Finding False Paths in Sequential Circuits
NASA Astrophysics Data System (ADS)
Matrosova, A. Yu.; Andreeva, V. V.; Chernyshov, S. V.; Rozhkova, S. V.; Kudin, D. V.
2018-02-01
Method of finding false paths in sequential circuits is developed. In contrast with heuristic approaches currently used abroad, the precise method based on applying operations on Reduced Ordered Binary Decision Diagrams (ROBDDs) extracted from the combinational part of a sequential controlling logic circuit is suggested. The method allows finding false paths when transfer sequence length is not more than the given value and obviates the necessity of investigation of combinational circuit equivalents of the given lengths. The possibilities of using of the developed method for more complicated circuits are discussed.
Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy
NASA Astrophysics Data System (ADS)
Bolst, David; Guatelli, Susanna; Tran, Linh T.; Chartier, Lachlan; Lerch, Michael L. F.; Matsufuji, Naruhiro; Rosenfeld, Anatoly B.
2017-03-01
Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic 12C beam, based on Monte Carlo simulations. The energy deposition spectra in a 10 μm sized silicon cylindrical sensitive volume (SV) were found to be equivalent to those measured in a tissue SV, with the same shape, but with dimensions scaled by a factor κ equal to 0.57 and 0.54 for muscle and water, respectively. A low energy correction factor was determined to account for the enhanced response in silicon at low energy depositions, produced by electrons. The concept of the mean path length < {{l}\\text{Path}}> to calculate the lineal energy was introduced as an alternative to the mean chord length < l> because it was found that adopting Cauchy’s formula for the < l> was not appropriate for the radiation field typical of HIT as it is very directional. < {{l}\\text{Path}}> can be determined based on the peak of the lineal energy distribution produced by the incident carbon beam. Furthermore it was demonstrated that the thickness of the SV along the direction of the incident 12C ion beam can be adopted as < {{l}\\text{Path}}> . The tissue equivalence conversion method and < {{l}\\text{Path}}> were adopted to determine the RBE10, calculated using a modified microdosimetric kinetic model, applied to the microdosimetric spectra resulting from the simulation study. Comparison of the RBE10 along the Bragg peak to experimental TEPC measurements at HIMAC, NIRS, showed good agreement. Such agreement demonstrates the validity of the developed tissue equivalence correction factors and of the determination of < {{l}\\text{Path}}> .
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rectangular duct), you may align the beam to have a different path length and correct it to be equivalent to a... that maximum response below 430 nanometers and above 680 nanometers). (4) Attach a collimating tube to... light. (6) You may use an air curtain across the light source and detector window assemblies to minimize...
Water equivalent path length measurement in proton radiotherapy using time resolved diode dosimetry
Gottschalk, B.; Tang, S.; Bentefour, E. H.; Cascio, E. W.; Prieels, D.; Lu, H.-M.
2011-01-01
Purpose: To verify water equivalent path length (WEPL) before treatment in proton radiotherapy using time resolved in vivo diode dosimetry. Methods: Using a passively scattered range modulated proton beam, the output of a diode driving a fast current-to-voltage amplifier is recorded at a number of depths in a water tank. At each depth, a burst of overlapping single proton pulses is observed. The rms duration of the burst is computed and the resulting data set is fitted with a cubic polynomial. Results: When the diode is subsequently set to an arbitrary depth and the polynomial is used as a calibration curve, the “unknown” depth is determined within 0.3 mm rms. Conclusions: A diode or a diode array, placed (for instance) in the rectum in conjunction with a rectal balloon, can potentially determine the WEPL at that point, just prior to treatment, with submillimeter accuracy, allowing the beam energy to be adjusted. The associated unwanted dose is about 0.2% of a typical single fraction treatment dose. PMID:21626963
De Lillo, Carlo; Kirby, Melissa; Poole, Daniel
2016-01-01
Immediate serial spatial recall measures the ability to retain sequences of locations in short-term memory and is considered the spatial equivalent of digit span. It is tested by requiring participants to reproduce sequences of movements performed by an experimenter or displayed on a monitor. Different organizational factors dramatically affect serial spatial recall but they are often confounded or underspecified. Untangling them is crucial for the characterization of working-memory models and for establishing the contribution of structure and memory capacity to spatial span. We report five experiments assessing the relative role and independence of factors that have been reported in the literature. Experiment 1 disentangled the effects of spatial clustering and path-length by manipulating the distance of items displayed on a touchscreen monitor. Long-path sequences segregated by spatial clusters were compared with short-path sequences not segregated by clusters. Recall was more accurate for sequences segregated by clusters independently from path-length. Experiment 2 featured conditions where temporal pauses were introduced between or within cluster boundaries during the presentation of sequences with the same paths. Thus, the temporal structure of the sequences was either consistent or inconsistent with a hierarchical representation based on segmentation by spatial clusters but the effect of structure could not be confounded with effects of path-characteristics. Pauses at cluster boundaries yielded more accurate recall, as predicted by a hierarchical model. In Experiment 3, the systematic manipulation of sequence structure, path-length, and presence of path-crossings of sequences showed that structure explained most of the variance, followed by the presence/absence of path-crossings, and path-length. Experiments 4 and 5 replicated the results of the previous experiments in immersive virtual reality navigation tasks where the viewpoint of the observer changed dynamically during encoding and recall. This suggested that the effects of structure in spatial span are not dependent on perceptual grouping processes induced by the aerial view of the stimulus array typically afforded by spatial recall tasks. These results demonstrate the independence of coding strategies based on structure from effects of path characteristics and perceptual grouping in immediate serial spatial recall. PMID:27891101
Data assimilation using a GPU accelerated path integral Monte Carlo approach
NASA Astrophysics Data System (ADS)
Quinn, John C.; Abarbanel, Henry D. I.
2011-09-01
The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.
NASA Astrophysics Data System (ADS)
Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.
2018-01-01
In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil together.
Fekete, Charles-Antoine Collins; Doolan, Paul; Dias, Marta F; Beaulieu, Luc; Seco, Joao
2015-07-07
To develop an accurate phenomenological model of the cubic spline path estimate of the proton path, accounting for the initial proton energy and water equivalent thickness (WET) traversed. Monte Carlo (MC) simulations were used to calculate the path of protons crossing various WET (10-30 cm) of different material (LN300, water and CB2-50% CaCO3) for a range of initial energies (180-330 MeV). For each MC trajectory, cubic spline trajectories (CST) were constructed based on the entrance and exit information of the protons and compared with the MC using the root mean square (RMS) metric. The CST path is dependent on the direction vector magnitudes (|P0,1|). First, |P0,1| is set to the proton path length (with factor Λ(Norm)(0,1) = 1.0). Then, two optimal factor Λ(0,1) are introduced in |P0,1|. The factors are varied to minimize the RMS difference with MC paths for every configuration. A set of Λ(opt)(0,1) factors, function of WET/water equivalent path length (WEPL), that minimizes the RMS are presented. MTF analysis is then performed on proton radiographs of a line-pair phantom reconstructed using the CST trajectories. Λ(opt)(0,1) was fitted to the WET/WEPL ratio using a quadratic function (Y = A + BX(2) where A = 1.01,0.99, B = 0.43,- 0.46 respectively for Λ(opt)(0), Λ(opt)(1)). The RMS deviation calculated along the path, between the CST and the MC, increases with the WET. The increase is larger when using Λ(Norm)(0,1) than Λ(opt)(0,1) (difference of 5.0% with WET/WEPL = 0.66). For 230/330 MeV protons, the MTF10% was found to increase by 40/16% respectively for a thin phantom (15 cm) when using the Λ(opt)(0,1) model compared to the Λ(Norm)(0,1) model. Calculation times for Λ(opt)(0,1) are scaled down compared to MLP and RMS deviation are similar within standard deviation.B ased on the results of this study, using CST with the Λ(opt)(0,1) factors reduces the RMS deviation and increases the spatial resolution when reconstructing proton trajectories.
2014-02-01
nozzle exit to discharge more liquid and aerating gas , plume momentum flux increases with liquid flow rate (at the same GLR) in the region...for testing. Water and nitrogen were used as the injectant and aerating gas , respectively. It was demonstrated that the liquid -weighted plume...diameter D2 = throat diameter EPL = equivalent path length GLR = aerating gas -to- liquid mass ratio I = intensity of the transmitted light I0
Site-directed protein recombination as a shortest-path problem.
Endelman, Jeffrey B; Silberg, Jonathan J; Wang, Zhen-Gang; Arnold, Frances H
2004-07-01
Protein function can be tuned using laboratory evolution, in which one rapidly searches through a library of proteins for the properties of interest. In site-directed recombination, n crossovers are chosen in an alignment of p parents to define a set of p(n + 1) peptide fragments. These fragments are then assembled combinatorially to create a library of p(n+1) proteins. We have developed a computational algorithm to enrich these libraries in folded proteins while maintaining an appropriate level of diversity for evolution. For a given set of parents, our algorithm selects crossovers that minimize the average energy of the library, subject to constraints on the length of each fragment. This problem is equivalent to finding the shortest path between nodes in a network, for which the global minimum can be found efficiently. Our algorithm has a running time of O(N(3)p(2) + N(2)n) for a protein of length N. Adjusting the constraints on fragment length generates a set of optimized libraries with varying degrees of diversity. By comparing these optima for different sets of parents, we rapidly determine which parents yield the lowest energy libraries.
Sky Brightness During Eclipses: A Compendium from the Literature
1974-08-05
86 25. Absolute Values of Luminance of the Terrain and the Sky 88 26. Sky Brightness From Film No. 1 89 27. Sky Brightness From Film No. 2 89 28...these twilight equivalents when dust is present in the r.tmosphere are also difficult. Both involve the passage of light through long path lengths...purposes." Ilford-Selo, HP-3 isopan film with a sensitivity of 800 H & D was used. The measurement of the photographs was performed by means of a
Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring
Soto, Matias; Esteva, Milton; Martínez-Romero, Oscar; Baez, Jesús; Elías-Zúñiga, Alex
2015-01-01
A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature. PMID:28793594
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
Workspace location influences joint coordination during reaching in post-stroke hemiparesis
Reisman, Darcy S.; Scholz, John P.
2006-01-01
The purpose of this study was to determine the influence of workspace location on joint coordination in persons with post-stroke hemiparesis when trunk motion was required to complete reaches beyond the arm’s functional reach length. Seven subjects with mild right hemiparesis following a stroke and seven age and gender matched control subjects participated. Joint motions and characteristics of hand and trunk movement were measured over multiple repetitions. The variance (across trials) of joint combinations was partitioned into two components at every point in the hand’s trajectory using the uncontrolled manifold approach; the first component is a measure of the extent to which equivalent joint combinations are used to control a given hand path, and reflects performance flexibility. The second component of joint variance reflects the use of non-equivalent joint combinations, which lead to hand path error. Compared to the control subjects, persons with hemiparesis demonstrated a significantly greater amount of non-equivalent joint variability related to control of the hand’s path and of the hand’s position relative to the trunk when reaching toward the hemiparetic side (ipsilaterally), but not when reaching to the less involved side. The relative timing of the hand and trunk was also altered when reaching ipsilaterally. The current findings support the idea that the previously proposed “arm compensatory synergy” may be deficient in subjects with hemiparesis. This deficiency may be due to one or a combination of factors: changes in central commands that are thought to set the gain of the arm compensatory synergy; a limited ability to combine shoulder abduction and elbow extension that limits the expression of an appropriately set arm compensatory synergy; or a reduction of the necessary degrees-of-freedom needed to adequately compensate for poor trunk control when reaching ipsilaterally. PMID:16328275
NASA Astrophysics Data System (ADS)
Guo, Liyan; Xia, Changliang; Wang, Huimin; Wang, Zhiqiang; Shi, Tingna
2018-05-01
As is well known, the armature current will be ahead of the back electromotive force (back-EMF) under load condition of the interior permanent magnet (PM) machine. This kind of advanced armature current will produce a demagnetizing field, which may make irreversible demagnetization appeared in PMs easily. To estimate the working points of PMs more accurately and take demagnetization under consideration in the early design stage of a machine, an improved equivalent magnetic network model is established in this paper. Each PM under each magnetic pole is segmented, and the networks in the rotor pole shoe are refined, which makes a more precise model of the flux path in the rotor pole shoe possible. The working point of each PM under each magnetic pole can be calculated accurately by the established improved equivalent magnetic network model. Meanwhile, the calculated results are compared with those calculated by FEM. And the effects of d-axis component and q-axis component of armature current, air-gap length and flux barrier size on working points of PMs are analyzed by the improved equivalent magnetic network model.
Ultrastable assembly and integration technology for ground- and space-based optical systems.
Ressel, Simon; Gohlke, Martin; Rauen, Dominik; Schuldt, Thilo; Kronast, Wolfgang; Mescheder, Ulrich; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus
2010-08-01
Optical metrology systems crucially rely on the dimensional stability of the optical path between their individual optical components. We present in this paper a novel adhesive bonding technology for setup of quasi-monolithic systems and compare selected characteristics to the well-established state-of-the-art technique of hydroxide-catalysis bonding. It is demonstrated that within the measurement resolution of our ultraprecise custom heterodyne interferometer, both techniques achieve an equivalent passive path length and tilt stability for time scales between 0.1 mHz and 1 Hz. Furthermore, the robustness of the adhesive bonds against mechanical and thermal inputs has been tested, making this new bonding technique in particular a potential option for interferometric applications in future space missions. The integration process itself is eased by long time scales for alignment, as well as short curing times.
Optimal Paths in Gliding Flight
NASA Astrophysics Data System (ADS)
Wolek, Artur
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
An Exact Algebraic Evaluation of Path-Length Difference for Two-Source Interference
ERIC Educational Resources Information Center
Hopper, Seth; Howell, John
2006-01-01
When studying wave interference, one often wants to know the difference in path length for two waves arriving at a common point P but coming from adjacent sources. For example, in many contexts interference maxima occur where this path-length difference is an integer multiple of the wavelength. The standard approximation for the path-length…
NASA Technical Reports Server (NTRS)
Tan, Lun C.; Malandraki, Olga E.; Reames, Donald; NG, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios
2013-01-01
We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of plus or minus 10% the deduced path length of low-energy (approximately 27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons.We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.
Steady-state heat transport: Ballistic-to-diffusive with Fourier's law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, Jesse, E-mail: jmaassen@purdue.edu; Lundstrom, Mark
2015-01-21
It is generally understood that Fourier's law does not describe ballistic phonon transport, which is important when the length of a material is similar to the phonon mean-free-path. Using an approach adapted from electron transport, we demonstrate that Fourier's law and the heat equation do capture ballistic effects, including temperature jumps at ideal contacts, and are thus applicable on all length scales. Local thermal equilibrium is not assumed, because allowing the phonon distribution to be out-of-equilibrium is important for ballistic and quasi-ballistic transport. The key to including the non-equilibrium nature of the phonon population is to apply the proper boundarymore » conditions to the heat equation. Simple analytical solutions are derived, showing that (i) the magnitude of the temperature jumps is simply related to the material properties and (ii) the observation of reduced apparent thermal conductivity physically stems from a reduction in the temperature gradient and not from a reduction in actual thermal conductivity. We demonstrate how our approach, equivalent to Fourier's law, easily reproduces results of the Boltzmann transport equation, in all transport regimes, even when using a full phonon dispersion and mean-free-path distribution.« less
NASA Astrophysics Data System (ADS)
Bradu, Adrian; Jackson, David A.; Podoleanu, Adrian
2018-03-01
Typically, swept source optical coherence tomography (SS-OCT) imaging instruments are capable of a longer axial range than their camera based (CB) counterpart. However, there are still various applications that would take advantage for an extended axial range. In this paper, we propose an interferometer configuration that can be used to extend the axial range of the OCT instruments equipped with conventional swept-source lasers up to a few cm. In this configuration, the two arms of the interferometer are equipped with adjustable optical path length rings. The use of semiconductor optical amplifiers in the two rings allows for compensating optical losses hence, multiple paths depth reflectivity profiles (Ascans) can be combined axially. In this way, extremely long overall axial ranges are possible. The use of the recirculation loops produces an effect equivalent to that of extending the coherence length of the swept source laser. Using this approach, the achievable axial imaging range in SS-OCT can reach values well beyond the limit imposed by the coherence length of the laser, to exceed in principle many centimeters. In the present work, we demonstrate axial ranges exceeding 4 cm using a commercial swept source laser and reaching 6 cm using an "in-house" swept source laser. When used in a conventional set-up alone, both these lasers can provide less than a few mm axial range.
Method and apparatus for timing of laser beams in a multiple laser beam fusion system
Eastman, Jay M.; Miller, Theodore L.
1981-01-01
The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.
Complex modulation using tandem polarization modulators
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hall, Trevor
2017-11-01
A novel photonic technique for implementing frequency up-conversion or complex modulation is proposed. The proposed circuit consists of a sandwich of a quarter-wave plate between two polarization modulators, driven, respectively, by an in-phase and quadrature-phase signals. The operation of the circuit is modelled using a transmission matrix method. The theoretical prediction is then validated by simulation using an industry-standard software tool. The intrinsic conversion efficiency of the architecture is improved by 6 dB over a functionally equivalent design based on dual parallel Mach-Zehnder modulators. Non-ideal scenarios such as imperfect alignment of the optical components and power imbalances and phase errors in the electric drive signals are also analysed. As light travels, along one physical path, the proposed design can be implemented using discrete components with greater control of relative optical path length differences. The circuit can further be integrated in any material platform that offers electro-optic polarization modulators.
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-21
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
NASA Astrophysics Data System (ADS)
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-01
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
Liu, Xinjie; Liu, Liangyun; Hu, Jiaochan; Du, Shanshan
2017-01-01
The measurement of solar-induced chlorophyll fluorescence (SIF) is a new tool for estimating gross primary production (GPP). Continuous tower-based spectral observations together with flux measurements are an efficient way of linking the SIF to the GPP. Compared to conical observations, hemispherical observations made with cosine-corrected foreoptic have a much larger field of view and can better match the footprint of the tower-based flux measurements. However, estimating the equivalent radiation transfer path length (ERTPL) for hemispherical observations is more complex than for conical observations and this is a key problem that needs to be addressed before accurate retrieval of SIF can be made. In this paper, we first modeled the footprint of hemispherical spectral measurements and found that, under convective conditions with light winds, 90% of the total radiation came from an FOV of width 72°, which in turn covered 75.68% of the source area of the flux measurements. In contrast, conical spectral observations covered only 1.93% of the flux footprint. Secondly, using theoretical considerations, we modeled the ERTPL of the hemispherical spectral observations made with cosine-corrected foreoptic and found that the ERTPL was approximately equal to twice the sensor height above the canopy. Finally, the modeled ERTPL was evaluated using a simulated dataset. The ERTPL calculated using the simulated data was about 1.89 times the sensor’s height above the target surface, which was quite close to the results for the modeled ERTPL. Furthermore, the SIF retrieved from atmospherically corrected spectra using the modeled ERTPL fitted well with the reference values, giving a relative root mean square error of 18.22%. These results show that the modeled ERTPL was reasonable and that this method is applicable to tower-based hemispherical observations of SIF. PMID:28509843
Chord-length and free-path distribution functions for many-body systems
NASA Astrophysics Data System (ADS)
Lu, Binglin; Torquato, S.
1993-04-01
We study fundamental morphological descriptors of disordered media (e.g., heterogeneous materials, liquids, and amorphous solids): the chord-length distribution function p(z) and the free-path distribution function p(z,a). For concreteness, we will speak in the language of heterogeneous materials composed of two different materials or ``phases.'' The probability density function p(z) describes the distribution of chord lengths in the sample and is of great interest in stereology. For example, the first moment of p(z) is the ``mean intercept length'' or ``mean chord length.'' The chord-length distribution function is of importance in transport phenomena and problems involving ``discrete free paths'' of point particles (e.g., Knudsen diffusion and radiative transport). The free-path distribution function p(z,a) takes into account the finite size of a simple particle of radius a undergoing discrete free-path motion in the heterogeneous material and we show that it is actually the chord-length distribution function for the system in which the ``pore space'' is the space available to a finite-sized particle of radius a. Thus it is shown that p(z)=p(z,0). We demonstrate that the functions p(z) and p(z,a) are related to another fundamentally important morphological descriptor of disordered media, namely, the so-called lineal-path function L(z) studied by us in previous work [Phys. Rev. A 45, 922 (1992)]. The lineal path function gives the probability of finding a line segment of length z wholly in one of the ``phases'' when randomly thrown into the sample. We derive exact series representations of the chord-length and free-path distribution functions for systems of spheres with a polydispersivity in size in arbitrary dimension D. For the special case of spatially uncorrelated spheres (i.e., fully penetrable spheres) we evaluate exactly the aforementioned functions, the mean chord length, and the mean free path. We also obtain corresponding analytical formulas for the case of mutually impenetrable (i.e., spatially correlated) polydispersed spheres.
Collins, Melanie M; Johnson, Ian J M; Clifford, Elaine; Birchall, John P; O'Donoghue, Gerald M
2003-04-01
The objective was to evaluate the preoperative postural stability of acoustic neuroma patients using sway magnetometry. Prospective two-center study. Fifty-one patients (mean age, 53 years) diagnosed with unilateral acoustic neuroma on magnetic resonance imaging at two tertiary referral centers were studied. Preoperatively, each patient had sway patterns (with eyes open and with eyes closed, and standing on foam) recorded for 120 seconds by sway magnetometry. Path length for 30 seconds was calculated. The Romberg coefficient (path length with eyes open divided by path length with eyes closed) was calculated. Forty-four percent of patients had abnormal path lengths with eyes open, and 49% with eyes closed. The Romberg coefficients were significantly lower than normal (P <.001; 95% CI, 0.19-0.87). Mean Romberg coefficient was 0.59 (normal value = 0.73), and all patients had a coefficient of less than 1. Half of preoperative acoustic neuroma patients are unsteady, exhibiting abnormal sway patterns based on path length measurements. The increase in sway path length demonstrable in normal subjects with eyes closed was significantly exaggerated in patients with acoustic neuroma.
JPL-ANTOPT antenna structure optimization program
NASA Technical Reports Server (NTRS)
Strain, D. M.
1994-01-01
New antenna path-length error and pointing-error structure optimization codes were recently added to the MSC/NASTRAN structural analysis computer program. Path-length and pointing errors are important measured of structure-related antenna performance. The path-length and pointing errors are treated as scalar displacements for statics loading cases. These scalar displacements can be subject to constraint during the optimization process. Path-length and pointing-error calculations supplement the other optimization and sensitivity capabilities of NASTRAN. The analysis and design functions were implemented as 'DMAP ALTERs' to the Design Optimization (SOL 200) Solution Sequence of MSC-NASTRAN, Version 67.5.
Thermal Stability of Al2O3/Silicone Composites as High-Temperature Encapsulants
NASA Astrophysics Data System (ADS)
Yao, Yiying
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
Cosmic ray isotope measurements with a new Cerenkov X total energy telescope
NASA Technical Reports Server (NTRS)
Webber, W. R.; Kish, J. C.; Schrier, D. A.
1985-01-01
Measurements of the isotopic composition of cosmic nuclei with Z = 7-20 are reported. These measurements were made with a new version of a Cerenkov x total E telescope. Path length and uniformity corrections are made to all counters to a RMS level 1%. Since the Cerenkov counter is crucial to mass measurements using the C x E technique - special care was taken to optimize the resolution of the 2.4 cm thick Pilot 425 Cerenkov counter. This counter exhibited a beta = 1 muon equivalent LED resolution of 24%, corresponding to a total of 90 p.e. collected at the 1st dynodes of the photomultiplier tubes.
Invariance property of wave scattering through disordered media
Pierrat, Romain; Ambichl, Philipp; Gigan, Sylvain; Haber, Alexander; Carminati, Rémi; Rotter, Stefan
2014-01-01
A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the system's boundary geometry and is thus unaffected by the value of the mean free path. Here we show that this result is rooted on a much deeper level than that of a random walk, which allows us to extend the reach of this universal invariance property beyond the diffusion approximation. Specifically, we demonstrate that an equivalent invariance relation also holds for the scattering of waves in resonant structures as well as in ballistic, chaotic or in Anderson localized systems. Our work unifies a number of specific observations made in quite diverse fields of science ranging from the movement of ants to nuclear scattering theory. Potential experimental realizations using light fields in disordered media are discussed. PMID:25425671
Homing by path integration when a locomotion trajectory crosses itself.
