Photo-fission Product Yield Measurements at Eγ=13 MeV on 235U, 238U, and 239Pu
NASA Astrophysics Data System (ADS)
Tornow, W.; Bhike, M.; Finch, S. W.; Krishichayan, Fnu; Tonchev, A. P.
2016-09-01
We have measured Fission Product Yields (FPYs) in photo-fission of 235U, 238U, and 239Pu at TUNL's High-Intensity Gamma-ray Source (HI γS) using mono-energetic photons of Eγ = 13 MeV. Details of the experimental setup and analysis procedures will be discussed. Yields for approximately 20 fission products were determined. They are compared to neutron-induced FPYs of the same actinides at the equivalent excitation energies of the compound nuclear systems. In the future photo-fission data will be taken at Eγ = 8 . 0 and 10.5 MeV to find out whether photo-fission exhibits the same so far unexplained dependence of certain FPYs on the energy of the incident probe, as recently observed in neutron-induced fission, for example, for the important fission product 147Nd. Work supported by the U. S. Dept. of Energy, under Grant No. DE-FG02-97ER41033, and by the NNSA, Stewardship Science Academic Alliances Program, Grant No. DE-NA0001838 and the Lawrence Livermore, National Security, LLC under Contract No. DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigni, Marco T; Francis, Matthew W; Gauld, Ian C
A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order tomore » provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigni, M.T., E-mail: pignimt@ornl.gov; Francis, M.W.; Gauld, I.C.
A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {supmore » 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less
Radiochemistry and the Study of Fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered:more » In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.« less
SPIDER: A new tool for measuring fission yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meierbachtol, Krista C.
2014-03-27
The goals of this project are to measure fission-fragment yields as a function of (En, Z,A, TKE); develop theory in order to evaluate fission yield data; and provide an evaluation of the Pu-239 fission yields.
Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharibyan, Narek
2016-10-25
Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially bemore » investigated in this manner include (but are not limited to) Pu-239 and U-237.« less
Fission yield calculation using toy model based on Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Jubaidah, Kurniadi, Rizal
2015-09-01
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (Rc), mean of left curve (μL) and mean of right curve (μR), deviation of left curve (σL) and deviation of right curve (σR). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90
NASA Astrophysics Data System (ADS)
Bhike, Megha; Tornow, W.; Krishichayan, Tonchev, A. P.
2017-02-01
Measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of
Bhike, Megha; Tornow, W.; Krishichayan, -; ...
2017-02-14
Here, measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratorymore » on 239Pu at E γ = 11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhike, Megha; Tornow, W.; Krishichayan, -
Here, measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratorymore » on 239Pu at E γ = 11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.« less
Nuclear Forensics and Radiochemistry: Fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.
Fission yield calculation using toy model based on Monte Carlo simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubaidah, E-mail: jubaidah@student.itb.ac.id; Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221; Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id
2015-09-30
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. Theremore » are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90« less
Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations
Fensin, Michael Lorne; Umbel, Marissa
2015-09-18
Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less
NASA Astrophysics Data System (ADS)
Pellereau, E.; Taïeb, J.; Chatillon, A.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Benlliure, J.; Boutoux, G.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Ebran, A.; Farget, F.; Fernández-Domínguez, B.; Gorbinet, T.; Grente, L.; Heinz, A.; Johansson, H.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Laurent, B.; Martin, J.-F.; Nociforo, C.; Paradela, C.; Pietri, S.; Rodríguez-Sánchez, J. L.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.; Weick, H.
2017-05-01
SOFIA (Studies On Fission with Aladin) is a novel experimental program, dedicated to accurate measurements of fission-fragment isotopic yields. The setup allows us to fully identify, in nuclear charge and mass, both fission fragments in coincidence for the whole fission-fragment range. It was installed at the GSI facility (Darmstadt), to benefit from the relativistic heavy-ion beams available there, and thus to use inverse kinematics. This paper reports on fission yields obtained in electromagnetically induced fission of 238U.
Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; ...
2016-04-01
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinosmore » at 5–7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0–7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Lastly, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.« less
NEANDC specialists meeting on yields and decay data of fission product nuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrien, R.E.; Burrows, T.W.
Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)
Fission yield measurements at IGISOL
NASA Astrophysics Data System (ADS)
Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.
2016-06-01
The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
Fission Reaction Event Yield Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona
FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).
Measurement of Fission Product Yields from Fast-Neutron Fission
NASA Astrophysics Data System (ADS)
Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.
2014-09-01
One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.
NASA Astrophysics Data System (ADS)
Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok
2014-07-01
The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.
Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; ...
2016-09-22
Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility (NIF) induce fission in depleted uranium (DU) contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. Here, the results from this experiment and England and Rider are in agreement, except for the 85mKr/ 88Kr ratio, which may be the result of incorrect nuclear data.
Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A
2016-11-01
Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88 Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85m Kr/ 88 Kr ratio, which may be the result of incorrect nuclear data.
Measurement of fission yields and isomeric yield ratios at IGISOL
NASA Astrophysics Data System (ADS)
Pomp, Stephan; Mattera, Andrea; Rakopoulos, Vasileios; Al-Adili, Ali; Lantz, Mattias; Solders, Andreas; Jansson, Kaj; Prokofiev, Alexander V.; Eronen, Tommi; Gorelov, Dimitri; Jokinen, Ari; Kankainen, Anu; Moore, Iain D.; Penttilä, Heikki; Rinta-Antila, Sami
2018-03-01
Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyväskylä, Finland, for such measurements on 232Th and natU targets. Previously published fission yield data from IGISOL concern the 232Th(p,f) and 238U(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range from natU(n,f) based on γ-spectrometry. We find a staggering behaviour in the cumulative yields for Sn and a shift in the independent fission yields for Sb as compared to current evaluations. Plans for the future experimental program on fission yields and IYR measurements are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinosmore » at 5–7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0–7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Lastly, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.« less
Bhatia, C.; Fallin, B. F.; Gooden, M. E.; ...
2015-06-05
Using dual-fission chambers each loaded with a thick (200–400–mg/cm 2) actinide target of 235,238U or 239Pu and two thin (~10–100–μg/cm 2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at E n = 8.9MeV. The 2H(d,n) 3He reaction provided the quasimonoenergetic neutron beam. Here, the experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented.
Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel
NASA Astrophysics Data System (ADS)
Gil, Choong-Sup; Kim, Do Heon; Yoo, Jae Kwon; Lee, Jounghwa
2017-09-01
Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.
Cassata, W. S.; Velsko, C. A.; Stoeffl, W.; ...
2016-01-14
We determined fission yields of xenon ( 133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Furthermore, considerablemore » differences exist between our measured yields and the JEFF-3.1 database values.« less
Fission Product Yields from {sup 232}Th, {sup 238}U, and {sup 235}U Using 14 MeV Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, B.D., E-mail: bpnuke@umich.edu; Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352; Greenwood, L.R.
Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets–thorium-oxide, depleted uranium metal, and highly enriched uranium metal–at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields ofmore » short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for {sup 89}Kr, −90, and −92 and {sup 138}Xe, −139, and −140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were −10.2%, 4.5%, and −12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from {sup 84}As to {sup 146}La are presented.« less
NASA Astrophysics Data System (ADS)
Julien-Laferrière, Sylvain; Kessedjian, Grégoire; Serot, Olivier; Chebboubi, Abdelaziz; Bernard, David; Blanc, Aurélien; Köster, Ulli; Litaize, Olivier; Materna, Thomas; Meplan, Olivier; Rapala, Michal; Sage, Christophe
2018-03-01
Nuclear fission yields data measurements for thermal neutron induced fission of 241Pu have been carried out at the Institut Laue Langevin (ILL) in Grenoble, using the Lohengrin mass spectrometer. Mass, isotopic and isomeric yields have been extracted for the last measurements. A focus is given in this document to the mass yield results which are obtained for almost the entire heavy peak and most of the light high yields masses, along with the covariance matrix. The mean kinetic energy as a function of the fission product mass has also been extracted from the measurements. The total mean kinetic energy pre and post neutron emission have been assessed and compared to other works showing a rather good agreement.
Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator
NASA Astrophysics Data System (ADS)
Tarasov, O. B.; Delaune, O.; Farget, F.; Morrissey, D. J.; Amthor, A. M.; Bastin, B.; Bazin, D.; Blank, B.; Cacéres, L.; Chbihi, A.; Fernández-Dominguez, B.; Grévy, S.; Kamalou, O.; Lukyanov, S. M.; Mittig, W.; Pereira, J.; Perrot, L.; Saint-Laurent, M.-G.; Savajols, H.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C.
2018-04-01
The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the Δ E- TKE-B ρ- ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high- Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed.
The SPIDER fission fragment spectrometer for fission product yield measurements
Meierbachtol, K.; Tovesson, F.; Shields, D.; ...
2015-04-01
We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less
Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of 232Th
NASA Astrophysics Data System (ADS)
Naik, H.; Goswami, A.; Kim, G. N.; Kim, K.; Suryanarayana, S. V.
2013-10-01
The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of 232Th have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for 232Th(p,f) and 238U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for 232Th(p,f), 232Th(n,f), and 232Th( γ,f) at various energies were compared with those for 238U(p,f), 238U(n,f), and 238U( γ,f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of 232Th was discussed with the similar data in 238U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/ Z ratio, and fissility parameter.
Fission Product Library and Resource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, J. T.; Padgett, S.
Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.
A transferable model for singlet-fission kinetics.
Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy
2014-06-01
Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.
NASA Astrophysics Data System (ADS)
Jaffke, Patrick; Möller, Peter; Stetcu, Ionel; Talou, Patrick; Schmitt, Christelle
2018-03-01
We implement fission fragment yields, calculated using Brownian shape-motion on a macroscopic-microscopic potential energy surface in six dimensions, into the Hauser-Feshbach statistical decay code CGMF. This combination allows us to test the impact of utilizing theoretically-calculated fission fragment yields on the subsequent prompt neutron and γ-ray emission. We draw connections between the fragment yields and the total kinetic energy TKE of the fission fragments and demonstrate that the use of calculated yields can introduce a difference in the 〈TKE〉 and, thus, the prompt neutron multiplicity
Fission yield covariances for JEFF: A Bayesian Monte Carlo method
NASA Astrophysics Data System (ADS)
Leray, Olivier; Rochman, Dimitri; Fleming, Michael; Sublet, Jean-Christophe; Koning, Arjan; Vasiliev, Alexander; Ferroukhi, Hakim
2017-09-01
The JEFF library does not contain fission yield covariances, but simply best estimates and uncertainties. This situation is not unique as all libraries are facing this deficiency, firstly due to the lack of a defined format. An alternative approach is to provide a set of random fission yields, themselves reflecting covariance information. In this work, these random files are obtained combining the information from the JEFF library (fission yields and uncertainties) and the theoretical knowledge from the GEF code. Examples of this method are presented for the main actinides together with their impacts on simple burn-up and decay heat calculations.
Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.
2014-05-01
To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.
NASA Astrophysics Data System (ADS)
Duke, D. L.; Tovesson, F.; Brys, T.; Geppert-Kleinrath, V.; Hambsch, F.-J.; Laptev, A.; Meharchand, R.; Manning, B.; Mayorov, D.; Meierbachtol, K.; Mosby, S.; Perdue, B.; Richman, D.; Shields, D.; Vidali, M.
2017-09-01
The average Total Kinetic Energy (TKE) release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV - 30 MeV. The double-energy (2E) method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data.
The role of off-line mass spectrometry in nuclear fission.
De Laeter, J R
1996-01-01
The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of samples from the Oklo Natural Reactor have enabled the nuclear parameters of the various reactor zones to be calculated, and the mobility/retentivity of a number of elements to be established in the reactor zones and the surrounding rocks. These isotopic studies have given valuable information on the geochemical behavior of natural geological repositories for radioactive waste containment. © 1997 John Wiley & Sons, Inc. Copyright © 1997 John Wiley & Sons, Inc.
Studies of fission fragment yields via high-resolution γ-ray spectroscopy
NASA Astrophysics Data System (ADS)
Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.
2018-03-01
Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooden, Matthew; Arnold, Charles; Bhike, Megha
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurementmore » of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations.« less
Gooden, Matthew; Arnold, Charles; Bhike, Megha; ...
2017-09-13
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurementmore » of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations.« less
The Fission of Thorium with Alpha Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newton, Amos S.
1948-04-15
The fission distribution of fission of thorium with alpha particle of average energy 37.5 Mev has been measured by the chemical method. The distribution found shows that the characteristic dip in the fission yield mass spectrum has been raised to within a factor of two of the peaks compared to a factor of 600 in slow neutron fission of U{sup 235}. The raise in the deip has caused a corresponding lowering in fission yield of these elements at the peaks. The cross section for fission of thorium with 37.5 Mev alphas was found to be about 0.6 barn, and themore » threshold for fission was found to be 23 to 24 Mev.« less
NASA Astrophysics Data System (ADS)
Abdelaziz, Chebboubi; Grégoire, Kessedjian; Olivier, Serot; Sylvain, Julien-Laferriere; Christophe, Sage; Florence, Martin; Olivier, Méplan; David, Bernard; Olivier, Litaize; Aurélien, Blanc; Herbert, Faust; Paolo, Mutti; Ulli, Köster; Alain, Letourneau; Thomas, Materna; Michal, Rapala
2017-09-01
The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. In the past with the LOHENGRIN spectrometer of the ILL, priority has been given for the studies in the light fission fragment mass range. The LPSC in collaboration with ILL and CEA has developed a measurement program on symmetric and heavy mass fission fragment distributions. The combination of measurements with ionisation chamber and Ge detectors is necessary to describe precisely the heavy fission fragment region in mass and charge. Recently, new measurements of fission yields and kinetic energy distributions are has been made on the 233U(nth,f) reaction. The focus of this work has been on the new optical and statistical methodology and the self-normalization of the data to provide new absolute measurements, independently of any libraries, and the associated experimental covariance matrix.
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.
2014-09-01
A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.
NASA Astrophysics Data System (ADS)
Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.
2018-03-01
Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.
Relative fission product yield determination in the USGS TRIGA Mark I reactor
NASA Astrophysics Data System (ADS)
Koehl, Michael A.
Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular precipitates can be approximated using EGS5, especially in the instance of radioisotopes produced predominantly through uranium fission. Relative fission product yields were determined for three sampling positions in the USGS TRIGA Mark I reactor through radiochemical analysis. The relative mass yield distribution for valley nuclides decreases with epithermal neutrons compared to thermal neutrons. Additionally, a proportionality constant which related the measured beta activity of a fission product to the number of fissions that occur in a sample of irradiated uranium was determined for the detector used in this study and used to determine the thermal and epithermal flux. These values agree well with a previous study which used activation foils to determine the flux. The results of this project clearly demonstrate that R-values can be measured in the GSTR.
NASA Astrophysics Data System (ADS)
Gooden, M.; Arnold, C.; Bredeweg, T.; Vieira, D.; Wilhelmy, J.; Tonchev, A.; Stoyer, M.; Bhike, M.; Krishichayan, F.; Tornow, W.; Fowler, M.
2015-10-01
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and ?-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. ?-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of 2 months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. These results are compared to previous measurements and theoretical estimates. This work was performed under the auspices of the USDoE by Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.
Bruce, F.R.
1962-07-24
A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)
A new UK fission yield evaluation UKFY3.7
NASA Astrophysics Data System (ADS)
Mills, Robert William
2017-09-01
The JEFF neutron induced and spontaneous fission product yield evaluation is currently unchanged from JEFF-3.1.1, also known by its UK designation UKFY3.6A. It is based upon experimental data combined with empirically fitted mass, charge and isomeric state models which are then adjusted within the experimental and model uncertainties to conform to the physical constraints of the fission process. A new evaluation has been prepared for JEFF, called UKFY3.7, that incorporates new experimental data and replaces the current empirical models (multi-Gaussian fits of mass distribution and Wahl Zp model for charge distribution combined with parameter extrapolation), with predictions from GEF. The GEF model has the advantage that one set of parameters allows the prediction of many different fissioning nuclides at different excitation energies unlike previous models where each fissioning nuclide at a specific excitation energy had to be fitted individually to the relevant experimental data. The new UKFY3.7 evaluation, submitted for testing as part of JEFF-3.3, is described alongside initial results of testing. In addition, initial ideas for future developments allowing inclusion of new measurements types and changing from any neutron spectrum type to true neutron energy dependence are discussed. Also, a method is proposed to propagate uncertainties of fission product yields based upon the experimental data that underlies the fission yield evaluation. The covariance terms being determined from the evaluated cumulative and independent yields combined with the experimental uncertainties on the cumulative yield measurements.
Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu
NASA Astrophysics Data System (ADS)
Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.
2015-10-01
During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.
Covariance Matrix Evaluations for Independent Mass Fission Yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, N., E-mail: nicholas.terranova@unibo.it; Serot, O.; Archier, P.
2015-01-15
Recent needs for more accurate fission product yields include covariance information to allow improved uncertainty estimations of the parameters used by design codes. The aim of this work is to investigate the possibility to generate more reliable and complete uncertainty information on independent mass fission yields. Mass yields covariances are estimated through a convolution between the multi-Gaussian empirical model based on Brosa's fission modes, which describe the pre-neutron mass yields, and the average prompt neutron multiplicity curve. The covariance generation task has been approached using the Bayesian generalized least squared method through the CONRAD code. Preliminary results on mass yieldsmore » variance-covariance matrix will be presented and discussed from physical grounds in the case of {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) reactions.« less
Production of Sn and Sb isotopes in high-energy neutron-induced fission of natU
NASA Astrophysics Data System (ADS)
Mattera, A.; Pomp, S.; Lantz, M.; Rakopoulos, V.; Solders, A.; Al-Adili, A.; Penttilä, H.; Moore, I. D.; Rinta-Antila, S.; Eronen, T.; Kankainen, A.; Pohjalainen, I.; Gorelov, D.; Canete, L.; Nesterenko, D.; Vilén, M.; Äystö, J.
2018-03-01
The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyväskylä, Finland. The fission products from high-energy neutron-induced fission of nat U were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133 , were transported to a tape-implantation station and identified using γ -spectroscopy. We report here the relative cumulative isotopic yields of tin ( Z = 50) and the relative independent isotopic yields of antimony ( Z = 51) . Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a staggered behaviour around A = 131 , not observed in the ENDF/B-VII.1 evaluation. The yields of antimony also contradict the trend from the evaluation, but are in agreement with a calculation performed using the GEF model that shows the yield increasing with mass in the range A = 128-133.
Advanced model for the prediction of the neutron-rich fission product yields
NASA Astrophysics Data System (ADS)
Rubchenya, V. A.; Gorelov, D.; Jokinen, A.; Penttilä, H.; Äystö, J.
2013-12-01
The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP).
Recent Results from Lohengrin on Fission Yields and Related Decay Properties
NASA Astrophysics Data System (ADS)
Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.
2014-05-01
The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor applications.
Isotopic yield measurement in the heavy mass region for 239Pu thermal neutron induced fission
NASA Astrophysics Data System (ADS)
Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Köster, U.; Faust, H.; Letourneau, A.; Panebianco, S.
2011-09-01
Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the 239Pu(nth,f) reaction. In order to do this, a new experimental method based on γ-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.
JONAH algorithms: C-2 the ratio option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rego, J.
1979-02-01
Information concerning input is given first. Then formulas are given for calculation of atoms/millimeter, fissions, kiloton yield, R-value, atoms/fission, fissions/fission, bomb fraction, fissions/atoms, atoms, atoms/atoms, fissions/atoms, atom ratio, total atoms formed, and thermonuclear bomb fraction. Some of the terminology used is elucidated in an appendix. (RWR)
Fission product yield measurements using monoenergetic photon beams
NASA Astrophysics Data System (ADS)
Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.
2017-09-01
Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.
NASA Astrophysics Data System (ADS)
Gooden, Matthew; Bredeweg, Todd; Fowler, Malcolm; Vieira, David; Wilhelmy, Jerry; Tonchev, Anton; Stoyer, Mark; Bhike, Megha; Finch, Sean; Krishichayan, Fnu; Tornow, Werner
2017-09-01
The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi- monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combi- nation of fission counting using specially designed dual-fission chambers and -ray counting. Each dual-fission chamber is a back-to-back ioniza- tion chamber encasing an activation target in the center with thin de- posits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activa- tion target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of 2 months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6 and 14.8 MeV. New data in the second chance fission region of 5.5 - 9 MeV are included. Work performed for the U.S. Department of Energy by Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meierbachtol, K.; Tovesson, F.; Shields, D.
We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less
Fission Reaction Event Yield Algorithm FREYA 2.0.2
Verbeke, J. M.; Randrup, J.; Vogt, R.
2017-09-01
The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2. FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The main differences between the two versions are: additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into themore » LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.« less
Modification of apparent fission yields by Chemical Fractionation following Fission (CFF)
NASA Astrophysics Data System (ADS)
Hohenberg, Charles; Meshik, Alex
2008-04-01
Grain-by-grain studies of the 2 billion year old Oklo natural reactor, using laser micro-extraction^1,2, yield detailed information about Oklo, a water-moderated pulsed reactor, cycle times, total neutron fluence and duration, but it also demonstrates Chemical Fractionation following Fission. In the CFF process, members of an isobaric yield chain with long half-lives are subject to migration before decay can occur. Of particular interest is the 129 isobar where 17 million ^129I can migrate out of the host grain before decay, and iodine compounds are water soluble. This is amply demonstated by the variation of Xe spectra between micron-sized uranium-bearing minerals and adjacent uranium-free minerals. Fission 129 yields for the spontaneous fission of ^238U generally come from measured ^129Xe in pitchblend^2, ores emplaced by aqueous activity, and are incorrect due to the CFF process. ^238U yields for the 131 and 129 chains, reported in Hyde^3, as 0.455 +- .02 and < 0.012, respectively, the latter being anomalously low. ^1A Meshik, C Hohenberg and O Pravdivtesva, PRL 93, 182302 (2004); A Meshik Sci. Am. Nov (2005), 55; ^2E K Hyde, Nucl Prop of Heavy Elements III (1964).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassata, W. S.; Velsko, C. A.; Stoeffl, W.
We determined fission yields of xenon ( 133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Furthermore, considerablemore » differences exist between our measured yields and the JEFF-3.1 database values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Bulychev, A. O.
An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistepmore » decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josef Michl
2011-10-31
In this project we have established guidelines for the design on organic chromophores suitable for producing high triplet yields via singlet fission. We have proven their utility by identifying a chromophore of a structural class that had never been examined for singlet fission before, 1,3-diphenylisobenzofuran, and demonstrating in two independent ways that a thin layer of this material produces a triplet yield of 200% within experimental error. We have also designed a second chromophore of a very different type, again of a structural class that had not been examined for singlet fission before, and found that in a thin layermore » it produces a 70% triplet yield. Finally, we have enhanced the theoretical understanding of the quantum mechanical nature of the singlet fission process.« less
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay
An, F. P.; Balantekin, A. B.; Band, H. R.; ...
2017-06-19
Here, the Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW th reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F 239 from 0.25 to 0.35, Daya Bay measures an average IBD yield ¯σf of (5.90±0.13)×10 –43 cm 2/fission and a fuel-dependent variation in the IBDmore » yield, dσ f/dF 239, of (–1.86±0.18)×10 –43 cm 2/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10 –43 cm 2/fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.« less
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay.
An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guo, L; Guo, X H; Guo, Y H; Guo, Z; Hackenburg, R W; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hsiung, Y B; Hu, B Z; Hu, T; Huang, E C; Huang, H X; Huang, X T; Huang, Y B; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jen, K L; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Jones, D; Kang, L; Kettell, S H; Khan, A; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Leung, J K C; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y-C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Mitchell, I; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Qiu, R M; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Stoler, P; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C-H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Yang, Y Z; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, C C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, R; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhou, L; Zhuang, H L; Zou, J H
2017-06-23
The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43} cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43} cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43} cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huang, Y. B.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Stoler, P.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, R.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration
2017-06-01
The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 G Wth reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F239 from 0.25 to 0.35, Daya Bay measures an average IBD yield σ¯f of (5.90 ±0.13 )×10-43 cm2/fission and a fuel-dependent variation in the IBD yield, d σf/d F239, of (-1.86 ±0.18 )×10-43 cm2/fission . This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1 σ . This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17 ±0.17 ) and (4.27 ±0.26 )×10-43 cm2 /fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, F. P.; Balantekin, A. B.; Band, H. R.
Here, the Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW th reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F 239 from 0.25 to 0.35, Daya Bay measures an average IBD yield ¯σf of (5.90±0.13)×10 –43 cm 2/fission and a fuel-dependent variation in the IBDmore » yield, dσ f/dF 239, of (–1.86±0.18)×10 –43 cm 2/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10 –43 cm 2/fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.« less
Study of the Mo-Ba partition in 252Cf spontaneous fission
NASA Astrophysics Data System (ADS)
Biswas, D. C.; Choudhury, R. K.; Cinausero, M.; Fornal, B.; Shetty, D. V.; Viesti, G.; Fabris, D.; Fioretto, E.; Lunardon, M.; Nebbia, G.; Prete, G.; Bazzacco, D.; DePoli, M.; Napoli, D. R.; Ur, C. A.; Vedovato, G.
Measurements of fission fragment yields and neutron multiplicities have been carried out for the Mo-Ba fragment pairs in the spontaneous fission of 252Cf, using the γ-ray spectroscopy technique to analyze γ-γ-γ coincidence data. Prompt γ -ray multiplicities were also measured as a function of the number of neutrons emitted in the fission process leading to the Mo-Ba partition. We do not observe the enhancement in the yields of events with high neutron emission multiplicity (νn > 7) that has been associated to a second fission mode leading to the production of hyperdeformed Ba fragments, as reported in some earlier studies. The average γ-ray multiplicity is found to be rather weakly dependent on the number of neutrons emitted in the fission process.
Analysis of incident-energy dependence of delayed neutron yields in actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasir, Mohamad Nasrun bin Mohd, E-mail: monasr211@gmail.com; Metorima, Kouhei, E-mail: kohei.m2420@hotmail.co.jp; Ohsawa, Takaaki, E-mail: ohsawa@mvg.biglobe.ne.jp
The changes of delayed neutron yields (ν{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fivesmore » Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ν{sub d}=∑Y{sub i} • P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ν{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.« less
NASA Astrophysics Data System (ADS)
Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.
2010-12-01
The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, J.S.; Russell, G.J.; Robinson, H.
Axial distributions of fissions and of fertile-to-fissile conversions in thick depleted uranium and thorium targets bombarded by 800-MeV protons have been measured. The amounts of /sup 239/Pu and /sup 233/U produced were determined by measuring the yields of /sup 239/Np and /sup 233/Pa, respectively. The number of fissions was deduced from fission product mass-yield curves. Integration of the axial distributions gave the total number of conversions and fissions occurring in the targets. For the uranium target, experimental results were 5.90 +- 0.25 fissions and 3.81 +- 0.01 atoms of /sup 239/Pu produced per incident portion. Corresponding calculated results were 6.14more » +- 0.04 and 3.88 +- 0.03. In the thorium target, 1.56 +- 0.25 fissions and 1.25 +- 0.01 atoms of /sup 233/U per incident proton were measured; the calculated values were 1.54 +- 0.01 fissions and 1.27 +- 0.01 atom/proton.« less
Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields
NASA Astrophysics Data System (ADS)
Jaffke, Patrick; Möller, Peter; Talou, Patrick; Sierk, Arnold J.
2018-03-01
The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U(nth,f ) and 239Pu(nth,f ) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ -ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicity ν ¯ and the average heavy-fragment mass 〈Ah〉 of the input mass yields ∂ ν ¯/∂ 〈Ah〉 =±0.1 (n /f ) /u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, ν¯T(TKE ) . Typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ ν ¯=4 % for the average prompt neutron multiplicity, δ M ¯γ=1 % for the average prompt γ -ray multiplicity, δ ɛ¯nLAB=1 % for the average outgoing neutron energy, δ ɛ¯γ=1 % for the average γ -ray energy, and δ 〈TKE 〉=0.4 % for the average total kinetic energy of the fission fragments.
NASA Astrophysics Data System (ADS)
Gooden, Matthew; Arnold, Charles; Bhike, Megha; Bredeweg, Todd; Fowler, Malcolm; Krishichayan; Tonchev, Anton; Tornow, Werner; Stoyer, Mark; Vieira, David; Wilhelmy, Jerry
2017-09-01
Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and by Duke University and Triangle Universities Nuclear Laboratory through NNSA Stewardship Science Academic Alliance grant No. DE-FG52-09NA29465, DE-FG52-09NA29448 and Office of Nuclear Physics Grant No. DE-FG02-97ER41033.
Anomalies in the Charge Yields of Fission Fragments from the U ( n , f ) 238 Reaction
Wilson, J. N.; Lebois, M.; Qi, L.; ...
2017-06-01
Fast-neutron-induced fission of 238U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fissionmore » fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. Finally, this has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.« less
Comparison of Fission Product Yields and Their Impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Harrison
2006-02-01
This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiologicalmore » transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.« less
Reducing uncertainties for short lived cumulative fission product yields
Stave, Sean; Prinke, Amanda; Greenwood, Larry; ...
2015-09-05
Uncertainties associated with short lived (halflives less than 1 day) fission product yields listed in databases such as the National Nuclear Data Center’s ENDF/B-VII are large enough for certain isotopes to provide an opportunity for new precision measurements to offer significant uncertainty reductions. A series of experiments has begun where small samples of 235U are irradiated with a pulsed, fission neutron spectrum at the Nevada National Security Site and placed between two broad-energy germanium detectors. The amount of various isotopes present immediately following the irradiation can be determined given the total counts and the calibrated properties of the detector system.more » The uncertainty on the fission yields for multiple isotopes has been reduced by nearly an order of magnitude.« less
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.
2015-06-01
Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.
NASA Astrophysics Data System (ADS)
Gooden, Matthew Edgell
A joint collaboration between the Triangle Universities Nuclear Laboratory (TUNL), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL) has performed a set of absolute Fission Product Yield (FPY) measurements. Using monoenergetic neutron at energies between 0.5 and 14.8 MeV, the excitation functions of a number of fission products from 235U, 238U and 239Pu have begun to be mapped out. This work has practical applications for the determination of weapon yields and the rate of burn-up in nuclear reactors, while also providing important insight into the fission process. Combining the use of a dual-fission ionization chamber and gamma-ray spectroscopy, absolute FPYs have been determined for approximately 15 different fission products. The dual-fission chamber is a back-to-back ionization chamber system with a 'thin' actinide foil in each chamber as a monitor or reference foil. The chamber holds a 'thick' target in the center of the system such that the target and reference foils are of the same actinide isotope. This allows for simple mass scaling between the recorded number of fissions in the individual chambers and the number of fissions in the center thick target, eliminating the need for the knowledge of the absolute fission cross section and its uncertainty. The 'thick' target was removed after activation and gamma-rays counted with well shielded High Purity Germanium (HPGe) detectors for a period of 1.5 - 2 months.
NASA Astrophysics Data System (ADS)
Mendoza, E.; Álvarez-Velarde, F.; Bécares, V.; Cano-Ott, D.; González-Romero, E.; Martínez, T.; Villamarín, D.
2017-10-01
We have measured with a LaCl3 detector the γ-ray spectrum emitted by a 235 U enriched UO2 fuel rod 10 s after being irradiated with thermal neutrons. The experimental results are compared with simulations performed with the fission product yield and radioactive decay data libraries present in the most recent releases of ENDF/B, JEFF and JENDL.
Fission yield and criticality excursion code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.
2000-06-30
The ANSI/ANS 8.3 standard allows a maximum yield not to exceed 2 x 10 fissions to calculate requiring the alarm system to be effective. It is common practice to use this allowance or to develop some other yield based on past criticality accident history or excursion experiments. The literature on the subject of yields discusses maximum yields larger and somewhat smaller than the ANS 8.3 permissive value. The ability to model criticality excursions and vary the various parameters to determine a credible maximum yield for operational specific cases has been available for some time but is not in common usemore » by criticality safety specialists. The topic of yields for various solution, metal, oxide powders, etc. in various geometry's and containers has been published by laboratory specialists or university staff and students for many decades but have not been available to practitioners. The need for best-estimate calculations of fission yields with a well-validated criticality excursion code has long been recognized. But no coordinated effort has been made so far to develop a generalized and well-validated excursion code for different types of systems. In this paper, the current practices to estimate fission yields are summarized along with its shortcomings for the 12-Rad zone (at SRS) and Criticality Alarm System (CAS) calculations. Finally the need for a user-friendly excursion code is reemphasized.« less
Yields of short-lived fission products produced following {sup 235}U(n{sub th},f)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipnis, S.V.; Campbell, J.M.; Couchell, G.P.
1998-08-01
Measurements of gamma-ray spectra, following the thermal neutron fission of {sup 235}U have been made using a high purity germanium detector at the University of Massachusetts Lowell (UML) Van de Graaff facility. The gamma spectra were measured at delay times ranging from 0.2 s to nearly 10thinsp000 s following the rapid transfer of the fission fragments with a helium-jet system. On the basis of the known gamma transitions, forty isotopes have been identified and studied. By measuring the relative intensities of these transitions, the relative yields of the various precursor nuclides have been calculated. The results are compared with themore » recommended values listed in the ENDF/B-VI fission product data base (for the lifetimes and the relative yields) and those published in the Nuclear Data Sheets (for the beta branching ratios). This information is particularly useful for the cases of short-lived fission products with lifetimes of the order of fractions of a second or a few seconds. Independent yields of many of these isotopes have rather large uncertainties, some of which have been reduced by the present study. {copyright} {ital 1998} {ital The American Physical Society}« less
Compound Nucleus Reactions in LENR, Analogy to Uranium Fission
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Miley, George; Philberth, Karl
2008-03-01
The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.
Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John
The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less
Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields
Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John; ...
2018-03-15
The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less
NASA Astrophysics Data System (ADS)
Prodhan, Suryoday; Ramasesha, S.
2017-08-01
Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Tong; Wan, Yan; Guo, Zhi
2016-06-27
By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.
Fission fragment yield distribution in the heavy-mass region from the 239Pu (nth,f ) reaction
NASA Astrophysics Data System (ADS)
Gupta, Y. K.; Biswas, D. C.; Serot, O.; Bernard, D.; Litaize, O.; Julien-Laferrière, S.; Chebboubi, A.; Kessedjian, G.; Sage, C.; Blanc, A.; Faust, H.; Köster, U.; Ebran, A.; Mathieu, L.; Letourneau, A.; Materna, T.; Panebianco, S.
2017-07-01
The fission fragment yield distribution has been measured in the 239Pu(nth,f ) reaction in the mass region of A =126 to 150 using the Lohengrin recoil-mass spectrometer. Three independent experimental campaigns were performed, allowing a significant reduction of the uncertainties compared to evaluated nuclear data libraries. The long-standing discrepancy of around 10% for the relative yield of A =134 reported in JEF-2.2 and JEFF-3.1.1 data libraries is finally solved. Moreover, the measured mass distribution in thermal neutron-induced fission does not show any significant dip around the shell closure (A =136 ) as seen in heavy-ion fission data of 208Pb(18O, f ) and 238U(18O, f ) reactions. Lastly, comparisons between our experimental data and the predictions from Monte Carlo codes (gef and fifrelin) are presented and discussed.
The role of fission in Supernovae r-process nucleosynthesis
NASA Astrophysics Data System (ADS)
Otsuki, Kaori; Kajino, Toshitaka; Sumiyoshi, Kosuke; Ohta, Masahisa; Mathews, J. Grant
2001-10-01
The r-process elements are presumed to be produced in an explosive environment with short timescale at high entropy, like type-II supernova explosion. Intensive flux of free neutrons are absorbed successively by seed elements to form the nuclear reaction flow on extremely unstable nuclei on the neutron rich side. It would probe our knowledge of the properties of nulei far from the beta stability. It is also important in astronomy since this process forms the long-lived nuclear chronometers Thorium and Uranium that are utilised dating the age of the Milky Way. In our previous work, we showed that the succesful r-process nucleosynthesis can occure above young, hot protoneutron star. Although these long-lived heavy elements are produced comparable amounts to observation in several supernova models which we constructed, fission and alpha-decay were not included there. The fission products could play an important role in setting actinide yields which are used as cosmochronometers. In this talk, we report an infulence of fission on actinide yields and on estimate of Galactic age as well. We also discuss fission yields at lighter elements (Z ~ 50).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorhout, Jacquelyn Marie
This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting from a nuclear device to determine device attributes and information, often depends on the comparison of fission products to a library of known ratios. The expansion of this library is imperative as technology advances. Rapid separation of fission products from a target material, without the need to dissolve the target, is an important technique to develop to improve the library and provide a means to develop samples and standards for testing separations.more » Several materials were studied as a proof-of-concept that fission products can be extracted from a solid target, including microparticulate (< 10 μm diameter) dUO 2, porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organicbased frameworks containing dU. The targets were irradiated with fast neutrons from one of two different neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO 2 in contact with the secondary matrix KBr yield higher separation yields than particles without a secondary matrix. It was also discovered that using 0.1 M HNO 3 as a contact acid leads to the dissolution of the target material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO 3. Different types of frameworks also yield different results.« less
Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150
Möller, Peter; Randrup, Jørgen
2015-04-01
Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al.more » [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main aspects of our results in terms of “nuclear-chart” plots showing calculated degrees of asymmetry versus N and Z. Conclusions: Experimental data in this region are rare: only ten or so yield distributions have been measured, some with very limited statistics. We agree with several measurements with higher statistics. Regions where there might be differences between our calculated results and measurements lie near the calculated transition line between symmetric and asymmetric fission. To draw more definite conclusions about the accuracy of the present implementation of the Brownian shape-motion approach in this region experimental data, with reliable statistics, for a fair number of suitably located additional nuclides are clearly needed. Because the nuclear potential-energy structure is so different in this region compared to the actinide region, additional experimental data together with fission theory studies that incorporate additional, dynamical aspects should provide much new insight.« less
Mass Yields and Average Total Kinetic Energy Release in Fission for 235U, 238U, and 239Pu
NASA Astrophysics Data System (ADS)
Duke, Dana
2015-10-01
Mass yield distributions and average total kinetic energy (TKE) in neutron induced fission of 235U, 238U, and 239Pu targets were measured with a gridded ionization chamber. Despite decades of fission research, our understanding of how fragment mass yields and TKE depend on incident neutron energy is limited, especially at higher energies (above 5-10 MeV). Improved accuracy in these quantities is important for nuclear technology as it enhances our simulation capabilities and increases the confidence in diagnostic tools. The data can also guide and validate theoretical fission models where the correlation between the fragment mass and TKE is of particular value for constraining models. The Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE - WNR) provides a neutron beam with energies from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on target nuclei 235U, 238U, and 239Pu will be presented with a focus on exploring data trends as a function of neutron energy from thermal through 30 MeV. Results indicate clear evidence of structure due to multi-chance fission in the TKE . LA-UR-15-24761.
NASA Astrophysics Data System (ADS)
Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco
2017-09-01
Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.
Neck curve polynomials in neck rupture model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul
2012-06-06
The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of {sup 280}X{sub 90} with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.
Jozvaziri, Atieh; Gholamzadeh, Zohreh; Yousefi, Kamran; Mirvakili, Seyed Mohammad; Alizadeh, Masoomeh; Aboudzadeh, Mohammadreza
2017-03-01
99 Mo is important for both therapy and imaging purposes. Accelerator and reactor-based procedures are applied to produce it. Newly proton-fission method has been taken in attention by some research centers. In the present work, computationally investigation of the 99 Mo yield in different fissionable targets irradiated by proton was aimed. The results showed UO 2 pill target could be efficiently used to produce 11.12Ci/g-U saturation yield of 99 Mo using 25MeV proton irradiation of the optimized-dimension target with 70µA current. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fission Activities of the Nuclear Reactions Group in Uppsala
NASA Astrophysics Data System (ADS)
Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Jansson, K.; Koning, A.; Lantz, M.; Mattera, A.; Prokofiev, A. V.; Rakopoulos, V.; Sjöstrand, H.; Solders, A.; Tarrío, D.; Österlund, M.; Pomp, S.
This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.
