz Mie theory
NASA Astrophysics Data System (ADS)
Gouesbet, G.
2006-10-01
The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane-wave illumination. In a recent paper, we established that, if we restrict ourselves to the study of cross-sections, both for elastic and inelastic scatterings, a macroscopic sphere in Lorenz-Mie theory is formally equivalent to a quantum-like radial potential. To generalize this result, a prerequisite is to possess an asymptotic quantum generalized Lorenz-Mie theory expressing cross-sections in the case of a quantum radial potential interacting with a sub-class of quantum arbitrary wave-packets. Such a theory, restricted however to elastic scattering, is presented in this paper.
Homogenization theory for designing graded viscoelastic sonic crystals
NASA Astrophysics Data System (ADS)
Qu, Zhao-Liang; Ren, Chun-Yu; Pei, Yong-Mao; Fang, Dai-Ning
2015-02-01
In this paper, we propose a homogenization theory for designing graded viscoelastic sonic crystals (VSCs) which consist of periodic arrays of elastic scatterers embedded in a viscoelastic host material. We extend an elastic homogenization theory to VSC by using the elastic-viscoelastic correspondence principle and propose an analytical effective loss factor of VSC. The results of VSC and the equivalent structure calculated by using the finite element method are in good agreement. According to the relation of the effective loss factor to the filling fraction, a graded VSC plate is easily and quickly designed. Then, the graded VSC may have potential applications in the vibration absorption and noise reduction fields. Project supported by the National Basic Research Program of China (Grant No. 2011CB610301).
1989-04-01
conventional fracture mechanics procedures, in conjuction with the superposition principle shown in Fig 2, it is then possible to compute the eigenstrains ...free strain eT ( eigenstrain , transformation strain) then, for the inclusion-matrix system the transformation strain eT induces constrained displacements...the equivalent body: The equivalent body contains elastically homogeneous inclusions with proper eigenstrains . Next, the average of the stress and
Developing a passive load reduction blade for the DTU 10 MW reference turbine
NASA Astrophysics Data System (ADS)
de Vaal, J. B.; Nygaard, T. A.; Stenbro, R.
2016-09-01
This paper presents the development of a passive load reduction blade for the DTU 10 MW reference wind turbine, using the aero-hydro-servo-elastic analysis tool 3DFloat. Passive load reduction is achieved by introducing sweep to the path of the blade elastic axis, so that out-of-plane bending deflections result in load alleviating torsional deformations of the blade. Swept blades are designed to yield similar annual energy production as a rotor with a reference straight blade. This is achieved by modifying the aerodynamic twist distribution for swept blades based on non-linear blade deflection under steady state loads. The passive load reduction capability of a blade design is evaluated by running a selection of fatigue- and extreme load cases with the analysis tool 3DFloat and determining equivalent fatigue loads, fatigue damage and extreme loads at the blade root and tower base. The influence of sweep on the flutter speed of a blade design is also investigated. A large number of blade designs are evaluated by varying the parameters defining the sweep path of a blade's elastic axis. Results show that a moderate amount of sweep can effectively reduce equivalent fatigue damage and extreme loads, without significantly reducing the flutter speed, or compromising annual energy production.
Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet
NASA Astrophysics Data System (ADS)
Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi
Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.
2017-01-01
The mechanical response of a homogeneous isotropic linearly elastic material can be fully characterized by two physical constants, the Young’s modulus and the Poisson’s ratio, which can be derived by simple tensile experiments. Any other linear elastic parameter can be obtained from these two constants. By contrast, the physical responses of nonlinear elastic materials are generally described by parameters which are scalar functions of the deformation, and their particular choice is not always clear. Here, we review in a unified theoretical framework several nonlinear constitutive parameters, including the stretch modulus, the shear modulus and the Poisson function, that are defined for homogeneous isotropic hyperelastic materials and are measurable under axial or shear experimental tests. These parameters represent changes in the material properties as the deformation progresses, and can be identified with their linear equivalent when the deformations are small. Universal relations between certain of these parameters are further established, and then used to quantify nonlinear elastic responses in several hyperelastic models for rubber, soft tissue and foams. The general parameters identified here can also be viewed as a flexible basis for coupling elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful information between scales. PMID:29225507
EXCITATION OF A BURIED MAGMATIC PIPE: A SEISMIC SOURCE MODEL FOR VOLCANIC TREMOR.
Chouet, Bernard
1985-01-01
A model of volcanic tremor is presented in which the modes of vibration of a volcanic pipe are excited by the motion of the fluid within the pipe in response to a short-term perturbation in pressure. The model shows the relative importance of the various parts constituting this composite source in the radiated elastic field at near and intermediate distances. The paper starts with the presentation of the elastic field radiated by the source, and proceeds with an analysis of the energy balance between hydraulic and elastic motions. Next, the hydraulic excitation of the source is addressed and, finally, the ground response to this excitation is analyzed in the simple case of a pipe buried in a homogeneous half space.
NASA Technical Reports Server (NTRS)
Ciurlionis, B.
1967-01-01
Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.
... has been demonstrated that the device is substantially equivalent to a legally marketed predicate device that does not require premarket approval. Devices that present a low risk of harm to the user (Class I) (for example non-powered breast pumps, elastic bandages, tongue depressors, and ...
Mechanical modeling and characteristic study for the adhesive contact of elastic layered media
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo
2017-11-01
This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard-Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.
SCF-MO computations have been performed on tetra- to octa-chlorinated dibenzo-p-dioxin congeners (PCDD) using an MNDO-PM3 Hamiltonian. Qualitative relationships were developed between empirical, international-toxic equivalence factors for PCDD congeners and their relati...
Two parametric voice source models and their asymptotic analysis
NASA Astrophysics Data System (ADS)
Leonov, A. S.; Sorokin, V. N.
2014-05-01
The paper studies the asymptotic behavior of the function for the area of the glottis near moments of its opening and closing for two mathematical voice source models. It is shown that in the first model, the asymptotics of the area function obeys a power law with an exponent of no less that 1. Detailed analysis makes it possible to refine these limits depending on the relative sizes of the intervals of a closed and open glottis. This work also studies another parametric model of the area of the glottis, which is based on a simplified physical-geometrical representation of vocal-fold vibration processes. This is a special variant of the well-known two-mass model and contains five parameters: the period of the main tone, equivalent masses on the lower and upper edge of vocal folds, the coefficient of elastic resistance of the lower vocal fold, and the delay time between openings of the upper and lower folds. It is established that the asymptotics of the obtained function for the area of the glottis obey a power law with an exponent of 1 both for opening and closing.
Superresolution near-field imaging with surface waves
NASA Astrophysics Data System (ADS)
Fu, Lei; Liu, Zhaolun; Schuster, Gerard
2018-02-01
We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulae and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green's functions for migration, and only costs O(N4) algebraic operations for post-stack migration compared to O(N6) operations for natural pre-stack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.
Miniaci, M; Gliozzi, A S; Morvan, B; Krushynska, A; Bosia, F; Scalerandi, M; Pugno, N M
2017-05-26
The appearance of nonlinear effects in elastic wave propagation is one of the most reliable and sensitive indicators of the onset of material damage. However, these effects are usually very small and can be detected only using cumbersome digital signal processing techniques. Here, we propose and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection. The proposed device demonstrates its potential as an efficient, compact, portable, passive apparatus for nonlinear elastic wave sensing and damage detection.
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
Solano-Altamirano, J M; Goldman, Saul
2015-12-01
We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.
1983-08-01
Local Leads (Qualified and Interested) from LAMS Advertising (Based on FY82 Experience) Table 7 - Long Term Elasticities for Navy-Sourced NOIC Leads...Area Level Elasticities for Total NOIC Leads (Regardless of Source of Advertising ) for FY79, FY80 (FY80: 146,465) Appendix - Table la - Comparison of...of national .1*S leads (e.g., NOIC leads from a Navy source or from Joint DOD advertising (JADOR) sources), and for local leads. An Appendix
Defects in crystalline packings of twisted filament bundles. I. Continuum theory of disclinations.
Grason, Gregory M
2012-03-01
We develop the theory of the coupling between in-plane order and out-of-plane geometry in twisted, two-dimensionally ordered filament bundles based on the nonlinear continuum elasticity theory of columnar materials. We show that twisted textures of filament backbones necessarily introduce stresses into the cross-sectional packing of bundles and that these stresses are formally equivalent to the geometrically induced stresses generated in thin elastic sheets that are forced to adopt spherical curvature. As in the case of crystalline order on curved membranes, geometrically induced stresses couple elastically to the presence of topological defects in the in-plane order. We derive the effective theory of multiple disclination defects in the cross section of bundle with a fixed twist and show that above a critical degree of twist, one or more fivefold disclinations is favored in the elastic energy ground state. We study the structure and energetics of multidisclination packings based on models of equilibrium and nonequilibrium cross-sectional order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klima, Matej; Kucharik, MIlan; Shashkov, Mikhail Jurievich
We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells – an equivalent of the discrete maximum principle in scalar variables.more » We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J 2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J 2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.« less
Elastic modulus of tree frog adhesive toe pads.
Barnes, W Jon P; Goodwyn, Pablo J Perez; Nokhbatolfoghahai, Mohsen; Gorb, Stanislav N
2011-10-01
Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5-15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4-25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs.
Molecular versus squared Woods-Saxon α-nucleus potentials in the 27Al(α, t)28Si reaction
NASA Astrophysics Data System (ADS)
Abdullah, M. N. A.; Das, S. K.; Tariq, A. S. B.; Mahbub, M. S.; Mondal, A. S.; Uddin, M. A.; Basak, A. K.; Gupta, H. M. Sen; Malik, F. B.
2003-06-01
The differential cross-section of the 27Al(alpha, t)28Si reaction for 64.5 MeV incident energy has been reanalysed in DWBA with full finite range using a squared Woods-Saxon (Michel) alpha-nucleus potential with the modified value of the depth parameter alpha = 2.0 as reported in a comment article by Michel and Reidemeister. This new value produces significant improvement in fitting the data of the reaction with its overall performance, in some cases, close to that previously observed for the molecular potential. Although the non-monotonic shallow molecular potential with a soft repulsive core and the Michel potentials produce the same quality fits to the elastic scattering and non-elastic processes, they are not phase equivalent. The two types of potential produce altogether different cross-sections, particularly at large reaction angles. The importance of the experimental cross-sections at large angles for both elastic scattering and non-elastic processes is elucidated.
DOT National Transportation Integrated Search
1970-01-01
In this investigation, the optimum structural strength contributed by a material to the overall strength of the pavement was studied for cases applicable to Virginia. The variables were (a) the modulus of elasticity or the thickness equivalency of th...
An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Shivakumar, K. N.
1990-01-01
An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies is presented. The details of the method and its implementation are presented for isoparametric elements. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented.
NASA Astrophysics Data System (ADS)
Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew
2016-03-01
Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.
NASA Astrophysics Data System (ADS)
Barbot, Sylvain; Fialko, Yuri; Sandwell, David
2009-10-01
We present a semi-analytic iterative procedure for evaluating the 3-D deformation due to faults in an arbitrarily heterogeneous elastic half-space. Spatially variable elastic properties are modelled with equivalent body forces and equivalent surface traction in a `homogenized' elastic medium. The displacement field is obtained in the Fourier domain using a semi-analytic Green function. We apply this model to investigate the response of 3-D compliant zones (CZ) around major crustal faults to coseismic stressing by nearby earthquakes. We constrain the two elastic moduli, as well as the geometry of the fault zones by comparing the model predictions to Synthetic Aperture Radar inferferometric (InSAR) data. Our results confirm that the CZ models for the Rodman, Calico and Pinto Mountain faults in the Eastern California Shear Zone (ECSZ) can explain the coseismic InSAR data from both the Landers and the Hector Mine earthquakes. For the Pinto Mountain fault zone, InSAR data suggest a 50 per cent reduction in effective shear modulus and no significant change in Poisson's ratio compared to the ambient crust. The large wavelength of coseismic line-of-sight displacements around the Pinto Mountain fault requires a fairly wide (~1.9 km) CZ extending to a depth of at least 9 km. Best fit for the Calico CZ, north of Galway Dry Lake, is obtained for a 4km deep structure, with a 60 per cent reduction in shear modulus, with no change in Poisson's ratio. We find that the required effective rigidity of the Calico fault zone south of Galway Dry Lake is not as low as that of the northern segment, suggesting along-strike variations of effective elastic moduli within the same fault zone. The ECSZ InSAR data is best explained by CZ models with reduction in both shear and bulk moduli. These observations suggest pervasive and widespread damage around active crustal faults.
ELATE: an open-source online application for analysis and visualization of elastic tensors
NASA Astrophysics Data System (ADS)
Gaillac, Romain; Pullumbi, Pluton; Coudert, François-Xavier
2016-07-01
We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots.
NASA Astrophysics Data System (ADS)
Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng
2016-05-01
In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.
Alessandri, N; Tufano, F; Petrassi, M; Alessandri, C; Lanzi, L; Fusco, L; Moscariello, F; De Angelis, C; Tomao, E
2010-05-01
The hysto-morfological composition of the ascending aorta wall gives to the vessel its characteristic elasticity/distensibility, which is deteriorated due to both physiological (age) and pathological events (hypertension, diabetes, dyslipidemia). This contributes to reduce the wall elasticity and to occurrence of cardiovascular events. Thirty young healthy subjects (20 males, 10 females, age <30 yr), were subjected to different postural conditions with and without Lower Body Negative Pressure (LBNP) with conventional procedures, to simulate the microgravity conditions in space flight. During this procedure the cardiovascular parameters and the aorta elasticity were assessed with ecocardiography. The observation of results and statistical comparison showed that despite different hemodynamic conditions and with significant variation of blood pressure related to posture, elasticity/distensibility did not change significantly. The elasticity/distensibility of arterial vessels is the result of two interdependent variables such as blood pressure and systolic and diastolic diameters. While blood pressure and heart rate vary physiologically in relation to posture, the compensation of the vessel diameters modifications maintains the aortic compliance invariate. Therefore, in young healthy people, despite the significant postural and the sudden pressure changes (equivalent to parietal stress) aortic compliance does not alter. This behavior might be related to the low rate of cardiovascular events that are present in healthy people aged under 30 yrs.
Modeling water demand when households have multiple sources of water
NASA Astrophysics Data System (ADS)
Coulibaly, Lassina; Jakus, Paul M.; Keith, John E.
2014-07-01
A significant portion of the world's population lives in areas where public water delivery systems are unreliable and/or deliver poor quality water. In response, people have developed important alternatives to publicly supplied water. To date, most water demand research has been based on single-equation models for a single source of water, with very few studies that have examined water demand from two sources of water (where all nonpublic system water sources have been aggregated into a single demand). This modeling approach leads to two outcomes. First, the demand models do not capture the full range of alternatives, so the true economic relationship among the alternatives is obscured. Second, and more seriously, economic theory predicts that demand for a good becomes more price-elastic as the number of close substitutes increases. If researchers artificially limit the number of alternatives studied to something less than the true number, the price elasticity estimate may be biased downward. This paper examines water demand in a region with near universal access to piped water, but where system reliability and quality is such that many alternative sources of water exist. In extending the demand analysis to four sources of water, we are able to (i) demonstrate why households choose the water sources they do, (ii) provide a richer description of the demand relationships among sources, and (iii) calculate own-price elasticity estimates that are more elastic than those generally found in the literature.
Effective elastic moduli of triangular lattice material with defects
NASA Astrophysics Data System (ADS)
Liu, Xiaoyu; Liang, Naigang
2012-10-01
This paper presents an attempt to extend homogenization analysis for the effective elastic moduli of triangular lattice materials with microstructural defects. The proposed homogenization method adopts a process based on homogeneous strain boundary conditions, the micro-scale constitutive law and the micro-to-macro static operator to establish the relationship between the macroscopic properties of a given lattice material to its micro-discrete behaviors and structures. Further, the idea behind Eshelby's equivalent eigenstrain principle is introduced to replace a defect distribution by an imagining displacement field (eigendisplacement) with the equivalent mechanical effect, and the triangular lattice Green's function technique is developed to solve the eigendisplacement field. The proposed method therefore allows handling of different types of microstructural defects as well as its arbitrary spatial distribution within a general and compact framework. Analytical closed-form estimations are derived, in the case of the dilute limit, for all the effective elastic moduli of stretch-dominated triangular lattices containing fractured cell walls and missing cells, respectively. Comparison with numerical results, the Hashin-Shtrikman upper bounds and uniform strain upper bounds are also presented to illustrate the predictive capability of the proposed method for lattice materials. Based on this work, we propose that not only the effective Young's and shear moduli but also the effective Poisson's ratio of triangular lattice materials depend on the number density of fractured cell walls and their spatial arrangements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl, W. F.
NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.
Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang
2015-05-01
Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.
Entropic vs. elastic models of fragility of glass-forming liquids: Two sides of the same coin?
NASA Astrophysics Data System (ADS)
Sen, Sabyasachi
2012-10-01
The two most influential atomistic models that have been proposed in the literature to explain the temperature dependent activation energy of viscous flow of a glass-forming liquid, i.e., its fragility, are the configurational entropy model of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965), 10.1063/1.1696442] and the elastic "shoving" model of Dyre et al. [J. Non-Cryst. Solids 352, 4635 (2006), 10.1016/j.jnoncrysol.2006.02.173]. Here we demonstrate a qualitative equivalence between these two models starting from the well-established general relationships between the interatomic potentials, elastic constants, structural rearrangement, and entropy in amorphous materials. The unification of these two models provides important predictions that are consistent with experimental observations and shed new light into the problem of glass transition.
Nonlinear dynamics induced in a structure by seismic and environmental loading
Gueguen, Philippe; Johnson, Paul Allan; Roux, Philippe
2016-07-26
In this study,we show that under very weak dynamic and quasi-static deformation, that is orders of magnitude below the yield deformation of the equivalent stress strain curve (around 10 -3), the elastic parameters of a civil engineering structure (resonance frequency and damping) exhibit nonlinear softening and recovery. These observations bridge the gap between laboratory and seismic scales where elastic nonlinear behavior has been previously observed. Under weak seismic or atmospheric loading, modal frequencies are modified by around 1% and damping by more than 100% for strain levels between 10 -7 and 10 -4. These observations support the concept of universalmore » behavior of nonlinear elastic behavior in diverse systems, including granular materials and damaged solids that scale from millimeter dimensions to the scale of structures to fault dimensions in the Earth.« less
Nonlinear dynamics induced in a structure by seismic and environmental loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueguen, Philippe; Johnson, Paul Allan; Roux, Philippe
In this study,we show that under very weak dynamic and quasi-static deformation, that is orders of magnitude below the yield deformation of the equivalent stress strain curve (around 10 -3), the elastic parameters of a civil engineering structure (resonance frequency and damping) exhibit nonlinear softening and recovery. These observations bridge the gap between laboratory and seismic scales where elastic nonlinear behavior has been previously observed. Under weak seismic or atmospheric loading, modal frequencies are modified by around 1% and damping by more than 100% for strain levels between 10 -7 and 10 -4. These observations support the concept of universalmore » behavior of nonlinear elastic behavior in diverse systems, including granular materials and damaged solids that scale from millimeter dimensions to the scale of structures to fault dimensions in the Earth.« less
Simulation of the zero-temperature behavior of a three-dimensional elastic medium
NASA Astrophysics Data System (ADS)
McNamara, David; Middleton, A. Alan; Zeng, Chen
1999-10-01
We have performed numerical simulation of a three-dimensional elastic medium, with scalar displacements, subject to quenched disorder. In the absence of topological defects this system is equivalent to a (3+1)-dimensional interface subject to a periodic pinning potential. We have applied an efficient combinatorial optimization algorithm to generate exact ground states for this interface representation. Our results indicate that this Bragg glass is characterized by power law divergences in the structure factor S(k)~Ak-3. We have found numerically consistent values of the coefficient A for two lattice discretizations of the medium, supporting universality for A in the isotropic systems considered here. We also examine the response of the ground state to the change in boundary conditions that corresponds to introducing a single dislocation loop encircling the system. The rearrangement of the ground state caused by this change is equivalent to the domain wall of elastic deformations which span the dislocation loop. Our results indicate that these domain walls are highly convoluted, with a fractal dimension df=2.60(5). We also discuss the implications of the domain wall energetics for the stability of the Bragg glass phase. Elastic excitations similar to these domain walls arise when the pinning potential is slightly perturbed. As in other disordered systems, perturbations of relative strength δ introduce a new length scale L*~δ-1/ζ beyond which the perturbed ground state becomes uncorrelated with the reference (unperturbed) ground state. We have performed a scaling analysis of the response of the ground state to the perturbations and obtain ζ=0.385(40). This value is consistent with the scaling relation ζ=df/2-θ, where θ characterizes the scaling of the energy fluctuations of low energy excitations.
NASA Astrophysics Data System (ADS)
Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei
2018-04-01
A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.
Tang, M X; Zhang, Y Y; E, J C; Luo, S N
2018-05-01
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.
Controlled-source seismic interferometry with one way wave fields
NASA Astrophysics Data System (ADS)
van der Neut, J.; Wapenaar, K.; Thorbecke, J. W.
2008-12-01
In Seismic Interferometry we generally cross-correlate registrations at two receiver locations and sum over an array of sources to retrieve a Green's function as if one of the receiver locations hosts a (virtual) source and the other receiver location hosts an actual receiver. One application of this concept is to redatum an area of surface sources to a downhole receiver location, without requiring information about the medium between the sources and receivers, thus providing an effective tool for imaging below complex overburden, which is also known as the Virtual Source method. We demonstrate how elastic wavefield decomposition can be effectively combined with controlled-source Seismic Interferometry to generate virtual sources in a downhole receiver array that radiate only down- or upgoing P- or S-waves with receivers sensing only down- or upgoing P- or S- waves. For this purpose we derive exact Green's matrix representations from a reciprocity theorem for decomposed wavefields. Required is the deployment of multi-component sources at the surface and multi- component receivers in a horizontal borehole. The theory is supported with a synthetic elastic model, where redatumed traces are compared with those of a directly modeled reflection response, generated by placing active sources at the virtual source locations and applying elastic wavefield decomposition on both source and receiver side.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... sources subject to case-by-case determination of equivalent emission limitations. (a) Requirements for... hazardous air pollutant emissions limitations equivalent to the limitations that would apply if an emission...
Sertić, Josip; Kozak, Dražan; Samardžić, Ivan
2014-01-01
The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.
Irrigation water demand: A meta-analysis of price elasticities
NASA Astrophysics Data System (ADS)
Scheierling, Susanne M.; Loomis, John B.; Young, Robert A.
2006-01-01
Metaregression models are estimated to investigate sources of variation in empirical estimates of the price elasticity of irrigation water demand. Elasticity estimates are drawn from 24 studies reported in the United States since 1963, including mathematical programming, field experiments, and econometric studies. The mean price elasticity is 0.48. Long-run elasticities, those that are most useful for policy purposes, are likely larger than the mean estimate. Empirical results suggest that estimates may be more elastic if they are derived from mathematical programming or econometric studies and calculated at a higher irrigation water price. Less elastic estimates are found to be derived from models based on field experiments and in the presence of high-valued crops.
Frequency-domain elastic full waveform inversion using encoded simultaneous sources
NASA Astrophysics Data System (ADS)
Jeong, W.; Son, W.; Pyun, S.; Min, D.
2011-12-01
Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results provided by the approximate Hessian matrix, it is noted that the latter are better than the former for deeper parts of the model. This work was financially supported by the Brain Korea 21 project of Energy System Engineering, by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0006155), by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2010T100200133).
Source sparsity control of sound field reproduction using the elastic-net and the lasso minimizers.
Gauthier, P-A; Lecomte, P; Berry, A
2017-04-01
Sound field reproduction is aimed at the reconstruction of a sound pressure field in an extended area using dense loudspeaker arrays. In some circumstances, sound field reproduction is targeted at the reproduction of a sound field captured using microphone arrays. Although methods and algorithms already exist to convert microphone array recordings to loudspeaker array signals, one remaining research question is how to control the spatial sparsity in the resulting loudspeaker array signals and what would be the resulting practical advantages. Sparsity is an interesting feature for spatial audio since it can drastically reduce the number of concurrently active reproduction sources and, therefore, increase the spatial contrast of the solution at the expense of a difference between the target and reproduced sound fields. In this paper, the application of the elastic-net cost function to sound field reproduction is compared to the lasso cost function. It is shown that the elastic-net can induce solution sparsity and overcomes limitations of the lasso: The elastic-net solves the non-uniqueness of the lasso solution, induces source clustering in the sparse solution, and provides a smoother solution within the activated source clusters.
Design of Visco-Elastic Dampers for RC Frame for Site-Specific Earthquake
NASA Astrophysics Data System (ADS)
Kamatchi, P.; Rama Raju, K.; Ravisankar, K.; Iyer, Nagesh R.
2016-12-01
Number of Reinforced Concrete (RC) framed buildings have got damaged at Ahmedabad city, India located at about 240 km away from epicenter during January 2001, 7.6 moment magnitude (Mw) Bhuj earthquake. In the present study, two dimensional nonlinear time history dynamic analyses of a typical 13 storey frame assumed to be located at Ahmedabad is carried out with the rock level and surface level site-specific ground motion for scenario earthquake of Mw 7.6 from Bhuj. Artificial ground motions are generated using extended finite source stochastic model with seismological parameters reported in literature for 2001 Bhuj earthquake. Surface level ground motions are obtained for a typical soil profile of 100 m depth reported in literature through one dimensional equivalent linear wave propagation analyses. From the analyses, failure of frame is observed for surface level ground motions which indicates that, in addition to the in-adequacy of the cross sections and reinforcement of the RC members of the frame chosen, the rich energy content of the surface level ground motion near the fundamental time period of the frame has also contributed for the failure of frame. As a part of retrofitting measure, five Visco-elastic Dampers (VED) in chevron bracing are added to frame. For the frame considered in the present study, provision of VED is found to be effective to mitigate damage for the soil site considered.
Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J
2017-10-01
This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.
A preliminary investigation of finite-element modeling for composite rotor blades
NASA Technical Reports Server (NTRS)
Lake, Renee C.; Nixon, Mark W.
1988-01-01
The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness.
Chen, Roland K; Shih, A J
2013-08-21
This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.
NASA Astrophysics Data System (ADS)
Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.
2018-03-01
Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.
NASA Astrophysics Data System (ADS)
Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.
2018-06-01
Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.
NASA Astrophysics Data System (ADS)
Penta, Raimondo; Gerisch, Alf
2017-01-01
The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents' elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite's interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents' elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies ( Hill's condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young's and shear moduli) and Poisson's ratio at increasing (up to 100 %) inclusion's volume fraction, thus providing a proxy for the design of artificial elastic composites.
Force Relaxation Characteristics of Medium Force Orthodontic Latex Elastics: A Pilot Study
Fernandes, Daniel J.; Abrahão, Gisele M.; Elias, Carlos N.; Mendes, Alvaro M.
2011-01-01
To evaluate force extension relaxation of different brands and diameters of latex elastics subjected to static tensile testing under an apparatus designed to simulate oral environments, sample sizes of 5 elastics from American Orthodontics (AO), Tp, and Morelli Orthodontics (Mo) of equivalent medium force, (3/16, 1/4, and 5/16 inch size) were tested. The forces were read after 1-, 3-, 6-, 12- and 24-hour periods in Emic testing machine with 30 mm/min cross-head speed and load cell of 20 N. Two-way ANOVA and Bonferroni tests were used to identify statistical significance. There were statistically differences among different manufacturers at all observation intervals (P < 0.0001). The relationships among loads at 24-hour time period were as follows: Morelli>AO>Tp for 3/16, 1/4, and 5/16 elastics. The force decay pattern showed a notable drop-off of forces until 3 hours, a slight increase in some groups from 3–6 hours and a more homogeneous force pattern over 6–24 hours. PMID:21991478
Radiation exposure from consumer products and miscellaneous sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
This review of the literature indicates that there is a variety of consumer products and miscellaneous sources of radiation that result in exposure to the U.S. population. A summary of the number of people exposed to each such source, an estimate of the resulting dose equivalents to the exposed population, and an estimate of the average annual population dose equivalent are tabulated. A review of the data in this table shows that the total average annual contribution to the whole-body dose equivalent of the U.S. population from consumer products is less than 5 mrem; about 70 percent of this arisesmore » from the presence of naturally-occurring radionuclides in building materials. Some of the consumer product sources contribute exposure mainly to localized tissues or organs. Such localized estimates include: 0.5 to 1 mrem to the average annual population lung dose equivalent (generalized); 2 rem to the average annual population bronchial epithelial dose equivalent (localized); and 10 to 15 rem to the average annual population basal mucosal dose equivalent (basal mucosa of the gum). Based on these estimates, these sources may be grouped or classified as those that involve many people and the dose equivalent is relative large or those that involve many people but the dose equivalent is relatively small, or the dose equivalent is relatively large but the number of people involved is small.« less
Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H
2014-05-01
Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Poletti, Mark A; Betlehem, Terence; Abhayapala, Thushara D
2014-07-01
Higher order sound sources of Nth order can radiate sound with 2N + 1 orthogonal radiation patterns, which can be represented as phase modes or, equivalently, amplitude modes. This paper shows that each phase mode response produces a spiral wave front with a different spiral rate, and therefore a different direction of arrival of sound. Hence, for a given receiver position a higher order source is equivalent to a linear array of 2N + 1 monopole sources. This interpretation suggests performance similar to a circular array of higher order sources can be produced by an array of sources, each of which consists of a line array having monopoles at the apparent source locations of the corresponding phase modes. Simulations of higher order arrays and arrays of equivalent line sources are presented. It is shown that the interior fields produced by the two arrays are essentially the same, but that the exterior fields differ because the higher order sources produces different equivalent source locations for field positions outside the array. This work provides an explanation of the fact that an array of L Nth order sources can reproduce sound fields whose accuracy approaches the performance of (2N + 1)L monopoles.
ERIC Educational Resources Information Center
Art, Albert
2006-01-01
A model lift containing a figure of Albert Einstein is released from the side of a tall building and its free fall is arrested by elastic ropes. This arrangement allows four simple experiments to be conducted in the lift to demonstrate the effects of free fall and show how they can lead to the concept of the equivalence of inertial and…
NASA Technical Reports Server (NTRS)
Buland, R.; Yuen, D. A.; Konstanty, K.; Widmer, R.
1985-01-01
The free oscillations of an anelastic earth model due to earthquakes were calculated directly by means of the correspondence principle from wave propagation theory. The formulation made it possible to find the source phase which is not predictable using first order perturbation theory. The predicted source phase was largest for toroidal modes with source components proportional to the radial strain scalar instead of the radial displacement scalar. The source phase increased in relation to the overtone number. In addition, large relative differences were found in the excitation modulus and the phase when the elastic excitation was small. The effect was sufficient to bias estimates of source properties and elastic structure.
Sertić, Josip; Kozak, Dražan; Samardžić, Ivan
2014-01-01
The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized. PMID:24959612
Manipulating acoustic wave reflection by a nonlinear elastic metasurface
NASA Astrophysics Data System (ADS)
Guo, Xinxin; Gusev, Vitalyi E.; Bertoldi, Katia; Tournat, Vincent
2018-03-01
The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of converting, during the reflection process, most of the fundamental incoming wave energy into the second harmonic wave is shown, both theoretically and numerically, by means of a proper design of the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochromatic source are compared with time domain simulations for a wave packet source. This protocol allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as exploring the limits of the operating frequency bandwidth. The reported methodology can be applied to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear reflection processes.
Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youzuo; Huang, Lianjie
2015-01-28
Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less
Spectral element modelling of fault-plane reflections arising from fluid pressure distributions
Haney, M.; Snieder, R.; Ampuero, J.-P.; Hofmann, R.
2007-01-01
The presence of fault-plane reflections in seismic images, besides indicating the locations of faults, offers a possible source of information on the properties of these poorly understood zones. To better understand the physical mechanism giving rise to fault-plane reflections in compacting sedimentary basins, we numerically model the full elastic wavefield via the spectral element method (SEM) for several different fault models. Using well log data from the South Eugene Island field, offshore Louisiana, we derive empirical relationships between the elastic parameters (e.g. P-wave velocity and density) and the effective-stress along both normal compaction and unloading paths. These empirical relationships guide the numerical modelling and allow the investigation of how differences in fluid pressure modify the elastic wavefield. We choose to simulate the elastic wave equation via SEM since irregular model geometries can be accommodated and slip boundary conditions at an interface, such as a fault or fracture, are implemented naturally. The method we employ for including a slip interface retains the desirable qualities of SEM in that it is explicit in time and, therefore, does not require the inversion of a large matrix. We performa complete numerical study by forward modelling seismic shot gathers over a faulted earth model using SEM followed by seismic processing of the simulated data. With this procedure, we construct post-stack time-migrated images of the kind that are routinely interpreted in the seismic exploration industry. We dip filter the seismic images to highlight the fault-plane reflections prior to making amplitude maps along the fault plane. With these amplitude maps, we compare the reflectivity from the different fault models to diagnose which physical mechanism contributes most to observed fault reflectivity. To lend physical meaning to the properties of a locally weak fault zone characterized as a slip interface, we propose an equivalent-layer model under the assumption of weak scattering. This allows us to use the empirical relationships between density, velocity and effective stress from the South Eugene Island field to relate a slip interface to an amount of excess pore-pressure in a fault zone. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
ERIC Educational Resources Information Center
Dynarski, Susan; Gruber, Jonathan; Li, Danielle
2009-01-01
The effect of vouchers on sorting between private and public schools depends upon the price elasticity of demand for private schooling. Estimating this elasticity is empirically challenging because prices and quantities are jointly determined in the market for private schooling. We exploit a unique and previously undocumented source of variation…
An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.
2015-03-01
The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.
Static elastica formulations of a pine conveying fluid
NASA Astrophysics Data System (ADS)
Thompson, J. M. T.; Lunn, T. S.