Yamamoto, Naohide; Meléndez, Jayleen A; Menzies, Derek T
2014-01-01
Path integration is a process with which navigators derive their current position and orientation by integrating self-motion signals along a locomotion trajectory. It has been suggested that path integration becomes disproportionately erroneous when the trajectory crosses itself. However, there is a possibility that this previous finding was confounded by effects of the length of a traveled path and the amount of turns experienced along the path, two factors that are known to affect path integration performance. The present study was designed to investigate whether the crossover of a locomotion trajectory truly increases errors of path integration. In an experiment, blindfolded human navigators were guided along four paths that varied in their lengths and turns, and attempted to walk directly back to the beginning of the paths. Only one of the four paths contained a crossover. Results showed that errors yielded from the path containing the crossover were not always larger than those observed in other paths, and the errors were attributed solely to the effects of longer path lengths or greater degrees of turns. These results demonstrated that path crossover does not always cause significant disruption in path integration processes. Implications of the present findings for models of path integration are discussed.
Terrestrial Planet Finder cryogenic delay line development
NASA Technical Reports Server (NTRS)
Smythe, Robert F.; Swain, Mark R.; Alvarez-Salazar, Oscar; Moore, James D.
2004-01-01
Delay lines provide the path-length compensation that makes the measurement of interference fringes possible. When used for nulling interferometry, the delay line must control path-lengths so that the null is stable and controlled throughout the measurement. We report on a low noise, low disturbance, and high bandwidth optical delay line capable of meeting the TPF interferometer optical path length control requirements at cryogenic temperatures.
NASA Technical Reports Server (NTRS)
Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.;
2016-01-01
The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller.
Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F
2016-01-11
Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.
2016-04-01
polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are...The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are reported. The technique is demonstrated...cell filled with polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image
NASA Astrophysics Data System (ADS)
Zhou, Rongwei
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
A complete VLBI delay model for deforming radio telescopes: the Effelsberg case
NASA Astrophysics Data System (ADS)
Artz, T.; Springer, A.; Nothnagel, A.
2014-12-01
Deformations of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI) observations belong to the class of systematic error sources which require correction in data analysis. In this paper we present a model for all path length variations in the geometrical optics of radio telescopes which are due to gravitational deformation. The Effelsberg 100 m radio telescope of the Max Planck Institute for Radio Astronomy, Bonn, Germany, has been surveyed by various terrestrial methods. Thus, all necessary information that is needed to model the path length variations is available. Additionally, a ray tracing program has been developed which uses as input the parameters of the measured deformations to produce an independent check of the theoretical model. In this program as well as in the theoretical model, the illumination function plays an important role because it serves as the weighting function for the individual path lengths depending on the distance from the optical axis. For the Effelsberg telescope, the biggest contribution to the total path length variations is the bending of the main beam located along the elevation axis which partly carries the weight of the paraboloid at its vertex. The difference in total path length is almost 100 mm when comparing observations at 90 and at 0 elevation angle. The impact of the path length corrections is validated in a global VLBI analysis. The application of the correction model leads to a change in the vertical position of mm. This is more than the maximum path length, but the effect can be explained by the shape of the correction function.
Thermal averages in a quantum point contact with a single coherent wave packet.
Heller, E J; Aidala, K E; LeRoy, B J; Bleszynski, A C; Kalben, A; Westervelt, R M; Maranowski, K D; Gossard, A C
2005-07-01
A novel formal equivalence between thermal averages of coherent properties (e.g., conductance) and time averages of a single wave packet arises for Fermi gases and certain geometries. In the case of one open channel in a quantum point contact (QPC), only one wave packet history, with the wave packet width equal to the thermal length, completely determines the thermally averaged conductance. The formal equivalence moreover allows very simple physical interpretations of interference features surviving under thermal averaging. Simply put, pieces of the thermal wave packet returning to the QPC along independent paths must arrive at the same time in order to interfere. Remarkably, one immediate result of this approach is that higher temperature leads to narrower wave packets and therefore better resolution of events in the time domain. In effect, experiments at 4.2 K are performing time-gated experiments at better than a gigahertz. Experiments involving thermally averaged ballistic conductance in 2DEGS are presented as an application of this picture.
Separated-orbit bisected energy-recovered linear accelerator
Douglas, David R.
2015-09-01
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems
NASA Technical Reports Server (NTRS)
Murthy, V. R.
1985-01-01
The bearingless rotorcraft offers reduced weight, less complexity and superior flying qualities. Almost all the current industrial structural dynamic programs of conventional rotors which consist of single load path rotor blades employ the transfer matrix method to determine natural vibration characteristics because this method is ideally suited for one dimensional chain like structures. This method is extended to multiple load path rotor blades without resorting to an equivalent single load path approximation. Unlike the conventional blades, it isk necessary to introduce the axial-degree-of-freedom into the solution process to account for the differential axial displacements in the different load paths. With the present extension, the current rotor dynamic programs can be modified with relative ease to account for the multiple load paths without resorting to the equivalent single load path modeling. The results obtained by the transfer matrix method are validated by comparing with the finite element solutions. A differential stiffness matrix due to blade rotation is derived to facilitate the finite element solutions.
Low-Coherence light source design for ESPI in-plane displacement measurements
NASA Astrophysics Data System (ADS)
Heikkinen, J. J.; Schajer, G. S.
2018-01-01
The ESPI method for surface deformation measurements requires the use of a light source with high coherence length to accommodate the optical path length differences present in the apparatus. Such high-coherence lasers, however, are typically large, delicate and costly. Laser diodes, on the other hand, are compact, mechanically robust and inexpensive, but unfortunately they have short coherence length. The present work aims to enable the use of a laser diode as an illumination source by equalizing the path lengths within an ESPI interferometer. This is done by using a reflection type diffraction grating to compensate for the path length differences. The high optical power efficiency of such diffraction gratings allows the use of much lower optical power than in previous interferometer designs using transmission gratings. The proposed concept was experimentally investigated by doing in-plane ESPI measurements using a high-coherence single longitudinal mode (SLM) laser, a laser diode and then a laser diode with path length optimization. The results demonstrated the limitations of using an uncompensated laser diode. They then showed the effectiveness of adding a reflection type diffraction grating to equalize the interferometer path lengths. This addition enabled the laser diode to produce high measurement quality across the entire field of view, rivaling although not quite equaling the performance of a high-coherence SLM laser source.
All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.
Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis
2013-05-20
This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.
Elevation effects in volcano applications of the COSPEC
Gerlach, T.M.
2003-01-01
Volcano applications commonly involve sizeable departures from the reference pressure and temperature of COSPEC calibration cells. Analysis shows that COSPEC SO2 column abundances and derived mass emission rates are independent of pressure and temperature, and thus unaffected by elevation effects related to deviations from calibration cell reference state. However, path-length concentrations are pressure and temperature dependent. Since COSPEC path-length concentration data assume the reference pressure and temperature of calibration cells, they can lead to large errors when used to calculate SO2 mixing ratios of volcanic plumes. Correction factors for COSPEC path-length concentrations become significant (c.10%) at elevations of about 1 km (e.g. Kilauea volcano) and rise rapidly to c.80% at 6 km (e.g. Cotopaxi volcano). Calculating SO2 mixing ratios for volcanic plumes directly from COSPEC path-length concentrations always gives low results. Corrections can substantially increase mixing ratios; for example, corrections increase SO2 ppm concentrations reported for the Mount St Helens, Colima, and Erebus plumes by 25-50%. Several arguments suggest it would be advantageous to calibrate COSPEC measurements in column abundance units rather than path-length concentration units.
NASA Astrophysics Data System (ADS)
Defrère, D.; Hinz, P.; Downey, E.; Böhm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Pott, J.-U.; Skemer, A.; Spalding, E.; Stone, J.; Vaz, A.
2016-08-01
The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.
Investigation of real tissue water equivalent path lengths using an efficient dose extinction method
NASA Astrophysics Data System (ADS)
Zhang, Rongxiao; Baer, Esther; Jee, Kyung-Wook; Sharp, Gregory C.; Flanz, Jay; Lu, Hsiao-Ming
2017-07-01
For proton therapy, an accurate conversion of CT HU to relative stopping power (RSP) is essential. Validation of the conversion based on real tissue samples is more direct than the current practice solely based on tissue substitutes and can potentially address variations over the population. Based on a novel dose extinction method, we measured water equivalent path lengths (WEPL) on animal tissue samples to evaluate the accuracy of CT HU to RSP conversion and potential variations over a population. A broad proton beam delivered a spread out Bragg peak to the samples sandwiched between a water tank and a 2D ion-chamber detector. WEPLs of the samples were determined from the transmission dose profiles measured as a function of the water level in the tank. Tissue substitute inserts and Lucite blocks with known WEPLs were used to validate the accuracy. A large number of real tissue samples were measured. Variations of WEPL over different batches of tissue samples were also investigated. The measured WEPLs were compared with those computed from CT scans with the Stoichiometric calibration method. WEPLs were determined within ±0.5% percentage deviation (% std/mean) and ±0.5% error for most of the tissue surrogate inserts and the calibration blocks. For biological tissue samples, percentage deviations were within ±0.3%. No considerable difference (<1%) in WEPL was observed for the same type of tissue from different sources. The differences between measured WEPLs and those calculated from CT were within 1%, except for some bony tissues. Depending on the sample size, each dose extinction measurement took around 5 min to produce ~1000 WEPL values to be compared with calculations. This dose extinction system measures WEPL efficiently and accurately, which allows the validation of CT HU to RSP conversions based on the WEPL measured for a large number of samples and real tissues.
On the possibility of measuring atmospheric OH using intracavity laser spectroscopy
NASA Technical Reports Server (NTRS)
Mcmanus, J. Barry; Kolb, C. E.
1994-01-01
Intracavity laser spectroscopy (ILS) has been demonstrated to be useful for measuring extremely weak absorption produced by gases in air. ILS is based on the observation that when there are spectrally narrow losses within the cavity of a broadband laser, the laser output has corresponding spectral holes where the laser oscillation is partially quenched. The depth of the laser output dips can be enhanced by a factor of 10(exp 5) over the depth of the initial cavity loss, and absorptivities of 10(exp -8) cm(exp -1) have been measured in lasers only one meter long. With ILS, one can achieve in a compact space a spectral contrast that would otherwise require kilometers of pathlength. ILS systems typically use quasi-continuous wave dye lasers operating close to threshold. The pump laser is modulated from just below to just above the threshold level for the dye laser, and the dye laser output is spectroscopically observed during a well defined time interval after the onset of lasing (the generation time). The spectral contrast of an intracavity absorber is equivalent to that produced by absorption through a path length equal to the generation time multiplied by the speed of light (assuming the cavity is completely filed with the absorber) up to some limiting time. Thus, if one measures the spectrum after 33 microseconds, the effective path length is 10,000 meters.
Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean
2009-10-01
Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization.
NASA Astrophysics Data System (ADS)
Seitz, K.; Buxmann, J.; Pöhler, D.; Sommer, T.; Tschritter, J.; Neary, T.; O'Dowd, C.; Platt, U.
2010-03-01
We present investigations of the reactive iodine species (RIS) IO, OIO and I2 in a coastal region from a field campaign simultaneously employing active long path differential optical absorption spectroscopy (LP-DOAS) as well as passive multi-axis differential optical absorption spectroscopy (MAX-DOAS). The campaign took place at the Martin Ryan Institute (MRI) in Carna, County Galway at the Irish West Coast about 6 km south-east of the atmospheric research station Mace Head in summer 2007. In order to study the horizontal distribution of the trace gases of interest, we established two almost parallel active LP-DOAS light paths, the shorter of 1034 m length just crossing the intertidal area, whereas the longer one of 3946 m length also crossed open water during periods of low tide. In addition we operated two passive Mini-MAX-DOAS instruments with the same viewing direction. While neither OIO nor I2 could be unambiguously identified with any of the instruments, IO could be detected with active as well as passive DOAS. The IO column densities seen at both active LP-DOAS light paths are almost the same. Thus it can be concluded that coastal IO is almost exclusively located in the intertidal area, where we detected mixing ratios of up to 29±8.8 ppt (equivalent to pmol/mol). Nucleation events with particle concentrations of 106 cm-3 particles were observed each day correlating with high IO mixing ratios. Therefore we feel that our detected IO concentrations confirm the results of model studies, which state that in order to explain such particle bursts, IO mixing ratios of 50 to 100 ppt in so called "hot-spots" are required.
NASA Astrophysics Data System (ADS)
Seitz, K.; Buxmann, J.; Pöhler, D.; Sommer, T.; Tschritter, J.; O'Dowd, C.; Platt, U.
2009-10-01
We present investigations of the reactive iodine species (RIS) IO, OIO and I2 in a coastal region from a field campaign simultaneously employing active long path differential optical absorption spectroscopy (LP-DOAS) as well as passive multi-axis differential optical absorption spectroscopy (MAX-DOAS). The campaign took place at the Martin Ryan Institute (MRI) in Carna, County Galway at the Irish West Coast about 6 km south-east of the atmospheric research station Mace Head in summer 2007. In order to study the horizontal distribution of the trace gases of interest, we established two almost parallel active LP-DOAS light paths, the shorter of 1034 m length just crossing the intertidal area, whereas the longer one of 3946 m length also crossed open water during periods of low tide. In addition we operated two passive Mini-MAX-DOAS instruments with the same viewing direction. While neither OIO nor I2 could be unambiguously identified with any of the instruments, IO could be detected with active as well as passive DOAS. The IO column densities seen at both active LP-DOAS light paths are almost the same. Thus it can be concluded that coastal IO is almost exclusively located in the intertidal area, where we detected mixing ratios of up to 35±7.7 ppt (equivalent to pmol/mol). Nucleation events with particle concentrations of 106 cm-3 particles were observed each day correlating with high IO mixing ratios. Therefore we feel that our detected IO concentrations confirm the results of model studies, which state that in order to explain such particle bursts, IO mixing ratios of 50 to 100 ppt in so called "hot-spots" are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
Time optimal paths for high speed maneuvering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Two-path plasmonic interferometer with integrated detector
Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory
2016-03-29
An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.
Phonon Conduction in Silicon Nanobeam Labyrinths
Park, Woosung; Romano, Giuseppe; Ahn, Ethan C.; ...
2017-07-24
Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed “line-of-sight” (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m -1K -1 for straight beam tomore » ~31 W m -1 K -1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.« less
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle equivalent... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle equivalent... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle equivalent... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave...
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Sun, Di; Han, Tongshuai; Guo, Chao; Liu, Jin
2016-10-01
In the non-invasive blood components measurement using near infrared spectroscopy, the useful signals caused by the concentration variation in the interested components, such as glucose, hemoglobin, albumin etc., are relative weak. Then the signals may be greatly disturbed by a lot of noises in various ways. We improved the signals by using the optimum path-length for the used wavelength to get a maximum variation of transmitted light intensity when the concentration of a component varies. And after the path-length optimization for every wavelength in 1000-2500 nm, we present the detection limits for the components, including glucose, hemoglobin and albumin, when measuring them in a tissue phantom. The evaluated detection limits could be the best reachable precision level since it assumed the measurement uses a high signal-to-noise ratio (SNR) signal and the optimum path-length. From the results, available wavelengths in 1000-2500 nm for the three component measurements can be screened by comparing their detection limit values with their measurement limit requirements. For other blood components measurement, the evaluation their detection limits could also be designed using the method proposed in this paper. Moreover, we use an equation to estimate the absorbance at the optimum path-length for every wavelength in 1000-2500 nm caused by the three components. It could be an easy way to realize the evaluation because adjusting the sample cell's size to the precise path-length value for every wavelength is not necessary. This equation could also be referred to other blood components measurement using the optimum path-length for every used wavelength.
Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard
2017-09-01
In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.
Multi-chord fiber-coupled interferometer with a long coherence length laser
NASA Astrophysics Data System (ADS)
Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.
2012-03-01
This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.
Mathematical model for path selection by ants between nest and food source.
Bodnar, Marek; Okińczyc, Natalia; Vela-Pérez, M
2017-03-01
Several models have been proposed to describe the behavior of ants when moving from nest to food sources. Most of these studies where based on numerical simulations with no mathematical justification. In this paper, we propose a mechanism for the formation of paths of minimal length between two points by a collection of individuals undergoing reinforced random walks taking into account not only the lengths of the paths but also the angles (connected to the preference of ants to move along straight lines). Our model involves reinforcement (pheromone accumulation), persistence (tendency to preferably follow straight directions in absence of any external effect) and takes into account the bifurcation angles of each edge (represented by a probability of willingness of choosing the path with the smallest angle). We describe analytically the results for 2 ants and different path lengths and numerical simulations for several ants. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Everaers, Ralf
2012-08-01
We show that the front factor appearing in the shear modulus of a phantom network, Gph=(1-2/f)(ρkBT)/Ns, also controls the ratio of the strand length, Ns, and the number of monomers per Kuhn length of the primitive paths, NphPPKuhn, characterizing the average network conformation. In particular, NphPPKuhn=Ns/(1-2/f) and Gph=(ρkBT)/NphPPKuhn. Neglecting the difference between cross-links and slip-links, these results can be transferred to entangled systems and the interpretation of primitive path analysis data. In agreement with the tube model, the analogy to phantom networks suggest that the rheological entanglement length, Nerheo=(ρkBT)/Ge, should equal NePPKuhn. Assuming binary entanglements with f=4 functional junctions, we expect that Nerheo should be twice as large as the topological entanglement length, Netopo. These results are in good agreement with reported primitive path analysis results for model systems and a wide range of polymeric materials. Implications for tube and slip-link models are discussed.
A vector-based representation of the chemical bond for the substituted torsion of biphenyl
NASA Astrophysics Data System (ADS)
Li, Jiahui; Huang, Weijie; Xu, Tianlv; Kirk, Steven R.; Jenkins, Samantha
2018-06-01
We use a new interpretation of the chemical bond within QTAIM, the bond-path framework set B = {p, q, r} with associated linkages with lengths H∗, H and the familiar bond-path length is used to describe a torsion θ, 0.0° ≤ θ < 22.0° of para-substituted biphenyl, C12H9-x, x = N(CH3)2, NH2, CH3, CHO, CN, NO2. We include consideration of the H--H bonding interactions and find that the lengths H > H∗ that we explain in terms of the most and least preferred directions of charge density accumulation. We also consider the fractional eigenvector-following path with lengths Hf and Hfθmin.
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2013 CFR
2013-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2012 CFR
2012-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2014 CFR
2014-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
47 CFR 74.644 - Minimum path lengths for fixed links.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the Table...
Variational nature, integration, and properties of Newton reaction path
NASA Astrophysics Data System (ADS)
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-01
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
Variational nature, integration, and properties of Newton reaction path.
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-21
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
Two Upper Bounds for the Weighted Path Length of Binary Trees. Report No. UIUCDCS-R-73-565.
ERIC Educational Resources Information Center
Pradels, Jean Louis
Rooted binary trees with weighted nodes are structures encountered in many areas, such as coding theory, searching and sorting, information storage and retrieval. The path length is a meaningful quantity which gives indications about the expected time of a search or the length of a code, for example. In this paper, two sharp bounds for the total…
Portnoy, Sigal; Hersch, Ayelet; Sofer, Tal; Tresser, Sarit
2017-06-01
To test whether paired-play will induce longer path length and ranges of movement of the center of pressure (COP), which reflects on balance performance and stability, compared to solo-play and to test the difference in the path length and ranges of movement of the COP while playing the virtual reality (VR) game with the dominant hand compared to playing it with the nondominant hand. In this cross-sectional study 20 children (age 6.1 ± 0.7 years old) played an arm movement controlled VR game alone and with a peer while each of them stood on a pressure measuring pad to track the path length and ranges of movement of the COP. The total COP path was significantly higher during the paired-play (median 295.8 cm) compared to the COP path during the solo-play (median 189.2 cm). No significant differences were found in the reaction time and the mediolateral and anterior-posterior COP ranges between solo-play and paired-play. No significant differences were found between the parameters extracted during paired-play with the dominant or nondominant hand. Our findings imply that the paired-play is advantageous compared to solo-play since it induces a greater movement for the child, during which, higher COP velocities are reached that may contribute to improving the balance control of the child. Apart from the positive social benefits of paired-play, this positive effect on the COP path length is a noteworthy added value in the clinical setting when treating children with balance disorder.
Limited-path-length entanglement percolation in quantum complex networks
NASA Astrophysics Data System (ADS)
Cuquet, Martí; Calsamiglia, John
2011-03-01
We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.
Quasi-monolithic tunable optical resonator
NASA Technical Reports Server (NTRS)
Arbore, Mark (Inventor); Tapos, Francisc (Inventor)
2003-01-01
An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.
Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin
2009-09-01
Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.
Coherence and visibility for vectorial light.
Luis, Alfredo
2010-08-01
Two-path interference of transversal vectorial waves is embedded within a larger scheme: this is four-path interference between four scalar waves. This comprises previous approaches to coherence between vectorial waves and restores the equivalence between correlation-based coherence and visibility.
Carotid-Femoral Pulse Wave Velocity: Impact of Different Arterial Path Length Measurements
Sugawara, Jun; Hayashi, Koichiro; Yokoi, Takashi; Tanaka, Hirofumi
2009-01-01
Background Carotid-femoral pulse wave velocity (PWV) is the most established index of arterial stiffness. Yet there is no consensus on the methodology in regard to the arterial path length measurements conducted on the body surface. Currently, it is not known to what extent the differences in the arterial path length measurements affect absolute PWV values. Methods Two hundred fifty apparently healthy adults (127 men and 123 women, 19-79 years) were studied. Carotid-femoral PWV was calculated using (1) the straight distance between carotid and femoral sites (PWVcar–fem), (2) the straight distance between suprasternal notch and femoral site minus carotid arterial length (PWV(ssn–fem)-(ssn–car)), (3) the straight distance between carotid and femoral sites minus carotid arterial length (PWV(car–fem)-(ssn–car)), and (4) the combined distance from carotid site to the umbilicus and from the umbilicus to femoral site minus carotid arterial length (PWV(ssn–umb–fem)-(ssn–car)). Results All the calculated PWV were significantly correlated with each other (r=0.966-0.995). PWV accounting for carotid arterial length were 16-31% lower than PWVcar–fem. PWVcar–fem value of 12 m/sec corresponded to 8.3 m/sec for PWV(ssn–fem)-(ssn–car), 10.0 m/sec for PWV(car–fem)-(ssn–car), and 8.9 m/sec for PWV(ssn–umb–fem)-(ssn–car). Conclusion Different body surface measurements used to estimate arterial path length would produce substantial variations in absolute PWV values. PMID:20396400
A flight investigation with a STOL airplane flying curved, descending instrument approach paths
NASA Technical Reports Server (NTRS)
Benner, M. S.; Mclaughlin, M. D.; Sawyer, R. H.; Vangunst, R.; Ryan, J. L.
1974-01-01
A flight investigation using a De Havilland Twin Otter airplane was conducted to determine the configurations of curved, 6 deg descending approach paths which would provide minimum airspace usage within the requirements for acceptable commercial STOL airplane operations. Path configurations with turns of 90 deg, 135 deg, and 180 deg were studied; the approach airspeed was 75 knots. The length of the segment prior to turn, the turn radius, and the length of the final approach segment were varied. The relationship of the acceptable path configurations to the proposed microwave landing system azimuth coverage requirements was examined.
Michel, Anna P M; Kapit, Jason; Witinski, Mark F; Blanchard, Romain
2017-04-10
Methane is a powerful greenhouse gas that has both natural and anthropogenic sources. The ability to measure methane using an integrated path length approach such as an open/long-path length sensor would be beneficial in several environments for examining anthropogenic and natural sources, including tundra landscapes, rivers, lakes, landfills, estuaries, fracking sites, pipelines, and agricultural sites. Here a broadband monolithic distributed feedback-quantum cascade laser array was utilized as the source for an open-path methane sensor. Two telescopes were utilized for the launch (laser source) and receiver (detector) in a bistatic configuration for methane sensing across a 50 m path length. Direct-absorption spectroscopy was utilized with intrapulse tuning. Ambient methane levels were detectable, and an instrument precision of 70 ppb with 100 s averaging and 90 ppb with 10 s averaging was achieved. The sensor system was designed to work "off the grid" and utilizes batteries that are rechargeable with solar panels and wind turbines.
NASA Astrophysics Data System (ADS)
Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.
2006-02-01
Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.
Pseudo-random tool paths for CNC sub-aperture polishing and other applications.
Dunn, Christina R; Walker, David D
2008-11-10
In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.