Mass-yield distributions of fission products in bremsstrahlung-induced fission of 232Th
NASA Astrophysics Data System (ADS)
Naik, H.; Kim, G. N.; Kim, K.
2018-01-01
The cumulative yields of various fission products within the 77-153 mass regions in the 2.5-GeV bremsstrahlung-induced fission of 232Th have been determined by using the recoil catcher and an off-line γ-ray spectrometric technique at the Pohang Accelerator Laboratory, Korea. The mass-yield distributions were obtained from the cumulative yields after charge-distribution corrections. The peak-to-valley (P /V ) ratio, the average value of light mass (
1,3-Diphenylisobenzofuran: a Model Chromophore for Singlet Fission
Johnson, Justin C.; Michl, Josef
2017-09-11
In this review we first provide an introductory description of the singlet fission phenomenon and then describe the ground and electronically excited states of the parent 1,3-diphenylisobenzofuran chromophore (1) and about a dozen of its derivatives. A discussion of singlet fission in thin polycrystalline layers of these materials follows. The highest quantum yield of triplet formation by singlet fission, 200% at 80 K, is found in one of the two known crystal modification of the parent. In the other modification and in many derivatives, excimer formation competes successfully and triplet yields are low. A description of solution photophysics of covalentmore » dimers is described in the next section. Triplet yields are very low, but interesting phenomena are uncovered. One is an observation of a separated-charges (charge-transfer) intermediate in highly polar solvents. The other is an observation of excitation isomerism in both singlet and triplet states, where in one isomer the excitation is delocalized over both halves of the covalent dimer, whereas in the other it is localized on one of the halves. Finally, in the last section we present the operation of a simple device illustrating the use of triplets generated by singlet fission for charge separation.« less
NASA Astrophysics Data System (ADS)
Kessedjian, G.; Chebboubi, A.; Faust, H.; Köster, U.; Materna, T.; Sage, C.; Serot, O.
2013-03-01
The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f)98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM) is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.
Dual neutral particle induced transmutation in CINDER2008
NASA Astrophysics Data System (ADS)
Martin, W. J.; de Oliveira, C. R. E.; Hecht, A. A.
2014-12-01
Although nuclear transmutation methods for fission have existed for decades, the focus has been on neutron-induced reactions. Recent novel concepts have sought to use both neutrons and photons for purposes such as active interrogation of cargo to detect the smuggling of highly enriched uranium, a concept that would require modeling the transmutation caused by both incident particles. As photonuclear transmutation has yet to be modeled alongside neutron-induced transmutation in a production code, new methods need to be developed. The CINDER2008 nuclear transmutation code from Los Alamos National Laboratory is extended from neutron applications to dual neutral particle applications, allowing both neutron- and photon-induced reactions for this modeling with a focus on fission. Following standard reaction modeling, the induced fission reaction is understood as a two-part reaction, with an entrance channel to the excited compound nucleus, and an exit channel from the excited compound nucleus to the fission fragmentation. Because photofission yield data-the exit channel from the compound nucleus-are sparse, neutron fission yield data are used in this work. With a different compound nucleus and excitation, the translation to the excited compound state is modified, as appropriate. A verification and validation of these methods and data has been performed. This has shown that the translation of neutron-induced fission product yield sets, and their use in photonuclear applications, is appropriate, and that the code has been extended correctly.
Monte Carlo based toy model for fission process
NASA Astrophysics Data System (ADS)
Kurniadi, R.; Waris, A.; Viridi, S.
2014-09-01
There are many models and calculation techniques to obtain visible image of fission yield process. In particular, fission yield can be calculated by using two calculations approach, namely macroscopic approach and microscopic approach. This work proposes another calculation approach in which the nucleus is treated as a toy model. Hence, the fission process does not represent real fission process in nature completely. The toy model is formed by Gaussian distribution of random number that randomizes distance likesthe distance between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean (μCN, μL, μR), and standard deviation (σCN, σL, σR). By overlaying of three distributions, the number of particles (NL, NR) that are trapped by central points can be obtained. This process is iterated until (NL, NR) become constant numbers. Smashing process is repeated by changing σL and σR, randomly.
Short Lived Fission Product Yield Measurements in 235U, 238U and 239Pu
NASA Astrophysics Data System (ADS)
Silano, Jack; Tonchev, Anton; Tornow, Werner; Krishichayan, Fnu; Finch, Sean; Gooden, Matthew; Wilhelmy, Jerry
2017-09-01
Yields of short lived fission products (FPYs) with half lives of a few minutes to an hour contain a wealth of information about the fission process. Knowledge of short lived FPYs would contribute to existing data on longer lived FPY mass and charge distributions. Of particular interest are the relative yields between the ground states and isomeric states of FPYs since these isomeric ratios can be used to determine the angular momentum of the fragments. Over the past five years, a LLNL-TUNL-LANL collaboration has made precision measurements of FPYs from quasi-monoenergetic neutron induced fission of 235U, 238U and 239Pu. These efforts focused on longer lived FPYs, using a well characterized dual fission chamber and several days of neutron beam exposure. For the first time, this established technique will be applied to measuring short lived FPYs, with half lives of minutes to less than an hour. A feasibility study will be performed using irradiation times of < 1 hour, improving the sensitivity to short lived FPYs by limiting the buildup of long lived isotopes. Results from this exploratory study will be presented, and the implications for isomeric ratio measurements will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.
Fission barriers of light nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grotowski, K.; Pl-dash-baraneta, R.; Blann, M.
1989-04-01
Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems.
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-05-01
Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms that the adiabatic approximation provides an effective scheme to compute fission fragment yields. It also suggests that, at least in the framework of nuclear DFT, three-dimensional collective spaces may be a prerequisite to reach 10% accuracy in predicting pre-neutron emission fission fragment yields.
Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400
NASA Technical Reports Server (NTRS)
Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.
Potential operating orbits for fission electric propulsion systems driven by the SAFE-400
NASA Astrophysics Data System (ADS)
Houts, Mike; Kos, Larry; Poston, David
2002-01-01
Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp>3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially non-radioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified. .
Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa
The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yiwei; Gulis, Galina; Buckner, Scott
Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death ofmore » dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.« less
Fission-like events in the 12C+169Tm system at low excitation energies
NASA Astrophysics Data System (ADS)
Sood, Arshiya; Singh, Pushpendra P.; Sahoo, Rudra N.; Kumar, Pawan; Yadav, Abhishek; Sharma, Vijay R.; Shuaib, Mohd.; Sharma, Manoj K.; Singh, Devendra P.; Gupta, Unnati; Kumar, R.; Aydin, S.; Singh, B. P.; Wollersheim, H. J.; Prasad, R.
2017-07-01
Background: Fission has been found to be a dominating mode of deexcitation in heavy-ion induced reactions at high excitation energies. The phenomenon of heavy-ion induced fission has been extensively investigated with highly fissile actinide nuclei, yet there is a dearth of comprehensive understanding of underlying dynamics, particularly in the below actinide region and at low excitation energies. Purpose: Prime objective of this work is to study different aspects of heavy-ion induced fission ensuing from the evolution of composite system formed via complete and/or incomplete fusion in the 12C+169Tm system at low incident energies, i.e., Elab≈6.4 , 6.9, and 7.4 A MeV, as well as to understand charge and mass distributions of fission fragments. Method: The recoil-catcher activation technique followed by offline γ spectroscopy was used to measure production cross sections of fission-like events. The evaporation residues were identified by their characteristic γ rays and vetted by the decay-curve analysis. Charge and mass distributions of fission-like events were studied to obtain dispersion parameters of fission fragments. Results: In the present work, 26 fission-like events (32 ≤Z ≤49 ) were identified at different excitation energies. The mass distribution of fission fragments is found to be broad and symmetric, manifesting their production via compound nuclear processes. The dispersion parameters of fission fragments obtained from the analysis of mass and isotopic yield distributions are found to be in good accord with the reported values obtained for different fissioning systems. A self-consistent approach was employed to determine the isobaric yield distribution. Conclusions: The present work suggests that fission is one of the competing modes of deexcitation of complete and/or incomplete fusion composites at low excitation energies, i.e., E*≈57 , 63, and 69 MeV, where evaporation of light nuclear particle(s) and/or γ rays are assumed to be the sole contributors. A single peaked broad Gaussian mass dispersion curve has corroborated the absence of any noncompound nuclear fission at the studied energies.
Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy
NASA Astrophysics Data System (ADS)
Stetcu, I.; Talou, P.; Kawano, T.
2016-06-01
We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas
2016-01-20
Here, we propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. Moreover, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to themore » dissipation in collective motion and to adiabatic fission characteristics.« less
NASA Astrophysics Data System (ADS)
Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.
2016-01-01
Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma-ray counted using shielded HPGe detectors for a period of 1-2 months to determine the yield of various fission products. To the extent possible all irradiation and counting procedures were kept the same to minimize sources of systematic errors. FPY have been determined at incident neutron energies of 0.6, 1.4, 2.4, 3.5, 4.6, 5.5, 8.9 and 14.8 MeV.
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2017-09-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). However, the computational cost of this method makes it difficult to perform calculations with more than two collective degree of freedom. Meanwhile, it is well-known from both semi-phenomenological and fully microscopic approaches that at least four or five dimensions may play a role in the dynamics of fission. To overcome this limitation, we develop the code FELIX aiming to solve the TDGCM+GOA equation for an arbitrary number of collective variables. In this talk, we report the recent progress toward this enriched description of fission dynamics. We will briefly present the numerical methods adopted as well as the status of the latest version of FELIX. Finally, we will discuss fragments yields obtained within this approach for the low energy fission of major actinides.
Neutron radiation characteristics of plutonium dioxide fuel
NASA Technical Reports Server (NTRS)
Taherzadeh, M.
1972-01-01
The major sources of neutrons from plutonium dioxide nuclear fuel are considered in detail. These sources include spontaneous fission of several of the Pu isotopes, (alpha, n) reactions with low Z impurities in the fuel, and (alpha, n) reactions with O-18. For spontaneous fission neutrons a value of (1.95 + or - 0.07) X 1,000 n/s/g PuO2 is obtained. The neutron yield from (alpha, n) reactions with oxygen is calculated by integrating the reaction rate equation over all alpha-particle energies and all center-of-mass angles. The results indicate a neutron emission rate of (1.14 + or - 0.26) X 10,000 n/s/g PuO2. The neutron yield from (alpha, n) reactions with low Z impurities in the fuel is presented in tabular form for one part part per million of each impurity. The total neutron yield due to the combined effects of all the impurities depends upon the fractional weight concentration of each impurity. The total neutron flux emitted from a particular fuel geometry is estimated by adding the neutron yield due to the induced fission to the other neutron sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, J. M.; Randrup, J.; Vogt, R.
The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2. FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The main differences between the two versions are: additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into themore » LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.« less
Regnier, D.; Dubray, N.; Schunck, N.; ...
2016-05-13
Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.
Hanson, Susan Kloek; Pollington, Anthony Douglas; Waidmann, Christopher Russell; ...
2016-07-05
This study describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products 95Zr and 97Zr. By measuring both the perturbation of the 95Mo/ 96Mo and 97Mo/ 96Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the 95Zrmore » and 97Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Susan Kloek; Pollington, Anthony Douglas; Waidmann, Christopher Russell
This study describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products 95Zr and 97Zr. By measuring both the perturbation of the 95Mo/ 96Mo and 97Mo/ 96Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the 95Zrmore » and 97Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.« less
Hanson, Susan K.; Pollington, Anthony D.; Waidmann, Christopher R.; Kinman, William S.; Wende, Allison M.; Miller, Jeffrey L.; Berger, Jennifer A.; Oldham, Warren J.; Selby, Hugh D.
2016-01-01
This paper describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products 95Zr and 97Zr. By measuring both the perturbation of the 95Mo/96Mo and 97Mo/96Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the 95Zr and 97Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test. PMID:27382169
800-MeV proton irradiation of thorium and depleted uranium targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, G.J.; Brun, T.O.; Pitcher, E.J.
As part of the Los Alamos Fertile-to-Fissile-Conversion (FERFICON) program in the late 1980`s, thick targets of the fertile materials thorium and depleted uranium were bombarded by 800-MeV protons to produce the fissile materials {sup 233}U and {sup 239}Pu, respectively. The amount of {sup 233}U made was determined by measuring the {sup 233}Pa activity, and the yield of {sup 239}Pu was deduced by measuring the activity of {sup 239}Np. For the thorium target, 4 spallation products and 34 fission products were also measured. For the depleted uranium target, 3 spallation products and 16 fission products were also measured. The number ofmore » fissions in each target was deduced from fission product mass-yield curves. In actuality, axial distributions of the products were measured, and the distributions were then integrated over the target volume to obtain the total number of products for each reaction.« less
Le, Aaron K.; Bender, Jon A.; Arias, Dylan H.; ...
2017-12-14
Due to its ability to offset thermalization losses in photoharvesting systems, singlet fission has become a topic of research interest. During singlet fission, a high energy spin-singlet state in an organic semiconductor divides its energy to form two lower energy spin-triplet excitations on neighboring chromophores. While key insights into mechanisms leading to singlet fission have been gained recently, developing photostable compounds that undergo quantitative singlet fission remains a key challenge. In this report, we explore triplet exciton production via singlet fission in films of perylenediimides, a class of compounds with a long history of use as industrial dyes and pigmentsmore » due to their photostability. As singlet fission necessitates electron transfer between neighboring molecules, its rate and yield depend sensitively on their local arrangement. Here, by adding different functional groups at their imide positions, we control how perylenediimides pack in the solid state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Aaron K.; Bender, Jon A.; Arias, Dylan H.
Due to its ability to offset thermalization losses in photoharvesting systems, singlet fission has become a topic of research interest. During singlet fission, a high energy spin-singlet state in an organic semiconductor divides its energy to form two lower energy spin-triplet excitations on neighboring chromophores. While key insights into mechanisms leading to singlet fission have been gained recently, developing photostable compounds that undergo quantitative singlet fission remains a key challenge. In this report, we explore triplet exciton production via singlet fission in films of perylenediimides, a class of compounds with a long history of use as industrial dyes and pigmentsmore » due to their photostability. As singlet fission necessitates electron transfer between neighboring molecules, its rate and yield depend sensitively on their local arrangement. Here, by adding different functional groups at their imide positions, we control how perylenediimides pack in the solid state.« less
Langevin model of low-energy fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierk, Arnold John
Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for some observables which are close to measurements. In conclusion, this model is able to reproduce several mass and energy yield observables with a small number of physical parameters, some of which do not need to be varied after benchmarking to 235U (n, f) to predict results for other fissioning isotopes.« less
Langevin model of low-energy fission
Sierk, Arnold John
2017-09-05
Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for some observables which are close to measurements. In conclusion, this model is able to reproduce several mass and energy yield observables with a small number of physical parameters, some of which do not need to be varied after benchmarking to 235U (n, f) to predict results for other fissioning isotopes.« less
NASA Astrophysics Data System (ADS)
Blanc, A.; de France, G.; Drouet, F.; Jentschel, M.; Köster, U.; Mancuso, C.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Vancraeyenest, A.
2013-12-01
One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL) campaign. In the present work, the EXILL setup and performance will be presented.
Microscopic predictions of fission yields based on the time dependent GCM formalism
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-03-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.
Neutron Radiation Characteristics of Plutonium Dioxide Fuel
NASA Technical Reports Server (NTRS)
Taherzadeh, M.
1972-01-01
The major sources of neutrons from plutonium dioxide nuclear fuel are considered in detail. These sources include spontaneous fission of several of the Pu isotopes, reactions with low Z impurities in the fuel, and reactions with O-18. For spontaneous fission neutrons a value of (1.95 plus or minus 0.07) X 1,000 n/s/q PuO2 is obtained. The neutron yield from (alpha, neutron) reactions with oxygen is calculated by integrating the reaction rate equation over all alpha particle energies and all center-of-mass angles. The results indicate a neutron emission rate of (1.42 plus or minus 0.32) X 10,000 n/s/q PuO2. The neutron yield from (alpha, neutron) reactions with low Z impurities in the fuel is presented in tabular form for one part per million of each impurity. The total neutron flux emitted from a particular fuel geometry is estimated by adding the neutron yield due to the induced fission to the other neutron sources.
Differential neutron energy spectra measured on spacecraft low Earth orbit
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.; Dudkin, E. V.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.
1995-01-01
Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n.x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)
NASA Astrophysics Data System (ADS)
Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; Manning, Brett; Geppert-Kleinrath, Verena
2017-09-01
Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)
Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; ...
2017-09-13
Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less
Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana
Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less
On the Variation of Eta with Energy in the 100-1000 ev Region
DOE R&D Accomplishments Database
Wigner, E. P.
1949-11-01
Fluctuations in the fission yield in the 100- to 1000-ev region led to an investigation of the influencing variables. Changes in fission width from level to level and higher angular momentum phenomena are seen as possible explanations. (D.E.B.)
Studies On Particle-Accompanied Fission Of 252Cf(sf) And 235U(nth,f)
NASA Astrophysics Data System (ADS)
Kopatch, Yu N.; Tishchenko, V.; Speransky, M.; Mutterer, M.; Gönnenwein, F.; Jesinger, P.; Gagarski, A. M.; von Kalben, J.; Kojouharov, I.; Lubkiewics, E.; Mezentseva, Z.; Nezvishevsky, V.; Petrov, G. A.; Schaffner, H.; Scharma, H.; Trzaska, W. H.; Wollersheim, H.-J.
2005-11-01
In recent multi-parameter studies of spontaneous and thermal neutron induced fission, 252Cf(sf) and 235U(nth,f) respectively, the energies and emission angles of fission fragments and light charged particles were measured. Fragments were detected by an energy and angle sensitive twin ionization chamber while the light charged particles were identified by a series of ΔE-Erest telescopes. Up to Be the light particle isotopes could be disentangled. In addition, in the 252Cf(sf) experiment, gammas emitted by the fragments were analyzed by a pair of large-volume segmented clover Ge detectors. Here the main interest is to study the γ-decay and the anisotropy of gammas emitted by fragments and light particles. On the other hand, the high count rates achieved in the U-experiment performed at the high flux reactor of the ILL, Grenoble, should allow to explore fragment-particle correlations in very rare events like quaternary fission. At the present stage of data evaluation, yields and energy distributions of light particles are available. For the present contribution in particular the yields of Be-isotopes for the two reactions studied are compared and discussed. For 252Cf(sf) these isotopic yields were hitherto not known.
Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State
Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.; ...
2017-11-30
The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less
Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.
The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Dana Lynn
2015-11-12
This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fissionmore » measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.« less
The total kinetic energy release in the fast neutron-induced fission of 232Th
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Jonathan; Yanez, Ricardo; Loveland, Walter
Here, the post-emission total kinetic energy release (TKE) in the neutron-induced fission of 232Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E n=3 to 91MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3±0.3 at E n=3 MeV to 154.9±0.3 MeV at E n=91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission.
The total kinetic energy release in the fast neutron-induced fission of 232Th
King, Jonathan; Yanez, Ricardo; Loveland, Walter; ...
2017-12-15
Here, the post-emission total kinetic energy release (TKE) in the neutron-induced fission of 232Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E n=3 to 91MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3±0.3 at E n=3 MeV to 154.9±0.3 MeV at E n=91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission.
Gooden, M. E.; Arnold, C. W.; Becker, J. A.; ...
2016-01-06
In this study, Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varyingmore » degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma-ray counted using shielded HPGe detectors for a period of 1-2 months to determine the yield of various fission products. To the extent possible all irradiation and counting procedures were kept the same to minimize sources of systematic errors. FPY have been determined at incident neutron energies of 0.6, 1.4, 2.4, 3.5, 4.6, 5.5, 8.9 and 14.8 MeV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooden, M.E., E-mail: m_gooden@lanl.gov; Arnold, C.W.; Becker, J.A.
2016-01-15
Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematicmore » errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for {sup 235}U, {sup 238}U and {sup 239}Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma-ray counted using shielded HPGe detectors for a period of 1-2 months to determine the yield of various fission products. To the extent possible all irradiation and counting procedures were kept the same to minimize sources of systematic errors. FPY have been determined at incident neutron energies of 0.6, 1.4, 2.4, 3.5, 4.6, 5.5, 8.9 and 14.8 MeV.« less
NASA Astrophysics Data System (ADS)
Casoli, P.; Authier, N.; Jacquet, X.; Cartier, J.
2014-04-01
Caliban and Prospero are two highly enriched uranium metallic core reactors operated on the CEA Center of Valduc. These critical assemblies are suitable for integral experiments, such as fission yields measurements or perturbation measurements, which have been carried out recently on the Caliban reactor. Different unfolding methods, based on activation foils and fission chambers measurements, are used to characterize the reactor spectra and especially the Caliban spectrum, which is very close to a pure fission spectrum.
Production of fissioning uranium plasma to approximate gas-core reactor conditions
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.
1974-01-01
The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.
NASA Astrophysics Data System (ADS)
Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.
2013-12-01
Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.
Endothermic singlet fission is hindered by excimer formation
NASA Astrophysics Data System (ADS)
Dover, Cameron B.; Gallaher, Joseph K.; Frazer, Laszlo; Tapping, Patrick C.; Petty, Anthony J.; Crossley, Maxwell J.; Anthony, John E.; Kee, Tak W.; Schmidt, Timothy W.
2018-03-01
Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.
Endothermic singlet fission is hindered by excimer formation.
Dover, Cameron B; Gallaher, Joseph K; Frazer, Laszlo; Tapping, Patrick C; Petty, Anthony J; Crossley, Maxwell J; Anthony, John E; Kee, Tak W; Schmidt, Timothy W
2018-03-01
Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.
High precision measurements on fission-fragment de-excitation
NASA Astrophysics Data System (ADS)
Oberstedt, Stephan; Gatera, Angélique; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Vidali, Marzio; Oberstedt, Andreas
2017-11-01
In recent years nuclear fission has gained renewed interest both from the nuclear energy community and in basic science. The first, represented by the OECD Nuclear Energy Agency, expressed the need for more accurate fission cross-section and fragment yield data for safety assessments of Generation IV reactor systems. In basic science modelling made much progress in describing the de-excitation mechanism of neutron-rich isotopes, e.g. produced in nuclear fission. Benchmarking the different models require a precise experimental data on prompt fission neutron and γ-ray emission, e.g. multiplicity, average energy per particle and total dissipated energy per fission, preferably as function of fission-fragment mass and total kinetic energy. A collaboration of scientists from JRC Geel (formerly known as JRC IRMM) and other institutes took the lead in establishing a dedicated measurement programme on prompt fission neutron and γ-ray characteristics, which has triggered even more measurement activities around the world. This contribution presents new advanced instrumentation and methodology we use to generate high-precision spectral data and will give a flavour of future data needs and opportunities.
Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains
Matmon, A.; Bierman, P.R.; Larsen, J.; Southworth, S.; Pavich, M.; Caffee, M.
2003-01-01
We measured 10Be in fluvial sediment samples (n = 27) from eight Great Smoky Mountain drainages (1-330 km2). Results suggest spatially homogeneous sediment generation (on the 104-105 yr time scale and > 100 km2 spatial scale) at 73 ?? 11 t km-2 yr-1, equivalent to 27 ?? 4 m/m.y. of bedrock erosion. This rate is consistent with rates derived from fission-track, long-term sediment budget, and sediment yield data, all of which indicate that the Great Smoky Mountains and the southern Appalachians eroded during the Mesozoic and Cenozoic at ???30 m/m.y. In contrast, unroofing rates during the Paleozoic orogenic events that formed the Appalachian Mountains were higher (???102 m/m.y.). Erosion rates decreased after termination of tectonically driven uplift, enabling the survival of this ancient mountain belt with its deep crustal root as an isostatically maintained feature in the contemporary landscape.
A toy model for the yield of a tamped fission bomb
NASA Astrophysics Data System (ADS)
Reed, B. Cameron
2018-02-01
A simple expression is developed for estimating the yield of a tamped fission bomb, that is, a basic nuclear weapon comprising a fissile core jacketed by a surrounding neutron-reflecting tamper. This expression is based on modeling the nuclear chain reaction as a geometric progression in combination with a previously published expression for the threshold-criticality condition for such a core. The derivation is especially straightforward, as it requires no knowledge of diffusion theory and should be accessible to students of both physics and policy. The calculation can be set up as a single page spreadsheet. Application to the Little Boy and Fat Man bombs of World War II gives results in reasonable accord with published yield estimates for these weapons.
Cold fission description with constant and varying mass asymmetries
NASA Astrophysics Data System (ADS)
Duarte, S. B.; Rodríguez, O.; Tavares, O. A. P.; Gonçalves, M.; García, F.; Guzmán, F.
1998-05-01
Different descriptions for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the prescission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A>200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life values and mass yield of 234U cold fission are satisfactorily reproduced.
Prospects for improved understanding of isotopic reactor antineutrino fluxes
NASA Astrophysics Data System (ADS)
Gebre, Y.; Littlejohn, B. R.; Surukuchi, P. T.
2018-01-01
Predictions of antineutrino fluxes produced by fission isotopes in a nuclear reactor have recently received increased scrutiny due to observed differences in predicted and measured inverse beta decay (IBD) yields, referred to as the "reactor antineutrino flux anomaly." In this paper, global fits are applied to existing IBD yield measurements to produce constraints on antineutrino production by individual plutonium and uranium fission isotopes. We find that fits including measurements from highly
Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L
2014-07-01
A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramos, D.; Caamaño, M.; Farget, F.; Rodríguez-Tajes, C.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M.-D.; Schmitt, C.
2018-05-01
Transfer- and fusion-induced fission in inverse kinematics has proved to be a powerful tool to investigate nuclear fission, widening information on the fission fragments and access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign is being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through inelastic scattering, transfer, and fusion reactions, with excitation energies that range from a few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer allow the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. This work reports on new data from the second experiment of the campaign on fission-fragment yields of the heavy actinides 238U, 239Np, 240Pu, 244Cm, and 250Cf, which are of interest from both fundamental and application points of view.
Polariton-Assisted Singlet Fission in Acene Aggregates.
Martínez-Martínez, Luis A; Du, Matthew; F Ribeiro, Raphael; Kéna-Cohen, Stéphane; Yuen-Zhou, Joel
2018-04-19
Singlet fission is an important candidate to increase energy conversion efficiency in organic photovoltaics by providing a pathway to increase the quantum yield of excitons per photon absorbed in select materials. We investigate the dependence of exciton quantum yield for acenes in the strong light-matter interaction (polariton) regime, where the materials are embedded in optical microcavities. Starting from an open-quantum-systems approach, we build a kinetic model for time-evolution of species of interest in the presence of singlet quenchers and show that polaritons can decrease or increase exciton quantum yields compared to the cavity-free case. In particular, we find that hexacene, under the conditions of our model, can feature a higher yield than cavity-free pentacene when assisted by polaritonic effects. Similarly, we show that pentacene yield can be increased when assisted by polariton states. Finally, we address how various relaxation processes between bright and dark states in lossy microcavities affect polariton photochemistry. Our results also provide insights on how to choose microcavities to enhance similarly related chemical processes.
NASA Technical Reports Server (NTRS)
Gregg, R.; Tombrello, T. A.
1978-01-01
Results are presented for an experimental study of the sputtering of U-235 atoms from foil targets by hydrogen, helium, and argon ions, which was performed by observing tracks produced in mica by fission fragments following thermal-neutron-induced fission. The technique used allowed measurements of uranium sputtering yields of less than 0.0001 atom/ion as well as yields involving the removal of less than 0.01 monolayer of the uranium target surface. The results reported include measurements of the sputtering yields for 40-120-keV protons, 40-120-keV He-4(+) ions, and 40- and 80-keV Ar-40(+) ions, the mass distribution of chunks emitted during sputtering by the protons and 80-keV Ar-40(+) ions, the total chunk yield during He-4(+) sputtering, and some limited data on molecular sputtering by H2(+) and H3(+). The angular distribution of the sputtered uranium is discussed, and the yields obtained are compared with the predictions of collision cascade theory.
NASA Astrophysics Data System (ADS)
Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.
2015-12-01
Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.
Scaling beta-delayed neutron measurements to large detector areas
NASA Astrophysics Data System (ADS)
Sutanto, F.; Nattress, J.; Jovanovic, I.
2017-08-01
We explore the performance of a cargo screening system that consists of two large-sized composite scintillation detectors and a high-energy neutron interrogation source by modeling and simulation. The goal of the system is to measure β-delayed neutron emission from an illicit special nuclear material by use of active interrogation. This task is challenging because the β-delayed neutron yield is small in comparison with the yield of the prompt fission secondary products, β-delayed neutrons are emitted with relatively low energies, and high neutron and gamma backgrounds are typically present. Detectors used to measure delayed neutron emission must exhibit high intrinsic efficiency and cover a large solid angle, which also makes them sensitive to background neutron radiation. We present a case study where we attempt to detect the presence of 5 kg-scale quantities of 235U in a standard air-filled cargo container using 14 MeV neutrons as a probe. We find that by using a total measurement time of ˜11.6 s and a dose equivalent of ˜1.7 mrem, the presence of 235U can be detected with false positive and false negative probabilities that are both no larger than 0.1%.
Studies of Neutron-Induced Fission of 235U, 238U, and 239Pu
NASA Astrophysics Data System (ADS)
Duke, Dana; TKE Team
2014-09-01
A Frisch-gridded ionization chamber and the double energy (2E) analysis method were used to study mass yield distributions and average total kinetic energy (TKE) release from neutron-induced fission of 235U, 238U, and 239Pu. Despite decades of fission research, little or no TKE data exist for high incident neutron energies. Additional average TKE information at incident neutron energies relevant to defense- and energy-related applications will provide a valuable observable for benchmarking simulations. The data can also be used as inputs in theoretical fission models. The Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE - WNR) provides a neutron beam from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on 238U, 235U, and 239Pu will be presented. LA-UR-14-24921.
FIER: Software for analytical modeling of delayed gamma-ray spectra
NASA Astrophysics Data System (ADS)
Matthews, E. F.; Goldblum, B. L.; Bernstein, L. A.; Quiter, B. J.; Brown, J. A.; Younes, W.; Burke, J. T.; Padgett, S. W.; Ressler, J. J.; Tonchev, A. P.
2018-05-01
A new software package, the Fission Induced Electromagnetic Response (FIER) code, has been developed to analytically predict delayed γ-ray spectra following fission. FIER uses evaluated nuclear data and solutions to the Bateman equations to calculate the time-dependent populations of fission products and their decay daughters resulting from irradiation of a fissionable isotope. These populations are then used in the calculation of γ-ray emission rates to obtain the corresponding delayed γ-ray spectra. FIER output was compared to experimental data obtained by irradiation of a 235U sample in the Godiva critical assembly. This investigation illuminated discrepancies in the input nuclear data libraries, showcasing the usefulness of FIER as a tool to address nuclear data deficiencies through comparison with experimental data. FIER provides traceability between γ-ray emissions and their contributing nuclear species, decay chains, and parent fission fragments, yielding a new capability for the nuclear science community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecht, Adam
Within the 3 year POP we propose to continue to test and further develop the fission spectrometers, to do development tests and full data acquisition run at the national laboratory neutron beam facilities, to measure correlated fission fragment yields at low neutron energies with 235 U fission targets, and make these data available to the nuclear community. The spectrometer development will be both on the university based r\\prototype and on the National Laboratory Spectrometer, and measurements will be performed with both. Over the longer time frame of the collaboration, we will take data over a range of low energies, andmore » use other fission targets available to the laboratory. We will gather energy specific fragment distributions and reaction cross sections. We will further develop the data acquisition capabilities to take correlated fission fragment'gamma ray/neurton data, all on an event-by-event basis. This really is an enabling technology.« less
First-Principle Characterization for Singlet Fission Couplings.
Yang, Chou-Hsun; Hsu, Chao-Ping
2015-05-21
The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.
Temperature dependence of yields from multi-foil SPES target
NASA Astrophysics Data System (ADS)
Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W.
2011-10-01
The temperature dependence of neutron-rich isotope yields was studied within the framework of the HRIBF-SPES Radioactive Ion Beams (RIB) project. On-line release measurements of fission fragments from a uranium carbide target at ensuremath 1600 {}^{circ}C , ensuremath 1800 {}^{circ}C and ensuremath 2000 {}^{circ}C were performed at ORNL (USA). The fission reactions were induced by a 40MeV proton beam accelerated into a uranium carbide target coupled to a plasma ion source. The experiments allowed for tests of performance of the SPES multi-foil target prototype loaded with seven UC2/graphite discs (ratio C/ U = 4 with density about 4g/cm3.
Impact of fission neutron energies on reactor antineutrino spectra
NASA Astrophysics Data System (ADS)
Littlejohn, B. R.; Conant, A.; Dwyer, D. A.; Erickson, A.; Gustafson, I.; Hermanek, K.
2018-04-01
Recent measurements of reactor-produced antineutrino fluxes and energy spectra are inconsistent with models based on measured thermal fission beta spectra. In this paper, we examine the dependence of antineutrino production on fission neutron energy. In particular, the variation of fission product yields with neutron energy has been considered as a possible source of the discrepancies between antineutrino observations and models. In simulations of low-enriched and highly-enriched reactor core designs, we find a substantial fraction of fissions (from 5% to more than 40%) are caused by nonthermal neutrons. Using tabulated evaluations of nuclear fission and decay, we estimate the variation in antineutrino emission by the prominent fission parents
NASA Astrophysics Data System (ADS)
Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.
2015-12-01
Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at higher temperatures than fission-track damage and the impact on coupled apatite He and AFT dates is magnified for protracted cooling histories. Further experimental and field-based tests are important for refining radiation damage and fission-track annealing parameters for accurate interpretation of apatite He- and AFT-derived thermal histories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, So Jung; Park, Young Jun; Shin, Ji Hyun
2011-05-13
Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactivemore » chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.« less
Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy
2015-01-01
We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507
Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy
2015-10-01
We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.
Comparison of different signal peptides for secretion of heterologous proteins in fission yeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjaerulff, Soren; Jensen, Martin Roland
2005-10-28
In the fission yeast Schizosaccharomyces pombe, there are relatively few signal peptides available and most reports of their activity have not been comparative. Using sequence information from the S. pombe genome database we have identified three putative signal peptides, designated Cpy, Amy and Dpp, and compared their ability to support secretion of green fluorescent protein (GFP). In the comparison we also included the two well-described secretion signals derived from the precursors of, respectively, the Saccharomyces cerevisiae {alpha}-factor and the S. pombe P-factor. The capability of the tested signal peptides to direct secretion of GFP varied greatly. The {alpha}-factor signal didmore » not confer secretion to GFP and all the produced GFP was trapped intracellular. In contrast, the Cpy signal peptide supported efficient secretion of GFP with yields approximating 10 mg/L. We also found that the use of an attenuated version of the S. cerevisiae URA3 marker substantially increases vector copy number and expression yield in fission yeast.« less
Sampling the kinetic pathways of a micelle fusion and fission transition.
Pool, René; Bolhuis, Peter G
2007-06-28
The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.
Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirolf, P. G.; Gross, M.; Allinger, K.
We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Thmore » ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.« less
New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements
NASA Astrophysics Data System (ADS)
Goriely, S.; Sida, J.-L.; Lemaître, J.-F.; Panebianco, S.; Dubray, N.; Hilaire, S.; Bauswein, A.; Janka, H.-T.
2013-12-01
Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140.
NASA Astrophysics Data System (ADS)
Zier, J. C.; Mosher, D.; Allen, R. J.; Commisso, R. J.; Cooperstein, G.; Hinshelwood, D. D.; Jackson, S. L.; Murphy, D. P.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Swanekamp, S. B.; Weber, B. V.
2014-06-01
Intense pulsed active detection (IPAD) is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU) object in the bremsstrahlung far field by varying the anode-cathode (AK) diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, Rekha; Department of Biochemistry, UT Health Science Center at San Antonio, San Antonio, TX 78229; Mishra, Nandita
2010-09-03
Research highlights: {yields} Chemical inhibition of fission protein Drp1 leads to mitochondrial fusion. {yields} Increased fusion stimulates molecular changes in mitochondrial fusion protein OPA1. {yields} Proteolysis of larger isoforms, new synthesis and ubiquitination of OPA1 occur. {yields} Loss of mitochondrial tubular rigidity and disorganization of cristae. {yields} Generation of large swollen dysfunctional mitochondria. -- Abstract: We showed earlier that 15 deoxy {Delta}{sup 12,14} prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion . However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria bymore » 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.« less
Neutron detector using sol-gel absorber
Hiller, John M.; Wallace, Steven A.; Dai, Sheng
1999-01-01
An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.
NASA Astrophysics Data System (ADS)
Yang, Shi-Yu; Cao, Zhou; Da, Dao-An; Xue, Yu-Xiong
2009-05-01
The experimental results of single event burnout induced by heavy ions and 252Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the “turn-off" state is more susceptible to single event burnout than it is in the “turn-on" state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, Lori A.; Friese, Judah I.; Finn, Erin C.
Critical assemblies provide one method of achieving a fast neutron spectrum that is close to a 235U fission-energy neutron spectrum for nuclear data measurements. Previous work has demonstrated the use of a natural boron carbide capsule for spectral-tailoring in a mixed spectrum reactor as an alternate and complementary method for performing fission-energy neutron experiments. Previous fission products measurements showed that the neutron spectrum achievable with natural boron carbide was not as hard as what can be achieved with critical assemblies. New measurements performed with the Washington State University TRIGA reactor using a boron carbide capsule 96% enriched in 10B formore » irradiations resulted in a neutron spectrum very similar to a critical assembly and a pure 235U fission spectrum. The current work describes an experiment involving a highly-enriched uranium target irradiated under the new 10B4C capsule. Fission product yields were measured following radiochemical separations and are presented here. Reactor dosimetry measurements for characterizing neutron spectra and fluence for the enriched boron carbide capsule and critical assemblies are also discussed.« less
Measurements of Short-Lived Fission Isomers
NASA Astrophysics Data System (ADS)
Finch, Sean; Bhike, Megha; Howell, Calvin; Krishichayan, Fnu; Tornow, Werner
2016-09-01
Fission yields of the short lived isomers 134mTe (T1 / 2 = 162 ns) and 136mXe (T1 / 2 = 2 . 95 μs) were measured for 235U and 238U. The isomers were detected by the γ rays associated with the decay of the isomeric states using high-purity germanium detectors. Fission was induced using both monoenergetic γ rays and neutrons. At TUNL's High-Intensity Gamma-ray Source (HI γS), γ rays of 9 and 11 MeV were produced . Monoenergetic 8 MeV neutrons were produced at TUNL's tandem accelerator laboratory. Both beams were pulsed to allow for precise time-gated spectroscopy of both prompt and delayed γ rays following fission. This technique offers a non-destructive probe of special nuclear materials that is sensitive to the isotopic identity of the fissile material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iseki, Tadahiro; Inaba, Makoto; Takahashi, Naoki
During the second and third steps of Active Test at Rokkasho Reprocessing Plant (RRP), the performances of the Separation Facility have been checked; (A) diluent washing efficiency, (B) plutonium stripping efficiency, (C) decontamination factor of fission products and (D) plutonium and uranium leakage into raffinate and spent solvent. Test results were equivalent to or better than expected. (authors)
Ionizing radiation measurements on LDEF: A0015 Free flyer biostack experiment
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.; Benton, E. R.; Csige, I.; Frigo, L. A.
1995-01-01
This report covers the analysis of passive radiation detectors flown as part of the A0015 Free Flyer Biostack on LDEF (Long Duration Exposure Facility). LET (linear energy transfer) spectra and track density measurements were made with CR-39 and Polycarbonate plastic nuclear track detectors. Measurements of total absorbed dose were carried out using Thermoluminescent Detectors. Thermal and resonance neutron dose equivalents were measured with LiF/CR-39 detectors. High energy neutron and proton dose equivalents were measured with fission foil/CR-39 detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, J. L.; Sutton, T. M.