1981-07-01
An elastic pipe in an equilibrium configuration of arbitrary large deflection discharging fluid from its end experiences static centrifugal and frictional drag forces along its complete length. These are, however, entirely equivalent to an end follower force of magnitude ρ AV2. This equivalence is examined in detail by using the intrinsic field equations which are suitable for closed form solutions in terms of elliptic integrals. Once the pipe moves it also experiences gyroscopic Coriolis forces along its length, but these are not considered in this static examination. It is shown in detail how a discharging pipe with end forces and moments is statically equivalent to a beam or strut with the same end forces and moments plus the reversed momentum vector ρ AV2. It is seen that a cantilevered pipe with a free end can have no statical equilibrium states at all, at either large or small deflections, while pipes with constrained ends have large static deflections identical to those of the equivalent struts.
AnisoVis: a MATLAB™ toolbox for the visualisation of elastic anisotropy
NASA Astrophysics Data System (ADS)
Healy, D.; Timms, N.; Pearce, M. A.
2016-12-01
The elastic properties of rocks and minerals vary with direction, and this has significant consequences for their physical response to acoustic waves and natural or imposed stresses. This anisotropy of elasticity is well described mathematically by 4th rank tensors of stiffness or compliance. These tensors are not easy to visualise in a single diagram or graphic, and visualising Poisson's ratio and shear modulus presents a further challenge in that their anisotropy depends on two principal directions. Students and researchers can easily underestimate the importance of elastic anisotropy. This presentation describes an open source toolbox of MATLAB scripts that aims to visualise elastic anisotropy in rocks and minerals. The code produces linked 2-D and 3-D representations of the standard elastic constants, such as Young's modulus, Poisson's ratio and shear modulus, all from a simple GUI. The 3-D plots can be manipulated by the user (rotated, panned, zoomed), to encourage investigation and a deeper understanding of directional variations in the fundamental properties. Examples are presented of common rock forming minerals, including those with negative Poisson's ratio (auxetic behaviour). We hope that an open source code base will encourage further enhancements from the rock physics and wider geoscience communities. Eventually, we hope to generate 3-D prints of these complex and beautiful natural surfaces to provide a tactile link to the underlying physics of elastic anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Fan W.; Contescu, Cristian I.; Gallego, Nidia C.
Laser ultrasonic line source methods have been used to study elastic anisotropy in nuclear graphites by measuring shear wave birefringence. Depending on the manufacturing processes used during production, nuclear graphites can exhibit various degrees of material anisotropy related to preferred crystallite orientation and to microcracking. In this paper, laser ultrasonic line source measurements of shear wave birefringence on NBG-25 have been performed to assess elastic anisotropy. Laser line sources allow specific polarizations for shear waves to be transmitted – the corresponding wavespeeds can be used to compute bulk, elastic moduli that serve to quantify anisotropy. These modulus values can bemore » interpreted using physical property models based on orientation distribution coefficients and microcrack-modified, single crystal moduli to represent the combined effects of crystallite orientation and microcracking on material anisotropy. Finally, ultrasonic results are compared to and contrasted with measurements of anisotropy based on the coefficient of thermal expansion to show the relationship of results from these techniques.« less
Li, Cheng Guo; Lee, Kwang; Lee, Chang Yeol; Dangol, Manita; Jung, Hyungil
2012-08-28
A minimally invasive blood-extraction system is fabricated by the integration of an elastic self-recovery actuator and an ultrahigh-aspect-ratio microneedle. The simple elastic self-recovery actuator converts finger force to elastic energy to provide power for blood extraction and transport without requiring an external source of power. This device has potential utility in the biomedical field within the framework of complete micro-electromechanical systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Architected squirt-flow materials for energy dissipation
NASA Astrophysics Data System (ADS)
Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia
2017-12-01
In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.
Mini-LENS: developing a charged-current approach to measuring CNO and pp solar neutrinos
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2014-03-01
The Low-Energy Neutrino Spectroscopy (LENS) experiment is based on neutrino detection via a charged-current interaction with 115In and offers the ability to cleanly observe both pp and CNO neutrinos. In contrast, elastic-scattering detectors, such as Borexino and SNO + suffer from virtually inseparable backgrounds. Thus, LENS might be uniquely positioned to resolve the solar metallicity question via measurement of the CNO neutrino flux, as well as test the predicted equivalence of solar luminosity as measured by photons versus neutrinos The mini-LENS program is testing the performance of the optically-segmented 3D lattice geometry unique to LENS. This first-of-a-kind lattice design is also suited for a range of other applications where high segmentation and large light collection are required (eg: sterile neutrinos with sources, double beta decay, and surface detection of reactor neutrinos). The current status and recent design changes of miniLENS at KURF will be presented. funded by NSF: 1001394.
NASA Astrophysics Data System (ADS)
Beauchamp, J.; Omer, M. K.; Perriaux, J.
During Cretaceous times, NE Africa was covered by clastic sediments. These sandy deposits correspond to the so-called "Nubian Sandstones" of Sudan, and the equivalent series of Egypt, Ethiopia and Somalia. In Central Sudan, the sandstone are alluvial, deposited from braided rivers under a dry tropical climate. They grade into alluvial plain and beach deposits in northern and eastern Sudan, Egypt, Ethiopia and Somalia. The source province was a north-south basement high, the Butana Massif, which extended northward into Egypt and eastward into Ethiopia and Somalia (Ethiopia-Sudan High, Harar-Nogal Swell). Nubian Sandstones were deposited in extensional tectonic framework. Old lineaments were rejuvenated as normal and strike-slip faults. Several geodynamics event could have interfered: northward drift of the African craton and downwarping of its northern margin as evidenced by Tethys transgressions, Indian Ocean opening and progressive uplift of the eastern margin of Africa, eastern updoming preceding the Red Sea and Aden Gulf opening.
78 FR 73128 - Dividend Equivalents From Sources Within the United States
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
... Dividend Equivalents From Sources Within the United States AGENCY: Internal Revenue Service (IRS), Treasury... dividends, and the amount of the dividend equivalents. This information is required to establish whether a... valid control number assigned by the Office of Management and Budget. Books or records relating to a...
Symmetry considerations in the scattering of identical composite bodies
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.
1986-01-01
Previous studies of the interactions between composite particles were extended to the case in which the composites are identical. The form of the total interaction potential matrix elements was obtained, and guidelines for their explicit evaluation were given. For the case of elastic scattering of identical composites, the matrix element approach was shown to be equivalent to the scattering amplitude method.
NASA Astrophysics Data System (ADS)
Poudel, Joemini; Matthews, Thomas P.; Mitsuhashi, Kenji; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.
2017-03-01
Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method should be employed that can model the heterogeneous elastic properties of the medium. In this study, an iterative image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward model based on a finite-difference time-domain discretization of the elastic wave equation is established. Subsequently, gradient-based methods are employed for computing penalized least squares estimates of the initial source distribution that produced the measured photoacoustic data. The developed reconstruction algorithm is validated and investigated through computer-simulation studies.
A static predictor of seismic demand on frames based on a post-elastic deflected shape
Mori, Y.; Yamanaka, T.; Luco, N.; Cornell, C.A.
2006-01-01
Predictors of seismic structural demands (such as inter-storey drift angles) that are less time-consuming than nonlinear dynamic analysis have proven useful for structural performance assessment and for design. Luco and Cornell previously proposed a simple predictor that extends the idea of modal superposition (of the first two modes) with the square-root-of-sum-of-squares (SRSS) rule by taking a first-mode inelastic spectral displacement into account. This predictor achieved a significant improvement over simply using the response of an elastic oscillator; however, it cannot capture well large displacements caused by local yielding. A possible improvement of Luco's predictor is discussed in this paper, where it is proposed to consider three enhancements: (i) a post-elastic first-mode shape approximated by the deflected shape from a nonlinear static pushover analysis (NSPA) at the step corresponding to the maximum drift of an equivalent inelastic single-degree-of-freedom (SDOF) system, (ii) a trilinear backbone curve for the SDOF system, and (iii) the elastic third-mode response for long-period buildings. Numerical examples demonstrate that the proposed predictor is less biased and results in less dispersion than Luco's original predictor. Copyright ?? 2006 John Wiley & Sons, Ltd.
Functional requirements of a mathematical model of the heart.
Palladino, Joseph L; Noordergraaf, Abraham
2009-01-01
Functional descriptions of the heart, especially the left ventricle, are often based on the measured variables pressure and ventricular outflow, embodied as a time-varying elastance. The fundamental difficulty of describing the mechanical properties of the heart with a time-varying elastance function that is set a priori is described. As an alternative, a new functional model of the heart is presented, which characterizes the ventricle's contractile state with parameters, rather than variables. Each chamber is treated as a pressure generator that is time and volume dependent. The heart's complex dynamics develop from a single equation based on the formation and relaxation of crossbridge bonds. This equation permits the calculation of ventricular elastance via E(v) = partial differentialp(v)/ partial differentialV(v). This heart model is defined independently from load properties, and ventricular elastance is dynamic and reflects changing numbers of crossbridge bonds. In this paper, the functionality of this new heart model is presented via computed work loops that demonstrate the Frank-Starling mechanism and the effects of preload, the effects of afterload, inotropic changes, and varied heart rate, as well as the interdependence of these effects. Results suggest the origin of the equivalent of Hill's force-velocity relation in the ventricle.
NASA Astrophysics Data System (ADS)
Jing, Haiquan; He, Xuhui; Zou, Yunfeng; Wang, Hanfeng
2018-03-01
Stay cables are important load-bearing structural elements of cable-stayed bridges. Suppressing the large vibrations of the stay cables under the external excitations is of worldwide concern for the bridge engineers and researchers. Over the past decade, the use of crosstie has become one of the most practical and effective methods. Extensive research has led to a better understanding of the mechanics of cable networks, and the effects of different parameters, such as length ratio, mass-tension ratio, and segment ratio on the effectiveness of the crosstie have been investigated. In this study, uniformly distributed elastic crossties serve to replace the traditional single, or several cross-ties, aiming to delay "mode localization." A numerical method is developed by replacing the uniformly distributed, discrete elastic cross-tie model with an equivalent, continuously distributed, elastic cross-tie model in order to calculate the modal frequencies and mode shapes of the cable-crosstie system. The effectiveness of the proposed method is verified by comparing the elicited results with those obtained using the previous method. The uniformly distributed elastic cross-ties are shown to significantly delay "mode localization."
Basis of the tubesheet heat exchanger design rules used in the French pressure vessel code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osweiller, F.
1992-02-01
For about 40 years most tubessheet exchangers have been designed according to the standards of TEMA. Partly due to their simplicity, these rules do not assure a safe heat-exchanger design in all cases. This is the main reason why new tubesheet design rules were developed in 1981 in France for the French pressure vessel code CODAP. For fixed tubesheet heat exchangers, the new rules account for the elastic rotational restraint of the shell and channel at the outer edge of the tubesheet, as proposed in 1959 by Galletly. For floating-head and U-tube heat exchangers, the approach developed by Gardner inmore » 1969 was selected with some modifications. In both cases, the tubesheet is replaced by an equivalent solid plate with adequate effective elastic constants, and the tube bundle is simulated by an elastic foundation. The elastic restraint at the edge of the tubesheet due the shell and channel is accounted for in different ways in the two types of heat exchangers. The purpose of the paper is to present the main basis of these rules and to compare them to TEMA rules.« less
The wave attenuation mechanism of the periodic local resonant metamaterial
NASA Astrophysics Data System (ADS)
Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying
2018-01-01
This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.
NASA Astrophysics Data System (ADS)
da Costa, Renata F.; Marques, Marcia T. A.; M Macedo, Fernanda de; Andrade, Izabel da Silva; Araujo, Elaine Cristina; Correa, Thais; de Andrade Salani, Maria Helena Goncalves; Lopes, Daniel Silveira; Goncalves Guardani, Maria Lucia; Landulfo, Eduardo; Guardani, Roberto
2018-04-01
Field campaigns with a scanning multiwavelength elastic lidar coupled with a Doppler system to monitor industrial atmospheric aerosol emissions were carried out, with the objective of monitoring aerosol emission sources and plume dispersion. Since the technique provides information on the spatial and temporal distribution of aerosol concentration, the implementation of a systematic monitoring procedure is proposed as a valuable tool in air quality monitoring applied to regions of interest.
Investigation of PDMS based bi-layer elasticity via interpretation of apparent Young's modulus.
Sarrazin, Baptiste; Brossard, Rémy; Guenoun, Patrick; Malloggi, Florent
2016-02-21
As the need of new methods for the investigation of thin films on various kinds of substrates becomes greater, a novel approach based on AFM nanoindentation is explored. Substrates of polydimethylsiloxane (PDMS) coated by a layer of hard material are probed with an AFM tip in order to obtain the force profile as a function of the indentation. The equivalent elasticity of those composite systems is interpreted using a new numerical approach, the Coated Half-Space Indentation Model of Elastic Response (CHIMER), in order to extract the thicknesses of the upper layer. Two kinds of coating are investigated. First, chitosan films of known thicknesses between 30 and 200 nm were probed in order to test the model. A second type of samples is produced by oxygen plasma oxidation of the PDMS substrate, which results in the growth of a relatively homogeneous oxide layer. The local nature of this protocol enables measurements at long oxidation time, where the apparition of cracks prevents other kinds of measurements.
Fusion and elastic scattering of 6Li + 58Ni at low energies
NASA Astrophysics Data System (ADS)
Aguilera, Elí F.; Amador-Valenzuela, Paulina; Martinez-Quiroz, Enrique; Lizcano, David; Garcia-Flores, Araceli; Kolata, James J.
2017-11-01
Sub-barrier fusion cross sections (σfus) for the 6Li + 58Ni system, obtained from the respective evaporation protons, are examined in the present work. With respect to expectations of a simple one-dimensional barrier penetration model, a large enhancement of the data is observed. Good consistency with equivalent data reported previously for similar systems is found. A comparison with total reaction cross sections (σR), deduced from elastic scattering measurements reported previously, indicates that σfus is close to σR within the measured energy range. To estimate the contribution of complete fusion (CF), an optical model analysis of the elastic scattering data is performed where CF is identified with the absorption in a short range volume potential. A surface polarization potential is added to the bare nuclear potential to simulate the effect of peripheral reactions. The results obtained indicate that other mechanisms different from CF may be dominant, especially in the lower energy region.
Mechanical confinement regulates cartilage matrix formation by chondrocytes
NASA Astrophysics Data System (ADS)
Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit
2017-12-01
Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.
Wedge disclination dipole in an embedded nanowire within the surface/interface elasticity
NASA Astrophysics Data System (ADS)
Shodja, Hossein M.; Rezazadeh-Kalehbasti, Shaghayegh; Gutkin, Mikhail Yu
2013-12-01
The elastic behavior of an arbitrary oriented wedge disclination dipole located inside a nanowire, which in turn is embedded in an infinite matrix, is studied within the surface/interface theory of elasticity. The corresponding boundary value problem is provided using complex potential functions. The potential functions are defined through modeling the wedge disclination in terms of an equivalent distribution of edge dislocations. The interface effects on the stress field and strain energy of the disclination dipole and image forces acting on it, the influence of relative shear moduli of the nanowire and the matrix, as well as the different characteristics of the interface are studied thoroughly. It is shown that the positive interface modulus leads to increased strain energy and extra repulsive forces on the disclination dipole. The noticeable effect of the negative interface modulus is the non-classical oscillations in the stress field of the disclination dipole and an extra attractive image force on it.
Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces
NASA Astrophysics Data System (ADS)
Li, Shilong; Xu, Jiawen; Tang, J.
2018-01-01
This letter reports designs of adaptive metasurfaces capable of modulating incoming wave fronts of elastic waves through electromechanical-tuning of their cells. The proposed elastic metasurfaces are composed of arrayed piezoelectric units with individually connected negative capacitance elements that are online tunable. By adjusting the negative capacitances properly, accurately formed, discontinuous phase profiles along the elastic metasurfaces can be achieved. Subsequently, anomalous refraction with various angles can be realized on the transmitted lowest asymmetric mode Lamb wave. Moreover, designs to facilitate planar focal lenses and source illusion devices can also be accomplished. The proposed flexible and versatile strategy to manipulate elastic waves has potential applications ranging from structural fault detection to vibration/noise control.
LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces
NASA Astrophysics Data System (ADS)
Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina
2016-11-01
The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.
Strain localization and elastic-plastic coupling during deformation of porous sandstone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewers, Thomas A.; Issen, Kathleen A.; Holcomb, David J.
Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli,more » C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.« less
NASA Astrophysics Data System (ADS)
Khatri, Jaidev
This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.
Theory of buckling and post-buckling behavior of elastic structures
NASA Technical Reports Server (NTRS)
Budiansky, B.
1974-01-01
The present paper provides a unified, general presentation of the basic theory of the buckling and post-buckling behavior of elastic structures in a form suitable for application to a wide variety of special problems. The notation of functional analysis is used for this purpose. Before the general analysis, simple conceptual models are used to elucidate the basic concepts of bifurcation buckling, snap buckling, imperfection sensitivity, load-shortening relations, and stability. The energy approach, the virtual-work approach, and mode interaction are discussed. The derivations and results are applicable to continua and finite-dimensional systems. The virtual-work and energy approaches are given separate treatments, but their equivalence is made explicit. The basic concepts of stability occupy a secondary position in the present approach.
NASA Astrophysics Data System (ADS)
Averkiev, Nikita S.; Bersuker, Isaac B.; Gudkov, Vladimir V.; Zhevstovskikh, Irina V.; Sarychev, Maksim N.; Zherlitsyn, Sergei; Yasin, Shadi; Shakurov, Gilman S.; Ulanov, Vladimir A.; Surikov, Vladimir T.
2017-11-01
A new approach to evaluate the relaxation contribution to the total elastic moduli for crystals with Jahn-Teller (JT) impurities is worked out and applied to the analysis of the experimentally measured ultrasound velocity and attenuation in SrF2:Cr2+. Distinguished from previous work, the background adiabatic contribution to the moduli, important for revealing the impurity relaxation contribution, is taken into account. The temperature dependence of the relaxation time for transitions between the equivalent configurations of the JT centers has been obtained, and the activation energy for the latter in SrF2:Cr2+, as well as the linear vibronic coupling constant have been evaluated.
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ezzedine, S. M.; Petersson, A.; Sjogreen, B.; Vorobiev, O.; Pitarka, A.; Antoun, T.; Walter, W. R.
2016-12-01
Motions from underground explosions are governed by non-linear hydrodynamic response of material. However, the numerical calculation of this non-linear constitutive behavior is computationally intensive in contrast to the elastic and acoustic linear wave propagation solvers. Here, we develop a hybrid modeling approach with one-way hydrodynamic-to-elastic coupling in three dimensions in order to propagate explosion generated ground motions from the non-linear near-source region to the far-field. Near source motions are computed using GEODYN-L, a Lagrangian hydrodynamics code for high-energy loading of earth materials. Motions on a dense grid of points sampled on two nested shells located beyond the non-linear damaged zone are saved, and then passed to SW4, an anelastic anisotropic fourth order finite difference code for seismic wave modeling. Our coupling strategy is based on the decomposition and uniqueness theorems where motions are introduced into SW4 as a boundary source and continue to propagate as elastic waves at a much lower computational cost than by using GEODYN-L to cover the entire near- and the far-field domain. The accuracy of the numerical calculations and the coupling strategy is demonstrated in cases with a purely elastic medium as well as non-linear medium. Our hybrid modeling approach is applied to SPE-4' and SPE-5 which are the most recent underground chemical explosions conducted at the Nevada National Security Site (NNSS) where the Source Physics Experiments (SPE) are performed. Our strategy by design is capable of incorporating complex non-linear effects near the source as well as volumetric and topographic material heterogeneity along the propagation path to receiver, and provides new prospects for modeling and understanding explosion generated seismic waveforms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698608.
On the Solutions of a 2+1-Dimensional Model for Epitaxial Growth with Axial Symmetry
NASA Astrophysics Data System (ADS)
Lu, Xin Yang
2018-04-01
In this paper, we study the evolution equation derived by Xu and Xiang (SIAM J Appl Math 69(5):1393-1414, 2009) to describe heteroepitaxial growth in 2+1 dimensions with elastic forces on vicinal surfaces is in the radial case and uniform mobility. This equation is strongly nonlinear and contains two elliptic integrals and defined via Cauchy principal value. We will first derive a formally equivalent parabolic evolution equation (i.e., full equivalence when sufficient regularity is assumed), and the main aim is to prove existence, uniqueness and regularity of strong solutions. We will extensively use techniques from the theory of evolution equations governed by maximal monotone operators in Banach spaces.
Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide
NASA Astrophysics Data System (ADS)
Jiang, Changyong; Huang, Lixi
2018-03-01
In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.
NASA Astrophysics Data System (ADS)
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
Acoustic emission source localization based on distance domain signal representation
NASA Astrophysics Data System (ADS)
Gawronski, M.; Grabowski, K.; Russek, P.; Staszewski, W. J.; Uhl, T.; Packo, P.
2016-04-01
Acoustic emission is a vital non-destructive testing technique and is widely used in industry for damage detection, localisation and characterization. The latter two aspects are particularly challenging, as AE data are typically noisy. What is more, elastic waves generated by an AE event, propagate through a structural path and are significantly distorted. This effect is particularly prominent for thin elastic plates. In these media the dispersion phenomenon results in severe localisation and characterization issues. Traditional Time Difference of Arrival methods for localisation techniques typically fail when signals are highly dispersive. Hence, algorithms capable of dispersion compensation are sought. This paper presents a method based on the Time - Distance Domain Transform for an accurate AE event localisation. The source localisation is found through a minimization problem. The proposed technique focuses on transforming the time signal to the distance domain response, which would be recorded at the source. Only, basic elastic material properties and plate thickness are used in the approach, avoiding arbitrary parameters tuning.
Investigations on landmine detection by neutron-based techniques.
Csikai, J; Dóczi, R; Király, B
2004-07-01
Principles and techniques of some neutron-based methods used to identify the antipersonnel landmines (APMs) are discussed. New results have been achieved in the field of neutron reflection, transmission, scattering and reaction techniques. Some conclusions are as follows: The neutron hand-held detector is suitable for the observation of anomaly caused by a DLM2-like sample in different soils with a scanning speed of 1m(2)/1.5 min; the reflection cross section of thermal neutrons rendered the determination of equivalent thickness of different soil components possible; a simple method was developed for the determination of the thermal neutron flux perturbation factor needed for multi-elemental analysis of bulky samples; unfolded spectra of elastically backscattered neutrons using broad-spectrum sources render the identification of APMs possible; the knowledge of leakage spectra of different source neutrons is indispensable for the determination of the differential and integrated reaction rates and through it the dimension of the interrogated volume; the precise determination of the C/O atom fraction requires the investigations on the angular distribution of the 6.13MeV gamma-ray emitted in the (16)O(n,n'gamma) reaction. These results, in addition to the identification of landmines, render the improvement of the non-intrusive neutron methods possible.
Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis
NASA Astrophysics Data System (ADS)
Zhu, Wei; Shan, Rui
2016-06-01
Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.
Geometry and Dynamics of the Mesopotamian Foreland Basin
NASA Astrophysics Data System (ADS)
Pirouz, M.; Avouac, J. P.; Gualandi, A.; Hassanzadeh, J.; Sternai, P.
2016-12-01
We have constrained the geometry of the Zagros foreland basin along the entire northern edge of the Arabian plate using subsurface data from Iran, Iraq and Syria. We use the Oligo-Miocene marine Asmari Formation and its equivalents in the region to reconstruct high resolution foreland basin geometry. This extensive carbonate platform limestone unit separates pre-collisional passive margin marine sediments from the Cenozoic foreland deposits dominated by continental sources; and therefore it can be used as a measure of post-collisional deflection. The 3D reconstructed Asmari Formation shows along-strike thickness variations of the foreland basin deposits from 1 to 6 km. The deepest part of the foreland basin coincides with the Dezful embayment in Iran, and its depth decreases on both sides. In principle the basin geometry should reflect the loading resulted from overthrusting in the Zagros fold-thrust belt, the sediment fill and dynamic stresses due to lithospheric and upper mantle deformation. To estimate these various sources of loads we analyze the basin geometry in combination with gravity, free air anomaly, and Moho depths determined from seismological observations. Our analysis suggests in particular that redistribution of surface load by surface processes is a primary controlling factor of the basin geometry. The wavelength of a foreland basin may bear little information on the elastic flexural rigidity of the lithosphere.
Earthquake source properties from instrumented laboratory stick-slip
Kilgore, Brian D.; McGarr, Arthur F.; Beeler, Nicholas M.; Lockner, David A.; Thomas, Marion Y.; Mitchell, Thomas M.; Bhat, Harsha S.
2017-01-01
Stick-slip experiments were performed to determine the influence of the testing apparatus on source properties, develop methods to relate stick-slip to natural earthquakes and examine the hypothesis of McGarr [2012] that the product of stiffness, k, and slip duration, Δt, is scale-independent and the same order as for earthquakes. The experiments use the double-direct shear geometry, Sierra White granite at 2 MPa normal stress and a remote slip rate of 0.2 µm/sec. To determine apparatus effects, disc springs were added to the loading column to vary k. Duration, slip, slip rate, and stress drop decrease with increasing k, consistent with a spring-block slider model. However, neither for the data nor model is kΔt constant; this results from varying stiffness at fixed scale.In contrast, additional analysis of laboratory stick-slip studies from a range of standard testing apparatuses is consistent with McGarr's hypothesis. kΔt is scale-independent, similar to that of earthquakes, equivalent to the ratio of static stress drop to average slip velocity, and similar to the ratio of shear modulus to wavespeed of rock. These properties result from conducting experiments over a range of sample sizes, using rock samples with the same elastic properties as the Earth, and scale-independent design practices.
Wave propagation in equivalent continuums representing truss lattice materials
Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; ...
2015-07-29
Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures from lattice materials, but the design of such structures will require accurate, efficient simulation methods. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss in the small deformation regime is complicated by microinertial effects. This study derives a dynamic equivalent continuum model for periodic trussmore » structures suitable for representing long-wavelength wave propagation and verifies it against the full Bloch wave theory and detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long wavelength characteristics of the response such as anisotropic elastic soundspeeds. Finally, the formulation presented here also improves upon previous work by preserving equilibrium at truss joints for simple lattices and by improving numerical stability by eliminating vertices in the effective yield surface.« less
Hydrologic applications of GPS site-position observations in the Western U.S
NASA Astrophysics Data System (ADS)
Ouellette, Karli J.
Permanent Global Positioning System (GPS) networks have been established around the globe for a variety of uses, most notably to monitor the activity of fault lines and tectonic plate motion. A model for utilizing GPS as a tool for hydrologic monitoring is also developed. First, observations of the recent movement of the land surface throughout California by the Scripps Orbit and Permanent Array Center (SOPAC) GPS network are explored. Significant seasonal cycles and long term trends are related to historical observations of land subsidence. The pattern of deformation throughout the state appears to be caused by the occurrence of poroelastic deformation of the aquifer in the Central Valley, and elastic crustal loading by surface water and the winter snowpack in the Sierra Nevada Mountains. The result is a sort of teeter-totter motion between the Valley and the mountains where the Valley sinks in the dry season while the mountains lift, and the mountains sink in the wet season while the Valley lifts. Next, the elastic crustal deformation caused by the winter snowpack is explored more thoroughly at 6 high elevations throughout the Western United States. Expected annual deformation as a result of thermoelastic and snow water equivalent are calculated using SNOTEL observations and an elastic half-space model. The results demonstrate the dominance of snow loading on the seasonal vertical land surface deformation at all 6 GPS stations. The model is then reversed and applied to the GPS vertical site-position observations in order to predict snow water equivalent. The results are compared to SNOTEL observations of snow water equivalent and soil moisture. The study concludes that GPS site-position observations are able to predict variations in snow water equivalent and soil moisture with good accuracy. Then a model which incorporates both elastic crustal loading and poroelastic deformation was used to predict groundwater storage variations at 54 GPS stations throughout the Central Valley, CA. The results are compared to USGS water table observations from 43 wells. The predictions and observations show a similar magnitude and spatial pattern of groundwater depletion on both a seasonal and long term timescales. Depletion is focused on the southernmost part of the Valley where GPS reveals seasonal fluctuation of the water table around 2 m and 8 m/yr of water table decline during the study period. GPS also appears to respond to deformation from peat soils and changing reservoir storage in the northern parts of the Valley. Finally, preliminary work exploring the potential for using GPS as a tool for monitoring snowmelt runoff and infiltration is explored at one station in Eastern Idaho. Taking the difference between the change in GPS water storage estimates with time and the change in SNOTEL observed snow water equivalent with time produces a time series of infiltration, or the amount of water added to storage in the geologic profile. Then subtracting the estimated infiltration and snow water equivalent from the total precipitation observed by SNOTEL produces a time series of runoff. The estimated runoff at the GPS site was compared to observations from a nearby stream gauge and the foundation for a more extensive comparison is laid out. The overall impact of this work is to introduce the unique hydrologic information and monitoring capabilities which can be accessed through monitoring of the land surface position using GPS. As GPS networks grow and expand worldwide, the available data should be harnessed by the hydrologic community for the benefit of local water management as well as improvements to data assimilated models. The work presented here represents only a small fraction of the wealth of knowledge that could result from a budding field of GPS hydrologic remote sensing. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Rahimi, Z.; Rashahmadi, S.
2017-11-01
The thermo-elastic damping is a dominant source of internal damping in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The internal damping cannot neither be controlled nor minimized unless either mechanical or geometrical properties are changed. Therefore, a novel FGMNEM system with a controllable thermo-elastic damping of axial vibration based on Eringen nonlocal theory is considered. The effects of different parameter like the gradient index, nonlocal parameter, length of nanobeam and ambient temperature on the thermo-elastic damping quality factor are presented. It is shown that the thermo-elastic damping can be controlled by changing different parameter.
Obusek, J P; Holt, K G; Rosenstein, R M
1995-07-01
Human leg swinging is modeled as the harmonic motion of a hybrid mass-spring pendulum. The cycle period is determined by a gravitational component and an elastic component, which is provided by the attachment of a soft-tissue/muscular spring of variable stiffness. To confirm that the stiffness of the spring changes with alterations in the inertial properties of the oscillator and that stiffness is relevant for the control of cycle period, we conducted this study in which the simple pendulum equivalent length was experimentally manipulated by adding mass to the ankle of a comfortably swinging leg. Twenty-four young, healthy adults were videotaped as they swung their right leg under four conditions: no added mass and with masses of 2.27, 4.55, and 6.82kg added to the ankle. Strong, linear relationships between the acceleration and displacement of the swinging leg within subjects and conditions were found, confirming the motion's harmonic nature. Cycle period significantly increased with the added mass. However, the observed increases were not as large as would be predicted by the induced changes in the gravitational component alone. These differences were interpreted as being due to increases in the active muscular stiffness. Significant linear increases in the elastic component (and hence stiffness) were demonstrated with increases in the simple pendulum equivalent length in 20 of the individual subjects, with r2 values ranging between 0.89 and 0.99. Significant linear relationships were also demonstrated between the elastic and gravitational components in 22 subjects, with individual r2 values between 0.90 and 0.99.(ABSTRACT TRUNCATED AT 250 WORDS)
Wave-front singularities for two-dimensional anisotropic elastic waves.
NASA Technical Reports Server (NTRS)
Payton, R. G.
1972-01-01
Wavefront singularities for the displacement functions, associated with the radiation of linear elastic waves from a point source embedded in a finitely strained two-dimensional elastic solid, are examined in detail. It is found that generally the singularities are of order d to the -1/2 power, where d measures distance away from the front. However, in certain exceptional cases singularities of order d to the -n power, where n = 1/4, 2/3, 3/4, may be encountered.
Porous medium acoustics of wave-induced vorticity diffusion
NASA Astrophysics Data System (ADS)
Müller, T. M.; Sahay, P. N.
2011-02-01
A theory for attenuation and dispersion of elastic waves due to wave-induced generation of vorticity at pore-scale heterogeneities in a macroscopically homogeneous porous medium is developed. The diffusive part of the vorticity field associated with a viscous wave in the pore space—the so-called slow shear wave—is linked to the porous medium acoustics through incorporation of the fluid strain rate tensor of a Newtonian fluid in the poroelastic constitutive relations. The method of statistical smoothing is then used to derive dynamic-equivalent elastic wave velocities accounting for the conversion scattering process into the diffusive slow shear wave in the presence of randomly distributed pore-scale heterogeneities. The result is a simple model for wave attenuation and dispersion associated with the transition from viscosity- to inertia-dominated flow regime.
Dynamics of early planetary gear trains
NASA Technical Reports Server (NTRS)
August, R.; Kasuba, R.; Frater, J. L.; Pintz, A.
1984-01-01
A method to analyze the static and dynamic loads in a planetary gear train was developed. A variable-variable mesh stiffness (VVMS) model was used to simulate the external and internal spur gear mesh behavior, and an equivalent conventional gear train concept was adapted for the dynamic studies. The analysis can be applied either involute or noninvolute spur gearing. By utilizing the equivalent gear train concept, the developed method may be extended for use for all types of epicyclic gearing. The method is incorporated into a computer program so that the static and dynamic behavior of individual components can be examined. Items considered in the analysis are: (1) static and dynamic load sharing among the planets; (2) floating or fixed Sun gear; (3) actual tooth geometry, including errors and modifications; (4) positioning errors of the planet gears; (5) torque variations due to noninvolute gear action. A mathematical model comprised of power source, load, and planetary transmission is used to determine the instantaneous loads to which the components are subjected. It considers fluctuating output torque, elastic behavior in the system, and loss of contact between gear teeth. The dynamic model has nine degrees of freedom resulting in a set of simultaneous second order differential equations with time varying coefficients, which are solved numerically. The computer program was used to determine the effect of manufacturing errors, damping and component stiffness, and transmitted load on dynamic behavior. It is indicated that this methodology offers the designer/analyst a comprehensive tool with which planetary drives may be quickly and effectively evaluated.
Second-harmonic generation in shear wave beams with different polarizations
NASA Astrophysics Data System (ADS)
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Satake, K.; Wang, K.; Atwater, B.F.