NASA Astrophysics Data System (ADS)
Wang, Zhechao; Li, Wei; Bi, Liping; Qiao, Liping; Liu, Richeng; Liu, Jie
2018-05-01
A method to estimate the representative elementary volume (REV) size for the permeability and equivalent permeability coefficient of rock mass with a radial flow configuration was developed. The estimations of the REV size and equivalent permeability for the rock mass around an underground oil storage facility using a radial flow configuration were compared with those using a unidirectional flow configuration. The REV sizes estimated using the unidirectional flow configuration are much higher than those estimated using the radial flow configuration. The equivalent permeability coefficient estimated using the radial flow configuration is unique, while those estimated using the unidirectional flow configuration depend on the boundary conditions and flow directions. The influences of the fracture trace length, spacing and gap on the REV size and equivalent permeability coefficient were investigated. The REV size for the permeability of fractured rock mass increases with increasing the mean trace length and fracture spacing. The influence of the fracture gap length on the REV size is insignificant. The equivalent permeability coefficient decreases with the fracture spacing, while the influences of the fracture trace length and gap length are not determinate. The applicability of the proposed method to the prediction of groundwater inflow into rock caverns was verified using the measured groundwater inflow into the facility. The permeability coefficient estimated using the radial flow configuration is more similar to the representative equivalent permeability coefficient than those estimated with different boundary conditions using the unidirectional flow configuration.
Automatic Control Of Length Of Welding Arc
NASA Technical Reports Server (NTRS)
Iceland, William F.
1991-01-01
Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.
Spreading paths in partially observed social networks
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Length and area equivalents for interpreting wildland resource maps
Elliot L. Amidon; Marilyn S. Whitfield
1969-01-01
Map users must refer to an appropriate scale in interpreting wildland resource maps. Length and area equivalents for nine map scales commonly used have been computed. For each scale a 1-page table consists of map-to-ground equivalents, buffer strip or road widths, and cell dimensions required for a specified acreage. The conversion factors are stored in a Fortran...
Refractive indices used by the Haag-Streit Lenstar to calculate axial biometric dimensions.
Suheimat, Marwan; Verkicharla, Pavan K; Mallen, Edward A H; Rozema, Jos J; Atchison, David A
2015-01-01
To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
The NH3 spectrum in Saturn's 5 micron window
NASA Technical Reports Server (NTRS)
Bjoraker, G. L.; Fink, U.; Larson, H. P.; Johnson, J. R.
1983-01-01
Spectra of Saturn's 5-micron window were obtained at the Infrared Telescope Facility on Mauna Kea, Hawaii. The spectra have a resolution of 1.2/cm, and some exhibit extremely low amounts of approximately 300-micron ppt telluric H2O. The Saturn spectra show absorptions by the 2nu2 band of NH3. Long-path laboratory comparison spectra of NH3 were acquired and show considerable deviations in intensity from theoretical predictions. The calibration of Saturn's observed NH3 features with the laboratory data gives 2.0 + or - 0.5 m-amagat of NH3 using the 2nu2 Q-branch at 5.32 microns. The R(1) and R(2) lines yield an abundance about 3 times greater. Absorptions outside the range of the Q-branch can be accounted for by solid NH3 of 10-20 microns equivalent path length. The origin of Saturn's 5-micron flux is mostly thermal with some admixture of solar reflected radiation. A depletion of Saturn's NH3 abundance below the solar value is indicated, but confirmation of this conclusion will require a better understanding of the atmospheric penetration depth at 5 microns and more rigorous modeling of the spectral line formation.
Method for Veterbi decoding of large constraint length convolutional codes
NASA Technical Reports Server (NTRS)
Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Reed, Irving S. (Inventor); Jing, Sun (Inventor)
1988-01-01
A new method of Viterbi decoding of convolutional codes lends itself to a pipline VLSI architecture using a single sequential processor to compute the path metrics in the Viterbi trellis. An array method is used to store the path information for NK intervals where N is a number, and K is constraint length. The selected path at the end of each NK interval is then selected from the last entry in the array. A trace-back method is used for returning to the beginning of the selected path back, i.e., to the first time unit of the interval NK to read out the stored branch metrics of the selected path which correspond to the message bits. The decoding decision made in this way is no longer maximum likelihood, but can be almost as good, provided that constraint length K in not too small. The advantage is that for a long message, it is not necessary to provide a large memory to store the trellis derived information until the end of the message to select the path that is to be decoded; the selection is made at the end of every NK time unit, thus decoding a long message in successive blocks.
Equivalent damage: A critical assessment
NASA Technical Reports Server (NTRS)
Laflen, J. R.; Cook, T. S.
1982-01-01
Concepts in equivalent damage were evaluated to determine their applicability to the life prediction of hot path components of aircraft gas turbine engines. Equivalent damage was defined as being those effects which influence the crack initiation life-time beyond the damage that is measured in uniaxial, fully-reversed sinusoidal and isothermal experiments at low homologous temperatures. Three areas of equivalent damage were examined: mean stress, cumulative damage, and multiaxiality. For each area, a literature survey was conducted to aid in selecting the most appropriate theories. Where possible, data correlations were also used in the evaluation process. A set of criteria was developed for ranking the theories in each equivalent damage regime. These criteria considered aspects of engine utilization as well as the theoretical basis and correlative ability of each theory. In addition, consideration was given to the complex nature of the loading cycle at fatigue critical locations of hot path components; this loading includes non-proportional multiaxial stressing, combined temperature and strain fluctuations, and general creep-fatigue interactions. Through applications of selected equivalent damage theories to some suitable data sets it was found that there is insufficient data to allow specific recommendations of preferred theories for general applications. A series of experiments and areas of further investigations were identified.
Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G
2016-08-02
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
NASA Astrophysics Data System (ADS)
Li, Xiang
2016-10-01
Blood glucose monitoring is of great importance for controlling diabetes procedure and preventing the complications. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. Among various parameters of optical fiber probe used in spectrum measuring, the measurement distance is the key one. The Monte Carlo technique is a flexible method for simulating light propagation in tissue. The simulation is based on the random walks that photons make as they travel through tissue, which are chosen by statistically sampling the probability distributions for step size and angular deflection per scattering event. The traditional method for determine the optimal distance between transmitting fiber and detector is using Monte Carlo simulation to find out the point where most photons come out. But there is a problem. In the epidermal layer there is no artery, vein or capillary vessel. Thus, when photons propagate and interactive with tissue in epidermal layer, no information is given to the photons. A new criterion is proposed to determine the optimal distance, which is named effective path length in this paper. The path length of each photons travelling in dermis is recorded when running Monte-Carlo simulation, which is the effective path length defined above. The sum of effective path length of every photon at each point is calculated. The detector should be place on the point which has most effective path length. Then the optimal measuring distance between transmitting fiber and detector is determined.
Diffusing-wave spectroscopy in a standard dynamic light scattering setup
NASA Astrophysics Data System (ADS)
Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.
2017-12-01
Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.
Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102
Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy.
Bolst, David; Guatelli, Susanna; Tran, Linh T; Chartier, Lachlan; Lerch, Michael L F; Matsufuji, Naruhiro; Rosenfeld, Anatoly B
2017-03-21
Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic 12 C beam, based on Monte Carlo simulations. The energy deposition spectra in a 10 μm sized silicon cylindrical sensitive volume (SV) were found to be equivalent to those measured in a tissue SV, with the same shape, but with dimensions scaled by a factor κ equal to 0.57 and 0.54 for muscle and water, respectively. A low energy correction factor was determined to account for the enhanced response in silicon at low energy depositions, produced by electrons. The concept of the mean path length [Formula: see text] to calculate the lineal energy was introduced as an alternative to the mean chord length [Formula: see text] because it was found that adopting Cauchy's formula for the [Formula: see text] was not appropriate for the radiation field typical of HIT as it is very directional. [Formula: see text] can be determined based on the peak of the lineal energy distribution produced by the incident carbon beam. Furthermore it was demonstrated that the thickness of the SV along the direction of the incident 12 C ion beam can be adopted as [Formula: see text]. The tissue equivalence conversion method and [Formula: see text] were adopted to determine the RBE 10 , calculated using a modified microdosimetric kinetic model, applied to the microdosimetric spectra resulting from the simulation study. Comparison of the RBE 10 along the Bragg peak to experimental TEPC measurements at HIMAC, NIRS, showed good agreement. Such agreement demonstrates the validity of the developed tissue equivalence correction factors and of the determination of [Formula: see text].
Di Marco, Aimee N; Jeyakumar, Jenifa; Pratt, Philip J; Yang, Guang-Zhong; Darzi, Ara W
2016-01-01
To compare surgical performance with transanal endoscopic surgery (TES) using a novel 3-dimensional (3D) stereoscopic viewer against the current modalities of a 3D stereoendoscope, 3D, and 2-dimensional (2D) high-definition monitors. TES is accepted as the primary treatment for selected rectal tumors. Current TES systems offer a 2D monitor, or 3D image, viewed directly via a stereoendoscope, necessitating an uncomfortable operating position. To address this and provide a platform for future image augmentation, a 3D stereoscopic display was created. Forty participants, of mixed experience level, completed a simulated TES task using 4 visual displays (novel stereoscopic viewer and currently utilized stereoendoscope, 3D, and 2D high-definition monitors) in a randomly allocated order. Primary outcome measures were: time taken, path length, and accuracy. Secondary outcomes were: task workload and participant questionnaire results. Median time taken and path length were significantly shorter for the novel viewer versus 2D and 3D, and not significantly different to the traditional stereoendoscope. Significant differences were found in accuracy, task workload, and questionnaire assessment in favor of the novel viewer, as compared to all 3 modalities. This novel 3D stereoscopic viewer allows surgical performance in TES equivalent to that achieved using the current stereoendoscope and superior to standard 2D and 3D displays, but with lower physical and mental demands for the surgeon. Participants expressed a preference for this system, ranking it more highly on a questionnaire. Clinical translation of this work has begun with the novel viewer being used in 5 TES patients.
Evidence of MAOA genotype involvement in spatial ability in males
Mueller, Sven C.; Cornwell, Brian R.; Grillon, Christian; MacIntyre, Jessica; Gorodetsky, Elena; Goldman, David; Pine, Daniel S.; Ernst, Monique
2014-01-01
Although the Monoamine Oxidase-A (MAOA) gene has been linked to spatial learning and memory in animal models, convincing evidence in humans is lacking. Performance on an ecologically-valid, virtual computer-based equivalent of the Morris Water Maze task was compared between 28 healthy males with the low MAOA transcriptional activity and 41 healthy age- and IQ-matched males with the high MAOA transcriptional activity. The results revealed consistently better performance (reduced heading error, shorter path length, and reduced failed trials) for the high MAOA activity individuals relative to the low activity individuals. By comparison, groups did not differ on pre-task variables or strategic measures such as first-move latency. The results provide novel evidence of MAOA gene involvement in human spatial navigation using a virtual analogue of the Morris Water Maze task. PMID:24671068
Song, H Francis; Wang, Xiao-Jing
2014-12-01
Small-world networks-complex networks characterized by a combination of high clustering and short path lengths-are widely studied using the paradigmatic model of Watts and Strogatz (WS). Although the WS model is already quite minimal and intuitive, we describe an alternative formulation of the WS model in terms of a distance-dependent probability of connection that further simplifies, both practically and theoretically, the generation of directed and undirected WS-type small-world networks. In addition to highlighting an essential feature of the WS model that has previously been overlooked, namely the equivalence to a simple distance-dependent model, this alternative formulation makes it possible to derive exact expressions for quantities such as the degree and motif distributions and global clustering coefficient for both directed and undirected networks in terms of model parameters.
Association between Refractive Errors and Ocular Biometry in Iranian Adults
Hashemi, Hassan; Khabazkhoob, Mehdi; Emamian, Mohammad Hassan; Shariati, Mohammad; Miraftab, Mohammad; Yekta, Abbasali; Ostadimoghaddam, Hadi; Fotouhi, Akbar
2015-01-01
Purpose: To investigate the association between ocular biometrics such as axial length (AL), anterior chamber depth (ACD), lens thickness (LT), vitreous chamber depth (VCD) and corneal power (CP) with different refractive errors. Methods: In a cross-sectional study on the 40 to 64-year-old population of Shahroud, random cluster sampling was performed. Ocular biometrics were measured using the Allegro Biograph (WaveLight AG, Erlangen, Germany) for all participants. Refractive errors were determined using cycloplegic refraction. Results: In the first model, the strongest correlations were found between spherical equivalent with axial length and corneal power. Spherical equivalent was strongly correlated with axial length in high myopic and high hyperopic cases, and with corneal power in high hyperopic cases; 69.5% of variability in spherical equivalent was attributed to changes in these variables. In the second model, the correlations between vitreous chamber depth and corneal power with spherical equivalent were stronger in myopes than hyperopes, while the correlations between lens thickness and anterior chamber depth with spherical equivalent were stronger in hyperopic cases than myopic ones. In the third model, anterior chamber depth + lens thickness correlated with spherical equivalent only in moderate and severe cases of hyperopia, and this index was not correlated with spherical equivalent in moderate to severe myopia. Conclusion: In individuals aged 40-64 years, corneal power and axial length make the greatest contribution to spherical equivalent in high hyperopia and high myopia. Anterior segment biometric components have a more important role in hyperopia than myopia. PMID:26730304
Yu, Hongli; Chen, Guilin; Zhao, Shenghui; Chang, Chih-Yung; Chin, Yu-Ting
2016-01-01
Energy recharging has received much attention in recent years. Several recharging mechanisms were proposed for achieving perpetual lifetime of a given Wireless Sensor Network (WSN). However, most of them require a mobile recharger to visit each sensor and then perform the recharging task, which increases the length of the recharging path. Another common weakness of these works is the requirement for the mobile recharger to stop at the location of each sensor. As a result, it is impossible for recharger to move with a constant speed, leading to inefficient movement. To improve the recharging efficiency, this paper takes “recharging while moving” into consideration when constructing the recharging path. We propose a Recharging Path Construction (RPC) mechanism, which enables the mobile recharger to recharge all sensors using a constant speed, aiming to minimize the length of recharging path and improve the recharging efficiency while achieving the requirement of perpetual network lifetime of a given WSN. Performance studies reveal that the proposed RPC outperforms existing proposals in terms of path length and energy utilization index, as well as visiting cycle. PMID:28025567
NASA Astrophysics Data System (ADS)
Humphries, Nicolas E.
2015-09-01
The comprehensive review of Lévy patterns observed in the moves and pauses of a vast array of organisms by Reynolds [1] makes clear a need to attempt to unify phenomena to understand how organism movement may have evolved. However, I would contend that the research on Lévy 'movement patterns' we detect in time series of animal movements has to a large extent been misunderstood. The statistical techniques, such as Maximum Likelihood Estimation, used to detect these patterns look only at the statistical distribution of move step-lengths and not at the actual pattern, or structure, of the movement path. The path structure is lost altogether when move step-lengths are sorted prior to analysis. Likewise, the simulated movement paths, with step-lengths drawn from a truncated power law distribution in order to test characteristics of the path, such as foraging efficiency, in no way match the actual paths, or trajectories, of real animals. These statistical distributions are, therefore, null models of searching or foraging activity. What has proved surprising about these step-length distributions is the extent to which they improve the efficiency of random searches over simple Brownian motion. It has been shown unequivocally that a power law distribution of move step lengths is more efficient, in terms of prey items located per unit distance travelled, than any other distribution of move step-lengths so far tested (up to 3 times better than Brownian), and over a range of prey field densities spanning more than 4 orders of magnitude [2].
Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays
Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.
2005-08-30
By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.
Multiple-wavelength tunable laser
NASA Technical Reports Server (NTRS)
Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)
2010-01-01
A tunable laser includes dispersion optics for separating generated laser pulses into first and second wavelength pulses directed along first and second optical paths. First and second reflective mirrors are disposed in the first and second optical paths, respectively. The laser's output mirror is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.
Hansen, Eva; Grimme, Britta; Reimann, Hendrik; Schöner, Gregor
2018-05-01
In a sequence of arm movements, any given segment could be influenced by its predecessors (carry-over coarticulation) and by its successor (anticipatory coarticulation). To study the interdependence of movement segments, we asked participants to move an object from an initial position to a first and then on to a second target location. The task involved ten joint angles controlling the three-dimensional spatial path of the object and hand. We applied the principle of the uncontrolled manifold (UCM) to analyze the difference between joint trajectories that either affect (non-motor equivalent) or do not affect (motor equivalent) the hand's trajectory in space. We found evidence for anticipatory coarticulation that was distributed equally in the two directions in joint space. We also found strong carry-over coarticulation, which showed clear structure in joint space: More of the difference between joint configurations observed for different preceding movements lies in directions in joint space that leaves the hand's path in space invariant than in orthogonal directions in joint space that varies the hand's path in space. We argue that the findings are consistent with anticipatory coarticulation reflecting processes of movement planning that lie at the level of the hand's trajectory in space. Carry-over coarticulation may reflect primarily processes of motor control that are governed by the principle of the UCM, according to which changes that do not affect the hand's trajectory in space are not actively delimited. Two follow-up experiments zoomed in on anticipatory coarticulation. These experiments strengthened evidence for anticipatory coarticulation. Anticipatory coarticulation was motor-equivalent when visual information supported the steering of the object to its first target, but was not motor equivalent when that information was removed. The experiments showed that visual updating of the hand's path in space when the object approaches the first target only affected the component of the joint difference vector orthogonal to the UCM, consistent with the UCM principle.
Trajectory generation for an on-road autonomous vehicle
NASA Astrophysics Data System (ADS)
Horst, John; Barbera, Anthony
2006-05-01
We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.
Douglas, David R.; Neil, George R.
2005-04-26
A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.
NASA Astrophysics Data System (ADS)
Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun
2017-11-01
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
Miklós, István; Darling, Aaron E
2009-06-22
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
Namboodiri, Vijay Mohan K.; Levy, Joshua M.; Mihalas, Stefan; Sims, David W.; Hussain Shuler, Marshall G.
2016-01-01
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers. PMID:27385831
The semantic distance task: Quantifying semantic distance with semantic network path length.
Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam
2017-09-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Moran, J. M.; Rosen, B. R.
1980-01-01
The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm.
NASA Astrophysics Data System (ADS)
Bakar, Sumarni Abu; Ibrahim, Milbah
2017-08-01
The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.
Laser-Induced Damage to Thin Film Dielectric Coatings.
1980-10-01
magnify and reimage the laser spot in the diagnostic Path B. Location [5] (see Figure (9)) is the equi- valent focal plane in Path B to that in Path A at...the thin film sample, (3] . The object distance is between the focal plane and the lens at [6) and the image distance is betv en the lens [6] and the...the equivalent focal plane in the diagnostic path and positioned so that the peak of the beam spatial profile falls on the pinhole. The diameter of the
Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.
Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano
2014-12-01
Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Multiple-path model of spectral reflectance of a dyed fabric.
Rogers, Geoffrey; Dalloz, Nicolas; Fournel, Thierry; Hebert, Mathieu
2017-05-01
Experimental results are presented of the spectral reflectance of a dyed fabric as analyzed by a multiple-path model of reflection. The multiple-path model provides simple analytic expressions for reflection and transmission of turbid media by applying the Beer-Lambert law to each path through the medium and summing over all paths, each path weighted by its probability. The path-length probability is determined by a random-walk analysis. The experimental results presented here show excellent agreement with predictions made by the model.
Modeling the average shortest-path length in growth of word-adjacency networks
NASA Astrophysics Data System (ADS)
Kulig, Andrzej; DroŻdŻ, Stanisław; Kwapień, Jarosław; OświÈ©cimka, Paweł
2015-03-01
We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.
NASA Astrophysics Data System (ADS)
Osada, Y.; Kido, M.; Ito, Y.; Iinuma, T.; Fujimoto, H.; Hino, R.
2014-12-01
Seafloor geodetic data, i.e. GPS/acoustic measurement and continuous seafloor pressure monitoring, brought important evidences showing that the 2011 Tohoku-oki earthquake (Mw 9.0) caused huge (> 50 m) coseismic slip near the Japan Trench. The postseismic behavior of the large slipped area is required to clarify to understand why large amount seismic slip could occur there. We started making direct-path acoustic ranging across the trench axis to reveal the convergence rate between the subducting Pacific and overriding continental plates. We expect the change of the baseline length across the trench axis, the plate boundary, reflects the slip rate at the shallow megathrust, which is difficult to estimate only from other geodetic observations largely affected by intraplate deformation caused by the postseismic viscoelastic relaxation process. To this end, we developed an ultra-deep seafloor acoustic ranging system. Our previous ranging systems have been designed to measure baseline length ~ 1 km and to be deployed up to 7,000 m water-depth (Osada et al., 2008, 2012). In order to realize the measurement across the Japan Trench, we improved this system to enhance range of acoustic ranging as well as operational depth of instruments. The improved system was designed to allow acoustic ranging up to 3 km and to be durable under the high-pressure equivalent to water depth of 9,000 m. In May 2013, we carried out a test deployment of the new ranging system. The system is composed of three seafloor instruments equipped with precision transponder (PXPs). Two of the PXPs were set on the landward slope of the Japan Trench, where large coseismic slip happened in 2011. Another PXP was deployed on the seaward side of the trench so that the baseline change associated with the slip on the plate boundary fault, if any, can be detected. Continuous records of baseline lengths were successfully obtained for four months. The repeatability of the distance measurements was about 20 mm for each of the two baselines. Although the duration of the observation was not long enough to estimate precise rate of baseline length changes, it is unlikely that the shortening rates of the baseline lengths exceed the rate of plate convergence (~ 8 cm/a). The results do not support occurrence of evident afterslip along the shallow plate boundary fault in 2013.
Darling, Aaron E.
2009-01-01
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186
The Correlation between Angle Kappa and Ocular Biometry in Koreans
Choi, Se Rang
2013-01-01
Purpose To investigate normative angle kappa data and to examine whether correlations exist between angle kappa and ocular biometric measurements (e.g., refractive error, axial length) and demographic features in Koreans. Methods Data from 436 eyes (213 males and 223 females) were analyzed in this study. The angle kappa was measured using Orbscan II. We used ocular biometric measurements, including refractive spherical equivalent, interpupillary distance and axial length, to investigate the correlations between angle kappa and ocular biometry. The IOL Master ver. 5.02 was used to obtain axial length. Results The mean patient age was 57.5 ± 12.0 years in males and 59.4 ± 12.4 years in females (p = 0.11). Angle kappa averaged 4.70 ± 2.70 degrees in men and 4.89 ± 2.14 degrees in women (p = 0.48). Axial length and spherical equivalent were correlated with angle kappa (r = -0.342 and r = 0.197, respectively). The correlation between axial length and spherical equivalent had a negative correlation (r = -0.540, p < 0.001). Conclusions Angle kappa increased with spherical equivalent and age. Thus, careful manipulation should be considered in older and hyperopic patients when planning refractive or strabismus surgery. PMID:24311927
Study of the De-Icing Properties of the ASDE-3 Rotodome.
1982-04-01
Heat Transfer Coefficients ........................... 3 -18 3.2.3 Prediction of De-Icing Capability ...... 3 -23 3.2.4 Calculation of Mean DIA & PATH...kVA 3 -31 N NUL =ti: :6 i ::p :: %:::::28 -R) [ eN 23,100t Averaged for Laminar & Turbulent Regimes. SAssuming a transition from Laminar to. Turbulent...Calculation of Mean Dia .& Path Length for Roof Mean Path Length for Roof: y 4r 4x 9 3.82 ft 3 x 7 1 2(92 3.8221/2 1 = 2(92 - 3.822 = 8.15 ft x 2 16.3 ft 16.3
Code of Federal Regulations, 2012 CFR
2012-07-01
... humidity, solar radiation, ultraviolet radiation, and/or precipitation. Metropolitan Statistical Area (MSA... receiver at opposite ends of the monitoring path; (2) Equal to twice the monitoring path length for a (monostatic) system having a transmitter and receiver at one end of the monitoring path and a mirror or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... humidity, solar radiation, ultraviolet radiation, and/or precipitation. Metropolitan Statistical Area (MSA... receiver at opposite ends of the monitoring path; (2) Equal to twice the monitoring path length for a (monostatic) system having a transmitter and receiver at one end of the monitoring path and a mirror or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... humidity, solar radiation, ultraviolet radiation, and/or precipitation. Metropolitan Statistical Area (MSA... receiver at opposite ends of the monitoring path; (2) Equal to twice the monitoring path length for a (monostatic) system having a transmitter and receiver at one end of the monitoring path and a mirror or...
Nodal distances for rooted phylogenetic trees.
Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel
2010-08-01
Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).
Optimization of confocal laser induced fluorescence for long focal length applications
NASA Astrophysics Data System (ADS)
Jemiolo, Andrew J.; Henriquez, Miguel F.; Thompson, Derek S.; Scime, Earl E.