2013-07-01
In Monte Carlo iterated-fission-source calculations relative uncertainties on local tallies tend to be larger in lower-power regions and smaller in higher-power regions. Reducing the largest uncertainties to an acceptable level simply by running a larger number of neutron histories is often prohibitively expensive. The uniform fission site method has been developed to yield a more spatially-uniform distribution of relative uncertainties. This is accomplished by biasing the density of fission neutron source sites while not biasing the solution. The method is integrated into the source iteration process, and does not require any auxiliary forward or adjoint calculations. For a given amountmore » of computational effort, the use of the method results in a reduction of the largest uncertainties relative to the standard algorithm. Two variants of the method have been implemented and tested. Both have been shown to be effective. (authors)« less
Fission properties of Po isotopes in different macroscopic-microscopic models
NASA Astrophysics Data System (ADS)
Bartel, J.; Pomorski, K.; Nerlo-Pomorska, B.; Schmitt, Ch
2015-11-01
Fission-barrier heights of nuclei in the Po isotopic chain are investigated in several macroscopic-microscopic models. Using the Yukawa-folded single-particle potential, the Lublin-Strasbourg drop (LSD) model, the Strutinsky shell-correction method to yield the shell corrections and the BCS theory for the pairing contributions, fission-barrier heights are calculated and found in quite good agreement with the experimental data. This turns out, however, to be only the case when the underlying macroscopic, liquid-drop (LD) type, theory is well chosen. Together with the LSD approach, different LD parametrizations proposed by Moretto et al are tested. Four deformation parameters describing respectively elongation, neck-formation, reflectional-asymmetric, and non-axiality of the nuclear shape thus defining the so called modified Funny Hills shape parametrization are used in the calculation. The present study clearly demonstrates that nuclear fission-barrier heights constitute a challenging and selective tool to discern between such different macroscopic approaches.
ERIC Educational Resources Information Center
Askew, Jennifer; Gray, Ron
2017-01-01
Near the end of World War II, the United States dropped the first nuclear bomb ever used in warfare. The bomb was code named "Little Boy." The fission-type nuclear bomb exploded with the energy equivalent of approximately 13 kilotons of TNT. This article describes a 16 day model-based inquiry (MBI) unit on nuclear chemistry that…
Sensitivity of the nuclear deformability and fission barriers to the equation of state
NASA Astrophysics Data System (ADS)
Seif, W. M.; Anwer, Hisham
2018-07-01
The model-dependent analysis of the fission data impacts the extracted fission-related quantities, which are not directly observables, such as the super- and hyperdeformed isomeric states and their energies. We investigated the model dependence of the deformability of a nucleus and its fission barriers on the nuclear equation of state. Within the microscopic-macroscopic model based on a large number of Skyrme nucleon-nucleon interactions, the total energy surfaces and the double-humped fission barrier of 230Th are calculated in a multidimensional deformation space. In addition to the ground-state (GS) and the superdeformed (SD) minima, all the investigated forces yielded a hyperdeformed (HD) minimum. The contour map of the shell-plus-pairing energy clearly displayed the three minima. We found that the GS binding energy and the deformation energy of the different deformation modes along the fission path increase with the incompressibility coefficient K0, while the fission barrier heights and the excitation energies of the SD and HD modes decrease with it. Conversely, the surface-energy coefficient asurf, the symmetry-energy, and its density-slope parameter decrease the GS energy and the deformation energies, but increase the fission barrier heights and the excitation energies. The obtained deformation parameters of the different deformation modes exhibit almost independence on K0, and on the symmetry-energy and its density-slope. The principle deformation parameters of the SD and HD isomeric states tend to decrease with asurf.
Distinguishing Fissile From Non-Fissile Materials Using Linearly Polarized Gamma Rays
NASA Astrophysics Data System (ADS)
Mueller, J. M.; Ahmed, M. W.; Karwowski, H. J.; Myers, L. S.; Sikora, M. H.; Weller, H. R.; Zimmerman, W. R.; Randrup, J.; Vogt, R.
2014-03-01
Photofission of 232Th, 233 , 235 , 238U, 237Np, and 239,240Pu was induced by nearly 100% linearly polarized, high intensity (~107 γs per second), and nearly-monoenergetic γ-ray beams of energies between 5.3 and 7.6 MeV at the High Intensity γ-ray Source (HI γS). An array of 12-18 liquid scintillating detectors was used to measure prompt fission neutron yields. The ratio of prompt fission neutron yields parallel to the plane of beam polarization to the yields perpendicular to this plane was measured as a function of beam and neutron energy. A ratio near unity was found for 233,235U, 237Np, and 239Pu while a significant ratio (~1.5-3) was found for 232Th, 238U, and 240Pu. This large difference could be used to distinguish fissile isotopes (such as 233,235U and 239Pu) from non-fissile isotopes (such as 232Th, 238U, and 240Pu). The measured ratios agree with the results of a fission calculation (FREYA) which used with previously measured photofission fragment angular distributions as input. Partially supported by DHS (2010-DN-077-ARI046-02), DOE (DE-AC52-07NA27344 and DE-AC02-05CH11231), and the DOE Office of Science Graduate Fellowship Program (DOE SCGF).
Impact of low-energy photons on the characteristics of prompt fission γ -ray spectra
NASA Astrophysics Data System (ADS)
Oberstedt, A.; Billnert, R.; Hambsch, F.-J.; Oberstedt, S.
2015-07-01
In this paper we report on a new study of prompt γ -rays from the spontaneous fission of 252Cf . Photons were measured in coincidence with fission fragments by employing four different lanthanide halide scintillation detectors. Together with results from a previous work of ours, we determined characteristic parameters with high precision, such as the average γ -ray multiplicity ν¯γ=(8.29 ±0.13 ), the average energy per photon ɛγ=(0.80 ±0.02 ) MeV, and the total γ -ray energy release per fission Eγ ,tot=(6.65 ±0.10 ) MeV. The excellent agreement between the individual results obtained in all six measurements proves the good repeatability of the applied experimental technique. The impact of low-energy photons, i.e., below 500 keV, on prompt fission γ -ray spectra characteristics has been investigated as well by comparing our results with those taken with the DANCE detector system, which appears to suffer from absorption effects in the low-energy region. Correction factors for this effect were estimated, giving results comparable to ours as well as to historical ones. From this we demonstrate that the different techniques of determining the average γ -ray multiplicity, either from a properly measured and normalized spectrum or a measured multiplicity distribution, give equivalent and consistent results.
Proton induced fission of {sup 232}Th at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A.
2016-12-15
The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has beenmore » observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.« less
Dating the age of a nuclear event by gamma spectrometry.
Nir-El, Y
2004-01-01
The age of a nuclear event can be determined by measuring the activity of two fission products. The event studied was a short irradiation, of a small sample of uranium, in a nuclear reactor. Two types of a clock were investigated: non-isobaric and isobaric parent-daughter fission products. Measurements of the source by gamma spectrometry yielded very good agreement between true and measured ages. The accuracy of each clock and the upper and lower age limits of applicability were studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotsch, David A.; Brossard, Tom; Roussin, Ethan
Molybdenum-99, the mother of Tc-99m, can be produced from fission of U-235 in nuclear reactors and purified from fission products by the Cintichem process, later modified for low-enriched uranium (LEU) targets. The key step in this process is the precipitation of Mo with α-benzoin oxime (ABO). The stability of this complex to radiation has been examined. Molybdenum-ABO was irradiated with 3 MeV electrons produced by a Van de Graaff generator and 35 MeV electrons produced by a 50 MeV/25 kW electron linear accelerator. Dose equivalents of 1.7–31.2 kCi of Mo-99 were administered to freshly prepared Mo-ABO. Irradiated samples of Mo-ABOmore » were processed according to the LEU Modified-Cintichem process. The Van de Graaff data indicated good radiation stability of the Mo-ABO complex up to ~15 kCi dose equivalents of Mo-99 and nearly complete destruction at doses >24 kCi Mo-99. The linear accelerator data indicate that even at 6.2 kCi of Mo-99 equivalence of dose, the sample lost ~20% of Mo-99. The 20% loss of Mo-99 at this low dose may be attributed to thermal decomposition of the product from the heat deposited in the sample during irradiation.« less
Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field.
Hollenbach, D F; Herndon, J M
2001-09-25
Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having (3)He/(4)He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.
Mass and angular distributions of the reaction products in heavy ion collisions
NASA Astrophysics Data System (ADS)
Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.
2018-05-01
The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.
Fission matrix-based Monte Carlo criticality analysis of fuel storage pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farlotti, M.; Ecole Polytechnique, Palaiseau, F 91128; Larsen, E. W.
2013-07-01
Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simplemore » problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)« less
Biophysics and medical effects of enhanced radiation weapons.
Reeves, Glen I
2012-08-01
Enhanced radiation weapons (ERW) are fission-fusion devices where the massive numbers of neutrons generated during the fusion process are intentionally allowed to escape rather than be confined to increase yield (and fallout products). As a result, the energy partition of the weapon output shifts from blast and thermal energies toward prompt radiation. The neutron/gamma output ratio is also increased. Neutrons emitted from ERW are of higher energy than the Eave of neutrons from fission weapons. These factors affect the patterns of injury distribution; delay wound healing in combined injuries; reduce the therapeutic efficacy of medical countermeasures; and increase the dose to radiation-only casualties, thus potentiating the likelihood of encountering radiation-induced incapacitation. The risk of radiation-induced carcinogenesis is also increased. Radiation exposure to first responders from activation products is increased over that expected from a fission weapon of similar yield. However, the zone of dangerous fallout is significantly reduced in area. At least four nations have developed the potential to produce such weapons. Although the probability of detonation of an ERW in the near future is very small, it is nonzero, and clinicians and medical planners should be aware of the medical effects of ERW.
Charge distributions of fission fragments of low- and high-energy fission of Fm, No, and Rf isotopes
NASA Astrophysics Data System (ADS)
Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.
2018-03-01
The charge (mass) distributions of fission fragments resulting from low- and high-energy fission of the even-even nuclei 254 -260 ,264Fm , 258 -264No , and 262 -266Rf are studied with the statistical scission-point model. The calculated results are compared with the available experimental data. In contrast to the experimental data, the calculated mass distribution for 258Fm (s.f.) is strikingly similar to the experimental one for 257Fm (s.f.). The transformation of the shape of charge distribution with increasing isospin and excitation energy occurs gradually and in a similar fashion like that of the mass distribution, but slower. For 254Fm(i.f.), 257Fm(nt h,f), and 260Fm (s.f.), the unexpected difference (symmetric or asymmetric) between the shapes of charge and mass distributions is predicted for the first time. At some critical excitation energy, the saturation of the symmetric component of charge (mass) yields is demonstrated.
Extending Measurements to En=30 MeV and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Dana Lynn
The majority of energy release in the fission process is due to the kinetic energy of the fission fragments. Average Total Kinetic Energy measurements for the major actinides over a wide range of incident neutron energies were performed at LANSCE using a Frisch-gridded ionization chamber. The experiments and results of the 238U(n,f) and 235U(n,f) will be presented, including (En), (A), and mass yield distributions as a function of neutron energy. A preliminary (En) for 239Pu(n,f) will also be shown. The (En) shows a clear structure at multichance fission thresholds for all the reactions that we studied. The fragment masses aremore » determined using the iterative double energy (2E) method, with a resolution of A = 4 - 5 amu. The correction for the prompt fission neutrons is the main source of uncertainty, especially at high incident neutron energies, since the behavior of nubar(A,En) is largely unknown. Different correction methods will be discussed.« less
Prompt Fission Neutron Multiplicities for 241Pu using Surrogate Reactions
NASA Astrophysics Data System (ADS)
Akindele, Oluwatomi; Burke, Jason; Casperson, Robert; Hughes, Richard; Norman, Eric; Saastamoinen, Antti; Wang, Barbara
2017-09-01
The prompt fission neutron multiplicity for 241Pu was measured at the Texas A&M University Cyclotron using the NeutronSTARS array. Due to the short half-life (14.3 yrs) of 241Pu, inelastic scattering on 242Pu with 55 MeV alpha particles was used as a surrogate. The average neutron multiplicity (ν), and the neutron multiplicity distribution for equivalent neutron energies up to 20 MeV are discussed and reported. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344, and supported by the DOE NNSA under Award Number DE-NA0000979, and through the Nuclear Science and Security Consortium under Award Number DE-NA-0003180.
Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku
2016-04-18
One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
FALSTAFF: A new tool for fission studies
NASA Astrophysics Data System (ADS)
Dore, D.; Farget, F.; Lecolley, F.-R.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.; Papaevangelou, Th.
2013-12-01
The future NFS installation will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest for the nuclear community in view of the development of the fast reactor technology will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow the simultaneous measurement of the complementary fragments velocity and energy. The performances of TOF detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.
Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field
Hollenbach, D. F.; Herndon, J. M.
2001-01-01
Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483
Formation and distribution of fragments in the spontaneous fission of 240Pu
NASA Astrophysics Data System (ADS)
Sadhukhan, Jhilam; Zhang, Chunli; Nazarewicz, Witold; Schunck, Nicolas
2017-12-01
Background: Fission is a fundamental decay mode of heavy atomic nuclei. The prevalent theoretical approach is based on mean-field theory and its extensions where fission is modeled as a large amplitude motion of a nucleus in a multidimensional collective space. One of the important observables characterizing fission is the charge and mass distribution of fission fragments. Purpose: The goal of this Rapid Communication is to better understand the structure of fission fragment distributions by investigating the competition between the static structure of the collective manifold and the stochastic dynamics. In particular, we study the characteristics of the tails of yield distributions, which correspond to very asymmetric fission into a very heavy and a very light fragment. Methods: We use the stochastic Langevin framework to simulate the nuclear evolution after the system tunnels through the multidimensional potential barrier. For a representative sample of different initial configurations along the outer turning-point line, we define effective fission paths by computing a large number of Langevin trajectories. We extract the relative contribution of each such path to the fragment distribution. We then use nucleon localization functions along effective fission pathways to analyze the characteristics of prefragments at prescission configurations. Results: We find that non-Newtonian Langevin trajectories, strongly impacted by the random force, produce the tails of the fission fragment distribution of 240Pu. The prefragments deduced from nucleon localizations are formed early and change little as the nucleus evolves towards scission. On the other hand, the system contains many nucleons that are not localized in the prefragments even near the scission point. Such nucleons are distributed rapidly at scission to form the final fragments. Fission prefragments extracted from direct integration of the density and from the localization functions typically differ by more than 30 nucleons even near scission. Conclusions: Our Rapid Communication shows that only theoretical models of fission that account for some form of stochastic dynamics can give an accurate description of the structure of fragment distributions. In particular, it should be nearly impossible to predict the tails of these distributions within the standard formulation of time-dependent density-functional theory. At the same time, the large number of nonlocalized nucleons during fission suggests that adiabatic approaches where the interplay between intrinsic excitations and collective dynamics is neglected are ill suited to describe fission fragment properties, in particular, their excitation energy.
Neutron induced fission of 237Np - status, challenges and opportunities
NASA Astrophysics Data System (ADS)
Ruskov, Ivan; Goverdovski, Andrei; Furman, Walter; Kopatch, Yury; Shcherbakov, Oleg; Hambsch, Franz-Josef; Oberstedt, Stephan; Oberstedt, Andreas
2018-03-01
Nowadays, there is an increased interest in a complete study of the neutron-induced fission of 237Np. This is due to the need of accurate and reliable nuclear data for nuclear science and technology. 237Np is generated (and accumulated) in the nuclear reactor core during reactor operation. As one of the most abundant long-lived isotopes in spent fuel ("waste"), the incineration of 237Np becomes an important issue. One scenario for burning of 237Np and other radio-toxic minor actinides suggests they are to be mixed into the fuel of future fast-neutron reactors, employing the so-called transmutation and partitioning technology. For testing present fission models, which are at the basis of new generation nuclear reactor developments, highly accurate and detailed neutron-induced nuclear reaction data is needed. However, the EXFOR nuclear database for 237Np on neutron-induced capture cross-section, σγ, and fission cross-section, σf, as well as on the characteristics of capture and fission resonance parameters (Γγ, Γf, σoΓf, fragments mass-energy yield distributions, multiplicities of neutrons vn and γ-rays vγ), has not been updated for decades.
Compact fission counter for DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C Y; Chyzh, A; Kwan, E
2010-11-06
The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additionalmore » signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.« less
Advantages and challenges in automated apatite fission track counting
NASA Astrophysics Data System (ADS)
Enkelmann, E.; Ehlers, T. A.
2012-04-01
Fission track thermochronometer data are often a core element of modern tectonic and denudation studies. Soon after the development of the fission track methods interest emerged for the developed an automated counting procedure to replace the time consuming labor of counting fission tracks under the microscope. Automated track counting became feasible in recent years with increasing improvements in computer software and hardware. One such example used in this study is the commercial automated fission track counting procedure from Autoscan Systems Pty that has been highlighted through several venues. We conducted experiments that are designed to reliably and consistently test the ability of this fully automated counting system to recognize fission tracks in apatite and a muscovite external detector. Fission tracks were analyzed in samples with a step-wise increase in sample complexity. The first set of experiments used a large (mm-size) slice of Durango apatite cut parallel to the prism plane. Second, samples with 80-200 μm large apatite grains of Fish Canyon Tuff were analyzed. This second sample set is characterized by complexities often found in apatites in different rock types. In addition to the automated counting procedure, the same samples were also analyzed using conventional counting procedures. We found for all samples that the fully automated fission track counting procedure using the Autoscan System yields a larger scatter in the fission track densities measured compared to conventional (manual) track counting. This scatter typically resulted from the false identification of tracks due surface and mineralogical defects, regardless of the image filtering procedure used. Large differences between track densities analyzed with the automated counting persisted between different grains analyzed in one sample as well as between different samples. As a result of these differences a manual correction of the fully automated fission track counts is necessary for each individual surface area and grain counted. This manual correction procedure significantly increases (up to four times) the time required to analyze a sample with the automated counting procedure compared to the conventional approach.
Radiation Re-solution Calculation in Uranium-Silicide Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Christopher; Andersson, Anders David Ragnar; Unal, Cetin
The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can causemore » collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.« less
Single-level resonance parameters fit nuclear cross-sections
NASA Technical Reports Server (NTRS)
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
Superheavy elements and r-process
NASA Astrophysics Data System (ADS)
Panov, I. V.; Korneev, I. Yu.; Thielemann, F.-K.
2009-06-01
The probability for the production of superheavy elements in the astrophysical r-process is discussed. The dependence of the estimated superheavy-element yields on input data is estimated. Preliminary calculations revealed that the superheavy-element yields at the instant of completion of the r-process may be commensurate with the uranium yield, but the former depend strongly on the models used to forecast the properties of beta-delayed, neutron-induced, and spontaneous fission. This study is dedicated to the 80th anniversary of V.S. Imshennik’s birth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noshkin, V. E.; Robison, W. L.
Between June 1946 and October 1958, Enewetak and Bikini Atolls were used by the United States as testing grounds for 66 nuclear devices. The combined explosive yield from these tests was 107 Mt (Mt TNT equivalents). This testing produced close-in fallout debris that was contaminated with quantities of radioactive fission and particle activated products, and unspent radioactive nuclear fuel that entered the aquatic environment of the atolls. Today, the sediments in the lagoons are reservoirs for 10's of TBq of the transuranics and some long-lived fission and activation products. The larger amounts of contamination are associated with fine and coarsemore » sediment material adjacent to the locations of the high yield explosions. Radionuclides are also distributed vertically in the sediment column to various depths in all regions of the lagoons. Concentrations greater than fallout background levels are found in filtered water sampled over several decades from all locations and depths in the lagoons. This is a direct indication that the radionuclides are continuously mobilized to solution from the solid phases. Of particular importance is the fact that the long-lived radionuclides are accumulated to different levels by indigenous aquatic plants and organisms that are used as food by resident people. One might anticipate finding continuous high contamination levels in many of the edible marine organisms from the lagoons, since the radionuclides associated with the sediments are not contained and are available to the different organisms in a relatively shallow water environment. This is not the case. We estimate that the radiological dose from consumption of the edible parts of marine foods at Enewetak and Bikini is presently about 0.05% of the total 50-year integral effective dose from all other exposure pathways that include ingestion of terrestrial foods and drinking water, external exposure and inhalation. The total radiological dose from the marine pathway is dominated by the natural radionuclides, {sup 210}Po and {sup 210}Pb. Man-made radionuclides presently contribute less than 0.3% of the dose from these natural radionuclides in the marine food chain.« less
Building a multi-cathode-gas-filled scintillator detector for fission fragments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahgoub, M., E-mail: mmahgoub@jazanu.edu.sa; Physics department, Technical University of Munich, D-85748 Garching
2016-06-10
Radiation cannot be detected directly by human senses, indeed detecting and identifying the fission products or decay yield with high accuracy is a great challenge for experimental physicist. In this work we are building a Multi-Cathode-Gas-filled Scintillator MCGS detector. The detector consists of two parts. First: anode-wire proportional chamber and cathode strip foil, which measure the energy loss of the particles in the gas, due to the ionization, and identifies the position of the products on the detector plane depending on their energy with the presence of a magnetic field. Second: a 7 mm thick scintillator attached to a photomultipliermore » tube in the back end of the detector. This part measures the rest energy of the particles. A data acquisition system records the events and the particles infonnation. The yields are identified from the energy loss to rest energy ratio.« less
Decay heat uncertainty quantification of MYRRHA
NASA Astrophysics Data System (ADS)
Fiorito, Luca; Buss, Oliver; Hoefer, Axel; Stankovskiy, Alexey; Eynde, Gert Van den
2017-09-01
MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS) currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay heat. Radioactive decay data, independent fission yield and cross section uncertainties/covariances were propagated using two nuclear data sampling codes, namely NUDUNA and SANDY. According to the results, 238U cross sections and fission yield data are the largest contributors to the MYRRHA decay heat uncertainty. The calculated uncertainty values are deemed acceptable from the safety point of view as they are well within the available regulatory limits.
All possible tripartitions of {}(236) 236U isotope in collinear configuration
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Krishnan, Sreejith; Joseph, Jayesh George
2018-07-01
Using the recently proposed unified ternary fission model (UTFM), the tripartition of ^{236}U isotope was studied for all possible fragmentations, in which the interacting potential barrier is taken as the sum of the Coulomb and proximity potentials with fragments in collinear configuration. The highest yield is obtained for the fragmentation ^{48}Ca{+}^{58}Ti{+}^{130}Sn and next highest yield is found for ^{58}Cr{+}^{46}Ar{+}^{132}Sn, which stress the importance of doubly magic or near doubly magic nuclei in the tripartition of ^{236}U isotope. The formation of ^{68}Ni and ^{70}Ni as the edge fragments linking the doubly magic nucleus ^{132}Sn by the isotope of Si is in good agreement with experimental and theoretical studies, in the collinear cluster tripartition of ^{236}U isotope which reveals the reliability of our model (UTFM) in ternary fission.
New evidence for chemical fractionation of radioactive xenon precursors in fission chains
NASA Astrophysics Data System (ADS)
Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.
2016-04-01
Mass-spectrometric analyses of Xe released from acid-treated U ore reveal that apparent Xe fission yields significantly deviate from the normal values. The anomalous Xe structure is attributed to chemically fractionated fission (CFF), previously observed only in materials experienced neutron bursts. The least retentive CFF-Xe isotopes, 136Xe and 134Xe, typically escape in 2:1 proportion. Xe retained in the sample is complimentarily depleted in these isotopes. This nucleochemical process allows understanding of unexplained Xe isotopic structures in several geophysical environments, which include well gasses, ancient anorthosite, some mantle rocks, as well as terrestrial atmosphere. CFF is likely responsible for the isotopic difference in Xe in the Earth's and Martian atmospheres and it is capable of explaining the relationship between two major solar system Xe carriers: the Sun and phase-Q, found in meteorites.
Nuclear Propulsion for Space Applications
NASA Technical Reports Server (NTRS)
Houts, M. G.; Bechtel, R. D.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2013-01-01
Basics of Nuclear Systems: Long history of use on Apollo and space science missions. 44 RTGs and hundreds of RHUs launched by U.S. during past 4 decades. Heat produced from natural alpha (a) particle decay of Plutonium (Pu-238). Used for both thermal management and electricity production. Used terrestrially for over 65 years. Fissioning 1 kg of uranium yields as much energy as burning 2,700,000 kg of coal. One US space reactor (SNAP-10A) flown (1965). Former U.S.S.R. flew 33 space reactors. Heat produced from neutron-induced splitting of a nucleus (e.g. U-235). At steady-state, 1 of the 2 to 3 neutrons released in the reaction causes a subsequent fission in a "chain reaction" process. Heat converted to electricity, or used directly to heat a propellant. Fission is highly versatile with many applications.
Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei
NASA Astrophysics Data System (ADS)
Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.
2018-02-01
Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely suppressed by these two quasifission processes, since the sub-barrier heavy element yield is likely to be determined by the product of the probabilities of surviving each quasifission process.
Dynamical Cluster-decay Model (DCM) applied to 9Li+208Pb reaction
NASA Astrophysics Data System (ADS)
Kaur, Arshdeep; Hemdeep; Kaushal, Pooja; Behera, Bivash R.; Gupta, Raj K.
2017-10-01
The decay mechanism of 217At* formed in 9Li+208Pb reaction is studied within the dynamical cluster-decay model (DCM) at various center-of-mass energies. The aim is to see the behavior of a light neutron-rich radioactive beam on a doubly-magic target nucleus for the (total) fusion cross section σfus and the individual decay channel cross sections. Experimentally, only the isotopic yield of heavy mass residues * 211- 214At [equivalently, the light-particles (LPs) evaporation residue cross sections σxn for x = 3- 6 neutrons emission] are measured, with the fusion-fission (ff) component σff taken zero. For a fixed neck-length parameter ΔR, the only parameter in the DCM, we are able to fit σfus =∑x=16σxn almost exactly for 9Li on 208Pb at all E c . m .'s. However, the observed individual decay channels (3n-6n) are very poorly fitted, with unobserved channels (1n, 2n) and σff strongly over-estimated. Different ΔR values, meaning thereby different reaction time scales, are required to fit individually both the observed and unobserved evaporation residue channels (1n-6n) and σff, but then the compound nucleus (CN) contribution σCN is very small (< 1%), and the non-compound nucleus (nCN) decay cross section σnCN contributes the most towards total σfus (=σCN +σnCN). Thus, the 9Li induced reaction on doubly-magic 208Pb is more of a quasi-fission-like nCN decay, which is further analyzed in terms of the statistical CN formation probability PCN and CN survival probability Psurv. For the reaction under study, PCN < < 1 and Psurv → 1, in particular at above barrier energies.
Modeling Fission Product Sorption in Graphite Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlufarska, Izabela; Morgan, Dane; Allen, Todd
2013-04-08
The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).« less
Desorption Induced by KEV Molecular and Cluster Projectiles.
NASA Astrophysics Data System (ADS)
Blain, Matthew Glenn
1990-01-01
A new experimental method has been developed for studying negative secondary ion (SI) emission from solid surfaces bombarded by polyatomic primary ions of 5 to 30 keV. The method is based on the time-of-flight (TOF) analysis of primary ions which are produced by either ^ {252}Cf fission fragment induced desorption or by extraction from a liquid metal ion source, and then accelerated into a field free region. The primary ions included organic monomer, dimer, and fragment ions of coronene and phenylalanine, (CsI)_ nCs ^{+} cluster ions, and Au _sp{n}{+} cluster ions. Secondary electrons, emitted from a target surface upon primary ion impact, are used to identify which primary ion has hit the surface. An event-by-event coincidence counting technique allows several secondary ion TOF spectra, correlated to several different primary ions, to be acquired simultaneously. Negative SI yields from organic (phenylalanine and dinitrostilbene), CsI, and Au surfaces have been measured for a number of different mono- and polyatomic primary ions. The results show, for example, yields ranging from 1 to 10% for phenylalanine (M-H) ^{ -}, 1 to 10% for I^{-} , and 1 to 5% for Au^{-} , with Cs_2I^ {+} and Cs_3I _sp{2}{+} clusters as projectiles. Yields for the same surfaces using Cs ^{+} primary ions are much less than 1%, indicating that SI yields are enhanced with clusters. A yield enhancement occurs when the SI yield per atom of a polyatomic projectile is greater than the SI yield of its monoatomic equivalent, at the same velocity. Thus, a (M-H) ^{-} yield increase of a factor of 50, when phenylalanine is bombarded with Cs_3I_sp{2} {+} instead of Cs^{+ }, represents a yield enhancement factor of 10. For the projectiles and samples studied, it was observed that the heavier the mass of the constituents of a projectile, the larger the enhancement effects, and that the largest yield enhancements (with CsI and Au _ n projectiles) occur for the organic target, phenylalanine. One possible explanation for the larger enhancements with organics, namely a thermal spike process, appears unlikely. Experiments with high and low melting point isomers of dinitrostilbene, bombarded with Cs _2I^{+} and Cs^{+} projectiles, showed larger Cs_2I^ {+} yield enhancements for the high melting point isomer.
Results from field tests of the one-dimensional Time-Encoded Imaging System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marleau, Peter; Brennan, James S.; Brubaker, Erik
2014-09-01
A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.
Singlet exciton fission photovoltaics.
Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A
2013-06-18
Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses long- and short-wavelength donors and an acceptor and a simpler, two-layer combination of a singlet-fission donor and a long-wavelength acceptor. An example of the trilayer structure is singlet fission in tetracene with copper phthalocyanine inserted at the C60 interface. The bilayer approach includes pentacene photovoltaic cells with an acceptor of infrared-absorbing lead sulfide or lead selenide nanocrystals. Lead selenide nanocrystals appear to be the most promising acceptors, exhibiting efficient triplet exciton dissociation and high power conversion efficiency. Finally, we review architectures that use singlet fission materials to sensitize other absorbers, thereby effectively converting conventional donor materials to singlet fission dyes. In these devices, photoexcitation occurs in a particular molecule and then energy is transferred to a singlet fission dye where the fission occurs. For example, rubrene inserted between a donor and an acceptor decouples the ability to perform singlet fission from other major photovoltaic properties such as light absorption.
NASA Astrophysics Data System (ADS)
Brückner, Charlotte; Engels, Bernd
2017-01-01
Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.
library. Â Fission yields. Â Pre-calculated integral quantities. Â Improved zooming. New in version 3.0 , ENDF/B-VI.8 libraries. Â Neutron cross section distributions (MF=3). Â Experimental data in EXFOR
Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre
2009-01-01
Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.
Zhu, Xinna; Tan, Zaigao; Xu, Hongtao; Chen, Jing; Tang, Jinlei; Zhang, Xueli
2014-07-01
Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.
FALSTAFF: A New Tool for Fission Fragment Characterization
NASA Astrophysics Data System (ADS)
Doré, D.; Farget, F.; Lecolley, F.-R.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.; Papaevangelou, Th.
2014-05-01
The future Neutron For Science (NFS) facility to be installed at SPIRAL2 (Caen, France) will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest to the nuclear community, in view of the development of fast reactor technology, will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow for the simultaneous measurement of the velocity and energy of the complementary fragments. The performance of the time-of-flight detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.
New evidence for chemical fractionation of radioactive xenon precursors in fission chains
Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.
2017-01-01
Mass-spectrometric analyses of Xe released from acid-treated U ore reveal that apparent Xe fission yields significantly deviate from the normal values. The anomalous Xe structure is attributed to chemically fractionated fission (CFF), previously observed only in materials experienced neutron bursts. The least retentive CFF-Xe isotopes, 136Xe and 134Xe, typically escape in 2:1 proportion. Xe retained in the sample is complimentarily depleted in these isotopes. This nucleochemical process allows understanding of unexplained Xe isotopic structures in several geophysical environments, which include well gasses, ancient anorthosite, some mantle rocks, as well as terrestrial atmosphere. CFF is likely responsible for the isotopic difference in Xe in the Earth’s and Martian atmospheres and it is capable of explaining the relationship between two major solar system Xe carriers: the Sun and phase-Q, found in meteorites. PMID:29177205
NASA Astrophysics Data System (ADS)
van den Haute, P.
1984-11-01
Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.
Active interrogation using low-energy nuclear reactions
NASA Astrophysics Data System (ADS)
Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula
2005-09-01
High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.
Uranium plasma emission at gas-core reaction conditions
NASA Technical Reports Server (NTRS)
Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.
1976-01-01
The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.
Fission-Produced 99Mo Without a Nuclear Reactor.
Youker, Amanda J; Chemerisov, Sergey D; Tkac, Peter; Kalensky, Michael; Heltemes, Thad A; Rotsch, David A; Vandegrift, George F; Krebs, John F; Makarashvili, Vakho; Stepinski, Dominique C
2017-03-01
99 Mo, the parent of the widely used medical isotope 99m Tc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of 99 Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of 99 Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The 99 Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq 99 Mo production run are presented. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
The Pulsed Fission-Fusion (PUFF) Concept for Deep Space Exploration and Terrestrial Power Generation
NASA Technical Reports Server (NTRS)
Adams, Robert; Cassibry, Jason; Schillo, Kevin
2017-01-01
This team is exploring a modified Z-pinch geometry as a propulsion system, imploding a liner of liquid lithium onto a pellet containing both fission and fusion fuel. The plasma resulting from the fission and fusion burn expands against a magnetic nozzle, for propulsion, or a magnetic confinement system, for terrestrial power generation. There is considerable synergy in the concept; the lithium acts as a temporary virtual cathode, and adds reaction mass for propulsion. Further, the lithium acts as a radiation shield against generated neutrons and gamma rays. Finally, the density profile of the column can be tailored using the lithium sheath. Recent theoretical and experimental developments (e.g. tailored density profile in the fuel injection, shear stabilization, and magnetic shear stabilization) have had great success in mitigating instabilities that have plagued previous fusion efforts. This paper will review the work in evaluating the pellet sizes and z-pinch conditions for optimal PuFF propulsion. Trades of pellet size and composition with z-pinch power levels and conditions for the tamper and lithium implosion are evaluated. Current models, both theoretical and computational, show that a z-pinch can ignite a small (1 cm radius) fission-fusion target with significant yield. Comparison is made between pure fission and boosted fission targets. Performance is shown for crewed spacecraft for high speed Mars round trip missions and near interstellar robotic missions. The PuFF concept also offers a solution for terrestrial power production. PuFF can, with recycling of the effluent, achieve near 100% burnup of fission fuel, providing a very attractive power source with minimal waste. The small size of PuFF relative to today's plants enables a more distributed power network and less exposure to natural or man-made disruptions.
A novel method for purification of the endogenously expressed fission yeast Set2 complex.
Suzuki, Shota; Nagao, Koji; Obuse, Chikashi; Murakami, Yota; Takahata, Shinya
2014-05-01
Chromatin-associated proteins are heterogeneously and dynamically composed. To gain a complete understanding of DNA packaging and basic nuclear functions, it is important to generate a comprehensive inventory of these proteins. However, biochemical purification of chromatin-associated proteins is difficult and is accompanied by concerns over complex stability, protein solubility and yield. Here, we describe a new method for optimized purification of the endogenously expressed fission yeast Set2 complex, histone H3K36 methyltransferase. Using the standard centrifugation procedure for purification, approximately half of the Set2 protein separated into the insoluble chromatin pellet fraction, making it impossible to recover the large amounts of soluble Set2. To overcome this poor recovery, we developed a novel protein purification technique termed the filtration/immunoaffinity purification/mass spectrometry (FIM) method, which eliminates the need for centrifugation. Using the FIM method, in which whole cell lysates were filtered consecutively through eight different pore sizes (53-0.8μm), a high yield of soluble FLAG-tagged Set2 was obtained from fission yeast. The technique was suitable for affinity purification and produced a low background. A mass spectrometry analysis of anti-FLAG immunoprecipitated proteins revealed that Rpb1, Rpb2 and Rpb3, which have all been reported previously as components of the budding yeast Set2 complex, were isolated from fission yeast using the FIM method. In addition, other subunits of RNA polymerase II and its phosphatase were also identified. In conclusion, the FIM method is valid for the efficient purification of protein complexes that separate into the insoluble chromatin pellet fraction during centrifugation. Copyright © 2014 Elsevier Inc. All rights reserved.
Modeling the Production of Beta-Delayed Gamma Rays for the Detection of Special Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, J M; Pruet, J A; Brown, D A
2005-02-14
The objective of this LDRD project was to develop one or more models for the production of {beta}-delayed {gamma} rays following neutron-induced fission of a special nuclear material (SNM) and to define a standardized formatting scheme which will allow them to be incorporated into some of the modern, general-purpose Monte Carlo transport codes currently being used to simulate inspection techniques proposed for detecting fissionable material hidden in sea-going cargo containers. In this report, we will describe a Monte Carlo model for {beta}-delayed {gamma}-ray emission following the fission of SNM that can accommodate arbitrary time-dependent fission rates and photon collection histories.more » The model involves direct sampling of the independent fission yield distributions of the system, the branching ratios for decay of individual fission products and spectral distributions representing photon emission from each fission product and for each decay mode. While computationally intensive, it will be shown that this model can provide reasonably detailed estimates of the spectra that would be recorded by an arbitrary spectrometer and may prove quite useful in assessing the quality of evaluated data libraries and identifying gaps in the libraries. The accuracy of the model will be illustrated by comparing calculated and experimental spectra from the decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general-purpose transport calculations, where a detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may not be necessary, it will be shown that a simple parameterization of the {gamma}-ray source function can be defined which provides high-quality average spectral distributions that should suffice for calculations describing photons being transported through thick attenuating media. Finally, a proposal for ENDF-compatible formats that describe each of the models and allow for their straightforward use in Monte Carlo codes will be presented.« less
NASA Astrophysics Data System (ADS)
Winterberg, F.
The combination of metallic shells imploded with chemical explosives and the recently proposed magnetic booster target inertial fusion concept, could make possible the fissionless ignition of small thermonuclear explosions. In the magnetic booster concept a very dense but magnetically confined thermonuclear plasma of low yield serves as the trigger for an inertially confined thermonuclear plasma of high yield. For the most easily ignitable fusion reaction, the DT reaction, this could lead to a fissionless bomb propulsion system, with the advantage to have a much smaller yield of the pure fusion bombs as compared to either fission- or fission-induced fusion bombs, previously proposed for propulsion. Typically, the proposed propulsion concept should give a specific impulse of ˜ 3000 secs, corresponding to an exhaust velocity of ˜ 30 km/sec. If the energy released in each pure fusion bomb is of the order of 10 18 erg or the order of 100 tons of TNT, and if one fusion explosion per second takes place, the average thrust is of the order 10 3 tons. The propulsion system appears ideally suited for the fast economical transport of large spacecraft within the solar system.
Nuclear robustness of the r process in neutron-star mergers
NASA Astrophysics Data System (ADS)
Mendoza-Temis, Joel de Jesús; Wu, Meng-Ru; Langanke, Karlheinz; Martínez-Pinedo, Gabriel; Bauswein, Andreas; Janka, Hans-Thomas
2015-11-01
We have performed r -process calculations for matter ejected dynamically in neutron star mergers based on a complete set of trajectories from a three-dimensional relativistic smoothed particle hydrodynamic simulation with a total ejected mass of ˜1.7 ×10-3M⊙ . Our calculations consider an extended nuclear network, including spontaneous, β - and neutron-induced fission and adopting fission yield distributions from the abla code. In particular we have studied the sensitivity of the r -process abundances to nuclear masses by using different models. Most of the trajectories, corresponding to 90% of the ejected mass, follow a relatively slow expansion allowing for all neutrons to be captured. The resulting abundances are very similar to each other and reproduce the general features of the observed r -process abundance (the second and third peaks, the rare-earth peak, and the lead peak) for all mass models as they are mainly determined by the fission yields. We find distinct differences in the predictions of the mass models at and just above the third peak, which can be traced back to different predictions of neutron separation energies for r -process nuclei around neutron number N =130 . In all simulations, we find that the second peak around A ˜130 is produced by the fission yields of the material that piles up in nuclei with A ≳250 due to the substantially longer β -decay half-lives found in this region. The third peak around A ˜195 is generated in a competition between neutron captures and β decays during r -process freeze-out. The remaining trajectories, which contribute 10% by mass to the total integrated abundances, follow such a fast expansion that the r process does not use all the neutrons. This also leads to a larger variation of abundances among trajectories, as fission does not dominate the r -process dynamics. The resulting abundances are in between those associated to the r and s processes. The total integrated abundances are dominated by contributions from the slow abundances and hence reproduce the general features of the observed r -process abundances. We find that, at timescales of weeks relevant for kilonova light curve calculations, the abundance of actinides is larger than the one of lanthanides. This means that actinides can be even more important than lanthanides to determine the photon opacities under kilonova conditions. Moreover, we confirm that the amount of unused neutrons may be large enough to give rise to another observational signature powered by their decay.