2003-01-01
The 1700 Cascadia earthquake attained moment magnitude 9 according to new estimates based on effects of its tsunami in Japan, computed coseismic seafloor deformation for hypothetical ruptures in Cascadia, and tsunami modeling in the Pacific Ocean. Reports of damage and flooding show that the 1700 Casscadia tsunami reached 1-5 m heights at seven shoreline sites in Japan. Three sets of estimated heights express uncertainty about location and depth of reported flooding, landward decline in tsunami heights from shorelines, and post-1700 land-level changes. We compare each set with tsunami heights computed from six Cascadia sources. Each source is vertical seafloor displacement calculated with a three-dimensional elastic dislocation model, for three sources the rupture extends the 1100 km length of the subduction zone and differs in width and shallow dip; for the other sources, ruptures of ordinary width extend 360-670 km. To compute tsunami waveforms, we use a linear long-wave approximation with a finite difference method, and we employ modern bathymetry with nearshore grid spacing as small as 0.4 km. The various combinations of Japanese tsunami heights and Cascadia sources give seismic moment of 1-9 ?? 1022 N m, equivalent to moment magnitude 8.7-9.2. This range excludes several unquantified uncertainties. The most likely earthquake, of moment magnitude 9.0, has 19 m of coseismic slip on an offshore, full-slip zone 1100 km long with linearly decreasing slip on a downdip partial-slip zone. The shorter rupture models require up to 40 m offshore slip and predict land-level changes inconsistent with coastal paleoseismological evidence. Copyright 2003 by the American Geophysical Union.
Equivalent radiation source of 3D package for electromagnetic characteristics analysis
NASA Astrophysics Data System (ADS)
Li, Jun; Wei, Xingchang; Shu, Yufei
2017-10-01
An equivalent radiation source method is proposed to characterize electromagnetic emission and interference of complex three dimensional integrated circuits (IC) in this paper. The method utilizes amplitude-only near-field scanning data to reconstruct an equivalent magnetic dipole array, and the differential evolution optimization algorithm is proposed to extract the locations, orientation and moments of those dipoles. By importing the equivalent dipoles model into a 3D full-wave simulator together with the victim circuit model, the electromagnetic interference issues in mixed RF/digital systems can be well predicted. A commercial IC is used to validate the accuracy and efficiency of this proposed method. The coupled power at the victim antenna port calculated by the equivalent radiation source is compared with the measured data. Good consistency is obtained which confirms the validity and efficiency of the method. Project supported by the National Nature Science Foundation of China (No. 61274110).
Torsional vibrations of shafts of mechanical systems
NASA Astrophysics Data System (ADS)
Gulevsky, V. A.; Belyaev, A. N.; Trishina, T. V.
2018-03-01
The aim of the research is to compare the calculated dependencies for determining the equivalent rigidity of a mechanical system and to come to an agreement on the methods of compiling dynamic models for systems with elastic reducer couplings in applied and classical oscillation theories. As a result of the analysis, it was revealed that most of the damage in the mechanisms and their details is due to the appearance of oscillations due to the dynamic impact of various factors: shock and alternating loads, unbalanced parts of machines, etc. Therefore, the designer at the design stage, and the engineer in the process of operation should provide the possibility of regulating the oscillatory processes both in details and machines by means of creating rational designs, as well as the use of special devices such as vibration dampers, various vibrators with optimal characteristics. A method is proposed for deriving a formula for determining the equivalent stiffness of a double-mass oscillating system of a multistage reducer with elastic reducer links without taking into account the internal losses and inertia of its elements, which gives a result completely coinciding with the result obtained by the classical theory of small mechanical oscillations and allows eliminating formulas for reducing the moments of inertia of the flywheel masses and the stiffness of the shafts.
NASA Astrophysics Data System (ADS)
Chang, Yun-Yuan; Jacobsen, Steven D.; Kimura, Masaki; Irifune, Tetsuo; Ohno, Ichiro
2014-03-01
The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have been determined by GHz-ultrasonic interferometry on three different bulk samples, and by resonant spectroscopy on a spherically fabricated NPD sample. We employ a newly-developed optical contact micrometer to measure the thickness of ultrasonic samples to ±0.05 μm with a spatial resolution of ∼50 μm in the same position of the GHz-ultrasonic measurements, resulting in acoustic-wave sound velocity measurements with uncertainties of 0.005-0.02%. The isotropic and adiabatic bulk and shear moduli of NPD measured by GHz-ultrasonic interferometry are KS0 = 442.5 (±0.5) GPa and G0 = 532.4 (±0.5) GPa. By rotating the shear-wave polarization direction, we observe no transverse anisotropy in this NPD. Using resonant sphere spectroscopy, we obtain KS0 = 440.3 (±0.5) GPa and G0 = 532.7 (±0.4) GPa. For comparison, we also measured by GHz-ultrasonic interferometry the elastic constants of a natural single-crystal type-IA diamond with about one-half the experimental uncertainty of previous measurements. The resulting Voigt-Reuss-Hill averaged bulk and shear moduli of natural diamond are KS0 = 441.8 (±0.8) GPa and G0 = 532.6 (±0.5) GPa, demonstrating that the bulk-elastic properties of transparent NPD are equivalent to natural single-crystal diamond as calculated from polycrystalline averaging of its elastic constants.
NASA Technical Reports Server (NTRS)
Armoundas, A. A.; Feldman, A. B.; Sherman, D. A.; Cohen, R. J.
2001-01-01
Although the single equivalent point dipole model has been used to represent well-localised bio-electrical sources, in realistic situations the source is distributed. Consequently, position estimates of point dipoles determined by inverse algorithms suffer from systematic error due to the non-exact applicability of the inverse model. In realistic situations, this systematic error cannot be avoided, a limitation that is independent of the complexity of the torso model used. This study quantitatively investigates the intrinsic limitations in the assignment of a location to the equivalent dipole due to distributed electrical source. To simulate arrhythmic activity in the heart, a model of a wave of depolarisation spreading from a focal source over the surface of a spherical shell is used. The activity is represented by a sequence of concentric belt sources (obtained by slicing the shell with a sequence of parallel plane pairs), with constant dipole moment per unit length (circumferentially) directed parallel to the propagation direction. The distributed source is represented by N dipoles at equal arc lengths along the belt. The sum of the dipole potentials is calculated at predefined electrode locations. The inverse problem involves finding a single equivalent point dipole that best reproduces the electrode potentials due to the distributed source. The inverse problem is implemented by minimising the chi2 per degree of freedom. It is found that the trajectory traced by the equivalent dipole is sensitive to the location of the spherical shell relative to the fixed electrodes. It is shown that this trajectory does not coincide with the sequence of geometrical centres of the consecutive belt sources. For distributed sources within a bounded spherical medium, displaced from the sphere's centre by 40% of the sphere's radius, it is found that the error in the equivalent dipole location varies from 3 to 20% for sources with size between 5 and 50% of the sphere's radius. Finally, a method is devised to obtain the size of the distributed source during the cardiac cycle.
Elasticity of crystalline molecular explosives
Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; ...
2015-04-14
Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less
Variable structure control of nonlinear systems through simplified uncertain models
NASA Technical Reports Server (NTRS)
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
A sparse equivalent source method for near-field acoustic holography.
Fernandez-Grande, Efren; Xenaki, Angeliki; Gerstoft, Peter
2017-01-01
This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive-Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-band reconstruction possible. Spatially extended sources can also be addressed with C-ESM, although in this case the obtained solution does not recover the spatial extent of the source.
Effects of Defect Size and Number Density on the Transmission and Reflection of Guided Elastic Waves
2016-04-22
localized region, a photoacoustic source generates elastic waves on one side of the damaged region, and then two ultrasound transducers measure the...where the defects are of the same order as the wavelength of the ultrasound , we find ourselves confronted with Mie scattering, which has weaker
Thermoelastic stress in oceanic lithosphere due to hotspot reheating
NASA Technical Reports Server (NTRS)
Zhu, Anning; Wiens, Douglas A.
1991-01-01
The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.
Strengthening and toughening metallic glasses: The elastic perspectives and opportunities
NASA Astrophysics Data System (ADS)
Liu, Z. Q.; Zhang, Z. F.
2014-04-01
There exist general conflicts between strength and toughness in crystalline engineering materials, and various strengthening and toughening strategies have been developed from the dislocation motion perspectives. Metallic glasses (MGs) have demonstrated great potentials owing to their unique properties; however, their structural applications are strictly limited. One of the key problems is that the traditional strengthening and toughening strategies and mechanisms are not applicable in MGs due to the absence of dislocations and crystalline microstructures. Here, we show that the strength and toughness, or equivalently the shear modulus and Poisson's ratio, are invariably mutually exclusive in MGs. Accordingly, the MGs can be categorized into four groups with different levels of integrated mechanical properties. It is further revealed that the conflicts originate fundamentally from the atomic bonding structures and the levels of strength-toughness combinations are indeed dominated by the bulk modulus. Moreover, we propose novel strategies for optimizing the mechanical properties of MGs from the elastic perspectives. We emphasize the significance of developing high bulk modulus MGs to achieve simultaneously both high strength and good toughness and highlight the elastic opportunities for strengthening and toughening materials.
Growth patterns for shape-shifting elastic bilayers.
van Rees, Wim M; Vouga, Etienne; Mahadevan, L
2017-10-31
Inspired by the differential-growth-driven morphogenesis of leaves, flowers, and other tissues, there is increasing interest in artificial analogs of these shape-shifting thin sheets made of active materials that respond to environmental stimuli such as heat, light, and humidity. But how can we determine the growth patterns to achieve a given shape from another shape? We solve this geometric inverse problem of determining the growth factors and directions (the metric tensors) for a given isotropic elastic bilayer to grow into a target shape by posing and solving an elastic energy minimization problem. A mathematical equivalence between bilayers and curved monolayers simplifies the inverse problem considerably by providing algebraic expressions for the growth metric tensors in terms of those of the final shape. This approach also allows us to prove that we can grow any target surface from any reference surface using orthotropically growing bilayers. We demonstrate this by numerically simulating the growth of a flat sheet into a face, a cylindrical sheet into a flower, and a flat sheet into a complex canyon-like structure.
NASA Astrophysics Data System (ADS)
Santoni, Andrea; Schoenwald, Stefan; Van Damme, Bart; Fausti, Patrizio
2017-07-01
Cross-laminated timber (CLT) is an engineered wood with good structural properties and it is also economically competitive with the traditional building construction materials. However, due to its low volume density combined with its high stiffness, it does not provide sufficient sound insulation, thus it is necessary to develop specific acoustic treatments in order to increase the noise reduction performance. The material's mechanical properties are required as input data to perform the vibro-acoustic analyses necessary during the design process. In this paper the elastic constants of a CLT plate are derived by fitting the real component of the experimental flexural wave velocity with Mindlin's dispersion relation for thick plates, neglecting the influence of the plate's size and boundary conditions. Furthermore, its apparent elastic and stiffness properties are derived from the same set of experimental data, for the plate considered to be thin. Under this latter assumption the orthotropic behaviour of an equivalent thin CLT plate is described by using an elliptic model and verified with experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günay, E.
In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values.more » In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.« less
Growth patterns for shape-shifting elastic bilayers
van Rees, Wim M.; Vouga, Etienne; Mahadevan, L.
2017-01-01
Inspired by the differential-growth-driven morphogenesis of leaves, flowers, and other tissues, there is increasing interest in artificial analogs of these shape-shifting thin sheets made of active materials that respond to environmental stimuli such as heat, light, and humidity. But how can we determine the growth patterns to achieve a given shape from another shape? We solve this geometric inverse problem of determining the growth factors and directions (the metric tensors) for a given isotropic elastic bilayer to grow into a target shape by posing and solving an elastic energy minimization problem. A mathematical equivalence between bilayers and curved monolayers simplifies the inverse problem considerably by providing algebraic expressions for the growth metric tensors in terms of those of the final shape. This approach also allows us to prove that we can grow any target surface from any reference surface using orthotropically growing bilayers. We demonstrate this by numerically simulating the growth of a flat sheet into a face, a cylindrical sheet into a flower, and a flat sheet into a complex canyon-like structure. PMID:29078336
NASA Astrophysics Data System (ADS)
Hu, Ji-Ying; Li, Zhao-Hui; Sun, Yang; Li, Qi-Hu
2016-12-01
Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A. Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).
Acoustic and elastic multiple scattering and radiation from cylindrical structures
NASA Astrophysics Data System (ADS)
Amirkulova, Feruza Abdukadirovna
Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an incident wave to produce zero total field over a finite spatial region. The approach precisely determines the necessary source amplitudes and enables a cloaked region to be determined using Graf's theorem. To apply the approach, the infinite series of multipole expansions are truncated, and the accuracy of cloaking is studied by modifying the truncation parameter.
Alternative Fuels Data Center: Iowa Transportation Data for Alternative
Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of (bbl/day) 0 Renewable Power Plants 41 Renewable Power Plant Capacity (nameplate, MW) 3,807 Source /gallon $2.60/GGE $2.96/gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for
Alternative Fuels Data Center: South Carolina Transportation Data for
Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of (bbl/day) 0 Renewable Power Plants 31 Renewable Power Plant Capacity (nameplate, MW) 3,396 Source /gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Lower Atlantic PADD
The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites
NASA Astrophysics Data System (ADS)
Searles, Kevin H.
In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions, load eccentricities, geometric (large strains and rotations) nonlinearities and boundary contact (friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity and progressive damage are explored. A progressive damage criterion is proposed which accounts for the elastic strain energy densities in three directions. Of the types of nonlinearities studied, the nonlinear shear stress-strain behavior of the composites is principally from progressive intralaminar damage. Structural nonlinearities and elastoplastic deformation appear to be inconsequential.
Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.
Park, Jung-Hoon; Choi, Nak-Sam
2017-02-01
For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Zeng, Fan W.; Contescu, Cristian I.; Gallego, Nidia C.; ...
2016-12-18
Laser ultrasonic line source methods have been used to study elastic anisotropy in nuclear graphites by measuring shear wave birefringence. Depending on the manufacturing processes used during production, nuclear graphites can exhibit various degrees of material anisotropy related to preferred crystallite orientation and to microcracking. In this paper, laser ultrasonic line source measurements of shear wave birefringence on NBG-25 have been performed to assess elastic anisotropy. Laser line sources allow specific polarizations for shear waves to be transmitted – the corresponding wavespeeds can be used to compute bulk, elastic moduli that serve to quantify anisotropy. These modulus values can bemore » interpreted using physical property models based on orientation distribution coefficients and microcrack-modified, single crystal moduli to represent the combined effects of crystallite orientation and microcracking on material anisotropy. Finally, ultrasonic results are compared to and contrasted with measurements of anisotropy based on the coefficient of thermal expansion to show the relationship of results from these techniques.« less
Adaptive elastic metasurfaces for wave front manipulation
NASA Astrophysics Data System (ADS)
Li, Shilong; Xu, Jiawen; Tang, Jiong
2018-04-01
In this research, by combining the concept of elastic metasurfaces with piezoelectric transducer with shunted circuitry, we investigate the designs of elastic metasurfaces, consisting of an array of piezoelectric transducers shunted with negative capacitance, which is capable of modulating wave fronts adaptively. In order to construct different adaptive elastic metasurfaces, different phase profiles along the interface can be framed through properly adjusting the negative capacitance values. Flat planar lenses for focusing transmitted A0 Lamb waves are achieved, and possess the flexibility of changing focal locations through electromechanical tunings. Additionally, nonparaxial self-bending beams with arbitrary trajectories and source illusion devices can also be accomplished owing to the free manipulation of phase shifts. With their versatility and tunability, the adaptive elastic metasurfaces could pave new avenues to a wide variety of potential applications, such as nondestructive testing, ultrasound imaging, and caustic engineering.
NASA Astrophysics Data System (ADS)
Uenomachi, M.; Orita, T.; Shimazoe, K.; Takahashi, H.; Ikeda, H.; Tsujita, K.; Sekiba, D.
2018-01-01
High-resolution Elastic Recoil Detection Analysis (HERDA), which consists of a 90o sector magnetic spectrometer and a position-sensitive detector (PSD), is a method of quantitative hydrogen analysis. In order to increase sensitivity, a HERDA system using a multi-channel silicon-based ion detector has been developed. Here, as a parallel and fast readout circuit from a multi-channel silicon-based ion detector, a slew-rate-limited time-over-threshold (ToT) application-specific integrated circuit (ASIC) was designed, and a new slew-rate-limited ToT method is proposed. The designed ASIC has 48 channels and each channel consists of a preamplifier, a slew-rate-limited shaping amplifier, which makes ToT response linear, and a comparator. The measured equivalent noise charges (ENCs) of the preamplifier, the shaper, and the ToT on no detector capacitance were 253±21, 343±46, and 560±56 electrons RMS, respectively. The spectra from a 241Am source measured using a slew-rate-limited ToT ASIC are also reported.
Comparison of exact solution with Eikonal approximation for elastic heavy ion scattering
NASA Technical Reports Server (NTRS)
Dubey, Rajendra R.; Khandelwal, Govind S.; Cucinotta, Francis A.; Maung, Khin Maung
1995-01-01
A first-order optical potential is used to calculate the total and absorption cross sections for nucleus-nucleus scattering. The differential cross section is calculated by using a partial-wave expansion of the Lippmann-Schwinger equation in momentum space. The results are compared with solutions in the Eikonal approximation for the equivalent potential and with experimental data in the energy range from 25A to 1000A MeV.
1990-10-18
the disparity between the elastic moduli tensors C* and CO of the inhomogeneity and the matrix by an equivalent uniform eigenstrain E*(xe 12) within the...highlighted in the text below. Denote by I C =e* + r (6.1) For an isotropic, spheroidal inhomogeneous the eigenstrains E** are related to C" and far...shaped, but of different orientation. In this case a crack can be modeled as a oblate spheroid of vanishing thickness. The eigenstrain in such an
Subscale Development of Advanced ABM Graphite/Epoxy Composite Structure
1978-01-01
laminate analysis computer code (Reference 5). eie output of this code yields lamina stresses and strains, equivalent elastic and shear modulii for the...was not accounted for. Therefore the net effect was that the analysis tended to yield conservative results. For design purposes, this conservative...extracted using a Soxhlet Extraction apparatus, recycling the solvent af least 4 to 10 times every hour for a minimum of 6 hours. (4) All samples are
2013-09-30
TERMS micromechanics, prestress, composites, elasticity, viscoelasticity, finite element Anastasia Muliana, KR Rajagopal Texas Engineering Experiment...PERSON 19b. TELEPHONE NUMBER Anastasia Muliana 979-458-3579 3. DATES COVERED (From - To) 15-Sep-2012 Standard Form 298 (Rev 8/98) Prescribed by ANSI...Supported National Academy MemberPERCENT_SUPPORTEDNAME KR Rajagopal 0.40 Anastasia Muliana 0.80 1.20FTE Equivalent: 2Total Number: Names of Under
1986-12-01
paper, we consider geometrically exact models, such as the Kirchhoff-Love-Reissner- Antman model for rods and its counterpart for plates and shells. These...equivalent model, formulated as a constrained director theory - the so-called special theory of Cosserat rods - is due to Antman (1974] - see also...Anan and Jordan [1975], Anunan and Kenny [1981]. and Antman [1984] for some applications. The dynamic version along with the parametrization discussed
Low blow Charpy impact of silicon carbides
NASA Technical Reports Server (NTRS)
Abe, H.; Chandan, H. C.; Bradt, R. C.
1978-01-01
The room-temperature impact resistance of several commercial silicon carbides was examined using an instrumented pendulum-type machine and Charpy-type specimens. Energy balance compliance methods and fracture toughness approaches, both applicable to other ceramics, were used for analysis. The results illustrate the importance of separating the machine and the specimen energy contributions and confirm the equivalence of KIc and KId. The material's impact energy was simply the specimen's stored elastic strain energy at fracture.
Recent Progress in the p and h-p Version of the Finite Element Method.
1987-07-01
code PROBE which was developed recently by NOETIC Technologies, St. Louis £54]. PROBE solves two dimensional problems of linear elasticity, stationary...of the finite element method was studied in detail from various point of view. We will mention here some essential illustrative results. In one...28) Bathe, K. J., Brezzi, F., Studies of finite element procedures - the INF-SUP condition, equivalent forms and applications in Reliability of
Gravitational potential as a source of earthquake energy
Barrows, L.; Langer, C.J.
1981-01-01
Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this "gravitational tectonics stress" must have formerly existed as gravitational potential energy contained in the stress-causing density structure. According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event. An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip. ?? 1981.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, M. X.; Zhang, Y. Y.; E, J. C.
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less
Guimarães, Zulmira A S; Damatta, Renato A; Guimarães, Renan S; Filgueira, Marcello
2017-01-01
With the aim of introducing permanent prostheses with main properties equivalent to cortical human bone, Ti-diamond composites were processed through powder metallurgy. Grade 1 titanium and mixtures of Ti powder with 2%, 5% and 10 wt% diamond were compacted at 100MPa, and then sintered at 1250°C/2hr/10-6mbar. Sintered samples were studied in the point of view of their microstructures, structures, yield strength and elastic modulus. The results showed that the best addition of diamonds was 2 wt%, which led to a uniform porosity, yield strength of 370MPa and elastic modulus of 13.9 GPa. Samples of Ti and Ti-2% diamond were subjected to in vitro cytotoxicity test, using cultures of VERO cells, and it resulted in a biocompatible and nontoxic composite material.
Hybridization bandgap induced by an electrical resonance in piezoelectric metamaterial plates
NASA Astrophysics Data System (ADS)
Kherraz, N.; Haumesser, L.; Levassort, F.; Benard, P.; Morvan, B.
2018-03-01
We demonstrate numerically and experimentally the opening of a locally resonant bandgap in an active phononic crystal (PC) made of a homogeneous piezoelectric plate covered by a 1D periodic array of thin electrodes connected to inductive shunts. The application of periodic electrical boundary conditions (EBCs) enables an at will tailoring of the dispersion properties of the PC plate, thus leading to a control of the dispersion of the propagating guided elastic waves in the plate. Depending on the nature of the EBCs, several bandgaps open up, the most important being a Hybridization Bandgap (HBG) in the subwavelength regime. The PC behaves as a locally resonant metamaterial. The HBG originates from the interaction of propagating elastic waves (Lamb modes) with an electrical resonant mode whose dispersion can be effectively described through an equivalent transmission line model.
Nishawala, Vinesh V.; Ostoja-Starzewski, Martin; Leamy, Michael J.; ...
2015-09-10
Peridynamics is a non-local continuum mechanics formulation that can handle spatial discontinuities as the governing equations are integro-differential equations which do not involve gradients such as strains and deformation rates. This paper employs bond-based peridynamics. Cellular Automata is a local computational method which, in its rectangular variant on interior domains, is mathematically equivalent to the central difference finite difference method. However, cellular automata does not require the derivation of the governing partial differential equations and provides for common boundary conditions based on physical reasoning. Both methodologies are used to solve a half-space subjected to a normal load, known as Lamb’smore » Problem. The results are compared with theoretical solution from classical elasticity and experimental results. Furthermore, this paper is used to validate our implementation of these methods.« less
NASA Astrophysics Data System (ADS)
Karl, Robert; Knobloch, Joshua; Frazer, Travis; Tanksalvala, Michael; Porter, Christina; Bevis, Charles; Chao, Weilun; Abad Mayor, Begoña.; Adams, Daniel; Mancini, Giulia F.; Hernandez-Charpak, Jorge N.; Kapteyn, Henry; Murnane, Margaret
2018-03-01
Using a tabletop coherent extreme ultraviolet source, we extend current nanoscale metrology capabilities with applications spanning from new models of nanoscale transport and materials, to nanoscale device fabrication. We measure the ultrafast dynamics of acoustic waves in materials; by analyzing the material's response, we can extract elastic properties of films as thin as 11nm. We extend this capability to a spatially resolved imaging modality by using coherent diffractive imaging to image the acoustic waves in nanostructures as they propagate. This will allow for spatially resolved characterization of the elastic properties of non-isotropic materials.
Elastic Nonlinear Response in Granular Media Under Resonance Conditions
NASA Astrophysics Data System (ADS)
Jia, X.; Johnson, P. A.
2004-12-01
We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass beads. The wave signals are detected using a lock-in amplifier, and frequency and amplitude are recorded on computer. Drive frequency is swept from below to above the resonance mode. A typical frequency sweep is 3 kHz in width with a frequency sampling of 6 Hz. Frequency sweeps are applied at progressively increasing drive voltages to test for nonlinear-dynamical induced modulus softening. The resonance frequency at peak amplitude corresponds directly to modulus. We find significant elastic nonlinearity at all effective pressures, manifest by the fundamental-mode resonance curves decreasing progressively, at progressively increasing drive level. This is equivalent to progressive material softening with wave amplitude, meaning the wavespeed and modulus diminish. The wave dissipation simultaneously increases (Johnson and Sutin 2004). For example, at 0.11 Mpa effective pressure the observed change in resonance frequency of about 2.6% corresponds to a material bulk modulus decrease of about 5.2%. Strain amplitudes are 10-7-10-6. Thus, we would predict that surface sediments should have significant elastic nonlinear response beginning at about 10-6 strain amplitude. reference: Johnson, P. and A. Sutin, Slow dynamics in diverse solids, J. Acoust. Soc Am., in press (2004).
Elasticity of human embryonic stem cells as determined by atomic force microscopy.
Kiss, Robert; Bock, Henry; Pells, Steve; Canetta, Elisabetta; Adya, Ashok K; Moore, Andrew J; De Sousa, Paul; Willoughby, Nicholas A
2011-10-01
The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Young's modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Young's modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.
Laser-Excited Electronic and Thermal Elastic Vibrations in a Semiconductor Rectangular Plate
NASA Astrophysics Data System (ADS)
Todorović, D. M.; Cretin, B.; Vairac, P.; Song, Y. Q.; Rabasović, M. D.; Markushev, D. D.
2013-09-01
Photoacoustic and photothermal effects can be important as driven mechanisms for micro-(opto)-electro-mechanical structures (MOEMS). A new approach for a producing a compact, lightweight, highly sensitive detector is provided by MOEMS technology, which is based on the elastic bending of microstructure generated by absorption of modulated optical power. The electronic and thermal elastic vibrations (the electronic deformation and thermoelastic mechanisms of elastic wave generation) in a semiconductor rectangular simply supported plate (3D geometry), photogenerated by a focused and intensity-modulated laser beam, were studied. The theoretical model for the elastic displacements space and frequency distribution by using the Green function method was given. The amplitude of the elastic bending in the rectangular plate was calculated and analyzed, including the thermalization and surface and volume recombination heat sources. The theoretical results were compared with the experimental data. These investigations are important for many practical experimental situations (atomic force microscopy, thermal microscopy, thermoelastic microscopy, etc.) and sensors and actuators.
What U.S. data should be used to measure the price elasticity of demand for alcohol?
Ruhm, Christopher J; Jones, Alison Snow; McGeary, Kerry Anne; Kerr, William C; Terza, Joseph V; Greenfield, Thomas K; Pandian, Ravi S
2012-12-01
This paper examines how estimates of the price elasticity of demand for beer vary with the choice of alcohol price series examined. Our most important finding is that the commonly used ACCRA price data are unlikely to reliably indicate alcohol demand elasticities-estimates obtained from this source vary drastically and unpredictably. As an alternative, researchers often use beer taxes to proxy for alcohol prices. While the estimated beer taxes elasticities are more stable, there are several problems with using taxes, including difficulties in accounting for cross-price effects. We believe that the most useful estimates reported in this paper are obtained using annual Uniform Product Code (UPC) "barcode" scanner data on grocery store alcohol prices. These estimates suggest relatively low demand elasticity, probably around -0.3, with evidence that the elasticities are considerably overstated in models that control for beer but not wine or spirits prices. Copyright © 2012 Elsevier B.V. All rights reserved.
An equivalent source model of the satellite-altitude magnetic anomaly field over Australia
NASA Technical Reports Server (NTRS)
Mayhew, M. A.; Johnson, B. D.; Langel, R. A.
1980-01-01
The low-amplitude, long-wavelength magnetic anomaly field measured between 400 and 700 km elevation over Australia by the POGO satellites is modeled by means of the equivalent source technique. Magnetic dipole moments are computed for a latitude-longitude array of dipole sources on the earth's surface such that the dipoles collectively give rise to a field which makes a least squares best fit to that observed. The distribution of magnetic moments is converted to a model of apparent magnetization contrast in a layer of constant (40 km) thickness, which contains information equivalent to the lateral variation in the vertical integral of magnetization down to the Curie isotherm and can be transformed to a model of variable thickness magnetization. It is noted that the closest equivalent source spacing giving a stable solution is about 2.5 deg, corresponding to about half the mean data elevation, and that the magnetization distribution correlates well with some of the principle tectonic elements of Australia.
Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations
NASA Astrophysics Data System (ADS)
Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.
2017-12-01
A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.
Elastic-Tether Suits for Artificial Gravity and Exercise
NASA Technical Reports Server (NTRS)
Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.
2005-01-01
Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.
Inertioelastic Flow Instability at a Stagnation Point
NASA Astrophysics Data System (ADS)
Burshtein, Noa; Zografos, Konstantinos; Shen, Amy Q.; Poole, Robert J.; Haward, Simon J.
2017-10-01
A number of important industrial applications exploit the ability of small quantities of high molecular weight polymer to suppress instabilities that arise in the equivalent flow of Newtonian fluids, a particular example being turbulent drag reduction. However, it can be extremely difficult to probe exactly how the polymer acts to, e.g., modify the streamwise near-wall eddies in a fully turbulent flow. Using a novel cross-slot flow configuration, we exploit a flow instability in order to create and study a single steady-state streamwise vortex. By quantitative experiment, we show how the addition of small quantities (parts per million) of a flexible polymer to a Newtonian solvent dramatically affects both the onset conditions for this instability and the subsequent growth of the axial vorticity. Complementary numerical simulations with a finitely extensible nonlinear elastic dumbbell model show that these modifications are due to the growth of polymeric stress within specific regions of the flow domain. Our data fill a significant gap in the literature between the previously reported purely inertial and purely elastic flow regimes and provide a link between the two by showing how the instability mode is transformed as the fluid elasticity is varied. Our results and novel methods are relevant to understanding the mechanisms underlying industrial uses of weakly elastic fluids and also to understanding inertioelastic instabilities in more confined flows through channels with intersections and stagnation points.
Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Tuzcu, Ilhan
2009-01-01
This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.
Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian
2000-01-01
Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.
An equivalent domain integral for analysis of two-dimensional mixed mode problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Shivakumar, K. N.
1989-01-01
An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies subjected to mixed mode loading is presented. The total and product integrals consist of the sum of an area or domain integral and line integrals on the crack faces. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented. The procedure that uses the symmetric and antisymmetric components of the stress and displacement fields to calculate the individual modes gave accurate values of the integrals for all the problems analyzed.
What U.S. Data Should be Used to Measure the Price Elasticity of Demand for Alcohol?*
Ruhm, Christopher J.; Jones, Alison Snow; McGeary, Kerry Anne; Kerr, William C.; Terza, Joseph V.; Greenfield, Thomas K.; Pandian, Ravi S.
2012-01-01
This paper examines how estimates of the price elasticity of demand for beer vary with the choice of alcohol price series examined. Our most important finding is that the commonly used ACCRA price data are unlikely to reliably indicate alcohol demand elasticities—estimates obtained from this source vary drastically and unpredictably. As an alternative, researchers often use beer taxes to proxy for alcohol prices. While the estimated beer taxes elasticities are more stable, there are several problems with using taxes, including difficulties in accounting for cross-price effects. We believe that the most useful estimates reported in this paper are obtained using annual Uniform Product Code (UPC) “barcode” scanner data on grocery store alcohol prices. These estimates suggest relatively low demand elasticity, probably around −0.3, with evidence that the elasticities are considerably overstated in models that control for beer but not wine or spirits prices. PMID:23022631
Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2018-04-01
Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Operation and Equivalent Loads of Wind Turbines in Large Wind Farms
NASA Astrophysics Data System (ADS)
Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming
2017-11-01
Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.
Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism
NASA Technical Reports Server (NTRS)
Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.
2008-01-01
Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses of the Door Drive Mechanism (DDM). For a similar analysis, the traditional approach would be to construct a full finite element model of the mechanism. The purpose of this paper is to describe an alternative approach that models the flexibility of the DDM using a lumped parameter approximation to capture the compliance of individual parts within the drive linkage. This approach allows for rapid construction of a dynamic model in a time-critical setting, while still retaining the appropriate equivalent stiffness of each linkage component. As a validation of these equivalent stiffnesses, finite element analysis (FEA) was used to iteratively update the model towards convergence. Following this analysis, deflections recovered from the dynamic model can be used to calculate stress and classify each component s deformation as either elastic or plastic. Based on the modeling assumptions used in this analysis and the maximum input forcing condition, two components in the DDM show a factor of safety less than or equal to 0.5. However, to accurately evaluate the induced stresses, additional mechanism rigging information would be necessary to characterize the input forcing conditions. This information would also allow for the classification of stresses as either elastic or plastic.
Rupture dynamics with energy loss outside the slip zone
Andrews, D.J.
2005-01-01
Energy loss in a fault damage zone, outside the slip zone, contributes to the fracture energy that determines rupture velocity of an earthquake. A nonelastic two-dimensional dynamic calculation is done in which the slip zone is modeled as a fault plane and material off the fault is subject to a Coulomb yield condition. In a mode 2 crack-like solution in which an abrupt uniform drop of shear traction on the fault spreads from a point, Coulomb yielding occurs on the extensional side of the fault. Plastic strain is distributed with uniform magnitude along the fault, and it has a thickness normal to the fault proportional to propagation distance. Energy loss off the fault is also proportional to propagation distance, and it can become much larger than energy loss on the fault specified by the fault constitutive relation. The slip velocity function could be produced in an equivalent elastic problem by a slip-weakening friction law with breakdown slip Dc increasing with distance. Fracture energy G and equivalent Dc will be different in ruptures with different initiation points and stress drops, so they are not constitutive properties; they are determined by the dynamic solution that arrives at a particular point. Peak slip velocity is, however, a property of a fault location. Nonelastic response can be mimicked by imposing a limit on slip velocity on a fault in an elastic medium.