2017-10-01
Laser induced fluorescence (LIF) is a non-perturbative diagnostic for measuring ion and neutral particle velocities and temperatures in a plasma. The conventional method for single-photon LIF requires intersecting optical paths for light injection and collection. The multiple vacuum windows needed for such measurements are unavailable in many plasma experiments. Confocal LIF eliminates the need for perpendicular intersecting optical paths by using concentric injection and collection paths through a single window. One of the main challenges with using confocal LIF is achieving high resolution measurements at the longer focal lengths needed for many plasma experiments. We present confocal LIF measurements in HELIX, a helicon plasma experiment at West Virginia University, demonstrating spatial resolution dependence on focal length and spatial filtering. By combining aberration mitigating optics with spatial filtering, our results show high resolution measurements at focal lengths of 0.5 m, long enough to access the interiors of many laboratory plasma experiments. This work was supported by U.S. National Science Foundation Grant No. PHY-1360278.
Chemical Reactions in Turbulent Mixing Flows. Revision.
1983-08-02
jet diameter F2 fluorine H2 hydrogen HF hydrogen fluoride I(y) instantaneous fluorescence intensity distribution L-s flame length measured from...virtual origin -.4 of turbulent region (L-s). flame length at high Reynolds number LIF laser induced fluorescence N2 nitrogen PI product thickness (defined...mixing is attained as a function of the equivallence ratio. For small values of the equivalence ratio f, the flame length - defined here as the
Teichert, Holger; Fernholz, Thomas; Ebert, Volker
2003-04-20
We present what is to our knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber (20-m diameter, 13-m path length) of a 600-MW lignite-fired power plant. A fiber-coupled distributed-feedback diode-laser module at 1.56 microm served for CO detection, and a Fabry-Perot diode laser at 813 nm was used to determine H2O concentrations and temperature from multiline water spectra. Despite severe light losses (transmission, <10(-8)) and strong background radiation we achieved a resolution of 1.9 x 10(-4) (1sigma) fractional absorption, equivalent to 200 parts in 10(6) by volume of CO (at 1450 K, 10(5) Pa) with 30-s averaging time.
Remote sensing of snow using bistatic radar reflectometry
NASA Astrophysics Data System (ADS)
Komanduru, Abi
Snow and ice processes are a critical part of the Earth's hydrological and climate cycles. These processes can serve as an important source of fresh water as well as a cause of flooding. Various missions have been proposed by NASA and ESA for the purpose of remote sensing of snow. This research looks at applying bistatic radar reflectometry to the remote sensing of snow water equivalent. The resulting phase offset from changes in optical path length due to reflection through snow are the primary measurements made. The research uses data from a field campaign in Fraser, CO, involving an instrument collecting direct and reflected from S band during Jan 2015 - Apr 2015. Phase measurements from the field data are made from the two signals and compared to theoretical phase computed from a forward model using in situ data. A moderate correlation (>0.6) is found between the measured and modeled phase.
Evidence of MAOA genotype involvement in spatial ability in males.
Mueller, Sven C; Cornwell, Brian R; Grillon, Christian; Macintyre, Jessica; Gorodetsky, Elena; Goldman, David; Pine, Daniel S; Ernst, Monique
2014-07-01
Although the monoamine oxidase-A (MAOA) gene has been linked to spatial learning and memory in animal models, convincing evidence in humans is lacking. Performance on an ecologically-valid, virtual computer-based equivalent of the Morris Water Maze task was compared between 28 healthy males with the low MAOA transcriptional activity and 41 healthy age- and IQ-matched males with the high MAOA transcriptional activity. The results revealed consistently better performance (reduced heading error, shorter path length, and reduced failed trials) for the high MAOA activity individuals relative to the low activity individuals. By comparison, groups did not differ on pre-task variables or strategic measures such as first-move latency. The results provide novel evidence of MAOA gene involvement in human spatial navigation using a virtual analogue of the Morris Water Maze task. Copyright © 2014 Elsevier B.V. All rights reserved.
Mallik, Saurav; Das, Smita; Kundu, Sudip
2016-01-01
Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.
Microscopic optical path length difference and polarization measurement system for cell analysis
NASA Astrophysics Data System (ADS)
Satake, H.; Ikeda, K.; Kowa, H.; Hoshiba, T.; Watanabe, E.
2018-03-01
In recent years, noninvasive, nonstaining, and nondestructive quantitative cell measurement techniques have become increasingly important in the medical field. These cell measurement techniques enable the quantitative analysis of living cells, and are therefore applied to various cell identification processes, such as those determining the passage number limit during cell culturing in regenerative medicine. To enable cell measurement, we developed a quantitative microscopic phase imaging system based on a Mach-Zehnder interferometer that measures the optical path length difference distribution without phase unwrapping using optical phase locking. The applicability of our phase imaging system was demonstrated by successful identification of breast cancer cells amongst normal cells. However, the cell identification method using this phase imaging system exhibited a false identification rate of approximately 7%. In this study, we implemented a polarimetric imaging system by introducing a polarimetric module to one arm of the Mach-Zehnder interferometer of our conventional phase imaging system. This module was comprised of a quarter wave plate and a rotational polarizer on the illumination side of the sample, and a linear polarizer on the optical detector side. In addition, we developed correction methods for the measurement errors of the optical path length and birefringence phase differences that arose through the influence of elements other than cells, such as the Petri dish. As the Petri dish holding the fluid specimens was transparent, it did not affect the amplitude information; however, the optical path length and birefringence phase differences were affected. Therefore, we proposed correction of the optical path length and birefringence phase for the influence of elements other than cells, as a prerequisite for obtaining highly precise phase and polarimetric images.
Lee, James; Webb, Graham; Shortland, Adam P; Edwards, Rebecca; Wilce, Charlotte; Jones, Gareth D
2018-04-17
Impairments in dynamic balance have a detrimental effect in older adults at risk of falls (OARF). Gait initiation (GI) is a challenging transitional movement. Centre of pressure (COP) excursions using force plates have been used to measure GI performance. The Nintendo Wii Balance Board (WBB) offers an alternative to a standard force plate for the measurement of CoP excursion. To determine the reliability of COP excursions using the WBB, and its feasibility within a 4-week strength and balance intervention (SBI) treating OARF. Ten OARF subjects attending SBI and ten young healthy adults, each performed three GI trials after 10 s of quiet stance from a standardised foot position (shoulder width) before walking forward 3 m to pick up an object. Averaged COP mediolateral (ML) and anteroposterior (AP) excursions (distance) and path-length time (GI-onset to first toe-off) were analysed. WBB ML (0.866) and AP COP excursion (0.895) reliability (ICC 3,1 ) was excellent, and COP path-length reliability was fair (0.517). Compared to OARF, healthy subjects presented with larger COP excursion in both directions and shorter COP path length. OARF subjects meaningfully improved their timed-up-and-go and ML COP excursion between weeks 1-4, while AP COP excursions, path length, and confidence-in-balance remained stable. COP path length and excursion directions probably measure different GI postural control attributes. Limitations in WBB accuracy and precision in transition tasks needs to be established before it can be used clinically to measure postural aspects of GI viably. The WBB could provide valuable clinical evaluation of balance function in OARF.
Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking.
Huang, Baixiang; Liu, Anfeng; Zhang, Chengyuan; Xiong, Naixue; Zeng, Zhiwen; Cai, Zhiping
2018-05-29
Hundreds of thousands of ubiquitous sensing (US) devices have provided an enormous number of data for Information-Centric Networking (ICN), which is an emerging network architecture that has the potential to solve a great variety of issues faced by the traditional network. A Caching Joint Shortcut Routing (CJSR) scheme is proposed in this paper to improve the Quality of service (QoS) for ICN. The CJSR scheme mainly has two innovations which are different from other in-network caching schemes: (1) Two routing shortcuts are set up to reduce the length of routing paths. Because of some inconvenient transmission processes, the routing paths of previous schemes are prolonged, and users can only request data from Data Centers (DCs) until the data have been uploaded from Data Producers (DPs) to DCs. Hence, the first kind of shortcut is built from DPs to users directly. This shortcut could release the burden of whole network and reduce delay. Moreover, in the second shortcut routing method, a Content Router (CR) which could yield shorter length of uploading routing path from DPs to DCs is chosen, and then data packets are uploaded through this chosen CR. In this method, the uploading path shares some segments with the pre-caching path, thus the overall length of routing paths is reduced. (2) The second innovation of the CJSR scheme is that a cooperative pre-caching mechanism is proposed so that QoS could have a further increase. Besides being used in downloading routing, the pre-caching mechanism can also be used when data packets are uploaded towards DCs. Combining uploading and downloading pre-caching, the cooperative pre-caching mechanism exhibits high performance in different situations. Furthermore, to address the scarcity of storage size, an algorithm that could make use of storage from idle CRs is proposed. After comparing the proposed scheme with five existing schemes via simulations, experiments results reveal that the CJSR scheme could reduce the total number of processed interest packets by 54.8%, enhance the cache hits of each CR and reduce the number of total hop counts by 51.6% and cut down the length of routing path for users to obtain their interested data by 28.6⁻85.7% compared with the traditional NDN scheme. Moreover, the length of uploading routing path could be decreased by 8.3⁻33.3%.
Extended core for motor/generator
Shoykhet, Boris A.
2005-05-10
An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.
Extended core for motor/generator
Shoykhet, Boris A.
2006-08-22
An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.
Are Tornadoes Getting Stronger?
NASA Astrophysics Data System (ADS)
Elsner, J.; Jagger, T.
2013-12-01
A cumulative logistic model for tornado damage category is developed and examined. Damage path length and width are significantly correlated to the odds of a tornado receiving the next highest damage category. Given values for the cube root of path length and square root of path width, the model predicts a probability for each category. The length and width coefficients are insensitive to the switch to the Enhanced Fujita (EF) scale and to distance from nearest city although these variables are statistically significant in the model. The width coefficient is sensitive to whether or not the tornado caused at least one fatality. This is likely due to the fact that the dimensions and characteristics of the damage path for such events are always based on ground surveys. The model predicted probabilities across the categories are then multiplied by the center wind speed from the categorical EF scale to obtain an estimate of the highest tornado wind speed on a continuous scale in units of meters per second. The estimated wind speeds correlate at a level of .82 (.46, .95) [95% confidence interval] to wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. More work needs to be done to understand the upward trends in path length and width. The increases lead to an apparent increase in tornado intensity across all EF categories.
1984 Ivanovo tornado outbreak: Determination of actual tornado tracks with satellite data
NASA Astrophysics Data System (ADS)
Chernokulsky, Alexander; Shikhov, Andrey
2018-07-01
The 1984 Ivanovo tornado outbreak is one of the most fatal tornado events in Europe with previously unspecified tornado track characteristics. In this paper, we used Landsat images to discover tornado-induced forest disturbances and restore actual characteristics of tornadoes during the outbreak. We defined boundaries of tornado-induced windthrows by visual comparison of satellite images and specified them with Normalized Difference Infrared Index. We confirmed the occurrence of eight tornadoes during the outbreak and determined their location, path width and length. Other tornadoes occurrence during the outbreak was discussed. Fujita-scale intensity of confirmed tornadoes was estimated based on the related literature corpus including previously omitted sources. In addition, information on tornado path lengths and widths was used to estimate minimal tornado intensity for those tornadoes that passed no settlements. In total, the Ivanovo outbreak includes 8-13 tornadoes with F-scale rating mean ranges from 1.8-2.5 and has adjusted Fujita length around 540 km, which makes the outbreak one the strongest in Europe and places it within the upper quartile of U.S. outbreaks. Characteristics of certain tornadoes within the Ivanovo outbreak are exceptional for Russia. The widest tornado path during the Ivanovo outbreak is 1740 m; the longest is from 81.5-85.9 km. With the example of the Ivanovo outbreak, we showed that existing databases on historical Russian tornadoes tend to overestimate tornado path length (for very long tornadoes) and underestimate maximum tornado path width.
Round-Trip System Available to Measure Path Length Variation in Korea VLBI System for Geodesy
NASA Technical Reports Server (NTRS)
Oh, Hongjong; Kondo, Tetsuro; Lee, Jinoo; Kim, Tuhwan; Kim, Myungho; Kim, Suchul; Park, Jinsik; Ju, Hyunhee
2010-01-01
The construction project of Korea Geodetic VLBI officially started in October 2008. The construction of all systems will be completed by the end of 2011. The project was named Korea VLBI system for Geodesy (KVG), and its main purpose is to maintain the Korea Geodetic Datum. In case of the KVG system, an observation room with an H-maser frequency standard is located in a building separated from the antenna by several tens of meters. Therefore KVG system will adopt a so-called round-trip system to transmit reference signals to the antenna with reduction of the effect of path length variations. KVG s round-trip system is designed not only to use either metal or optical fiber cables, but also to measure path length variations directly. We present this unique round trip system for KVG.
Comment on ''Equivalence between the Thirring model and a derivative-coupling model''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, R.
1988-06-15
An operator equivalence between the Thirring model and the fermionic sector of a Dirac field interacting via derivative coupling with two scalar fields is established in the path-integral framework. Relations between the coupling parameters of the two models, as found by Gomes and da Silva, can be reproduced.
The path integral on the pseudosphere
NASA Astrophysics Data System (ADS)
Grosche, C.; Steiner, F.
1988-02-01
A rigorous path integral treatment for the d-dimensional pseudosphere Λd-1 , a Riemannian manifold of constant negative curvature, is presented. The path integral formulation is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined on midpoints. The time-dependent and energy-dependent Feynman kernels obtain different expressions in the even- and odd-dimensional cases, respectively. The special case of the three-dimensional pseudosphere, which is analytically equivalent to the Poincaré upper half plane, the Poincaré disc, and the hyperbolic strip, is discussed in detail including the energy spectrum and the normalised wave-functions.
Walowska, Jagoda; Bolach, Bartosz; Bolach, Eugeniusz
2017-11-13
Hearing impairment may affect the body posture maintenance. The aim of the study was to evaluate the effect of modified Pilates exercise program on the body posture maintenance in hearing impaired people. Eighty students (aged 13-24) were enrolled and randomly allocated into two groups: test group (n = 41) which attended an original program based on modified Pilates exercises and control group (n = 39) which attended standard physical education classes. Stabilographic tests were conducted at baseline and after 6-week training program. Both groups showed improved control of body balance in a standing position manifested in reductions of the length of path, surface area, and speed of deflection. Modified Pilates program was significantly more effective in improving body balance control in relaxed posture and with feet together than standard physical education classes. The greater efficiency of the modified Pilates program was expressed in a significant improvement in balance control parameters, i.e., path length, surface area, and speed of deflection. The modified Pilates program was more effective in improving body balance control in the hearing impaired people than standard physical education classes. Modification of physical activity recommendations for hearing impaired students may be considered; however, further research is required. Implications for Rehabilitation Hearing impairment impacts the mental, social and, physical spheres of life as well as deteriorates equivalent reactions and the way body posture is maintained. In hearing impaired people, control of body balance and muscle coordination is often disturbed, thus more attention should be paid to exercises associated with balance which may improve the ability to learn and develop motor skills. Modified Pilates program was significantly more effective in improving body balance control than standard physical education classes in hearing impaired people.
A Graduated Cylinder Colorimeter: An Investigation of Path Length and the Beer-Lambert Law
NASA Astrophysics Data System (ADS)
Gordon, James; Harman, Stephanie
2002-05-01
A 10-mL graduated cylinder was used to construct a colorimeter to investigate the relationship between absorbance and path length found in the Beer-Lambert law. Light-emitting diodes (LEDs) were used as the light sources and filter monochromators. The experiments were conducted on intensely colored permanganate and tetraamminecopper(II) solutions. The device also was useful for demonstrating the relationship between absorbance and concentration.
Video-Based Method of Quantifying Performance and Instrument Motion During Simulated Phonosurgery
Conroy, Ellen; Surender, Ketan; Geng, Zhixian; Chen, Ting; Dailey, Seth; Jiang, Jack
2015-01-01
Objectives/Hypothesis To investigate the use of the Video-Based Phonomicrosurgery Instrument Tracking System to collect instrument position data during simulated phonomicrosurgery and calculate motion metrics using these data. We used this system to determine if novice subject motion metrics improved over 1 week of training. Study Design Prospective cohort study. Methods Ten subjects performed simulated surgical tasks once per day for 5 days. Instrument position data were collected and used to compute motion metrics (path length, depth perception, and motion smoothness). Data were analyzed to determine if motion metrics improved with practice time. Task outcome was also determined each day, and relationships between task outcome and motion metrics were used to evaluate the validity of motion metrics as indicators of surgical performance. Results Significant decreases over time were observed for path length (P <.001), depth perception (P <.001), and task outcome (P <.001). No significant change was observed for motion smoothness. Significant relationships were observed between task outcome and path length (P <.001), depth perception (P <.001), and motion smoothness (P <.001). Conclusions Our system can estimate instrument trajectory and provide quantitative descriptions of surgical performance. It may be useful for evaluating phonomicrosurgery performance. Path length and depth perception may be particularly useful indicators. PMID:24737286
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai
2016-04-01
We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50 mm and the reflected optical path length was 2L=100 mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6 GHz and 4 MHz/h at a detuning of -5.2 GHz were also obtained for the transmitted and reflected light Faraday signal.
Hyperconnectivity, Attribute-Space Connectivity and Path Openings: Theoretical Relationships
NASA Astrophysics Data System (ADS)
Wilkinson, Michael H. F.
In this paper the relationship of hyperconnected filters with path openings and attribute-space connected filters is studied. Using a recently developed axiomatic framework based on hyperconnectivity operators, which are the hyperconnected equivalents of connectivity openings, it is shown that path openings are a special case of hyperconnected area openings. The new axiomatics also yield insight into the relationship between hyperconnectivity and attribute-space connectivity. It is shown any hyperconnectivity is an attribute-space connectivity, but that the reverse is not true.
Virtual hybrid test control of sinuous crack
NASA Astrophysics Data System (ADS)
Jailin, Clément; Carpiuc, Andreea; Kazymyrenko, Kyrylo; Poncelet, Martin; Leclerc, Hugo; Hild, François; Roux, Stéphane
2017-05-01
The present study aims at proposing a new generation of experimental protocol for analysing crack propagation in quasi brittle materials. The boundary conditions are controlled in real-time to conform to a predefined crack path. Servo-control is achieved through a full-field measurement technique to determine the pre-set fracture path and a simple predictor model based on linear elastic fracture mechanics to prescribe the boundary conditions on the fly so that the actual crack path follows at best the predefined trajectory. The final goal is to identify, for instance, non-local damage models involving internal lengths. The validation of this novel procedure is performed via a virtual test-case based on an enriched damage model with an internal length scale, a prior chosen sinusoidal crack path and a concrete sample. Notwithstanding the fact that the predictor model selected for monitoring the test is a highly simplified picture of the targeted constitutive law, the proposed protocol exhibits a much improved sensitivity to the sought parameters such as internal lengths as assessed from the comparison with other available experimental tests.
High reflected cubic cavity as long path absorption cell for infrared gas sensing
NASA Astrophysics Data System (ADS)
Yu, Jia; Gao, Qiang; Zhang, Zhiguo
2014-10-01
One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
Hosseini, Ali; Qi, Wei; Tsai, Tsung-Yuan; Liu, Yujie; Rubash, Harry; Li, Guoan
2014-01-01
Purpose The knowledge of the function of the collateral ligaments – i.e., superficial medial collateral ligament (sMCL), deep medial collateral ligament (dMCL) and lateral collateral ligament (LCL) – in the entire range of knee flexion is important for soft tissue balance during total knee arthroplasty. The objective of this study was to investigate the length changes of different portions (anterior, middle and posterior) of the sMCL, dMCL and LCL during in vivo weightbearing flexion from full extension to maximal knee flexion. Methods Using a dual fluoroscopic imaging system eight healthy knees were imaged while performing a lunge from full extension to maximal flexion. The length changes of each portion of the collateral ligaments were measured along the flexion path of the knee. Results All anterior portions of the collateral ligaments were shown to have increasing length with flexion except that of the sMCL which showed a reduction in length at high flexion. The middle portions showed minimal change in lengths except that of the sMCL which showed a consistent reduction in length with flexion. All posterior portions showed reduction in lengths with flexion. Conclusions These data indicated that every portion of the ligaments may play important roles in knee stability at different knee flexion range. The soft tissue releasing during TKA may need to consider the function of the ligament portions along the entire flexion path including maximum flexion. PMID:25239504
Slant Path Low Visibility Atmospheric Conditions.
1980-09-01
precipitation rate ; humidity; aerosol concentration; Particle spectrum; local aeiosol inhomogeneities; air * -Q.!ZIBS’IRACT: A slant path for...test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude range permitting accurate measurements under...and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in transmission measurements which are very low
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J; Park, Y; Sharp, G
Purpose: To establish a method to evaluate the dosimetric impact of anatomic changes in head and neck patients during proton therapy by using scatter-corrected cone-beam CT (CBCT) images. Methods: The water equivalent path length (WEPL) was calculated to the distal edge of PTV contours by using tomographic images available for six head and neck patients received photon therapy. The proton range variation was measured by calculating the difference between the distal WEPLs calculated with the planning CT and weekly treatment CBCT images. By performing an automatic rigid registration, six degrees-of-freedom (DOF) correction was made to the CBCT images to accountmore » for the patient setup uncertainty. For accurate WEPL calculations, an existing CBCT scatter correction algorithm, whose performance was already proven for phantom images, was calibrated for head and neck patient images. Specifically, two different image similarity measures, mutual information (MI) and mean square error (MSE), were tested for the deformable image registration (DIR) in the CBCT scatter correction algorithm. Results: The impact of weight loss was reflected in the distal WEPL differences with the aid of the automatic rigid registration reducing the influence of patient setup uncertainty on the WEPL calculation results. The WEPL difference averaged over distal area was 2.9 ± 2.9 (mm) across all fractions of six patients and its maximum, mostly found at the last available fraction, was 6.2 ± 3.4 (mm). The MSE-based DIR successfully registered each treatment CBCT image to the planning CT image. On the other hand, the MI-based DIR deformed the skin voxels in the planning CT image to the immobilization mask in the treatment CBCT image, most of which was cropped out of the planning CT image. Conclusion: The dosimetric impact of anatomic changes was evaluated by calculating the distal WEPL difference with the existing scatter-correction algorithm appropriately calibrated. Jihun Kim, Yang-Kyun Park, Gregory Sharp, and Brian Winey have received grant support from the NCI Federal Share of program income earned by Massachusetts General Hospital on C06 CA059267, Proton Therapy Research and Treatment Center.« less
A new method for photon transport in Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Sato, T.; Ogawa, K.
1999-12-01
Monte Carlo methods are used to evaluate data methods such as scatter and attenuation compensation in single photon emission CT (SPECT), treatment planning in radiation therapy, and in many industrial applications. In Monte Carlo simulation, photon transport requires calculating the distance from the location of the emitted photon to the nearest boundary of each uniform attenuating medium along its path of travel, and comparing this distance with the length of its path generated at emission. Here, the authors propose a new method that omits the calculation of the location of the exit point of the photon from each voxel and of the distance between the exit point and the original position. The method only checks the medium of each voxel along the photon's path. If the medium differs from that in the voxel from which the photon was emitted, the authors calculate the location of the entry point in the voxel, and the length of the path is compared with the mean free path length generated by a random number. Simulations using the MCAT phantom show that the ratios of the calculation time were 1.0 for the voxel-based method, and 0.51 for the proposed method with a 256/spl times/256/spl times/256 matrix image, thereby confirming the effectiveness of the algorithm.
Tornado Intensity Estimated from Damage Path Dimensions
Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242
Tornado intensity estimated from damage path dimensions.
Elsner, James B; Jagger, Thomas H; Elsner, Ian J
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.
Daugherty, Ana M.; Raz, Naftali
2016-01-01
Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18–77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits. PMID:27659539
Daugherty, Ana M; Raz, Naftali
2017-02-01
Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18-77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits. Copyright © 2016 Elsevier Inc. All rights reserved.
Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald
2017-11-01
Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Effect of repetitive pecking at working length for glide path preparation using G-file.