Fission Fragment Studies by Gamma-Ray Spectrometry with the Mass Separator Lohengrin
NASA Astrophysics Data System (ADS)
Materna, T.; Amouroux, C.; Bail, A.; Bideau, A.; Chabod, S.; Faust, H.; Capellan, N.; Kessedjian, G.; Köster, U.; Letourneau, A.; Litaize, O.; Martin, F.; Mathieu, L.; Méplan, O.; Panebianco, S.; Régis, J.-M.; Rudigier, M.; Sage, C.; Serot, O.; Urban, W.
2014-09-01
A gamma spectrometric technique was implemented at the exit of the fission fragment separator of the ILL. It allows a precise measurement of isotopic yields of most important actinides in the heavy fragment region by an unambiguous identification of the nuclear charge of the fragments selected by the mass spectrometer. The status of the project and last results are reviewed. A spin-off of this activity is the identification of unknown nanosecond isomers in exotic nuclei through the observation of a disturbed ionic charge distribution. This technique has been improved to provide an estimation of the lifetime of the isomeric state.
Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.
Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C
2015-02-04
Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion.
Neutron induced fission cross section measurements of 240Pu and 242Pu
NASA Astrophysics Data System (ADS)
Belloni, F.; Eykens, R.; Heyse, J.; Matei, C.; Moens, A.; Nolte, R.; Plompen, A. J. M.; Richter, S.; Sibbens, G.; Vanleeuw, D.; Wynants, R.
2017-09-01
Accurate neutron induced fission cross section of 240Pu and 242Pu are required in view of making nuclear technology safer and more efficient to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV). The probability for a neutron to induce such reactions figures in the NEA Nuclear Data High Priority Request List [1]. A measurement campaign to determine neutron induced fission cross sections of 240Pu and 242Pu at 2.51 MeV and 14.83 MeV has been carried out at the 3.7 MV Van De Graaff linear accelerator at Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig. Two identical Frisch Grid fission chambers, housing back to back a 238U and a APu target (A = 240 or A = 242), were employed to detect the total fission yield. The targets were molecular plated on 0.25 mm aluminium foils kept at ground potential and the employed gas was P10. The neutron fluence was measured with the proton recoil telescope (T1), which is the German primary standard for neutron fluence measurements. The two measurements were related using a De Pangher long counter and the charge as monitors. The experimental results have an average uncertainty of 3-4% at 2.51 MeV and for 6-8% at 14.81 MeV and have been compared to the data available in literature.
Singlet fission/silicon solar cell exceeding 100% EQE (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pazos, Luis M.; Lee, Jumin; Kirch, Anton; Tabachnyk, Maxim; Friend, Richard H.; Ehrler, Bruno
2016-09-01
Current matching limits the commercialization of tandem solar cells due to their instability over spectral changes, leading to the need of using solar concentrators and trackers to keep the spectrum stable. We demonstrate that voltage-matched systems show far higher performance over spectral changes; caused by clouds, dust and other variations in atmospheric conditions. Singlet fission is a process in organic semiconductors which has shown very efficient, 200%, down-conversion yield and the generated excitations are long-lived, ideal for solar cells. As a result, the number of publications has grown exponentially in the past 5 years. Yet, so far no one has achieved to combine singlet fission with most low bandgap semiconductors, including crystalline silicon, the dominating solar cell material with a 90% share of the PV Market. Here we show that singlet fission can facilitate the fabrication of voltage-matched systems, opening a simple design route for the effective implementation of down-conversion in commercially available photovoltaic technologies, with no modification of the electronic circuitry of such. The implemention of singlet fission is achieved simply by decoupling the fabrication of the individual subcells. For this demonstration we used an ITO/PEDOT/P3HT/Pentacene/C60/Ag wide-bandgap subcell, and a commercial silicon solar cell as the low-bandgap component. We show that the combination of the two leads to the first tandem silicon solar cell which exceeds 100% external quantum efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastren, Tara; Radchenko, Valery; Hopkins, Philip D.
Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. Furthermore, the development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was usedmore » to decontaminate 103Ru from the remaining impurities. This method then resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f) 103,106Ru reactions are reported within.« less
General Description of Fission Observables: GEF Model Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, K.-H.; Jurado, B., E-mail: jurado@cenbg.in2p3.fr; Amouroux, C.
2016-01-15
The GEF (“GEneral description of Fission observables”) model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energymore » spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is consistent with the collective enhancement of the level density. The exchange of excitation energy and nucleons between the nascent fragments on the way from saddle to scission is estimated according to statistical mechanics. As a result, excitation energy and unpaired nucleons are predominantly transferred to the heavy fragment in the superfluid regime. This description reproduces some rather peculiar observed features of the prompt-neutron multiplicities and of the even-odd effect in fission-fragment Z distributions. For completeness, some conventional descriptions are used for calculating pre-equilibrium emission, fission probabilities and statistical emission of neutrons and gamma radiation from the excited fragments. Preference is given to simple models that can also be applied to exotic nuclei compared to more sophisticated models that need precise empirical input of nuclear properties, e.g. spectroscopic information. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that complies with the needs for applications in nuclear technology without specific adjustments to measured data of individual systems. The GEF executable runs out of the box with no need for entering any empirical data. This unique feature is of valuable importance, because the number of systems and energies of potential significance for fundamental and applied science will never be possible to be measured. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated.« less
Search for ternary fission of chromium-48
NASA Astrophysics Data System (ADS)
Dummer, Andrew K.
1999-07-01
Both alpha cluster model calculations and macroscopic energy calculations that allow for a double-neck shape of the compound nucleus suggest the possibility of a novel three 16O, chain-like configuration in 48 Cr. Such a configuration might lead to an enhanced cross section for three-16O breakup. To explore this possibility, the three-body exit channels for the 36Ar + 12C reaction at a beam energy of 210 MeV have been studied. The cross section for 16O + 16O + 16O breakup has been deduced and has been found to be in excess of what would be expected to result from a sequential binary fission process. However, the observation of a similarly enhanced 12C + 16O + 20Ne breakup cross section suggests that the observed 16O + 16O + 16O yields might still be associated with a statistical fission process. The results are discussed in the context of the fission of light nuclear systems and a simple cluster model calculation. This latter, ``Harvey model'' calculation suggests a possible inhibition of the formation of a three- 16O chain configuration from the 36Ar + 12C entrance channel. A further measurement using the 20Ne + 28Si-entrance channel is suggested.
DN/DG Screening of Environmental Swipe Samples: FY2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glasgow, David C.; Croft, Stephen; Venkataraman, Ramkumar
The Delayed Neutron Delayed Gamma (DNDG) technique provides a new analytical capability to the International Atomic Energy Agency (IAEA) for detecting undeclared nuclear activities. IAEA’s Long Term R&D (LTRD) plan has a stated high urgency need to develop elemental and isotopic signatures of nuclear fuel cycle activities and processes (LTRD 2.2). The new DNDG capability is used to co-detect both uranium and plutonium as an extension of a DN only method that is already being utilized by the IAEA for the analysis of swipes to inform on undeclared nuclear activities. Analytical method involving irradiation of swipe samples potentially containing tracemore » quantities of fissile material in a thermal neutron field, followed by the counting of delayed neutrons, is a well-known technique in the field of safeguards and nonproliferation. It is used for detecting the presence of microscopic amounts of fissile material, (typically a linear combination of 233U, 235U, 239Pu, and 241Pu)and quantifying it in terms of the equivalent mass of 235U. The delayed neutron (DN) technique is very sensitive and is been routinely employed at the High Flux Isotope Reactor (HFIR) facility at Oak Ridge National Laboratory (ORNL). Both uranium and plutonium are of high safeguards value. However, the DN technique is not well suited for distinguishing between U and Pu isotopes since the decay curves overlap closely. The delayed gamma (DG) technique will help detect the presence of 239Pu in a mixture of U and Pu. Thus the DNDG approach combines the best of both worlds; the sensitivity of DN counting and the isotopic specificity of DG counting. The present work seeks to build on the delayed neutron and delayed gamma methods that have been developed at ORNL. It is recognized that the distribution profile of heavy fission products remains fairly invariant for the fissile nuclides whereas the distribution of light fission products varies from one isotope to another. That is, the ratio of the yield of a light fission fragment to a heavy fission fragments is isotope specific. Measurement of the ratio of the net full energy peak (FEP) from low/high mass fission products is an elegant way to characterize the fraction of fissile materials present in a mixture. By empirically calibrating the ratio of the net FEP as a function of known concentration of the binary mixture, one can determine the fraction of fissile isotopes in an unknown sample. In the work done in fiscal year (FY) 2016, samples of single fissile material isotopes as well as binary mixtures were irradiated in a well thermalized irradiation field in the HFIR. Delayed neutron counting was performed using the neutron counter at the HFIR Neutron Activation Analysis (NAA) laboratory. Delayed gamma counting was performed using a shielded high purity germanium (HPGe) detector. Delayed neutron decay curve results highlighted the difficulty of distinguishing between U and Pu isotopes, and the need for including the delayed gamma component. Based on delayed gamma spectrometry, twelve ratios of low mass/high fission product gamma ray FEP have been identified as valid candidates. Linearity of the ratios, as a function of 239Pu fraction in 235U+ 239Pu mixtures, was confirmed for the low mass/high mass candidates that were selected. The DNDG method we are spearheading allows not only the presence of total fissile content to be detected, but whether the material is predominantly U or predominantly Pu, or a mixture. This provides additional SG relevant information.« less
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-19
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritiummore » allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.M.; Browne, J.C.
1982-08-27
The neutron-induced fission cross sections of /sup 242m/Am and /sup 245/Cm have been measured over an energy range of 10/sup -4/ eV to approx. 20 MeV in a series of experiments at three facilities during the past several years. The combined results of these measurements, in which only sub-milligram quantities of enriched isotopes were used, yield cross sections with uncertainties of approximately 5% below 10 MeV relative to the /sup 235/U standard cross section used to normalize the data. We summarize the resonance analysis of the /sup 242m/Am(n,f) cross section in the eV region. Hauser-Feshbach statistical calculations of the detailedmore » fission cross sections of /sup 235/U and /sup 245/Cm have been carried out over the energy region from 0.1 to 5 MeV and these results are compared with our experimental data.« less
A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers
Fuemmeler, Eric G.; Sanders, Samuel N.; Pun, Andrew B.; ...
2016-05-05
Interest in materials that undergo singlet fission (SF) has been catalyzed by the potential to exceed the Shockley–Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by charge transfer (CT) states and depends sensitively on crystal packing or molecular collisions. In contrast, recently reported covalently coupled pentacenes yield ~2 triplets per photon absorbed in individual molecules: the hallmark of intramolecular singlet fission (iSF). But, the mechanism of iSF is unclear. Here, using multireference electronic structure calculations and transient absorption spectroscopy, we establish that iSF can occur viamore » a direct coupling mechanism that is independent of CT states. Moreover, we show that a near-degeneracy in electronic state energies induced by vibronic coupling to intramolecular modes of the covalent dimer allows for strong mixing between the correlated triplet pair state and the local excitonic state, despite weak direct coupling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koning, A.J.; Bersillon, O.; Forrest, R. A.
The status of the Joint Evaluated Fission and Fusion file (JEFF) is described. The next version of the library, JEFF-3.1, comprises a significant update of actinide evaluations, evaluations emerging from European nuclear data projects, the activation library JEFF-3/A, the decay data and fission yield library, and fusion-related data files from the EFF project. The revisions were motivated by the availability of new measurements, modelling capabilities, or trends from integral experiments. Various pre-release validation efforts are underway, mainly for criticality and shielding of thermal and fast systems. This JEFF-3.1 library is expected to provide improved performances with respect to previous releasesmore » for a variety of scientific and industrial applications.« less
Singlet fission in pentacene dimers
Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.
2015-01-01
Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954
Contribution of fission to heavy-element nucleosynthesis in an astrophysical r-process
NASA Astrophysics Data System (ADS)
Korneev, I. Yu.; Panov, I. V.
2011-12-01
During the formation of heavy elements in the neutron star merger (NSM) scenario with a fairly long duration of the r-process, most of the seed nuclei rapidly burn out at the initial stage. The nucleosynthesis wave rapidly reaches the region of actinoids, where beta-delayed, neutron-induced, and spontaneous fission are the main reaction channels. The fission products of transuranium elements are again drawn into the r-process as new seed nuclei to form the yields of elements with mass numbers A > 100. The contribution from the various types of fission to the formation of heavy and superheavy nuclei is investigated. The proposed r-process model applied to the NSM scenario describes well the observed abundances of chemical elements, which confirms the formation of the main r-process component in the NSM scenario. Simple extrapolations of the spontaneous fission half-lives are shown to be inapplicable for the region of nuclei with N ˜ 184, because the formulas do not reflect the increase in half-life when the shell structure changes as the number of neutrons approaches 184. The formation of superheavy elements in the r-process is possible, but their survival depends to a large extent on how reliable the predictions of nuclear parameters, including the half-lives of the forming nuclei from the island of long-lived isotopes, are. The contributions from various types of fission—neutron-induced, beta-delayed, and spontaneous one—to the formation of heavy elements in the main r-process have been determined.
The r-Java 2.0 code: nuclear physics
NASA Astrophysics Data System (ADS)
Kostka, M.; Koning, N.; Shand, Z.; Ouyed, R.; Jaikumar, P.
2014-08-01
Aims: We present r-Java 2.0, a nucleosynthesis code for open use that performs r-process calculations, along with a suite of other analysis tools. Methods: Equipped with a straightforward graphical user interface, r-Java 2.0 is capable of simulating nuclear statistical equilibrium (NSE), calculating r-process abundances for a wide range of input parameters and astrophysical environments, computing the mass fragmentation from neutron-induced fission and studying individual nucleosynthesis processes. Results: In this paper we discuss enhancements to this version of r-Java, especially the ability to solve the full reaction network. The sophisticated fission methodology incorporated in r-Java 2.0 that includes three fission channels (beta-delayed, neutron-induced, and spontaneous fission), along with computation of the mass fragmentation, is compared to the upper limit on mass fission approximation. The effects of including beta-delayed neutron emission on r-process yield is studied. The role of Coulomb interactions in NSE abundances is shown to be significant, supporting previous findings. A comparative analysis was undertaken during the development of r-Java 2.0 whereby we reproduced the results found in the literature from three other r-process codes. This code is capable of simulating the physical environment of the high-entropy wind around a proto-neutron star, the ejecta from a neutron star merger, or the relativistic ejecta from a quark nova. Likewise the users of r-Java 2.0 are given the freedom to define a custom environment. This software provides a platform for comparing proposed r-process sites.
True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.
2012-10-20
In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign ,more » the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.« less
Critical insight into the influence of the potential energy surface on fission dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurek, K.; Grand Accelerateur National d'Ions Lourds; Schmitt, C.
The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. Whenmore » utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.« less
Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission
NASA Astrophysics Data System (ADS)
Lestone, J. P.
2016-01-01
A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.
Molenaar, Peter C M
2017-01-01
Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.
ERIC Educational Resources Information Center
Hayden, Howard C.
1995-01-01
Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…
Mastren, Tara; Radchenko, Valery; Hopkins, Philip D.; ...
2017-12-22
Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. Furthermore, the development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was usedmore » to decontaminate 103Ru from the remaining impurities. This method then resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f) 103,106Ru reactions are reported within.« less
Hopkins, Philip D.; Engle, Jonathan W.; Weidner, John W.; Copping, Roy; Brugh, Mark; Nortier, F. Meiring; Birnbaum, Eva R.; John, Kevin D.
2017-01-01
Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. The development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was used to decontaminate 103Ru from the remaining impurities. This method resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f)103,106Ru reactions are reported within. PMID:29272318
Surrogate 239Pu(n, fxn) and 241Pu(n, fxn) average fission-neutron-multiplicity measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, J. T.; Alan, B. S.; Akindele, O. A.
2017-09-26
We have constructed a new neutron-charged-particle detector array called NeutronSTARS. It has been described extensively in LLNL-TR-703909 [1] and Akindele et al [2]. We have used this new neutron-charged-particle array to measure the 241Pu and 239Pu fissionneutron multiplicity as a function of equivalent incident-neutron energy from 100 keV to 20 MeV. The experimental approach, detector array, data analysis, and results are summarized in the following sections.
Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K
2017-09-01
Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is necessary. Finally, concepts are presented for modifying the generated neutron spectra to achieve particular targeted spectra, simulating Cf or workplace environments.
Kristt, D; Bryan, K; Gal, R
1999-12-01
Colonic aberrant crypt foci (ACF) can be identified on the unembedded mucosal surface as clusters of abnormal crypts with enlarged, surface opening. Because dysplasia is frequent, and may be a precursor of carcinoma, epithelial changes have been well studied. However, the basis for the distinctive changes in crypt architecture remain unclear. We hypothesized that some of the architectural alterations of aberrant crypts may reflect impaired fissioning during normal crypt duplication cycles. Fissioning begins at the crypt base. Using morphometric and immunocytochemical approaches, we examined 55 human ACF, both dysplastic and nondysplastic, for their architectural features. Non-ACF mucosa was compared. Microscopically, all lesions contained crypts that were attached, paired, dilated, and angulated. In 3 dimensions, these features related to multiple, individual complexes of connected crypts, referred to as connected crypt structures (CCSs). CCSs terminated in enlarged surface openings (2 to 5 x normal) which are morphometrically equivalent to the macroscopic aberrant crypts (P > .1). These openings trap marker dye. Support for an origin of CCSs in impaired basal fissioning is 3-fold. Crypt profiles in ACF are twice as frequent in basal mucosa as superficially (P < .001); in normal mucosa, the ratio is 1. In a CCS with vertically connected, co-planar crypts, the upper parent crypt diameter was the sum of diameters of inferiorly attached daughter crypts (P > .1). Proliferating cell marker, Ki-67, is not expressed at attachment points. In non-ACF mucosa, isolated CCSs consistently occur at foci of mechanical crypt distortion such as mucosal folds. We conclude that a CCS is a fundamental component of ACF of all histotypes. Impairment of normal crypt fissioning is probably a major factor in the histogenesis of CCSs, which often occurs in settings of mechanical distortion of the mucosa. The pathological significance of this process may be in the formation of enlarged crypt openings. The latter could trap dietary carcinogens as they trap dye, and thereby predispose the CCS to dysplasia.
Use of Mini-Mag Orion and superconducting coils for near-term interstellar transportation
NASA Astrophysics Data System (ADS)
Lenard, Roger X.; Andrews, Dana G.
2007-06-01
Interstellar transportation to nearby star systems over periods shorter than the human lifetime requires speeds in the range of 0.1-0.15 c and relatively high accelerations. These speeds are not attainable using rockets, even with advanced fusion engines because at these velocities, the energy density of the spacecraft approaches the energy density of the fuel. Anti-matter engines are theoretically possible but current physical limitations would have to be suspended to get the mass densities required. Interstellar ramjets have not proven practicable, so this leaves beamed momentum propulsion or a continuously fueled Mag-Orion system as the remaining candidates. However, deceleration is also a major issue, but part of the Mini-Mag Orion approach assists in solving this problem. This paper reviews the state of the art from a Phases I and II SBIT between Sandia National Laboratories and Andrews Space, applying our results to near-term interstellar travel. A 1000 T crewed spacecraft and propulsion system dry mass at .1c contains ˜9×1021J. The author has generated technology requirements elsewhere for use of fission power reactors and conventional Brayton cycle machinery to propel a spacecraft using electric propulsion. Here we replace the electric power conversion, radiators, power generators and electric thrusters with a Mini-Mag Orion fission-fusion hybrid. Only a small fraction of fission fuel is actually carried with the spacecraft, the remainder of the propellant (macro-particles of fissionable material with a D-T core) is beamed to the spacecraft, and the total beam energy requirement for an interstellar probe mission is roughly 1020J, which would require the complete fissioning of 1000 ton of Uranium assuming 35% power plant efficiency. This is roughly equivalent to a recurring cost per flight of 3.0 billion dollars in reactor grade enriched uranium using today's prices. Therefore, interstellar flight is an expensive proposition, but not unaffordable, if the nonrecurring costs of building the power plant can be minimized.
Superasymmetric fission of heavy nuclei induced by intermediate-energy protons
NASA Astrophysics Data System (ADS)
Deppman, A.; Andrade-II, E.; Guimarães, V.; Karapetyan, G. S.; Tavares, O. A. P.; Balabekyan, A. R.; Demekhina, N. A.; Adam, J.; Garcia, F.; Katovsky, K.
2013-12-01
In this work we present the results for the investigation of intermediate-mass fragment (IMF) production with the proton-induced reaction at 660 MeV on 238U and 237Np target. The data were obtained with the LNR Phasotron U-400M Cyclotron at Joint Institute for Nuclear Research (JINR), Dubna, Russia. A total of 93 isotopes, in the mass range of 30
Modelling the CDK-dependent transcription cycle in fission yeast.
Sansó, Miriam; Fisher, Robert P
2013-12-01
CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.
NASA Astrophysics Data System (ADS)
Rom, Frank E.; Finnegan, Patrick M.
1994-07-01
The ``NEW'' solid-core fuel form is the old Vapor Transport (VT) fuel pin investigated at NASA about 30 years ago. It is simply a tube sealed at both ends partially filled with UO2. During operation the UO2 forms an annular layer on the inside of the tube by vaporization and condensation. This form is an ideal structure for overall strength and retention of fission products. All of the structural material lies between the fuel (including fission products) and the reactor coolant. The isothermal inside fuel surface temperature that results from the vaporization and condensation of fuel during operation eliminates hotspots, significantly increasing the design fuel pin surface temperature. For NTP, W-UO2 fuel pins yield higher operating temperatures than for other fuel forms, because W has about a ten-fold lower vaporization rate compared to any other known material. The use of perigee propulsion using W-UO2 fuel pins can result in a more than ten-fold reduction in reactor power. Lower reactor power, together with zero fission product release potential, and the simplicity of fabrication of VT fuel pins should greatly simplify and reduce the cost of development of NTP. For NEP, VT fuel pins can increase fast neutron spectrum reactor life with no fission product release. Thermal spectrum NEP reactors using W184 or Mo VT fuel pins, with only small amounts of high neutron absorbing additives, offer benefits because of much lower fissionable fuel requirements. The VT fuel pin has application to commercial power reactors with similar benefits.
A Nitration Reaction Puzzle for the Organic Chemistry Laboratory
ERIC Educational Resources Information Center
Wieder, Milton J.; Barrows, Russell
2008-01-01
Treatment of phenylacetic acid with 90% HNO[subscript 3] yields a product, I, whose observed melting point is 175-179 degrees C and whose equivalent weight is approximately 226 grams. Treatment of phenylacetic acid with 70% HNO[subscript 3] yields a product, II, whose observed melting point is 106-111 degrees C and whose equivalent weight is…
SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties
NASA Astrophysics Data System (ADS)
Panebianco, Stefano; Dubray, Nöel; Goriely, Stéphane; Hilaire, Stéphane; Lemaître, Jean-François; Sida, Jean-Luc
2014-04-01
Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.
Measurement of the Am 242 m neutron-induced reaction cross sections
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...
2017-02-17
The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to E n = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less
Investigation of Fission Product Transport into Zeolite-A for Pyroprocessing Waste Minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
James R. Allensworth; Michael F. Simpson; Man-Sung Yim
Methods to improve fission product salt sorption into zeolite-A have been investigated in an effort to reduce waste associated with the electrochemical treatment of spent nuclear fuel. It was demonstrated that individual fission product chloride salts were absorbed by zeolite-A in a solid-state process. As a result, recycling of LiCl-KCl appears feasible via adding a zone-freezing technique to the current treatment process. Ternary salt molten-state experiments showed the limiting kinetics of CsCl and SrCl2 sorption into the zeolite. CsCl sorption occurred rapidly relative to SrCl2 with no observed dependence on zeolite particle size, while SrCl2 sorption was highly dependent onmore » particle size. The application of experimental data to a developed reaction-diffusion-based sorption model yielded diffusivities of 8.04 × 10-6 and 4.04 × 10-7 cm2 /s for CsCl and SrCl2, respectively. Additionally, the chemical reaction term in the developed model was found to be insignificant compared to the diffusion term.« less
Chemical Research--Radiochemistry Report for Month Ending April 17, 1943
DOE R&D Accomplishments Database
Franck, J. Division Director
1952-01-01
1. A continuation of the detailed analysis of beta and soft and hard gamma activity associated with all fission product elements in a nitrate bombardment is presented. The ?cooling? time has been extended to 170 days. The data for the individual elements are presented in tables as counts/min and in figures as percentage of total beta, soft gamma, and hard gamma radiations. 2. Calculations and graphs have been made on the heat generated by the longer-lived fission products. The method of analysis is presented. 3. Two new short-lived Rh fission product activities have been found. They are probably the daughters of the two long-lived Ru activities (30d, 200d). Re-evaluation of data on 43 leads to the conclusion that the longest lived 43 activity in measureable yields is the 6.1h (formerly 6.6h). New parent-daughter relationships in the rare-earth activities are given. 4. Theoretical beta absorption curves have been made using the Fermi distribution function and linear absorption curves for small energy intervals. A Feather analysis of the absorption curve leads to the theoretical maximum energy.
Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.
2014-04-01
The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less
NASA Astrophysics Data System (ADS)
Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.
2007-01-01
The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.
2007-01-01
The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.
Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.; ...
2016-06-23
Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less
NASA Astrophysics Data System (ADS)
Knowles, Justin; Skutnik, Steven; Glasgow, David; Kapsimalis, Roger
2016-10-01
Rapid nondestructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the Oak Ridge National Laboratory High Flux Isotope Reactor Neutron Activation Analysis facility has developed a generalized nondestructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and makes use of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a complete characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% recovery bias have been conducted on standards of 235U and 239Pu as low as 12 ng in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 198 ng of fissile mass with less than 7% recovery bias. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation facilities, and account for increasingly complex sample matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.
Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less
2015-01-01
Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein–protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein–protein interactions within whole animals. PMID:25265085
Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J
2015-05-15
Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.
NASA Astrophysics Data System (ADS)
Kaur, Amandeep; Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.
The temperature-dependent preformed cluster model [PCM(T)] is employed to extend our recent work [Niyti, G. Sawhney, M. K. Sharma and R. K. Gupta, Phys. Rev. C 91 (2015) 054606] on α-decay chains of various isotopes of Z = 113-118 superheavy nuclei (SHN), to spontaneous fissioning nuclei 103266Lr, 104267Rf, 105266‑268Db, 111281Rg, and 112282Cn occurring as end products of these α-decay chains. The behavior of fragment mass distribution and competitive emergence of the dominant decay mode, i.e., the α-emission versus spontaneous fission (SF), are studied for identifying the most probable heavy fission fragments, along with the estimation of SF half-life times T1/2SF and total kinetic energy (TKE) of the above noted isotopes of Z = 103-112 nuclei decaying via the SF process. The mass distributions of chosen nuclei are clearly symmetric, independent of mass and temperature. The most preferred decay fragment is found to lie in the neighborhood of doubly magic shell closures of Z = 50 and N = 82, with largest preformation factor P0. In addition, a comparative study of the “hot compact” and “cold elongated” configurations of β2i-deformed and 𝜃iopt-oriented nuclei indicates significantly different behaviors of the two mass fragmentation yields, favoring “hot compact” configuration.
Combined Photoneutron And X Ray Interrogation Of Containers For Nuclear Materials
NASA Astrophysics Data System (ADS)
Gozani, Tsahi; Shaw, Timothy; King, Michael J.; Stevenson, John; Elsalim, Mashal; Brown, Craig; Condron, Cathie
2011-06-01
Effective cargo inspection systems for nuclear material detection require good penetration by the interrogating radiation, generation of a sufficient number of fissions, and strong and penetrating detection signatures. Inspection systems need also to be sensitive over a wide range of cargo types and densities encountered in daily commerce. Thus they need to be effective with highly hydrogenous cargo, where neutron attenuation is a major limitation, as well as with dense metallic cargo, where x-ray penetration is low. A system that interrogates cargo with both neutrons and x-rays can, in principle, achieve high performance over the widest range of cargos. Moreover, utilizing strong prompt-neutron (˜3 per fission) and delayed-gamma ray (˜7 per fission) signatures further strengthens the detection sensitivity across all cargo types. The complementary nature of x-rays and neutrons, used as both probing radiation and detection signatures, alleviates the need to employ exceedingly strong sources, which would otherwise be required to achieve adequate performance across all cargo types, if only one type of radiation probe were employed. A system based on the above principles, employing a commercially-available 9 MV linac was developed and designed. Neutrons are produced simultaneously with x-rays by the photonuclear interaction of the x-ray beam with a suitable converter. A total neutron yield on the order of 1011 n/s is achieved with an average electron beam current of 100 μA. If fissionable material is present, fissions are produced both by the high-energy x-ray beam and by the photoneutrons. Photofission and neutron fission dominate in hydrogenous and metallic cargos, respectively. Neutron-capture gamma rays provide information on the cargo composition. The prompt neutrons resulting from fission are detected by two independent detector systems: by very efficient Differential Die Away Analysis (DDAA) detectors, and by direct detection of neutrons with energies higher than 3 MeV using a recently developed fluorine-based threshold activation detector (TAD). The delayed gamma-ray signals are measured with high efficiency with the same TAD and with additional lower-cost plastic scintillators.
NASA Astrophysics Data System (ADS)
Maglich, Bogdan; Hester, Tim; Calsec Collaboration
2015-10-01
Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> <-- 100 GeV, has measured total σ = 487 b. Reaction rate of colliding beams is proportional to neutron flux-squared. First functional Auto-Collider3-6, a compact Migma IV, 1 m in diameter, had self-colliding deuterons, D+, of 725 KeV --> <-- 725 KeV, resulting in copious production of T and 3He. U +U Autocollider``EXYDER'' will use strong-focusing magnet7, which would increase reaction rate by 104. 80 times ionized U ions accelerated through 3 MV accelerator, will collide beam 240 MeV --> <-- 240 MeV. Reaction is: 238U80+ +238 U80+ --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.
Electromagnetic dissociation of U-238 in heavy-ion collisions at 120 MeV/A
NASA Astrophysics Data System (ADS)
Justice, M. L.
1991-04-01
This thesis describes a measurement of the heavy-ion induced electromagnetic dissociation of a 120 MeV/A U-238 beam incident on five targets: Be-9, Al-27, Cu, Ag, and U. Electromagnetic dissociation at this beam energy is essentially a two step process involving the excitation of a giant resonance followed by particle decay. At 120 MeV/A there is predicted to be a significant contribution of the giant quadrupole resonance to the EMD cross sections. The specific exit channel which was looked at was projectile fission. The two fission fragments were detected in coincidence by an array of solid-state (Delta)E-E detectors, allowing the changes of the fragments to be determined to within (+/-) .5 units. The events were sorted on the basis of the sums of the fragments' charges, acceptance corrections were applied, and total cross sections for the most peripheral events were determined. Electromagnetic fission at the beam energy of this experiment always leads to a true charge sum of 92. Due to the imperfect resolution of the detectors, charge sums of 91 and 93 were included in order to account for all of the electromagnetic fission events. The experimentally observed cross sections are due to nuclear interaction processes as well as electromagnetic processes. Under the conditions of this experiment, the cross sections for the beryllium target are almost entirely due to nuclear processes. The nuclear cross sections for the other four targets were determined by extrapolation from the beryllium data using a geometrical scaling model. After subtraction of the nuclear cross sections, the resulting electromagnetic cross sections are compared to theoretical calculations based on the equivalent photon approximation. Systematic uncertainties are discussed and suggestions for improving the experiment are given.
Power ramp induced iodine and cesium redistribution in LWR fuel rods
NASA Astrophysics Data System (ADS)
Sontheimer, F.; Vogl, W.; Ruyter, I.; Markgraf, J.
1980-01-01
Volatile fission product migration in LWR fuel rods which are power ramped above a certain threshold beyond the envelope of their previous power history, plays an important role in stress corrosion cracking of Zircaloy. This may cause fuel rods to fail already at stresses below the yield strength. In the HFR, Petten, many power ramp experiments have been performed with subsequent examination of the ramped rods for fission product distribution. This study describes the measurement of iodine and cesium distribution using γ-spectroscopy of I-131 and Cs-137. An evaluation method is presented which makes the determination of absolute amounts of I/Cs feasible. It is shown that a threshold for I/Cs redistribution exists beyond which it depends strongly on local fuel rod power and fuel type.
Combined apatite fission track and U-Pb dating by LA-ICPMS
NASA Astrophysics Data System (ADS)
Chew, D. M.; Donelick, R. A.
2012-04-01
Apatite is a common accessory mineral in igneous, metamorphic and clastic sedimentary rocks. It is a nearly ubiquitous accessory phase in igneous rocks, is common in metamorphic rocks of pelitic, carbonate, basaltic, and ultramafic composition and is virtually ubiquitous in clastic sedimentary rocks. In contrast to the polycyclic behavior of the stable heavy mineral zircon, apatite is unstable in acidic groundwaters and has limited mechanical stability in sedimentary transport systems. Apatite has many potential applications in provenance studies, particularly as it likely represents first-cycle detritus. Fission track and U-Pb dating are very powerful techniques in apatite provenance studies. They yield complementary information, with the apatite fission-track system yielding low-temperature exhumation ages and the U-Pb system yielding high-temperature cooling ages which constrain the timing of apatite crystallization. This study focuses on integrating apatite fission track and U-Pb dating by the LA-ICPMS method. Our approach is intentionally broad in scope, and is applicable to any quadrupole or rapid-scanning magnetic-sector LA-ICPMS system. Calculating uranium concentrations in fission-track dating by LA-ICPMS increases the speed of analysis and sample throughput compared to the conventional external detector method and avoids the need for neutron irradiation (Hasebe et al., 2004). LA-ICPMS-based uranium measurements in apatite are measured relative to an internal concentration standard (typically 43Ca). Ca in apatite is not always stochiometric as minor cations (Mn2+, Sr2+, Ba2+ and Fe2+) and REE can substitute with Ca2+. These substitutions must be quantified by multi-elemental LA-ICPMS analyses. Such data are also useful for discriminating between different apatite populations in sedimentary or volcaniclastic rocks based on their trace-element chemistry. Low U, Th and radiogenic Pb concentrations, elevated common Pb / radiogenic Pb ratios and U-Pb elemental fractionation are challenges in apatite U-Pb dating by LA-ICPMS. Isochron-based approaches to common Pb correction require a significant spread in common Pb / radiogenic Pb ratios. This is not usually possible on individual detrital apatite grains and hence the 204Pb-, 207Pb- and 208Pb-correction methods are preferred. Uranium concentration measurements by ICPMS employ large peak jumps (the internal standard is a Ca isotope) which require a quadrupole or a rapid-scanning magnetic-sector LA-ICPMS system. These single-collector instruments require a prohibitively long dwell time on the low intensity 204Pb peak to measure it accurately and hence the 207Pb- and 208Pb-correction methods are preferred. Uranium-concentration measurements in fission-track dating require well-constrained ablation depths during analysis and hence spot analyses are preferred to rastering. Laser-induced U-Pb fractionation is corrected for by sample-standard bracketing using a variety of apatite standards (Durango, Emerald Lake, Fish Canyon Tuff, Kovdor, Otter Lake and McClure Mountain syenite). Of these, Emerald Lake (Chew et al., 2011) and McClure Mountain syenite apatite are recommended as primary standards with Durango apatite making a suitable secondary standard. Offline data-reduction uses custom-written software for ICPMS data processing (the UPbICP package of Ray Donelick) or the freeware IOLITE data-reduction package of Paton et al. (2010).
Colgan, J.P.; Shuster, D.L.; Reiners, P.W.
2008-01-01
We use a combination of apatite 4He/3He, (U-Th)/ He, and fission-track thermochronology to date slip on the Surprise Valley fault in northeastern California by analyzing a single sample from the Warner Range in the footwall of the fault. This sample, a granitic clast from a conglomerate, yielded a fission-track age of 11.6 ?? 2.8 Ma and a (U-Th)/He age of 3.02 ?? 0.52 Ma. Geologic relationships indicate that this sample was buried to a depth of ???3.3 km prior to exhumation during slip on the Surprise Valley fault. Fission-track age and length data indicate that the sample was fully reset (>120 ??C) prior to exhumation, which began sometime after 14 Ma. A single aliquot of nine apatite grains was step-heated for 4He/3He analysis; modeling of the resulting 4He distribution indicates that cooling from <80 ??C to ???20 ??C occurred between 3 and 1 Ma. Interconsistent time-temperature (t-T) solutions to the combined 4He/3He, (U-Th)/He, and fission-track data require two distinct periods of cooling, consistent with non-continuous slip on the Surprise Valley fault. Early cooling and fault slip took place between 14 and 8 Ma, followed by more recent fault slip ca. 3 Ma. This timing is consistent with both local geologic relationships and with the regional timing of faulting along the western margin of the Basin and Range Province. These data demonstrate the resolving power of combined fission-track, (U-Th)/He, and 4He/3He thermochronometric data to extract low-temperature t-T information from a single sample close to Earth's surface. ?? 2008 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.
2011-12-01
The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range of MCNP simulations of criticality benchmarks, with improved performance coming from new structural material evaluations, especially for Ti, Mn, Cr, Zr and W. For Be we see some improvements although the fast assembly data appear to be mutually inconsistent. Actinide cross section updates are also assessed through comparisons of fission and capture reaction rate measurements in critical assemblies and fast reactors, and improvements are evident. Maxwellian-averaged capture cross sections at 30 keV are also provided for astrophysics applications. We describe the cross section evaluations that have been updated for ENDF/B-VII.1 and the measured data and calculations that motivated the changes, and therefore this paper augments the ENDF/B-VII.0 publication [M. B. Chadwick, P. Obložinský, M. Herman, N. M. Greene, R. D. McKnight, D. L. Smith, P. G. Young, R. E. MacFarlane, G. M. Hale, S. C. Frankle, A. C. Kahler, T. Kawano, R. C. Little, D. G. Madland, P. Moller, R. D. Mosteller, P. R. Page, P. Talou, H. Trellue, M. C. White, W. B. Wilson, R. Arcilla, C. L. Dunford, S. F. Mughabghab, B. Pritychenko, D. Rochman, A. A. Sonzogni, C. R. Lubitz, T. H. Trumbull, J. P. Weinman, D. A. Br, D. E. Cullen, D. P. Heinrichs, D. P. McNabb, H. Derrien, M. E. Dunn, N. M. Larson, L. C. Leal, A. D. Carlson, R. C. Block, J. B. Briggs, E. T. Cheng, H. C. Huria, M. L. Zerkle, K. S. Kozier, A. Courcelle, V. Pronyaev, and S. C. van der Marck, "ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology," Nuclear Data Sheets 107, 2931 (2006)].
Using Principal Component Analysis to Improve Fallout Characterization
2017-03-23
between actinide location and elemental composition in fallout from historic atmospheric nuclear weapons testing. Fifty spherical fallout samples were...mathematical approach to solving the complex system of elemental variables while establishing correlations to actinide incorporation within the fallout...1. The double hump curve for uranium-235 showing the effective fission yield by mass number for thermal neutrons. Reproduced with permission from
Strategic Bombing and the Thermonuclear Breakthrough: An Example of Disconnected Defense Planning,
1981-04-01
30 March 1944 attack against Nuremburg that saw the loss of 94 of about 800 aircraft (with serious damage to 72 others). However, while the British...tested a very powerful fission bomb, with the code name KING, that had an explosive yield of 500 kilotons. Its purpose was to provide the U.S. with an ex
Tagged Neutron Source for API Inspection Systems with Greatly Enhanced Spatial Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-06-04
We recently developed induced fission and transmission imaging methods with time- and directionally-tagged neutrons offer new capabilities for characterization of fissile material configurations and enhanced detection of special nuclear materials (SNM). An Advanced Associated Particle Imaging (API) generator with higher angular resolution and neutron yield than existing systems is needed to fully exploit these methods.