Uncertainty principles for inverse source problems for electromagnetic and elastic waves
NASA Astrophysics Data System (ADS)
Griesmaier, Roland; Sylvester, John
2018-06-01
In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.
Little Green Lies: Dissecting the Hype of Renewables
2011-05-11
Sources: 2009 BP Statistical Energy Analysis , US Energy Information Administration Per Capita Energy Use (Kg Oil Equivalent) World 1,819 USA 7,766...Equivalent BUILDING STRONG® Energy Trends Sources: 2006 BP Statistical Energy Analysis Oil 37% Nuclear 6o/o Coal 25% Gas 23o/o Biomass 4% Hydro 3% Wind
NASA Astrophysics Data System (ADS)
Myers, S. C.; Pitarka, A.; Mellors, R. J.
2016-12-01
The Source Physics Experiment (SPE) is producing new data to study the generation of seismic waves from explosive sources. Preliminary results show that far-field S-waves are generated both within the non-elastic volume surrounding explosive sources and by P- to S-wave scattering. The relative contribution of non-elastic phenomenology and elastic-wave scattering to far-field S-waves has been debated for decades, and numerical simulations based on the SPE experiments are addressing this question. The match between observed and simulated data degrades with event-station distance and with increasing time in each seismogram. This suggests that a more accurate model of subsurface elastic properties could result in better agreement between observed and simulated seismograms. A detailed model of subsurface structure has been developed using geologic maps and the extensive database of borehole logs, but uncertainty in structural details remains high. The large N instrument deployment during the SPE-5 experiment offers an opportunity to use time-reversal techniques to back project the wave field into the subsurface to locate significant sources of scattered energy. The large N deployment was nominally 1000, 5 Hz sensors (500 Z and 500 3C geophones) deployed in a roughly rectangular array to the south and east of the SPE-5 shot. Sensor spacing was nominally 50 meters in the interior portion of the array and 100 meters in the outer region, with two dense lines at 25 m spacing. The array covers the major geologic boundary between the Yucca Flat basin and the granitic Climax Stock in which the SPE experiments have been conducted. Improved mapping of subsurface scatterers is expected to result in better agreement between simulated and observed seismograms and aid in our understanding of S-wave generation from explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Burgos, Gaël.; Capdeville, Yann; Guillot, Laurent
2016-06-01
We investigate the effect of small-scale heterogeneities close to a seismic explosive source, at intermediate periods (20-50 s), with an emphasis on the resulting nonisotropic far-field radiation. First, using a direct numerical approach, we show that small-scale elastic heterogeneities located in the near-field of an explosive source, generate unexpected phases (i.e., long period S waves). We then demonstrate that the nonperiodic homogenization theory applied to 2-D and 3-D elastic models, with various pattern of small-scale heterogeneities near the source, leads to accurate waveforms at a reduced computational cost compared to direct modeling. Further, it gives an interpretation of how nearby small-scale features interact with the source at low frequencies, through an explicit correction to the seismic moment tensor. In 2-D simulations, we find a deviatoric contribution to the moment tensor, as high as 21% for near-source heterogeneities showing a 25% contrast of elastic values (relative to a homogeneous background medium). In 3-D this nonisotropic contribution reaches 27%. Second, we analyze intermediate-periods regional seismic waveforms associated with some underground nuclear explosions conducted at the Nevada National Security Site and invert for the full moment tensor, in order to quantify the relative contribution of the isotropic and deviatoric components of the tensor. The average value of the deviatoric part is about 35%. We conclude that the interactions between an explosive source and small-scale local heterogeneities of moderate amplitude may lead to a deviatoric contribution to the seismic moment, close to what is observed using regional data from nuclear test explosions.
Model updating in flexible-link multibody systems
NASA Astrophysics Data System (ADS)
Belotti, R.; Caneva, G.; Palomba, I.; Richiedei, D.; Trevisani, A.
2016-09-01
The dynamic response of flexible-link multibody systems (FLMSs) can be predicted through nonlinear models based on finite elements, to describe the coupling between rigid- body and elastic behaviour. Their accuracy should be as high as possible to synthesize controllers and observers. Model updating based on experimental measurements is hence necessary. By taking advantage of the experimental modal analysis, this work proposes a model updating procedure for FLMSs and applies it experimentally to a planar robot. Indeed, several peculiarities of the model of FLMS should be carefully tackled. On the one hand, nonlinear models of a FLMS should be linearized about static equilibrium configurations. On the other, the experimental mode shapes should be corrected to be consistent with the elastic displacements represented in the model, which are defined with respect to a fictitious moving reference (the equivalent rigid link system). Then, since rotational degrees of freedom are also represented in the model, interpolation of the experimental data should be performed to match the model displacement vector. Model updating has been finally cast as an optimization problem in the presence of bounds on the feasible values, by also adopting methods to improve the numerical conditioning and to compute meaningful updated inertial and elastic parameters.
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-01-01
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-11-03
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.
Strengthening and toughening metallic glasses: The elastic perspectives and opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn
2014-04-28
There exist general conflicts between strength and toughness in crystalline engineering materials, and various strengthening and toughening strategies have been developed from the dislocation motion perspectives. Metallic glasses (MGs) have demonstrated great potentials owing to their unique properties; however, their structural applications are strictly limited. One of the key problems is that the traditional strengthening and toughening strategies and mechanisms are not applicable in MGs due to the absence of dislocations and crystalline microstructures. Here, we show that the strength and toughness, or equivalently the shear modulus and Poisson's ratio, are invariably mutually exclusive in MGs. Accordingly, the MGs canmore » be categorized into four groups with different levels of integrated mechanical properties. It is further revealed that the conflicts originate fundamentally from the atomic bonding structures and the levels of strength-toughness combinations are indeed dominated by the bulk modulus. Moreover, we propose novel strategies for optimizing the mechanical properties of MGs from the elastic perspectives. We emphasize the significance of developing high bulk modulus MGs to achieve simultaneously both high strength and good toughness and highlight the elastic opportunities for strengthening and toughening materials.« less
Porosity Defect Remodeling and Tensile Analysis of Cast Steel
Sun, Linfeng; Liao, Ridong; Lu, Wei; Fu, Sibo
2016-01-01
Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain. PMID:28787919
NASA Astrophysics Data System (ADS)
Rougier, Esteban; Patton, Howard J.
2015-05-01
Reduced displacement potentials (RDPs) for chemical explosions of the Source Physics Experiments (SPE) in granite at the Nevada Nuclear Security Site are estimated from free-field ground motion recordings. Far-field P wave source functions are proportional to the time derivative of RDPs. Frequency domain comparisons between measured source functions and model predictions show that high-frequency amplitudes roll off as ω- 2, but models fail to predict the observed seismic moment, corner frequency, and spectral overshoot. All three features are fit satisfactorily for the SPE-2 test after cavity radius Rc is reduced by 12%, elastic radius is reduced by 58%, and peak-to-static pressure ratio on the elastic radius is increased by 100%, all with respect to the Mueller-Murphy model modified with the Denny-Johnson Rc scaling law. A large discrepancy is found between the cavity volume inferred from RDPs and the volume estimated from laser scans of the emplacement hole. The measurements imply a scaled Rc of ~5 m/kt1/3, more than a factor of 2 smaller than nuclear explosions. Less than 25% of the seismic moment can be attributed to cavity formation. A breakdown of the incompressibility assumption due to shear dilatancy of the source medium around the cavity is the likely explanation. New formulas are developed for volume changes due to medium bulking (or compaction). A 0.04% decrease of average density inside the elastic radius accounts for the missing volumetric moment. Assuming incompressibility, established Rc scaling laws predicted the moment reasonable well, but it was only fortuitous because dilation of the source medium compensated for the small cavity volume.
Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.
1981-01-01
To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.
Buckling of thin walled composite cylindrical shell filled with solid propellant
NASA Astrophysics Data System (ADS)
Dash, A. P.; Velmurugan, R.; Prasad, M. S. R.
2017-12-01
This paper investigates the buckling of thin walled composite cylindrical tubes that are partially filled with solid propellant equivalent elastic filler. Experimental investigation is conducted on thin composite tubes made out of S2-glass epoxy, which is made by using filament winding technique. The composite tubes are filled with elastic filler having similar mechanical properties as that of a typical solid propellant used in rocket motors. The tubes are tested for their buckling strength against the external pressure in the presence of the filler. Experimental data confirms the enhancement of external pressure carrying capacity of the composite tubes by up to three times as that of empty tubes for a volumetric loading fraction (VLF) of 0.9. Furthermore, the finite element based geometric nonlinearity analysis predicts the buckling behaviour of the partially filled composite tubes close to the experimental results.
NASA Astrophysics Data System (ADS)
Ghorbanpour Arani, A.; Zamani, M. H.
2018-06-01
The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby-Mori-Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler-Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, J.
1963-01-01
The FORTRAN program 5PM 037 calculates the effective elastic scattering cross section, polarizations, the effective total reaction cross section, and the polarization transfer coefficients for spin-1 particles of low charge and mass incident on a low charge and mass target at medium energy. The number of partial waves can not exceed 38, and calculations for different values of parameters for the optical model used can be made. The effect of tensorial potentials constructed from the distance of the deuteron from the target, and its angular momentum with respect to it, can also be studied. The optical model, necessary data, numericalmore » methods, and description of the problem are discussed. The program is described, and tables of equivalent statements necessary for modifying it are included. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.
2016-04-01
High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c delta hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the alpha-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 degrees C. The f.c.c delta was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region andmore » region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 degrees C.« less
Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics
NASA Technical Reports Server (NTRS)
Wang, John T.
2010-01-01
The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.
NASA Astrophysics Data System (ADS)
Yaya, Kamel; Bechir, Hocine
2018-05-01
We propose a new hyper-elastic model that is based on the standard invariants of Green-Cauchy. Experimental data reported by Treloar (Trans. Faraday Soc. 40:59, 1944) are used to identify the model parameters. To this end, the data of uni-axial tension and equi-bi-axial tension are used simultaneously. The new model has four material parameters, their identification leads to linear optimisation problem and it is able to predict multi-axial behaviour of rubber-like materials. We show that the response quality of the new model is equivalent to that of the well-known Ogden six parameters model. Thereafter, the new model is implemented in FE code. Then, we investigate the inflation of a rubber balloon with the new model and Ogden models. We compare both the analytic and numerical solutions derived from these models.
Fishery management priorities vary with self‐recruitment in sedentary marine populations.
Yau, Annie J; Lenihan, Hunter S; Kendall, Bruce E
Fisheries science often uses population models that assume no external recruitment, but nearshore marine populations harvested on small scales of <200 km often exhibit an unknown mix of self-recruitment and recruitment from external sources. Since empirical determination of self-recruitment vs. external recruitment is difficult, we used a modeling approach to examine the sensitivity of fishery management priorities to recruitment assumptions (self [closed], external [open]) in a local population of harvested giant clams (Tridacna maxima) on Mo'orea, French Polynesia. From 2006 to 2010, we measured growth, fecundity, recruitment, and survival (resulting from natural and fishing mortality). We used these data to parameterize both a closed (complete self-recruitment) and an open (no self-recruitment) integral projection model (IPM), and then calculated elasticities of demographic rates (growth, survival, recruitment) to future population abundance in 20 years. The models' lowest projected abundance was 93.4% (95% CI, [86.5%, 101.8%]) of present abundance, if the local population is entirely open and the present level of fishing mortality persists. The population will exhibit self-sustaining dynamics (1 ≤ λ ≤ 1.07) as for a closed population if the ratio of self-recruits per gram of dry gonad is >0.775 (equivalent to 52.85% self-recruitment under present conditions). Elasticity analysis of demographic parameters indicated that future abundance can most effectively be influenced by increasing survival of mid-sized clams (∼80–120 mm) if the population is self-sustaining, and by increasing survival of juvenile clams (∼40–70 mm) if the population is non-self-sustaining (as for an open population). Our results illustrate that management priorities can vary depending on the amount of self-recruitment in a local population.
77 FR 13968 - Dividend Equivalents From Sources Within the United States; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
...--INCOME TAXES 0 Paragraph 1. The authority citation for part 1 continues to read in part as follows... temporary regulations (TD 9572), relating to dividend equivalents from sources within the United States.... List of Subjects in 26 CFR Part 1 Income taxes, Reporting and recordkeeping requirements. Correction of...
Azar, Reza Zahiri; Dickie, Kris; Pelissier, Laurent
2012-10-01
Transient elastography has been well established in the literature as a means of assessing the elasticity of soft tissue. In this technique, tissue elasticity is estimated from the study of the propagation of the transient shear waves induced by an external or internal source of vibration. Previous studies have focused mainly on custom single-element transducers and ultrafast scanners which are not available in a typical clinical setup. In this work, we report the design and implementation of a transient elastography system on a standard ultrasound scanner that enables quantitative assessment of tissue elasticity in real-time. Two new custom imaging modes are introduced that enable the system to image the axial component of the transient shear wave, in response to an externally induced vibration, in both 1-D and 2-D. Elasticity reconstruction algorithms that estimate the tissue elasticity from these transient waves are also presented. Simulation results are provided to show the advantages and limitations of the proposed system. The performance of the system is also validated experimentally using a commercial elasticity phantom.
Envelope of coda waves for a double couple source due to non-linear elasticity
NASA Astrophysics Data System (ADS)
Calisto, Ignacia; Bataille, Klaus
2014-10-01
Non-linear elasticity has recently been considered as a source of scattering, therefore contributing to the coda of seismic waves, in particular for the case of explosive sources. This idea is analysed further here, theoretically solving the expression for the envelope of coda waves generated by a point moment tensor in order to compare with earthquake data. For weak non-linearities, one can consider each point of the non-linear medium as a source of scattering within a homogeneous and linear medium, for which Green's functions can be used to compute the total displacement of scattered waves. These sources of scattering have specific radiation patterns depending on the incident and scattered P or S waves, respectively. In this approach, the coda envelope depends on three scalar parameters related to the specific non-linearity of the medium; however these parameters only change the scale of the coda envelope. The shape of the coda envelope is sensitive to both the source time function and the intrinsic attenuation. We compare simulations using this model with data from earthquakes in Taiwan, with a good fit.
Kurz, Jochen H
2015-12-01
The task of locating a source in space by measuring travel time differences of elastic or electromagnetic waves from the source to several sensors is evident in varying fields. The new concepts of automatic acoustic emission localization presented in this article are based on developments from geodesy and seismology. A detailed description of source location determination in space is given with the focus on acoustic emission data from concrete specimens. Direct and iterative solvers are compared. A concept based on direct solvers from geodesy extended by a statistical approach is described which allows a stable source location determination even for partly erroneous onset times. The developed approach is validated with acoustic emission data from a large specimen leading to travel paths up to 1m and therefore to noisy data with errors in the determined onsets. The adaption of the algorithms from geodesy to the localization procedure of sources of elastic waves offers new possibilities concerning stability, automation and performance of localization results. Fracture processes can be assessed more accurately. Copyright © 2015 Elsevier B.V. All rights reserved.
Local tsunamis and earthquake source parameters
Geist, Eric L.; Dmowska, Renata; Saltzman, Barry
1999-01-01
This chapter establishes the relationship among earthquake source parameters and the generation, propagation, and run-up of local tsunamis. In general terms, displacement of the seafloor during the earthquake rupture is modeled using the elastic dislocation theory for which the displacement field is dependent on the slip distribution, fault geometry, and the elastic response and properties of the medium. Specifically, nonlinear long-wave theory governs the propagation and run-up of tsunamis. A parametric study is devised to examine the relative importance of individual earthquake source parameters on local tsunamis, because the physics that describes tsunamis from generation through run-up is complex. Analysis of the source parameters of various tsunamigenic earthquakes have indicated that the details of the earthquake source, namely, nonuniform distribution of slip along the fault plane, have a significant effect on the local tsunami run-up. Numerical methods have been developed to address the realistic bathymetric and shoreline conditions. The accuracy of determining the run-up on shore is directly dependent on the source parameters of the earthquake, which provide the initial conditions used for the hydrodynamic models.
Cross-Linked Nanotube Materials with Variable Stiffness Tethers
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.
2004-01-01
The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.
Solving Laplace equation to investigate the volcanic ground deformation pattern
NASA Astrophysics Data System (ADS)
Brahmi, Mouna; Castaldo, Raffaele; Barone, Andrea; Fedi, Maurizio; Tizzani, Pietro
2017-04-01
Volcanic eruptions are generally preceded by unrest phenomena, which are characterized by variations in the geophysical and geochemical state of the system. The most evident unrest parameters are the spatial and temporal topographic changes, which typically result in uplift or subsidence of the volcano edifice, usually caused by magma accumulation or hot fluid concentration in shallow reservoirs (Denasoquo et al., 2009). If the observed ground deformation phenomenon is very quick and the time evolution of the process shows a linear tendency, we can approximate the problem by using an elastic rheology model of the crust beneath the volcano. In this scenario, by considering the elastic field theory under the Boussinesq (1885) and Love (1892) approximations, we can evaluate the displacement field induced by a generic source in a homogeneous, elastic, half-space at an arbitrary point. To this purpose, we use the depth to extreme points (DEXP) method. By using this approach, we are able to estimate the depth and the geometry of the active source, responsible of the observed ground deformation.
NASA Astrophysics Data System (ADS)
Das, Pratik Kr.; Mandal, Nibir; Arya, A.
2017-12-01
Olivine [(Mg, Fe)2SiO4] and pyroxene [(Mg, Fe)Si2O6] are naturally occurring silicate phases. Both the phases crystallize with orthorhombic symmetry, displaying ordering of Mg2+ and Fe2+ in their non-equivalent octahedral lattice sites (M1, M2). We address two major issues: (1) how far an inversion of the cation ordering: type I (Mg2+ in M1; Fe2+ in M2) to type II (Mg2+ in M2; Fe2+in M1) can modify their elastic properties and (2) what are the effects of this inversion on their electronic properties? Using density functional theory, we calculate the elastic constant tensors (Cij) as a function of hydrostatic pressure for types I and II ordering. Our calculations suggest that the inversion (types I to II) in olivine significantly reduces the shear elastic constant C55 (˜25%). This has little effect on the Cij of pyroxene in ambient condition, but the effects become strong at elevated pressures (100 GPa), resulting in large variations (>40%) of all the shear elastic constants: C44, C55, and C66. We predict contrasting variations in compressional (VP) and shear (VS) wave velocities by 1% and 9% and by 2% and 11% for olivine and pyroxene, respectively, on types I to II switchover. Our Debye temperature (θD) calculations show that θD of olivine is less sensitive to ordering inversion, whereas that of pyroxene varies substantially (˜22%) under ambient condition. We evaluate the electronic DOS of pyroxene, and obtain a large difference in the magnetic moment between types I and II.
Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert
2014-02-01
Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Turco, Emilio; Giorgio, Ivan; Misra, Anil; dell'Isola, Francesco
2017-10-01
One of the most interesting challenges in the modern theory of materials consists in the determination of those microstructures which produce, at the macro-level, a class of metamaterials whose elastic range is many orders of magnitude wider than the one exhibited by `standard' materials. In dell'Isola et al. (2015 Zeitschrift für angewandte Mathematik und Physik 66, 3473-3498. (doi:10.1007/s00033-015-0556-4)), it was proved that, with a pantographic microstructure constituted by `long' micro-beams it is possible to obtain metamaterials whose elastic range spans up to an elongation exceeding 30%. In this paper, we demonstrate that the same behaviour can be obtained by means of an internal microstructure based on a king post motif. This solution shows many advantages: it involves only microbeams; all constituting beams are undergoing only extension or compression; all internal constraints are terminal pivots. While the elastic deformation energy can be determined as easily as in the case of long-beam microstructure, the proposed design seems to have obvious remarkable advantages: it seems to be more damage resistant and therefore to be able to have a wider elastic range; it can be realized with the same three-dimensional printing technology; it seems to be less subject to compression buckling. The analysis which we present here includes: (i) the determination of Hencky-type discrete models for king post trusses, (ii) the application of an effective integration scheme to a class of relevant deformation tests for the proposed metamaterial and (iii) the numerical determination of an equivalent second gradient continuum model. The numerical tools which we have developed and which are presented here can be readily used to develop an extensive measurement campaign for the proposed metamaterial.
Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement
NASA Astrophysics Data System (ADS)
Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin
2018-03-01
Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.
Kritcher, A. L.; Neumayer, P.; Lee, H. J.; ...
2008-10-31
Here, we present K-α x-ray Thomson scattering from shock compressed matter for use as a diagnostic in determining the temperature, density, and ionization state with picosecond resolution. The development of this source as a diagnostic as well as stringent requirements for successful K-α x-ray Thomson scattering are addressed. Here, the first elastic and inelastic scattering measurements on a medium size laser facility have been observed. We present scattering data from solid density carbon plasmas with >1X 10 5 photons in the elastic peak that validate the capability of single shot characterization of warm dense matter and the ability to usemore » this scattering source at future free electron lasers and for fusion experiments at the National Ignition Facility (NIF), LLNL.« less
NASA Astrophysics Data System (ADS)
Schäfer, M.; Groos, L.; Forbriger, T.; Bohlen, T.
2014-09-01
Full-waveform inversion (FWI) of shallow-seismic surface waves is able to reconstruct lateral variations of subsurface elastic properties. Line-source simulation for point-source data is required when applying algorithms of 2-D adjoint FWI to recorded shallow-seismic field data. The equivalent line-source response for point-source data can be obtained by convolving the waveforms with √{t^{-1}} (t: traveltime), which produces a phase shift of π/4. Subsequently an amplitude correction must be applied. In this work we recommend to scale the seismograms with √{2 r v_ph} at small receiver offsets r, where vph is the phase velocity, and gradually shift to applying a √{t^{-1}} time-domain taper and scaling the waveforms with r√{2} for larger receiver offsets r. We call this the hybrid transformation which is adapted for direct body and Rayleigh waves and demonstrate its outstanding performance on a 2-D heterogeneous structure. The fit of the phases as well as the amplitudes for all shot locations and components (vertical and radial) is excellent with respect to the reference line-source data. An approach for 1-D media based on Fourier-Bessel integral transformation generates strong artefacts for waves produced by 2-D structures. The theoretical background for both approaches is presented in a companion contribution. In the current contribution we study their performance when applied to waves propagating in a significantly 2-D-heterogeneous structure. We calculate synthetic seismograms for 2-D structure for line sources as well as point sources. Line-source simulations obtained from the point-source seismograms through different approaches are then compared to the corresponding line-source reference waveforms. Although being derived by approximation the hybrid transformation performs excellently except for explicitly back-scattered waves. In reconstruction tests we further invert point-source synthetic seismograms by a 2-D FWI to subsurface structure and evaluate its ability to reproduce the original structural model in comparison to the inversion of line-source synthetic data. Even when applying no explicit correction to the point-source waveforms prior to inversion only moderate artefacts appear in the results. However, the overall performance is best in terms of model reproduction and ability to reproduce the original data in a 3-D simulation if inverted waveforms are obtained by the hybrid transformation.
10 CFR 35.49 - Suppliers for sealed sources or devices for medical use.
Code of Federal Regulations, 2014 CFR
2014-01-01
... accordance with a license issued under 10 CFR part 30 and 10 CFR 32.74 of this chapter or equivalent requirements of an Agreement State; (b) Sealed sources or devices non-commercially transferred from a Part 35... in accordance with a license issued under 10 CFR part 30 or the equivalent requirements of an...
10 CFR 35.49 - Suppliers for sealed sources or devices for medical use.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accordance with a license issued under 10 CFR Part 30 and 10 CFR 32.74 of this chapter or equivalent requirements of an Agreement State; (b) Sealed sources or devices non-commercially transferred from a Part 35... in accordance with a license issued under 10 CFR Part 30 or the equivalent requirements of an...
10 CFR 35.49 - Suppliers for sealed sources or devices for medical use.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accordance with a license issued under 10 CFR Part 30 and 10 CFR 32.74 of this chapter or equivalent requirements of an Agreement State; (b) Sealed sources or devices non-commercially transferred from a Part 35... in accordance with a license issued under 10 CFR Part 30 or the equivalent requirements of an...
10 CFR 35.49 - Suppliers for sealed sources or devices for medical use.
Code of Federal Regulations, 2012 CFR
2012-01-01
... accordance with a license issued under 10 CFR Part 30 and 10 CFR 32.74 of this chapter or equivalent requirements of an Agreement State; (b) Sealed sources or devices non-commercially transferred from a Part 35... in accordance with a license issued under 10 CFR Part 30 or the equivalent requirements of an...
10 CFR 35.49 - Suppliers for sealed sources or devices for medical use.
Code of Federal Regulations, 2013 CFR
2013-01-01
... accordance with a license issued under 10 CFR Part 30 and 10 CFR 32.74 of this chapter or equivalent requirements of an Agreement State; (b) Sealed sources or devices non-commercially transferred from a Part 35... in accordance with a license issued under 10 CFR Part 30 or the equivalent requirements of an...
Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces.
Schimpf, Paul H
2017-09-15
This article examines the localization errors of equivalent dipolar sources inverted from the surface electroencephalogram in order to determine the feasibility of using their location as classification parameters for non-invasive brain computer interfaces. Inverse localization errors are examined for two head models: a model represented by four concentric spheres and a realistic model based on medical imagery. It is shown that the spherical model results in localization ambiguity such that a number of dipolar sources, with different azimuths and varying orientations, provide a near match to the electroencephalogram of the best equivalent source. No such ambiguity exists for the elevation of inverted sources, indicating that for spherical head models, only the elevation of inverted sources (and not the azimuth) can be expected to provide meaningful classification parameters for brain-computer interfaces. In a realistic head model, all three parameters of the inverted source location are found to be reliable, providing a more robust set of parameters. In both cases, the residual error hypersurfaces demonstrate local minima, indicating that a search for the best-matching sources should be global. Source localization error vs. signal-to-noise ratio is also demonstrated for both head models.
Soft actuators and soft actuating devices
Yang, Dian; Whitesides, George M.
2017-10-17
A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.
Elastic interactions between two-dimensional geometric defects
NASA Astrophysics Data System (ADS)
Moshe, Michael; Sharon, Eran; Kupferman, Raz
2015-12-01
In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects—point charges of the curvature associated with a reference metric. The stress field in the presence of defects can be solved using a scalar stress function that generalizes the classical Airy stress function to the case of materials with nontrivial geometry. This approach allows the calculation of interaction energies between various types of defects. We apply our methodology to two physical systems: shear-induced failure of amorphous materials and the mechanical interaction between contracting cells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... existing equipment will be equivalent to that level of control currently achieved by other well-controlled similar sources (i.e., equivalent to the level of control that would be provided by a current BACT, LAER... control equipment will be equivalent to the percent control efficiency provided by the control equipment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... existing equipment will be equivalent to that level of control currently achieved by other well-controlled similar sources (i.e., equivalent to the level of control that would be provided by a current BACT, LAER... control equipment will be equivalent to the percent control efficiency provided by the control equipment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... existing equipment will be equivalent to that level of control currently achieved by other well-controlled similar sources (i.e., equivalent to the level of control that would be provided by a current BACT, LAER... control equipment will be equivalent to the percent control efficiency provided by the control equipment...
Code of Federal Regulations, 2014 CFR
2014-07-01
... existing equipment will be equivalent to that level of control currently achieved by other well-controlled similar sources (i.e., equivalent to the level of control that would be provided by a current BACT, LAER... control equipment will be equivalent to the percent control efficiency provided by the control equipment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... existing equipment will be equivalent to that level of control currently achieved by other well-controlled similar sources (i.e., equivalent to the level of control that would be provided by a current BACT, LAER... control equipment will be equivalent to the percent control efficiency provided by the control equipment...
NASA Astrophysics Data System (ADS)
Magazù, Salvatore; Mezei, Ferenc; Migliardo, Federica
2018-05-01
In a variety of applications of inelastic neutron scattering spectroscopy the goal is to single out the elastic scattering contribution from the total scattered spectrum as a function of momentum transfer and sample environment parameters. The elastic part of the spectrum is defined in such a case by the energy resolution of the spectrometer. Variable elastic energy resolution offers a way to distinguish between elastic and quasi-elastic intensities. Correlation spectroscopy lends itself as an efficient, high intensity approach for accomplishing this both at continuous and pulsed neutron sources. On the one hand, in beam modulation methods the Liouville theorem coupling between intensity and resolution is relaxed and time-of-flight velocity analysis of the neutron velocity distribution can be performed with 50 % duty factor exposure for all available resolutions. On the other hand, the (quasi)elastic part of the spectrum generally contains the major part of the integrated intensity at a given detector, and thus correlation spectroscopy can be applied with most favorable signal to statistical noise ratio. The novel spectrometer CORELLI at SNS is an example for this type of application of the correlation technique at a pulsed source. On a continuous neutron source a statistical chopper can be used for quasi-random time dependent beam modulation and the total time-of-flight of the neutron from the statistical chopper to detection is determined by the analysis of the correlation between the temporal fluctuation of the neutron detection rate and the statistical chopper beam modulation pattern. The correlation analysis can either be used for the determination of the incoming neutron velocity or for the scattered neutron velocity, depending of the position of the statistical chopper along the neutron trajectory. These two options are considered together with an evaluation of spectrometer performance compared to conventional spectroscopy, in particular for variable resolution elastic neutron scattering (RENS) studies of relaxation processes and the evolution of mean square displacements. A particular focus of our analysis is the unique feature of correlation spectroscopy of delivering high and resolution independent beam intensity, thus the same statistical chopper scan contains both high intensity and high resolution information at the same time, and can be evaluated both ways. This flexibility for variable resolution data handling represents an additional asset for correlation spectroscopy in variable resolution work. Changing the beam width for the same statistical chopper allows us to additionally trade resolution for intensity in two different experimental runs, similarly for conventional single slit chopper spectroscopy. The combination of these two approaches is a capability of particular value in neutron spectroscopy studies requiring variable energy resolution, such as the systematic study of quasi-elastic scattering and mean square displacement. Furthermore the statistical chopper approach is particularly advantageous for studying samples with low scattering intensity in the presence of a high, sample independent background.
NASA Astrophysics Data System (ADS)
Li, Jiasong; Singh, Manmohan; Han, Zhaolong; Wu, Chen; Raghunathan, Raksha; Liu, Chih-Hao; Nair, Achuth; Noorani, Shezaan; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.
2016-03-01
The mechanical anisotropic properties of the cornea can be an important indicator for determining the onset and severity of different diseases and can be used to assess the efficacy of various therapeutic interventions, such as cross-linking and LASIK surgery. In this work, we introduce a noncontact method of assessing corneal mechanical anisotropy as a function of intraocular pressure (IOP) using optical coherence elastography (OCE). A focused air-pulse induced low amplitude (<10 μm) elastic waves in fresh porcine corneas in the whole eye-globe configuration in situ. A phase-stabilized swept source optical coherence elastography (PhS-SSOCE) system imaged the elastic wave propagation at stepped radial angles, and the OCE measurements were repeated as the IOP was cycled. The elastic wave velocity was then quantified to determine the mechanical anisotropy and hysteresis of the cornea. The results show that the elastic anisotropy at the corneal of the apex of the cornea becomes more pronounced at higher IOPs, and that there are distinct radial angles of higher and lower stiffness. Due to the noncontact nature and small amplitude of the elastic wave, this method may be useful for characterizing the elastic anisotropy of ocular and other tissues in vivo completely noninvasively.
The effects of session length on demand functions generated using FR schedules.
Foster, T Mary; Kinloch, Jennifer; Poling, Alan
2011-05-01
In comparing open and closed economies, researchers often arrange shorter sessions under the former condition than under the latter. Several studies indicate that session length per se can affect performance and there are some data that indicate that this variable can influence demand functions. To provide further data, the present study exposed domestic hens to series of increasing fixed-ratio schedules with the length of the open-economy sessions varied over 10, 40, 60, and 120 min. Session time affected the total-session response rates and pause lengths. The shortest session gave the greatest response rates and shortest pauses and the longest gave the lowest response rates and longest pauses. The total-session demand functions also changed with session length: The shortest session gave steeper initial slopes (i.e., the functions were more elastic at small ratios) and smaller rates of change of elasticity than the longest session. Response rates, pauses, and demand functions were, however, similar for equivalent periods of responding taken from within sessions of different overall lengths (e.g., total-session data for 10-min sessions and the data for the first 10 min of 120-min sessions). These findings suggest that differences in session length can confound the results of studies comparing open and closed economies when those economies are arranged in sessions that differ substantially in length, hence data for equivalent-length periods of responding, rather than total-session data, should be of primary interest under these conditions.
Photonic Microhand with Autonomous Action.
Martella, Daniele; Nocentini, Sara; Nuzhdin, Dmitry; Parmeggiani, Camilla; Wiersma, Diederik S
2017-11-01
Grabbing and holding objects at the microscale is a complex function, even for microscopic living animals. Inspired by the hominid-type hand, a microscopic equivalent able to catch microelements is engineered. This microhand is light sensitive and can be either remotely controlled by optical illumination or can act autonomously and grab small particles on the basis of their optical properties. Since the energy is delivered optically, without the need for wires or batteries, the artificial hand can be shrunk down to the micrometer scale. Soft material is used, in particular, a custom-made liquid-crystal network that is patterned by a photolithographic technique. The elastic reshaping properties of this material allow finger movement, using environmental light as the only energy source. The hand can be either controlled externally (via the light field), or else the conditions in which it autonomously grabs a particle in its vicinity can be created. This microrobot has the unique feature that it can distinguish between particles of different colors and gray levels. The realization of this autonomous hand constitutes a crucial element in the development of microscopic creatures that can perform tasks without human intervention and self-organized automation at the micrometer scale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K
2015-11-01
The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.
Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results
NASA Technical Reports Server (NTRS)
Wells, D. N.; Allen, P. A.
2012-01-01
An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.
An experimental comparison of various methods of nearfield acoustic holography
Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.
2017-05-19
An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less
An experimental comparison of various methods of nearfield acoustic holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.