Ha, Jung-Hong; Jeon, Hyo-Jin; Abed, Rashid El; Chang, Seok-Woo; Kim, Sung-Kyo; Kim, Hyeon-Cheol
2015-05-01
Glide path preparation is recommended to reduce torsional failure of nickel-titanium (NiTi) rotary instruments and to prevent root canal transportation. This study evaluated whether the repetitive insertions of G-files to the working length maintain the apical size as well as provide sufficient lumen as a glide path for subsequent instrumentation. The G-file system (Micro-Mega) composed of G1 and G2 files for glide path preparation was used with the J-shaped, simulated resin canals. After inserting a G1 file twice, a G2 file was inserted to the working length 1, 4, 7, or 10 times for four each experimental group, respectively (n = 10). Then the canals were cleaned by copious irrigation, and lubricated with a separating gel medium. Canal replicas were made using silicone impression material, and the diameter of the replicas was measured at working length (D0) and 1 mm level (D1) under a scanning electron microscope. Data was analysed by one-way ANOVA and post-hoc tests (p = 0.05). The diameter at D0 level did not show any significant difference between the 1, 2, 4, and 10 times of repetitive pecking insertions of G2 files at working length. However, 10 times of pecking motion with G2 file resulted in significantly larger canal diameter at D1 (p < 0.05). Under the limitations of this study, the repetitive insertion of a G2 file up to 10 times at working length created an adequate lumen for subsequent apical shaping with other rotary files bigger than International Organization for Standardization (ISO) size 20, without apical transportation at D0 level.
Root canal anatomy preservation of WaveOne reciprocating files with or without glide path.
Berutti, Elio; Paolino, Davide Salvatore; Chiandussi, Giorgio; Alovisi, Mario; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano
2012-01-01
This study evaluated the influence of glide path on canal curvature and axis modification after instrumentation with WaveOne Primary reciprocating files. Thirty ISO 15, 0.02 taper Endo Training Blocks were used. In group 1, glide path was created with PathFile 1, 2, and 3 at working length, whereas in group 2, glide path was not performed. In both groups, canals were shaped with WaveOne Primary reciprocating files at working length. Preinstrumentation and postinstrumentation digital images were superimposed and processed with Matlab r2010b software to analyze the curvature radius ratio (CRr) and the relative axis error (rAe), representing canal curvature modification. Data were analyzed with 1-way balanced analyses of variance at 2 levels (P < .05). Glide path was found to be extremely significant for both CRr parameter (F = 9.59; df = 1; P = .004) and rAe parameter (F = 13.55; df = 1; P = .001). Canal modifications seem to be significantly reduced when previous glide path is performed by using the new WaveOne nickel-titanium single-file system. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Path optimization with limited sensing ability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sung Ha, E-mail: kang@math.gatech.edu; Kim, Seong Jun, E-mail: skim396@math.gatech.edu; Zhou, Haomin, E-mail: hmzhou@math.gatech.edu
2015-10-15
We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducingmore » its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.« less
Slant Path Low Visibility Atmospheric Conditions.
1980-09-01
situation. a) An optical propagation slant test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude...transmission measure - ments which are close to 100% and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in...is available for measurement of backscatter cross section along the chosen transmissometer path . 3. Rough Cross Cut of the Works unde Contract in
2013-09-01
investigated using recent results from random matrix theory. Equivalence is established between PMR networks without direct-path signals and passive...approach ignores a potentially useful source of information about the unknown transmit signals . This is particularly true in high-DNR scenarios, in...which the direct-path signal provides a high-quality reference that can be used for (noisy) matched filtering, as in the conventional approach. Thus
Dividing the Force Concept Inventory into two equivalent half-length tests
NASA Astrophysics Data System (ADS)
Han, Jing; Bao, Lei; Chen, Li; Cai, Tianfang; Pi, Yuan; Zhou, Shaona; Tu, Yan; Koenig, Kathleen
2015-06-01
The Force Concept Inventory (FCI) is a 30-question multiple-choice assessment that has been a building block for much of the physics education research done today. In practice, there are often concerns regarding the length of the test and possible test-retest effects. Since many studies in the literature use the mean score of the FCI as the primary variable, it would be useful then to have different shorter tests that can produce FCI-equivalent scores while providing the benefits of being quicker to administer and overcoming the test-retest effects. In this study, we divide the 1995 version of the FCI into two half-length tests; each contains a different subset of the original FCI questions. The two new tests are shorter, still cover the same set of concepts, and produce mean scores equivalent to those of the FCI. Using a large quantitative data set collected at a large midwestern university, we statistically compare the assessment features of the two half-length tests and the full-length FCI. The results show that the mean error of equivalent scores between any two of the three tests is within 3%. Scores from all tests are well correlated. Based on the analysis, it appears that the two half-length tests can be a viable option for score based assessment that need to administer tests quickly or need to measure short-term gains where using identical pre- and post-test questions is a concern.
On the optical path length in refracting media
NASA Astrophysics Data System (ADS)
Hasbun, Javier E.
2018-04-01
The path light follows as it travels through a substance depends on the substance's index of refraction. This path is commonly known as the optical path length (OPL). In geometrical optics, the laws of reflection and refraction are simple examples for understanding the path of light travel from source to detector for constant values of the traveled substances' refraction indices. In more complicated situations, the Euler equation can be quite useful and quite important in optics courses. Here, the well-known Euler differential equation (EDE) is used to obtain the OPL for several index of refraction models. For pedagogical completeness, the OPL is also obtained through a modified Monte Carlo (MC) method, versus which the various results obtained through the EDE are compared. The examples developed should be important in projects involving undergraduate as well as graduate students in an introductory optics course. A simple matlab script (program) is included that can be modified by students who wish to pursue the subject further.
Association of Axial Length With Risk of Uncorrectable Visual Impairment for Europeans With Myopia.
Tideman, J Willem L; Snabel, Margaretha C C; Tedja, Milly S; van Rijn, Gwyneth A; Wong, King T; Kuijpers, Robert W A M; Vingerling, Johannes R; Hofman, Albert; Buitendijk, Gabriëlle H S; Keunen, Jan E E; Boon, Camiel J F; Geerards, Annette J M; Luyten, Gregorius P M; Verhoeven, Virginie J M; Klaver, Caroline C W
2016-12-01
Myopia (ie, nearsightedness) is becoming the most common eye disorder to cause blindness in younger persons in many parts of the world. Visual impairment due to myopia is associated with structural changes of the retina and the globe because of elongation of the eye axis. How axial length-a sum of the anterior chamber depth, lens thickness, and vitreous chamber depth-and myopia relate to the development of visual impairment over time is unknown. To evaluate the association between axial length, spherical equivalent, and the risk of visual impairment and to make projections of visual impairment for regions with high prevalence rates. This cross-sectional study uses population-based data from the Rotterdam Study I (1990 to 1993), II (2000 to 2002), and III (2006 to 2008) and the Erasmus Rucphen Family Study (2002 to 2005) as well as case-control data from the Myopia Study (2010 to 2012) from the Netherlands. In total, 15 404 individuals with data on spherical equivalent and 9074 individuals with data on axial length were included in the study; right eyes were used for analyses. Data were analyzed from September 2014 to May 2016. Visual impairment and blindness (defined according to the World Health Organization criteria as a visual acuity less than 0.3) and predicted rates of visual impairment specifically for persons with myopia. Of the 15 693 individuals included in this study, the mean (SD) age was 61.3 (11.4) years, and 8961 (57.1%) were female. Axial length ranged from 15.3 to 37.8 mm; 819 individuals had an axial length of 26 mm or greater. Spherical equivalent ranged from -25 to +14 diopters; 796 persons had high myopia (ie, a spherical equivalent of -6 diopters or less). The prevalence of visual impairment varied from 1.0% to 4.1% in the population-based studies, was 5.4% in the Myopia Study, and was 0.3% in controls. The prevalence of visual impairment rose with increasing axial length and spherical equivalent, with a cumulative incidence (SE) of visual impairment of 3.8% (1.3) for participants aged 75 years with an axial length of 24 to less than 26 mm and greater than 90% (8.1) with an axial length of 30 mm or greater. The cumulative risk (SE) of visual impairment was 5.7% (1.3) for participants aged 60 years and 39% (4.9) for those aged 75 years with a spherical equivalent of -6 diopters or less. Projections of these data suggest that visual impairment will increase 7- to 13-fold by 2055 in high-risk areas. This study demonstrated that visual impairment is associated with axial length and spherical equivalent and may be unavoidable at the most extreme values in this population. Developing strategies to prevent the development of myopia and its complications could help to avoid an increase of visual impairment in the working-age population.
O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram
2018-03-01
We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.
1990-01-01
A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.
NASA Astrophysics Data System (ADS)
Aasen, Ailo; Blokhuis, Edgar M.; Wilhelmsen, Øivind
2018-05-01
The curvature dependence of the surface tension can be described by the Tolman length (first-order correction) and the rigidity constants (second-order corrections) through the Helfrich expansion. We present and explain the general theory for this dependence for multicomponent fluids and calculate the Tolman length and rigidity constants for a hexane-heptane mixture by use of square gradient theory. We show that the Tolman length of multicomponent fluids is independent of the choice of dividing surface and present simple formulae that capture the change in the rigidity constants for different choices of dividing surface. For multicomponent fluids, the Tolman length, the rigidity constants, and the accuracy of the Helfrich expansion depend on the choice of path in composition and pressure space along which droplets and bubbles are considered. For the hexane-heptane mixture, we find that the most accurate choice of path is the direction of constant liquid-phase composition. For this path, the Tolman length and rigidity constants are nearly linear in the mole fraction of the liquid phase, and the Helfrich expansion represents the surface tension of hexane-heptane droplets and bubbles within 0.1% down to radii of 3 nm. The presented framework is applicable to a wide range of fluid mixtures and can be used to accurately represent the surface tension of nanoscopic bubbles and droplets.
Multiple paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene; Wiegand, Thomas; Mark, Gloria
1987-01-01
The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.
Tofte, Josef N; Westerlind, Brian O; Martin, Kevin D; Guetschow, Brian L; Uribe-Echevarria, Bastián; Rungprai, Chamnanni; Phisitkul, Phinit
2017-03-01
To validate the knee, shoulder, and virtual Fundamentals of Arthroscopic Training (FAST) modules on a virtual arthroscopy simulator via correlations with arthroscopy case experience and postgraduate year. Orthopaedic residents and faculty from one institution performed a standardized sequence of knee, shoulder, and FAST modules to evaluate baseline arthroscopy skills. Total operation time, camera path length, and composite total score (metric derived from multiple simulator measurements) were compared with case experience and postgraduate level. Values reported are Pearson r; alpha = 0.05. 35 orthopaedic residents (6 per postgraduate year), 2 fellows, and 3 faculty members (2 sports, 1 foot and ankle), including 30 male and 5 female residents, were voluntarily enrolled March to June 2015. Knee: training year correlated significantly with year-averaged knee composite score, r = 0.92, P = .004, 95% confidence interval (CI) = 0.84, 0.96; operation time, r = -0.92, P = .004, 95% CI = -0.96, -0.84; and camera path length, r = -0.97, P = .0004, 95% CI = -0.98, -0.93. Knee arthroscopy case experience correlated significantly with composite score, r = 0.58, P = .0008, 95% CI = 0.27, 0.77; operation time, r = -0.54, P = .002, 95% CI = -0.75, -0.22; and camera path length, r = -0.62, P = .0003, 95% CI = -0.8, -0.33. Shoulder: training year correlated strongly with average shoulder composite score, r = 0.90, P = .006, 95% CI = 0.81, 0.95; operation time, r = -0.94, P = .001, 95% CI = -0.97, -0.89; and camera path length, r = -0.89, P = .007, 95% CI = -0.95, -0.80. Shoulder arthroscopy case experience correlated significantly with average composite score, r = 0.52, P = .003, 95% CI = 0.2, 0.74; strongly with operation time, r = -0.62, P = .0002, 95% CI = -0.8, -0.33; and camera path length, r = -0.37, P = .044, 95% CI = -0.64, -0.01, by training year. FAST: training year correlated significantly with 3 combined FAST activity average composite scores, r = 0.81, P = .0279, 95% CI = 0.65, 0.90; operation times, r = -0.86, P = .012, 95% CI = -0.93, -0.74; and camera path lengths, r = -0.85, P = .015, 95% CI = -0.92, -0.72. Total arthroscopy cases performed did not correlate significantly with overall FAST performance. We found significant correlations between both training year and knee and shoulder arthroscopy experience when compared with performance as measured by composite score, camera path length, and operation time during a simulated diagnostic knee and shoulder arthroscopy, respectively. Three FAST activities demonstrated significant correlations with training year but not arthroscopy case experience as measured by composite score, camera path length, and operation time. We attempt to validate an arthroscopy simulator that could be used to supplement arthroscopy skills training for orthopaedic residents. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana
2013-09-11
To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (-0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (-0.124 μm/D). When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation.
2014-01-01
Background A balance test provides important information such as the standard to judge an individual’s functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Methods Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). Results The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. Conclusion The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment. PMID:24912769
Park, Dae-Sung; Lee, GyuChang
2014-06-10
A balance test provides important information such as the standard to judge an individual's functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment.
Risk-Hedged Approach for Re-Routing Air Traffic Under Weather Uncertainty
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Bilimoria, Karl D.
2016-01-01
This presentation corresponds to: our paper explores a new risk-hedged approach for re-routing air traffic around forecast convective weather. In this work, flying through a more likely weather instantiation is considered to pose a higher level of risk. Current operational practice strategically plans re-routes to avoid only the most likely (highest risk) weather instantiation, and then tactically makes any necessary adjustments as the weather evolves. The risk-hedged approach strategically plans re-routes by minimizing the risk-adjusted path length, incorporating multiple possible weather instantiations with associated likelihoods (risks). The resulting model is transparent and is readily analyzed for realism and treated with well-understood shortest-path algorithms. Risk-hedged re-routes are computed for some example weather instantiations. The main result is that in some scenarios, relative to an operational-practice proxy solution, the risk-hedged solution provides the benefits of lower risk as well as shorter path length. In other scenarios, the benefits of the risk-hedged solution are ambiguous, because the solution is characterized by a tradeoff between risk and path length. The risk-hedged solution can be executed in those scenarios where it provides a clear benefit over current operational practice.
Laser Radar Through the Window (LRTW) Coordinate Correction Method
NASA Technical Reports Server (NTRS)
Hadjimichael, Theodore John (Inventor); Ohl, IV, Raymond George (Inventor); Hayden, Joseph Ethan (Inventor); Kubalak, David Albert (Inventor); Eegholm, Bente Hoffmann (Inventor); Telfer, Randal Crawford (Inventor); Coulter, Phillip (Inventor)
2015-01-01
A method for corrections of measurements of points of interests measured by beams of radiation propagating through stratified media including performance of ray-tracing of at least one ray lunched from a metrology instrument in a direction of an apparent point of interest, calculation a path length of the ray through stratified medium, and determination of coordinates of true position of the point interest using the at least one path length and the direction of propagation of the ray.
An improved global dynamic routing strategy for scale-free network with tunable clustering
NASA Astrophysics Data System (ADS)
Sun, Lina; Huang, Ning; Zhang, Yue; Bai, Yannan
2016-08-01
An efficient routing strategy can deliver packets quickly to improve the network capacity. Node congestion and transmission path length are inevitable real-time factors for a good routing strategy. Existing dynamic global routing strategies only consider the congestion of neighbor nodes and the shortest path, which ignores other key nodes’ congestion on the path. With the development of detection methods and techniques, global traffic information is readily available and important for the routing choice. Reasonable use of this information can effectively improve the network routing. So, an improved global dynamic routing strategy is proposed, which considers the congestion of all nodes on the shortest path and incorporates the waiting time of the most congested node into the path. We investigate the effectiveness of the proposed routing for scale-free network with different clustering coefficients. The shortest path routing strategy and the traffic awareness routing strategy only considering the waiting time of neighbor node are analyzed comparatively. Simulation results show that network capacity is greatly enhanced compared with the shortest path; congestion state increase is relatively slow compared with the traffic awareness routing strategy. Clustering coefficient increase will not only reduce the network throughput, but also result in transmission average path length increase for scale-free network with tunable clustering. The proposed routing is favorable to ease network congestion and network routing strategy design.
Trajectory specification for high capacity air traffic control
NASA Technical Reports Server (NTRS)
Paielli, Russell A. (Inventor)
2010-01-01
Method and system for analyzing and processing information on one or more aircraft flight paths, using a four-dimensional coordinate system including three Cartesian or equivalent coordinates (x, y, z) and a fourth coordinate .delta. that corresponds to a distance estimated along a reference flight path to a nearest reference path location corresponding to a present location of the aircraft. Use of the coordinate .delta., rather than elapsed time t, avoids coupling of along-track error into aircraft altitude and reduces effects of errors on an aircraft landing site. Along-track, cross-track and/or altitude errors are estimated and compared with a permitted error bounding space surrounding the reference flight path.
NASA Astrophysics Data System (ADS)
Khadjiev, Djavvat; Ören, Idri˙s; Pekşen, Ömer
Let E2 be the 2-dimensional Euclidean space, LSim(2) be the group of all linear similarities of E2 and LSim+(2) be the group of all orientation-preserving linear similarities of E2. The present paper is devoted to solutions of problems of global G-equivalence of paths and curves in E2 for the groups G = LSim(2),LSim+(2). Complete systems of global G-invariants of a path and a curve in E2 are obtained. Existence and uniqueness theorems are given. Evident forms of a path and a curve with the given global invariants are obtained.
NASA Astrophysics Data System (ADS)
Moon, Kang Seok; Choi, Jung Hoon; Choi, Dong-June; Kim, Sun Ho; Hyo Ha, Man; Nam, Hyo-Jin; Kim, Min Soo
2008-12-01
This paper presents a method for analyzing the refill process of a piezoelectric inkjet printing head with a high firing frequency for color filter manufacturing. Theoretical and experimental studies on the equivalent length (Leq) versus jetting characteristics were performed. The new model has shown quantitatively the same result compared with a commercialized simulation code. Also it is identified that the refill time increases with the equivalent liquid length (Leq) because the viscous force increases. The inkjet printing head has been designed with a lumped model analysis and fabricated with a silicon wafer (1 0 0) by a MEMS process. To investigate how the equivalent length (Leq) influences the firing frequency, an experiment was conducted using a stroboscope. In the case of colorant ink, it is possible to eject an ink droplet up to 5 kHz with a 40 pl drop volume. On the other hand, the firing frequency calculated with the new model is about 3 kHz under the condition of the equivalent liquid length (Leq), 250 µm. The difference between the new model and experiment may be a result of a mismatch of initial meniscus position due to the meniscus oscillation. Experimentally the meniscus oscillation is observed through an optical measurement with a visualization apparatus and a transparent nozzle. Hence the efficiency of the new model may be enhanced in a high viscosity range. The methods for increasing the firing frequency are to reduce the equivalent length (Leq) and to modify the ink property. Because the former tends to decrease a viscous loss and the latter tends to increase a viscous damping, two parameters should be combined adequately within an allowable drop volume.
A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels
NASA Astrophysics Data System (ADS)
Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew
2018-02-01
We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.
Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments
NASA Astrophysics Data System (ADS)
Makri, Nancy
2017-04-01
The iterative decomposition of the blip-summed path integral [N. Makri, J. Chem. Phys. 141, 134117 (2014)] is described. The starting point is the expression of the reduced density matrix for a quantum system interacting with a harmonic dissipative bath in the form of a forward-backward path sum, where the effects of the bath enter through the Feynman-Vernon influence functional. The path sum is evaluated iteratively in time by propagating an array that stores blip configurations within the memory interval. Convergence with respect to the number of blips and the memory length yields numerically exact results which are free of statistical error. In situations of strongly dissipative, sluggish baths, the algorithm leads to a dramatic reduction of computational effort in comparison with iterative path integral methods that do not implement the blip decomposition. This gain in efficiency arises from (i) the rapid convergence of the blip series and (ii) circumventing the explicit enumeration of between-blip path segments, whose number grows exponentially with the memory length. Application to an asymmetric dissipative two-level system illustrates the rapid convergence of the algorithm even when the bath memory is extremely long.
Measurement of refractive index of photopolymer for holographic gratings
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko
2007-02-01
We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.
Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...
2017-05-16
This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less
The GLC8 - A miniature low cost ring laser gyroscope
NASA Astrophysics Data System (ADS)
Godart, D.-F.; Peghaire, J.-P.
SAGEM is enlarging its family of ring laser gyros (RLG) which already includes a triangular 32-cm path-length gyro and a square 16-cm path-length gyro, in order to meet the increasing demand for low cost, medium accuracy strap-down inertial measurement units for applications such as short- and medium-range tactical missiles as well as aided navigation systems for aircrafts and land vehicles. Based on the experience acquired in the past 13 years in the RLG field, and especially in mirror manufacturing, SAGEM developed the GLC8 which has a square 8-cm path length cavity, central piezoelectric dither. It incorporates two cathodes, a single anode, and is technologically designed to minimize production-costs while optimizing the performance to global device size ratio. This gyro is characterized by a bias and a scale-factor stability respectively better than 0.5 deg/h and 100 ppm (1 sigma), and has an operating lifetime compatible with the most demanding relevant applications and a high robustness to mechanical environments.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, T.P.; Jannson, J.L.; Yeung, P.C.
1990-05-15
A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.
NASA Astrophysics Data System (ADS)
Han, Bin
This dissertation describes a research project to test the clinical utility of a time-resolved proton radiographic (TRPR) imaging system by performing comprehensive Monte Carlo simulations of a physical device coupled with realistic lung cancer patient anatomy defined by 4DCT for proton therapy. A time-resolved proton radiographic imaging system was modeled through Monte Carlo simulations. A particle-tracking feature was employed to evaluate the performance of the proton imaging system, especially in its ability to visualize and quantify proton range variations during respiration. The Most Likely Path (MLP) algorithm was developed to approximate the multiple Coulomb scattering paths of protons for the purpose of image reconstruction. Spatial resolution of ˜ 1 mm and range resolution of 1.3% of the total range were achieved using the MLP algorithm. Time-resolved proton radiographs of five patient cases were reconstructed to track tumor motion and to calculate water equivalent length variations. By comparing with direct 4DCT measurement, the accuracy of tumor tracking was found to be better than 2 mm in five patient cases. Utilizing tumor tracking information to reduce margins to the planning target volume, a gated treatment plan was compared with un-gated treatment plan. The equivalent uniform dose (EUD) and the normal tissue complication probability (NTCP) were used to quantify the gain in the quality of treatments. The EUD of the OARs was found to be reduced up to 11% and the corresponding NTCP of organs at risk (OARs) was found to be reduced up to 16.5%. These results suggest that, with image guidance by proton radiography, dose to OARs can be reduced and the corresponding NTCPs can be significantly reduced. The study concludes that the proton imaging system can accurately track the motion of the tumor and detect the WEL variations, leading to potential gains in using image-guided proton radiography for lung cancer treatments.
NASA Astrophysics Data System (ADS)
Jagt, Thyrza; Breedveld, Sebastiaan; van de Water, Steven; Heijmen, Ben; Hoogeman, Mischa
2017-06-01
Proton therapy is very sensitive to daily density changes along the pencil beam paths. The purpose of this study is to develop and evaluate an automated method for adaptation of IMPT plans to compensate for these daily tissue density variations. A two-step restoration method for ‘densities-of-the-day’ was created: (1) restoration of spot positions (Bragg peaks) by adapting the energy of each pencil beam to the new water equivalent path length; and (2) re-optimization of pencil beam weights by minimizing the dosimetric difference with the planned dose distribution, using a fast and exact quadratic solver. The method was developed and evaluated using 8-10 repeat CT scans of 10 prostate cancer patients. Experiments demonstrated that giving a high weight to the PTV in the re-optimization resulted in clinically acceptable restorations. For all scans we obtained V 95% ⩾ 98% and V 107% ⩽ 2%. For the bladder, the differences between the restored and the intended treatment plan were below +2 Gy and +2%-point. The rectum differences were below +2 Gy and +2%-point for 90% of the scans. In the remaining scans the rectum was filled with air, which partly overlapped with the PTV. The air cavity distorted the Bragg peak resulting in less favorable rectum doses.
Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Jürgen
2011-01-01
The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550–700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300–400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum – most likely along Pt grain boundaries – as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum. PMID:22210951
Comparison of OLYMPUS beacon and radiometric attenuation measurements at Blacksburg, Virginia
NASA Technical Reports Server (NTRS)
Snider, J. B.; Jacobson, M. D.; Beeler, R. H.; Hazen, D. A.
1991-01-01
Measurements of attenuation of the 20 and 30 GHz beacons onboard the OLYMPUS satellite are compared to simultaneous observations of atmospheric attenuation by a multichannel microwave radiometer along the same path. Departures from high correlation between the two measurements are believed to be related to differences in antenna beamwidths. Mean equivalent zenith attenuations derived from the slant path data are compared to zenith observations made at previous locations.
Path integration in tactile perception of shapes.
Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O
2014-11-01
Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect. Copyright © 2014 Elsevier B.V. All rights reserved.
Intensity measurements for the /2, O/ gamma-band of O2, b 1Sigma-g/+/ - X 3Sigma-g/-/
NASA Technical Reports Server (NTRS)
Miller, J. H.; Giver, L. P.; Boese, R. W.