Calibration of neutron detectors on the Joint European Torus.
Batistoni, Paola; Popovichev, S; Conroy, S; Lengar, I; Čufar, A; Abhangi, M; Snoj, L; Horton, L
2017-10-01
The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a 252 Cf source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) 252 Cf source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.
Nuclear Forensics using Gamma-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Norman, E. B.
2016-09-01
Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.
Systematic engineering of pentose phosphate pathway improves Escherichia coli succinate production.
Tan, Zaigao; Chen, Jing; Zhang, Xueli
2016-01-01
Succinate biosynthesis of Escherichia coli is reducing equivalent-dependent and the EMP pathway serves as the primary reducing equivalent source under anaerobic condition. Compared with EMP, pentose phosphate pathway (PPP) is reducing equivalent-conserving but suffers from low efficacy. In this study, the ribosome binding site library and modified multivariate modular metabolic engineering (MMME) approaches are employed to overcome the low efficacy of PPP and thus increase succinate production. Altering expression levels of different PPP enzymes have distinct effects on succinate production. Specifically, increased expression of five enzymes, i.e., Zwf, Pgl, Gnd, Tkt, and Tal, contributes to increased succinate production, while the increased expression of two enzymes, i.e., Rpe and Rpi, significantly decreases succinate production. Modular engineering strategy is employed to decompose PPP into three modules according to position and function. Engineering of Zwf/Pgl/Gnd and Tkt/Tal modules effectively increases succinate yield and production, while engineering of Rpe/Rpi module decreases. Imbalance of enzymatic reactions in PPP is alleviated using MMME approach. Finally, combinational utilization of engineered PPP and SthA transhydrogenase enables succinate yield up to 1.61 mol/mol glucose, which is 94% of theoretical maximum yield (1.71 mol/mol) and also the highest succinate yield in minimal medium to our knowledge. In summary, we systematically engineered the PPP for improving the supply of reducing equivalents and thus succinate production. Besides succinate, these PPP engineering strategies and conclusions can also be applicable to the production of other reducing equivalent-dependent biorenewables.
Fission and Properties of Neutron-Rich Nuclei
NASA Astrophysics Data System (ADS)
Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.
2008-08-01
Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I. Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the spontaneous fission of [symbol]Cf / A. V. Daniel ... [et al.]. Magnetic moment measurements in a radioactive beam environment / N. Benczer-Koller and G. Kumbartzki. g-Factor measurements of picosecond states: opportunities and limitations of the recoil-in-vacuum method / N. J. Stone ... [et al.]. Precision mass measurements and trap-assisted spectroscopy of fission products from Ni to Pd / A. Jokinen -- Fission II. Fission research at IRMM / F.-J. Hambsch. Fission yield measurements at the IGISOL facility with JYFLTRAP / H. Penttilä ... [et al.]. Fission of radioactive beams and dissipation in nuclear matter / A. Heinz (for the CHARMS collaboration). Fission of [symbol]U at 80 MeVlu and search for new neutron-rich isotopes / C.M. Folden, III ... [et al.]. Measurement of the average energy and multiplicity of prompt-fission neutrons and gamma rays from [symbol], [symbol], and [symbol] for incident neutron energies of 1 to 200 MeV / R. C. Haight ... [et al.]. Fission measurements with DANCE / M. Jandel ... [et al.]. Measured and calculated neutron-induced fission cross sections of [symbol]Pu / F. Tovesson and T. S. Hill. The fission barrier landscape / L. Phair and L. G. Moretto. Fast neutron-induced fission of some actinides and sub-actinides / A. B. Lautev ... [et al.] -- Fission III/Nuclear structure III. Complex structure in even-odd staggering of fission fragment yields / M. Caamāno and F. Rejmund. The surrogate method: past, present and future / S. R. Lesher ... [et al]. Effects of nuclear incompressibility on heavy-ion fusion / H. Esbensen and Ş. Mişicu. High spin states in [symbol]Pm / A. Dhal ... [et al]. Structure of [symbol]Sm, spherical vibrator versus softly deformed rotor / J. B. Gupta -- Astrophysics. Measuring the astrophysical S-factor in plasmas / A. Bonasera ... [et al.]. Is there shell quenching or shape coexistence in Cd isotopes near N = 82? / J. K. Hwang, A. V. Ramayya and J. H. Hamilton. Spectroscopy of neutron-rich palladium and cadmium isostopes near A= 120 / M. A. Stoyer and W. B. Walters -- Nuclear structure IV. First observation of new neutron-rich magnesium, aluminum and silicon isotopes / A. Stolz ... [et al.]. Spectroscopy of [symbol]Na revolution of shell structure with isospin / V. Tripathi ... [et al.]. Rearrangement of proton single particle orbitals in neutron-rich potassium isotopes - spectroscopy of [symbol]K / W. Królas ... [et al.]. Laser spectroscopy and the nature of the shape transition at N [symbol] 60 / B. Cheal ... [et al.]. Study of nuclei near stability as fission fragments following heavy-ion reactions / N. Fotiadis. [symbol]C and [symbol]N: lifetime measurements of their first-excited states / M. Wiedeking ... [et al.] -- Nuclear astrophysics. Isomer spectroscopy near [symbol]Sn - first observation of excited states in [symbol]Cd / M. Pfitzner ... [et al.]. Nuclear masses and what they imply for the structures of neutron rich nuclei / A. Awahamian and A. Teymurazyan. Multiple nucleosynthesis processes in the early universe / F. Montes. Single-neutron structure of neutron-rich nuclei near N = 50 and N = 82 / J. A. Cizewski ... [et al.]. [symbol]Cadmium: ugly duckling or young swan / W. B. Walters ... [et al.] -- Nuclear structure V. Evidence for chiral doublet bands in [symbol]Ru / Y. X. Luo ... [et al.]. Unusual octupole shape deformation terms and K-mixing / J. O. Rasmussen ... [et al.]. Spin assignments, mixing ratios, and g-factors in neutron rich [symbol]Cf fission products / C. Goodin ... [et al.]. Level structures and double [symbol]-bands in [symbol]Mo, [symbol]Mo and [symbol]Ru / S. J. Zhu ... [et al.] -- Nuclear theory. Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara ... [et al.]. Nuclear structure, double beta decay and test of physics beyond the standard model / A. Faessler. Collective modes in elastic nuclear matter / Ş. Mişicu and S. Bastrukov. From N = Z to neutron rich: magnetic moments of Cu isotopes at and above the [symbol]Ni and [symbol]Ni double shell closures - what next? / N. J. Stone, J. R. Stone and U. Köster -- Nuclear structure VI. Decay studies of nuclei near [symbol]Ni / R. Grzywacz. Weakening of the [symbol]Ni core for Z > 28, N > 50? / J. A. Winger ... [et al.]. Coulomb excitation of the odd-A [symbol]Cu isotopes with MINIBALL and REX-ISOLDE / I. Stefanescu ... [et al.]. Neutron single particle states and isomers in odd mass nickel isotopes near [symbol]Ni / M. M. Raiabali ... [et al.]. [symbol] and [symbol]-delayed neutron decay studies of [symbol]Ch at the HRIBF / S. V. Ilvushkin ... [et al.] -- Posters. Properties of Fe, Ni and Zn isotope chains near the drip-line / V. N. Tarasov ... [et al.]. Probing nuclear structure of [symbol]Xe / J. B. Gupta. Shape coexistence in [symbol]Zr and large deformation in [symbol]Zr / J. K. Hwang ... [et al.]. Digital electronics and their application to beta decay spectroscopy / S. N. Liddick, S. Padgett and R. Grzywacz. Nuclear shape and structure in neutron-rich [symbol]Tc / Y. X. Luo ... [et al.]. Speeding up the r-process. Investigation of first forbidden [symbol] decays in N > 50 isotopes near [symbol]Ni / S. Padgett ... [et al.]. Yields of fission products from various actinide targets / E. H. Sveiewski ... [et al.].
NASA Astrophysics Data System (ADS)
Larijani, Cyrus Kouroush
This thesis is based on the development of a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. The isobaric distribution of fission residues produced following the bombardment of a natural uranium target with a beam of 25 MeV protons has been evaluated. Decay analysis of thirteen isobarically distinct fission residues were carried out using high-resolution gamma-ray spectrometry at the UK National Physical Laboratory. Stoichiometric abundances were calculated via the determination of absolute activity concentrations associated with the longest-lived members of each isobaric chain. This technique was validated by computational modelling of likely sequential decay processes through an isobaric decay chain. The results were largely in agreement with previously published values for neutron bombardments on natural uranium at energies of 14 MeV. Higher relative yields of products with mass numbers A 110-130 were found, consistent with the increasing yield of these radionuclides as the bombarding energy is increased. Using literature values for the production cross-section for fusion of protons with uranium targets, it is estimated that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution alpha and gamma-ray spectrometry. In a separate research theme, reliable measurement of Naturally Occurring Radioactive Materials is of significance in order to comply with environmental regulations and for radiological protection purposes. The thesis describes the standardisation of three reference materials, namely Sand, Tuff and TiO2 which can serve as quality control materials to achieve traceability, method validation and instrument calibration. The sample preparation, material characterization via gamma, alpha and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the assignment of values for both the 4n Thorium and 4n + 2 Uranium decay series are presented.
NASA Astrophysics Data System (ADS)
Firestone, Richard B.; Chu, S. Y. Frank; Ekstrom, L. Peter; Wu, Shiu-Chin; Singh, Balraj
1997-10-01
The Isotopes Project is developing Internet home pages to provide data for radioactive decay, nuclear structure, nuclear astrophysics, spontaneous fission, thermal neutron capture, and atomic masses. These home pages can be accessed from the Table of Isotopes home page at http://isotopes.lbl.gov/isotopes/toi.html. Data from the Evaluated Nuclear Structure Data File (ENSDF) is now available on the WWW in Nuclear Data Sheet style tables, complete with comments and hypertext linked footnotes. Bibliographic information from the Nuclear Science Reference (NSR) file can be searched on the WWW by combinations of author, A, Z, reaction, and various keywords. Decay gamma-ray data from several databases can be searched by energy. The Table of Superdeformed Nuclear Bands and Fission Isomers is continously updated. Reaction rates from Hoffman and Woosley and from Thielemann, fission yields from England and Rider, thermal neutron cross-sections from BNL-325, atomic masses from Audi, and skeleton scheme drawings and nuclear charts from the Table of Isotopes are among the information available through these websites. The nuclear data home pages are accessed by over 3500 different users each month.
Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.
Chang, G S; Ambrosek, R G
2005-01-01
The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.
Verbeke, J. M.; Petit, O.
2016-06-01
From nuclear safeguards to homeland security applications, the need for the better modeling of nuclear interactions has grown over the past decades. Current Monte Carlo radiation transport codes compute average quantities with great accuracy and performance; however, performance and averaging come at the price of limited interaction-by-interaction modeling. These codes often lack the capability of modeling interactions exactly: for a given collision, energy is not conserved, energies of emitted particles are uncorrelated, and multiplicities of prompt fission neutrons and photons are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g., themore » neutron multiplicity) and correlations between neutrons and photons. In an effort to meet this need, the radiation transport Monte Carlo code TRIPOLI-4® was modified to provide a specific mode that models nuclear interactions in a full analog way, replicating as much as possible the underlying physical process. Furthermore, the computational model FREYA (Fission Reaction Event Yield Algorithm) was coupled with TRIPOLI-4 to model complete fission events. As a result, FREYA automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordborg, C.
A new improved version of the OECD Nuclear Energy Agency (NEA) co-ordinated Joint Evaluated Fission and Fusion (JEFF) data library, JEFF-3.1, was released in May 2005. It comprises a general purpose library and the following five special purpose libraries: activation; thermal scattering law; radioactive decay; fission yield; and proton library. The objective of the previous version of the library (JEFF-2.2) was to achieve improved performance for existing reactors and fuel cycles. In addition to this objective, the JEFF-3.1 library aims to provide users with data for a wider range of applications. These include innovative reactor concepts, transmutation of radioactive waste,more » fusion, and various other energy and non-energy related industrial applications. Initial benchmark testing has confirmed the expected very good performance of the JEFF-3.1 library. Additional benchmarking of the libraries is underway, both for the general purpose and for the special purpose libraries. A new three-year mandate to continue developing the JEFF library was recently granted by the NEA. For the next version of the library, JEFF-3.2, it is foreseen to put more effort into fission product and minor actinide evaluations, as well as the inclusion of more covariance data. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, W; Britt, H C; Wilhelmy, J B
The purpose of this note is to combine existing information on the {sup 237}U(n,f) cross section to determine if some consistency can be obtained for the neutron induced fission excitation of {sup 237}U. The neutron induced fission cross section of the 6.8 day {sup 237}U was measured directly by McNally et al. in 1968 using the Pommard nuclear device test. At the same time critical assembly measurements were done at Los Alamos using the Flattop assembly. A previous measurement was also made at LASL in 1954 with two different neutron sources, each peaked near 200 keV. The results were 0.66more » {+-} 0.10 b and 0.70 {+-} 0.07 b for the (n,f) cross section. More recently Younes and Britt have reanalyzed direct reaction charged particle data of Cramer and Britt that had determined the fission probability of the {sup 238}U compound nucleus as a function of nuclear excitation energy. They have combined fission probabilities with calculated neutron absorption cross sections, including corrections for the differences in angular momentum between the direct and neutron induced reactions. From this analysis they have extracted equivalent {sup 237}U(n,f) cross sections. The technique for extracting surrogate (n,f) cross sections from (t,pf) data has been demonstrated in a recent publication for the test case {sup 235}U(n,f). In addition to this experimental information, Lynn and Hayes have recently done a new theoretical study of the fission cross sections for a series of isotopes in this region. A summary plot of the data is shown in Fig. 1. Below 0.5 MeV the McNally, Cowan, and Younes-Britt results are in reasonable agreement. The average cross section in the Younes-Britt results, for En = 0.1 to 0.4 MeV, is 0.80 times the McNally values which is well within the errors of the McNally experiment. Above 0.5 MeV the McNally results diverge toward higher values. It should be noted that this divergence begins approximately at the {sup 237}Np threshold and that {sup 237}Np is the daughter of the 6.8 day {sup 237}U decay.« less
NASA Astrophysics Data System (ADS)
Sage, Alan G.; Oliver, Thomas A. A.; King, Graeme A.; Murdock, Daniel; Harvey, Jeremy N.; Ashfold, Michael N. R.
2013-04-01
The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n/π)σ*) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ˜11 000 cm-1. For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n/π)σ* PES, but no Cl/Cl* products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I/I* product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n/π)σ* potentials across the series Y = I < Br < Cl and the concomitant reduction in C-Y bond strength, cf. that of the rival O-H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical behaviour measured for one molecule at one wavelength to other (related) molecules and to other excitation energies.
Sage, Alan G; Oliver, Thomas A A; King, Graeme A; Murdock, Daniel; Harvey, Jeremy N; Ashfold, Michael N R
2013-04-28
The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n∕π)σ∗) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ∼11,000 cm(-1). For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n∕π)σ∗ PES, but no Cl∕Cl∗ products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I∕I∗ product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n∕π)σ∗ potentials across the series Y = I < Br < Cl and the concomitant reduction in C-Y bond strength, cf. that of the rival O-H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical behaviour measured for one molecule at one wavelength to other (related) molecules and to other excitation energies.
Alternative nuclear technologies
NASA Astrophysics Data System (ADS)
Schubert, E.
1981-10-01
The lead times required to develop a select group of nuclear fission reactor types and fuel cycles to the point of readiness for full commercialization are compared. Along with lead times, fuel material requirements and comparative costs of producing electric power were estimated. A conservative approach and consistent criteria for all systems were used in estimates of the steps required and the times involved in developing each technology. The impact of the inevitable exhaustion of the low- or reasonable-cost uranium reserves in the United States on the desirability of completing the breeder reactor program, with its favorable long-term result on fission fuel supplies, is discussed. The long times projected to bring the most advanced alternative converter reactor technologies the heavy water reactor and the high-temperature gas-cooled reactor into commercial deployment when compared to the time projected to bring the breeder reactor into equivalent status suggest that the country's best choice is to develop the breeder. The perceived diversion-proliferation problems with the uranium plutonium fuel cycle have workable solutions that can be developed which will enable the use of those materials at substantially reduced levels of diversion risk.
Loss of endocytic capacity in aging Paramecium. The importance of cytoplasmic organelles
1976-01-01
Aged cells have significantly fewer food vacuoles and ingest fewer bacteria than young cells. Loss of food vacuoles was explained by a decreasing difference in the food vacuole formation and excretion rates; the formation rate declined more rapidly than the excretion rate, approaching equivalence at 160 fissions, when the proportion of cells with no food vacuoles, in the presence of excess food, abruptly increased. A model for cellular aging is presented in which control of organelle numbers and cyclical interactions between the nucleus and cytoplasm may be of critical importance. PMID:993263
NASA Technical Reports Server (NTRS)
Roman, W. C.; Jaminet, J. F.
1972-01-01
Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.
A Signature Distinguishing Fissile From Non-Fissile Materials Using Linearly Polarized Gamma Rays
NASA Astrophysics Data System (ADS)
Mueller, J. M.; Ahmed, M. W.; Karwowski, H. J.; Myers, L. S.; Sikora, M. H.; Stave, S.; Tompkins, J. R.; Zimmerman, W. R.; Weller, H. R.
2013-04-01
Photofission of ^233,235,238U, ^239,240Pu, and ^232Th was induced by nearly 100% linearly polarized, high intensity (˜10^7 γs per second), and nearly-monoenergetic γ-ray beams of energies between 5.6 and 7.3 MeV at the High Intensity γ-ray Source (HIγS). An array of 18 liquid scintillating detectors was used to measure prompt fission neutron angular distributions. The ratio of prompt fission neutron yields parallel to the plane of beam polarization to the yields perpendicular to this plane was measured as a function of beam and neutron energy, as described in a recent publication showing results from ^235,238U, ^239Pu, and ^232Th [1]. A ratio near unity was found for ^233,235U and ^239Pu while a significant ratio (˜1.5-3) was found for ^238U, ^240Pu, and ^232Th. This large difference could be used to distinguish fissile isotopes (such as ^233,235U and ^239Pu) from non-fissile isotopes (such as ^238U, ^240Pu, and ^232Th). Polarization ratios as a function of the relative abundance of fissile to non-fissile isotopes will be presented. [4pt] [1] J. M. Mueller et al., Phys. Rev. C 85, 014605 (2012).
Britton-Davidian, Janice; Catalan, Josette; da Graça Ramalhinho, Maria; Auffray, Jean-Christophe; Claudia Nunes, Ana; Gazave, Elodie; Searle, Jeremy B; da Luz Mathias, Maria
2005-12-01
The ancestral karyotype of the house mouse (Mus musculus) consists of 40 acrocentric chromosomes, but numerous races exist within the domesticus subspecies characterized by different metacentric chromosomes formed by the joining at the centromere of two acrocentrics. An exemplary case is present on the island of Madeira where six highly divergent chromosomal races have accumulated different combinations of 20 metacentrics in 500-1000 years. Chromosomal cladistic phylogenies were performed to test the relative performance of Robertsonian (Rb) fusions, Rb fissions and whole-arm reciprocal translocations (WARTs) in resolving relationships between the chromosomal races. The different trees yielded roughly similar topologies, but varied in the number of steps and branch support. The analyses using Rb fusions/fissions as characters resulted in poorly supported trees requiring six to eight homoplasious events. Allowance for WARTs considerably increased nodal support and yielded the most parsimonious trees since homoplasy was reduced to a single event. The WART-based trees required five to nine WARTs and 12 to 16 Rb fusions. These analyses provide support for the role of WARTs in generating the extensive chromosomal diversification observed in house mice. The repeated occurrence of Rb fusions and WARTs highlights the contribution of centromere-related rearrangements to accelerated rates of chromosomal change in the house mouse.
Moller, Peter; Ichikawa, Takatoshi
2015-12-23
In this study, we propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q 2), neck d, left nascent fragment spheroidal deformation ϵ f1, right nascent fragment deformation ϵ f2 and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method tomore » calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the “compound-system” model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition.« less
Dron, Paul I; Michl, Josef; Johnson, Justin C
2017-11-16
We describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks. The films of 1 carrying a methyl in the para position of one phenyl ring undergo SF relatively efficiently (≥75% triplet yield, Φ T ) but more slowly than thin films of 1. When the methyl is replaced with a t-butyl, kinetic competition in the excited state favors excimer formation rather than SF (Φ T = 55%). When t-Bu groups are placed in both meta positions of the phenyl substituent, SF is slowed further and Φ T = 35%.
NASA Astrophysics Data System (ADS)
Kawase, Shoichiro; Nakano, Keita; Watanabe, Yukinobu; Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, Deuk Soon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Jun'ichi; Uesaka, Meiko; Watanabe, Yasushi; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi
2017-09-01
Spallation reactions for the long-lived fission product ^{93}Zr have been studied in order to provide basic data necessary for nuclear waste transmutation. Isotopic-production cross sections via proton- and deuteron-induced spallation reactions on ^{93}Zr at 105 MeV/nucleon were measured in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Remarkable jumps in isotopic production originating from the neutron magic number N=50 were observed in Zr and Y isotopes. The experimental results were compared to the PHITS calculations considering both the intranuclear cascade and evaporation processes, and the calculations greatly overestimated the measured production yield, corresponding to few-nucleon-removal reactions. The present data suggest that the spallation reaction is a potential candidate for the treatment of ^{93}Zr in spent nuclear fuel.
M3FT-15OR0202212: SUBMIT SUMMARY REPORT ON THERMODYNAMIC EXPERIMENT AND MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurray, Jake W.; Brese, Robert G.; Silva, Chinthaka M.
2015-09-01
Modeling the behavior of nuclear fuel with a physics-based approach uses thermodynamics for key inputs such as chemical potentials and thermal properties for phase transformation, microstructure evolution, and continuum transport simulations. Many of the lanthanide (Ln) elements and Y are high-yield fission products. The U-Y-O and U-Ln-O ternaries are therefore key subsystems of multi-component high-burnup fuel. These elements dissolve in the dominant urania fluorite phase affecting many of its properties. This work reports on an effort to assess the thermodynamics of the U-Pr-O and U-Y-O systems using the CALPHAD (CALculation of PHase Diagrams) method. The models developed within this frameworkmore » are capable of being combined and extended to include additional actinides and fission products allowing calculation of the phase equilibria, thermochemical and material properties of multicomponent fuel with burnup.« less
Brix, M.R.; Faundez, V.; Hervé, F.; Solari, M.; Fernandez, J.; Carter, A.; Stöckhert, B.
2007-01-01
West of the Antarctic Peninsula, oceanic lithosphere of the Phoenix plate has been subducted below the Antarctic plate. Subduction has ceased successively from south to north over the last 65 Myr. An influence of this evolution on the segmentation of the crust in the Antarctic plate is disputed. Opposing scenarios consider effects of ridge crest – trench interactions with the subduction zone or differences in slip along a basal detachment in the overriding plate. Fission track (FT) analyses on apatites and zircons may detect thermochronologic patterns to test these hypotheses. While existing data concentrate on accretionary processes in Palmer Land, new data extend information to the northern part of the Antarctic Peninsula. Zircons from different geological units over wide areas of the Antarctic Peninsula yield fission track ages between 90 and 80 Ma, indicating a uniform regional cooling episode. Apatite FT ages obtained so far show considerable regional variability
Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype
NASA Astrophysics Data System (ADS)
Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.
2013-05-01
The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.
DOE R&D Accomplishments Database
Teller, E.
1958-07-03
Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.
External quantum efficiency exceeding 100% in a singlet-exciton-fission-based solar cell
NASA Astrophysics Data System (ADS)
Baldo, Marc
2013-03-01
Singlet exciton fission can be used to split a molecular excited state in two. In solar cells, it promises to double the photocurrent from high energy photons, thereby breaking the single junction efficiency limit. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, the peak external quantum efficiency is (109 +/-1)% at λ = 670 nm for a 15-nm-thick pentacene film. The corresponding internal quantum efficiency is (160 +/-10)%. Independent confirmation of the high internal efficiency is obtained by analysis of the magnetic field effect on photocurrent, which determines that the triplet yield approaches 200% for pentacene films thicker than 5 nm. To our knowledge, this is the first solar cell to generate quantum efficiencies above 100% in the visible spectrum. Alternative multiple exciton generation approaches have been demonstrated previously in the ultraviolet, where there is relatively little sunlight. Singlet exciton fission differs from these other mechanisms because spin conservation disallows the usual dominant loss process: a thermal relaxation of the high-energy exciton into a single low-energy exciton. Consequently, pentacene is efficient in the visible spectrum at λ = 670 nm because only the collapse of the singlet exciton into twotriplets is spin-allowed. Supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088.
NASA Astrophysics Data System (ADS)
Kaur, Gurjit; Sandhu, Kirandeep; Kaur, Amandeep; Sharma, Manoj K.
2018-05-01
The dynamical cluster decay model is employed to investigate the decay of *265Db and *267Db nuclei, formed in the 27Al+238U , 18O+249Bk , and 19F+248Cm hot fusion reactions at energies around the Coulomb barrier. First, the fission dynamics of the 27Al+238U reaction is explored by investigating the fragmentation and preformation yield of the reaction. The symmetric mass distribution of the fission fragments is observed for *265Db nucleus, when static β2 i deformations are used within hot optimum orientation approach. However, the mass split gets broaden for the use of β2 i-dynamical hot configuration of the fragments and becomes clearly asymmetric for the cold-static-deformed approach. Within the application of cold orientations of fragments, a new fission channel is observed at mass asymmetry η =0.29 . In addition to 238U-induced reaction, the work is carried out to address the fission and neutron evaporation cross sections of *267Db nucleus formed via 19F+248Cm and 18O+249Bk reactions, besides a comprehensive analysis of fusion and capture processes. Higher fusion cross sections and compound nucleus formation probabilities (PCN) are obtained for the 18O+249Bk reaction, as larger mass asymmetry in the entrance channel leads to reduced Coulomb factor. Finally, the role of sticking (IS) and nonsticking (INS) moments of inertia is analyzed for the 4 n and 5 n channels of *267Db nuclear system.
Electromagnetic Dissociation of Uranium in Heavy Ion Collisions at 120 Mev/a
NASA Astrophysics Data System (ADS)
Justice, Marvin Lealon
The heavy-ion induced electromagnetic dissociation (EMD) of a 120 MeV/A ^{238}U beam incident on five targets (^9Be, ^{27}Al, ^ {nat}Cu, ^{nat} Ag, and ^{nat}U) has been studied experimentally. Electromagnetic dissociation at this beam energy is essentially a two step process involving the excitation of a giant resonance followed by particle decay. At 120 MeV/A there is predicted to be a significant contribution (~25%) of the giant quadrupole resonance to the EMD cross sections. The specific exit channel which was looked at was projectile fission. The two fission fragments were detected in coincidence by an array of solid-state DeltaE-E detectors, allowing the charges of the fragments to be determined to within +/- .5 units. The events were sorted on the basis of the sums of the fragments' charges, acceptance corrections were applied, and total cross sections for the most peripheral events (i.e. those leading to charge sums of approximately 92) were determined. Electromagnetic fission at the beam energy of this experiment always leads to a true charge sum of 92. Due to the imperfect resolution of the detectors, charge sums of 91 and 93 were included in order to account for all of the electromagnetic fission events. The experimentally observed cross sections are due to nuclear interaction processes as well as electromagnetic processes. Under the conditions of this experiment, the cross sections for the beryllium target are almost entirely due to nuclear processes. The nuclear cross sections for the other four targets were determined by extrapolation from the beryllium data using a geometrical scaling model. After subtraction of the nuclear cross sections, the resulting electromagnetic cross sections are compared to theoretical calculations based on the equivalent photon approximation. Systematic uncertainties associated with the normalization of the data make quantitative comparisons with theory difficult, however. The systematic uncertainties are discussed and suggestions for improving the experiment are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.
2006-05-09
99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samplesmore » and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul Andrew; Harp, Jason M.; Winston, Philip L.
Destructive post-irradiation examination was performed on AGR-1 fuel Compact 4-1-1, which was irradiated to a final compact-average burnup of 19.4% FIMA (fissions per initial metal atom) and a time-average, volume-average temperature of 1072°C. The analysis of this compact focused on characterizing the extent of fission product release from the particles and examining particles to determine the condition of the kernels and coating layers. The work included deconsolidation of the compact and leach-burn-leach analysis, visual inspection and gamma counting of individual particles, metallurgical preparation of selected particles, and examination of particle cross-sections with optical microscopy, electron microscopy, and elemental analysis. Deconsolidation-leach-burn-leachmore » (DLBL) analysis revealed no particles with failed TRISO or failed SiC layers (as indicated by very low uranium inventory in all of the leach solutions). The total fractions of the predicted compact inventories of fission products Ce-144, Cs-134, Cs-137, and Sr-90 that were present in the compact outside of the SiC layers were <2×10 -6, based on DLBL data. The Ag-110m fraction in the compact outside the SiC layers was 3.3×10 -2, indicating appreciable release of silver through the intact coatings and subsequent retention in the OPyC layers or matrix. The Eu-154 fraction was 2.4×10 -4, which is equivalent to the inventory in one average particle, and indicates a small but measurable level of release from the intact coatings. Gamma counting of 61 individual particles indicated no particles with anomalously low fission product retention. The average ratio of measured inventory to calculated inventory was close to a value of 1.0 for several fission product isotopes (Ce-144, Cs-134, and Cs-137), indicating good retention and reasonably good agreement with the predicted inventories. Measured-to-calculated (M/C) activity ratios for fission products Eu-154, Eu-155, Ru-106, Sb-125, and Zr-95 were significantly less than 1.0. However, as no significant release of these fission products from compacts was noted during previous analysis of the AGR-1 capsule components, the low M/C ratios are most likely an indication of a bias in the inventories predicted by physics simulations of the AGR-1 experiment. The distribution of Ag-110m M/C ratios was centered on a value of 1.02 and was fairly broad (standard deviation of 0.18, with values as high as 1.42 and as low as 0.68). Based on all data gathered to date, it is believed that silver retention in the particles was on average relatively high, but that the broad distribution in values among the particles represents significant variation in the inventory of Ag-110m generated in the particles. Ceramographic analysis of particle cross-sections revealed many of the characteristic microstructures often observed in irradiated AGR-1 particles from other fuel compacts. Palladium-rich fission product clusters were observed in the IPyC and SiC layers near the IPyC-SiC interface of three Compact 4-1-1 particle cross-sections. In spite of the presence of fission product clusters in the SiC layer, no significant corrosion or degradation of the layer was observed in any of the particles examined.« less
49 CFR 238.223 - Locomotive fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... an industry standard providing at least an equivalent level of safety if approved by FRA under § 238..., at a minimum, be equivalent to a 5/16-inch thick steel plate with a yield strength of 25,000 pounds...
Xiao, Qi; Sherman, Samuel E; Wilner, Samantha E; Zhou, Xuhao; Dazen, Cody; Baumgart, Tobias; Reed, Ellen H; Hammer, Daniel A; Shinoda, Wataru; Klein, Michael L; Percec, Virgil
2017-08-22
A three-component system of Janus dendrimers (JDs) including hydrogenated, fluorinated, and hybrid hydrogenated-fluorinated JDs are reported to coassemble by film hydration at specific ratios into an unprecedented class of supramolecular Janus particles (JPs) denoted Janus dendrimersomes (JDSs). They consist of a dumbbell-shaped structure composed of an onion-like hydrogenated vesicle and an onion-like fluorinated vesicle tethered together. The synthesis of dye-tagged analogs of each JD component enabled characterization of JDS architectures with confocal fluorescence microscopy. Additionally, a simple injection method was used to prepare submicron JDSs, which were imaged with cryogenic transmission electron microscopy (cryo-TEM). As reported previously, different ratios of the same three-component system yielded a variety of structures including homogenous onion-like vesicles, core-shell structures, and completely self-sorted hydrogenated and fluorinated vesicles. Taken together with the JDSs reported herein, a self-sorting pathway is revealed as a function of the relative concentration of the hybrid JD, which may serve to stabilize the interface between hydrogenated and fluorinated bilayers. The fission-like pathway suggests the possibility of fusion and fission processes in biological systems that do not require the assistance of proteins but instead may result from alterations in the ratios of membrane composition.
Collinear cluster tri-partition: Kinematics constraints and stability of collinearity
NASA Astrophysics Data System (ADS)
Holmvall, P.; Köster, U.; Heinz, A.; Nilsson, T.
2017-01-01
Background: A new mode of nuclear fission has been proposed by the FOBOS Collaboration, called collinear cluster tri-partition (CCT), and suggests that three heavy fission fragments can be emitted perfectly collinearly in low-energy fission. This claim is based on indirect observations via missing-energy events using the 2 v 2 E method. This proposed CCT seems to be an extraordinary new aspect of nuclear fission. It is surprising that CCT escaped observation for so long given the relatively high reported yield of roughly 0.5 % relative to binary fission. These claims call for an independent verification with a different experimental technique. Purpose: Verification experiments based on direct observation of CCT fragments with fission-fragment spectrometers require guidance with respect to the allowed kinetic-energy range, which we present in this paper. Furthermore, we discuss corresponding model calculations which, if CCT is found in such verification experiments, could indicate how the breakups proceed. Since CCT refers to collinear emission, we also study the intrinsic stability of collinearity. Methods: Three different decay models are used that together span the timescales of three-body fission. These models are used to calculate the possible kinetic-energy ranges of CCT fragments by varying fragment mass splits, excitation energies, neutron multiplicities, and scission-point configurations. Calculations are presented for the systems 235U(nth,f ) and 252Cf(s f ) , and the fission fragments previously reported for CCT; namely, isotopes of the elements Ni, Si, Ca, and Sn. In addition, we use semiclassical trajectory calculations with a Monte Carlo method to study the intrinsic stability of collinearity. Results: CCT has a high net Q value but, in a sequential decay, the intermediate steps are energetically and geometrically unfavorable or even forbidden. Moreover, perfect collinearity is extremely unstable, and broken by the slightest perturbation. Conclusions: According to our results, the central fragment would be very difficult to detect due to its low kinetic energy, raising the question of why other 2 v 2 E experiments could not detect a missing-mass signature corresponding to CCT. Considering the high kinetic energies of the outer fragments reported in our study, direct-observation experiments should be able to observe CCT. Furthermore, we find that a realization of CCT would require an unphysical fine tuning of the initial conditions. Finally, our stability calculations indicate that, due to the pronounced instability of the collinear configuration, a prolate scission configuration does not necessarily lead to collinear emission, nor does equatorial emission necessarily imply an oblate scission configuration. In conclusion, our results enable independent experimental verification and encourage further critical theoretical studies of CCT.
Publicly Released Prompt Radiation Spectra Suitable for Nuclear Detonation Simulations
2017-03-01
emission. During the Hiroshima and Nagasaki bombings , the prompt radiation contributed from 40%-70% of the free-in-air dose depending on distance from...intermediate- and low-yield thermonuclear weapons for initial radiation shielding calculations No Gritzner, et al. 1976 ( EM -1, Low, Henre...DNA 4267F ( EM -1 Fission) Neutron Gritzner, et al. 1976 1.00 x 1023 Glasstone (Thermonuclear) Neutron Glasstone & Dolan 1977 1.445 x 1023 ORNL-TM
Williams, M. L.; Wiarda, D.; Ilas, G.; ...
2014-06-15
Recently, we processed a new covariance data library based on ENDF/B-VII.1 for the SCALE nuclear analysis code system. The multigroup covariance data are discussed here, along with testing and application results for critical benchmark experiments. Moreover, the cross section covariance library, along with covariances for fission product yields and decay data, is used to compute uncertainties in the decay heat produced by a burned reactor fuel assembly.
Neutron dosimetry in low-earth orbit using passive detectors
NASA Technical Reports Server (NTRS)
Benton, E. R.; Benton, E. V.; Frank, A. L.
2001-01-01
This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies <1 MeV. Fission foil neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons <1 MeV ranged from 0.80 microSv/d on the low altitude, low inclination STS-41B mission to 22.0 microSv/d measured in the Shuttle's cargo bay on the highly inclined STS-51F Spacelab-2 mission. In one particular instance a detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the 6 year LDEF mission. Thermal neutrons (<0.3 eV) were observed to make a negligible contribution to neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission. c2001 Elsevier Science Ltd. All rights reserved.
Smith, Aaron Douglas; Lockman, Nur Ain; Holtzapple, Mark T
2011-06-01
Nutrients are essential for microbial growth and metabolism in mixed-culture acid fermentations. Understanding the influence of nutrient feeding strategies on fermentation performance is necessary for optimization. For a four-bottle fermentation train, five nutrient contacting patterns (single-point nutrient addition to fermentors F1, F2, F3, and F4 and multi-point parallel addition) were investigated. Compared to the traditional nutrient contacting method (all nutrients fed to F1), the near-optimal feeding strategies improved exit yield, culture yield, process yield, exit acetate-equivalent yield, conversion, and total acid productivity by approximately 31%, 39%, 46%, 31%, 100%, and 19%, respectively. There was no statistical improvement in total acid concentration. The traditional nutrient feeding strategy had the highest selectivity and acetate-equivalent selectivity. Total acid productivity depends on carbon-nitrogen ratio.