An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less
An Open-Source Toolbox for Surrogate Modeling of Joint Contact Mechanics
Eskinazi, Ilan
2016-01-01
Goal Incorporation of elastic joint contact models into simulations of human movement could facilitate studying the interactions between muscles, ligaments, and bones. Unfortunately, elastic joint contact models are often too expensive computationally to be used within iterative simulation frameworks. This limitation can be overcome by using fast and accurate surrogate contact models that fit or interpolate input-output data sampled from existing elastic contact models. However, construction of surrogate contact models remains an arduous task. The aim of this paper is to introduce an open-source program called Surrogate Contact Modeling Toolbox (SCMT) that facilitates surrogate contact model creation, evaluation, and use. Methods SCMT interacts with the third party software FEBio to perform elastic contact analyses of finite element models and uses Matlab to train neural networks that fit the input-output contact data. SCMT features sample point generation for multiple domains, automated sampling, sample point filtering, and surrogate model training and testing. Results An overview of the software is presented along with two example applications. The first example demonstrates creation of surrogate contact models of artificial tibiofemoral and patellofemoral joints and evaluates their computational speed and accuracy, while the second demonstrates the use of surrogate contact models in a forward dynamic simulation of an open-chain leg extension-flexion motion. Conclusion SCMT facilitates the creation of computationally fast and accurate surrogate contact models. Additionally, it serves as a bridge between FEBio and OpenSim musculoskeletal modeling software. Significance Researchers may now create and deploy surrogate models of elastic joint contact with minimal effort. PMID:26186761
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.
Muhlestein, Michael B; Haberman, Michael R
2016-08-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure
Haberman, Michael R.
2016-01-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed. PMID:27616932
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure
NASA Astrophysics Data System (ADS)
Muhlestein, Michael B.; Haberman, Michael R.
2016-08-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.
Sun, R K
1990-12-01
To investigate the radiation effect of neutrons near the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory (LBL) with respect to the neutron dose equivalents in nearby occupied areas and at the site boundary, the neutron transport code MORSE, from Oak Ridge National Laboratory (ORNL), was used. These dose equivalents result from both skyshine neutrons transported by air scattering and direct neutrons penetrating the shielding. The ALS neutron sources are a 50-MeV linear accelerator and its transfer line, a 1.5-GeV booster, a beam extraction line, and a 1.9-GeV storage ring. The most conservative total occupational-dose-equivalent rate in the center of the ALS mezzanine, 39 m from the ALS center, was found to be 1.14 X 10(-3) Sv y-1 per 2000-h "occupational" year, and the total environmental-dose-equivalent rate at the ALS boundary, 125 m from the ALS center, was found to be 3.02 X 10(-4) Sv y-1 per 8760-h calendar year. More realistic dose-equivalent rates, using the nominal (expected) storage-ring current, were calculated to be 1.0 X 10(-4) Sv y-1 and 2.65 X 10(-5) Sv y-1 occupational year and calendar year, respectively, which are much lower than the DOE reporting levels.
NASA Astrophysics Data System (ADS)
Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive
2010-11-01
A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.
Equivalent source modeling of the main field using MAGSAT data
NASA Technical Reports Server (NTRS)
1980-01-01
The software was considerably enhanced to accommodate a more comprehensive examination of data available for field modeling using the equivalent sources method by (1) implementing a dynamic core allocation capability into the software system for the automatic dimensioning of the normal matrix; (2) implementing a time dependent model for the dipoles; (3) incorporating the capability to input specialized data formats in a fashion similar to models in spherical harmonics; and (4) implementing the optional ability to simultaneously estimate observatory anomaly biases where annual means data is utilized. The time dependence capability was demonstrated by estimating a component model of 21 deg resolution using the 14 day MAGSAT data set of Goddard's MGST (12/80). The equivalent source model reproduced both the constant and the secular variation found in MGST (12/80).
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.
Cosmic signatures in earth's seismic tremor?
NASA Astrophysics Data System (ADS)
Mulargia, Francesco
2017-01-01
Even in absence of earthquakes, each site on earth experiences continuous elastic vibrations which are mostly traced to the nonlinear interactions of ocean waves. However, the fine structure of the spectrum at mHz frequencies shows many persistent and highly significant narrow bandwidth peaks in surprising coincidence with solar acoustic eigenmodes. The feasibility of a common cosmic origin is evaluated through an estimate of the gravitational wave cross-section of the earth, combined with its elastic response and with the stochastic amplification produced by the interference of the cosmic signal with tremor of oceanic origin. The measured spectral peaks appear compatible with a gravitational monochromatic illumination at strains h ≳ 10-20, larger than those expected for any known gravitational stellar source. Hence, a gravitational source attribution to the tremor spectral peaks would call for a population of unknown non-luminous sources with well-defined mass-distance ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul A.
Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering ofmore » the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.« less
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.
Estimating Price Elasticity using Market-Level Appliance Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, K. Sydny
This report provides and update to and expansion upon our 2008 LBNL report “An Analysis of the Price Elasticity of Demand for Appliances,” in which we estimated an average relative price elasticity of -0.34 for major household appliances (Dale and Fujita 2008). Consumer responsiveness to price change is a key component of energy efficiency policy analysis; these policies influence consumer purchases through price both explicitly and implicitly. However, few studies address appliance demand elasticity in the U.S. market and public data sources are generally insufficient for rigorous estimation. Therefore, analysts have relied on a small set of outdated papers focusedmore » on limited appliance types, assuming long-term elasticities estimated for other durables (e.g., vehicles) decades ago are applicable to current and future appliance purchasing behavior. We aim to partially rectify this problem in the context of appliance efficiency standards by revisiting our previous analysis, utilizing data released over the last ten years and identifying additional estimates of durable goods price elasticities in the literature. Reviewing the literature, we find the following ranges of market-level price elasticities: -0.14 to -0.42 for appliances; -0.30 to -1.28 for automobiles; -0.47 to -2.55 for other durable goods. Brand price elasticities are substantially higher for these product groups, with most estimates -2.0 or more elastic. Using market-level shipments, sales value, and efficiency level data for 1989-2009, we run various iterations of a log-log regression model, arriving at a recommended range of short run appliance price elasticity between -0.4 and -0.5, with a default value of -0.45.« less
Least-squares reverse time migration in elastic media
NASA Astrophysics Data System (ADS)
Ren, Zhiming; Liu, Yang; Sen, Mrinal K.
2017-02-01
Elastic reverse time migration (RTM) can yield accurate subsurface information (e.g. PP and PS reflectivity) by imaging the multicomponent seismic data. However, the existing RTM methods are still insufficient to provide satisfactory results because of the finite recording aperture, limited bandwidth and imperfect illumination. Besides, the P- and S-wave separation and the polarity reversal correction are indispensable in conventional elastic RTM. Here, we propose an iterative elastic least-squares RTM (LSRTM) method, in which the imaging accuracy is improved gradually with iteration. We first use the Born approximation to formulate the elastic de-migration operator, and employ the Lagrange multiplier method to derive the adjoint equations and gradients with respect to reflectivity. Then, an efficient inversion workflow (only four forward computations needed in each iteration) is introduced to update the reflectivity. Synthetic and field data examples reveal that the proposed LSRTM method can obtain higher-quality images than the conventional elastic RTM. We also analyse the influence of model parametrizations and misfit functions in elastic LSRTM. We observe that Lamé parameters, velocity and impedance parametrizations have similar and plausible migration results when the structures of different models are correlated. For an uncorrelated subsurface model, velocity and impedance parametrizations produce fewer artefacts caused by parameter crosstalk than the Lamé coefficient parametrization. Correlation- and convolution-type misfit functions are effective when amplitude errors are involved and the source wavelet is unknown, respectively. Finally, we discuss the dependence of elastic LSRTM on migration velocities and its antinoise ability. Imaging results determine that the new elastic LSRTM method performs well as long as the low-frequency components of migration velocities are correct. The quality of images of elastic LSRTM degrades with increasing noise.
An equivalent body surface charge model representing three-dimensional bioelectrical activity
NASA Technical Reports Server (NTRS)
He, B.; Chernyak, Y. B.; Cohen, R. J.
1995-01-01
A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.
Ecological prognosis near intensive acoustic sources
NASA Astrophysics Data System (ADS)
Kostarev, Stanislav A.; Makhortykh, Sergey A.; Rybak, Samuil A.
2002-11-01
The problem of a wave-field excitation in a ground from a quasiperiodic source, placed on the ground surface or on some depth in soil is investigated. The ecological situation in this case in many respects is determined by quality of the raised vibrations and noise forecast. In the present work the distributed source is modeled by the set of statistically linked compact sources on the surface or in the ground. Changes of parameters of the media along an axis and horizontal heterogeneity of environment are taken into account. Both analytical and numerical approaches are developed. The latter are included in the software package VibraCalc, allowing to calculate distribution of the elastic waves field in a ground from quasilinear sources. Accurate evaluation of vibration levels in buildings from high-intensity underground sources is fulfilled by modeling of the wave propagation in dissipative inhomogeneous elastic media. The model takes into account both bulk (longitudinal and shear) and surface Rayleigh waves. For the verification of the used approach a series of measurements was carried out near the experimental part of monorail road designed in Moscow. Both calculation and measurement results are presented in the paper.
Ecological prognosis near intensive acoustic sources
NASA Astrophysics Data System (ADS)
Kostarev, Stanislav A.; Makhortykh, Sergey A.; Rybak, Samuil A.
2003-04-01
The problem of a wave field excitation in a ground from a quasi-periodic source, placed on the ground surface or at some depth in soil is investigated. The ecological situation in this case in many respects is determined by quality of the raised vibrations and noise forecast. In the present work the distributed source is modeled by the set of statistically linked compact sources on the surface or in the ground. Changes of parameters of the media along an axis and horizontal heterogeneity of environment are taken into account. Both analytical and numerical approaches are developed. The last are included in software package VibraCalc, allowing to calculate distribution of the elastic waves field in a ground from quasilinear sources. Accurate evaluation of vibration levels in buildings from high intensity under ground sources is fulfilled by modeling of the wave propagation in dissipative inhomogeneous elastic media. The model takes into account both bulk (longitudinal and shear) and surface Rayleigh waves. For the verification of used approach a series of measurements was carried out near the experimental part of monorail road designed in Moscow. Both calculation and measurements results are presented in the paper.
NASA Astrophysics Data System (ADS)
Liu, Chih Hao; Skryabina, M. N.; Singh, Manmohan; Li, Jiasong; Wu, Chen; Sobol, E.; Larin, Kirill V.
2015-03-01
Current clinical methods of reconstruction surgery involve laser reshaping of nasal cartilage. The process of stress relaxation caused by laser heating is the primary method to achieve nasal cartilage reshaping. Based on this, a rapid, non-destructive and accurate elasticity measurement would allow for a more robust reshaping procedure. In this work, we have utilized a phase-stabilized swept source optical coherence elastography (PhSSSOCE) to quantify the Young's modulus of porcine nasal septal cartilage during the relaxation process induced by heating. The results show that PhS-SSOCE was able to monitor changes in elasticity of hyaline cartilage, and this method could potentially be applied in vivo during laser reshaping therapies.
Estimating demand for alternatives to cigarettes with online purchase tasks.
O'Connor, Richard J; June, Kristie M; Bansal-Travers, Maansi; Rousu, Matthew C; Thrasher, James F; Hyland, Andrew; Cummings, K Michael
2014-01-01
To explore how advertising affects demand for cigarettes and potential substitutes, including snus, dissolvable tobacco, and medicinal nicotine. A Web-based experiment randomized 1062 smokers to see advertisements for alternative nicotine products or soft drinks, then complete a series of purchase tasks, which were used to estimate demand elasticity, peak consumption, and cross-price elasticity (CPE) for tobacco products. Lower demand elasticity and greater peak consumption were seen for cigarettes compared to all alternative products (p < .05). CPE did not differ across the alternative products (p ≤ .03). Seeing relevant advertisements was not significantly related to demand. These findings suggest significantly lower demand for alternative nicotine sources among smokers than previously revealed.
The determination of the elastodynamic fields of an ellipsoidal inhomogeneity
NASA Technical Reports Server (NTRS)
Fu, L. S.; Mura, T.
1983-01-01
The determination of the elastodynamic fields of an ellipsoidal inhomogeneity is studied in detail via the eigenstrain approach. A complete formulation and a treatment of both types of eigenstrains for equivalence between the inhomogeneity problem and the inclusion problem are given. This approach is shown to be mathematically identical to other approaches such as the direct volume integral formulation. Expanding the eigenstrains and applied strains in the polynomial form in the position vector and satisfying the equivalence conditions at every point, the governing simultaneous algebraic equations for the unknown coefficients in the eigenstrain expansion are derived. The elastodynamic field outside an ellipsoidal inhomogeneity in a linear elastic isotropic medium is given as an example. The angular and frequency dependence of the induced displacement field, as well as the differential and total cross sections are formally given in series expansion form for the case of uniformly distributed eigenstrains.
A nonlinear fracture mechanics approach to the growth of small cracks
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1983-01-01
An analytical model of crack closure is used to study the crack growth and closure behavior of small cracks in plates and at notches. The calculated crack opening stresses for small and large cracks, together with elastic and elastic plastic fracture mechanics analyses, are used to correlate crack growth rate data. At equivalent elastic stress intensity factor levels, calculations predict that small cracks in plates and at notches should grow faster than large cracks because the applied stress needed to open a small crack is less than that needed to open a large crack. These predictions agree with observed trends in test data. The calculations from the model also imply that many of the stress intensity factor thresholds that are developed in tests with large cracks and with load reduction schemes do not apply to the growth of small cracks. The current calculations are based upon continuum mechanics principles and, thus, some crack size and grain structure exist where the underlying fracture mechanics assumptions become invalid because of material inhomogeneity (grains, inclusions, etc.). Admittedly, much more effort is needed to develop the mechanics of a noncontinuum. Nevertheless, these results indicate the importance of crack closure in predicting the growth of small cracks from large crack data.
Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces.
Xu, H; Clarke, A; Rothstein, J P; Poole, R J
2018-03-01
So-called "superhydrophobic" surfaces are strongly non-wetting such that fluid droplets very easily roll off when the surface is tilted. Our interest here is in understanding if this is also true, all else held equal, for viscoelastic fluid drops. We study the movement of Newtonian and well-characterised constant-viscosity elastic liquids when various surfaces, including hydrophilic (smooth glass), weakly hydrophobic (embossed polycarbonate) and superhydrophobic surfaces (embossed PTFE), are impulsively tilted. Digital imaging is used to record the motion and extract drop velocity. Optical and SEM imaging is used to probe the surfaces. In comparison with "equivalent" Newtonian fluids (same viscosity, density surface tension and contact angles), profound differences for the elastic fluids are only observed on the superhydrophobic surfaces: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string-like phenomena. The strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of order ∼30 µm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
42 CFR 81.4 - Definition of terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
...]. (e) Equivalent dose means the absorbed dose in a tissue or organ multiplied by a radiation weighting... dose means the portion of the equivalent dose that is received from radiation sources outside of the... pattern and level of radiation exposure. (h) Internal dose means the portion of the equivalent dose that...
Finite gradient elasticity and plasticity: a constitutive thermodynamical framework
NASA Astrophysics Data System (ADS)
Bertram, Albrecht
2016-05-01
In Bertram (Continuum Mech Thermodyn. doi:
Quantifying the errors due to the superposition of analytical deformation sources
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Pascal, K.
2012-04-01
The displacement field due to magma movement in the subsurface is often modelled using a Mogi point source or a dislocation Okada source embedded in a homogeneous elastic half-space. When the magmatic system cannot be modelled by a single source it is often represented by several sources, their respective deformation fields are superimposed. However, in such a case the assumption of homogeneity in the half-space is violated and the interaction between sources in an elastic medium is neglected. In this investigation we have quantified the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying the pressure or dislocation of the sources and their relative position. We also investigated three numerical methods to model a dike as a dislocation tensile source or as a pressurized tabular crack. We found that the discrepancies between simple superposition of the displacement field and a fully interacting numerical solution depend mostly on the source types and on their spacing. The errors induced when neglecting the source interaction are expected to vary greatly with the physical and geometrical parameters of the model. We demonstrated that for certain scenarios these discrepancies can be neglected (<5%) when the sources are separated by at least 4 radii for two combined Mogi sources and by at least 3 radii for juxtaposed Mogi and Okada sources
NASA Astrophysics Data System (ADS)
Yamazaki, Ken'ichi
2016-07-01
Fault ruptures in the Earth's crust generate both elastic and electromagnetic (EM) waves. If the corresponding EM signals can be observed, then earthquakes could be detected before the first seismic waves arrive. In this study, I consider the piezomagnetic effect as a mechanism that converts elastic waves to EM energy, and I derive analytical formulas for the conversion process. The situation considered in this study is a whole-space model, in which elastic and EM properties are uniform and isotropic. In this situation, the governing equations of the elastic and EM fields, combined with the piezomagnetic constitutive law, can be solved analytically in the time domain by ignoring the displacement current term. Using the derived formulas, numerical examples are investigated, and the corresponding characteristics of the expected magnetic signals are resolved. I show that temporal variations in the magnetic field depend strongly on the electrical conductivity of the medium, meaning that precise detection of signals generated by the piezomagnetic effect is generally difficult. Expected amplitudes of piezomagnetic signals are estimated to be no larger than 0.3 nT for earthquakes with a moment magnitude of ≥7.0 at a source distance of 25 km; however, this conclusion may not extend to the detection of real earthquakes, because piezomagnetic stress sensitivity is currently poorly constrained.
NASA Astrophysics Data System (ADS)
Rossani, A.; Scarfone, A. M.
2009-06-01
The linear Boltzmann equation for elastic and/or inelastic scattering is applied to derive the distribution function of a spatially homogeneous system of charged particles spreading in a host medium of two-level atoms and subjected to external electric and/or magnetic fields. We construct a Fokker-Planck approximation to the kinetic equations and derive the most general class of distributions for the given problem by discussing in detail some physically meaningful cases. The equivalence with the transport theory of electrons in a phonon background is also discussed.
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
Refined elasticity sampling for Monte Carlo-based identification of stabilizing network patterns.
Childs, Dorothee; Grimbs, Sergio; Selbig, Joachim
2015-06-15
Structural kinetic modelling (SKM) is a framework to analyse whether a metabolic steady state remains stable under perturbation, without requiring detailed knowledge about individual rate equations. It provides a representation of the system's Jacobian matrix that depends solely on the network structure, steady state measurements, and the elasticities at the steady state. For a measured steady state, stability criteria can be derived by generating a large number of SKMs with randomly sampled elasticities and evaluating the resulting Jacobian matrices. The elasticity space can be analysed statistically in order to detect network positions that contribute significantly to the perturbation response. Here, we extend this approach by examining the kinetic feasibility of the elasticity combinations created during Monte Carlo sampling. Using a set of small example systems, we show that the majority of sampled SKMs would yield negative kinetic parameters if they were translated back into kinetic models. To overcome this problem, a simple criterion is formulated that mitigates such infeasible models. After evaluating the small example pathways, the methodology was used to study two steady states of the neuronal TCA cycle and the intrinsic mechanisms responsible for their stability or instability. The findings of the statistical elasticity analysis confirm that several elasticities are jointly coordinated to control stability and that the main source for potential instabilities are mutations in the enzyme alpha-ketoglutarate dehydrogenase. © The Author 2015. Published by Oxford University Press.
Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions
Hanks, T.C.
1977-01-01
A variety of geophysical observations suggests that the upper portion of the lithosphere, herein referred to as the elastic plate, has long-term material properties and frictional strength significantly greater than the lower lithosphere. If the average frictional stress along the non-ridge margin of the elastic plate is of the order of a kilobar, as suggested by the many observations of the frictional strength of rocks at mid-crustal conditions of pressure and temperature, the only viable mechanism for driving the motion of the elastic plate is a basal shear stress of several tens of bars. Kilobars of tectonic stress are then an ambient, steady condition of the earth's crust and uppermost mantle. The approximate equality of the basal shear stress and the average crustal earthquake stress drop, the localization of strain release for major plate margin earthquakes, and the rough equivalence of plate margin slip rates and gross plate motion rates suggest that the stress drops of major plate margin earthquakes are controlled by the elastic release of the basal shear stress in the vicinity of the plate margin, despite the existence of kilobars of tectonic stress existing across vertical planes parallel to the plate margin. If the stress differences available to be released at the time of faulting are distributed in a random, white fasbion with a mean-square value determined by the average earthquake stress drop, the frequency of occurrence of constant stress drop earthquakes will be proportional to reciprocal faulting area, in accordance with empirically known frequency of occurrence statistics. ?? 1977 Birkha??user Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosnitskiy, P., E-mail: pavrosni@yandex.ru; Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Khokhlova, V., E-mail: vera@acs366.phys.msu.ru
2015-10-28
An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parametersmore » were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.« less
Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang
2017-01-01
Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.
A methodology for modeling surface effects on stiff and soft solids
NASA Astrophysics Data System (ADS)
He, Jin; Park, Harold S.
2017-09-01
We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.
A methodology for modeling surface effects on stiff and soft solids
NASA Astrophysics Data System (ADS)
He, Jin; Park, Harold S.
2018-06-01
We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.
Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels
Jiang, Nan; Ma, Shaochun
2015-01-01
In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels. PMID:28793631
Occlusion pressures in men rebreathing CO2 under methoxyflurane anesthesia.
Derenne, J P; Couture, J; Iscoe, S; Whitelaw, A; Milic-Emili, J
1976-05-01
The effect of general anesthesia on control of breathing was studied by CO2 rebreathing and occlusion pressure measurements in six normal human subjects under methoxyflurane anesthesia. CO2 was found to increase the amplitude of the occlusion pressure wave without changing its shape, so that CO2 responses in terms of the occlusion pressure developed 100 ms after the onset of inspiration (Po/0.1) gave results equivalent to the responses in terms of Po/1.o or any other parameter of the pressure wave. Methoxyflurane depressed the ventilatory response to CO2 but not the occlusion pressure response, implying that the most important action of the anesthetic was to increase the effective elastance of the respiratory system rather than to depress the respiratory centers. The elastance was further increased by CO2, and this mechanical change had the effect of shifting the "apneic threshold" extrapolated from the ventilatory response curve to a lower PAco2. Frequency of breathing, inspiratory and expiratory times were not altered by CO2 in anesthetized subjects.
Shimada, Kunio
2018-06-06
In the series of studies on new types of elastic and compressible artificial skins with hybrid sensing functions, photovoltaics, and battery, we have proposed a hybrid skin (H-Skin) by utilizing an electrolytically polymerized magnetic compound fluid (MCF) made of natural rubber latex (NR-latex). By using the experimental results in the first and second reports, we have clarified the feasibility of electric charge at irradiation, and that without illumination under compression and elongation. The former was explained in a wet-type MCF rubber solar cell by developing a tunneling theory together with an equivalent electric circuit model. The latter corresponds to the battery rather than to the solar cell. As for the MCF rubber battery, depending on the selected agent type, we can make the MCF rubber have higher electricity and lighter weight. Therefore, the MCF rubber has an electric charge and storage whether at irradiation or not.
NASA Astrophysics Data System (ADS)
Fatchurrohman, N.; Chia, S. T.
2017-10-01
Most commercial vehicles use brake calliper made of grey cast iron (GCI) which possesses heavy weight. This contributes to the total weight of the vehicle which can lead to higher fuel consumption. Another major problem is GCI calliper tends to deflect during clamping action, known as “bending of bridge”. This will result in extended pedal travel. Magnesium metal matrix composites (Mg-MMC) has a potential application in the automotive industry since it having a lower density, higher strength and very good modulus of elasticity as compared to GCI. This paper proposed initial development of hybrid Mg-MMC brake calliper. This was achieved by analyzing the performance of hybrid nano-micro reinforced Mg-MMC and comparing with the conventional GCI brake calliper. It was performed using simulation in ANSYS, a finite element analysis (FEA) software. The results show that hybrid Mg-MMC has better performance in terms of reduction the weight of the brake calliper, reduction in total deformation/deflection and better ability to withstand equivalent elastic strain.
Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels.
Jiang, Nan; Ma, Shaochun
2015-10-27
In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels.
Numerical Study on Section Constitutive Relations of Members Reinforced by Steel-BFRP Composite Bars
NASA Astrophysics Data System (ADS)
Xiao, Tongliang; Qiu, Hongxing
2017-06-01
Steel-Basalt FRP Composite Bar (S-BFCB) is a new kind of substitute material for longitudinal reinforcement, with high elastic modulus, stable post-yield stiffness and excellent corrosive resistance. Based on mechanical properties of S-BFCB and the plane cross-section assumption, the moment-curvature curves of beam and column members are simulated. Some parameters such as equivalent rebar ratio, postyeild stiffness, concrete strength and axial compression ratio of column were discussed. Results show that the constitutive relation of the cross section is similar with RC member in elastic and cracking stages, while different in post-yield stage. With the increase of postyeild stiffness ratio of composite bar, the ultimate bearing capacity of component improved observably, member may turn out over-reinforced phenomenon, concrete crushing may appear before the fibersarefractured. The effect of concrete strength increase in lower postyeild stiffness ratio is not obvious than in higher. The increase of axial compression ratio has actively influence on bearing capacity of column, but decreases on the ductility.
Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1987-01-01
An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.
42 CFR 82.5 - Definition of terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Illness Compensation Program Act of 2000, 42 U.S.C. 7384-7385 [1994, supp. 2001]. (i) Equivalent dose is... equivalent dose that is received from radiation sources outside of the body. (k) Internal dose means that portion of the equivalent dose that is received from radioactive materials taken into the body. (l) NIOSH...
Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto
2014-01-01
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466
Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; García-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto
2014-01-16
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model's theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.
NASA Astrophysics Data System (ADS)
Fang, Jinwei; Zhou, Hui; Zhang, Qingchen; Chen, Hanming; Wang, Ning; Sun, Pengyuan; Wang, Shucheng
2018-01-01
It is critically important to assess the effectiveness of elastic full waveform inversion (FWI) algorithms when FWI is applied to real land seismic data including strong surface and multiple waves related to the air-earth boundary. In this paper, we review the realization of the free surface boundary condition in staggered-grid finite-difference (FD) discretization of elastic wave equation, and analyze the impact of the free surface on FWI results. To reduce inputs/outputs (I/O) operations in gradient calculation, we adopt the boundary value reconstruction method to rebuild the source wavefields during the backward propagation of the residual data. A time-domain multiscale inversion strategy is conducted by using a convolutional objective function, and a multi-GPU parallel programming technique is used to accelerate our elastic FWI further. Forward simulation and elastic FWI examples without and with considering the free surface are shown and analyzed, respectively. Numerical results indicate that no free surface incorporated elastic FWI fails to recover a good inversion result from the Rayleigh wave contaminated observed data. By contrast, when the free surface is incorporated into FWI, the inversion results become better. We also discuss the dependency of the Rayleigh waveform incorporated FWI on the accuracy of initial models, especially the accuracy of the shallow part of the initial models.
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenglian; Guo, Yongning
2014-10-01
The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.
Estimating Demand for Alternatives to Cigarettes With Online Purchase Tasks
O’Connor, Richard J.; June, Kristie M.; Bansal-Travers, Maansi; Rousu, Matthew C.; Thrasher, James F.; Hyland, Andrew; Cummings, K. Michael
2013-01-01
Objectives This study explored how advertising affects demand for cigarettes and potential substitutes, including snus, dissolvable tobacco, and medicinal nicotine. Methods A web-based experiment randomized 1062 smokers to see advertisements for alternative nicotine products or soft drinks, then complete a series of purchase tasks, which were used to estimate demand elasticity, peak consumption, and cross-price elasticity (CPE) for tobacco products. Results Lower demand elasticity and greater peak consumption were seen for cigarettes compared to all alternative products (p < .05). CPE did not differ across the alternative products (p ≤ .03). Seeing relevant advertisements was not significantly related to demand. Conclusions These findings suggest significantly lower demand for alternative nicotine sources among smokers than previously revealed. PMID:24034685
NASA Astrophysics Data System (ADS)
Iqbal, R.; Bilal, M.; Jalali-Asadabadi, S.; Rahnamaye Aliabad, H. A.; Ahmad, Iftikhar
2018-01-01
In this paper, we explore the structural, electronic, thermoelectric and elastic properties of intermetallic compounds ScTM (TM = Cu, Ag, Au and Pd) using density functional theory. The produced results show high values of Seebeck coefficients and electrical conductivity for these materials. High power factor for these materials at room-temperature shows that these materials may be beneficial for low-temperature thermoelectric devices and alternative energy sources. Furthermore, elastic properties of these compounds are also calculated, which are used to evaluate their mechanical properties. The Cauchy’s pressure and B/G ratio figure out that these compounds are ductile in nature. The calculated results also predict that these compounds are stable against deforming force.
Dynamics behaviour of an elastic non-ideal (NIS) portal frame, including fractional nonlinearities
NASA Astrophysics Data System (ADS)
Balthazar, J. M.; Brasil, R. M. L. F.; Felix, J. L. P.; Tusset, A. M.; Picirillo, V.; Iluik, I.; Rocha, R. T.; Nabarrete, A.; Oliveira, C.
2016-05-01
This paper overviews recent developments on some problems related to elastic structures, such as portal frames, taking into account the full interactions of the vibrating systems, with an energy source of limited power supply (small motors, electro-mechanical shakers). We include a discussion on fractional (rational) damping and stiffness effects on the adopted modelling. This was a plenary lecture, delivered in the event titled: Mechanics of Slender Structures, organized in Northampton, England from 21-22, September 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo
Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes frommore » an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials such as air, bone, or lungs, produced variations between both phantoms which were at most 35% in the considered organ equivalent doses. Finally, effective doses per clinical absorbed dose from IMRT and proton therapy were comparable to those from both brachytherapy sources, with brachytherapy being advantageous over external beam radiation therapy for the furthest organs. Conclusions: A database of organ equivalent doses when applying HDR brachytherapy to the prostate with either {sup 60}Co or {sup 192}Ir is provided. According to physical considerations, {sup 192}Ir is dosimetrically advantageous over {sup 60}Co sources at large distances, but not in the closest organs. Damage to distant healthy organs per clinical absorbed dose is lower with brachytherapy than with IMRT or protons, although the overall effective dose per Gy given to the prostate seems very similar. Given that there are several possible fractionation schemes, which result in different total amounts of therapeutic absorbed dose, advantage of a radiation treatment (according to equivalent dose to healthy organs) is treatment and facility dependent.« less
Stoichiometry of Reducing Equivalents and Splitting of Water in the Citric Acid Cycle.
ERIC Educational Resources Information Center
Madeira, Vitor M. C.
1988-01-01
Presents a solution to the problem of finding the source of extra reducing equivalents, and accomplishing the stoichiometry of glucose oxidation reactions. Discusses the citric acid cycle and glycolysis. (CW)
Green’s functions for a volume source in an elastic half-space
Zabolotskaya, Evgenia A.; Ilinskii, Yurii A.; Hay, Todd A.; Hamilton, Mark F.
2012-01-01
Green’s functions are derived for elastic waves generated by a volume source in a homogeneous isotropic half-space. The context is sources at shallow burial depths, for which surface (Rayleigh) and bulk waves, both longitudinal and transverse, can be generated with comparable magnitudes. Two approaches are followed. First, the Green’s function is expanded with respect to eigenmodes that correspond to Rayleigh waves. While bulk waves are thus ignored, this approximation is valid on the surface far from the source, where the Rayleigh wave modes dominate. The second approach employs an angular spectrum that accounts for the bulk waves and yields a solution that may be separated into two terms. One is associated with bulk waves, the other with Rayleigh waves. The latter is proved to be identical to the Green’s function obtained following the first approach. The Green’s function obtained via angular spectrum decomposition is analyzed numerically in the time domain for different burial depths and distances to the receiver, and for parameters relevant to seismo-acoustic detection of land mines and other buried objects. PMID:22423682
Micromechanics-based magneto-elastic constitutive modeling of particulate composites
NASA Astrophysics Data System (ADS)
Yin, Huiming
Modified Green's functions are derived for three situations: a magnetic field caused by a local magnetization, a displacement field caused by a local body force and a displacement field caused by a local prescribed eigenstrain. Based on these functions, an explicit solution is derived for two magnetic particles embedded in the infinite medium under external magnetic and mechanical loading. A general solution for numerable magnetic particles embedded in an infinite domain is then provided in integral form. Two-phase composites containing spherical magnetic particles of the same size are considered for three kinds of microstructures. With chain-structured composites, particle interactions in the same chain are considered and a transversely isotropic effective elasticity is obtained. For periodic composites, an eight-particle interaction model is developed and provides a cubic symmetric effective elasticity. In the random composite, pair-wise particle interactions are integrated from all possible positions and an isotropic effective property is reached. This method is further extended to functionally graded composites. Magneto-mechanical behavior is studied for the chain-structured composite and the random composite. Effective magnetic permeability, effective magnetostriction and field-dependent effective elasticity are investigated. It is seen that the chain-structured composite is more sensitive to the magnetic field than the random composite; a composite consisting of only 5% of chain-structured particles can provide a larger magnetostriction and a larger change of effective elasticity than an equivalent composite consisting of 30% of random dispersed particles. Moreover, the effective shear modulus of the chain-structured composite rapidly increases with the magnetic field, while that for the random composite decreases. An effective hyperelastic constitutive model is further developed for a magnetostrictive particle-filled elastomer, which is sampled by using a network of body-centered cubic lattices of particles connected by macromolecular chains. The proposed hyperelastic model is able to characterize overall nonlinear elastic stress-stretch relations of the composites under general three-dimensional loading. It is seen that the effective strain energy density is proportional to the length of stretched chains in unit volume and volume fraction of particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manela, A.