1976-01-01
Line intensities for the P sub P and P sub Q branches of the (2-O) vibrational band of the magnetic dipole electronic transition for the oxygen red system at 6280 A were measured, and the sum of the R sub R and R sub Q branch intensities was taken. A large number of repetitive spectral scans were required for accuracy, because of low absorption values even at optical path lengths from 300 to 600 m. A total of 557 individual measurements of P-branch lines yielded an intensity value for the P-branches, and equivalent widths for 24 spectral scans yielded an intensity value for the R-branch. R-branch to P-branch intensity ratios were taken for the A-band, B-band, and gamma-band (respectively, O-O at 7620 A, 1-O at 6880 A, and 2-O at 6280 A). Intensities for some rotational lines are found, and effects of combined rotation-vibration interaction are probed.
MEMS cantilever sensor for THz photoacoustic chemical sensing and pectroscopy
NASA Astrophysics Data System (ADS)
Glauvitz, Nathan E.
Sensitive Microelectromechanical System (MEMS) cantilever designs were modeled, fabricated, and tested to measure the photoacoustic (PA) response of gasses to terahertz (THz) radiation. Surface and bulk micromachining technologies were employed to create the extremely sensitive devices that could detect very small changes in pressure. Fabricated devices were then tested in a custom made THz PA vacuum test chamber where the cantilever deflections caused by the photoacoustic effect were measured with a laser interferometer and iris beam clipped methods. The sensitive cantilever designs achieved a normalized noise equivalent absorption coefficient of 2.83x10-10 cm-1 W Hz-½ using a 25 microW radiation source power and a 1 s sampling time. Traditional gas phase molecular spectroscopy absorption cells are large and bulky. The outcome of this research resulted was a photoacoustic detection method that was virtually independent of the absorption path-length, which allowed the chamber dimensions to be greatly reduced, leading to the possibility of a compact, portable chemical detection and spectroscopy system
2001-12-13
6-18 6.13. Apollonius Circle for the Case of Two Unequal Power Radars . . . 6-20 6.14. Solution Triangle...Voronoi edge is an Apollonius circle [32, 19]. In this section, we are concerned with the optimality of the Voronoi path for the two radar exposure...Comparison of Cost vs. Path Length for Constrained Trajectories Around and Between Two Radars 6-18 from the two radars is an Apollonius circle
NASA Technical Reports Server (NTRS)
Cathcart, J. R.; Frank, A. J.; Massaglia, J. L.
1968-01-01
Computer program analyzes the entries and planetary trajectories of space vehicles. It obtains the equivalence of altitude and flight path angle, respectively, to acceleration load factor with respect to velocity for a given inertial velocity.
NASA Technical Reports Server (NTRS)
Butera, M. K.
1981-01-01
An automatic technique has been developed to measure marsh plant production by inference from a species classification derived from Landsat MSS data. A separate computer technique has been developed to calculate the transport path length of detritus and nutrients from their point of origin in the marsh to the shoreline from Landsat data. A nutrient availability indicator, the ratio of production to transport path length, was derived for each marsh-identified Landsat cell. The use of a data base compatible with the Landsat format facilitated data handling and computations.
Non-invasive method of determining diastolic intracranial pressure
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor); Hargens, Alan R. (Inventor)
2004-01-01
A method is presented for determining diastolic intracranial pressure (ICP) in a patient. A first change in the length of a path across the skull of the patient caused by a known change in ICP is measured and used to determine an elasticity constant for the patient. Next, a second change in the length of the path across the patient's skull occurring between systolic and diastolic portions of the patient's heartbeat is measured. The patient's diastolic ICP is a function of the elasticity constant and the second change.
NASA Technical Reports Server (NTRS)
Almeida, O. G.
1972-01-01
Measurements of the total electron content of the plasmasphere up to geostationary heights were made using the beacon transmitters aboard the satellite ATS-3. The technique employed is a combination of the phase-path length difference and the Faraday rotation angle methods. Such a combination permits very accurate determination of the integration constant necessary to convert phase-path length difference data into information about the absolute value of the columnar content.
LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean
2011-04-21
It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Chopra, I.; Sivaneri, N.
1982-01-01
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.
Gil, Manuel
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263
Path length differencing and energy conservation of the S[sub N] Boltzmann/Spencer-Lewis equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.; Monahan, S.P.
It is shown that the S[sub N] Boltzmann/Spencer-Lewis equations conserve energy locally if and only if they satisfy particle balance and diamond differencing is used in path length. In contrast, the spatial differencing schemes have no bearing on the energy balance. Energy is conserved globally if it is conserved locally and the multigroup cross sections are energy conserving. Although the coupled electron-photon cross sections generated by CEPXS conserve particles and charge, they do not precisely conserve energy. It is demonstrated that these cross sections can be adjusted such that particles, charge, and energy are conserved. Finally, since a conventional negativemore » flux fixup destroys energy balance when applied to path legend, a modified fixup scheme that does not is presented.« less
Lodeiro, Pablo; Achterberg, Eric P; El-Shahawi, Mohammad S
2017-03-01
Silver nanoparticles (AgNPs) are emerging contaminants that are difficult to detect in natural waters. UV-visible spectrophotometry is a simple technique that allows detection of AgNPs through analysis of their characteristic surface plasmon resonance band. The detection limit for nanoparticles using up to 10cm path length cuvettes with UV-visible spectrophotometry is in the 0.1-10ppm range. This detection limit is insufficiently low to observe AgNPs in natural environments. Here we show how the use of capillary cells with an optical path length up to 200cm, forms an excellent technique for rapid detection and quantification of non-aggregated AgNPs at ppb concentrations in complex natural matrices such as seawater. Copyright © 2016 Elsevier B.V. All rights reserved.
A link-adding strategy for transport efficiency of complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong; Zhang, Shuai
2016-12-01
The transport efficiency is one of the critical parameters to evaluate the performance of a network. In this paper, we propose an improved efficient (IE) strategy to enhance the network transport efficiency of complex networks by adding a fraction of links to an existing network based on the node’s local degree centrality and the shortest path length. Simulation results show that the proposed strategy can bring better traffic capacity and shorter average shortest path length than the low-degree-first (LDF) strategy under the shortest path routing protocol. It is found that the proposed strategy is beneficial to the improvement of overall traffic handling and delivering ability of the network. This study can alleviate the congestion in networks, and is helpful to design and optimize realistic networks.
Path statistics, memory, and coarse-graining of continuous-time random walks on networks
Kion-Crosby, Willow; Morozov, Alexandre V.
2015-01-01
Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. PMID:26646868
49 CFR 38.29 - Interior circulation, handrails and stanchions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... length with front-door lifts or ramps, vertical stanchions immediately behind the driver shall either... of 22 feet in length, the minimum interior height along the path from the lift to the securement location shall be 68 inches. For vehicles of 22 feet in length or less, the minimum interior height from...
Chon, Sang-Uk; Nelson, C Jerry; Coutts, John H
2003-11-01
Reseeding of alfalfa is affected until autotoxic chemicals break down or are dispersed, often requiring a year or more. Bioassays of seed germination and early seedling growth, on agar medium in petri dishes, were conducted to evaluate autotoxic responses of 20 alfalfa germplasms to water-soluble extracts of alfalfa leaf tissue. Root length, 120 hr after placing imbibed seed on agar, was more sensitive to the autotoxin(s) than was hypocotyl length, germination speed, and final germination percentage. Path coefficient analyses showed variation in root length had 7-17 times more effect than variation in hypocotyl length in determining autotoxic effects on total seedling length. Although variations in seed size and germination rate were negatively associated (P < 0.05) with final root length, the autotoxin had little effect on these factors relative to that on root length. Germplasms in the control differed (P < 0.05) in root length, requiring tolerance to be evaluated as percent of control. Germplasms, as percent of control, differed significantly (P < 0.05) at extract concentrations of 1.0 and 4.0 g l(-1), but the range and LSD were more favorable for selection at 1.0 g l(-1). Root length is appropriate for genetic assessments of tolerance to the autotoxin when expressed as percent of control.
MEAN FREE PATH OF HOT ELECTRONS AND HOLES IN METALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, R.N.; Wooten, F.; Spicer, W.E.
1963-01-01
The mean free paths and attenuation lengths of hot electrons and holes in metals are calculated by Morte Cario methods. The results are compared with experimental results for electrons in Au,-Ag, Cu, and Pd and holes in Au. (T.F.H.)
HIGH SPEED KERR CELL FRAMING CAMERA
Goss, W.C.; Gilley, L.F.
1964-01-01
The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)
Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers
NASA Astrophysics Data System (ADS)
Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad
2015-03-01
White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.
Kinetic simulations of gas breakdown in the dense plasma focus
NASA Astrophysics Data System (ADS)
Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.
2017-06-01
The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.
Fast orthogonal transforms and generation of Brownian paths
Leobacher, Gunther
2012-01-01
We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length n can be generated in O(nlog(n)) floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples. PMID:23471545
Automatic Alignment of Displacement-Measuring Interferometer
NASA Technical Reports Server (NTRS)
Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer
2006-01-01
A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.
Equivalence of equations describing trace element distribution during equilibrium partial melting
NASA Technical Reports Server (NTRS)
Consolmagno, G. J.; Drake, M. J.
1976-01-01
It is shown that four equations used for calculating the evolution of trace-element abundances during equilibrium partial melting are mathematically equivalent. The equations include those of Hertogen and Gijbels (1976), Shaw (1970), Schilling (1971), and O'Nions and Clarke (1972). The general form to which all these equations reduce is presented, and an analysis is performed to demonstrate their mathematical equivalence. It is noted that the utility of the general equation flows from the nature of equilibrium (i.e., the final state is independent of the path by which that state is attained).
Mezzasalma, Stefano A
2007-12-04
A special theory of Brownian relativity was previously proposed to describe the universal picture arising in ideal polymer solutions. In brief, it redefines a Gaussian macromolecule in a 4-dimensional diffusive spacetime, establishing a (weak) Lorentz-Poincaré invariance between liquid and polymer Einstein's laws for Brownian movement. Here, aimed at inquiring into the effect of correlations, we deepen the extension of the special theory to a general formulation. The previous statistical equivalence, for dynamic trajectories of liquid molecules and static configurations of macromolecules, and rather obvious in uncorrelated systems, is enlarged by a more general principle of equivalence, for configurational statistics and geometrodynamics. Accordingly, the three geodesic motion, continuity, and field equations could be rewritten, and a number of scaling behaviors were recovered in a spacetime endowed with general static isotropic metric (i.e., for equilibrium polymer solutions). We also dealt with universality in the volume fraction and, unexpectedly, found that a hyperscaling relation of the form, (average size) x (diffusivity) x (viscosity)1/2 ~f(N0, phi0) is fulfilled in several regimes, both in the chain monomer number (N) and polymer volume fraction (phi). Entangled macromolecular dynamics was treated as a geodesic light deflection, entaglements acting in close analogy to the field generated by a spherically symmetric mass source, where length fluctuations of the chain primitive path behave as azimuth fluctuations of its shape. Finally, the general transformation rule for translational and diffusive frames gives a coordinate gauge invariance, suggesting a widened Lorentz-Poincaré symmetry for Brownian statistics. We expect this approach to find effective applications to solutions of arbitrarily large molecules displaying a variety of structures, where the effect of geometry is more explicit and significant in itself (e.g., surfactants, lipids, proteins).
de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana
2013-01-01
Purpose. To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Methods. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. Results. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (−0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (−0.124 μm/D). Conclusions. When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation. PMID:23927893
5 CFR 337.201 - Coverage and purpose.
Code of Federal Regulations, 2011 CFR
2011-01-01
... or nonpermanent position or group of positions in the competitive service at GS-15 (or equivalent... Officer (or equivalent) at the agency headquarters level. OPM will determine the length of the direct-hire...
5 CFR 337.201 - Coverage and purpose.
Code of Federal Regulations, 2010 CFR
2010-01-01
... or nonpermanent position or group of positions in the competitive service at GS-15 (or equivalent... Officer (or equivalent) at the agency headquarters level. OPM will determine the length of the direct-hire...
Design of the Longitudinal Dispersion Compensation System for the CHARA Array
NASA Astrophysics Data System (ADS)
Berger, D. H.; Bagnuolo, W. G.
2001-05-01
In recent years, the baselines of optical and infrared interferometers have been approaching half of a kilometer in length. With increased spatial layout comes new and challenging problems to solve. One common hurdle occurs when observing objects not perpendicular to the baseline. The result is one beam with added path length that must be added to the non-delayed beam such that identical phase fronts are combined together to produce fringes. For several interferometers without the addition of costly and logistically difficult evacuated delay lines, path length equalization occurs in long buildings through the ambient air medium. This causes a beam which is spectrally dispersed along the optical axis. The undesirable consequence is decreased fringe contrast. A solution is to disperse the uncompensated beam by inserting a block of glass to match the optical path lengths for all wavelengths within the observing waveband. A single glass solution is presented for the CHARA Array. Modeling, design and fabrication methods are also considered. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, California, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University. This research is also funded in part by the Michelson Fellowship Program sponsored by Jet Propulsion Laboratory.
The effect of path length and display size on memory for spatial information.
Guérard, Katherine; Tremblay, Sébastien
2012-01-01
In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.
Multiple-Path-Length Optical Absorbance Cell
NASA Technical Reports Server (NTRS)
2001-01-01
An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,
Gadelkarim, Johnson J; Ajilore, Olusola; Schonfeld, Dan; Zhan, Liang; Thompson, Paul M; Feusner, Jamie D; Kumar, Anand; Altshuler, Lori L; Leow, Alex D
2014-05-01
In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages. PLACE consists of the following: (1) extracting community structure using top-down hierarchical binary trees, where a branch at each bifurcation denotes a collection of nodes that form a community at that level, (2) constructing and assessing mean group community structure, and (3) detecting node-level changes in community between groups. We applied PLACE and investigated the structural brain networks obtained from a sample of 25 euthymic bipolar I subjects versus 25 gender- and age-matched healthy controls. Results showed community structural differences in posterior default mode network regions, with the bipolar group exhibiting left-right decoupling. Copyright © 2013 Wiley Periodicals, Inc.
SU-E-T-455: Impact of Different Independent Dose Verification Software Programs for Secondary Check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itano, M; Yamazaki, T; Kosaka, M
2015-06-15
Purpose: There have been many reports for different dose calculation algorithms for treatment planning system (TPS). Independent dose verification program (IndpPro) is essential to verify clinical plans from the TPS. However, the accuracy of different independent dose verification programs was not evident. We conducted a multi-institutional study to reveal the impact of different IndpPros using different TPSs. Methods: Three institutes participated in this study. They used two different IndpPros (RADCALC and Simple MU Analysis (SMU), which implemented the Clarkson algorithm. RADCALC needed the input of radiological path length (RPL) computed by the TPSs (Eclipse or Pinnacle3). SMU used CT imagesmore » to compute the RPL independently from TPS). An ion-chamber measurement in water-equivalent phantom was performed to evaluate the accuracy of two IndpPros and the TPS in each institute. Next, the accuracy of dose calculation using the two IndpPros compared to TPS was assessed in clinical plan. Results: The accuracy of IndpPros and the TPSs in the homogenous phantom was +/−1% variation to the measurement. 1543 treatment fields were collected from the patients treated in the institutes. The RADCALC showed better accuracy (0.9 ± 2.2 %) than the SMU (1.7 ± 2.1 %). However, the accuracy was dependent on the TPS (Eclipse: 0.5%, Pinnacle3: 1.0%). The accuracy of RADCALC with Eclipse was similar to that of SMU in one of the institute. Conclusion: Depending on independent dose verification program, the accuracy shows systematic dose accuracy variation even though the measurement comparison showed a similar variation. The variation was affected by radiological path length calculation. IndpPro with Pinnacle3 has different variation because Pinnacle3 computed the RPL using physical density. Eclipse and SMU uses electron density, though.« less
Gauge equivalence of the Gross Pitaevskii equation and the equivalent Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Radha, R.; Kumar, V. Ramesh
2007-11-01
In this paper, we construct an equivalent spin chain for the Gross-Pitaevskii equation with quadratic potential and exponentially varying scattering lengths using gauge equivalence. We have then generated the soliton solutions for the spin components S3 and S-. We find that the spin solitons for S3 and S- can be compressed for exponentially growing eigenvalues while they broaden out for decaying eigenvalues.
High frequency modulation circuits based on photoconductive wide bandgap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less
Fast wavelength tuning techniques for external cavity lasers
Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX
2011-01-11
An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.
Hamlet, Jason R [Albuquerque, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM; Olsberg, Ronald R [Albuquerque, NM
2012-02-28
A deflate decompressor includes at least one decompressor unit, a memory access controller, a feedback path, and an output buffer unit. The memory access controller is coupled to the decompressor unit via a data path and includes a data buffer to receive the data stream and temporarily buffer a first portion the data stream. The memory access controller transfers fixed length data units of the data stream from the data buffer to the decompressor unit with reference to a memory pointer pointing into the memory buffer. The feedback path couples the decompressor unit to the memory access controller to feed back decrement values to the memory access controller for updating the memory pointer. The decrement values each indicate a number of bits unused by the decompressor unit when decoding the fixed length data units. The output buffer unit buffers a second portion of the data stream after decompression.
The Marriage of Residential Energy Codes and Rating Systems: Conflict Resolution or Just Conflict?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Zachary T.; Mendon, Vrushali V.
2014-08-21
After three decades of coexistence at a distance, model residential energy codes and residential energy rating systems have come together in the 2015 International Energy Conservation Code. At the October, 2013, International Code Council’s Public Comment Hearing, a new compliance path based on an Energy Rating Index was added to the IECC. Although not specifically named in the code, RESNET’s HERS rating system is the likely candidate Index for most jurisdictions. While HERS has been a mainstay in various beyond-code programs for many years, its direct incorporation into the most popular model energy code raises questions about the equivalence ofmore » a HERS-based compliance path and the traditional IECC performance compliance path, especially because the two approaches use different efficiency metrics, are governed by different simulation rules, and have different scopes with regard to energy impacting house features. A detailed simulation analysis of more than 15,000 house configurations reveals a very large range of HERS Index values that achieve equivalence with the IECC’s performance path. This paper summarizes the results of that analysis and evaluates those results against the specific Energy Rating Index values required by the 2015 IECC. Based on the home characteristics most likely to result in disparities between HERS-based compliance and performance path compliance, potential impacts on the compliance process, state and local adoption of the new code, energy efficiency in the next generation of homes subject to this new code, and future evolution of model code formats are discussed.« less
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
Code of Federal Regulations, 2010 CFR
2010-01-01
... fittings, or the identical water-passage design features that use the same path of water in the highest... the same path of water in the highest-flow mode. (20) With respect to water closets, which have...-foot high output lamps) with recessed double contact bases of nominal overall length of 96 inches; (4...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riza, Nabeel Agha; Perez, Frank
A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector tomore » calculate a temperature of the device.« less
On the structural properties of small-world networks with range-limited shortcut links
NASA Astrophysics Data System (ADS)
Jia, Tao; Kulkarni, Rahul V.
2013-12-01
We explore a new variant of Small-World Networks (SWNs), in which an additional parameter (r) sets the length scale over which shortcuts are uniformly distributed. When r=0 we have an ordered network, whereas r=1 corresponds to the original Watts-Strogatz SWN model. These limited range SWNs have a similar degree distribution and scaling properties as the original SWN model. We observe the small-world phenomenon for r≪1, indicating that global shortcuts are not necessary for the small-world effect. For limited range SWNs, the average path length changes nonmonotonically with system size, whereas for the original SWN model it increases monotonically. We propose an expression for the average path length for limited range SWNs based on numerical simulations and analytical approximations.
Brunyé, Tad T; Mahoney, Caroline R; Taylor, Holly A
2015-04-01
When navigating, people tend to overestimate distances when routes contain more turns, termed the route-angularity effect. Three experiments examined the source and generality of this effect. The first two experiments examined whether route-angularity effects occur while viewing maps and might be related to sex differences or sense of direction. The third experiment tested whether the route-angularity effect would occur with stimuli devoid of spatial context, reducing influences of environmental experience and visual complexity. In the three experiments, participants (N=1,552; M=32.2 yr.; 992 men, 560 women) viewed paths plotted on maps (Exps. 1 and 2) or against a blank background (Exp. 3). The depicted paths were always the same overall length, but varied in the number of turns (from 1 to 7) connecting an origin and destination. Participants were asked to estimate the time to traverse each path (Exp. 1) or the length of each path (Exps. 2 and 3). The Santa Barbara Sense of Direction questionnaire was administered to assess whether overall spatial sense of direction would be negatively related to the magnitude of the route-angularity effect. Repeated-measures analyses of variance (ANOVAs) indicated that paths with more turns elicited estimates of greater distance and travel times, whether they were depicted on maps or blank backgrounds. Linear regressions also indicated that these effects were significantly larger in those with a relatively low sense of direction. The results support the route-angularity effect and extend it to paths plotted on map-based stimuli. Furthermore, because the route-angularity effect was shown with paths plotted against blank backgrounds, route-angularity effects are not specific to understanding environments and may arise at the level of visual perception.
Analysis of transonic flow about lifting wing-body configurations
NASA Technical Reports Server (NTRS)
Barnwell, R. W.
1975-01-01
An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.
Inam, Ayesha; Tariq, Pervaiz N; Zaman, Sahira
2015-06-01
Cultural adaptation of evidence-based programmes has gained importance primarily owing to its perceived impact on the established effectiveness of a programme. To date, many researchers have proposed different frameworks for systematic adaptation process. This article presents the cultural adaptation of preschool Promoting Alternative Thinking Strategies (PATHS) curriculum for Pakistani children using the heuristic framework of adaptation (Barrera & Castro, 2006). The study was completed in four steps: information gathering, preliminary adaptation design, preliminary adaptation test and adaptation refinement. Feedbacks on programme content suggested universality of the core programme components. Suggested changes were mostly surface structure: language, presentation of materials, conceptual equivalence of concepts, training needs of implementation staff and frequency of programme delivery. In-depth analysis was done to acquire cultural equivalence. Pilot testing of the outcome measures showed strong internal consistency. The results were further discussed with reference to similar work undertaken in other cultures. © 2014 International Union of Psychological Science.
TDR method for determine IC's parameters
NASA Astrophysics Data System (ADS)
Timoshenkov, V.; Rodionov, D.; Khlybov, A.
2016-12-01
Frequency domain simulation is a widely used approach for determine integrated circuits parameters. This approach can be found in most of software tools used in IC industry. Time domain simulation approach shows intensive usage last years due to some advantages. In particular it applicable for analysis of nonlinear and nonstationary systems where frequency domain is inapplicable. Resolution of time domain systems allow see heterogeneities on distance 1mm, determine it parameters and properties. Authors used approach based on detecting reflected signals from heterogeneities - time domain reflectometry (TDR). Field effect transistor technology scaling up to 30-60nm gate length and 10nm gate dielectric, heterojunction bi-polar transistors with 10-30nm base width allows fabricate digital IC's with 20GHz clock frequency and RF-IC's with tens GHz bandwidth. Such devices and operation speed suppose transit signal by use microwave lines. There are local heterogeneities can be found inside of the signal path due to connections between different parts of signal lines (stripe line-RF-connector pin, stripe line - IC package pin). These heterogeneities distort signals that cause bandwidth decrease for RF-devices. Time domain research methods of transmission and reflected signals give the opportunities to determine heterogeneities, it properties, parameters and built up equivalent circuits. Experimental results are provided and show possibility for inductance and capacitance measurement up to 25GHz. Measurements contains result of signal path research on IC and printed circuit board (PCB) used for 12GHz RF chips. Also dielectric constant versus frequency was measured up to 35GHz.
Path Length Fluctuations Derived from Site Testing Interferometer Data
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Nessel, James A.; Morse, Jacquelynne R.
2010-01-01
To evaluate possible sites for NASA's proposed Ka-band antenna array, the NASA Glenn Research Center has constructed atmospheric phase monitors (APM) which directly measure the tropospheric phase stability. These instruments observe an unmodulated 20.2 GHz beacon signal broadcast from a geostationary satellite (Anik F2) and measure the phase difference between the signals received by the two antennas. Two APM's have been deployed, one at the NASA Deep Space Network (DSN) Tracking Complex in Goldstone, California, and the other at the NASA White Sands Complex, in Las Cruces, New Mexico. Two station-years of atmospheric phase fluctuation data have been collected at Goldstone since operations commenced in May 2007 and 0.5 station-years of data have been collected at White Sands since operations began February 2009. With identical instruments operating simultaneously, we can directly compare the phase stability at the two sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric path length fluctuations over 10 min blocks. Correlation between surface wind speed and relative humidity with interferometer phase are discussed. For 2 years, the path length fluctuations at the DSN site in Goldstone, California, have been better than 757 micrometer (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. For the 6 months of data collected at White Sands, New Mexico, the path length fluctuations have been better than 830 micrometers (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.), will be used to determine the suitability of both sites for NASA s future communication services at Ka-band using an array of antennas.