2018-01-01
ABSTRACT To assess phenotypic bacterial antimicrobial resistance (AMR) in different strata (e.g., host populations, environmental areas, manure, or sewage effluents) for epidemiological purposes, isolates of target bacteria can be obtained from a stratum using various sample types. Also, different sample processing methods can be applied. The MIC of each target antimicrobial drug for each isolate is measured. Statistical equivalence testing of the MIC data for the isolates allows evaluation of whether different sample types or sample processing methods yield equivalent estimates of the bacterial antimicrobial susceptibility in the stratum. We demonstrate this approach on the antimicrobial susceptibility estimates for (i) nontyphoidal Salmonella spp. from ground or trimmed meat versus cecal content samples of cattle in processing plants in 2013-2014 and (ii) nontyphoidal Salmonella spp. from urine, fecal, and blood human samples in 2015 (U.S. National Antimicrobial Resistance Monitoring System data). We found that the sample types for cattle yielded nonequivalent susceptibility estimates for several antimicrobial drug classes and thus may gauge distinct subpopulations of salmonellae. The quinolone and fluoroquinolone susceptibility estimates for nontyphoidal salmonellae from human blood are nonequivalent to those from urine or feces, conjecturally due to the fluoroquinolone (ciprofloxacin) use to treat infections caused by nontyphoidal salmonellae. We also demonstrate statistical equivalence testing for comparing sample processing methods for fecal samples (culturing one versus multiple aliquots per sample) to assess AMR in fecal Escherichia coli. These methods yield equivalent results, except for tetracyclines. Importantly, statistical equivalence testing provides the MIC difference at which the data from two sample types or sample processing methods differ statistically. Data users (e.g., microbiologists and epidemiologists) may then interpret practical relevance of the difference. IMPORTANCE Bacterial antimicrobial resistance (AMR) needs to be assessed in different populations or strata for the purposes of surveillance and determination of the efficacy of interventions to halt AMR dissemination. To assess phenotypic antimicrobial susceptibility, isolates of target bacteria can be obtained from a stratum using different sample types or employing different sample processing methods in the laboratory. The MIC of each target antimicrobial drug for each of the isolates is measured, yielding the MIC distribution across the isolates from each sample type or sample processing method. We describe statistical equivalence testing for the MIC data for evaluating whether two sample types or sample processing methods yield equivalent estimates of the bacterial phenotypic antimicrobial susceptibility in the stratum. This includes estimating the MIC difference at which the data from the two approaches differ statistically. Data users (e.g., microbiologists, epidemiologists, and public health professionals) can then interpret whether that present difference is practically relevant. PMID:29475868
Shakeri, Heman; Volkova, Victoriya; Wen, Xuesong; Deters, Andrea; Cull, Charley; Drouillard, James; Müller, Christian; Moradijamei, Behnaz; Jaberi-Douraki, Majid
2018-05-01
To assess phenotypic bacterial antimicrobial resistance (AMR) in different strata (e.g., host populations, environmental areas, manure, or sewage effluents) for epidemiological purposes, isolates of target bacteria can be obtained from a stratum using various sample types. Also, different sample processing methods can be applied. The MIC of each target antimicrobial drug for each isolate is measured. Statistical equivalence testing of the MIC data for the isolates allows evaluation of whether different sample types or sample processing methods yield equivalent estimates of the bacterial antimicrobial susceptibility in the stratum. We demonstrate this approach on the antimicrobial susceptibility estimates for (i) nontyphoidal Salmonella spp. from ground or trimmed meat versus cecal content samples of cattle in processing plants in 2013-2014 and (ii) nontyphoidal Salmonella spp. from urine, fecal, and blood human samples in 2015 (U.S. National Antimicrobial Resistance Monitoring System data). We found that the sample types for cattle yielded nonequivalent susceptibility estimates for several antimicrobial drug classes and thus may gauge distinct subpopulations of salmonellae. The quinolone and fluoroquinolone susceptibility estimates for nontyphoidal salmonellae from human blood are nonequivalent to those from urine or feces, conjecturally due to the fluoroquinolone (ciprofloxacin) use to treat infections caused by nontyphoidal salmonellae. We also demonstrate statistical equivalence testing for comparing sample processing methods for fecal samples (culturing one versus multiple aliquots per sample) to assess AMR in fecal Escherichia coli These methods yield equivalent results, except for tetracyclines. Importantly, statistical equivalence testing provides the MIC difference at which the data from two sample types or sample processing methods differ statistically. Data users (e.g., microbiologists and epidemiologists) may then interpret practical relevance of the difference. IMPORTANCE Bacterial antimicrobial resistance (AMR) needs to be assessed in different populations or strata for the purposes of surveillance and determination of the efficacy of interventions to halt AMR dissemination. To assess phenotypic antimicrobial susceptibility, isolates of target bacteria can be obtained from a stratum using different sample types or employing different sample processing methods in the laboratory. The MIC of each target antimicrobial drug for each of the isolates is measured, yielding the MIC distribution across the isolates from each sample type or sample processing method. We describe statistical equivalence testing for the MIC data for evaluating whether two sample types or sample processing methods yield equivalent estimates of the bacterial phenotypic antimicrobial susceptibility in the stratum. This includes estimating the MIC difference at which the data from the two approaches differ statistically. Data users (e.g., microbiologists, epidemiologists, and public health professionals) can then interpret whether that present difference is practically relevant. Copyright © 2018 Shakeri et al.
Rapid middle Miocene extension and unroofing of the southern Ruby Mountains, Nevada
Colgan, Joseph P.; Howard, Keith A.; Fleck, Robert J.; Wooden, Joseph L.
2010-01-01
Paleozoic rocks in the northern Ruby Mountains were metamorphosed during Mesozoic crustal shortening and Cenozoic magmatism, but equivalent strata in the southern Ruby Mountains were never buried deeper than stratigraphic depths prior to exhumation in the footwall of a west dipping brittle normal fault. In the southern Ruby Mountains, Miocene sedimentary rocks in the hanging wall of this fault date from 15.2 to 11.6 Ma and contain abundant detritus from the Paleozoic section. Apatite fission track and (U-Th)/He samples of the Eocene Harrison Pass pluton record rapid cooling that peaked ca. 17–15 Ma, while apatite fission track data from Jurassic plutons east and west of the southern Ruby Mountains indicate near-surface temperatures (<60°C) since the Cretaceous. We interpret these data to record rapid unroofing of the southern Ruby Mountains during slip on the west dipping brittle detachment between 17–16 and 10–12 Ma, followed by minor high-angle faulting. We interpret published Oligocene to early Miocene K-Ar biotite and zircon fission track dates from the Harrison Pass pluton to be partially reset rather than to directly record fault slip. Our new data, together with published data on the distribution and composition of Miocene basin fill, suggest that rapid middle Miocene slip took place on the west dipping brittle detachment that bounds the Ruby Mountains and East Humboldt Range for 150 km along strike. This fault was thus active during a period of rapid extension (ca. 17–15 to 12–10 Ma) documented widely across the northern Basin and Range Province.
Seismological analysis of the fourth North Korean nuclear test
NASA Astrophysics Data System (ADS)
Hartmann, Gernot; Gestermann, Nicolai; Ceranna, Lars
2016-04-01
The Democratic People's Republic of Korea has conducted its fourth underground nuclear explosions on 06.01.2016 at 01:30 (UTC). The explosion was clearly detected and located by the seismic network of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Additional seismic stations of international earthquake monitoring networks at regional distances, which are not part of the IMS, are used to precisely estimate the epicenter of the event in the North Hamgyong province (41.38°N / 129.05°E). It is located in the area of the North Korean Punggye-ri nuclear test site, where the verified nuclear tests from 2006, 2009, and 2013 were conducted as well. The analysis of the recorded seismic signals provides the evidence, that the event was originated by an explosive source. The amplitudes as well as the spectral characteristics of the signals were examined. Furthermore, the similarity of the signals with those from the three former nuclear tests suggests very similar source type. The seismograms at the 8,200 km distant IMS station GERES in Germany, for example, show the same P phase signal for all four explosions, differing in the amplitude only. The comparison of the measured amplitudes results in the increasing magnitude with the chronology of the explosions from 2006 (mb 4.2), 2009 (mb 4.8) until 2013 (mb 5.1), whereas the explosion in 2016 had approximately the same magnitude as that one three years before. Derived from the magnitude, a yield of 14 kt TNT equivalents was estimated for both explosions in 2013 and 2016; in 2006 and 2009 yields were 0.7 kt and 5.4 kt, respectively. However, a large inherent uncertainty for these values has to be taken into account. The estimation of the absolute yield of the explosions depends very much on the local geological situation and the degree of decoupling of the explosive from the surrounding rock. Due to the missing corresponding information, reliable magnitude-yield estimation for the North Korean test site is proved to be difficult. The direct evidence for the nuclear character of the explosion can only be found, if radioactive fission products of the explosion get released into the atmosphere and detected. The corresponding analysis by Atmospheric Transport Modelling is presented on the poster by O. Ross and L. Ceranna assessing the detection chances of IMS radionuclide stations.
NASA Astrophysics Data System (ADS)
Song, Dongfang; Glorie, Stijn; Xiao, Wenjiao; Collins, Alan S.; Gillespie, Jack; Jepson, Gilby; Li, Yongchen
2018-01-01
The Central Asian Orogenic Belt (CAOB) is regarded to have undergone multiple phases of intracontinental deformation during the Meso-Cenozoic. Located in a key position along the southern CAOB, the Alxa Tectonic Belt (ATB) connects the northernmost Tibetan Plateau with the Mongolian Plateau. In this paper we apply apatite U-Pb and fission track thermochronological studies on varieties of samples from the southwestern ATB, in order to constrain its thermal evolution. Precambrian bedrock samples yield late Ordovician-early Silurian ( 430-450 Ma) and late Permian ( 257 Ma) apatite U-Pb ages; the late Paleozoic magmatic-sedimentary samples yield relatively consistent early Permian ages from 276 to 290 Ma. These data reveal that the ATB experienced multiple Paleozoic tectono-thermal events, as the samples passed through the apatite U-Pb closure temperature ( 350-550 °C). We interpret these tectonic events to record the long-lived subduction-accretion processes of the Paleo-Asian Ocean during the formation of the southern CAOB, with possible thermal influence of the Permian Tarim mantle plume. Apatite fission track (AFT) data and thermal history modelling reveal discrete low-temperature thermal events for the ATB, inducing cooling/reheating through the AFT partial annealing zone ( 120-60 °C). During the Permian, the samples underwent rapid cooling via exhumation or denudation from deep crustal levels to temperatures < 200 °C. Subsequent thermal events in the Triassic were thought to be associated with the final amalgamation of the CAOB or the closure of the Paleotethys. During the Jurassic-Cretaceous the study area experienced heating by burial, followed by renewed cooling, which may be related with the construction and subsequent collapse of the Mongol-Okhotsk Orogeny, or the Lhasa-Eurasia collision and subsequent slab break-off. These results indicate that the ATB may have been stable after late Cretaceous in contrast to the Qilian Shan and Tianshan. Finally, our results indicate differential exhumation scenario occurred across the southwestern ATB during the Cretaceous.
Mironov, Vladislav P; Matusevich, Janna L; Kudrjashov, Vladimir P; Boulyga, Sergei F; Becker, J Sabine
2002-12-01
This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).
Monte Carlo Perturbation Theory Estimates of Sensitivities to System Dimensions
Burke, Timothy P.; Kiedrowski, Brian C.
2017-12-11
Here, Monte Carlo methods are developed using adjoint-based perturbation theory and the differential operator method to compute the sensitivities of the k-eigenvalue, linear functions of the flux (reaction rates), and bilinear functions of the forward and adjoint flux (kinetics parameters) to system dimensions for uniform expansions or contractions. The calculation of sensitivities to system dimensions requires computing scattering and fission sources at material interfaces using collisions occurring at the interface—which is a set of events with infinitesimal probability. Kernel density estimators are used to estimate the source at interfaces using collisions occurring near the interface. The methods for computing sensitivitiesmore » of linear and bilinear ratios are derived using the differential operator method and adjoint-based perturbation theory and are shown to be equivalent to methods previously developed using a collision history–based approach. The methods for determining sensitivities to system dimensions are tested on a series of fast, intermediate, and thermal critical benchmarks as well as a pressurized water reactor benchmark problem with iterated fission probability used for adjoint-weighting. The estimators are shown to agree within 5% and 3σ of reference solutions obtained using direct perturbations with central differences for the majority of test problems.« less
Fission neutron source in Rome
NASA Astrophysics Data System (ADS)
Coppola, Mario; Di Majo, V.; Ingrao, G.; Rebessi, S.; Testa, A.
1997-02-01
A fission neutron source is operating in Rome at the ENEA Casaccia Research Center since 1971, consisting of a low power fast reactor named RSV-Tapiro. it is employed for a variety of experiments, including dosimetry, material testing, radiation protection and biology. In particular, application to experimental radiobiology includes studies of the biological action of neutrons in the whole-body irradiated animal, or in specialized systems in vivo or in vitro. For his purpose a vertical irradiation facility was originally constructed. Recently, a new horizontal irradiation facility has been designed to allow the exposure of larger samples or larger sample batches at one time. Dosimetry at the sample irradiation positions is routinely carried out by the conventional method of using two ion chambers. This physical dosimetry has recently been compared with the results of biological dosimetry based on the detection of chromosomal aberrations in peripheral blood human lymphocytes irradiated in vitro. A characterization of the radiation quality in the two configurations has been carried out by tissue equivalent proportional counter microdosimetry measurements. Information about the main characteristics of the reactor and the two irradiation facilities is provided and relevant results of the various measurements are summarized. Radiobiological results obtained using this neutron source are also briefly outlined.
Mauck, Catherine M; Hartnett, Patrick E; Margulies, Eric A; Ma, Lin; Miller, Claire E; Schatz, George C; Marks, Tobin J; Wasielewski, Michael R
2016-09-14
Singlet fission (SF) in polycrystalline thin films of four 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) chromophores with methyl (Me), n-hexyl (C6), triethylene glycol (TEG), and 2-ethylhexyl (EH) substituents at the 2,5-positions is found to involve an intermediate excimer-like state. The four different substituents yield four distinct intermolecular packing geometries, resulting in variable intermolecular charge transfer (CT) interactions in the solid. SF from the excimer state of Me, C6, TEG, and EH takes place in τSF = 22, 336, 195, and 1200 ps, respectively, to give triplet yields of 200%, 110%, 110%, and 70%, respectively. The transient spectra of the excimer-like state and its energetic proximity to the lowest excited singlet state in these derivatives suggests that this state may be the multiexciton (1)(T1T1) state that precedes formation of the uncorrelated triplet excitons. The excimer decay rates correlate well with the SF efficiencies and the degree of intermolecular donor-acceptor interactions resulting from π-stacking of the thiophene donor of one molecule with the DPP core acceptor in another molecule as observed in the crystal structures. Such interactions are found to also increase with the SF coupling energies, as calculated for each derivative. These structural and spectroscopic studies afford a better understanding of the electronic interactions that enhance SF in chromophores having strong intra- and intermolecular CT character.
NASA Astrophysics Data System (ADS)
Jernström, J.; Eriksson, M.; Simon, R.; Tamborini, G.; Bildstein, O.; Marquez, R. Carlos; Kehl, S. R.; Hamilton, T. F.; Ranebo, Y.; Betti, M.
2006-08-01
Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low 240Pu/ 239Pu atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of 137Cs ( 239 + 240 Pu/ 137Cs activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average 241Am/ 239Pu atomic ratio in the six particles was 3.7 × 10 - 3 ± 0.2 × 10 - 3 (February 2006), which indicated that plutonium in the different particles had similar age.
Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012.
Hu, Jun; Zhang, Li L; Chen, Jian M; Liu, Yu
2013-01-01
Pseudomonas aeruginosa strain HJ1012 was isolated on paracetamol as a sole carbon and energy source. This organism could completely degrade paracetamol as high as 2200 mg/L. Following paracetamol consumption, a CO₂ yield rate up to 71.4% proved that the loss of paracetamol was mainly via mineralization. Haldane's equation adequately described the relationship between the specific growth rate and substrate concentration. The maximum specific growth rate and yield coefficient were 0.201 g-Paracetamol/g-VSS·h and 0.101 mg of biomass yield/mg of paracetamol consumed, respectively. A total of 8 metabolic intermediates was identified and classified into aromatic compounds, carboxylic acids, and inorganic species (nitrite and nitrate ions). P-aminophenol and hydroquinone are the two key metabolites of the initial steps in the paracetamol catabolic pathway. Paracetamol is degraded predominantly via p-aminophenol to hydroquinone with subsequent ring fission, suggesting partially new pathways for paracetamol-degrading bacteria.
Spatial and Time Coincidence Detection of the Decay Chain of Short-Lived Radioactive Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granja, Carlos; Jakubek, Jan; Platkevic, Michal
The quantum counting position sensitive pixel detector Timepix with per-pixel energy and time resolution enables to detect radioactive ions and register the consecutive decay chain by simultaneous position-and time-correlation. This spatial and timing coincidence technique in the same sensor is demonstrated by the registration of the decay chain {sup 8}He{yields}{sup {beta} 8}Li and {sup 8}Li{yields}{sup {beta}-} {sup 8}Be{yields}{alpha}+{alpha} and by the measurement of the {beta} decay half-lives. Radioactive ions, selectively obtained from the Lohengrin fission fragment spectrometer installed at the High Flux Reactor of the ILL Grenoble, are delivered to the Timepix silicon sensor where decays of the implanted ionsmore » and daughter nuclei are registered and visualized. We measure decay lifetimes in the range {>=}{mu}s with precision limited just by counting statistics.« less
Multigrid methods in structural mechanics
NASA Technical Reports Server (NTRS)
Raju, I. S.; Bigelow, C. A.; Taasan, S.; Hussaini, M. Y.
1986-01-01
Although the application of multigrid methods to the equations of elasticity has been suggested, few such applications have been reported in the literature. In the present work, multigrid techniques are applied to the finite element analysis of a simply supported Bernoulli-Euler beam, and various aspects of the multigrid algorithm are studied and explained in detail. In this study, six grid levels were used to model half the beam. With linear prolongation and sequential ordering, the multigrid algorithm yielded results which were of machine accuracy with work equivalent to 200 standard Gauss-Seidel iterations on the fine grid. Also with linear prolongation and sequential ordering, the V(1,n) cycle with n greater than 2 yielded better convergence rates than the V(n,1) cycle. The restriction and prolongation operators were derived based on energy principles. Conserving energy during the inter-grid transfers required that the prolongation operator be the transpose of the restriction operator, and led to improved convergence rates. With energy-conserving prolongation and sequential ordering, the multigrid algorithm yielded results of machine accuracy with a work equivalent to 45 Gauss-Seidel iterations on the fine grid. The red-black ordering of relaxations yielded solutions of machine accuracy in a single V(1,1) cycle, which required work equivalent to about 4 iterations on the finest grid level.
Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds
NASA Astrophysics Data System (ADS)
Bundgaard, Jeremy; Niffte Collaboration
2015-10-01
Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.
Kakui, Yasutaka; Sunaga, Tomonari; Arai, Kunio; Dodgson, James; Ji, Liang; Csikász-Nagy, Attila; Carazo-Salas, Rafael; Sato, Masamitsu
2015-01-01
Integration of an external gene into a fission yeast chromosome is useful to investigate the effect of the gene product. An easy way to knock-in a gene construct is use of an integration plasmid, which can be targeted and inserted to a chromosome through homologous recombination. Despite the advantage of integration, construction of integration plasmids is energy- and time-consuming, because there is no systematic library of integration plasmids with various promoters, fluorescent protein tags, terminators and selection markers; therefore, researchers are often forced to make appropriate ones through multiple rounds of cloning procedures. Here, we establish materials and methods to easily construct integration plasmids. We introduce a convenient cloning system based on Golden Gate DNA shuffling, which enables the connection of multiple DNA fragments at once: any kind of promoters and terminators, the gene of interest, in combination with any fluorescent protein tag genes and any selection markers. Each of those DNA fragments, called a ‘module’, can be tandemly ligated in the order we desire in a single reaction, which yields a circular plasmid in a one-step manner. The resulting plasmids can be integrated through standard methods for transformation. Thus, these materials and methods help easy construction of knock-in strains, and this will further increase the value of fission yeast as a model organism. PMID:26108218
Chujo, Moeko; Tarumoto, Yusuke; Miyatake, Koichi; Nishida, Eisuke; Ishikawa, Fuyuki
2012-01-01
Cells that have been pre-exposed to mild stress (priming stress) acquire transient resistance to subsequent severe stress even under different combinations of stresses. This phenomenon is called cross-tolerance. Although it has been reported that cross-tolerance occurs in many organisms, the molecular basis is not clear yet. Here, we identified slm9+ as a responsible gene for the cross-tolerance in the fission yeast Schizosaccharomyces pombe. Slm9 is a homolog of mammalian HIRA histone chaperone. HIRA forms a conserved complex and gene disruption of other HIRA complex components, Hip1, Hip3, and Hip4, also yielded a cross-tolerance-defective phenotype, indicating that the fission yeast HIRA is involved in the cross-tolerance as a complex. We also revealed that Slm9 was recruited to the stress-responsive gene loci upon stress treatment in an Atf1-dependent manner. The expression of stress-responsive genes under stress conditions was compromised in HIRA disruptants. Consistent with this, Pol II recruitment and nucleosome eviction at these gene loci were impaired in slm9Δ cells. Furthermore, we found that the priming stress enhanced the expression of stress-responsive genes in wild-type cells that were exposed to the severe stress. These observations suggest that HIRA functions in stress response through transcriptional regulation. PMID:22589550
A molten Salt Am242M Production Reactor for Space Applications
NASA Technical Reports Server (NTRS)
Emrich, William
2005-01-01
The use of Am242m holds great promise for increasing the efficiency nuclear thermal rocket engines. Because Am242m has the highest fission cross section of any known isotope (1000's of barns), its extremely high reactivity may be used to directly heat a propellant gas with fission fragments. Since this isotope does not occur naturally, it must be bred in special production reactors designed for that purpose. The primary advantage to using molten salt reactors for breeding Am242m is that the reactors can be reprocessed continually yielding a constant rate of production of the isotope. Once built and initially fueled, the reactor will continually breed the additional fuel it needs to remain critical. The only feedstock required is a salt of U238. No enriched fuel is required during normal operation and all fissile material, except the Am242m, is maintained in a closed loop. For a reactor operating at 200 MW several kilograms of Am242m may be bred each year.
The Manhattan Project; A very brief introduction to the physics of nuclear weapons
NASA Astrophysics Data System (ADS)
Reed, B. Cameron
2017-05-01
The development of nuclear weapons by the Manhattan Project during World War II was one of the most dramatic scientific/technological episodes in human history. This book, prepared by a recognized expert on the Manhattan Project, offers a concise survey of the essential physics concepts underlying fission weapons. The text describes the energetics and timescales of fast-neutron chain reactions, why only certain isotopes of uranium and plutonium are suitable for use in fission weapons, how critical mass and bomb yield can be estimated, how the efficiency of nuclear weapons can be enhanced, how the fissile forms of uranium and plutonium were obtained, some of the design details of the 'Little Boy' and 'Fat Man' bombs, and some of the thermal, shock, and radiation effects of nuclear weapons. Calculation exercises are provided, and a Bibliography lists authoritative print and online sources of information for readers who wish to pursue more detailed study of this fascinating topic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steel, L.K.; Walden, T.L. Jr.; Hughes, H.N.
1988-09-01
The survival of mice after whole-body exposure to a modified fission neutron-gamma field (n: gamma = 1:1) was used to examine radiation protection by WR-2721, 16,16-dimethyl PGE2(DiPGE2), and the combination of both agents. Administration of WR-2721 (453 mg/kg) increased the LD50/30 from 5.24 to 7.17 Gy (DMF = 1.37), whereas pretreatment with DiPGE2 (1.6 mg/kg) increased the LD50/30 to 5.77 Gy (dose modification factor (DMF) = 1.10). The combination of 453 mg/kg WR-2721 and 0.4 mg/kg DiPGE2 resulted in an LD50/30 of 7.33 Gy, yielding a DMF of 1.39. However, no significant difference in protection was obtained with the combinationmore » of the two agents compared to that seen with WR-2721 alone.« less
Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source
NASA Astrophysics Data System (ADS)
McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart
2016-08-01
Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.
Composite solid-state scintillators for neutron detection
Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.
2006-09-12
Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.
Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi
2006-08-31
We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.
New 5 Kilowatt Free-Piston Stirling Space Converter Developments
NASA Astrophysics Data System (ADS)
Brandhorst, Henry W.
2007-01-01
NASA has recently funded development of a 5 kW (or greater) free-piston Stirling conversion system for reactor power systems. A nominal 5 kW converter allows two of these units to be dynamically balanced. A group of three dual-convertor combinations would yield the desired 30 kW. The status of this program will be presented. Goals include a specific power in excess of 140 W/kg at the converter level, lifetime in excess of five years and AC output. The initial step is the design and development of a nominal 5 kW per cylinder Stirling converter assembly (SCA) which will serve as a prototype of one or more SCAs that will make up the final 30 kW Stirling Converter Power System. Assumed requirements for this new converter for lunar fission power systems will be presented. The primary objective of this development effort will be to demonstrate a 5 kW SCA that can be tested to validate the viability of Stirling technology for space fission surface power systems.
New 5 Kilowatt Free-Piston Stirling Space Convertor Developments
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W.
2007-01-01
NASA has recently funded development of a 5 kW (or greater) free-piston Stirling conversion system for reactor power systems. A nominal 5 kW convertor allows two of these units to be dynamically balanced. A group of three dual-convertor combinations would yield the desired 30 kW. The status of this program will be presented. Goals include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and AC output. The initial step is the design and development of a nominal 5 kW per cylinder Stirling convertor assembly (SCA) which will serve as a prototype of one or more SCAs that will make up the final 30 kW Stirling Convertor Power System. Assumed requirements for this new convertor for lunar fission power systems will be presented. The primary objective of this development effort will be to demonstrate a 5 kW SCA that can be tested to validate the viability of Stirling technology for space fission surface power systems.
NASA Astrophysics Data System (ADS)
Lou, Tak Pui; Ludewigt, Bernhard
2015-09-01
The simulation of the emission of beta-delayed gamma rays following nuclear fission and the calculation of time-dependent energy spectra is a computational challenge. The widely used radiation transport code MCNPX includes a delayed gamma-ray routine that is inefficient and not suitable for simulating complex problems. This paper describes the code "MMAPDNG" (Memory-Mapped Delayed Neutron and Gamma), an optimized delayed gamma module written in C, discusses usage and merits of the code, and presents results. The approach is based on storing required Fission Product Yield (FPY) data, decay data, and delayed particle data in a memory-mapped file. When compared to the original delayed gamma-ray code in MCNPX, memory utilization is reduced by two orders of magnitude and the ray sampling is sped up by three orders of magnitude. Other delayed particles such as neutrons and electrons can be implemented in future versions of MMAPDNG code using its existing framework.
40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.
Code of Federal Regulations, 2012 CFR
2012-07-01
... detector (HFID) for the measurement of hydrocarbons, non-dispersive infrared analyzers (NDIR) for the... converted to nitric oxide before analysis. Other types of analyzers may be used if shown to yield equivalent... room temperature, produces an equivalent CO response, as measured on the most sensitive CO range, which...
DOT National Transportation Integrated Search
2010-01-01
This study sought to identify the equivalent 105F curing duration for lime-stabilized soil (LSS) that will : yield the equivalent unconfined compressive strength (UCS) to that resulting from 28-day, 73F curing. Both : 5-day and 7-day 105F (or 1...
40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.
Code of Federal Regulations, 2010 CFR
2010-07-01
... detector (HFID) for the measurement of hydrocarbons, non-dispersive infrared analyzers (NDIR) for the... converted to nitric oxide before analysis. Other types of analyzers may be used if shown to yield equivalent... room temperature, produces an equivalent CO response, as measured on the most sensitive CO range, which...
Compact D-D/D-T neutron generators and their applications
NASA Astrophysics Data System (ADS)
Lou, Tak Pui
2003-10-01
Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.
An Overview of Reactor Concepts, a Survey of Reactor Designs.
1985-02-01
may be very different. HTGRs may use highly enriched uranium, thereby yielding better fuel economy and a reduc- tion of the actual core size for a...specific power level. The HTGR core may have fuel and control rods placed in graphite arrays similar to PWR core con- figuration, or they may have fuel ...rods are pulled out. A Peach Bottom core design is another HTGR design. This design is featured by the fuel pin’s ability to purge itself of fission
Ingle, Rebecca A; Karsili, Tolga N V; Dennis, Gregg J; Staniforth, Michael; Stavros, Vasilios G; Ashfold, Michael N R
2016-04-28
H atom loss following near ultraviolet photoexcitation of gas phase 2-thiophenethiol molecules has been studied experimentally, by photofragment translational spectroscopy (PTS) methods, and computationally, by ab initio electronic structure calculations. The long wavelength (277.5 ≥ λ(phot) ≥ 240 nm) PTS data are consistent with S-H bond fission after population of the first (1)πσ* state. The partner thiophenethiyl (R) radicals are formed predominantly in their first excited Ã(2)A' state, but assignment of a weak signal attributable to H + R(X˜(2)A'') products allows determination of the S-H bond strength, D0 = 27,800 ± 100 cm(-1) and the Ã-X˜ state splitting in the thiophenethiyl radical (ΔE = 3580 ± 100 cm(-1)). The deduced population inversion between the à and X˜ states of the radical reflects the non-planar ground state geometry (wherein the S-H bond is directed near orthogonal to the ring plane) which, post-photoexcitation, is unable to planarise sufficiently prior to bond fission. This dictates that the dissociating molecules follow the adiabatic fragmentation pathway to electronically excited radical products. π* ← π absorption dominates at shorter excitation wavelengths. Coupling to the same (1)πσ* potential energy surface (PES) remains the dominant dissociation route, but a minor yield of H atoms attributable to a rival fragmentation pathway is identified. These products are deduced to arise via unimolecular decay following internal conversion to the ground (S0) state PES via a conical intersection accessed by intra-ring C-S bond extension. The measured translational energy disposal shows a more striking change once λ(phot) ≤ 220 nm. Once again, however, the dominant decay pathway is deduced to be S-H bond fission following coupling to the (1)πσ* PES but, in this case, many of the evolving molecules are deduced to have sufficiently near-planar geometries to allow passage through the conical intersection at extended S-H bond lengths and dissociation to ground (X˜) state radical products. The present data provide no definitive evidence that complete ring opening can compete with fast S-H bond fission following near UV photoexcitation of 2-thiophenethiol.
Radioactive ion beams produced by neutron-induced fission at ISOLDE
NASA Astrophysics Data System (ADS)
Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.; Isolde Collaboration
2003-05-01
The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high- Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC 2/graphite and ThO 2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.
Radioactive ion beams produced by neutron-induced fission at ISOLDE
NASA Astrophysics Data System (ADS)
Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.
2003-05-01
The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.
Izod, Keith; Bowman, Lyndsey J; Wills, Corinne; Clegg, William; Harrington, Ross W
2009-05-07
A straightforward Peterson olefination reaction between either [{(Me(2)PhSi)(3)C}Li(THF)] or in situ-generated [(Me(3)Si)(2){Ph(2)P(BH(3))}CLi(THF)(n)] and paraformaldehyde gives the alkenes (Me(2)PhSi)(2)C[double bond, length as m-dash]CH(2) () and (Me(3)Si){Ph(2)P(BH(3))}C[double bond, length as m-dash]CH(2) (), respectively, in good yield. Ultrasonic treatment of with lithium in THF yields the lithium complex [{(Me(2)PhSi)(2)C(CH(2))}Li(THF)(n)](2) (), which reacts in situ with one equivalent of KOBu(t) in diethyl ether to give the potassium salt [{(Me(2)PhSi)(2)C(CH(2))}K(THF)](2) (). Similarly, ultrasonic treatment of with lithium in THF yields the lithium complex [[{Ph(2)P(BH(3))}(Me(3)Si)C(CH(2))]Li(THF)(3)](2).2THF (). The bis(phosphine-borane) [(Me(3)Si){Me(2)(H(3)B)P}CH(Me(2)Si)(CH(2))](2) () may be prepared by the reaction of [Me(2)P(BH(3))CH(SiMe(3))]Li with half an equivalent of ClSiMe(2)CH(2)CH(2)SiMe(2)Cl in refluxing THF. Metalation of with two equivalents of MeLi in refluxing THF yields the lithium complex [[{Me(2)P(BH(3))}(Me(3)Si)C{(SiMe(2))(CH(2))}]Li(THF)(3)](2) (), whereas metalation with two equivalents of MeK in cold diethyl ether yields the potassium complex [[{Me(2)P(BH(3))}(Me(3)Si)C{(SiMe(2))(CH(2))}](2)K(2)(THF)(4)](infinity) () after recrystallisation. X-Ray crystallography shows that, whereas the lithium complex crystallises as a discrete molecular species, the potassium complexes and crystallise as sheet and chain polymers, respectively.
Electro-optical equivalent calibration technology for high-energy laser energy meters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088
Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less
Weight propagation and equivalent horsepower for alternate-engined cars
NASA Technical Reports Server (NTRS)
Klose, G. J.; Kurtz, D. W.
1978-01-01
In order to evaluate properly the consequences of replacing conventional Otto-cycle engines with alternate power systems, comparisons must be carried out at the vehicle level with functionally equivalent cars. This paper presents the development and application of a procedure for establishing equivalent vehicles. A systematic weight propagation methodology, based on detailed weight breakdowns and influence factors, yields the vehicle weight impacts due to changes in engine weight and power. Performance-matching criteria, utilizing a vehicle simulation program, are then employed to establish Otto-engine-equivalent vehicles, whose characteristics can form the basis for alternative engine evaluations.
On the Relation between the Linear Factor Model and the Latent Profile Model
ERIC Educational Resources Information Center
Halpin, Peter F.; Dolan, Conor V.; Grasman, Raoul P. P. P.; De Boeck, Paul
2011-01-01
The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the…
Computer program FPIP-REV calculates fission product inventory for U-235 fission
NASA Technical Reports Server (NTRS)
Brown, W. S.; Call, D. W.
1967-01-01
Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.
Nuclear fission: a review of experimental advances and phenomenology
NASA Astrophysics Data System (ADS)
Andreyev, A. N.; Nishio, K.; Schmidt, K.-H.
2018-01-01
In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion–fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around {\\hspace{0pt}}180 Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in Z and A, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions. Some aspects of heavy-ion induced fusion–fission and quasifission reactions will be also discussed, which reveal their dynamical features, such as the fission time scale. The crucial role of the multi-chance fission, probed by means of multinucleon-transfer induced fission reactions, will be highlighted. The review will conclude with the discussion of the new experimental fission facilities which are presently being brought into operation, along with promising ‘next-generation’ fission approaches, which might become available within the next decade.
Space Fission Propulsion System Development Status
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana;
2001-01-01
The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.
TNT equivalency study for space shuttle (EOS). Volume 1: Management summary report
NASA Technical Reports Server (NTRS)
Wolfe, R. R.
1971-01-01
The existing TNT equivalency criterion for LO2/LH2 propellant is reevaluated. It addresses the static, on-pad phase of the space shuttle launch operations and was performed to determine whether the use of a TNT equivalency criterion lower than that presently used (60%) could be substantiated. The large quantity of propellant on-board the space shuttle, 4 million pounds, was considered of prime importance to the study. A qualitative failure analysis of the space shuttle (EOS) on the launch pad was made because it was concluded that available test data on the explosive yield of LO2/LH2 propellant was insufficient to support a reduction in the present TNT equivalency value, considering the large quantity of propellant used in the space shuttle. The failure analysis had two objectives. The first was to determine whether a failure resulting in the total release of propellant could occur. The second was to determine whether, if such a failure did occur, ignition could be delayed long enough to allow the degree of propellant mixing required to produce an explosion of 60% TNT equivalency since the explosive yield of this propellant is directly related to the quantities of LH2 and LO2 mixed at the time of the explosion.
2012-05-01
In all cases, a Grignard reagent of a para- or meta- substituted, protected aniline was reacted with a chlorosilane. Control of the reaction is...one equivalent of Grignard reagent with a small excess of tetrachlorosilane generates a good yield of monosubstituted trichlorosilane (6a). It must...methyltrichlorosilane. It is possible to add either 1 equivalent (to make 4a and 4b) or 2 equivalents of the protected aniline Grignard reagent (to make 5a
Photofission product yields of 238U and 239Pu with 22-MeV bremsstrahlung
NASA Astrophysics Data System (ADS)
Wen, Xianfei; Yang, Haori
2016-06-01
In homeland security and nuclear safeguards applications, non-destructive techniques to identify and quantify special nuclear materials are in great demand. Although nuclear materials naturally emit characteristic radiation (e.g. neutrons, γ-rays), their intensity and energy are normally low. Furthermore, such radiation could be intentionally shielded with ease or buried in high-level background. Active interrogation techniques based on photofission have been identified as effective assay approaches to address this issue. In designing such assay systems, nuclear data, like photofission product yields, plays a crucial role. Although fission yields for neutron-induced reactions have been well studied and readily available in various nuclear databases, data on photofission product yields is rather scarce. This poses a great challenge to the application of photofission techniques. In this work, short-lived high-energy delayed γ-rays from photofission of 238U were measured in between linac pulses. In addition, a list-mode system was developed to measure relatively long-lived delayed γ-rays from photofission of 238U and 239Pu after the irradiation. Time and energy information of each γ-ray event were simultaneously recorded by this system. Cumulative photofission product yields were then determined using the measured delayed γ-ray spectra.
Antineutrino analysis for continuous monitoring of nuclear reactors: Sensitivity study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Christopher; Erickson, Anna
This paper explores the various contributors to uncertainty on predictions of the antineutrino source term which is used for reactor antineutrino experiments and is proposed as a safeguard mechanism for future reactor installations. The errors introduced during simulation of the reactor burnup cycle from variation in nuclear reaction cross sections, operating power, and other factors are combined with those from experimental and predicted antineutrino yields, resulting from fissions, evaluated, and compared. The most significant contributor to uncertainty on the reactor antineutrino source term when the reactor was modeled in 3D fidelity with assembly-level heterogeneity was found to be the uncertaintymore » on the antineutrino yields. Using the reactor simulation uncertainty data, the dedicated observation of a rigorously modeled small, fast reactor by a few-ton near-field detector was estimated to offer reduction of uncertainty on antineutrino yields in the 3.0–6.5 MeV range to a few percent for the primary power-producing fuel isotopes, even with zero prior knowledge of the yields.« less
NASA Astrophysics Data System (ADS)
Bertrand, Audrey; Pomella, Hannah; Fügenschuh, Bernhard; Zerlauth, Michael; Ortner, Hugo
2013-04-01
The study area in the westernmost part of Austria is marked by the limit between the Western and the Eastern Alps that takes place along the Rhine Valley, south of the Lake Constance. The area is composed, form the north to the south and from lowermost to uppermost structural position, by the European basement together with its autochthonous Mesozoic cover, autochthonous Molasse, subalpine Molasse, the Helvetic and Ultra-Helvetic, the Penninic and the Austroalpine nappes. These units are stacked in a succession of nappes separated by large south-trending overthrusts. This study presenting new apatite and zircon fission track ages, together with a crustal-scale cross-section (Pomella et al., this session) addresses the thermotectonic evolution of this nappe stack. In comparison with similar studies from eastern Switzerland the boundary between Western and Eastern Alps should be enlightened. Zircon fissions track ages from the lower freshwater Molasse reveal different age populations. Since all zircon fission track ages are older than the stratigraphic age this clearly indicates that post-depositional temperatures were well below the zircon partial annealing zone (i.e. below 200 °C) and the different age populations can be attributed to different source areas derived from the coevally forming and eroding alpine chain. Preliminary fission track results on apatite from the lower freshwater Molasse indicate a strong dependence of apatite fission track single-grain ages on their annealing kinetics as inferred from Dpar analyses (Gleadow and Duddy, 1981). F-rich apatites systematically yielded younger ages compared to the Cl-rich grains. The younger ages derived from the F-rich apatites are consistently younger than the stratigraphic age and thus fully annealed while Cl-rich apatites display older ages than the stratigraphic one. The difference in annealing temperatures between Cl- and F-rich apatites (Ravenhurst and Donelick, 1992) thus constrains the maximum temperature to < 100 °C, most likely reached between 20 Ma and 14 Ma by combined sediment and tectonic overburden. References Gleadow, A.J.W., and Duddy, I.R., 1981, A natural long-term annealing experiment for apatite. Nuclear Tracks Radiation Experiments, 5, 169-174. Pomella et al., this session. Alpine nappe stack in western Austria: A crustal-scale cross-section. Ravenhurst, C.E., and Donelick, R.A., 1992. Fission track thermochronology. In Short Course. Handbook on Low Temperature Thermochronology, ed. M. Zentilli & P.H. Reynolds. pp.21-42.
NASA Astrophysics Data System (ADS)
Bundgaard, Jeremy J.
Nuclear physicists have been recently called upon for new, high precision fission measurements to improve existing fission models, ultimately enabling engineers to design next generation reactors as well as guarding the nation's stockpile. In response, a resurgence in fission research is aimed at developing detectors to design and build new experiments to meet these needs. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unprecedented precision. The fissionTPC is annually deployed to the Los Alamos Neutron Science Center LANSCE where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's (LLNL) TPC lab, where it is tested with spontaneous fission (SF) from radioactive sources, typically 252Cf and 244Cm, to characterize detector response, improve performance, and evolve the design. One of the experiments relevant for both nuclear energy and nonproliferation is to measure the neutron induced fission of 239Pu, which exhibits a high alpha activity, generating a large unwanted background for the fission measurements. The ratio of alpha to fission present in our neutron induced fission measurement of 239Pu is on the same order of magnitude as the 244Cm alpha/SF branching ratio. The high alpha rate required the TPC to be triggering on fission signals during beam time and we set out to build a trigger system, which, using 244Cm to produce a similar alpha to fission ratio as 239Pu in the neutron beam, we successfully demonstrated the viability of this approach. The trigger design has been evolved for use in NIFFTE's current measurements at LANSCE. In addition to several hardware and software contributions in the development and operation of the fissionTPC, a central purpose of this thesis was also to develop analyses to demonstrate the fissionTPC's performance abilities/limitations in measuring the alpha/SF branching ratio of 252Cf and 244Cm. Our method results in benchmarking the fissionTPC's ability to produce a competitive alpha/SF ratio for 252Cf with sub-percent precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chyzh, A.; Jaffke, P.; Wu, C. Y.
Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less
Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber
NASA Astrophysics Data System (ADS)
Manning, Brett; Niffte Collaboration
2015-10-01
Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.
Chyzh, A.; Jaffke, P.; Wu, C. Y.; ...
2018-06-07
Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less
Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop
NASA Astrophysics Data System (ADS)
Geslot, Benoit; Gruel, Adrien; Bréaud, Stéphane; Leconte, Pierre; Blaise, Patrick
2018-01-01
Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop) and another one where the power is free to drift (open loop). First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.
A time projection chamber for high accuracy and precision fission cross-section measurements
Heffner, M.; Asner, D. M.; Baker, R. G.; ...
2014-05-22
The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less
NASA Astrophysics Data System (ADS)
Oberstedt, Stephan; Dragic, Aleksandar; Gatera, Angelique; Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Andreas
2017-09-01
The investigation of prompt γ-ray emission in nuclear fission has a great relevance for the assessment of prompt heat generation in a reactor core and for the better understanding of the de-excitation mechanism of fission fragments. Some years ago experimental data was scarce and available only from a few fission reactions, 233,235U(nth, f), 239Pu(nth, f), and 252Cf(sf). Initiated by a high priority data request published by the OECD/NEA a dedicated prompt fission γ-ray measurement program is being conducted at the Joint Research Centre Geel. In recent years we obtained new and accurate prompt fission γ-ray spectrum (PFGS) characteristics (average number of photons per fission, average total energy per fission and mean photon energy) from 252Cf(sf), 235U(nth, f) and 239,241Pu(nth, f) within 2% of uncertainty. In order to understand the dependence of prompt fission γ-ray emission on the compound nuclear mass and excitation energy, we started a first measurement campaign on spontaneously fissioning plutonium and curium isotopes. Results on PFGS characteristics from 240,242Pu(sf) show a dependence on the fragment mass distribution rather than on the average prompt neutron multiplicity, pointing to a more complex competition between prompt fission γ-ray and neutron emission.
NASA Astrophysics Data System (ADS)
Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei
2018-03-01
Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.
40 CFR 98.124 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... in paragraph (b)(8) of this section only if the total annual CO2-equivalent fluorinated GHG... terms of total CO2 equivalents. For fluorinated GHGs whose GWPs are not listed in Table A-1 to subpart A... control purposes and may include but are not limited to yields, pressures, temperatures, etc. (e.g., of...
40 CFR 98.124 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... in paragraph (b)(8) of this section only if the total annual CO2-equivalent fluorinated GHG... terms of total CO2 equivalents. For fluorinated GHGs whose GWPs are not listed in Table A-1 to subpart A... control purposes and may include but are not limited to yields, pressures, temperatures, etc. (e.g., of...
Perforated semiconductor neutron detectors for battery operated portable modules
NASA Astrophysics Data System (ADS)
McGregor, Douglas S.; Bellinger, Steven L.; Bruno, David; McNeil, Walter J.; Patterson, Eric; Shultis, J. Kenneth; Solomon, C. J.; Unruh, Troy
2007-09-01
Perforated semiconductor diode detectors have been under development for several years at Kansas State University for a variety of neutron detection applications. The fundamental device configuration is a pin diode detector fabricated from high-purity float zone refined Si wafers. Perforations are etched into the diode surface with inductively-coupled plasma (ICP) reactive ion etching (RIE) and backfilled with 6LiF neutron reactive material. The perforation shapes and depths can be optimized to yield a flat response to neutrons over a wide variation of angles. The prototype devices delivered over 3.8% thermal neutron detection efficiency while operating on only 15 volts. The highest efficiency devices thus far have delivered over 12% thermal neutron detection efficiency. The miniature devices are 5.6 mm in diameter and require minimal power to operate, ranging from 3.3 volts to 15 volts, depending upon the amplifying electronics. The battery operated devices have been incorporated into compact modules with a digital readout. Further, the new modules have incorporated wireless readout technology and can be monitored remotely. The neutron detection modules can be used for neutron dosimetry and neutron monitoring. When coupled with high-density polyethylene, the detectors can be used to measure fission neutrons from spontaneous fission sources. Monto Carlo analysis indicates that the devices can be used in cargo containers as a passive search tool for spontaneous fission sources, such as 240Pu. Measurements with a 252Cf source are being conducted for verification.
Exciton Correlations in Intramolecular Singlet Fission
Sanders, Samuel N.; Kumarasamy, Elango; Pun, Andrew B.; ...
2016-05-16
We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased,more » slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.« less
Delayed fission of atomic nuclei (To the 50th anniversary of the discovery)
NASA Astrophysics Data System (ADS)
Skobelev, N. K.
2017-09-01
The history of the discovery of delayed nuclear fission is presented, and the retrospective of investigations into this phenomenon that were performed at various research centers worldwide is outlined. The results obtained by measuring basic delayed-fission features, including the fission probability, the total kinetic energy of fission fragments, and their mass distributions, are analyzed. Recommendations concerning further studies in various regions of nuclear map with the aim of searches for and investigation of atomic nuclei undergoing delayed fission are given. Lines of further research into features of delayed fission with the aim of solving current problems of fission physics are discussed.
Measurement of the prompt fissionγ-ray spectrum of 242Pu
NASA Astrophysics Data System (ADS)
Urlass, Sebastian; Beyer, Roland; Junghans, Arnd Rudolf; Kögler, Toni; Schwengner, Ronald; Wagner, Andreas
2018-03-01
The prompt γ-ray spectrum of fission fragments is important in understanding the dynamics of the fission process, as well as for nuclear engineering in terms of predicting the γ-ray heating in nuclear reactors. The γ-ray spectrum measured from the fission fragments of the spontaneous fission of 242Pu will be presented here. A fission chamber containing in total 37mg of 242Pu was used as active sample. The γ-quanta were detected with high time- and energy-resolution using LaBr3 and HPGe detectors, respectively, in coincidence with spontaneous fission events detected by the fission chamber. The acquired γ-ray spectra were corrected for the detector response using the spectrum stripping method. About 70 million fission events were detected which results in a very low statistical uncertainty and a wider energy range covered compared to previous measurements. The prompt fission γ-ray spectrum measured with the HPGe detectors shows structures that allow conclusions about the nature of γ-ray transitions in the fission fragments. The average photon multiplicity of 8.2 and the average total energy release by prompt photons per fission event of about 6.8 MeV were determined for both detector types.
NASA Astrophysics Data System (ADS)
Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier
2018-01-01
Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using either FREYA or FIFRELIN, are compared to experimental results. For 240Pu(sf), the measured correlations were used to tune the model parameters.
Extended optical model for fission
Sin, M.; Capote, R.; Herman, M. W.; ...
2016-03-07
A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less
Precision Gamma-Ray Branching Ratios for Long-Lived Radioactive Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonchev, Anton
Many properties of the high-energy-density environments in nuclear weapons tests, advanced laser-fusion experiments, the interior of stars, and other astrophysical bodies must be inferred from the resulting long-lived radioactive nuclei that are produced. These radioactive nuclei are most easily and sensitively identified by studying the characteristic gamma rays emitted during decay. Measuring a number of decays via detection of the characteristic gamma-rays emitted during the gamma-decay (the gamma-ray branching ratio) of the long-lived fission products is one of the most straightforward and reliable ways to determine the number of fissions that occurred in a nuclear weapon test. The fission productsmore » 147Nd, 144Ce, 156Eu, and certain other long-lived isotopes play a crucial role in science-based stockpile stewardship, however, the large uncertainties (about 8%) on the branching ratios measured for these isotopes are currently limiting the usefulness of the existing data [1,2]. We performed highly accurate gamma-ray branching-ratio measurements for a group of high-atomic-number rare earth isotopes to greatly improve the precision and reliability with which the fission yield and reaction products in high-energy-density environments can be determined. We have developed techniques that take advantage of new radioactive-beam facilities, such as DOE's CARIBU located at Argonne National Laboratory, to produce radioactive samples and perform decay spectroscopy measurements. The absolute gamma-ray branching ratios for 147Nd and 144Ce are reduced <2% precision. In addition, high-energy monoenergetic neutron beams from the FN Tandem accelerator in TUNL at Duke University was used to produce 167Tm using the 169Tm(n,3n) reaction. Fourtime improved branching ratio of 167Tm is used now to measure reaction-in-flight (RIF) neutrons from a burning DT capsule at NIF [10]. This represents the first measurement of RIF neutrons in any laboratory fusion system, and the magnitude of the signal has important implications for fundamental plasma science and for weapons physics.« less
Johnson, Justin C; Akdag, Akin; Zamadar, Matibur; Chen, Xudong; Schwerin, Andrew F; Paci, Irina; Smith, Millicent B; Havlas, Zdeněk; Miller, John R; Ratner, Mark A; Nozik, Arthur J; Michl, Josef
2013-04-25
In order to identify optimal conditions for singlet fission, we are examining the photophysics of 1,3-diphenylisobenzofuran (1) dimers covalently coupled in various ways. In the two dimers studied presently, the coupling is weak. The subunits are linked via the para position of one of the phenyl substituents, in one case (2) through a CH2 linker and in the other (3) directly, but with methyl substituents in ortho positions forcing a nearly perpendicular twist between the two joint phenyl rings. The measurements are accompanied with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. Although in neat solid state, 1 undergoes singlet fission with a rate constant higher than 10(11) s(-1); in nonpolar solutions of 2 and 3, the triplet formation rate constant is less than 10(6) s(-1) and fluorescence is the only significant event following electronic excitation. In polar solvents, fluorescence is weaker because the initial excited singlet state S1 equilibrates by sub-nanosecond charge transfer with a nonemissive dipolar species in which a radical cation of 1 is attached to a radical anion of 1. Most of this charge transfer species decays to S0, and some is converted into triplet T1 with a rate constant near 10(8) s(-1). Experimental uncertainties prevent an accurate determination of the number of T1 excitations that result when a single S1 excitation changes into triplet excitation. It would be one if the charge-transfer species undergoes ordinary intersystem crossing and two if it undergoes the second step of two-step singlet fission. The triplet yield maximizes below room temperature to a value of roughly 9% for 3 and 4% for 2. Above ∼360 K, some of the S1 molecules of 3 are converted into an isomeric charge-transfer species with a shorter lifetime, possibly with a twisted intramolecular charge transfer (TICT) structure. This is not observed in 2.
Fission Signatures for Nuclear Material Detection
NASA Astrophysics Data System (ADS)
Gozani, Tsahi
2009-06-01
Detection and interdiction of nuclear materials in all forms of transport is one of the most critical security issues facing the United States and the rest of the civilized world. Naturally emitted gamma rays by these materials, while abundant and detectable when unshielded, are low in energy and readily shielded. X-ray radiography is useful in detecting the possible presence of shielding material. Positive detection of concealed nuclear materials requires methods which unequivocally detect specific attributes of the materials. These methods typically involve active interrogation by penetrating radiation of neutrons, photons or other particles. Fortunately, nuclear materials, probed by various types of radiation, yield very unique and often strong signatures. Paramount among them are the detectable fission signatures, namely prompt neutrons and gamma rays, and delayed neutrons gamma rays. Other useful signatures are the nuclear states excited by neutrons, via inelastic scattering, or photons, via nuclear resonance fluorescence and absorption. The signatures are very different in magnitude, level of specificity, ease of excitation and detection, signal to background ratios, etc. For example, delayed neutrons are very unique to the fission process, but are scarce, have low energy, and hence are easily absorbed. Delayed gamma rays are more abundant but "featureless", and have a higher background from natural sources and more importantly, from activation due to the interrogation sources. The prompt fission signatures need to be measured in the presence of the much higher levels of probing radiation. This requires taking special measures to look for the signatures, sometimes leading to a significant sensitivity loss or a complete inability to detect them. Characteristic gamma rays induced in nuclear materials reflecting their nuclear structure, while rather unique, require very high intensity of interrogation radiation and very high resolution in energy and/or time. The trade off of signatures, their means of stimulation, and methods of detection, will be reviewed.
Hemi-fused structure mediates and controls fusion and fission in live cells
Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J.; Krystofiak, Evan S.; Villarreal, Seth A.; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang
2016-01-01
Membrane fusion and fission are vital to eukaryotes’ life1–5. For three decades, it has been proposed that fusion is mediated by fusion between proximal leaflets of two bilayers (hemi-fusion) that produces a hemi-fused structure, followed by fusion between distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission1, 4, 6–10. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion/hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed2, 11–15. Using confocal and super-resolution STED microscopy, we observed the hemi-fused Ω-shaped structure for the first time in live cells, neuroendocrine chromaffin cells and pancreatic β-cells. This structure was generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, its transition to full fusion or fission was determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and was surprisingly slow (seconds to tens of seconds) in a significant fraction of the events. These results provide key missing evidence over the past three decades proving the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion/fission, as fusion and fission mechanisms compete to determine its transition to fusion or fission. PMID:27309816
Energy production using fission fragment rockets
NASA Astrophysics Data System (ADS)
Chapline, G.; Matsuda, Y.
1991-08-01
Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: approximately twice the efficiency if the fission fragment energy can be directly converted into electricity; reduction of the buildup of a fission fragment inventory in the reactor could avoid a Chernobyl type disaster; and collection of the fission fragments outside the reactor could simplify the waste disposal problem.
Effect of Damping and Yielding on the Seismic Response of 3D Steel Buildings with PMRF
Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden
2014-01-01
The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions. PMID:25097892
Effect of damping and yielding on the seismic response of 3D steel buildings with PMRF.
Reyes-Salazar, Alfredo; Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden
2014-01-01
The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dritz, K.W.; Boyle, J.M.
This paper addresses the problem of measuring and analyzing the performance of fine-grained parallel programs running on shared-memory multiprocessors. Such processors use locking (either directly in the application program, or indirectly in a subroutine library or the operating system) to serialize accesses to global variables. Given sufficiently high rates of locking, the chief factor preventing linear speedup (besides lack of adequate inherent parallelism in the application) is lock contention - the blocking of processes that are trying to acquire a lock currently held by another process. We show how a high-resolution, low-overhead clock may be used to measure both lockmore » contention and lack of parallel work. Several ways of presenting the results are covered, culminating in a method for calculating, in a single multiprocessing run, both the speedup actually achieved and the speedup lost to contention for each lock and to lack of parallel work. The speedup losses are reported in the same units, ''processor-equivalents,'' as the speedup achieved. Both are obtained without having to perform the usual one-process comparison run. We chronicle also a variety of experiments motivated by actual results obtained with our measurement method. The insights into program performance that we gained from these experiments helped us to refine the parts of our programs concerned with communication and synchronization. Ultimately these improvements reduced lock contention to a negligible amount and yielded nearly linear speedup in applications not limited by lack of parallel work. We describe two generally applicable strategies (''code motion out of critical regions'' and ''critical-region fissioning'') for reducing lock contention and one (''lock/variable fusion'') applicable only on certain architectures.« less
Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N
2015-01-01
While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. DOI: http://dx.doi.org/10.7554/eLife.11553.001 PMID:26609810
Real causes of apparent abnormal results in heavy ion reactions
NASA Astrophysics Data System (ADS)
Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; De Leo, V.; Fazio, G.; Giardina, G.
2015-06-01
We study the effect of the static characteristics of nuclei and dynamics of the nucleus-nucleus interaction in the capture stage of reaction, in the competition between quasifission and complete fusion processes, as well as the angular momentum dependence of the competition between fission and evaporation processes along the de-excitation cascade of the compound nucleus. The results calculated for the mass-asymmetric and less mass-asymmetric reactions in the entrance channel are analyzed in order to investigate the role of the dynamical effects on the yields of the evaporation residue nuclei. We also discuss about uncertainties at the extraction of such relevant physical quantities as Γn/Γtot ratio or also excitation functions from the experimental results due to the not always realistic assumptions in the treatment and analysis of the detected events. This procedure can lead to large ambiguity when the complete fusion process is strongly hindered or when the fast fission contribution is large. We emphasize that a refined multiparameter model of the reaction dynamics as well as a more detailed and checked data analysis are strongly needed in heavy-ion collisions.
Seo, Hogyu David; Lee, Daeyoup
2018-05-15
Random mutagenesis of a target gene is commonly used to identify mutations that yield the desired phenotype. Of the methods that may be used to achieve random mutagenesis, error-prone PCR is a convenient and efficient strategy for generating a diverse pool of mutants (i.e., a mutant library). Error-prone PCR is the method of choice when a researcher seeks to mutate a pre-defined region, such as the coding region of a gene while leaving other genomic regions unaffected. After the mutant library is amplified by error-prone PCR, it must be cloned into a suitable plasmid. The size of the library generated by error-prone PCR is constrained by the efficiency of the cloning step. However, in the fission yeast, Schizosaccharomyces pombe, the cloning step can be replaced by the use of a highly efficient one-step fusion PCR to generate constructs for transformation. Mutants of desired phenotypes may then be selected using appropriate reporters. Here, we describe this strategy in detail, taking as an example, a reporter inserted at centromeric heterochromatin.
ERIC Educational Resources Information Center
Weigold, Arne; Weigold, Ingrid K.; Russell, Elizabeth J.
2013-01-01
Self-report survey-based data collection is increasingly carried out using the Internet, as opposed to the traditional paper-and-pencil method. However, previous research on the equivalence of these methods has yielded inconsistent findings. This may be due to methodological and statistical issues present in much of the literature, such as…
ERIC Educational Resources Information Center
Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.
2011-01-01
This research examined whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In 3 experiments, participants learned 4-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the…
Code of Federal Regulations, 2014 CFR
2014-01-01
... associated with the sites, which is equivalent to, to the extent practicable, or more stringent than the... this appendix, the Commission will consider “practicable” and “reasonably achievable” as equivalent... formation, group of formations, or part of a formation capable of yielding a significant amount of ground...
Options For Development of Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.
Growth, dry weight yields, and specific gravity of 3-year-old Populus grown under intensive culture.
David H. Dawson; J.G Isebrands; John C. Gordon
1976-01-01
In a nearly optimal cultural environment, Populus 'Tristis #1' grown for 3 years, planted at 9 by 9 inch spacing produced the equivalent of over 4 tons/acre/year of ovendry wood with specific gravity comparable to native aspen wood. Trees planted at wider spacings yielded less.
Tensile Yielding of Multi-Wall Carbon Nanotube
NASA Technical Reports Server (NTRS)
Wei, Chenyu; Cho, Kyeongjae; Srivastava, Deepak; Parks, John W. (Technical Monitor)
2002-01-01
The tensile yielding of multiwall carbon nanotubes (MWCNTs) has been studied using Molecular Dynamics simulations and a Transition State Theory based model. We find a strong dependence of the yielding on the strain rate. A critical strain rate has been predicted above/below which yielding strain of a MWCNT is larger/smaller than that of the corresponding single-wall carbon nanotubes. At experimentally feasible strain rate of 1% /hour and T = 300K, the yield strain of a MWCNT is estimated to be about 3-4 % higher than that of an equivalent SWCNT (Single Wall Carbon Nanotube), in good agreement with recent experimental observations.
High precision test of the equivalence principle
NASA Astrophysics Data System (ADS)
Schlamminger, Stephan; Wagner, Todd; Choi, Ki-Young; Gundlach, Jens; Adelberger, Eric
2007-05-01
The equivalence principle is the underlying foundation of General Relativity. Many modern quantum theories of gravity predict violations of the equivalence principle. We are using a rotating torsion balance to search for a new equivalence principle violating, long range interaction. A sensitive torsion balance is mounted on a turntable rotating with constant angular velocity. On the torsion pendulum beryllium and titanium test bodies are installed in a composition dipole configuration. A violation of the equivalence principle would yield to a differential acceleration of the two materials towards a source mass. I will present measurements with a differential acceleration sensitivity of 3x10-15;m/s^2. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B3.5
Fission Systems for Mars Exploration
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne
2012-01-01
Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sublet, J.-Ch., E-mail: jean-christophe.sublet@ukaea.uk; Eastwood, J.W.; Morgan, J.G.
Fispact-II is a code system and library database for modelling activation-transmutation processes, depletion-burn-up, time dependent inventory and radiation damage source terms caused by nuclear reactions and decays. The Fispact-II code, written in object-style Fortran, follows the evolution of material irradiated by neutrons, alphas, gammas, protons, or deuterons, and provides a wide range of derived radiological output quantities to satisfy most needs for nuclear applications. It can be used with any ENDF-compliant group library data for nuclear reactions, particle-induced and spontaneous fission yields, and radioactive decay (including but not limited to TENDL-2015, ENDF/B-VII.1, JEFF-3.2, JENDL-4.0u, CENDL-3.1 processed into fine-group-structure files, GEFY-5.2more » and UKDD-16), as well as resolved and unresolved resonance range probability tables for self-shielding corrections and updated radiological hazard indices. The code has many novel features including: extension of the energy range up to 1 GeV; additional neutron physics including self-shielding effects, temperature dependence, thin and thick target yields; pathway analysis; and sensitivity and uncertainty quantification and propagation using full covariance data. The latest ENDF libraries such as TENDL encompass thousands of target isotopes. Nuclear data libraries for Fispact-II are prepared from these using processing codes PREPRO, NJOY and CALENDF. These data include resonance parameters, cross sections with covariances, probability tables in the resonance ranges, PKA spectra, kerma, dpa, gas and radionuclide production and energy-dependent fission yields, supplemented with all 27 decay types. All such data for the five most important incident particles are provided in evaluated data tables. The Fispact-II simulation software is described in detail in this paper, together with the nuclear data libraries. The Fispact-II system also includes several utility programs for code-use optimisation, visualisation and production of secondary radiological quantities. Included in the paper are summaries of results from the suite of verification and validation reports available with the code.« less
FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling
NASA Astrophysics Data System (ADS)
Sublet, J.-Ch.; Eastwood, J. W.; Morgan, J. G.; Gilbert, M. R.; Fleming, M.; Arter, W.
2017-01-01
Fispact-II is a code system and library database for modelling activation-transmutation processes, depletion-burn-up, time dependent inventory and radiation damage source terms caused by nuclear reactions and decays. The Fispact-II code, written in object-style Fortran, follows the evolution of material irradiated by neutrons, alphas, gammas, protons, or deuterons, and provides a wide range of derived radiological output quantities to satisfy most needs for nuclear applications. It can be used with any ENDF-compliant group library data for nuclear reactions, particle-induced and spontaneous fission yields, and radioactive decay (including but not limited to TENDL-2015, ENDF/B-VII.1, JEFF-3.2, JENDL-4.0u, CENDL-3.1 processed into fine-group-structure files, GEFY-5.2 and UKDD-16), as well as resolved and unresolved resonance range probability tables for self-shielding corrections and updated radiological hazard indices. The code has many novel features including: extension of the energy range up to 1 GeV; additional neutron physics including self-shielding effects, temperature dependence, thin and thick target yields; pathway analysis; and sensitivity and uncertainty quantification and propagation using full covariance data. The latest ENDF libraries such as TENDL encompass thousands of target isotopes. Nuclear data libraries for Fispact-II are prepared from these using processing codes PREPRO, NJOY and CALENDF. These data include resonance parameters, cross sections with covariances, probability tables in the resonance ranges, PKA spectra, kerma, dpa, gas and radionuclide production and energy-dependent fission yields, supplemented with all 27 decay types. All such data for the five most important incident particles are provided in evaluated data tables. The Fispact-II simulation software is described in detail in this paper, together with the nuclear data libraries. The Fispact-II system also includes several utility programs for code-use optimisation, visualisation and production of secondary radiological quantities. Included in the paper are summaries of results from the suite of verification and validation reports available with the code.
Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Kevin B; Walton, Otis R; Benjamin, Russ
2014-09-29
A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled asmore » a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth-of-burial until it reached a value of one at a DOB between 15m and 20m. These simulations confirm the expected result that the variation of coupling to the ground, or the air, change s much more rapidly with emplacement location for a high-energy-density (i.e., nuclear-like) explosive source than it does for relatively low - energy - density chemical explosive sources. The Energy Partitioning, Energy Coupling (EPEC) platform at LLNL utilizes laser energy from one quad (i.e. 4-laser beams) of the 192 - beam NIF Laser bank to deliver ~10kJ of energy to 1mg of silver in a hohlraum creating an effective small-explosive ‘source’ with an energy density comparable to those in low-yield nuclear devices. Such experiments have the potential to provide direct experimental confirmation of the simulation results obtained in this study, at a physical scale (and time-scale) which is a factor of 1000 smaller than the spatial- or temporal-scales typically encountered when dealing with nuclear explosions.« less
Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.
2012-01-01
This research examines whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In three experiments, participants learned four-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the maps from imagined perspectives that were either aligned or misaligned with the maps as represented in working memory. Results from Experiments 1 and 2 revealed a highly similar pattern of latencies and errors between visual and haptic conditions. These findings extend the well known alignment biases for visual map learning to haptic map learning, provide further evidence of haptic updating, and most importantly, show that learning from the two modalities yields very similar performance across all conditions. Experiment 3 found the same encoding biases and updating performance with blind individuals, demonstrating that functional equivalence cannot be due to visual recoding and is consistent with an amodal hypothesis of spatial images. PMID:21299331
Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar
2016-01-01
A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent. PMID:26905737
NASA Astrophysics Data System (ADS)
Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar
2016-02-01
A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent.
Space Fission Propulsion System Development Status
NASA Astrophysics Data System (ADS)
Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.
2001-01-01
The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability of a SAFE-powered electric propulsion system to outer planet science missions will also be discussed.
Teaching brain-behavior relations economically with stimulus equivalence technology.
Fienup, Daniel M; Covey, Daniel P; Critchfield, Thomas S
2010-03-01
Instructional interventions based on stimulus equivalence provide learners with the opportunity to acquire skills that are not directly taught, thereby improving the efficiency of instructional efforts. The present report describes a study in which equivalence-based instruction was used to teach college students facts regarding brain anatomy and function. The instruction involved creating two classes of stimuli that students understood as being related. Because the two classes shared a common member, they spontaneously merged, thereby increasing the yield of emergent relations. Overall, students mastered more than twice as many facts as were explicitly taught, thus demonstrating the potential of equivalence-based instruction to reduce the amount of student investment that is required to master advanced academic topics.
Formation of Pluto's moons: the fission hypothesis revisited
NASA Astrophysics Data System (ADS)
Prentice, A. J.
2015-12-01
I re-examine the fission hypothesis for the formation of Pluto's moons within the framework of a gas ring model for the origin of the solar system (Prentice 1978 Moon Planets 19 341; 2015 LPSC, abs. 2664). It is supposed that the planetary system condensed from a concentric family of orbiting gas rings. These were cast off by the proto-solar cloud (PSC) as a means for disposing of excess spin angular momentum during gravitational contraction. If contraction is homologous, the mean orbital radii R(n) (n = 0,1,2,3,..) of the rings form a nearly geometric sequence. The temperatures T(n) of the rings scale roughly as T(n) = A/R(n) and the gas pressures p(n) on the gas ring mean orbits scale as p(n) = B/R(n)^4. The constants A & B are chosen so that (1) the geometric mean of the ratio R(n+1)/R(n) of successive gas ring radii from Jupiter to Mercury matches the observed mean ratio of planetary distances and (2) that the metal mass fraction at Mercury's orbit, namely 0.70, yields a planet whose mean density equals the observed value (Prentice 2008, LPSC abs. 1945.pdf). I assume that proto-Pluto (PPO) condensed within the n = 0 gas ring shed by the PSC at the orbit of Quaoar (43.2 AU). Here T(0) = 26.3 K and p(0) = 1.3 x 10^(-9) bar. The condensate consists of anhydrous rock (mass fraction 0.5255), graphite (0.0163), water ice (0.1858), dry ice (0.2211), and methane ice (0.0513). The RTP rock density is 3.662 g/cc. I assume that melting of the ices in the PPO took place through the decay of short-lived radioactive nuclides, causing internal segregation of rock & graphite. If rotational fission did occur and Pluto's moons formed from ejected liquid water and CO2, we get a Charon mean density of 1.24 g/cc. This is much lower than the observed value. Perhaps some of the rock and graphite became entrained in the fissioned liquid, so yielding a dense core for Charon of mass fraction ~0.4? In any event, the surfaces of all of the moons should have initially been football-shaped, very smooth and consist solely of water ice. As there is no outward migration of the major planets in the gas ring model, the risk of impact bombardment is minimal. Most likely, subsequent tidal action between Pluto and Charon produced the chasms that girdle the equator of Charon (Barr & Collins 2015). I predict that New Horizons will detect dry ice in those parts of Hydra that have been gouged by impacts.
Elastocapillary Instability in Mitochondrial Fission
NASA Astrophysics Data System (ADS)
Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien
2015-08-01
Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaja, Ivan; Bai, Xiaowen, E-mail: xibai@mcw.edu; Liu, Yanan
Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1more » (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of mitochondrial fission; and (2) the increased mitochondrial fission is resulted from both increased activation and decreased inactivation of Drp1 through Cdk1, PKCδ, and calcineurin-mediated pathways, respectively.« less
Does Compound Nucleus remember its Isospin- An Evidence from the Fission Widths
NASA Astrophysics Data System (ADS)
Garg, Swati; Jain, Ashok Kumar
2018-05-01
We present an evidence of isospin effects in nuclear fission by comparing the fission widths for reactions involving different isospin states of the same compound nucleus (CN). Yadrovsky [1] suggested this possibility in 1975. Yadrovsky obtained the fission widths for two reaction data sets, namely 206Pb(α,f) and 209Bi(p,f), both leading to same CN, and concluded that "a nucleus remembers the isospin value of the nuclear states leading to fission". We obtain the fission decay widths for both the T0 + ½ and T0 - ½ states of CN by using two appropriate reaction data sets. We then compare the fission widths for the two isospin states of CN. More specifically, we have chosen the combination of 206Pb(α,f) and 209Bi(p,f) same as presented in Yadrovsky's paper [1] in this study. A significant difference between the ratios of fission decay widths to total decay widths for different isospin values suggests that isospin plays an important role in fission.
2004-02-01
Products and Chemicals , Inc . The stoichiometry of the DGEBA-PACM polymerization reaction was varied to yield epoxy/amine ratios ranging from ~2:1 through...equivalent). The DGEBA epoxy resin was cured with bis(p-aminocyclohexyl)methane (PACM) (EEW = 52.5 g/equivalent), which was acquired from Air
Introduction to Nuclear Physics (4/4)
Goutte, D.
2018-05-04
The last lecture of the summer student program devoted to nuclear physics. I'm going to talk about nuclear reaction and the fission process. There are two kinds of fission: spontaneous fission and induced fission.
Two neutron correlations in photo-fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, D. S.; Kosinov, O.; Forest, T.
2016-01-01
A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of twomore » neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.« less
Fission products behaviour during a power transient: Their inventory in an intragranular bubble
NASA Astrophysics Data System (ADS)
Desgranges, L.; Blay, Th.; Lamontagne, J.; Roure, I.; Bienvenu, Ph.
2017-09-01
The behaviour of fission products is a key issue during Anticipated Operational Occurrences (AOOs) or Condition II transients or accidental sequence for nuclear fuel. Here we characterized how fission products behaved inside chromium doped UO2 pellet during a power ramp. At the pellet centre fission products have left the UO2 lattice and can be found in bubbles. The composition of the bubbles was determined using an original experimental methodology. The existence of separated precipitates made of metallic fission products for the one, and volatile fission products for the other, was evidenced. This result is discussed with regards to the behaviour of fission products during a power ramp.
NASA Astrophysics Data System (ADS)
Blain, E.; Daskalakis, A.; Block, R. C.; Danon, Y.
2017-06-01
The prompt fission neutron spectrum from spontaneous fission of 252Cf is an integral part of several aspects of nuclear data. Not only is the spectrum itself of interest, but neutron detectors often use the spectrum for calibration, and other prompt fission neutron spectra are measured as a ratio to 252Cf. Therefore, reducing the uncertainties in this spectrum will allow for more accurate nuclear data to be available across a wide range of fields. The prompt fission neutron spectrum for the spontaneous fission of 252Cf was measured at Rensselaer Polytechnic Institute using the multiple γ tagging method with a 18.4-ng fission sample. An EJ-301 liquid scintillator fast neutron detector was used to measure the high energy portion of the spectrum, 0.5-7 MeV, and a thin EJ-204 plastic scintillator was used to measure the low energy portion of the spectrum, from 50 keV to 2 MeV. These spectra both show good agreement with the current evaluation of 252Cf and have low associated uncertainties providing a new high precision measurement that helps reduce the uncertainties in the prompt fission neutron spectrum for the spontaneous fission of 252Cf.
Fission of actinide nuclei using multi-nucleon transfer reactions
NASA Astrophysics Data System (ADS)
Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki
2014-09-01
We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Improvement of gross theory of beta-decay for application to nuclear data
NASA Astrophysics Data System (ADS)
Koura, Hiroyuki; Yoshida, Tadashi; Tachibana, Takahiro; Chiba, Satoshi
2017-09-01
A theoretical study of β decay and delayed neutron has been carried out with a global β-decay model, the gross theory. The gross theory is based on a consideration of the sum rule of the β-strength function, and gives reasonable results of β-decay rates and delayed neutron in the entire nuclear mass region. In a fissioning nucleus, neutrons are produced by β decay of neutron-rich fission fragments from actinides known as delayed neutrons. The average number of delayed neutrons is estimated based on the sum of the β-delayed neutron-emission probabilities multiplied by the cumulative fission yield for each nucleus. Such a behavior is important to manipulate nuclear reactors, and when we adopt some new high-burn-up reactors, properties of minor actinides will play an important roll in the system, but these data have not been sufficient. We re-analyze and improve the gross theory. For example, we considered the parity of neutrons and protons at the Fermi surface, and treat a suppression for the allowed transitions in the framework of the gross theory. By using the improved gross theory, underestimated half-lives in the neutron-rich indium isotopes and neighboring region increase, and consequently follow experimental trend. The ability of reproduction (and also prediction) of the β-decay rates, delayed-neutron emission probabilities is discussed. With this work, we have described the development of a programming code of the gross theory of β-decay including the improved parts. After preparation finished, this code can be released for the nuclear data community.
Fission Technology for Exploring and Utilizing the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,
Structural inhibition of dynamin-mediated membrane fission by endophilin
Galli, Valentina; Shen, Peter S; Humbert, Frédéric; De Camilli, Pietro
2017-01-01
Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission. PMID:28933693
Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.
2016-12-01
A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.
Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel
Herrmann, Steven Douglas
2014-05-27
Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.
Study of fission using multi-nucleon transfer reactions
NASA Astrophysics Data System (ADS)
Nishio, Katsuhisa; Hirose, Kentaro; Mark, Vermeulen; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Asai, Masato; Toyoshima, Atsushi; Sato, Tetsuya K.; Nagame, Yuichiro; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei
2017-11-01
It is shown that multi-nucleon transfer reaction is a powerful tool to study fission of exotic neutronrich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U, 18O+248Cm, and 18O+237Np were used to measure fission-fragment mass distribution for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all the studied cases, with an increase of the symmetric fission towards high excitation energies. Experimental data are compared with predictions of the fluctuation-dissipation model, where effects of multi-chance fission (neutron evaporation prior to fission) was introduced. It is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited and less neutronrich excited nuclei due to higher-order chance fissions.
Robust singlet fission in pentacene thin films with tuned charge transfer interactions.
Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F
2018-03-05
Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.
Teh, Boon Kin; Cheong, Siew Ann
2016-01-01
The Global Financial Crisis of 2007-2008 wiped out US$37 trillions across global financial markets, this value is equivalent to the combined GDPs of the United States and the European Union in 2014. The defining moment of this crisis was the failure of Lehman Brothers, which precipitated the October 2008 crash and the Asian Correction (March 2009). Had the Federal Reserve seen these crashes coming, they might have bailed out Lehman Brothers, and prevented the crashes altogether. In this paper, we show that some of these market crashes (like the Asian Correction) can be predicted, if we assume that a large number of adaptive traders employing competing trading strategies. As the number of adherents for some strategies grow, others decline in the constantly changing strategy space. When a strategy group grows into a giant component, trader actions become increasingly correlated and this is reflected in the stock price. The fragmentation of this giant component will leads to a market crash. In this paper, we also derived the mean-field market crash forecast equation based on a model of fusions and fissions in the trading strategy space. By fitting the continuous returns of 20 stocks traded in Singapore Exchange to the market crash forecast equation, we obtain crash predictions ranging from end October 2008 to mid-February 2009, with early warning four to six months prior to the crashes.
Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cols, H.; Cristini, P.; Marques, R.
1997-08-01
The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing highmore » enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.« less
Teh, Boon Kin; Cheong, Siew Ann
2016-01-01
The Global Financial Crisis of 2007-2008 wiped out US$37 trillions across global financial markets, this value is equivalent to the combined GDPs of the United States and the European Union in 2014. The defining moment of this crisis was the failure of Lehman Brothers, which precipitated the October 2008 crash and the Asian Correction (March 2009). Had the Federal Reserve seen these crashes coming, they might have bailed out Lehman Brothers, and prevented the crashes altogether. In this paper, we show that some of these market crashes (like the Asian Correction) can be predicted, if we assume that a large number of adaptive traders employing competing trading strategies. As the number of adherents for some strategies grow, others decline in the constantly changing strategy space. When a strategy group grows into a giant component, trader actions become increasingly correlated and this is reflected in the stock price. The fragmentation of this giant component will leads to a market crash. In this paper, we also derived the mean-field market crash forecast equation based on a model of fusions and fissions in the trading strategy space. By fitting the continuous returns of 20 stocks traded in Singapore Exchange to the market crash forecast equation, we obtain crash predictions ranging from end October 2008 to mid-February 2009, with early warning four to six months prior to the crashes. PMID:27706198
Feasibility study of a fission-suppressed Tokamak fusion breeder
NASA Astrophysics Data System (ADS)
Moir, R. W.; Lee, J. D.; Neef, W. S., Jr.; Berwald, D. H.; Garner, J. K.; Whitley, R. H.; Ghoniem, N.; Wong, C. P. C.; Maya, I.; Schultz, K. R.
1984-12-01
The preliminary conceptual design of a tokama fissile fuel producer is described. The blanket technology is based on the fission suppressed breeding concept where neutron multiplication occurs in a bed of 2 cm diameter beryllium pebbles which are cooled by helium at 50 atmospheres pressure. Uranium-233 is bred in thorium metal fuel elements which are in the form of snap rings attached to each beryllium pebble. Tritium is bred in lithium bearing material contained in tubes immersed in the pebble bed and is recovered by a purge flow of helium. The neutron wall load is 3 MW/m(2) and the blanket material is ferritic steel. The net fissile breeding ratio is 0.54 plus or minus 30% per fusion reaction. This results in the production of 4900 kg of (223)U per year from 3000 MW of fusion power. This quantity of fuel will provide makeup fuel for about 12 LWRs of equal thermal power or about 18 1 GW sub e LWRs. The calculated cost of the produced uranium-233 is between $23/g and $53/g or equivalent to $10/kg to $90/kg of U308 depending on government financing or utility financing assumptions. Additional topics discussed include the Tokamak operating mode (both steady state and long pulse considered), the design and breeding implications of using a poloidal divertor for impurity control, reactor safety, the choice of a tritium breeder, and fuel management.
Process for treating fission waste
Rohrmann, Charles A.; Wick, Oswald J.
1983-01-01
A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.
Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.
Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.
Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions
Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.
2017-03-27
Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.
Optimally moderated nuclear fission reactor and fuel source therefor
Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID
2008-07-22
An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.
Experimental Fuels Facility Re-categorization Based on Facility Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiss, Troy P.; Andrus, Jason
The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the DOE-ID Supplemental Guidance for DOE-STD-1027-92 based on the proposed downgrade of the initial facility categorization of Hazard Category 2.« less
Cross section for the subthreshold fission of 236U
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Bergman, A. A.; Berlev, A. I.; Koptelov, E. A.; Samylin, B. F.; Trufanov, A. M.; Fursov, B. I.; Shorin, V. S.