The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculationsmore » for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.« less
Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications
NASA Astrophysics Data System (ADS)
da Rosa Righi, Rodrigo; Facco Rodrigues, Vinicius; André da Costa, Cristiano; Kreutz, Diego; Heiss, Hans-Ulrich
2015-10-01
Elasticity is one of the key features of cloud computing. It allows applications to dynamically scale computing and storage resources, avoiding over- and under-provisioning. In high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks or key-value applications through a load balancer and a loosely-coupled set of virtual machine (VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled HPC applications, we observe the need of rewriting source codes, previous knowledge of the application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides, there are problems related to how profit this new feature in the HPC scope, since in MPI 2.0 applications the programmers need to handle communicators by themselves, and a sudden consolidation of a VM, together with a process, can compromise the entire execution. To address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts as a middleware that allows iterative HPC applications to take advantage of dynamic resource provisioning of cloud infrastructures without any major modification. AutoElastic provides a new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow applications to either increase or decrease their computing resources without blocking the current execution. The feasibility of AutoElastic is demonstrated through a prototype that runs a CPU-bound numerical integration application on top of the OpenNebula middleware. The results showed the saving of about 3 min at each scaling out operations, emphasizing the contribution of the new concept on contexts where seconds are precious.
Traveling wave ultrasonic motor: coupling effects in free stator.
Frayssignes, H; Briot, R
2003-03-01
Generally a stator of traveling wave ultrasonic motor (TWUM) consists of piezoelectric transducers (annular plate or rods) coupled by the way of a metallic ring. These transducers divided into halves are excited independently by two electrical signals with different phases of about 90 degrees. So an elastic traveling wave propagates along the circumference of the ring and a rotor pressed on this vibrating surface is then driven by the stator via contact forces. Many difficulties appear in developing TWUM because the contact between the stator and the rotor via a frictional material is very important. However that may be, the first stage consists in obtaining a vibrating stator with optimum characteristics with two symmetrical phases. The aim of this paper is to discuss some coupling effects in a free stator through an enhanced equivalent circuit model. A simple experimental method based on impedance measurements is performed to estimate the coupling characteristics at a low driving voltage. This paper reports results obtained with the free stator of the well known piezoelectric ultrasonic motor "USR60" by Shinsei Co. Ltd. Since the stator behaves as an elastic body, interactions between the two electrical inputs might be described by the introduction of a coupling oscillator. The comparison of experimental and theoretical results leads to validate the new equivalent circuit of the free stator. The presence of coupling impedance could imply a change of electrical supply condition to optimize the TWUM efficiency. The effects of unbalanced features for each electrical input and the applicability of the proposed model to actual operating condition are discussed in the paper. Copyright 2002 Elsevier Science B.V.
On the nature of the unidentified high latitude UHURU sources
NASA Technical Reports Server (NTRS)
Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Murray, S. S.; Giacconi, R.; Kellogg, E. M.; Matilsky, T. A.
1973-01-01
It is found that the unidentified high latitude UHURU sources can have either of two very different explanations. They must either reside at great distances with luminosity equivalent to or greater than 10 to the 46th power ergs/sec, or be contained in the galaxy with luminosity equivalent to or less than 10 to the 34th power ergs/sec. The two possibilities are indistinguishable with the available data.
Zephyr: Open-source Parallel Seismic Waveform Inversion in an Integrated Python-based Framework
NASA Astrophysics Data System (ADS)
Smithyman, B. R.; Pratt, R. G.; Hadden, S. M.
2015-12-01
Seismic Full-Waveform Inversion (FWI) is an advanced method to reconstruct wave properties of materials in the Earth from a series of seismic measurements. These methods have been developed by researchers since the late 1980s, and now see significant interest from the seismic exploration industry. As researchers move towards implementing advanced numerical modelling (e.g., 3D, multi-component, anisotropic and visco-elastic physics), it is desirable to make use of a modular approach, minimizing the effort developing a new set of tools for each new numerical problem. SimPEG (http://simpeg.xyz) is an open source project aimed at constructing a general framework to enable geophysical inversion in various domains. In this abstract we describe Zephyr (https://github.com/bsmithyman/zephyr), which is a coupled research project focused on parallel FWI in the seismic context. The software is built on top of Python, Numpy and IPython, which enables very flexible testing and implementation of new features. Zephyr is an open source project, and is released freely to enable reproducible research. We currently implement a parallel, distributed seismic forward modelling approach that solves the 2.5D (two-and-one-half dimensional) viscoacoustic Helmholtz equation at a range modelling frequencies, generating forward solutions for a given source behaviour, and gradient solutions for a given set of observed data. Solutions are computed in a distributed manner on a set of heterogeneous workers. The researcher's frontend computer may be separated from the worker cluster by a network link to enable full support for computation on remote clusters from individual workstations or laptops. The present codebase introduces a numerical discretization equivalent to that used by FULLWV, a well-known seismic FWI research codebase. This makes it straightforward to compare results from Zephyr directly with FULLWV. The flexibility introduced by the use of a Python programming environment makes extension of the codebase with new methods much more straightforward. This enables comparison and integration of new efforts with existing results.
Effect of Arctic Amplification on Design Snow Loads in Alaska
2016-09-01
snow water equivalent UFC Unified Facilities Criteria UTC Coordinated Universal Time Keywords: Alaska, Arctic amplification, climate change...extreme value analysis, snow loads, snow water equivalent , SWE Acknowledgements: This work was conducted with support from the Strategic... equivalent (SWE) of the snowpack. We acquired SWE data from a number of sources that provide automatic or manual observations, reanalysis data, or
NASA Astrophysics Data System (ADS)
Belibassakis, K. A.; Athanassoulis, G. A.
2005-05-01
The consistent coupled-mode theory (Athanassoulis & Belibassakis, J. Fluid Mech. vol. 389, 1999, p. 275) is extended and applied to the hydroelastic analysis of large floating bodies of shallow draught or ice sheets of small and uniform thickness, lying over variable bathymetry regions. A parallel-contour bathymetry is assumed, characterized by a continuous depth function of the form h( {x,y}) {=} h( x ), attaining constant, but possibly different, values in the semi-infinite regions x {<} a and x {>} b. We consider the scattering problem of harmonic, obliquely incident, surface waves, under the combined effects of variable bathymetry and a floating elastic plate, extending from x {=} a to x {=} b and {-} infty {<} y{<}infty . Under the assumption of small-amplitude incident waves and small plate deflections, the hydroelastic problem is formulated within the context of linearized water-wave and thin-elastic-plate theory. The problem is reformulated as a transition problem in a bounded domain, for which an equivalent, Luke-type (unconstrained), variational principle is given. In order to consistently treat the wave field beneath the elastic floating plate, down to the sloping bottom boundary, a complete, local, hydroelastic-mode series expansion of the wave field is used, enhanced by an appropriate sloping-bottom mode. The latter enables the consistent satisfaction of the Neumann bottom-boundary condition on a general topography. By introducing this expansion into the variational principle, an equivalent coupled-mode system of horizontal equations in the plate region (a {≤} x {≤} b) is derived. Boundary conditions are also provided by the variational principle, ensuring the complete matching of the wave field at the vertical interfaces (x{=}a and x{=}b), and the requirements that the edges of the plate are free of moment and shear force. Numerical results concerning floating structures lying over flat, shoaling and corrugated seabeds are presented and compared, and the effects of wave direction, bottom slope and bottom corrugations on the hydroelastic response are presented and discussed. The present method can be easily extended to the fully three-dimensional hydroelastic problem, including bodies or structures characterized by variable thickness (draught), flexural rigidity and mass distributions.
NASA Astrophysics Data System (ADS)
Saikia, C. K.; Roman-nieves, J. I.; Woods, M. T.
2013-12-01
Source parameters of nuclear and chemical explosions are often estimated by matching either the corner frequency and spectral level of a single event or the spectral ratio when spectra from two events are available with known source parameters for one. In this study, we propose an alternative method in which waveforms from two or more events can be simultaneously equalized by setting the differential of the processed seismograms at one station from any two individual events to zero. The method involves convolving the equivalent Mueller-Murphy displacement source time function (MMDSTF) of one event with the seismogram of the second event and vice-versa, and then computing their difference seismogram. MMDSTF is computed at the elastic radius including both near and far-field terms. For this method to yield accurate source parameters, an inherent assumption is that green's functions for the any paired events from the source to a receiver are same. In the frequency limit of the seismic data, this is a reasonable assumption and is concluded based on the comparison of green's functions computed for flat-earth models at various source depths ranging from 100m to 1Km. Frequency domain analysis of the initial P wave is, however, sensitive to the depth phase interaction, and if tracked meticulously can help estimating the event depth. We applied this method to the local waveforms recorded from the three SPE shots and precisely determined their yields. These high-frequency seismograms exhibit significant lateral path effects in spectrogram analysis and 3D numerical computations, but the source equalization technique is independent of any variation as long as their instrument characteristics are well preserved. We are currently estimating the uncertainty in the derived source parameters assuming the yields of the SPE shots as unknown. We also collected regional waveforms from 95 NTS explosions at regional stations ALQ, ANMO, CMB, COR, JAS LON, PAS, PFO and RSSD. We are currently employing a station based analysis using the equalization technique to estimate depth and yields of many relative to those of the announced explosions; and to develop their relationship with the Mw and Mo for the NTS explosions.
Finite Element modelling of deformation induced by interacting volcanic sources
NASA Astrophysics Data System (ADS)
Pascal, Karen; Neuberg, Jürgen; Rivalta, Eleonora
2010-05-01
The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system comprises more than one source, the assumption of homogeneity in the half-space is violated and several sources are combined, their respective deformation field being summed. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying their relative position. Furthermore we considered the impact of topography, loading, and magma compressibility. To quantify the discrepancies and compare the various models, we calculated the difference between analytical and numerical maximum horizontal or vertical surface displacements.We will demonstrate that for certain conditions combining analytical sources can cause an error of up to 20%. References: McTigue, D. F. (1987), Elastic Stress and Deformation Near a Finite Spherical Magma Body: Resolution of the Point Source Paradox, J. Geophys. Res. 92, 12931-12940. Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull Earthquake Res Inst, Univ Tokyo 36, 99-134. Okada, Y. (1992), Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Bulletin of the Seismological Society of America 82(2), 1018-1040.
Low energy recoil detection with a spherical proportional counter
NASA Astrophysics Data System (ADS)
Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.
2018-01-01
We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).
Wave energy focusing to subsurface poroelastic formations to promote oil mobilization
NASA Astrophysics Data System (ADS)
Karve, Pranav M.; Kallivokas, Loukas F.
2015-07-01
We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.
NASA Astrophysics Data System (ADS)
Denli, H.; Huang, L.
2008-12-01
Quantitative monitoring of reservoir property changes is essential for safe geologic carbon sequestration. Time-lapse seismic surveys have the potential to effectively monitor fluid migration in the reservoir that causes geophysical property changes such as density, and P- and S-wave velocities. We introduce a novel method for quantitative estimation of seismic velocity changes using time-lapse seismic data. The method employs elastic sensitivity wavefields, which are the derivatives of elastic wavefield with respect to density, P- and S-wave velocities of a target region. We derive the elastic sensitivity equations from analytical differentiations of the elastic-wave equations with respect to seismic-wave velocities. The sensitivity equations are coupled with the wave equations in a way that elastic waves arriving in a target reservoir behave as a secondary source to sensitivity fields. We use a staggered-grid finite-difference scheme with perfectly-matched layers absorbing boundary conditions to simultaneously solve the elastic-wave equations and the elastic sensitivity equations. By elastic-wave sensitivities, a linear relationship between relative seismic velocity changes in the reservoir and time-lapse seismic data at receiver locations can be derived, which leads to an over-determined system of equations. We solve this system of equations using a least- square method for each receiver to obtain P- and S-wave velocity changes. We validate the method using both surface and VSP synthetic time-lapse seismic data for a multi-layered model and the elastic Marmousi model. Then we apply it to the time-lapse field VSP data acquired at the Aneth oil field in Utah. A total of 10.5K tons of CO2 was injected into the oil reservoir between the two VSP surveys for enhanced oil recovery. The synthetic and field data studies show that our new method can quantitatively estimate changes in seismic velocities within a reservoir due to CO2 injection/migration.
Parametrization study of the land multiparameter VTI elastic waveform inversion
NASA Astrophysics Data System (ADS)
He, W.; Plessix, R.-É.; Singh, S.
2018-06-01
Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.
Sound field reproduction as an equivalent acoustical scattering problem.
Fazi, Filippo Maria; Nelson, Philip A
2013-11-01
Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.
Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)
1981-01-01
The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.
DOT National Transportation Integrated Search
1968-06-01
This report primarily investigates the wear characteristics of concrete using various cement contents and three different sources of aggregates. Compressive strength and dynamic modulus of elasticity data was also obtained to assist in the evaluation...
Identifying equivalent sound sources from aeroacoustic simulations using a numerical phased array
NASA Astrophysics Data System (ADS)
Pignier, Nicolas J.; O'Reilly, Ciarán J.; Boij, Susann
2017-04-01
An application of phased array methods to numerical data is presented, aimed at identifying equivalent flow sound sources from aeroacoustic simulations. Based on phased array data extracted from compressible flow simulations, sound source strengths are computed on a set of points in the source region using phased array techniques assuming monopole propagation. Two phased array techniques are used to compute the source strengths: an approach using a Moore-Penrose pseudo-inverse and a beamforming approach using dual linear programming (dual-LP) deconvolution. The first approach gives a model of correlated sources for the acoustic field generated from the flow expressed in a matrix of cross- and auto-power spectral values, whereas the second approach results in a model of uncorrelated sources expressed in a vector of auto-power spectral values. The accuracy of the equivalent source model is estimated by computing the acoustic spectrum at a far-field observer. The approach is tested first on an analytical case with known point sources. It is then applied to the example of the flow around a submerged air inlet. The far-field spectra obtained from the source models for two different flow conditions are in good agreement with the spectra obtained with a Ffowcs Williams-Hawkings integral, showing the accuracy of the source model from the observer's standpoint. Various configurations for the phased array and for the sources are used. The dual-LP beamforming approach shows better robustness to changes in the number of probes and sources than the pseudo-inverse approach. The good results obtained with this simulation case demonstrate the potential of the phased array approach as a modelling tool for aeroacoustic simulations.
NASA Astrophysics Data System (ADS)
Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique
2014-10-01
Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young’s modulus over the range of normal and cirrhotic liver stiffnesses. The Young’s modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.
Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique
2014-10-07
Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young's modulus over the range of normal and cirrhotic liver stiffnesses. The Young's modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.
Wave Propagation in Discontinuous Media by the Scattering Matrix Method
NASA Astrophysics Data System (ADS)
Perino, A.; Orta, R.; Barla, G.
2012-09-01
Propagation of elastic waves in discontinuous media is studied in this paper by the scattering matrix method (SMM). An electromagnetic transmission line analogy is also used to set up the mathematical model. The SMM operates in the frequency domain and allows for all wave polarizations (P, SV and SH). Rock masses are examples of discontinuous media in which the discontinuities (fractures or joints) influence wave propagation. Both elastic and viscoelastic joints are considered and the latter are described by Kelvin-Voigt, Maxwell and Burgers models. Rock joints with Coulomb slip behavior are also analyzed, by applying the averaging principle of Caughy (J Appl Mech 27:640-643, 1960). The evaluation of the effects of periodic discontinuities in a homogeneous medium is presented by introducing the concept of Bloch waves. The dispersion curves of these waves are useful to explain the existence of frequency bands of strong attenuation, also in the case of lossless (perfectly elastic) structures. Simple expressions of transmission and reflection coefficients are obtained. Finally, the SMM results are compared with those computed via the distinct element method (DEM). The comparisons are performed on a medium with joints with Coulomb slip behavior and the agreement is satisfactory, although the SMM must be applied in conjunction with the equivalent linearization technique. Even if the DEM is much more general, the SMM in these simple cases is extremely faster and provides a higher physical insight.
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun
2012-01-01
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971
Boundary effect on the elastic field of a semi-infinite solid containing inhomogeneities
Liu, Y. J.; Song, G.; Yin, H. M.
2015-01-01
The boundary effect of one inhomogeneity embedded in a semi-infinite solid at different depths has firstly been investigated using the fundamental solution for Mindlin's problem. Expanding the eigenstrain in a polynomial form and using the Eshelby's equivalent inclusion method, one can calculate the eigenstrain and thus obtain the elastic field. When the inhomogeneity is far from the boundary, the solution recovers Eshelby's solution. The method has been extended to a many-particle system in a semi-infinite solid, which is first demonstrated by the cases of two spheres. The comparison of the asymptotic form solution with the finite-element results shows the accuracy and capability of this method. The solution has been used to illustrate the boundary effects on its effective material behaviour of a semi-infinite simple cubic lattice particulate composite. The local field of a semi-infinite composite has been calculated at different volume fractions. A representative unit cell has been taken with different depths to the surface. The average stress and strain of the unit cell have been calculated under uniform loading conditions of normal or shear force on the surface, respectively. The effective elastic moduli of the unit cell not only depend on the material proportion, but also on its distance to the surface. The present model can be extended to other types of particle distribution and ellipsoidal particles. PMID:26345084
Boundary effect on the elastic field of a semi-infinite solid containing inhomogeneities.
Liu, Y J; Song, G; Yin, H M
2015-07-08
The boundary effect of one inhomogeneity embedded in a semi-infinite solid at different depths has firstly been investigated using the fundamental solution for Mindlin's problem. Expanding the eigenstrain in a polynomial form and using the Eshelby's equivalent inclusion method, one can calculate the eigenstrain and thus obtain the elastic field. When the inhomogeneity is far from the boundary, the solution recovers Eshelby's solution. The method has been extended to a many-particle system in a semi-infinite solid, which is first demonstrated by the cases of two spheres. The comparison of the asymptotic form solution with the finite-element results shows the accuracy and capability of this method. The solution has been used to illustrate the boundary effects on its effective material behaviour of a semi-infinite simple cubic lattice particulate composite. The local field of a semi-infinite composite has been calculated at different volume fractions. A representative unit cell has been taken with different depths to the surface. The average stress and strain of the unit cell have been calculated under uniform loading conditions of normal or shear force on the surface, respectively. The effective elastic moduli of the unit cell not only depend on the material proportion, but also on its distance to the surface. The present model can be extended to other types of particle distribution and ellipsoidal particles.
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun
2011-08-01
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.
NASA Astrophysics Data System (ADS)
Geng, Lin; Bi, Chuan-Xing; Xie, Feng; Zhang, Xiao-Zheng
2018-07-01
Interpolated time-domain equivalent source method is extended to reconstruct the instantaneous surface normal velocity of a vibrating structure by using the time-evolving particle velocity as the input, which provides a non-contact way to overall understand the instantaneous vibration behavior of the structure. In this method, the time-evolving particle velocity in the near field is first modeled by a set of equivalent sources positioned inside the vibrating structure, and then the integrals of equivalent source strengths are solved by an iterative solving process and are further used to calculate the instantaneous surface normal velocity. An experiment of a semi-cylindrical steel plate impacted by a steel ball is investigated to examine the ability of the extended method, where the time-evolving normal particle velocity and pressure on the hologram surface measured by a Microflown pressure-velocity probe are used as the inputs of the extended method and the method based on pressure measurements, respectively, and the instantaneous surface normal velocity of the plate measured by a laser Doppler vibrometry is used as the reference for comparison. The experimental results demonstrate that the extended method is a powerful tool to visualize the instantaneous surface normal velocity of a vibrating structure in both time and space domains and can obtain more accurate results than that of the method based on pressure measurements.
NASA Astrophysics Data System (ADS)
Bi, Chuan-Xing; Hu, Ding-Yu; Zhang, Yong-Bin; Jing, Wen-Qian
2015-06-01
In previous studies, an equivalent source method (ESM)-based technique for recovering the free sound field in a noisy environment has been successfully applied to exterior problems. In order to evaluate its performance when applied to a more general noisy environment, that technique is used to identify active sources inside cavities where the sound field is composed of the field radiated by active sources and that reflected by walls. A patch approach with two semi-closed surfaces covering the target active sources is presented to perform the measurements, and the field that would be radiated by these target active sources into free space is extracted from the mixed field by using the proposed technique, which will be further used as the input of nearfield acoustic holography for source identification. Simulation and experimental results validate the effectiveness of the proposed technique for source identification in cavities, and show the feasibility of performing the measurements with a double layer planar array.
Measurements of the cesium flow from a surface-plasma H/sup -/ ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H.V.; Allison, P.W.
1979-01-01
A surface ionization gauge (SIG) was constructed and used to measure the Cs/sup 0/ flow rate through the emission slit of a surface-plasma source (SPS) of H/sup -/ ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 7 x 10/sup 12/ cm/sup -3/ (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 2 x 10/sup 13/ cm/sup -3/more » (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dian; Whitesides, George M.
A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predeterminedmore » direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.« less
Bottom-up modeling of damage in heterogeneous quasi-brittle solids
NASA Astrophysics Data System (ADS)
Rinaldi, Antonio
2013-03-01
The theoretical modeling of multisite cracking in quasi-brittle materials is a complex damage problem, hard to model with traditional methods of fracture mechanics due to its multiscale nature and to strain localization induced by microcracks interaction. Macroscale "effective" elastic models can be conveniently applied if a suitable Helmholtz free energy function is identified for a given material scenario. Del Piero and Truskinovsky (Continuum Mech Thermodyn 21:141-171, 2009), among other authors, investigated macroscale continuum solutions capable of matching—in a top-down view—the phenomenology of the damage process for quasi-brittle materials regardless of the microstructure. On the contrary, this paper features a physically based solution method that starts from the direct consideration of the microscale properties and, in a bottom-up view, recovers a continuum elastic description. This procedure is illustrated for a simple one-dimensional problem of this type, a bar modeled stretched by an axial displacement, where the bar is modeled as a 2D random lattice of decohesive spring elements of finite strength. The (microscale) data from simulations are used to identify the "exact" (macro-) damage parameter and to build up the (macro-) Helmholtz function for the equivalent elastic model, bridging the macroscale approach by Del Piero and Truskinovsky. The elastic approach, coupled with microstructural knowledge, becomes a more powerful tool to reproduce a broad class of macroscopic material responses by changing the convexity-concavity of the Helmholtz energy. The analysis points out that mean-field statistics are appropriate prior to damage localization but max-field statistics are better suited in the softening regime up to failure, where microstrain fluctuation needs to be incorporated in the continuum model. This observation is of consequence to revise mean-field damage models from literature and to calibrate Nth gradient continuum models.
Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram
2016-01-27
Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.
García-López, David; Hernández-Sánchez, Sonsoles; Martín, Esperanza; Marín, Pedro J; Zarzosa, Fernando; Herrero, Azael J
2016-09-01
García-López, D, Hernández-Sánchez, S, Martín, E, Marín, PJ, Zarzosa, F, and Herrero, AJ. Free-weight augmentation with elastic bands improves bench press kinematics in professional rugby players. J Strength Cond Res 30(9): 2493-2499, 2016-This study aimed to investigate the effects of combining elastic bands to free weight resistance (EB + FWR) on the acceleration-deceleration and velocity profiles of the bench press in professional rugby players and recreationally trained subjects. Sixteen male subjects (8 rugby players and 8 recreationally trained subjects) were randomly assigned to complete 2 experimental conditions in a crossover fashion: EB + FWR and FWR. In both conditions, subjects performed 1 bench press set to volitional exhaustion with a load equivalent to the 85% of 1 repetition maximum (1RM). In the EB + FWR condition, the contribution of elastic resistance was approximately 20% of the selected load (85% 1RM). Results indicate that EB + FWR condition increased significantly the range of concentric movement in which the barbell is accelerated. This increase was significantly higher in rugby players (35%) in comparison with recreationally trained subjects (13%). Maximal velocity was also increased in EB + FWR (17%), when compared with FWR condition. These results suggest that when combined with variable resistance (i.e., EB), the external resistance seems to be more evenly distributed over the full range of motion, decreasing the need for dramatic deceleration at the end of the concentric phase. The present data also indicate that the kinematic benefits of an EB + FWR approach seems to be more prominent in athletes from modalities in which high level of strength and power are required (i.e., rugby players).
Elastic and acoustic wavefield decompositions and application to reverse time migrations
NASA Astrophysics Data System (ADS)
Wang, Wenlong
P- and S-waves coexist in elastic wavefields, and separation between them is an essential step in elastic reverse-time migrations (RTMs). Unlike the traditional separation methods that use curl and divergence operators, which do not preserve the wavefield vector component information, we propose and compare two vector decomposition methods, which preserve the same vector components that exist in the input elastic wavefield. The amplitude and phase information is automatically preserved, so no amplitude or phase corrections are required. The decoupled propagation method is extended from elastic to viscoelastic wavefields. To use the decomposed P and S vector wavefields and generate PP and PS images, we create a new 2D migration context for isotropic, elastic RTM which includes PS vector decomposition; the propagation directions of both incident and reflected P- and S-waves are calculated directly from the stress and particle velocity definitions of the decomposed P- and S-wave Poynting vectors. Then an excitation-amplitude image condition that scales the receiver wavelet by the source vector magnitude produces angle-dependent images of PP and PS reflection coefficients with the correct polarities, polarization, and amplitudes. It thus simplifies the process of obtaining PP and PS angle-domain common-image gathers (ADCIGs); it is less effort to generate ADCIGs from vector data than from scalar data. Besides P- and S-waves decomposition, separations of up- and down-going waves are also a part of processing of multi-component recorded data and propagating wavefields. A complex trace based up/down separation approach is extended from acoustic to elastic, and combined with P- and S-wave decomposition by decoupled propagation. This eliminates the need for a Fourier transform over time, thereby significantly reducing the storage cost and improving computational efficiency. Wavefield decomposition is applied to both synthetic elastic VSP data and propagating wavefield snapshots. Poynting vectors obtained from the particle-velocity and stress fields after P/S and up/down decompositions are much more accurate than those without. The up/down separation algorithm is also applicable in acoustic RTMs, where both (forward-time extrapolated) source and (reverse-time extrapolated) receiver wavefields are decomposed into up-going and down-going parts. Together with the crosscorrelation imaging condition, four images (down-up, up-down, up-up and down-down) are generated, which facilitate the analysis of artifacts and the imaging ability of the four images. Artifacts may exist in all the decomposed images, but their positions and types are different. The causes of artifacts in different images are explained and illustrated with sketches and numerical tests.
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R [Grand Forks, ND; Olson, Edwin S [Grand Forks, ND; Jiang, Junhua [Grand Forks, ND
2012-04-10
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.
Glauber exchange amplitudes. [electron scattering from H atoms
NASA Technical Reports Server (NTRS)
Madan, R. N.
1975-01-01
The extrapolation method of Ochkur, valid for intermediate energies (about 50 eV), is applied to the exchange form of the Glauber amplitudes. In the case of elastic scattering of electrons from hydrogen atoms at 54.4 Ev the 'post' and 'prior' forms of the exchange amplitude are equivalent, whereas for the case of inelastic scattering there is a minute discrepancy between the two forms of the amplitude. The results are compared with the close-coupling calculation. The investigation is expected to be useful for optically forbidden exchange-allowed transitions due to electron impact at intermediate energies.
Study of guided modes in three-dimensional composites
NASA Astrophysics Data System (ADS)
Baste, S.; Gerard, A.
The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).
Implications of elastic wave velocities for Apollo 17 rock powders
NASA Technical Reports Server (NTRS)
Talwani, P.; Nur, A.; Kovach, R. L.
1974-01-01
Ultrasonic P- and S-wave velocities of lunar rock powders 172701, 172161, 170051, and 175081 were measured at room temperature and to 2.5 kb confining pressure. The results compare well with those of terrestrial volcanic ash and powdered basalt. P-wave velocity values up to pressures corresponding to a lunar depth of 1.4 km preclude cold compaction alone as an explanation for the observed seismic velocity structure at the Apollo 17 site. Application of small amounts of heat with simultaneous application of pressure causes rock powders to achieve equivalence of seismic velocities for competent rocks.
Two-photon production of leptons at hadron colliders in semielastic and elastic cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manko, A. Yu., E-mail: andrej.j.manko@gmail.com; Shulyakovsky, R. G., E-mail: shul@ifanbel.bas-net.by, E-mail: shulyakovsky@iaph.bas-net.by
The mechanism of two-photon dilepton production is studied in the equivalent-photon (Weizsäcker–Williams) approximation. This approximation is shown to describe well experimental data from hadron accelerators. The respective total and differential cross sections were obtained for the LHC and for the Tevatron collider at various energies of colliding hadrons. The differential cross sections were studied versus the dilepton invariant mass, transverse momentum, and emission angle in the reference frame comoving with the center of mass of colliding hadrons. The cases of semielastic and inelastic collisions were examined.
Importance of elastic finite-size effects: Neutral defects in ionic compounds
Burr, P. A.; Cooper, M. W. D.
2017-09-15
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
How does the Textural Character of Alpine Fault Rocks Influence their Elasticity and Anisotropy
NASA Astrophysics Data System (ADS)
Guerin-Marthe, S.; Adam, L.; Townend, J.; Toy, V.; Doan, M. L.; Faulkner, D.
2015-12-01
The DFDP-1A and DFDP-1B boreholes drilled in 2011 enabled the collection of samples of unaltered Alpine Fault Zone rock. We present laboratory measurements of the elastic properties of these samples, as well as protoliths collected at outcrops. These data were collected with a unique non-contacting laser ultrasonic system, and transducers under a range of pressure conditions representative of the upper-crust. Based on the laser measurements we conclude that there is strong anisotropy in the foliated protoliths, particularly in the protomylonites. We also show that even at core scale, the anisotropy is scale dependent (there are systematic relationships between wavelength and mineral foliation). For the cataclasites, preliminary data show that elastic wave anisotropy decreases as we approach the Principal Slip Zone, in the two boreholes. The P-wave velocities exhibit a high pressure dependence for the borehole samples, meaning that most of the cracks are closed before an effective pressure of 5MPa, reducing the elastic anisotropy. However, on a cataclasite sample, the S-wave velocity measurements, polarized perpendicular and parallel to the fractures, exhibit weak anisotropy (γ=13%) at 20MPa, even when the P-wave velocity - pressure curve displays an asymptotic shape. This observation probably indicates that elastic anisotropy results from preferred mineral orientation rather than fractures. The elastic wave measurements are complemented with petrographical, XRD, XRF, SEM and CT scan analyses to understand the source of the elastic wave anisotropic behavior in the Alpine Fault damaged zone. Finally, the laboratory data are compared to the P-wave sonic log to understand the effect of elastic wave anisotropy, fluid pressures and mineralogy.
Importance of elastic finite-size effects: Neutral defects in ionic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, P. A.; Cooper, M. W. D.
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
Importance of elastic finite-size effects: Neutral defects in ionic compounds
NASA Astrophysics Data System (ADS)
Burr, P. A.; Cooper, M. W. D.
2017-09-01
Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.
Kołodziejczak, Anna Maria; Rotsztejn, Helena
2017-03-01
The assessment of the signs of aging within eyes area in cutometric (skin elasticity) and mexametric (discoloration and severity of erythema) examination after the treatment with: non-ablative fractional laser, non-ablative radiofrequency (RF) and intense light source (IPL). This study included 71 patients, aged 33-63 years (the average age was 45.81) with Fitzpatrick skin type II and III. 24 patients received 5 successive treatment sessions with a 1,410-nm non-ablative fractional laser in two-week intervals, 23 patients received 5 successive treatment sessions with a non-ablative RF in one-week intervals and 24 patients received 5 successive treatment sessions with an IPL in two-week intervals. The treatment was performed for the skin in the eye area. The Cutometer and Mexameter (Courage + Khazaka electronic) reference test was used as an objective method for the assessment of skin properties: elasticity, skin pigmentation and erythema. Measurements of skin elasticity were made in three or four sites within eye area. The results of cutometric measurements for R7 showed the improvement in skin elasticity in case of all treatment methods. The largest statistically significant improvement (p < .0001) was observed in case of laser and RF, during treatment sessions, at sites at upper and lower eyelid. The smallest change in skin elasticity for the laser, RF and IPL - p = .017, p = .003 and p = .001, respectively-was observed in a site within the outer corner of the eye. In all sites of measurements and for all methods, the greatest improvement in skin elasticity was demonstrated between the first and second measurement (after 3rd procedures). The majority of the results of mexametric measurements-MEX (melanin level) and ERYT (the severity of erythema) are statistically insignificant. Fractional, non-ablative laser, non-ablation RF and intense light source can be considered as methods significantly affecting elasticity and to a lesser extent erythema and skin pigmentation around the eyes. Fractional non-ablative laser is a method which, in comparison to other methods, has the greatest impact on skin viscoelasticity. These procedures are well tolerated and are associated with a low risk of side effects. © 2017 Wiley Periodicals, Inc.
Computing the Dynamic Response of a Stratified Elastic Half Space Using Diffuse Field Theory
NASA Astrophysics Data System (ADS)
Sanchez-Sesma, F. J.; Perton, M.; Molina Villegas, J. C.
2015-12-01
The analytical solution for the dynamic response of an elastic half-space for a normal point load at the free surface is due to Lamb (1904). For a tangential force, we have Chaós (1960) formulae. For an arbitrary load at any depth within a stratified elastic half space, the resulting elastic field can be given in the same fashion, by using an integral representation in the radial wavenumber domain. Typically, computations use discrete wave number (DWN) formalism and Fourier analysis allows for solution in space and time domain. Experimentally, these elastic Greeńs functions might be retrieved from ambient vibrations correlations when assuming a diffuse field. In fact, the field could not be totally diffuse and only parts of the Green's functions, associated to surface or body waves, are retrieved. In this communication, we explore the computation of Green functions for a layered media on top of a half-space using a set of equipartitioned elastic plane waves. Our formalism includes body and surface waves (Rayleigh and Love waves). These latter waves correspond to the classical representations in terms of normal modes in the asymptotic case of large separation distance between source and receiver. This approach allows computing Green's functions faster than DWN and separating the surface and body wave contributions in order to better represent Green's function experimentally retrieved.
Calibration factors for the SNOOPY NP-100 neutron dosimeter
NASA Astrophysics Data System (ADS)
Moscu, D. F.; McNeill, F. E.; Chase, J.
2007-10-01
Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.
NASA Astrophysics Data System (ADS)
Kashchenko, M. P.; Chashchina, V. G.