Cyclic fatigue resistance of R-Pilot, WaveOne Gold Glider, and ProGlider glide path instruments.
Keskin, Cangül; İnan, Uğur; Demiral, Murat; Keleş, Ali
2018-02-17
The aim of the present study was to compare the cyclic fatigue resistance of R-Pilot (VDW; Munich, Germany) with ProGlider (Denstply Sirona; Ballaigues, Switzerland) and WaveOne Gold Glider (Denstply Sirona; Ballaigues, Switzerland) glide path instruments. R-Pilot, ProGlider, and WaveOne Gold Glider instruments were collected (n = 15) and tested in a dynamic cyclic fatigue test device, which has an artificial canal with 60° angle of curvature and a 5-mm radius of curvature. All instruments were operated until fracture occurred, and both time to fracture (TF) and the lengths of the fractured fragments were recorded. Mean and standard deviations of TF and fragment length were calculated for each reciprocating system. TF data and fractured fragment length data were subjected to one-way ANOVA and post-hoc Tukey tests (P < 0.05). Also a Weibull analysis was performed on TF data. The cyclic fatigue resistance values of the WaveOne Gold Glider and R-Pilot were significantly higher than those of the ProGlider (P < 0.05), with no significant difference between them (P > 0.05). Weibull analysis revealed that WaveOne Gold Glider showed the highest predicted TF value for 99% survival rate, which was followed by R-Pilot and ProGlider. Regarding the length of the fractured tips, there were no significant differences among the instruments (P > 0.05). The reciprocating WaveOne Gold Glider and R-Pilot instruments had significantly higher cyclic fatigue resistance than rotary ProGlider instruments. This study reported that novel reciprocating glide path instruments exhibited higher cyclic fatigue resistance than rotating glide path instrument.
2014-06-02
the instrumentation block ..................................... 57 Table 4.1: Flame Length Results...91 Table 4.2: Five Row Flame Lengths , Blowing Ratio Sweep .......................................... 123 Table...4.3: Five Row Flame Lengths , Equivalence Ratio Sweep .................................... 124 Table 4.4: Five Row - Wall Absorption Parameter
Dominici, Nadia; Daprati, Elena; Nico, Daniele; Cappellini, Germana; Ivanenko, Yuri P; Lacquaniti, Francesco
2009-03-01
When walking, step length provides critical information on traveled distance along the ongoing path [corrected] Little is known on the role that knowledge about body dimensions plays within this process. Here we directly addressed this question by evaluating whether changes in body proportions interfere with computation of traveled distance for targets located outside the reaching space. We studied locomotion and distance estimation in an achondroplastic child (ACH, 11 yr) before and after surgical elongation of the shank segments of both lower limbs and in healthy adults walking on stilts, designed to mimic shank-segment elongation. Kinematic analysis of gait revealed that dynamic coupling of the thigh, shank, and foot segments changed substantially as a result of elongation. Step length remained unvaried, in spite of the significant increase in total limb length ( approximately 1.5-fold). These relatively shorter strides resulted from smaller oscillations of the shank segment, as would be predicted by proportional increments in limb size and not by asymmetrical segmental increment as in the present case (length of thighs was not modified). Distance estimation was measured by walking with eyes closed toward a memorized target. Before surgery, the behavior of ACH was comparable to that of typically developing participants. In contrast, following shank elongation, the ACH walked significantly shorter distances when aiming at the same targets. Comparable changes in limb kinematics, stride length, and estimation of traveled distance were found in adults wearing on stilts, suggesting that path integration errors in both cases were related to alterations in the intersegmental coordination of the walking limbs. The results are consistent with a dynamic locomotor body schema used for controlling step length and path estimation, based on inherent relationships between gait parameters and body proportions.
A parametric study of the microwave plasma-assisted combustion of premixed ethylene/air mixtures
NASA Astrophysics Data System (ADS)
Fuh, Che A.; Wu, Wei; Wang, Chuji
2017-11-01
A parametric study of microwave argon plasma assisted combustion (PAC) of premixed ethylene/air mixtures was carried out using visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy as diagnostic tools. The parameters investigated included the plasma feed gas flow rate, the plasma power, the fuel equivalence ratio and the total flow rate of the fuel/air mixture. The combustion enhancement effects were characterized by the minimum ignition power, the flame length and the fuel efficiency of the combustor. It was found that: (1) increasing the plasma feed gas flow rate resulted in a decrease in the flame length, an increase in the minimum ignition power for near stoichiometric fuel equivalence ratios and a corresponding decrease in the minimum ignition power for ultra-lean and rich fuel equivalence ratios; (2) at a constant plasma power, increasing the total flow rate of the ethylene/air mixture from 1.0 slm to 1.5 slm resulted in an increase in the flame length and a reduction in the fuel efficiency; (3) increasing the plasma power resulted in a slight increase in flame length as well as improved fuel efficiency with fewer C2(d) and CH(A) radicals present downstream of the flame; (4) increasing the fuel equivalence ratio caused an increase in flame length but at a reduced fuel efficiency when plasma power was kept constant; and (5) the ground state OH(X) number density was on the order of 1015 molecules/cm3 and was observed to drop downstream along the propagation axis of the flame at all parameters investigated. Results suggest that each of the parameters independently influences the PAC processes.
Minimum-fuel, three-dimensional flight paths for jet transports
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1985-01-01
A number of studies dealing with fuel minimization are concerned with three-dimensional flight. However, only Neuman and Kreindler (1982) consider cases involving commercial jet transports. In the latter study, only the climb-out and descent portions of complete long-range flight paths below 10,000 ft altitude have been investigated. The present investigation is concerned with the computation of minimum-fuel nonturning and turning flight paths for climb-outs from 2000 to 10,000 ft for long-range flights (greater than 50 n mi), and for complete flight paths of lengths between 5 and 50 n mi.
Application of particle swarm optimization in path planning of mobile robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In order to realize the optimal path planning of mobile robot in unknown environment, a particle swarm optimization algorithm based on path length as fitness function is proposed. The location of the global optimal particle is determined by the minimum fitness value, and the robot moves along the points of the optimal particles to the target position. The process of moving to the target point is done with MATLAB R2014a. Compared with the standard particle swarm optimization algorithm, the simulation results show that this method can effectively avoid all obstacles and get the optimal path.
NASA Astrophysics Data System (ADS)
Anisya; Yoga Swara, Ganda
2017-12-01
Padang is one of the cities prone to earthquake disaster with tsunami due to its position at the meeting of two active plates, this is, a source of potentially powerful earthquake and tsunami. Central government and most offices are located in the red zone (vulnerable areas), it will also affect the evacuation of the population during the earthquake and tsunami disaster. In this study, researchers produced a system of search nearest shelter using best-first-search method. This method uses the heuristic function, the amount of cost taken and the estimated value or travel time, path length and population density. To calculate the length of the path, researchers used method of haversine formula. The value obtained from the calculation process is implemented on a web-based system. Some alternative paths and some of the closest shelters will be displayed in the system.
NASA Astrophysics Data System (ADS)
Baumgart, M.; Druml, N.; Consani, M.
2018-05-01
This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens) are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.
Truncation Depth Rule-of-Thumb for Convolutional Codes
NASA Technical Reports Server (NTRS)
Moision, Bruce
2009-01-01
In this innovation, it is shown that a commonly used rule of thumb (that the truncation depth of a convolutional code should be five times the memory length, m, of the code) is accurate only for rate 1/2 codes. In fact, the truncation depth should be 2.5 m/(1 - r), where r is the code rate. The accuracy of this new rule is demonstrated by tabulating the distance properties of a large set of known codes. This new rule was derived by bounding the losses due to truncation as a function of the code rate. With regard to particular codes, a good indicator of the required truncation depth is the path length at which all paths that diverge from a particular path have accumulated the minimum distance of the code. It is shown that the new rule of thumb provides an accurate prediction of this depth for codes of varying rates.
NASA Astrophysics Data System (ADS)
Aggarwal, R. L.; Ripin, D. J.; Ochoa, J. R.; Fan, T. Y.
2005-11-01
Thermo-optic materials properties of laser host materials have been measured to enable solid-state laser performance modeling. The thermo-optic properties include thermal diffusivity (β), specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO/dT)/L, and thermal coefficient of refractive index (dn/dT) at 1064nm; O denotes the optical path length, which is equal to the product of the refractive index (n) and sample length (L). Thermal diffusivity and specific heat were measured using laser-flash method. Thermal conductivity was deduced using measured values of β, Cp, and the density (ρ ). Thermal expansion was measured using a Michelson laser interferometer. Thermal coefficient of the optical path length was measured at 1064nm, using interference between light reflected from the front and rear facets of the sample. Thermal coefficient of the refractive index was determined, using the measured values of γ, α, and n. β and κ of Y3Al5O12, YAIO3, and LiYF4 were found to decrease, as expected, upon doping with Yb.
Kinetic simulations of gas breakdown in the dense plasma focus
Bennett, N.; Blasco, M.; Breeding, K.; ...
2017-06-09
We describe the first fully-kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus and are shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. In the past, researchers noted three breakdown patterns related to pressure. Simulationmore » and analytic results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.« less
Reduced vision in highly myopic eyes without ocular pathology: the ZOC-BHVI high myopia study.
Jong, Monica; Sankaridurg, Padmaja; Li, Wayne; Resnikoff, Serge; Naidoo, Kovin; He, Mingguang
2018-01-01
The aim was to investigate the relationship of the magnitude of myopia with visual acuity in highly myopic eyes without ocular pathology. Twelve hundred and ninety-two highly myopic eyes (up to -6.00 DS both eyes, no astigmatic cut-off) with no ocular pathology from the ZOC-BHVI high myopia study in China, had cycloplegic refraction, followed by subjective refraction and visual acuities and axial length measurement. Two logistic regression models were undertaken to test the association of age, gender, refractive error, axial length and parental myopia with reduced vision. Mean group age was 19.0 ± 8.6 years; subjective spherical equivalent refractive error was -9.03 ± 2.73 D; objective spherical equivalent refractive error was -8.90 ± 2.60 D and axial length was 27.0 ± 1.3 mm. Using visual acuity, 82.4 per cent had normal vision, 16.0 per cent had mildly reduced vision, 1.2 per cent had moderately reduced vision, 0.3 per cent had severely reduced vision and no subjects were blind. The percentage with reduced vision increased with spherical equivalent to 74.5 per cent from -15.00 to -39.99 D, axial length to 67.7 per cent of eyes from 30.01 to 32.00 mm and age to 22.9 per cent of those 41 years and over. Spherical equivalent and axial length were significantly associated with reduced vision (p < 0.0001). Age and parental myopia were not significantly associated with reduced vision. Gender was significant for one model (p = 0.04). Mildly reduced vision is common in high myopia without ocular pathology and is strongly correlated with greater magnitudes of refractive error and axial length. Better understanding is required to minimise reduced vision in high myopes. © 2017 Optometry Australia.
Minimal entropy probability paths between genome families.
Ahlbrandt, Calvin; Benson, Gary; Casey, William
2004-05-01
We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H( p) over all admissible paths p(t), 0 < or = t< or =1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and "rich" optimal probability paths may be numerically estimated by a hybrid method of iterating Newton's method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler-Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for "rich" optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non-rich vectors, does not involve variational theory and does not involve differential equations, but is a better approximation of the minimal entropy path distance than the distance //b-a//(2). We compute minimal entropy distance matrices for examples of DNA myostatin genes and amino-acid sequences across several species. Output tree dendograms for our minimal entropy metric are compared with dendograms based on BLAST and BLAST identity scores.
Wave propagation in a random medium
NASA Technical Reports Server (NTRS)
Lee, R. W.; Harp, J. C.
1969-01-01
A simple technique is used to derive statistical characterizations of the perturbations imposed upon a wave (plane, spherical or beamed) propagating through a random medium. The method is essentially physical rather than mathematical, and is probably equivalent to the Rytov method. The limitations of the method are discussed in some detail; in general they are restrictive only for optical paths longer than a few hundred meters, and for paths at the lower microwave frequencies. Situations treated include arbitrary path geometries, finite transmitting and receiving apertures, and anisotropic media. Results include, in addition to the usual statistical quantities, time-lagged functions, mixed functions involving amplitude and phase fluctuations, angle-of-arrival covariances, frequency covariances, and other higher-order quantities.
14 CFR 25.115 - Takeoff flight path.
Code of Federal Regulations, 2010 CFR
2010-01-01
... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9 percent... reduction in climb gradient may be applied as an equivalent reduction in acceleration along that part of the...
Completely automated open-path FT-IR spectrometry.
Griffiths, Peter R; Shao, Limin; Leytem, April B
2009-01-01
Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.
Other Questions with Respect to the Weak Equivalence Principle
NASA Astrophysics Data System (ADS)
Smarandache, Florentin
2017-01-01
A disc rotating at high speed will exert out-of-plane forces resembling an accelerating field. Is the principle of equivalence also applicable for this process? Will someone inside an elevator in free-fall and rotating around its vertical centre, feel a gravitational force? Or will he feel a gravitational force larger than what equivalence principle requires? Does the equivalence principle remain applicable here? An airplane flies at an altitude of 1 km. The co-pilot drops an elevator-room without a passenger inside it. After one second has elapsed, the co-pilot drops four grenades in the direction of the freely-falling elevator's path. The question: Will the grenades reach the elevator before it reaches the ground? If no, why? If yes, which grenade? How will the air resistance influence the outcome?
High temperature, minimally invasive optical sensing modules
Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA
2008-02-05
A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.
Passive haptics in a knee arthroscopy simulator: is it valid for core skills training?
McCarthy, Avril D; Moody, Louise; Waterworth, Alan R; Bickerstaff, Derek R
2006-01-01
Previous investigation of a cost-effective virtual reality arthroscopic training system, the Sheffield Knee Arthroscopy Training System (SKATS), indicated the desirability of including haptic feedback. A formal task analysis confirmed the importance of knee positioning as a core skill for trainees learning to navigate the knee arthroscopically. The system cost and existing limb interface, which permits knee positioning, would be compromised by the addition of commercial active haptic devices available currently. The validation results obtained when passive haptic feedback (resistance provided by physical structures) is provided indicate that SKATS has construct, predictive and face validity for navigation and triangulation training. When tested using SKATS, experienced surgeons (n = 11) performed significantly faster, located significantly more pathologies, and showed significantly shorter arthroscope path lengths than a less experienced surgeon cohort (n = 12). After SKATS training sessions, novices (n = 3) showed significant improvements in: task completion time, shorter arthroscope path lengths, shorter probe path lengths, and fewer arthroscope tip contacts. Main improvements occurred after the first two practice sessions, indicating rapid familiarization and a training effect. Feedback from questionnaires completed by orthopaedic surgeons indicates that the system has face validity for its remit of basic arthroscopic training.
New method for path-length equalization of long single-mode fibers for interferometry
NASA Astrophysics Data System (ADS)
Anderson, M.; Monnier, J. D.; Ozdowy, K.; Woillez, J.; Perrin, G.
2014-07-01
The ability to use single mode (SM) fibers for beam transport in optical interferometry offers practical advantages over conventional long vacuum pipes. One challenge facing fiber transport is maintaining constant differential path length in an environment where environmental thermal variations can lead to cm-level variations from day to night. We have fabricated three composite cables of length 470 m, each containing 4 copper wires and 3 SM fibers that operate at the astronomical H band (1500-1800 nm). Multiple fibers allow us to test performance of a circular core fiber (SMF28), a panda-style polarization-maintaining (PM) fiber, and a lastly a specialty dispersion-compensated PM fiber. We will present experimental results using precision electrical resistance measurements of the of a composite cable beam transport system. We find that the application of 1200 W over a 470 m cable causes the optical path difference in air to change by 75 mm (+/- 2 mm) and the resistance to change from 5.36 to 5.50Ω. Additionally, we show control of the dispersion of 470 m of fiber in a single polarization using white light interference fringes (λc=1575 nm, Δλ=75 nm) using our method.
Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Iwano, Takayuki; Umeyama, Shinji
2015-12-01
fNIRS (functional near-Infrared spectroscopy) can measure brain activity non-invasively and has advantages such as low cost and portability. While the conventional fNIRS has used laser light, LED light fNIRS is recently becoming common in use. Using LED for fNIRS, equipment can be more inexpensive and more portable. LED light, however, has a wider illumination spectrum than laser light, which may change crosstalk between the calculated concentration change of oxygenated and deoxygenated hemoglobins. The crosstalk is caused by difference in light path length in the head tissues depending on wavelengths used. We conducted Monte Carlo simulations of photon propagation in the tissue layers of head (scalp, skull, CSF, gray matter, and white matter) to estimate the light path length in each layers. Based on the estimated path lengths, the crosstalk in fNIRS using LED light was calculated. Our results showed that LED light more increases the crosstalk than laser light does when certain combinations of wavelengths were adopted. Even in such cases, the crosstalk increased by using LED light can be effectively suppressed by replacing the value of extinction coefficients used in the hemoglobin calculation to their weighted average over illumination spectrum.
Hopkins, Carl
2011-05-01
In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
NASA Technical Reports Server (NTRS)
Nelson, R. A.; Alley, C. O.; Rayner, J. D.; Shih, Y. H.; Steggerda, C. A.; Wang, B. C.; Agnew, B. W.
1993-01-01
An experiment was conducted to investigate the equivalence of two methods of time transfer in a noninertial reference frame: by means of an electromagnetic signal using laser light pulses and by means of the slow ground transport of a hydrogen maser atomic clock. The experiment may also be interpreted as an investigation of whether the one-way speeds of light in the east-west and west-east directions on the rotating earth are the same. The light pulses were sent from a laser coupled to a telescope at the NASA Goddard Optical Research Facility (GORF) in Greenbelt, Maryland to the U.S. Naval Observatory (USNO) in Washington, DC. The optical path was made possible by a 30-cm flat mirror on a water tower near GORF and a 25-cm flat mirror on top of the Washington National Cathedral near USNO. The path length was 26.0 km with an east-west component of 20.7 km. The pulses were reflected back over the same path by a portable array of corner cube reflectors. The transmission and return times were measured with a stationary Sigma Tau hydrogen maser and a University of Maryland event timer at GORF, while the times of reflection were measured with a similar maser and event timer combination carefully transported to USNO. Both timekeeping systems were housed in highly insulated enclosures and were maintained at constant temperatures to within +/- 0.1 C by microprocessor controllers. The portable system was also protected from shock and vibration by pneumatic supports. The difference delta(T) between the directly measured time of reflection according to the portable clock and the time of reflection calculated from the light pulse signal times measured by the stationary clock was determined. For a typical trip delta(T) is less than 100 ps and the corresponding limit on an anisotropy of the one-way speed of light is delta(c/c) is less than 1.5 x 10(exp -6). This the only experiment to date in which two atomic clocks were calibrated at one location, one was slowly transported to the other end of a path, and the times of transmission, reflection, and return of short light pulses sent in different directions along the path were registered.
Integration across Time Determines Path Deviation Discrimination for Moving Objects
Whitaker, David; Levi, Dennis M.; Kennedy, Graeme J.
2008-01-01
Background Human vision is vital in determining our interaction with the outside world. In this study we characterize our ability to judge changes in the direction of motion of objects–a common task which can allow us either to intercept moving objects, or else avoid them if they pose a threat. Methodology/Principal Findings Observers were presented with objects which moved across a computer monitor on a linear path until the midline, at which point they changed their direction of motion, and observers were required to judge the direction of change. In keeping with the variety of objects we encounter in the real world, we varied characteristics of the moving stimuli such as velocity, extent of motion path and the object size. Furthermore, we compared performance for moving objects with the ability of observers to detect a deviation in a line which formed the static trace of the motion path, since it has been suggested that a form of static memory trace may form the basis for these types of judgment. The static line judgments were well described by a ‘scale invariant’ model in which any two stimuli which possess the same two-dimensional geometry (length/width) result in the same level of performance. Performance for the moving objects was entirely different. Irrespective of the path length, object size or velocity of motion, path deviation thresholds depended simply upon the duration of the motion path in seconds. Conclusions/Significance Human vision has long been known to integrate information across space in order to solve spatial tasks such as judgment of orientation or position. Here we demonstrate an intriguing mechanism which integrates direction information across time in order to optimize the judgment of path deviation for moving objects. PMID:18414653
Transitioning to a narrow path: the impact of fear of falling in older adults.
Dunlap, Pamela; Perera, Subashan; VanSwearingen, Jessie M; Wert, David; Brach, Jennifer S
2012-01-01
Everyday ambulation requires navigation of variable terrain, transitions from wide to narrow pathways, and avoiding obstacles. While the effect of age on the transition to a narrow path has been examined briefly, little is known about the impact of fear of falling on gait during the transition to a narrow path. The purpose was to examine the effect of age and fear of falling on gait during transition to a narrow path. In 31 young, mean age=25.3 years, and 30 older adults, mean age=79.6 years, step length, step time, step width and gait speed were examined during usual and transition to narrow pathway using an instrumented walkway. During the transition to narrow walk condition, fearful older adults compared to young had a wider step width (0.06 m vs 0.04 m) prior to the narrow path and took shorter steps (0.53 m vs 0.72 m; p<0.001). Compared to non-fearful older adults, fearful older adults walked slower and took shorter steps during narrow path walking (gait speed: 1.1m/s vs 0.82 m/s; p=0.01; step length: 0.60 m vs 0.47 m; p=0.03). In young and non-fearful older adults narrow path gait was similar to usual gait. Whereas older adults who were fearful, walked slower (0.82 m/s vs 0.91 m/s; p=0.001) and took shorter steps (0.44 m vs 0.53 m; p=0.004) during narrow path walking compared to usual walking. Changes in gait characteristics with transitioning to a narrow pathway were greater for fear of falling than for age. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.
We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RFmore » parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.« less
A depolarization and attenuation experiment using the COMSTAR and CTS satellites
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Overstreet, W. P.; Persinger, R. R.; Stutzman, W. L.; Wiley, P. H.
1978-01-01
An experiment for measuring precipitation attenuation and depolarization on the CTS 11.7 and the COMSTAR 19.04 and 28.56 GHz downlinks is described. Attenuation scaling, effective path length, and the relationship between isolation and attenuation are discussed. Attenuation and effective path data are presented for the months of July, August, and September, 1977.
Low-coherence interferometric sensor system utilizing an integrated optics configuration
NASA Astrophysics Data System (ADS)
Plissi, M. V.; Rogers, A. J.; Brassington, D. J.; Wilson, M. G. F.
1995-08-01
The implementation of a twin Mach-Zehnder reference interferometer in an integrated optics substrate is described. From measurements of the fringe visibilities, an identification of the fringe order is attempted as a way to provide an absolute sensor for any parameter capable of modifying the difference in path length between two interfering optical paths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzunyan, S. A.; Blazey, G.; Boi, S.
Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input formore » image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.« less
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes
NASA Astrophysics Data System (ADS)
O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.
2017-11-01
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.
O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D
2017-11-24
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
Photoacoustic projection imaging using an all-optical detector array
NASA Astrophysics Data System (ADS)
Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.
2018-02-01
We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.
NASA Astrophysics Data System (ADS)
Mashayekhi, Mohammad Jalali; Behdinan, Kamran
2017-10-01
The increasing demand to minimize undesired vibration and noise levels in several high-tech industries has generated a renewed interest in vibration transfer path analysis. Analyzing vibration transfer paths within a system is of crucial importance in designing an effective vibration isolation strategy. Most of the existing vibration transfer path analysis techniques are empirical which are suitable for diagnosis and troubleshooting purpose. The lack of an analytical transfer path analysis to be used in the design stage is the main motivation behind this research. In this paper an analytical transfer path analysis based on the four-pole theory is proposed for multi-energy-domain systems. Bond graph modeling technique which is an effective approach to model multi-energy-domain systems is used to develop the system model. In this paper an electro-mechanical system is used as a benchmark example to elucidate the effectiveness of the proposed technique. An algorithm to obtain the equivalent four-pole representation of a dynamical systems based on the corresponding bond graph model is also presented in this paper.
Peano-like paths for subaperture polishing of optical aspherical surfaces.