2008-08-01
The cross section for 236U fission in the neutron-energy range E n = 0.001 20 keV was measured by using the INR RAS (Institute of Nuclear Research, Russian Academy of Sciences, Moscow) LSDS-100 neutron spectrometer of the lead slowing-down spectrometer type. The resonance fission areas of the resonances at 5.45 eV and 1.28 keV were found, and the fission widths of these resonances were evaluated. The cross section for the 238U( n, f) fission process was measured, and the threshold sensitivity of the LSDS-100 to small values of fission cross sections was estimated. The well-known intermediate structure in the cross section for the neutron-induced subbarrier fission of 236U was confirmed.
Computational micromechanics of woven composites
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Saigal, Sunil; Zeng, Xiaogang
1991-01-01
The bounds on the equivalent elastic material properties of a composite are presently addressed by a unified energy approach which is valid for both unidirectional and 2D and 3D woven composites. The unit cell considered is assumed to consist, first, of the actual composite arrangement of the fibers and matrix material, and then, of an equivalent pseudohomogeneous material. Equating the strain energies due to the two arrangements yields an estimate of the upper bound for the material equivalent properties; successive increases in the order of displacement field that is assumed in the composite arrangement will successively produce improved upper bound estimates.
NASA Astrophysics Data System (ADS)
Gearhart, Joshua; Niffte Collaboration
2017-09-01
Fission fragment mass distributions are important observables for developing next generation dynamical models of fission. Many previous measurements have utilized ionization chambers to measure fission fragment energies and emission angles which are then used for mass calculations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has built a time projection chamber (fissionTPC) that is capable of measuring additional quantities such as the ionization profiles of detected particles, allowing for the association of an individual fragment's ionization profile with its mass. The fragment masses are measured using the previously established 2E method. The fissionTPC takes its data using a continuous incident neutron energy spectrum provided by the Los Alamos Neutron Science CEnter (LANSCE). Mass distribution measurements across a continuous range of neutron energies put stronger constraints on fission models than similar measurements conducted at a handful of discrete neutron energies. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0003180 and DE-NA0002921.
Excitation-energy influence at the scission configuration
NASA Astrophysics Data System (ADS)
Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M.-D.; Schmitt, C.
2017-09-01
Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z˜50 and Z˜55, where their impact evolves with the excitation energy.
Correlated fission data measurements with DANCE and NEUANCE
NASA Astrophysics Data System (ADS)
Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Hayes, A. C.; Ianakiev, K. D.; Iliev, M. L.; Kawano, T.; Mosby, S.; Rusev, G.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.
2018-02-01
To enhance the capabilities of the DANCE array, a new detector array NEUANCE was developed to enable simultaneous measurements of prompt fission neutrons and γ rays. NEUANCE was designed and constructed using 21 stilbene organic scintillator crystals. It was installed in the central cavity of the DANCE array. Signals from the 160 BaF2 detectors of DANCE and the 21 detectors of NEUANCE were merged into a newly designed high-density high-throughput data acquisition system. The excellent pulse shape discrimination properties of stilbene enabled detection of neutrons with energy thresholds as low as 30-40 keVee. A fission reaction tagging method was developed using a NEUANCE γ-ray or neutron signal. The probability of detecting a neutron from the spontaneous fission of 252Cf using NEUANCE is ∼47%. New correlated data for prompt fission neutrons and prompt fission γ rays were obtained for 252Cf using this high detection efficiency experimental setup. Average properties of prompt fission neutron emission as a function of prompt fission γ-ray quantities were also obtained, suggesting that neutron and γ-ray emission in fission are correlated.
Experimental fission study using multi-nucleon transfer reactions
NASA Astrophysics Data System (ADS)
Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, Romain; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Smallcombe, James; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei
2017-09-01
It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons.
Neutron fluences and energy spectra in the Cosmos-2044 biosatellite orbit
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.
1992-01-01
Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (En < or = 0.2 eV), resonance (0.2 eV < En < 1.0 MeV) and fast (En > or = 1.0 MeV) neutrons. The first two groups were measured with U.S. 6LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d-1 were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d-1. Inside the spacecraft, a value of 3.5 mrem d-1 was found.
Process for treating fission waste. [Patent application
Rohrmann, C.A.; Wick, O.J.
1981-11-17
A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.
Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.;
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.
Late-time emission of prompt fission γ rays
Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...
2016-12-22
The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu( nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less
A Convenient and Safer Synthesis of Diaminoglyoxime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Eric C.; Sabatini, Jesse J.; Zuckerman, Nathaniel B.
A new procedure for the synthesis and isolation of diaminoglyoxime (DAG) is described. A previous procedure involved treating glyoxal with two equivalents each of hydroxylammonium chloride and sodium hydroxide to form glyoxime, followed by further treatment of this intermediate with two additional equivalents of hydroxylammonium chloride and sodium hydroxide at 95 °C to form DAG. Two recrystallizations were needed to obtain the desired product in pure form. Another previous procedure employed glyoxal in the presence of four equivalents each of hydroxylammonium chloride and sodium hydroxide at 95 °C to form DAG. Though this latter procedure gives product after a fewmore » hours, yields do not exceed 40%, and the reaction is prone to thermal runaway. Furthermore, the use of decolorizing carbon, and recrystallization of the crude solid is necessary to obtain a pure product. The new disclosed procedure involves treating a preheated aqueous hydroxylamine solution (50 wt. %, ten equivalents) with aqueous glyoxal (40 wt. %), followed by heating at 95 °C for 72-96 h. The reaction is cooled to room temperature, and then to 0-5 °C to obtain DAG in pure form, without recrystallization or decolorizing carbon in 77-80% yield. The exothermic nature of the reaction is also minimized by this updated process.« less
A Convenient and Safer Synthesis of Diaminoglyoxime
Johnson, Eric C.; Sabatini, Jesse J.; Zuckerman, Nathaniel B.
2017-11-29
A new procedure for the synthesis and isolation of diaminoglyoxime (DAG) is described. A previous procedure involved treating glyoxal with two equivalents each of hydroxylammonium chloride and sodium hydroxide to form glyoxime, followed by further treatment of this intermediate with two additional equivalents of hydroxylammonium chloride and sodium hydroxide at 95 °C to form DAG. Two recrystallizations were needed to obtain the desired product in pure form. Another previous procedure employed glyoxal in the presence of four equivalents each of hydroxylammonium chloride and sodium hydroxide at 95 °C to form DAG. Though this latter procedure gives product after a fewmore » hours, yields do not exceed 40%, and the reaction is prone to thermal runaway. Furthermore, the use of decolorizing carbon, and recrystallization of the crude solid is necessary to obtain a pure product. The new disclosed procedure involves treating a preheated aqueous hydroxylamine solution (50 wt. %, ten equivalents) with aqueous glyoxal (40 wt. %), followed by heating at 95 °C for 72-96 h. The reaction is cooled to room temperature, and then to 0-5 °C to obtain DAG in pure form, without recrystallization or decolorizing carbon in 77-80% yield. The exothermic nature of the reaction is also minimized by this updated process.« less
NASA Astrophysics Data System (ADS)
Zhang, Guojie; Müller, Marcus
2017-08-01
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.
Zhang, Guojie; Müller, Marcus
2017-08-14
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale k B T.
Sequential character of low-energy ternary and quaternary nuclear fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bulychev, A. O.
2016-09-15
An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collectivemore » deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.« less
Predicting optical and thermal characteristics of transparent single-glazed domed skylights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laouadi, A.; Atif, M.R.
1999-07-01
Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less
Student Experiments in Spontaneous Fission.
ERIC Educational Resources Information Center
Becchetti, F. D.; Ying, J. S.
1981-01-01
Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…
NASA Technical Reports Server (NTRS)
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
Fractal Model of Fission Product Release in Nuclear Fuel
NASA Astrophysics Data System (ADS)
Stankunas, Gediminas
2012-09-01
A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Kuvshinov, M. I.; Narozhnyi, A. T.; Popov, V. A.; Solov'ev, V. P.; Yuferev, V. I.
2017-12-01
A reactor with a destructible core (RIR reactor) generating a pulse with an output of 1.5 × 1019 fissions and a full width at half maximum of 2.5 μs was developed and tested at VNIIEF. In the course of investigation, a computational-experimental method for laboratory calibration of the reactor was created and worked out. This method ensures a high accuracy of predicting the energy release in a real experiment with excess reactivity of 3βeff above prompt criticality. A transportable explosion-proof chamber was also developed, which ensures the safe localization of explosion products of the core of small-sized nuclear devices and charges of high explosives with equivalent mass of up to 100 kg of TNT.
Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong
2018-01-01
Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA-125a (miR-125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro-apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR-125a enhanced mitochondria-dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC-1 cell migration by preserving the F-actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a-mediated mitochondrial fission. Low contents of miR-125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR-125a and Mfn2 are regulated by hypoxia-inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR-125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR-125a/Mfn2 pathways, acting to restrict PANC-1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy. PMID:29749475
Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong
2018-07-01
Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA‑125a (miR‑125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro‑apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR‑125a enhanced mitochondria‑dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC‑1 cell migration by preserving the F‑actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a‑mediated mitochondrial fission. Low contents of miR‑125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR‑125a and Mfn2 are regulated by hypoxia‑inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR‑125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR‑125a/Mfn2 pathways, acting to restrict PANC‑1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy.
Pairing-induced speedup of nuclear spontaneous fission
NASA Astrophysics Data System (ADS)
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.
2014-12-01
Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.
NASA Astrophysics Data System (ADS)
Blain, E.; Daskalakis, A.; Danon, Y.
2014-05-01
Recent efforts have been made to improve the prompt fission neutron spectrum and nu-bar measurements for Uranium and Plutonium isotopes particularly in the keV region. A system has been designed at Rensselaer Polytechnic Institute (RPI) utilizing an array of EJ-301 liquid scintillators as well as lithium glass and plastic scintillators to experimentally determine these values. An array of BaF2 detectors was recently obtained from Oak Ridge National Laboratory to be used in conjunction with the neutron detectors. The system uses a novel gamma tagging method for fission which can offer an improvement over conventional fission chambers due to increased sample mass. A coincidence requirement on the gamma detectors from prompt fission gammas is used as the fission tag for the system as opposed to fission fragments in a conventional fission chamber. The system utilizes pulse digitization using Acqiris 8 bit digitizer boards which allow for gamma/neutron pulse height discrimination on the liquid scintillators during post processing. Additionally, a 252Cf fission chamber was designed and constructed at RPI which allowed for optimization and testing of the system without the need for an external neutron source. The characteristics of the gamma tagging method such as false detection rate and detection efficiency were determined using this fission chamber and verified using MCNP Polimi modeling. Prompt fission neutron spectrum data has been taken using the fission chamber focusing on the minimum detectable neutron energy for each of the various detectors. Plastic scintillators were found to offer a significant improvement over traditional liquid scintillators allowing energy measurements down to 50 keV. Background was also characterized for all detectors and will be discussed.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...
2014-12-22
Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less
The role of chemical reactions in the Chernobyl accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishanin, E. I., E-mail: egrishanin@orexovo.net
2010-12-15
It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000 Degree-Sign C occurred in the core. The yield of fission products thus sharplymore » increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.« less
Enhanced equivalence class formation by the delay and relational functions of meaningful stimuli.
Arntzen, Erik; Nartey, Richard K; Fields, Lanny
2015-05-01
Undergraduates in six groups of 10 attempted to form three 3-node 5-member equivalence classes (A → B → C → D → E) under the simultaneous protocol. In five of six groups, all stimuli were abstract shapes; in the PIC group, C stimuli were pictures with the remainder being abstract shapes. Before class formation, participants in the Identity-S and Identity-D groups were given preliminary training to form identity conditional discriminations with the C stimuli using simultaneous and 6 s delayed matching-to-sample procedures, respectively. In the Arbitrary-S and Arbitrary-D groups, before class formation, arbitrary conditional discriminations were formed between C and X stimuli using simultaneous and 6 s delayed matching-to-sample procedures, respectively. With no preliminary training, classes in the PIC and ABS groups were formed by 80% and 0% of participants, respectively. After preliminary training, class formation (yield) increased with delay, regardless of relational type. For each of the two delays, yield was slightly greater after forming arbitrary- instead of identity-relations. Yield was greatest, however, when a class contained a meaningful stimulus (PIC). During failed class formation, probes produced experimenter-defined relations, participant-defined relations, and unsystematic responding; delay, but not the relation type in preliminary training influenced relational and indeterminate responding. These results suggest how meaningful stimuli enhance equivalence class formation. © Society for the Experimental Analysis of Behavior.
Coniferous Understory Influences Sugar Maple (Acer Saccharum Marsh.) Sap Production
Russell S. Walters
1978-01-01
Sap and maple syrup equivalent production increased after a coniferous understory was removed from a sugarbush in northwestern Vermont. These increases, which became apparent the sixth year after treatment, were 14 and 17 percent for sap and syrup respectively, relative to the yields from an adjacent open sugarbush. The open sugarbush yields were used as the control in...
Effects of traffic and ditch maintenance on forest road sediment production
Charles H. Luce; Thomas A. Black
2001-01-01
Observations of sediment yield from road segments in the Oregon Coast Range show that either heavy traffic during rainfall or blading the road ditch will increase erosion from forest roads. For the fine soils and high quality aggregate surfacing on the study plots, ditch blading increased sediment yield more than traffic equivalent to 12 log trucks per day. The...
ABSORPTION METHOD FOR SEPARATING METAL CATIONS
Tompkins, E.R.; Parker, G.W.
1959-03-10
An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.
NASA Astrophysics Data System (ADS)
Petit, Odile; Jouanne, Cédric; Litaize, Olivier; Serot, Olivier; Chebboubi, Abdelhazize; Pénéliau, Yannick
2017-09-01
TRIPOLI-4® Monte Carlo transport code and FIFRELIN fission model have been coupled by means of external files so that neutron transport can take into account fission distributions (multiplicities and spectra) that are not averaged, as is the case when using evaluated nuclear data libraries. Spectral effects on responses in shielding configurations with fission sampling are then expected. In the present paper, the principle of this coupling is detailed and a comparison between TRIPOLI-4® fission distributions at the emission of fission neutrons is presented when using JEFF-3.1.1 evaluated data or FIFRELIN data generated either through a n/g-uncoupled mode or through a n/g-coupled mode. Finally, an application to a modified version of the ASPIS benchmark is performed and the impact of using FIFRELIN data on neutron transport is analyzed. Differences noticed on average reaction rates on the surfaces closest to the fission source are mainly due to the average prompt fission spectrum. Moreover, when working with the same average spectrum, a complementary analysis based on non-average reaction rates still shows significant differences that point out the real impact of using a fission model in neutron transport simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.
2006-03-13
Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total {gamma}-ray energy and {gamma}-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,{gamma})/(n,fission) cross sectionmore » ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells.« less
Rose, Sunniva J.; Zeiser, Fabio; Wilson, J. N.; ...
2017-07-05
Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the 233U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the 239Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energymore » above the fission barrier, despite the fact that an extra ~5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. In conclusion, further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.« less
Coincident measurements of prompt fission γ rays and fission fragments at DANCE
NASA Astrophysics Data System (ADS)
Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.
2015-10-01
Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.
Correlated fission data measurements with DANCE and NEUANCE
Jandel, Marian; Baramsai, Baramsai; Bredeweg, Todd Allen; ...
2017-11-16
To enhance the capabilities of the DANCE array, a new detector array NEUANCE was developed to enable simultaneous measurements of prompt fission neutrons and γ rays. NEUANCE was designed and constructed using 21 stilbene organic scintillator crystals. It was installed in the central cavity of the DANCE array. Signals from the 160 BaF 2 detectors of DANCE and the 21 detectors of NEUANCE were merged into a newly designed high-density high-throughput data acquisition system. The excellent pulse shape discrimination properties of stilbene enabled detection of neutrons with energy thresholds as low as 30–40 keVee. A fission reaction tagging method wasmore » developed using a NEUANCE γ-ray or neutron signal. The probability of detecting a neutron from the spontaneous fission of 252Cf using NEUANCE is 47%. New correlated data for prompt fission neutrons and prompt fission rays were obtained for 252Cf using this high detection efficiency experimental setup. In conclusion, average properties of prompt fission neutron emission as a function of prompt fission γ-ray quantities were also obtained, suggesting that neutron and γ-ray emission in fission are correlated.« less
DOE R&D Accomplishments Database
Segre, Emilio
1950-11-22
The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.
Venting of fission products and shielding in thermionic nuclear reactor systems
NASA Technical Reports Server (NTRS)
Salmi, E. W.
1972-01-01
Most thermionic reactors are designed to allow the fission gases to escape out of the emitter. A scheme to allow the fission gases to escape is proposed. Because of the low activity of the fission products, this method should pose no radiation hazards.
Development and Utilization of Space Fission Power Systems
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.
2009-01-01
Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.
Development and Utilization of Space Fission Power Systems
NASA Technical Reports Server (NTRS)
Houts, Michael; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.
2008-01-01
Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.
Preparation of Simulated LBL Defects for Round Robin Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerczak, Tyler J.; Baldwin, Charles A.; Hunn, John D.
2016-01-01
A critical characteristic of the TRISO fuel design is its ability to retain fission products. During reactor operation, the TRISO layers act as barriers to release of fission products not stabilized in the kernel. Each component of the TRISO particle and compact construction plays a unique role in retaining select fission products, and layer performance is often interrelated. The IPyC, SiC, and OPyC layers are barriers to the release of fission product gases such as Kr and Xe. The SiC layer provides the primary barrier to release of metallic fission products not retained in the kernel, as transport across themore » SiC layer is rate limiting due to the greater permeability of the IPyC and OPyC layers to many metallic fission products. These attributes allow intact TRISO coatings to successfully retain most fission products released from the kernel, with the majority of released fission products during operation being due to defective, damaged, or failed coatings. This dominant release of fission products from compromised particles contributes to the overall source term in reactor; causing safety and maintenance concerns and limiting the lifetime of the fuel. Under these considerations, an understanding of the nature and frequency of compromised particles is an important part of predicting the expected fission product release and ensuring safe and efficient operation.« less
Lamborot, M
1998-06-01
A multiple Robertsonian fission chromosomal race of the Liolaemus monticola complex in Chile is described and is shown to be the most derived and the most complex among the Liolaemus examined thus far. The 29 karyotyped lizards analysed from the locality of Mina Hierro Viejo, Petorca, Provincia de Valparaiso, Chile, exhibited a diploid chromosomal number ranging from 42 to 44, and several polymorphisms. The polymorphisms included: a pair 1 fission; a pair 2 fission plus a pericentric inversion in one of the fission products, which moved the NOR and satellite from the tip of the long arm of the metacentric 2 to the short arm of the fission product; a fission in pair 3; a polymorphism for an enlarged chromosome pair 6; and a polymorphism for a pericentric inversion in pair 7. This population is fixed for a fission of chromosome pair 4. A total of 76% of the lizards analysed were polymorphic for one or more pairs of chromosomes. We have compared these data with other Liolaemus monticola chromosomal races and calculated the Hardy-Weinberg ratios for the polymorphic chromosome pairs in this Multiple-Fission race. Karyotypic differences between the Northern (2n = 38-40) and the Multiple-Fission (2n = 42-44) races were attributed mainly to Robertsonian fissions, an enlarged chromosome and pericentric inversions involving the macrochromosomes and one microchromosome pair.
Invariance levels across language versions of the PISA 2009 reading comprehension tests in Spain.
Elosua Oliden, Paula; Mujika Lizaso, Josu
2013-01-01
The PISA project provides the basis for studying curriculum design and for comparing factors associated with school effectiveness. These studies are only valid if the different language versions are equivalent to each other. In Spain, the application of PISA in autonomous regions with their own languages means that equivalency must also be extended to the Spanish, Galician, Catalan and Basque versions of the test. The aim of this work was to analyse the equivalence among the four language versions of the Reading Comprehension Test (PISA 2009). After defining the testlet as the unit of analysis, equivalence among the language versions was analysed using two invariance testing procedures: multiple-group mean and covariance structure analyses for ordinal data and ordinal logistic regression. The procedures yielded concordant results supporting metric equivalence across all four language versions: Spanish, Basque, Galician and Catalan. The equivalence supports the estimated reading literacy score comparability among the language versions used in Spain.
Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke
2015-06-01
High-energy, beta-delayed gamma-ray spectroscopy is a potential, non-destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried outmore » at the IAC using a photo-neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-energy delayed gamma rays from 235U, 239Pu, and 241Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241Pu, a significant fissile constituent in spent fuel, was measured and compared to 239Pu. The 241Pu/ 239Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-ray emission was developed and demonstrated on a limited 235U data set. De-convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-rate LaBr 3 detectors was investigated as a potential alternative to HPGe detectors. Modeling capabilities were added to an existing framework and codes were adapted as needed for analyzing experiments and assessing application-specific assay concepts. A de-convolution analysis of the delayed gamma-ray response spectra modeled for spent fuel assemblies was performed using the same method that was applied to the experimental spectra.« less
Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haori
2016-03-31
Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signalsmore » are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238U and 239Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two-fold approach was used to address the high-rate challenge in used nuclear fuel assay based on photofission technique. First, a standard HPGe preamplifier was modified to improve its capabilities in high-rate pulsed photofission environment. Second, advanced pulse processing algorithms were shown to greatly improve throughput rate without large sacrifice in energy resolution at ultra-high input count rate. Two customized gamma spectroscopy systems were also developed in real-time on FPGAs. They were shown to have promising performance matching available commercial units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, A.; Kiefer, J. H.; Klippenstein, S. J.
The dissociation of acetone: CH{sub 3}C{double_bond}OCH{sub 3} {yields} CH{sub 3}C{double_bond}O + CH{sub 3}, quickly followed by CH{sub 3}CO {yields} CH{sub 3} + CO, has been examined with Laser-Schlieren measurements in incident shock waves over 32-717 Torr and 1429-1936 K using 5% acetone dilute in krypton. A few very low pressure experiments ({approx}10 Torr) were used in a marginal effort to resolve the extremely fast vibrational relaxation of this molecule. This effort was partly motivated as a test for molecular, 'roaming methyl' reactions, and also as a source of methyl radicals to test the application of a recent high-temperature mechanism formore » ethane decomposition [J.H. Kiefer, S. Santhanam, N.K. Srinivasan, R.S. Tranter, S.J. Klippenstein, M.A. Oehlschlaeger, Proc. Combust. Inst. 30 (2005) 1129-1135] on the reverse methyl combination. The gradient profiles show strong initial positive gradients and following negative values fully consistent with methyl radical formation and its following recombination. Thus C-C fission is certainly a large part of the process and molecular channels cannot be responsible for more than 30% of the dissociation. Rates obtained for the C-C fission show strong falloff well fit by variable reaction coordinate transition state theory when combined with a master equation. The calculated barrier is 82.8 kcal/mol, the fitted <{Delta}E>{sub down} = 400 (T/298) cm{sup -1}, similar to what was found in a recent study of C-C fission in acetaldehyde, and the extrapolated k{sub {infinity}} = 10{sup 25.86} T{sup -2.72} exp(?87.7 (kcal/mol)/RT), which agrees with the literature rate for CH{sub 3} + CH{sub 3}CO. Large negative (exothermic) gradients appearing late from methyl combination are accurately fit in both time of onset and magnitude by the earlier ethane dissociation mechanism. The measured dissociation rates are in close accord with one earlier shock-tube study [K. Sato, Y. Hidaka, Combust. Flame 122 (2000) 291-311], but show much less falloff than the high pressure experiments of Ernst et al. [J. Ernst, K. Spindler, H.Gg. Wagner, Ber. Bunsenges. Phys. Chem. 80 (1976) 645-650].« less
Hofstra, A.H.; Snee, L.W.; Rye, R.O.; Folger, H.W.; Phinisey, J.D.; Loranger, R.J.; Dahl, A.R.; Naeser, C.W.; Stein, H.J.; Lewchuk, M.
1999-01-01
Carlin-type gold deposits are difficult to date and a wide range of ages has been reported for individual deposits. Therefore, several methods were employed to constrain the age of the gold deposits in the Jerritt Canyon district. Dated igneous rocks with well-documented crosscutting relationships to ore provided the most reliable constraints. K/Ar and 40Ar/39Ar dates on igneous rocks are as follows: andesite dikes 324 Ma, sericitic alteration in andesite dikes 118 Ma, basalt dikes 40.8 Ma, quartz monzonite dikes 39.2 Ma, and calc-alkaline ignimbrites 43.1 to 40.1 Ma. Of these, only the andesite and basalt dikes are clearly altered and mineralized. The gold deposits are, therefore, younger than the 40.8 Ma basalt dikes. The sericitic alteration in the andesite dikes is unrelated to the gold deposits. A number of dating techniques did not work. K/Ar and 40Ar/39Ar dates on mica from mineralized Ordovician to Devonian sedimentary rocks gave misleading results. The youngest date of 149 Ma from the smallest <0.1-??m-size fraction shows that the temperature (120??-260??C) and duration (?) of hydrothermal activity was insufficient to reset preexisting fine-grained micas in the host rocks. The temperature and duration was also insufficient to anneal fission tracks in zircon from Ordovician quartzites as they yield Middle Proterozoic dates in both mineralized and barren samples. Apatites were too small for fission track dating. Hydrothermal sulfides have pronounced crustal osmium isotope signatures (187Os/188Os(initial) = 0.9-3.6) but did not yield a meaningful isochron due to very low Re and Os concentrations and large analytical uncertainties. Paleomagnetic dating techniques failed because the hydrothermal fluids sulfidized nearly all of the iron in the host rocks leaving no remnant magnetism. When published isotopic dates from other Carlin-type deposits in Nevada and Utah are subject to the rigorous evaluation developed for the Jerritt Canyon study, most deposits can be shown to have formed between 42 and 30 Ma. K/Ar and 40Ar/39Ar dates on the youngest preore igneous rocks range from 41 to 32 Ma, whereas the oldest postore igneous rocks range from 35 to 33 Ma. Hydrothermal adularia from the Twin Creeks deposit yields similar 40Ar/39Ar dates of 42 Ma. K/Ar dates on supergene alunite range from 4 to 30 Ma. K/Ar and 40Ar/39Ar dates on micas separated from sedimentary (395-43 Ma) and igneous (145-38 Ma) rocks are usually much older than the gold deposits and most are suspect because they are from incompletely reset preore micas or from mixtures of preore and ore-stage mica. Fission track dates on zircons are also generally older than the deposits (169-35 Ma) and are not completely reset by mineralization. Apatites are likley to be reset by the hydrothermal systems (and by younger thermal events) and yield dates (83-22 Ma) that are younger than those from zircon.
NASA Astrophysics Data System (ADS)
Evenson, N. S.; Reiners, P. W.; Spencer, J. E.
2012-12-01
The Buckskin-Rawhide-Harcuvar detachment fault is one of the largest and youngest extensional detachment faults on Earth. It is also associated with abundant deposits of specular hematite with less common Pb, Zn, Ag, Au, and Mn mineralization. Mineralization is thought to be the result of movement of basin brines along the active detachment and subsidiary normal faults, with circulation driven by the heat of the uplifted footwall rocks of the Harcuvar metamorphic core complex. (U/Th)-He dating of specular hematite from the Buckskin-Rawhide detachment system, and Mn oxide minerals from syn-extensional clastic sedimentary rocks directly above the detachment fault, yield ages primarily between 16-10 Ma. These ages are consistent with low-temperature apatite (U/Th)-He and fission track cooling ages from the Rawhide Mountains and other ranges along the detachment. This suggests that Fe and Mn mineralization occurred during a period of rapid footwall exhumation that was underway by ~16 Ma. Aliquots from four hematite samples from the eastern Rawhide Mountains yielded weighted mean ages of 12.1 ± 0.24 Ma, 12.8 ± 0.15 Ma, 13.1 ± 0.17 Ma, and 13.8 ± 0.20 Ma (all uncertainties as 2-sigma standard error). These ages are similar to apatite (U/Th)-He and fission track ages of nearby samples, and display a SW to NE-younging trend when projected parallel to the extension direction, consistent with findings from previous low-T thermochronology studies. Three hematite samples from the western Rawhide and Buckskin Mountains yield more dispersed ages than samples in the eastern part of the core complex. Published apatite fission-track and (U/Th)-He dates from the Rawhide and Buckskin Mountains fall between 16-10 Ma. These ages are interpreted to represent the timing of final tectonic exhumation and fault-driven fluid circulation along the detachment. Average ages for one hematite sample fall in this age range, but one other is younger (9.5 Ma) and another is substantially older (35 Ma). The older age age may indicate the presence of excess He in fluid inclusions. The younger age could indicate that hydrothermal circulation outlasted exhumation by several million years, or other unknown complications to the system. (U/Th)-He analysis of two samples of manganese oxides from the Artillery Mountains yielded weighted mean ages of 13.8 ± 0.20 and 8.12 ± 0.13 Ma. Both ages are consistent with the age of host strata, and suggest that these dates record near-surface mineralization that occurred shortly after the syn-extension host sandstone and conglomerate were deposited. Our results suggest that hematite and manganese oxide (U/Th)-He systems can provide information about the timing of faulting and related fluid flow/mineralization events. With further development in this and other localities, these systems have the potential to provide valuable insights that until now have been difficult or impossible to obtain by other methods.
Method for correcting for isotope burn-in effects in fission neutron dosimeters
Gold, Raymond; McElroy, William N.
1988-01-01
A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.
Twig, Gilad; Graf, Solomon A; Wikstrom, Jakob D; Mohamed, Hibo; Haigh, Sarah E; Elorza, Alvaro; Deutsch, Motti; Zurgil, Naomi; Reynolds, Nicole; Shirihai, Orian S
2006-07-01
Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units.
Parameter Study of the LIFE Engine Nuclear Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, K J; Meier, W R; Latkowski, J F
2009-07-10
LLNL is developing the nuclear fusion based Laser Inertial Fusion Energy (LIFE) power plant concept. The baseline design uses a depleted uranium (DU) fission fuel blanket with a flowing molten salt coolant (flibe) that also breeds the tritium needed to sustain the fusion energy source. Indirect drive targets, similar to those that will be demonstrated on the National Ignition Facility (NIF), are ignited at {approx}13 Hz providing a 500 MW fusion source. The DU is in the form of a uranium oxycarbide kernel in modified TRISO-like fuel particles distributed in a carbon matrix forming 2-cm-diameter pebbles. The thermal power ismore » held at 2000 MW by continuously varying the 6Li enrichment in the coolants. There are many options to be considered in the engine design including target yield, U-to-C ratio in the fuel, fission blanket thickness, etc. Here we report results of design variations and compare them in terms of various figures of merit such as time to reach a desired burnup, full-power years of operation, time and maximum burnup at power ramp down and the overall balance of plant utilization.« less
Sun, Lei; Yang, Xiaowei; Chen, Feifei; Li, Rongpeng; Li, Xuesong; Liu, Zhenxing; Gu, Yuyu; Gong, Xiaoyan; Liu, Zhonghua; Wei, Hua; Huang, Ying; Yuan, Sheng
2013-01-01
Fission yeast cells express Rpl32-2 highly while Rpl32-1 lowly in log phase; in contrast, expression of Rpl32-1 raises and reaches a peak level while Rpl32-2 is downregulated to a low basic level when cells enter into stationary phase. Overexpression of Rpl32-1 inhibits cell growth while overexpression of Rpl32-2 does not. Deleting rpl32-2 impairs cell growth more severely than deleting rpl32-1 does. Cell growth impaired by deleting either paralog can be rescued completely by reintroducing rpl32-2, but only partly by rpl32-1. Overexpression of Rpl32-1 inhibits cell division, yielding 4c DNA and multiple septa, while overexpressed Rpl32-2 promotes it. Transcriptomics analysis proved that Rpl32 paralogs regulate expression of a subset of genes related with cell division and stress response in a distinctive way. This functional difference of the two paralogs is due to their difference of 95th amino acid residue. The significance of a competitive inhibition between Rpl32 paralogs on their expression is discussed. PMID:23577148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, M.; Cohen, M.O.
1975-02-01
The adjoint Monte Carlo method previously developed by MAGI has been applied to the calculation of initial radiation dose due to air secondary gamma rays and fission product gamma rays at detector points within buildings for a wide variety of problems. These provide an in-depth survey of structure shielding effects as well as many new benchmark problems for matching by simplified models. Specifically, elevated ring source results were obtained in the following areas: doses at on-and off-centerline detectors in four concrete blockhouse structures; doses at detector positions along the centerline of a high-rise structure without walls; dose mapping at basementmore » detector positions in the high-rise structure; doses at detector points within a complex concrete structure containing exterior windows and walls and interior partitions; modeling of the complex structure by replacing interior partitions by additional material at exterior walls; effects of elevation angle changes; effects on the dose of changes in fission product ambient spectra; and modeling of mutual shielding due to external structures. In addition, point source results yielding dose extremes about the ring source average were obtained. (auth)« less
Microbial degradation of [C14C]polystyrene and 1,3-diphenylbutane.
Sielicki, M; Focht, D D; Martin, J P
1978-07-01
Microbial degradation of [beta-14C]polystyrene and 1,3-diphenylbutane, a compound structurally representing the smallest repeating unit of styrene (dimer), was investigated in soil and liquid enrichment cultures. Degradation rates in soil, as determined by 14CO2 evolution from applied [14C]polystyrene, varied from 1.5 to 3.0% for a 4-month period. Although relatively low, these percentages were 15 to 30 times greater than values previously reported. Enrichment cultures, containing 1,3-diphenylbutane as the only carbon souce, were used to determine the mechanisms of microbial oxidation of the polymer chain ends. Metabolism of 1,3-diphenylbutane appeared to involve the attack by a monooxygenease to form 2-phenyl-4-hydroxyphenylbutane followed by a further oxidation and subsequent fission of the benzene ring to yield 4-phenylvaleric acid and an unidentified 5-carbon fragment via the classic meta-fission pathway. Phenylacetic acid was probably formed from 4-phenylvaleric acid by subsequent beta-oxidation of the side chain, methyl-oxidation and decarboxylation. An initial examination of the population of microorganisms in the diphenylbutane enrichment cultures indicated that these oxidative reactions are carried out by common soil microorganism of the genera Bacillus, Pseudomonas, Micrococcus, and Nocardia.
Ding, Lei; Chen, Jing; Hu, Yifan; Xu, Juan; Gong, Xing; Xu, Dongfang; Zhao, Baoguo; Li, Hexing
2014-02-07
An attractive strategy for generation of α-amino anions from aldehydes with applications in synthesis of homoallylic amines is described. Aromatic aldehydes can be converted to α-amino anion equivalents via amination with 2,2-diphenylglycine and subsequent decarboxylation. The in situ generated α-imino anions are highly reactive for Pd-catalyzed allylation, forming the corresponding homoallylic amines in high yields with excellent regioselectivity.
2014-06-01
14 Figure 3. Distribution of mass of fission fragments from the fission of uranium-235 by a thermal neutron (after Krane, 1988...1962 to the present underscores how critical this effect can be to the Department of Defense (DOD) and to the Nation. In addition to the...overhead of Johnston Island.”3 Fission of an actinide generally produces two ionized fission fragments. These fission fragments are highly ionized
Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.
2011-09-29
A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.
NASA Astrophysics Data System (ADS)
Le Gall, C.; Geiger, E.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.
2017-11-01
Qualitative and quantitative analyses on the VERDON-1 sample made it possible to obtain valuable information on fission product behaviour in the fuel during the test. A promising methodology based on the quantitative results of post-test characterisations has been implemented to assess the release fraction of non γ-emitter fission products. The order of magnitude of the estimated release fractions for each fission product was consistent with their class of volatility.
NASA Astrophysics Data System (ADS)
Qi, L.; Wilson, J. N.; Lebois, M.; Al-Adili, A.; Chatillon, A.; Choudhury, D.; Gatera, A.; Georgiev, G.; Göök, A.; Laurent, B.; Maj, A.; Matea, I.; Oberstedt, A.; Oberstedt, S.; Rose, S. J.; Schmitt, C.; Wasilewska, B.; Zeiser, F.
2018-03-01
Prompt fission gamma-ray spectra (PFGS) have been measured for the 239Pu(n,f) reaction using fast neutrons at Ēn=1.81 MeV produced by the LICORNE directional neutron source. The setup makes use of LaBr3 scintillation detectors and PARIS phoswich detectors to measure the emitted prompt fission gamma rays (PFG). The mean multiplicity, average total energy release per fission and average energy of photons are extracted from the unfolded PFGS. These new measurements provide complementary information to other recent work on thermal neutron induced fission of 239Pu and spontaneous fission of 252Cf.
[Cocoa (Theobroma cacao L.) hulls: a posible commercial source of pectins].
Barazarte, Humberto; Sangronis, Elba; Unai, Emaldi
2008-03-01
Commercial exploitation of cocoa (Theobroma cacao L.) generates a volume of hulls that could be used in the production of pectins on an industrial scale. Therefore, pectins from cocoa hulls were extracted at different pH and temperature conditions, and their main chemical characteristics were evaluated. EDTA at 0.5% was used for the extraction at pHs 3, 4 and 5 and temperatures of 60, 75 and 90 degrees C, under a 3 2 factorial design. The response variables were yield, content of anhydrous galacturonic acid (AGA), content of metoxil, degree of esterification and equivalent weight of the pectins extracted. The strength of the pectic gel was determined with a TA-XT2 texturometer. Strawberry jam was made with the pectin extracted, and its acceptability was determined using a 7-point hedonic scale. The results obtained were as follows: an extraction yield from 2.64 to 4.69 g/100 g; an AGA content between 49.8 and 64.06 g/100 g; a content of metoxil between 4.72 and 7.18 g/100 g; a degree of esterification between 37.94 and 52.20%; an equivalent weight from 385.47 to 464.61 g/equivalent of H+, and a degree of gelation between 28.64 and 806.03 g force. The pectin extracted at pH 4 and 90 degrees C showed a gelation power of 422.16 g force, purity 62.26 g/100 g of AGA, and a yield of extraction of 3.89 g/100 g and allowed to prepare ajam with an average level of liking of "like moderately". Pectins from cocoa hulls show potential application in the food industry, but it is necessary to optimize the extraction parameters to increase its yield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvi, Marco
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories andmore » by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.« less
Actinide targets for fundamental research in nuclear physics
NASA Astrophysics Data System (ADS)
Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.
2018-05-01
Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.
Effects of Crystal Morphology on Singlet Exciton Fission in Diketopyrrolopyrrole Thin Films.
Hartnett, Patrick E; Margulies, Eric A; Mauck, Catherine M; Miller, Stephen A; Wu, Yilei; Wu, Yi-Lin; Marks, Tobin J; Wasielewski, Michael R
2016-02-25
Singlet exciton fission (SF) is a promising strategy for increasing photovoltaic efficiency, but in order for SF to be useful in solar cells, it should take place in a chromophore that is air-stable, highly absorptive, solution processable, and inexpensive. Unlike many SF chromophores, diketopyrrolopyrrole (DPP) conforms to these criteria, and here we investigate SF in DPP for the first time. SF yields in thin films of DPP derivatives, which are widely used in organic electronics and photovoltaics, are shown to depend critically on crystal morphology. Time-resolved spectroscopy of three DPP derivatives with phenyl (3,6-diphenylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, PhDPP), thienyl (3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, TDPP), and phenylthienyl (3,6-di(5-phenylthiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, PhTDPP) aromatic substituents in 100-200 nm thin films reveals that efficient SF occurs only in TDPP and PhTDPP (τSF = 220 ± 20 ps), despite the fact that SF is most exoergic in PhDPP. This result correlates well with the greater degree of π-overlap and closer π-stacking in TDPP (3.50 Å) and PhTDPP (3.59 Å) relative to PhDPP (3.90 Å) and demonstrates that SF in DPP is highly sensitive to the electronic coupling between adjacent chromophores. The triplet yield in PhTDPP films is determined to be 210 ± 35% by the singlet depletion method and 165 ± 30% by the energy transfer method, showing that SF is nearly quantitative in these films and that DPP derivatives are a promising class of SF chromophores for enhancing photovoltaic performance.
Review of Monte Carlo simulations for backgrounds from radioactivity
NASA Astrophysics Data System (ADS)
Selvi, Marco
2013-08-01
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories and by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koglin, J. D.; Burke, J. T.; Fisher, S. E.
Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less