2016-01-01
Variants of initiation of growth of crystals of α-martensite by couples of elastic waves propagating in directions <001>γ and <110>γ in singles crystals of Fe31Ni are suggested. The dynamic theory is used to show that the expected orientations of habit planes {110}γ, {001}γ and {559}γ differ from the typical {31015}γ. Possible features of tetragonality of martensite crystals are discussed. The power of the sources of ultrasound required for initiation of γ - α martensitic transformation is estimated.
Di Tommaso, Paolo; Orobitg, Miquel; Guirado, Fernando; Cores, Fernado; Espinosa, Toni; Notredame, Cedric
2010-08-01
We present the first parallel implementation of the T-Coffee consistency-based multiple aligner. We benchmark it on the Amazon Elastic Cloud (EC2) and show that the parallelization procedure is reasonably effective. We also conclude that for a web server with moderate usage (10K hits/month) the cloud provides a cost-effective alternative to in-house deployment. T-Coffee is a freeware open source package available from http://www.tcoffee.org/homepage.html
1983-03-01
regression parameters being interpreted as elasticities, e.g., the elasticity of a given resource on NOIC leads is the percentage increase in NOIC leads that...would have been expected if a 1% increase in the resource had occurred, everything else being held constant. This model has the important features that...the total minimm cost of increasing NOIC - Navy leads from the various sources. Using the so-called duality relationship associated with a generalized
On volume-source representations based on the representation theorem
NASA Astrophysics Data System (ADS)
Ichihara, Mie; Kusakabe, Tetsuya; Kame, Nobuki; Kumagai, Hiroyuki
2016-01-01
We discuss different ways to characterize a moment tensor associated with an actual volume change of ΔV C , which has been represented in terms of either the stress glut or the corresponding stress-free volume change ΔV T . Eshelby's virtual operation provides a conceptual model relating ΔV C to ΔV T and the stress glut, where non-elastic processes such as phase transitions allow ΔV T to be introduced and subsequent elastic deformation of - ΔV T is assumed to produce the stress glut. While it is true that ΔV T correctly represents the moment tensor of an actual volume source with volume change ΔV C , an explanation as to why such an operation relating ΔV C to ΔV T exists has not previously been given. This study presents a comprehensive explanation of the relationship between ΔV C and ΔV T based on the representation theorem. The displacement field is represented using Green's function, which consists of two integrals over the source surface: one for displacement and the other for traction. Both integrals are necessary for representing volumetric sources, whereas the representation of seismic faults includes only the first term, as the second integral over the two adjacent fault surfaces, across which the traction balances, always vanishes. Therefore, in a seismological framework, the contribution from the second term should be included as an additional surface displacement. We show that the seismic moment tensor of a volume source is directly obtained from the actual state of the displacement and stress at the source without considering any virtual non-elastic operations. A purely mathematical procedure based on the representation theorem enables us to specify the additional imaginary displacement necessary for representing a volume source only by the displacement term, which links ΔV C to ΔV T . It also specifies the additional imaginary stress necessary for representing a moment tensor solely by the traction term, which gives the "stress glut." The imaginary displacement-stress approach clarifies the mathematical background to the classical theory.
Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves
2013-01-01
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves
2012-10-16
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
NASA Technical Reports Server (NTRS)
Ruder, M. E.; Alexander, S. S.
1985-01-01
The MAGSAT equivalent-source anomaly field evaluated at 325 km altitude depicts a prominent anomaly centered over southeast Georgia, which is adjacent to the high-amplitude positive Kentucky anomaly. To overcome the satellite resolution constraint in studying this anomaly, conventional geophysical data were included in analysis: Bouguer gravity, seismic reflection and refraction, aeromagnetic, and in-situ stress-strain measurements. This integrated geophysical approach, infers more specifically the nature and extent of the crustal and/or lithospheric source of the Georgia MAGSAT anomaly. Physical properties and tectonic evolution of the area are all important in the interpretation.
Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Demos, Nicholas; Khan, Haroon
2018-01-01
Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We verify numerical convergence, and by running on up to hundreds of compute cores, we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected with changing beam size, mirror dimensions, and coating thickness. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole et al (2013 Nat. Photon. 7 644–50), comparing our results to a simpler numerical calculation that treats the coating as an ‘effectively amorphous’ material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to increase the reach of future gravitational-wave detectors.
FEM analysis of escape capsule suffered to gas explosion
NASA Astrophysics Data System (ADS)
Li, Chang-lu; Mei, Rui-bin; Li, Chang-sheng; Cai, Ban; Liu, Xiang-hua
2013-05-01
Escape capsules are new devices for underground coal mines that provide air, water, food and supplies in the event of an emergency in where miners are unable to escape. It is difficult to carry out the experiments of explosion and safety because the danger and nonrepeatability of explosion. The structure deformation and distribution of equivalent stress has been investigated under different impact pressure conditions including unimodal and bimodal loads based on the FEM and software LS-DYNA. The results show that the distribution of deformation and equivalent stress has the same trend on the same surface with the increment of explosion pressure. The deformation and stress are larger with side impact pressure compared with that of the same front impact pressure. Furthermore, the maximum equivalent stress is 246MPa and 260MPa on the front and sides of capsule with five times for national standard impact pressure 1.5MPa. Under these conditions, the deformation is less than about 9.97mm and 10.47mm, respectively. When the front impact pressure is 2.0MPa, the deformation of capsule still belongs to elasticity but the less plastic deformation occurs on the Ushape stiffening channels with the same side impact pressure. However, it is safe for capsule structure because the equivalent stress 283MPa is much less than the tensile strength. It is noted that bimodal load accelerates the capsule deformation so that it is more dangerous compared with unimodal load.
Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry
NASA Astrophysics Data System (ADS)
Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor
2017-12-01
In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.
Schoenfeld, Andreas A; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor
2017-11-21
In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w , have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR ( 60 Co), Eckert und Ziegler BEBIG GmbH CSM-11 ( 137 Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 ( 169 Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 ( 131 Cs), IsoAid Advantage I-125 IAI-125A ( 125 I), and IsoAid Advantage Pd-103 IAPd-103A ( 103 Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192 Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192 Ir, 137 Cs and 60 Co most phantom materials can be regarded as water equivalent, for 169 Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106 Pd, 131 Cs and 125 I, only Plastic Water LR can be classified as water equivalent.
40 CFR 60.47Da - Commercial demonstration permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... may not exceed the following equivalent MW electrical generation capacity for any one technology... plants may not exceed 15,000 MW. Technology Pollutant Equivalent electrical capacity(MW electrical output... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection Agency. Equivalent emission limitation means any maximum achievable control technology emission... common control that is included in a section 112(c) source category or subcategory for which a section... pollutant at least equivalent to the reduction in emissions of such pollutant achieved under a relevant...
40 CFR 60.47Da - Commercial demonstration permit.
Code of Federal Regulations, 2011 CFR
2011-07-01
... may not exceed the following equivalent MW electrical generation capacity for any one technology... plants may not exceed 15,000 MW. Technology Pollutant Equivalent electrical capacity(MW electrical output... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility...
Grebenstein, Patricia E; Burroughs, Danielle; Roiko, Samuel A; Pentel, Paul R; LeSage, Mark G
2015-06-01
The FDA is considering reducing the nicotine content in tobacco products as a population-based strategy to reduce tobacco addiction. Research is needed to determine the threshold level of nicotine needed to maintain smoking and the extent of compensatory smoking that could occur during nicotine reduction. Sources of variability in these measures across sub-populations also need to be identified so that policies can take into account the risks and benefits of nicotine reduction in vulnerable populations. The present study examined these issues in a rodent nicotine self-administration model of nicotine reduction policy to characterize individual differences in nicotine reinforcement thresholds, degree of compensation, and elasticity of demand during progressive reduction of the unit nicotine dose. The ability of individual differences in baseline nicotine intake and nicotine pharmacokinetics to predict responses to dose reduction was also examined. Considerable variability in the reinforcement threshold, compensation, and elasticity of demand was evident. High baseline nicotine intake was not correlated with the reinforcement threshold, but predicted less compensation and less elastic demand. Higher nicotine clearance predicted low reinforcement thresholds, greater compensation, and less elastic demand. Less elastic demand also predicted lower reinforcement thresholds. These findings suggest that baseline nicotine intake, nicotine clearance, and the essential value of nicotine (i.e. elasticity of demand) moderate the effects of progressive nicotine reduction in rats and warrant further study in humans. They also suggest that smokers with fast nicotine metabolism may be more vulnerable to the risks of nicotine reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Grebenstein, Patricia E.; Burroughs, Danielle; Roiko, Samuel A.; Pentel, Paul R.; LeSage, Mark G.
2015-01-01
Background The FDA is considering reducing the nicotine content in tobacco products as a population-based strategy to reduce tobacco addiction. Research is needed to determine the threshold level of nicotine needed to maintain smoking and the extent of compensatory smoking that could occur during nicotine reduction. Sources of variability in these measures across sub-populations also need to be identified so that policies can take into account the risks and benefits of nicotine reduction in vulnerable populations. Methods The present study examined these issues in a rodent nicotine self- administration model of nicotine reduction policy to characterize individual differences in nicotine reinforcement thresholds, degree of compensation, and elasticity of demand during progressive reduction of the unit nicotine dose. The ability of individual differences in baseline nicotine intake and nicotine pharmacokinetics to predict responses to dose reduction was also examined. Results Considerable variability in the reinforcement threshold, compensation, and elasticity of demand was evident. High baseline nicotine intake was not correlated with the reinforcement threshold, but predicted less compensation and less elastic demand. Higher nicotine clearance predicted low reinforcement thresholds, greater compensation, and less elastic demand. Less elastic demand also predicted lower reinforcement thresholds. Conclusions These findings suggest that baseline nicotine intake, nicotine clearance, and the essential value of nicotine (i.e. elasticity of demand) moderate the effects of progressive nicotine reduction in rats and warrant further study in humans. They also suggest that smokers with fast nicotine metabolism may be more vulnerable to the risks of nicotine reduction. PMID:25891231
Porous elastic system with nonlinear damping and sources terms
NASA Astrophysics Data System (ADS)
Freitas, Mirelson M.; Santos, M. L.; Langa, José A.
2018-02-01
We study the long-time behavior of porous-elastic system, focusing on the interplay between nonlinear damping and source terms. The sources may represent restoring forces, but may also be focusing thus potentially amplifying the total energy which is the primary scenario of interest. By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that such unique solutions depend continuously on the initial data. Under some restrictions on the parameters, we also prove that every weak solution to our system blows up in finite time, provided the initial energy is negative and the sources are more dominant than the damping in the system. Additional results are obtained via careful analysis involving the Nehari Manifold. Specifically, we prove the existence of a unique global weak solution with initial data coming from the "good" part of the potential well. For such a global solution, we prove that the total energy of the system decays exponentially or algebraically, depending on the behavior of the dissipation in the system near the origin. We also prove the existence of a global attractor.
Paper focuses on trading schemes in which regulated point sources are allowed to avoid upgrading their pollution control technology to meet water quality-based effluent limits if they pay for equivalent (or greater) reductions in nonpoint source pollution.
A new impulsive seismic shear wave source for near-surface (0-30 m) seismic studies
NASA Astrophysics Data System (ADS)
Crane, J. M.; Lorenzo, J. M.
2010-12-01
Estimates of elastic moduli and fluid content in shallow (0-30 m) natural soils below artificial flood containment structures can be particularly useful in levee monitoring as well as seismic hazard studies. Shear wave moduli may be estimated from horizontally polarized, shear wave experiments. However, long profiles (>10 km) with dense receiver and shot spacings (<1m) cannot be collected efficiently using currently available shear wave sources. We develop a new, inexpensive, shear wave source for collecting fast, shot gathers over large acquisition sites. In particular, gas-charged, organic-rich sediments comprising most lower-delta sedimentary facies, greatly attenuate compressional body-waves. On the other hand, SH waves are relatively insensitive to pore-fluid moduli and can improve resolution. We develop a recoil device (Jolly, 1956) into a single-user, light-weight (<20 kg), impulsive, ground-surface-coupled SH wave generator, which is capable of working at rates of several hundred shotpoints per day. Older impulsive methods rely on hammer blows to ground-planted stationary targets. Our source is coupled to the ground with steel spikes and the powder charge can be detonated mechanically or electronically. Electrical fuses show repeatability in start times of < 50 microseconds. The barrel and shell-holder exceed required thicknesses to ensure complete safety during use. The breach confines a black-powder, 12-gauge shotgun shell, loaded with inert, environmentally safe ballast. In urban settings, produced heat and sound are confined by a detached, exterior cover. A moderate 2.5 g black-powder charge generates seismic amplitudes equivalent to three 4-kg sledge-hammer blows. We test this device to elucidate near subsurface sediment properties at former levee breach sites in New Orleans, Louisiana, USA. Our radio-telemetric seismic acquisition system uses an in-house landstreamer, consisting of 14-Hz horizontal component geophones, coupled to steel plates. Reflected, refracted and surface arrivals resulting from a single shot of this seismic source are comparable in signal, noise, and frequency composition to three stacked hammer blows to a ground-planted stationary target.
NASA Technical Reports Server (NTRS)
1977-01-01
Three-volume reference work serves as catalog of analysis techniques for elastic and inelastic stress ranges and as source on background and development of methods. Information is condensation of published journal articles, industry and university publications, textbooks, and government documents.
Multigrid methods in structural mechanics
NASA Technical Reports Server (NTRS)
Raju, I. S.; Bigelow, C. A.; Taasan, S.; Hussaini, M. Y.
1986-01-01
Although the application of multigrid methods to the equations of elasticity has been suggested, few such applications have been reported in the literature. In the present work, multigrid techniques are applied to the finite element analysis of a simply supported Bernoulli-Euler beam, and various aspects of the multigrid algorithm are studied and explained in detail. In this study, six grid levels were used to model half the beam. With linear prolongation and sequential ordering, the multigrid algorithm yielded results which were of machine accuracy with work equivalent to 200 standard Gauss-Seidel iterations on the fine grid. Also with linear prolongation and sequential ordering, the V(1,n) cycle with n greater than 2 yielded better convergence rates than the V(n,1) cycle. The restriction and prolongation operators were derived based on energy principles. Conserving energy during the inter-grid transfers required that the prolongation operator be the transpose of the restriction operator, and led to improved convergence rates. With energy-conserving prolongation and sequential ordering, the multigrid algorithm yielded results of machine accuracy with a work equivalent to 45 Gauss-Seidel iterations on the fine grid. The red-black ordering of relaxations yielded solutions of machine accuracy in a single V(1,1) cycle, which required work equivalent to about 4 iterations on the finest grid level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quevedo, A; Nicolucci, P
2014-06-01
Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with themore » source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.« less
NASA Astrophysics Data System (ADS)
Sousa, Tânia; Domingos, Tiago
2006-11-01
We develop a unified conceptual and mathematical structure for equilibrium econophysics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical microeconomics and vice versa. Within this conceptual structure the results obtained in microeconomic theory are: (1) the definition of irreversibility in economic behavior; (2) the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the generalization of the Clapeyron equation.
Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity
NASA Astrophysics Data System (ADS)
Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud
2017-01-01
Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.
PML solution of longitudinal wave propagation in heterogeneous media
NASA Astrophysics Data System (ADS)
Farzanian, M.; Arbabi, Freydoon; Pak, Ronald
2016-06-01
This paper describes the development of a model for unbounded heterogeneous domains with radiation damping produced by an unphysical wave absorbing layer. The Perfectly Matched Layer (PML) approach is used along with a displacement-based finite element. The heterogeneous model is validated using the closed-form solution of a benchmark problem: a free rod with two-part modulus subjected to a specified time history. Both elastically supported and unsupported semi-infinite rods with different degrees of inhomogeneity and loading are considered. Numerical results illustrate the effects of inhomogeneity on the response and are compared with those for equivalent homogeneous domains. The effects of characteristic features of the inhomogeneous problem, presence of local maxima and cut-off frequency are determined. A degenerate case of a homogeneous semi-infinite rod on elastic foundations is produced by tending the magnitude of the foundation stiffness to zero. The response of the latter is compared with that of a free rod. The importance of proper selection of the PML parameters to highly accurate and efficient results is demonstrated by example problems.
Ab initio studies of Th3N4, Th2N3 and Th2N2(NH)
NASA Astrophysics Data System (ADS)
Obodo, K. O.; Chetty, N.
2014-09-01
Using density functional theory within the Perdew-Burke-Ernzerhof generalized gradient approximation [GGA (PBE)] implemented in the VASP codes, we investigate the structural, elastic and electronic properties of Th3N4, Th2N3 and Th2N2(NH). The calculated structural properties of these thorium-based nitrides are in good agreement with experimental data. We observe that all the Th-N based compounds that we considered are energetically favorable and elastically stable. We find that Th3N4 is semiconducting with a band gap of 1.59 eV, which compares well with the experimental band gap of 1.7 eV and we find Th2N3 to be metallic. Th2N2(NH), which is crystallographically equivalent to Th2N3, is insulating with a band gap of 2.12 eV. This is due to the -(NH) group that effects a shifting of the energy bands that results in the opening of a gap at the Fermi-level. The Th-N based compounds that we considered are predominantly ionic.
Additive manufacturing of patient-specific tubular continuum manipulators
NASA Astrophysics Data System (ADS)
Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica
2015-03-01
Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.
Exact result in strong wave turbulence of thin elastic plates
NASA Astrophysics Data System (ADS)
Düring, Gustavo; Krstulovic, Giorgio
2018-02-01
An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the
New formulation of the laws of reflection of light
NASA Astrophysics Data System (ADS)
Pérez, Ángel Luis; Martínez, Guadalupe; Suero, María. Isabel
2013-11-01
A new formulation of the laws of reflection of light based on the particle model is presented, and it is shown the equivalence between the new and the classic formulations. The proposed formulation has a significant educational value, as it allows drawing analogies between the phenomena of light reflection and elastic collisions, which are very well known by students. The proposed formulation is: "If at one point on a surface whose orientation in space is defined by a unit vector k, strikes an incident ray corresponding to a plane wave (propagating through a homogeneous and isotropic medium) whose direction of propagation coincides with that from a unit vector ui [expressed in terms of its components with respect to an orthonormal coordinate system, with one of its axis coinciding with the direction of k (ui = uix i + uiy j + uiz k)], it will be reflected so that the unit vector whose direction coincides with that from the reflected ray, ur, will only differ from the unit vector whose direction coincides with that from the incident ray, in the change of the sign of the component in the direction of k (ur = uix i + uiy j - uiz k)". Stated in everyday language, is equivalent of saying that the reflection of light occurs as if the photons underwent perfectly elastic collisions with the surface in question. As an example, this formulation is applied for the resolution of the classic reflection problem of the three plane mirrors forming a trirectangular trihedron.
El Nady, K; Ganghoffer, J F
2016-05-01
The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nonlinear Site Response Validation Studies Using KIK-net Strong Motion Data
NASA Astrophysics Data System (ADS)
Asimaki, D.; Shi, J.
2014-12-01
Earthquake simulations are nowadays producing realistic ground motion time-series in the range of engineering design applications. Of particular significance to engineers are simulations of near-field motions and large magnitude events, for which observations are scarce. With the engineering community slowly adopting the use of simulated ground motions, site response models need to be re-evaluated in terms of their capabilities and limitations to 'translate' the simulated time-series from rock surface output to structural analyses input. In this talk, we evaluate three one-dimensional site response models: linear viscoelastic, equivalent linear and nonlinear. We evaluate the performance of the models by comparing predictions to observations at 30 downhole stations of the Japanese network KIK-Net that have recorded several strong events, including the 2011 Tohoku earthquake. Velocity profiles are used as the only input to all models, while additional parameters such as quality factor, density and nonlinear dynamic soil properties are estimated from empirical correlations. We quantify the differences of ground surface predictions and observations in terms of both seismological and engineering intensity measures, including bias ratios of peak ground response and visual comparisons of elastic spectra, and inelastic to elastic deformation ratio for multiple ductility ratios. We observe that PGV/Vs,30 — as measure of strain— is a better predictor of site nonlinearity than PGA, and that incremental nonlinear analyses are necessary to produce reliable estimates of high-frequency ground motion components at soft sites. We finally discuss the implications of our findings on the parameterization of nonlinear amplification factors in GMPEs, and on the extensive use of equivalent linear analyses in probabilistic seismic hazard procedures.
pacce: Perl algorithm to compute continuum and equivalent widths
NASA Astrophysics Data System (ADS)
Riffel, Rogério; Borges Vale, Tibério
2011-08-01
We present Perl Algorithm to Compute continuum and Equivalent Widths ( pacce). We describe the methods used in the computations and the requirements for its usage. We compare the measurements made with pacce and "manual" ones made using iraf splot task. These tests show that for synthetic simple stellar population (SSP) models the equivalent widths strengths are very similar (differences ≲0.2 Å) for both measurements. In real stellar spectra, the correlation between both values is still very good, but with differences of up to 0.5 Å. pacce is also able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies. In addition, it is also able to compute the uncertainties in the equivalent widths using photon statistics. The code is made available for the community through the web at
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.
Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less
Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.; ...
2017-10-18
Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less
Bjeldanes, L F; Morris, M M; Felton, J S; Healy, S; Stuermer, D; Berry, P; Timourian, H; Hatch, F T
1982-08-01
A survey of mutagen formation during the cooking of a variety of protein-rich foods that are minor sources of protein intake in the American diet is reported (see Bjeldanes, Morris, Felton et al. (1982) for survey of major protein foods). Milk, cheese, tofu and organ meats showed negligible mutagen formation except following high-temperature cooking for long periods of time. Even under the most extreme conditions, tofu, cheese and milk exhibited fewer than 500 Ames/Salmonella typhimurium revertants/100 g equivalents (wet weight of uncooked food), and organ meats only double that amount. Beans showed low mutagen formation after boiling and boiling followed by frying (with and without oil). Only boiling of beans followed by baking for 1 hr gave appreciable mutagenicity (3650 revertants/100g equivalents). Seafood samples gave a variety of results: red snapper, salmon, trout, halibut and rock cod all gave more than 1000 revertants/100 g wet weight equivalents when pan-fried or griddle-fried for about 6 min/side. Baked or poached rock and deep-fried shrimp showed no significant mutagen formation. Broiled lamb chops showed mutagen formation similar to that in red meats tested in the preceding paper: 16,000 revertants/100 g equivalents. These findings show that as measured by bioassay in S. typhimurium, most of the foods that are minor sources of protein in the American diet are also minor sources of cooking-induced mutagens.
Code of Federal Regulations, 2014 CFR
2014-07-01
... program to control air pollution from outer continental shelf sources, under section 328 of the Act; (12... other functionally-equivalent opening. General permit means a part 70 permit that meets the requirements of § 70.6(d). Major source means any stationary source (or any group of stationary sources that are...
Code of Federal Regulations, 2011 CFR
2011-07-01
... program to control air pollution from outer continental shelf sources, under section 328 of the Act; (12... other functionally-equivalent opening. General permit means a part 70 permit that meets the requirements of § 70.6(d). Major source means any stationary source (or any group of stationary sources that are...
Code of Federal Regulations, 2013 CFR
2013-07-01
... program to control air pollution from outer continental shelf sources, under section 328 of the Act; (12... other functionally-equivalent opening. General permit means a part 70 permit that meets the requirements of § 70.6(d). Major source means any stationary source (or any group of stationary sources that are...
Lu-Hf AND Sm-Nd EVOLUTION IN LUNAR MARE BASALTS.
Unruh, D.M.; Stille, P.; Patchett, P.J.; Tatsumoto, M.
1984-01-01
Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small ( less than equivalent to 10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and hf-enriched. Calculated source compositions range from lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite ( less than equivalent to 3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts reveals that the epsilon Hf/ epsilon Nd ratios in low-Ti mare basalts are much higher than in terrestrial ocean basalts.
Zhang, Chi; Tang, Wei; Han, Changbao; Fan, Fengru; Wang, Zhong Lin
2014-06-11
Triboelectric nanogenerator (TENG) is a newly invented technology that is effective using conventional organic materials with functionalized surfaces for converting mechanical energy into electricity, which is light weight, cost-effective and easy scalable. Here, we present the first systematic analysis and comparison of EMIG and TENG from their working mechanisms, governing equations and output characteristics, aiming at establishing complementary applications of the two technologies for harvesting various mechanical energies. The equivalent transformation and conjunction operations of the two power sources for the external circuit are also explored, which provide appropriate evidences that the TENG can be considered as a current source with a large internal resistance, while the EMIG is equivalent to a voltage source with a small internal resistance. The theoretical comparison and experimental validations presented in this paper establish the basis of using the TENG as a new energy technology that could be parallel or possibly equivalently important as the EMIG for general power application at large-scale. It opens a field of organic nanogenerator for chemists and materials scientists who can be first time using conventional organic materials for converting mechanical energy into electricity at a high efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimating Equivalency of Explosives Through A Thermochemical Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J L
2002-07-08
The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, andmore » show comparisons with equivalency data from other sources.« less
Bone material elasticity in a murine model of osteogenesis imperfecta.
Mehta, S S; Antich, P P; Landis, W J
1999-01-01
To investigate the source of bone brittleness in the disease osteogenesis imperfecta (OI), biomechanical properties have been measured in the femurs from a homozygous (oim/oim) mutant mouse model of OI, its heterozygous littermates, and wild-type animals. The novel technique of ultrasound critical-angle reflectometry (UCR) was used to determine bone material elasticity matrix from measurements of the pressure and shear wave velocity at different orientations about selected points of the bone specimens. This nondestructive method is the only available means for obtaining measurements of this nature from a single surface. The ultrasound pressure wave velocity showed an increased isotropy in the homozygous compared to the wild-type specimens. This was reflected in a significant decrease in the principal elastic modulus measured along the length of the oim/oim bones (E33) while the modulus along the width (E11) did not change significantly, compared to wild-type specimens. The Poisson's ratio, v12, also had a significantly increased value in oim/oim bones. Measurements of these parameters in heterozygous animals generally fell between those from homozygous and control mice. The differences in the elasticity components in oim/oim bones indicate an altered stress distribution and a modified elastic response to loads, compared to normal bone.
Aspiring to Spectral Ignorance in Earth Observation
NASA Astrophysics Data System (ADS)
Oliver, S. A.
2016-12-01
Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.
Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.
Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D
2009-12-01
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.
NASA Astrophysics Data System (ADS)
Pantelis, E.; Karlis, A. K.; Kozicki, M.; Papagiannis, P.; Sakelliou, L.; Rosiak, J. M.
2004-08-01
The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.
Pantelis, E; Karlis, A K; Kozicki, M; Papagiannis, P; Sakelliou, L; Rosiak, J M
2004-08-07
The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.
Relating stress models of magma emplacement to volcano-tectonic earthquakes
NASA Astrophysics Data System (ADS)
Vargas-Bracamontes, D.; Neuberg, J.
2007-12-01
Among the various types of seismic signals linked to volcanic processes, volcano-tectonic earthquakes are probably the earliest precursors of volcanic eruptions. Understanding their relationship with magma emplacement can provide insight into the mechanisms of magma transport at depth and assist in the ultimate goal of forecasting eruptions. Volcano-tectonic events have been observed to occur on faults that experience increases in Coulomb stress changes as the result of magma intrusions. To simulate stress changes associated with magmatic injections, we test different models of volcanic sources in an elastic half-space. For each source model, we look at several aspects that influence the stress conditions of the magmatic system such as the regional tectonic setting, the effect of varying the elastic parameters of the media, the evolution of the magma with time, as well as the volume and rheology of the ascending magma.
NASA Astrophysics Data System (ADS)
Perton, Mathieu; Contreras-Zazueta, Marcial A.; Sánchez-Sesma, Francisco J.
2016-06-01
A new implementation of indirect boundary element method allows simulating the elastic wave propagation in complex configurations made of embedded regions that are homogeneous with irregular boundaries or flat layers. In an older implementation, each layer of a flat layered region would have been treated as a separated homogeneous region without taking into account the flat boundary information. For both types of regions, the scattered field results from fictitious sources positioned along their boundaries. For the homogeneous regions, the fictitious sources emit as in a full-space and the wave field is given by analytical Green's functions. For flat layered regions, fictitious sources emit as in an unbounded flat layered region and the wave field is given by Green's functions obtained from the discrete wavenumber (DWN) method. The new implementation allows then reducing the length of the discretized boundaries but DWN Green's functions require much more computation time than the full-space Green's functions. Several optimization steps are then implemented and commented. Validations are presented for 2-D and 3-D problems. Higher efficiency is achieved in 3-D.
A program to calculate pulse transmission responses through transversely isotropic media
NASA Astrophysics Data System (ADS)
Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei
2018-05-01
We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.
An Improved Elastic and Nonelastic Neutron Transport Algorithm for Space Radiation
NASA Technical Reports Server (NTRS)
Clowdsley, Martha S.; Wilson, John W.; Heinbockel, John H.; Tripathi, R. K.; Singleterry, Robert C., Jr.; Shinn, Judy L.
2000-01-01
A neutron transport algorithm including both elastic and nonelastic particle interaction processes for use in space radiation protection for arbitrary shield material is developed. The algorithm is based upon a multiple energy grouping and analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. The algorithm is then coupled to the Langley HZETRN code through a bidirectional neutron evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for an aluminum water shield-target configuration is then compared with MCNPX and LAHET Monte Carlo calculations for the same shield-target configuration. With the Monte Carlo calculation as a benchmark, the algorithm developed in this paper showed a great improvement in results over the unmodified HZETRN solution. In addition, a high-energy bidirectional neutron source based on a formula by Ranft showed even further improvement of the fluence results over previous results near the front of the water target where diffusion out the front surface is important. Effects of improved interaction cross sections are modest compared with the addition of the high-energy bidirectional source terms.
Sonar Imaging of Elastic Fluid-Filled Cylindrical Shells.
NASA Astrophysics Data System (ADS)
Dodd, Stirling Scott
1995-01-01
Previously a method of describing spherical acoustic waves in cylindrical coordinates was applied to the problem of point source scattering by an elastic infinite fluid -filled cylindrical shell (S. Dodd and C. Loeffler, J. Acoust. Soc. Am. 97, 3284(A) (1995)). This method is applied to numerically model monostatic oblique incidence scattering from a truncated cylinder by a narrow-beam high-frequency imaging sonar. The narrow beam solution results from integrating the point source solution over the spatial extent of a line source and line receiver. The cylinder truncation is treated by the method of images, and assumes that the reflection coefficient at the truncation is unity. The scattering form functions, calculated using this method, are applied as filters to a narrow bandwidth, high ka pulse to find the time domain scattering response. The time domain pulses are further processed and displayed in the form of a sonar image. These images compare favorably to experimentally obtained images (G. Kaduchak and C. Loeffler, J. Acoust. Soc. Am. 97, 3289(A) (1995)). The impact of the s_{ rm o} and a_{rm o} Lamb waves is vividly apparent in the images.
NASA Astrophysics Data System (ADS)
Ladygin, V. P.; Averyanov, A. V.; Chernykh, E. V.; Enache, D.; Gurchin, Yu V.; Isupov, A. Yu; Janek, M.; Karachuk, J.-T.; Khrenov, A. N.; Krivenkov, D. O.; Kurilkin, P. K.; Ladygina, N. B.; Livanov, A. N.; Piyadin, S. M.; Reznikov, S. G.; Skhomenko, Ya T.; Terekhin, A. A.; Tishevsky, A. V.; Uesaka, T.
2017-12-01
New results on the vector Ay and tensor Ayy and Axx analyzing powers in deuteron-proton elastic scattering obtained at Nuclotron in the energy range 400-1800 MeV are presented. These data have been obtained in 2016-2017 at DSS setup at internal target station using polarized deuteron beam from new source of polarized ions. The preliminary data on the deuteron analyzing powers in in the wide energy range demonstrate the sensitivity to the short-range spin structure of the nucleon-nucleon correlations.
Elastic Cloud Computing Infrastructures in the Open Cirrus Testbed Implemented via Eucalyptus
NASA Astrophysics Data System (ADS)
Baun, Christian; Kunze, Marcel
Cloud computing realizes the advantages and overcomes some restrictionsof the grid computing paradigm. Elastic infrastructures can easily be createdand managed by cloud users. In order to accelerate the research ondata center management and cloud services the OpenCirrusTM researchtestbed has been started by HP, Intel and Yahoo!. Although commercialcloud offerings are proprietary, Open Source solutions exist in the field ofIaaS with Eucalyptus, PaaS with AppScale and at the applications layerwith Hadoop MapReduce. This paper examines the I/O performance ofcloud computing infrastructures implemented with Eucalyptus in contrastto Amazon S3.
Stiffness of frictional contact of dissimilar elastic solids
Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; ...
2017-12-22
The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less
Stiffness of frictional contact of dissimilar elastic solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.
The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less
Stiffness of frictional contact of dissimilar elastic solids
NASA Astrophysics Data System (ADS)
Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; Xu, Haitao; Pharr, George M.
2018-03-01
The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This paper gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the friction coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations - adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. The correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.
NASA Astrophysics Data System (ADS)
Pavese, Alessandro; Diella, Valeria
2010-09-01
The present work aims in discussing a principle that distinguishes between elastic parameters sets, \\{ Upphi \\} equiv \\{ K0 , K^', V0 ,ldots\\} , on the basis of an energetic criterion: once a reference set, \\{ UpphiR \\} , is given, another one can be fixed, left\\{ {Upphi_{ min } } right\\} , so that they are as close as possible to each other, but yield non-equivalent deformation energy curves Updelta G(\\{ Upphi \\} )_{text{deform}} , i.e. they give Updelta G(\\{ UpphiR \\} )_{text{deform}} and Updelta G(\\{ Upphi_{ min } \\} )_{text{deform}} such that left| {Updelta G(\\{ Upphi_{ min } \\} )_{text{deform}} - Updelta G(\\{ UpphiR \\} )_{text{deform}} } right| ge 1× σ [Updelta G_{text{deform}} ]. Δ G deform, calculated using the equation of state (EoS), and its uncertainty σ[Δ G deform], obtained by a propagation of the errors affecting \\{ Upphi \\} are crucial to fix which mineral assemblage forms at P- T conditions and allow one to assess the reliability of such a prediction. We explore some properties related to the principle introduced, using the average values of the elastic parameters found in literature and related uncertainties for di-octahedral mica, olivine, garnet and clinopyroxene. Two elementary applications are briefly discussed: the effect of refining V 0 in fitting EoSs to P-V experimental data, in the case of garnet and omphacite, and the phengite 3 T-2 M 1 relative stability, controlled by pressure.
Near Identifiability of Dynamical Systems
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Bekey, G. A.
1987-01-01
Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.
Using an elastic magnifier to increase power output and performance of heart-beat harvesters
NASA Astrophysics Data System (ADS)
Galbier, Antonio C.; Karami, M. Amin
2017-09-01
Embedded piezoelectric energy harvesting (PEH) systems in medical pacemakers have been a growing and innovative research area. The goal of these systems, at present, is to remove the pacemaker battery, which makes up 60%-80% of the unit, and replace it with a sustainable power source. This requires that energy harvesting systems provide sufficient power, 1-3 μW, for operating a pacemaker. The goal of this work is to develop, test, and simulate cantilevered energy harvesters with a linear elastic magnifier (LEM). This research hopes to provide insight into the interaction between pacemaker energy harvesters and the heart. By introducing the elastic magnifier into linear and nonlinear systems oscillations of the tip are encouraged into high energy orbits and large tip deflections. A continuous nonlinear model is presented for the bistable piezoelectric energy harvesting (BPEH) system and a one-degree-of-freedom linear mass-spring-damper model is presented for the elastic magnifier. The elastic magnifier will not consider the damping negligible, unlike most models. A physical model was created for the bistable structure and formed to an elastic magnifier. A hydrogel was designed for the experimental model for the LEM. Experimental results show that the BPEH coupled with a LEM (BPEH + LEM) produces more power at certain input frequencies and operates a larger bandwidth than a PEH, BPEH, and a standard piezoelectric energy harvester with the elastic magnifier (PEH + LEM). Numerical simulations are consistent with these results. It was observed that the system enters high-energy and high orbit oscillations and that, ultimately, BPEH systems implemented in medical pacemakers can, if designed properly, have enhanced performance if positioned over the heart.
Elastic wave induced by friction as a signature of human skin ageing and gender effect.
Djaghloul, M; Morizot, F; Zahouani, H
2016-08-01
In this work, we propose an innovative approach based on a rotary tribometer coupled with laser velocimetry for measuring the elastic wave propagation on the skin. The method is based on a dynamic contact with the control of the normal force (Fn ), the contact length and speed. During the test a quantification of the friction force is produced. The elastic wave generated by friction is measured at the surface of the skin 35 mm from the source of friction exciter. In order to quantify the spectral range and the energy property of the wave generated, we have used laser velocimetry whose spot laser diameter is 120 μm, which samples the elastic wave propagation at a frequency which may reach 100 kHz. In this configuration, the speaker is the friction exciter and the listener the laser velocimetry. In order to perform non-invasive friction tests, the normal stress has been set to 0.3 N and the rotary velocity to 3 revolutions per second, which involves a sliding velocity of 63 mm/s. This newly developed innovative tribometer has been used for the analysis of the elastic wave propagation induced by friction on human skin during chronological ageing and gender effect. Measurements in vivo have been made on 60 healthy men and women volunteers, aged from 25 to 70. The results concerning the energy of the elastic wave signature induced by friction show a clear difference between the younger and older groups in the range of a low band of frequencies (0-200 Hz). The gender effect was marked by a 20% decrease in the energy of elastic wave propagation in the female group. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cheviakov, A F; Ganghoffer, J-F
2016-05-01
The framework of incompressible nonlinear hyperelasticity and viscoelasticity is applied to the derivation of one-dimensional models of nonlinear wave propagation in fiber-reinforced elastic solids. Equivalence transformations are used to simplify the resulting wave equations and to reduce the number of parameters. Local conservation laws and global conserved quantities of the models are systematically computed and discussed, along with other related mathematical properties. Sample numerical solutions are presented. The models considered in the paper are appropriate for the mathematical description of certain aspects of the behavior of biological membranes and similar structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Squeezing as a route to photonic analogues of topological superconductors
NASA Astrophysics Data System (ADS)
Houde, Martin; Peano, Vittorio; Brendel, Christian; Marquardt, Florian; Clerk, Aashish
There has been considerable recent interest in studying topological phases of photonic systems. In many cases the resulting system is described by a quadratic particle-conserving Hamiltonian which is directly equivalent to its fermionic counterpart. Here, we consider a class of photonic topological phases where this correspondence fails: photonic systems where particle-number non-conserving terms break time-reversal symmetry. We show that these phases support protected edge modes which facilitate chiral inelastic and elastic transport channels. We also discuss the possibility of quantum amplification using these edge states. Our system could be realized in a variety of systems, including nonlinear photonic crystals, superconducting circuits and optomechanical systems.
Simulation of scattered fields: Some guidelines for the equivalent source method
NASA Astrophysics Data System (ADS)
Gounot, Yves J. R.; Musafir, Ricardo E.
2011-07-01
Three different approaches of the equivalent source method for simulating scattered fields are compared: two of them deal with monopole sets, the other with multipole expansions. In the first monopole approach, the sources have fixed positions given by specific rules, while in the second one (ESGA), the optimal positions are determined via a genetic algorithm. The 'pros and cons' of each of these approaches are discussed with the aim of providing practical guidelines for the user. It is shown that while both monopole techniques furnish quite good pressure field reconstructions with simple source arrangements, ESGA requires a number of monopoles significantly smaller and, with equal number of sources, yields a better precision. As for the multipole technique, the main advantage is that in principle any precision can be reached, provided the source order is sufficiently high. On the other hand, the results point out that the lack of rules for determining the proper multipole order necessary for a desired precision may constitute a handicap for the user.
Base course resilient modulus for the mechanistic-empirical pavement design guide : [summary].
DOT National Transportation Integrated Search
2011-01-01
Elastic modulus determination is often used in designing pavements and evaluating pavement performance. The Mechanistic-Empirical Pavement Design Guide (MEPDG) has become an important source of guidance for pavement design and rehabilitation. MEPDG r...
Telschow, K.L.; Siu, B.K.
1996-07-09
A method of evaluating integrity of adherence of a conductor bond to a substrate includes: (a) impinging a plurality of light sources onto a substrate; (b) detecting optical reflective signatures emanating from the substrate from the impinged light; (c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; (d) determining a target site on the selected conductor bond from the detected reflective signatures; (e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; (f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and (g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method. 13 figs.
Telschow, Kenneth L.; Siu, Bernard K.
1996-01-01
A method of evaluating integrity of adherence of a conductor bond to a substrate includes: a) impinging a plurality of light sources onto a substrate; b) detecting optical reflective signatures emanating from the substrate from the impinged light; c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; d) determining a target site on the selected conductor bond from the detected reflective signatures; e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method.
Stress-induced modification of the boson peak scaling behavior.
Corezzi, Silvia; Caponi, Silvia; Rossi, Flavio; Fioretto, Daniele
2013-11-21
The scaling behavior of the so-called boson peak in glass-formers and its relation to the elastic properties of the system remains a source of controversy. Here the boson peak in a binary reactive mixture is measured by Raman scattering (i) on cooling the unreacted mixture well below its glass-transition temperature and (ii) after quenching to very low temperature the mixture at different times during isothermal polymerization. We find that the scaling behavior of the boson peak with the properties of the elastic medium - as measured by the Debye frequency - holds for states in which the elastic moduli follow a generalized Cauchy-like relationship, and breaks down in coincidence with the departure from this relation. A possible explanation is given in terms of the development of long-range stresses in glasses. The present study provides new insight into the boson peak behavior and is able to reconcile the apparently conflicting results presented in literature.
[Indoor air pollution by polychlorinated biphenyl compounds in permanently elastic sealants].
Burkhardt, U; Bork, M; Balfanz, E; Leidel, J
1990-10-01
A common cause for indoor pollution by polycholorinated biphenyls (PCB) are defective capacitors of luminous discharge lamps. This paper describes elastic sealing compounds as another source of PCB pollution in buildings. In several rooms of a large school building indoor concentrations of 1000 ng PCB/m3 and more were registered. The total PCB concentration in sealing compounds ranged between 124,000 and 327,000 ppm. Blood specimens drawn from the school's personnel did not show elevated PCB concentrations, but additional incorporation of PCB via the respiratory tract cannot be excluded. We do not presume that any impairment of the health has been caused by this pollutant, but we think that reduction of the PCB indoor concentrations would be advisable for prophylactic purposes. Attention should be given to so-called open PCB systems such as elastic sealing compounds. Although they have been prohibited 1978, there might be a widespread use in older buildings.
NASA Astrophysics Data System (ADS)
Idrisi, Kamal; Johnson, Marty E.; Toso, Alessandro; Carneal, James P.
2009-06-01
This paper is concerned with the modeling and optimization of heterogeneous (HG) blankets, which are used in this investigation to reduce the sound transmission through double panel systems. HG blankets consist of poro-elastic media with small embedded masses, which act similarly to a distributed mass-spring-damper-system. HG blankets have shown significant potential to reduce low frequency radiated sound from structures, where traditional poro-elastic materials have little effect. A mathematical model of a double panel system with an acoustic cavity and HG blanket was developed using impedance and mobility methods. The predicted responses of the source and the receiving panel due to a point force are validated with experimental measurements. The presented results indicate that proper tuning of the HG blankets can result in broadband noise reduction below 500 Hz with less than 10% added mass.
Fahnline, John B
2016-12-01
An equivalent source method is developed for solving transient acoustic boundary value problems. The method assumes the boundary surface is discretized in terms of triangular or quadrilateral elements and that the solution is represented using the acoustic fields of discrete sources placed at the element centers. Also, the boundary condition is assumed to be specified for the normal component of the surface velocity as a function of time, and the source amplitudes are determined to match the known elemental volume velocity vector at a series of discrete time steps. Equations are given for marching-on-in-time schemes to solve for the source amplitudes at each time step for simple, dipole, and tripole source formulations. Several example problems are solved to illustrate the results and to validate the formulations, including problems with closed boundary surfaces where long-time numerical instabilities typically occur. A simple relationship between the simple and dipole source amplitudes in the tripole source formulation is derived so that the source radiates primarily in the direction of the outward surface normal. The tripole source formulation is shown to eliminate interior acoustic resonances and long-time numerical instabilities.
Bush, Linda; Stevenson, Leo; Lane, Katie E
2017-10-23
There is growing demand for functional food products enriched with long chain omega-3 polyunsaturated fatty acids (LCω3PUFA). Nanoemulsions, systems with extremely small droplet sizes have been shown to increase LCω3PUFA bioavailability. However, nanoemulsion creation and processing methods may impact on the oxidative stability of these systems. The present systematic review collates information from studies that evaluated the oxidative stability of LCω3PUFA nanoemulsions suitable for use in functional foods. The systematic search identified seventeen articles published during the last 10 years. Researchers used a range of surfactants and antioxidants to create systems which were evaluated from 7 to 100 days of storage. Nanoemulsions were created using synthetic and natural emulsifiers, with natural sources offering equivalent or increased oxidative stability compared to synthetic sources, which is useful as consumers are demanding natural, cleaner label food products. Equivalent vegetarian sources of LCω3PUFA found in fish oils such as algal oils are promising as they provide direct sources without the need for conversion in the human metabolic pathway. Quillaja saponin is a promising natural emulsifier that can produce nanoemulsion systems with equivalent/increased oxidative stability in comparison to other emulsifiers. Further studies to evaluate the oxidative stability of quillaja saponin nanoemulsions combined with algal sources of LCω3PUFA are warranted.
40 CFR 430.57 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... when POTWs find it necessary to impose mass effluent standards, equivalent mass standards are provided... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY...
40 CFR 430.57 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... when POTWs find it necessary to impose mass effluent standards, equivalent mass standards are provided... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY...
40 CFR 430.57 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... when POTWs find it necessary to impose mass effluent standards, equivalent mass standards are provided... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY...
Topology optimization of two-dimensional elastic wave barriers
NASA Astrophysics Data System (ADS)
Van hoorickx, C.; Sigmund, O.; Schevenels, M.; Lazarov, B. S.; Lombaert, G.
2016-08-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is inserted into a design domain situated between the source and the receiver to minimize wave transmission. At low frequencies, the stiffened material reflects and guides waves away from the surface. At high frequencies, destructive interference is obtained that leads to high values of the insertion loss. To handle harmonic sources at a frequency in a given range, a uniform reduction of the response over a frequency range is pursued. The minimal insertion loss over the frequency range of interest is maximized. The resulting design contains features at depth leading to a reduction of the insertion loss at the lowest frequencies and features close to the surface leading to a reduction at the highest frequencies. For broadband sources, the average insertion loss in a frequency range is optimized. This leads to designs that especially reduce the response at high frequencies. The designs optimized for the frequency averaged insertion loss are found to be sensitive to geometric imperfections. In order to obtain a robust design, a worst case approach is followed.
NASA Astrophysics Data System (ADS)
Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic
2014-03-01
The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... CO 2 carbon dioxide CO 2 e carbon dioxide equivalent CBI confidential business information CFR Code... RFA Regulatory Flexibility Act T-D transmission--distribution UIC Underground Injection Control UMRA... to or greater than 25,000 metric tons carbon dioxide equivalent (mtCO 2 e). The proposed...
National Snow Analyses - NOHRSC - The ultimate source for snow information
Equivalent Thumbnail image of Modeled Snow Water Equivalent Animate: Season --- Two weeks --- One Day Snow Depth Thumbnail image of Modeled Snow Depth Animate: Season --- Two weeks --- One Day Average Snowpack Temp Thumbnail image of Modeled Average Snowpack Temp Animate: Season --- Two weeks --- One Day SWE
Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Kevin B; Walton, Otis R; Benjamin, Russ
2014-09-29
A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled asmore » a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth-of-burial until it reached a value of one at a DOB between 15m and 20m. These simulations confirm the expected result that the variation of coupling to the ground, or the air, change s much more rapidly with emplacement location for a high-energy-density (i.e., nuclear-like) explosive source than it does for relatively low - energy - density chemical explosive sources. The Energy Partitioning, Energy Coupling (EPEC) platform at LLNL utilizes laser energy from one quad (i.e. 4-laser beams) of the 192 - beam NIF Laser bank to deliver ~10kJ of energy to 1mg of silver in a hohlraum creating an effective small-explosive ‘source’ with an energy density comparable to those in low-yield nuclear devices. Such experiments have the potential to provide direct experimental confirmation of the simulation results obtained in this study, at a physical scale (and time-scale) which is a factor of 1000 smaller than the spatial- or temporal-scales typically encountered when dealing with nuclear explosions.« less
A Global Upper-Mantle Tomographic Model of Shear Attenuation
NASA Astrophysics Data System (ADS)
Karaoglu, H.; Romanowicz, B. A.
2016-12-01
Mapping anelastic 3D structure within the earth's mantle is key to understanding present day mantle dynamics, as it provides complementary constraints to those obtained from elastic structure, with the potential to distinguish between thermal and compositional heterogeneity. For this, we need to measure seismic wave amplitudes, which are sensitive to both elastic (through focusing and scattering) and anelastic structure. The elastic effects are less pronounced at long periods, so previous global upper-mantle attenuation models are based on teleseismic surface wave data, sometimes including overtones. In these studies, elastic effects are considered either indirectly, by eliminating data strongly contaminated by them (e.g. Romanowicz, 1995; Gung and Romanowicz, 2004), or by correcting for elastic focusing effects using an approximate linear approach (Dalton et al., 2008). Additionally, in these studies, the elastic structure is held fixed when inverting for intrinsic attenuation . The importance of (1) having a good starting elastic model, (2) accurate modeling of the seismic wavefield and (3) joint inversion for elastic and anelastic structure, becomes more evident as the targeted resolution level increases. Also, velocity dispersion effects due to anelasticity need to be taken into account. Here, we employ a hybrid full waveform inversion method, inverting jointly for global elastic and anelastic upper mantle structure, starting from the latest global 3D shear velocity model built by our group (French and Romanowicz, 2014), using the spectral element method for the forward waveform modeling (Capdeville et al., 2003), and normal-mode perturbation theory (NACT - Li and Romanowicz, 1995) for kernel computations. We present a 3D upper-mantle anelastic model built by using three component fundamental and overtone surface waveforms down to 60 s as well as long period body waveforms down to 30 s. We also include source and site effects to first order as frequency independent scalar factors. The robustness of the inversion method is assessed through synthetic and resolution tests. We discuss salient features of the resulting anelastic model and in particular the well-resolved strong correlation with tectonics observed in the first 200 km of the mantle.
Challies, Danna M; Hunt, Maree; Garry, Maryanne; Harper, David N
2011-01-01
The misinformation effect is a term used in the cognitive psychological literature to describe both experimental and real-world instances in which misleading information is incorporated into an account of an historical event. In many real-world situations, it is not possible to identify a distinct source of misinformation, and it appears that the witness may have inferred a false memory by integrating information from a variety of sources. In a stimulus equivalence task, a small number of trained relations between some members of a class of arbitrary stimuli result in a large number of untrained, or emergent relations, between all members of the class. Misleading information was introduced into a simple memory task between a learning phase and a recognition test by means of a match-to-sample stimulus equivalence task that included both stimuli from the original learning task and novel stimuli. At the recognition test, participants given equivalence training were more likely to misidentify patterns than those who were not given such training. The misinformation effect was distinct from the effects of prior stimulus exposure, or partial stimulus control. In summary, stimulus equivalence processes may underlie some real-world manifestations of the misinformation effect. PMID:22084495
NASA Astrophysics Data System (ADS)
Demirel, Mehmet; Moradkhani, Hamid
2015-04-01
Changes in two climate elasticity indices, i.e. temperature and precipitation elasticity of streamflow, were investigated using an ensemble of bias corrected CMIP5 dataset as forcing to two hydrologic models. The Variable Infiltration Capacity (VIC) and the Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic models, were calibrated at 1/16 degree resolution and the simulated streamflow was routed to the basin outlet of interest. We estimated precipitation and temperature elasticity of streamflow from: (1) observed streamflow; (2) simulated streamflow by VIC and SAC-SMA models using observed climate for the current climate (1963-2003); (3) simulated streamflow using simulated climate from 10 GCM - CMIP5 dataset for the future climate (2010-2099) including two concentration pathways (RCP4.5 and RCP8.5) and two downscaled climate products (BCSD and MACA). The streamflow sensitivity to long-term (e.g., 30-year) average annual changes in temperature and precipitation is estimated for three periods i.e. 2010-40, 2040-70 and 2070-99. We compared the results of the three cases to reflect on the value of precipitation and temperature indices to assess the climate change impacts on Columbia River streamflow. Moreover, these three cases for two models are used to assess the effects of different uncertainty sources (model forcing, model structure and different pathways) on the two climate elasticity indices.
Real time studies of Elastic Moduli Pu Aging using Resonant Ultrasound Spectroscopy
NASA Astrophysics Data System (ADS)
Maiorov, Boris
Elastic moduli are fundamental thermodynamic susceptibilities that connect directly to thermodynamics, electronic structure and give important information about mechanical properties. To determine the time evolution of the elastic properties in 239Pu and it Ga alloys, is imperative to study its phase stability and self-irradiation damage process. The most-likely sources of these changes include a) ingrowth of radioactive decay products like He and U, b) the introduction of radiation damage, c) δ-phase instabilities towards α-Pu or to Pu3Ga. The measurement of mechanical resonance frequencies can be made with extreme precision and used to compute the elastic moduli without corrections giving important insight in this problem. Using Resonant Ultrasound Spectroscopy, we measured the time dependence of the mechanical resonance frequencies of fine-grained polycrystalline δ-phase 239Pu, from 300K up to 480K. At room temperature, the shear modulus shows an increase in time (stiffening), but the bulk modulus decreases (softening). These are the first real-time measurements of room temperature aging of the elastic moduli, and the changes are consistent with elastic moduli measurements performed on 44 year old δ-Pu. As the temperature is increased, the rate of change increases exponentially, with both moduli becoming stiffer with time. For T>420K an abrupt change in the time dependence is observed indicating that the bulk and shear moduli have opposite rates of change. Our measurements provide a basis for ruling out the decomposition of δ-Pu towards α-Pu or Pu3Ga, and indicate a complex defect-related scenario from which we are gathering important clues.
Alternative Fuels Data Center: Delaware Transportation Data for Alternative
local stakeholders. Gasoline Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Plants 1 Renewable Power Plant Capacity (nameplate, MW) 2 Source: BioFuels Atlas from the National /gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Central Atlantic
Jewish Studies: A Guide to Reference Sources.
ERIC Educational Resources Information Center
McGill Univ., Montreal (Quebec). McLennan Library.
An annotated bibliography to the reference sources for Jewish Studies in the McLennan Library of McGill University (Canada) is presented. Any titles in Hebrew characters are listed by their transliterated equivalents. There is also a list of relevant Library of Congress Subject Headings. General reference sources listed are: encyclopedias,…
Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S
2013-01-01
[1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442
NASA Astrophysics Data System (ADS)
Robert, Hillard; William, Howland; Bryan, Snyder
2002-03-01
Determination of the electrical properties of semiconductor materials and dielectrics is highly desirable since these correlate best to final device performance. The properties of SiO2 and high k dielectrics such as Equivalent Oxide Thickness(EOT), Interface Trap Density(Dit), Oxide Effective Charge(Neff), Flatband Voltage Hysteresis(Delta Vfb), Threshold Voltage(VT) and, bulk properties such as carrier density profile and channel dose are all important parameters that require monitoring during front end processing. Conventional methods for determining these parameters involve the manufacturing of polysilicon or metal gate MOS capacitors and subsequent measurements of capacitance-voltage(CV) and/or current-voltage(IV). These conventional techniques are time consuming and can introduce changes to the materials being monitored. Also, equivalent circuit effects resulting from excessive leakage current, series resistance and stray inductance can introduce large errors in the measured results. In this paper, a new method is discussed that provides rapid determination of these critical parameters and is robust against equivalent circuit errors. This technique uses a small diameter(30 micron), elastically deformed probe to form a gate for MOSCAP CV and IV and can be used to measure either monitor wafers or test areas within scribe lines on product wafers. It allows for measurements of dielectrics thinner than 10 Angstroms. A detailed description and applications such as high k dielectrics, will be presented.
NASA Astrophysics Data System (ADS)
Antoun, T.; Ezzedine, S. M.; Vorobiev, O.; Pitarka, A.; Hurley, R.; Hirakawa, E. T.; Glenn, L.; Walter, W. R.
2016-12-01
LLNL has developed a framework for uncertainty propagation and quantification using HPC numerical codes to simulate end-to-end, from source to receivers, the ground motions observed during the Source Physics Experiments (SPE) conducted in fractured granitic rock at the Nevada National Security Site (NNSS). SPE includes six underground chemical explosions designed with different yields initiated at different depths. To date we have successfully applied this framework to explain the near-field shear motions observed in the vicinity of SPE3 thru SPE5. However, systematic uncertainty propagation to the far-field seismic receiver has not been addressed yet. In the current study, we used a coupling between the non-linear inelastic hydrodynamic regime in the near-field and the seismic elastic regime in the far-field to conduct the analysis. Several realizations of the stochastic discrete fracture network were generated conditional to the observed sparse data. These realizations were then used to calculate the ground motions generated from the SPE shots up to the elastic radius. The latter serves as the handshake interface for the far-field simulations. By creating several realizations of near-field responses one can embed those sources into the far-field elastic wave code and further the uncertainty propagation to the receivers. We will present a full assessment from end-to-end for the near- and far-field measurements. Separate analyses of the effect of the different conceptual geological models are also carried over using a nested Monte Carlo scheme. We compare the observed frequency content at several gages with the simulated ones. We conclude that both regions experience different sampling of frequencies: small features are relevant to near-field simulations while larger feature are more dominant at the far-field. We finally rank the primary sensitive parameters for both regions to drive and refine the field characterization data collection.
Transport of photons produced by lightning in clouds
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard
1991-01-01
The optical effects of the light produced by lightning are of interest to atmospheric scientists for a number of reasons. Two techniques are mentioned which are used to explain the nature of these effects: Monte Carlo simulation; and an equivalent medium approach. In the Monte Carlo approach, paths of individual photons are simulated; a photon is said to be scattered if it escapes the cloud, otherwise it is absorbed. In the equivalent medium approach, the cloud is replaced by a single obstacle whose properties are specified by bulk parameters obtained by methods due to Twersky. Herein, Boltzmann transport theory is used to obtain photon intensities. The photons are treated like a Lorentz gas. Only elastic scattering is considered and gravitational effects are neglected. Water droplets comprising a cuboidal cloud are assumed to be spherical and homogeneous. Furthermore, it is assumed that the distribution of droplets in the cloud is uniform and that scattering by air molecules is neglible. The time dependence and five dimensional nature of this problem make it particularly difficult; neither analytic nor numerical solutions are known.
Constitutive relations describing creep deformation for multi-axial time-dependent stress states
NASA Astrophysics Data System (ADS)
McCartney, L. N.
1981-02-01
A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.
NASA Astrophysics Data System (ADS)
Grgec Bermanec, L.; Pantic, D.; Ramac, B.
2018-01-01
Bilateral comparison was organized between the laboratory for process measurement of the Croatian Metrology Institute (HMI/FSB-LPM) and the pressure laboratory of the Directorate of Measures and Precious Metals of the Republic of Serbia (DMDM). Laboratory for process measurement of HMI acted as the pilot laboratory. The aim of the comparison was to evaluate the degree of equivalence in the determination of effective area and elastic distortion coefficient, considering respective uncertainties of the two laboratories. Measurements were done on the pressure balance in gauge mode, with oil as transmitting medium, in the gauge pressure range 10–80 MPa. The results of the comparison successfully demonstrated that the hydraulic gauge pressure standards are equivalent within their claimed uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Astrophysics Data System (ADS)
Hedge, Jonathan S.; Mc Leod, Roger D.
2002-10-01
Electromagnetic field (EMF) signals may be associated with certain "artifacts" of N.E., such as N.H.'s "Old Man of the Mountain," or its possible "equivalents," as on the Penley Hill ledge at Mexico, ME, or the "enhanced" smaller versions at Mashamocket Brook State Park, CT, Potato Cave at Acton, MA, and especially a site in Lowell, MA, which may date to AD1069. Without physical evidence, they could be dismissed as figments of the imagination. Can electromagnetic signals be correlated with the Lowell site, which RDM observed as it tipped over a 27" TV set? It seems to generate somewhat periodic signals and may stimulate certain nerve endings, like the Psychiatrist Guirdham's "pins and needles," and could evoke "tinnitus." Can solenoids detect "elastic" EMFs "breaking and reconnecting" as hypothesized by RDM, where EMF lines may be running from the equivalent of "N" to "S" rotating poles? Is there a physical correlation with psychophysically detected phenomena, with cultural, religious, and historic implications on a worldwide basis?
Effect of the presence and size of a localized nonlinear source in concrete.
Zardan, J-P; Payan, C; Garnier, V; Salin, J
2010-07-01
The aim of the present letter is to identify the contribution of a macroscopic source of elastic nonlinearity in concrete, a medium which by nature is nonlinear, and belongs to the nonlinear mesoscopic class of materials. The influence of real, localized macro-cracks is characterized with respect to the intrinsic nonlinearity of the material. The influence of the size of the source on the amplitude of the measured nonlinearity is qualitatively demonstrated. A comparison is made between the changes in linear and nonlinear parameters.
Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy.
Zilonova, E; Solovchuk, M; Sheu, T W H
2018-01-01
The present study is aimed to investigate bubble dynamics in a soft tissue, to which HIFU's continuous harmonic pulse is applied by introducing a viscoelastic cavitation model. After a comparison of some existing cavitation models, we decided to employ Gilmore-Akulichev model. This chosen cavitation model should be coupled with the Zener viscoelastic model in order to be able to simulate soft tissue features such as elasticity and relaxation time. The proposed Gilmore-Akulichev-Zener model was investigated for exploring cavitation dynamics. The parametric study led us to the conclusion that the elasticity and viscosity both damp bubble oscillations, whereas the relaxation effect depends mainly on the period of the ultrasound wave. The similar influence of elasticity, viscosity and relaxation time on the temperature inside the bubble can be observed. Cavitation heat source terms (corresponding to viscous damping and pressure wave radiated by bubble collapse) were obtained based on the proposed model to examine the cavitation significance during the treatment process. Their maximum values both overdominate the acoustic ultrasound term in HIFU applications. Elasticity was revealed to damp a certain amount of deposited heat for both cavitation terms. Copyright © 2017 Elsevier B.V. All rights reserved.
High precision test of the equivalence principle
NASA Astrophysics Data System (ADS)
Schlamminger, Stephan; Wagner, Todd; Choi, Ki-Young; Gundlach, Jens; Adelberger, Eric
2007-05-01
The equivalence principle is the underlying foundation of General Relativity. Many modern quantum theories of gravity predict violations of the equivalence principle. We are using a rotating torsion balance to search for a new equivalence principle violating, long range interaction. A sensitive torsion balance is mounted on a turntable rotating with constant angular velocity. On the torsion pendulum beryllium and titanium test bodies are installed in a composition dipole configuration. A violation of the equivalence principle would yield to a differential acceleration of the two materials towards a source mass. I will present measurements with a differential acceleration sensitivity of 3x10-15;m/s^2. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B3.5
An equivalent viscoelastic model for rock mass with parallel joints
NASA Astrophysics Data System (ADS)
Li, Jianchun; Ma, Guowei; Zhao, Jian
2010-03-01
An equivalent viscoelastic medium model is proposed for rock mass with parallel joints. A concept of "virtual wave source (VWS)" is proposed to take into account the wave reflections between the joints. The equivalent model can be effectively applied to analyze longitudinal wave propagation through discontinuous media with parallel joints. Parameters in the equivalent viscoelastic model are derived analytically based on longitudinal wave propagation across a single rock joint. The proposed model is then verified by applying identical incident waves to the discontinuous and equivalent viscoelastic media at one end to compare the output waves at the other end. When the wavelength of the incident wave is sufficiently long compared to the joint spacing, the effect of the VWS on wave propagation in rock mass is prominent. The results from the equivalent viscoelastic medium model are very similar to those determined from the displacement discontinuity method. Frequency dependence and joint spacing effect on the equivalent viscoelastic model and the VWS method are discussed.
Skyshine at neutron energies less than or equal to 400 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsmiller, A.G. Jr.; Barish, J.; Childs, R.L.
1980-10-01
The dose equivalent at an air-ground interface as a function of distance from an assumed azimuthally symmetric point source of neutrons can be calculated as a double integral. The integration is over the source strength as a function of energy and polar angle weighted by an importance function that depends on the source variables and on the distance from the source to the filed point. The neutron importance function for a source 15 m above the ground emitting only into the upper hemisphere has been calculated using the two-dimensional discrete ordinates code, DOT, and the first collision source code, GRTUNCL,more » in the adjoint mode. This importance function is presented for neutron energies less than or equal to 400 MeV, for source cosine intervals of 1 to .8, .8 to .6 to .4, .4 to .2 and .2 to 0, and for various distances from the source to the field point. As part of the adjoint calculations a photon importance function is also obtained. This importance function for photon energies less than or equal to 14 MEV and for various source cosine intervals and source-to-field point distances is also presented. These importance functions may be used to obtain skyshine dose equivalent estimates for any known source energy-angle distribution.« less
Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek
2012-07-30
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.
Lineal energy calibration of mini tissue-equivalent gas-proportional counters (TEPC)
NASA Astrophysics Data System (ADS)
Conte, V.; Moro, D.; Grosswendt, B.; Colautti, P.
2013-07-01
Mini TEPCs are cylindrical gas proportional counters of 1 mm or less of sensitive volume diameter. The lineal energy calibration of these tiny counters can be performed with an external gamma-ray source. However, to do that, first a method to get a simple and precise spectral mark has to be found and then the keV/μm value of this mark. A precise method (less than 1% of uncertainty) to identify this markis described here, and the lineal energy value of this mark has been measured for different simulated site sizes by using a 137Cs gamma source and a cylindrical TEPC equipped with a precision internal 244Cm alpha-particle source, and filled with propane-based tissue-equivalent gas mixture. Mini TEPCs can be calibrated in terms of lineal energy, by exposing them to 137Cesium sources, with an overall uncertainty of about 5%.
Brabender, Matthew; Hussain, Murtaza Shabbir; Rodriguez, Gabriel; Blenner, Mark A
2018-03-01
Yarrowia lipolytica is an industrial yeast that has been used in the sustainable production of fatty acid-derived and lipid compounds due to its high growth capacity, genetic tractability, and oleaginous properties. This investigation examines the possibility of utilizing urea or urine as an alternative to ammonium sulfate as a nitrogen source to culture Y. lipolytica. The use of a stoichiometrically equivalent concentration of urea in lieu of ammonium sulfate significantly increased cell growth when glucose was used as the carbon source. Furthermore, Y. lipolytica growth was equally improved when grown with synthetic urine and real human urine. Equivalent or better lipid production was achieved when cells are grown on urea or urine. The successful use of urea and urine as nitrogen sources for Y. lipolytica growth highlights the potential of using cheaper media components as well as exploiting and recycling non-treated human waste streams for biotechnology processes.
Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.
1981-01-01
Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.
DNA-psoralen interaction: a single molecule experiment.
Rocha, M S; Viana, N B; Mesquita, O N
2004-11-15
By attaching one end of a single lambda-DNA molecule to a microscope coverslip and the other end to a polystyrene microsphere trapped by an optical tweezers, we can study the entropic elasticity of the lambda-DNA by measuring force versus extension as we stretch the molecule. This powerful method permits single molecule studies. We are particularly interested in the effects of the photosensitive drug psoralen on the elasticity of the DNA molecule. We have illuminated the sample with different light sources, studying how the different wavelengths affect the psoralen-DNA linkage. To do this, we measure the persistence length of individual DNA-psoralen complexes.
Resonance treatment using pin-based pointwise energy slowing-down method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr
A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less
Voinovich, Peter; Merlen, Alain
2005-12-01
The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.
NASA Astrophysics Data System (ADS)
de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.
2013-04-01
To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.