Tam, Hon-Yuen; Cheng, Haobo; Dong, Zhichao
2013-05-20
Polishing can be more uniform if the polishing path provides uniform coverage of the surface. It is known that Peano paths can provide uniform coverage of planar surfaces. Peano paths also contain short path segments and turns: (1) all path segments have the same length, (2) path segments are mutually orthogonal at the turns, and (3) path segments and turns are uniformity distributed over the domain surface. These make Peano paths an attractive candidate among polishing tool paths because they enhance multidirectional approaches of the tool to each surface location. A method for constructing Peano paths for uniform coverage of aspherical surfaces is proposed in this paper. When mapped to the aspherical surface, the path also contains short path segments and turns, and the above attributes are approximately preserved. Attention is paid so that the path segments are still well distributed near the vertex of the surface. The proposed tool path was used in the polishing of a number of parabolic BK7 specimens using magnetorheological finishing (MRF) and pitch with cerium oxide. The results were rather good for optical lenses and confirm that a Peano-like path was useful for polishing, for MRF, and for pitch polishing. In the latter case, the surface roughness achieved was 0.91 nm according to WYKO measurement.
Analyzing Water's Optical Absorption
NASA Technical Reports Server (NTRS)
2002-01-01
A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.
TU-CD-207-10: Dedicated Cone-Beam Breast CT: Design of a 3-D Beam-Shaping Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedantham, S; Shi, L; Karellas, A
2015-06-15
Purpose: To design a 3 -D beam-shaping filter for cone-beam breast CT for equalizing x-ray photon fluence incident on the detector along both fan and cone angle directions. Methods: The 3-D beam-shaping filter was designed as the sum of two filters: a bow-tie filter assuming cylindrical breast and a 3D difference filter equivalent to the difference in projected thickness between the cylinder and the real breast. Both filters were designed with breast-equivalent material and converted to Al for the targeted x-ray spectrum. The bow-tie was designed for the largest diameter cylindrical breast by determining the fan-angle dependent path-length and themore » filter thickness needed to equalize the fluence. A total of 23,760 projections (180 projections of 132 binary breast CT volumes) were averaged, scaled for the largest breast, and subtracted from the projection of the largest diameter cylindrical breast to provide the 3D difference filter. The 3 -D beam shaping filter was obtained by summing the two filters. Numerical simulations with semi-ellipsoidal breasts of 10–18 cm diameter (chest-wall to nipple length=0.75 x diameter) were conducted to evaluate beam equalization. Results: The proposed 3-D beam-shaping filter showed a 140% -300% improvement in equalizing the photon fluence along the chest-wall to nipple (cone-angle) direction compared to a bow-tie filter. The improvement over bow-tie filter was larger for breasts with longer chest-wall to nipple length. Along the radial (fan-angle) direction, the performance of the 3-D beam shaping filter was marginally better than the bow-tie filter, with 4%-10% improvement in equalizing the photon fluence. For a ray traversing the chest-wall diameter of the breast, the filter transmission ratio was >0.95. Conclusion: The 3-D beam shaping filter provided substantial advantage over bow-tie filter in equalizing the photon fluence along the cone-angle direction. In conjunction with a 2-axis positioner, the filter can accommodate breasts of varying dimensions and chest-wall inclusion. Supported in part by NIH R01 CA128906 and R21 CA134128. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less
1984-12-01
radiation lengths. The off-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured using thermal luminescent...various path lengths out to 2 radiation lengths. The cff-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured... using thermal luminescent dosimeters (TLD’s). Calculations were performed on a CDC-7600 computer at Los Alamos National Laboratory and measurements
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-03-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-06-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
Redman, R.S.; Roossinck, M.J.; Maher, S.; Rodriguez, R.J.
2002-01-01
Path-1 is a UV-induced non-pathogenic mutant of a virulent Colletotrichum magna isolate that establishes mutualistic symbioses with cucurbit and tomato species. Under laboratory conditions, this mutualism results in plant growth enhancement, drought tolerance, and disease protection against fungal pathogens. This study focuses on the efficacy of this symbiosis and the symbiotic lifestyle expressed by path-1 under field conditions in the absence of disease stress. The effects of colonization by path-1 on fruit yields and growth was measured in field plots with four cucurbit species including four watermelon cultivars, and two tomato cultivars, over four growing seasons. The persistence of the symbiosis, extent of colonization, and path-1 transmission were also assessed. Yields from path-1 infected plants were equivalent to or greater than yields from non-inoculated control plants and path-1 systemically colonized plants throughout each growing season. Path-1 also increased the growth rates of tomato plants and was not transmitted to uncolonized plants. The results indicate that there are no metabolic costs of this symbiosis and the symbiosis is maintained under field conditions.
Static elastica formulations of a pine conveying fluid
NASA Astrophysics Data System (ADS)
Thompson, J. M. T.; Lunn, T. S.
1981-07-01
An elastic pipe in an equilibrium configuration of arbitrary large deflection discharging fluid from its end experiences static centrifugal and frictional drag forces along its complete length. These are, however, entirely equivalent to an end follower force of magnitude ρ AV2. This equivalence is examined in detail by using the intrinsic field equations which are suitable for closed form solutions in terms of elliptic integrals. Once the pipe moves it also experiences gyroscopic Coriolis forces along its length, but these are not considered in this static examination. It is shown in detail how a discharging pipe with end forces and moments is statically equivalent to a beam or strut with the same end forces and moments plus the reversed momentum vector ρ AV2. It is seen that a cantilevered pipe with a free end can have no statical equilibrium states at all, at either large or small deflections, while pipes with constrained ends have large static deflections identical to those of the equivalent struts.
Myopia correction in children: a meta-analysis.
Cui, Yanhui; Li, Li; Wu, Qian; Zhao, Junyang; Chu, Huihui; Yu, Gang; Wei, Wenbin
2017-06-26
The purpose of this study was to conduct a meta-analysis comparing rigid gas permeable lenses (RGP) with soft contact lenses (SCL), spectacles and orthokeratology (OK) lenses for myopia control with respect to axial length elongation, spherical equivalent and measures of corneal curvature. Medline, Cochrane, EMBASE, and Google Scholar databases were searched to September 29, 2015 using the following keywords: rigid gas permeable contact lens; refractive error; and refractive abnormalities. Randomized controlled trials, two-arm prospective studies and retrospective studies of children with myopia treated with RGP lenses compared with spectacles, SCL, and OK lenses were included. Outcome measures were changes of axial length, spherical equivalent, flatter meridian, steeper meridian and corneal apical radius. Five studies were included. Three studies reported axial length change after 2-3 years of treatment with RGP lenses and SCL/spectacles and no difference between the groups was noted (pooled mean difference = -0.077, 95% confidence interval [CI]: -0.120 to 0.097, p = 0.840). Two studies reported a change of spherical equivalent after 2-3 years of treatment with RGP lenses and SCL/spectacles, and no difference between the groups was noted (pooled mean difference = 0.275, 95% CI: -0.390 to 0.941, p = 0.417). Two studies compared corneal curvature measures between RGP and OK lenses after 3-6 months of treatment and no differences in any measures of corneal curvature were seen. The effect of RGP lenses and SCL/spectacles on axial length elongation and spherical equivalent and of RGP and OK lenses on corneal curvature in children with myopia was similar.
NASA Astrophysics Data System (ADS)
Kröger, Martin
2005-06-01
We present an algorithm which returns a shortest path and related number of entanglements for a given configuration of a polymeric system in 2 or 3 dimensions. Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract primitive paths for dense polymeric melts made of linear chains (a multiple disconnected multibead 'path'), where each primitive path is defined as a path connecting the (space-fixed) ends of a polymer under the constraint of non-interpenetration (excluded volume) between primitive paths of different chains, such that the multiple disconnected path fulfills a minimization criterion. The present algorithm uses geometrical operations and provides a—model independent—efficient approximate solution to this challenging problem. Primitive paths are treated as 'infinitely' thin (we further allow for finite thickness to model excluded volume), and tensionless lines rather than multibead chains, excluded volume is taken into account without a force law. The present implementation allows to construct a shortest multiple disconnected path (SP) for 2D systems (polymeric chain within spherical obstacles) and an optimal SP for 3D systems (collection of polymeric chains). The number of entanglements is then simply obtained from the SP as either the number of interior kinks, or from the average length of a line segment. Further, information about structure and potentially also the dynamics of entanglements is immediately available from the SP. We apply the method to study the 'concentration' dependence of the degree of entanglement in phantom chain systems. Program summaryTitle of program:Z Catalogue number:ADVG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Silicon Graphics (Irix), Sun (Solaris), PC (Linux) Operating systems or monitors under which the program has been tested: UNIX, Linux Program language used: USANSI Fortran 77 and Fortran 90 Memory required to execute with typical data: 1 MByte No. of lines in distributed program, including test data, etc.: 10 660 No. of bytes in distributed program, including test data, etc.: 119 551 Distribution formet:tar.gz Nature of physical problem: The problem is to obtain primitive paths substantiating a shortest multiple disconnected path (SP) for a given polymer configuration (chains of particles, with or without additional single particles as obstacles for the 2D case). Primitive paths are here defined as in [M. Rubinstein, E. Helfand, J. Chem. Phys. 82 (1985) 2477; R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303 (2004) 823] as the shortest line (path) respecting 'topological' constraints (from neighboring polymers or point obstacles) between ends of polymers. There is a unique solution for the 2D case. For the 3D case it is unique if we construct a primitive path of a single chain embedded within fixed line obstacles [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701]. For a large 3D configuration made of several chains, short is meant to be the Euclidean shortest multiple disconnected path (SP) where primitive paths are constructed for all chains simultaneously. While the latter problem, in general, does not possess a unique solution, the algorithm must return a locally optimal solution, robust against minor displacements of the disconnected path and chain re-labeling. The problem is solved if the number of kinks (or entanglements Z), explicitly deduced from the SP, is quite insensitive to the exact conformation of the SP which allows to estimate Z with a small error. Efficient method of solution: Primitive paths are constructed from the given polymer configuration (a non-shortest multiple disconnected path, including obstacles, if present) by first replacing each polymer contour by a line with a number of 'kinks' (beads, nodes) and 'segments' (edges). To obtain primitive paths, defined to be uncrossable by any other objects (neighboring primitive paths, line or point obstacles), the algorithm minimizes the length of all primitive paths consecutively, until a final minimum Euclidean length of the SP is reached. Fast geometric operations rather than dynamical methods are used to minimize the contour lengths of the primitive paths. Neighbor lists are used to keep track of potentially intersecting segments of other chains. Periodic boundary conditions are employed. A finite small line thickness is used in order to make sure that entanglements are not 'lost' due to finite precision of representation of numbers. Restrictions on the complexity of the problem: For a single chain embedded within fixed line or point obstacles, the algorithm returns the exact SP. For more complex problems, the algorithm returns a locally optimal SP. Except for exotic, probably rare, configurations it turns out that different locally optimal SPs possess quite an identical number of nodes. In general, the problem constructing the SP is known to be NP-hard [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701], and we offer a solution which should suffice to analyze physical problems, and gives an estimate about the precision and uniqueness of the result (from a standard deviation by varying the parameter: cyclicswitch). The program is NOT restricted to handle systems for which segment lengths of the SP exceed half the box size. Typical running time: Typical running times are approximately two orders of magnitude shorter compared with the ones needed for a corresponding molecular dynamics approach, and scale mostly linearly with system size. We provide a benchmark table.
Feasible Path Generation Using Bezier Curves for Car-Like Vehicle
NASA Astrophysics Data System (ADS)
Latip, Nor Badariyah Abdul; Omar, Rosli
2017-08-01
When planning a collision-free path for an autonomous vehicle, the main criteria that have to be considered are the shortest distance, lower computation time and completeness, i.e. a path can be found if one exists. Besides that, a feasible path for the autonomous vehicle is also crucial to guarantee that the vehicle can reach the target destination considering its kinematic constraints such as non-holonomic and minimum turning radius. In order to address these constraints, Bezier curves is applied. In this paper, Bezier curves are modeled and simulated using Matlab software and the feasibility of the resulting path is analyzed. Bezier curve is derived from a piece-wise linear pre-planned path. It is found that the Bezier curves has the capability of making the planned path feasible and could be embedded in a path planning algorithm for an autonomous vehicle with kinematic constraints. It is concluded that the length of segments of the pre-planned path have to be greater than a nominal value, derived from the vehicle wheelbase, maximum steering angle and maximum speed to ensure the path for the autonomous car is feasible.
Implications of solar p-mode frequency shifts
NASA Technical Reports Server (NTRS)
Goldreich, Peter; Murray, Norman; Willette, Gregory; Kumar, Pawan
1991-01-01
An expression is derived that relates solar p-mode frequency shifts to changes in the entropy and magnetic field of the sun. The frequency variations result from changes in path length and propagation speed. Path length changes dominate for entropy perturbations, and propagation speed changes dominate for most types of magnetic field peturbations. The p-mode frequencies increased along with solar activity between 1986 and 1989; these frequency shifts exhibited a rapid rise with increasing frequency followed by a precipitous drop. The positive component of the shifts can be accounted for by variations of the mean square magnetic field strength in the vicinity of the photosphere. The magnetic stress perturbation decays above the top of the convection zone on a length scale comparable to the pressure scale height and grows gradually with depth below. The presence of a resonance in the chromospheric cavity means that the transition layer maintains enough coherence to partially reflect acoustic waves even near cycle maximum.
NASA Astrophysics Data System (ADS)
Fukuchi, Tetsuo; Nayuki, Takuya; Mori, Hideto; Goto, Naohiko; Fujii, Takashi; Nemoto, Koshichi
A differential optical absorption spectroscopy (DOAS) system for measurement of atmospheric NO2 was developed. The system uses a battery-operated, high luminance LED and a fiber-coupled spectrometer, and is portable. Laboratory experiments using a gas cell of length 0.22 m with varying NO2 concentrations were performed to evaluate the sensitivity of the DOAS system. The DOAS measurement results are in agreement with NO2 concentrations obtained simultaneously by a FT-IR (Fourier Transform Infrared) system for NO2 concentrations down to 20 ppm. Experiments with an optical path length of 93 m were also performed, and NO2 concentrations down to 0.20 ppm were measured. Since measurement of atmospheric NO2, which is in the order of several tens of ppb, requires optical path lengths of several hundred m, system improvements to improve the signal detection are necessary.
Long Coherence Length 193 nm Laser for High-Resolution Nano-Fabrication
2008-06-27
in the non-linear optical up-converter, as well as specifying their interaction lengths, phase -matching angles, coatings, temperatures of operation...when optical path differences between interfering beams become comparable to the temporal coherence length of the source, the fringe contrast diminishes...switched, intracavity frequency doubled Nd:YAG laser drives an optical parametric oscillator (OPO) running at 710 nm. A portion of the 532 nm light
The desert ant odometer: a stride integrator that accounts for stride length and walking speed.
Wittlinger, Matthias; Wehner, Rüdiger; Wolf, Harald
2007-01-01
Desert ants, Cataglyphis, use path integration as a major means of navigation. Path integration requires measurement of two parameters, namely, direction and distance of travel. Directional information is provided by a celestial compass, whereas distance measurement is accomplished by a stride integrator, or pedometer. Here we examine the recently demonstrated pedometer function in more detail. By manipulating leg lengths in foraging desert ants we could also change their stride lengths. Ants with elongated legs ('stilts') or shortened legs ('stumps') take larger or shorter strides, respectively, and misgauge travel distance. Travel distance is overestimated by experimental animals walking on stilts, and underestimated by animals walking on stumps - strongly indicative of stride integrator function in distance measurement. High-speed video analysis was used to examine the actual changes in stride length, stride frequency and walking speed caused by the manipulations of leg length. Unexpectedly, quantitative characteristics of walking behaviour remained almost unaffected by imposed changes in leg length, demonstrating remarkable robustness of leg coordination and walking performance. These data further allowed normalisation of homing distances displayed by manipulated animals with regard to scaling and speed effects. The predicted changes in homing distance are in quantitative agreement with the experimental data, further supporting the pedometer hypothesis.
2009-06-01
Sensor H11 HPM Chamber Test Capability—Explosive Equivalent Substitute H12 HEL Irradiance & Temperature H13 HEL Near/In-Beam Path Quality H14 HPM Sensor...such things as artillery shells or UAVs and may impact the earth. Possible targets include missiles in flight or a relatively close command, control...capability is a synergy of four high priority shortfalls identified by the T-SS Update. H13 —HEL near/in-beam path quality H13 is the need for a
Spatial Updating Strategy Affects the Reference Frame in Path Integration.
He, Qiliang; McNamara, Timothy P
2018-06-01
This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.
Corrections to scaling for watersheds, optimal path cracks, and bridge lines
NASA Astrophysics Data System (ADS)
Fehr, E.; Schrenk, K. J.; Araújo, N. A. M.; Kadau, D.; Grassberger, P.; Andrade, J. S., Jr.; Herrmann, H. J.
2012-07-01
We study the corrections to scaling for the mass of the watershed, the bridge line, and the optimal path crack in two and three dimensions (2D and 3D). We disclose that these models have numerically equivalent fractal dimensions and leading correction-to-scaling exponents. We conjecture all three models to possess the same fractal dimension, namely, df=1.2168±0.0005 in 2D and df=2.487±0.003 in 3D, and the same exponent of the leading correction, Ω=0.9±0.1 and Ω=1.0±0.1, respectively. The close relations between watersheds, optimal path cracks in the strong disorder limit, and bridge lines are further supported by either heuristic or exact arguments.
Analytic solution of the Spencer-Lewis angular-spatial moments equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.
A closed-form solution for the angular-spatial moments of the Spencer-Lewis equation is presented that is valid for infinite homogeneous media. From the moments, the electron density distribution as a function of position and path length (energy) is reconstructed for several sample problems involving plane isotropic sources of electrons in aluminium. The results are in excellent agreement with those determined numerically using the streaming ray method. The primary use of the closed form solution will most likely be to generate accurate electron transport benchmark solutions. In principle, the electron density as a function of space, path length, and direction can bemore » determined for planar sources of arbitrary angular distribution.« less
Solenoid and monocusp ion source
Brainard, John Paul; Burns, Erskine John Thomas; Draper, Charles Hadley
1997-01-01
An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.
Solenoid and monocusp ion source
Brainard, J.P.; Burns, E.J.T.; Draper, C.H.
1997-10-07
An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.
Multipass optical device and process for gas and analyte determination
Bernacki, Bruce E [Kennewick, WA
2011-01-25
A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.
1989-06-01
Force systems require a resolved information on the optical thorough understanding of the propaga- extinction coefficient. Measurements of tion path , the...Depolarization as Function of Snow Density. Measurement System ). (It correlated well with the ( Multi -scatter scale length information is usable to extinction ...data on the effect of optically thin cirrus clouds on long - path infrared transmit- tance. Future system designers will have access to this new
Novices in surgery are the target group of a virtual reality training laboratory.
Hassan, Iyad; Maschuw, Katja; Rothmund, Matthias; Koller, Michael; Gerdes, Berthold
2006-01-01
This study aims to establish which physicians represent the suitable target group of a virtual training laboratory. Novices (48 physicians with fewer than 10 laparoscopic operations) and intermediate trainees (19 physicians who performed 30-50 laparoscopic operations) participated in this study. Each participant performed the basic module 'clip application' at the beginning and after a 1-hour short training course on the LapSim. The course consisted of the tasks coordination, lift and grasp, clip application, cutting with diathermy and fine dissection at increasing difficulty levels. The time taken to complete the tasks, number of errors, and economy of motion parameters (path length and angular path) were analyzed. Following training with the simulator, novices completed the task significantly faster (p = 0.001), demonstrated a greater economy of motion [path length (p = 0.04) and angular path (p = 0.01)]. In contrast, the intermediate trainees showed a reduction of their errors, but without reaching statistical significance. They showed no improvement in economy of motion and completed the task significantly slower (p = 0.03). Novices, in comparison to intermediate trainees, tend to benefit most during their first exposure to a laparoscopy simulator.
Multi-criteria robustness analysis of metro networks
NASA Astrophysics Data System (ADS)
Wang, Xiangrong; Koç, Yakup; Derrible, Sybil; Ahmad, Sk Nasir; Pino, Willem J. A.; Kooij, Robert E.
2017-05-01
Metros (heavy rail transit systems) are integral parts of urban transportation systems. Failures in their operations can have serious impacts on urban mobility, and measuring their robustness is therefore critical. Moreover, as physical networks, metros can be viewed as topological entities, and as such they possess measurable network properties. In this article, by using network science and graph theory, we investigate ten theoretical and four numerical robustness metrics and their performance in quantifying the robustness of 33 metro networks under random failures or targeted attacks. We find that the ten theoretical metrics capture two distinct aspects of robustness of metro networks. First, several metrics place an emphasis on alternative paths. Second, other metrics place an emphasis on the length of the paths. To account for all aspects, we standardize all ten indicators and plot them on radar diagrams to assess the overall robustness for metro networks. Overall, we find that Tokyo and Rome are the most robust networks. Rome benefits from short transferring and Tokyo has a significant number of transfer stations, both in the city center and in the peripheral area of the city, promoting both a higher number of alternative paths and overall relatively short path-lengths.
Brumfield, Brian E.; Taubman, Matthew S.; Suter, Jonathan D.; ...
2015-09-21
The performance of a rapidly swept external cavity quantum cascade laser (ECQCL) system combined with an open-path Herriott cell was evaluated for time-resolved measurements of chemical species with broad and narrow absorption spectra. A spectral window spanning 1278 – 1390 cm -1 was acquired at a 200 Hz acquisition rate, corresponding to a tuning rate of 2x10 4 cm -1/s, with a spectral resolution of 0.2 cm -1. The capability of the ECQCL to measure < 100 ppbv changes in N 2O and F134A concentrations on millisecond timescales was demonstrated in simulated plume studies with releases near the open-path Herriottmore » cell. Absorbance spectra measured using the ECQCL system exhibited noise-equivalent absorption coefficients of 5x10 -9 cm -1Hz -1/2. For a spectrum acquisition time of 5 ms, noise-equivalent concentrations (NEC) for N 2O and F134A were measured to be 70 and 16 ppbv respectively, which improved to sub-ppbv levels with averaging to 100 s. Noise equivalent column densities of 0.64 and 0.25 ppmv x m in 1 sec are estimated for N 2O and F134A.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, J; /SLAC
2010-11-24
Early in the commissioning it was noticed by Cecile Limborg that the calibration of the BXS spectrometer magnet seemed to be different from the strength of the BX01/BX02 magnets. First the BX01/BX02 currents were adjusted to 135 MeV and the beam energy was adjusted to make the horizontal orbit flat. Then BX01/BX02 magnets were switched off and BXS was adjusted to make the horizontal orbit in the spectrometer line flat, without changing the energy of the beam. The result was that about 140-141 MeV were required on the BXS magnet. This measurement was repeated several times by others with themore » same results. It was not clear what was causing the error: magnet strength or layout. A position error of about 19 mm of the BXS magnet could explain the difference. Because there was a significant misalignment of the vacuum chamber in the BXS line, the alignment of the whole spectrometer line was checked. The vacuum chamber was corrected, but the magnets were found to be in the proper alignment. So we were left with one (or conceivably two) magnet calibration errors. Because BXS is a wedged shaped magnet, the bend angle depends on the horizontal position of the incoming beam. As mentioned, an offset of the beam position of 19 mm would increase or decrease the bend angle roughly by the ratio of 135/141. The figure of 19 mm is special and caused a considerable confusion during the design and measurement of the BXS magnet. This is best illustrated in Figure 1 which was taken out of the BXS Traveler document. The distance between the horizontal midplanes of the poles and the apex of the beam path was chosen to be 19 mm so the beam is close to the good field region throughout its entire path. Thus it seemed possible that there was an error that resulted in the beam not being on this trajectory, or conversely, that the magnetic measurements were done on the wrong trajectory and the magnet was then mis-calibrated. Mechanical measurements of the vacuum chamber made in the tunnel indicated that the vacuum chamber was in fact in the proper position with respect to the magnet - not 19 mm off to one side - so the former possibility was discounted. Review of the Fiducial Report and an interview with Keith Caban convinced me that there was no error in the coordinate system used for magnet measurements. I went and interviewed Andrew Fischer who did the magnetic measurements of BXS. He had extensive records, including photographs of the setups and could quickly answer quite detailed questions about how the measurement was done. Before the interview, I had a suspicion there might have been a sign flip in the x coordinate which because of the wedge would result in the wrong path length and a miscalibration. Andrew was able to pin-point how this could have happened and later confirmed it by looking an measurement data from the BXG magnet done just after BXS and comparing photographs. It turned out that the sign of the horizontal stage travel that drives the measurement wire was opposite that of the x coordinate in the Traveler, and the sign difference wasn't applied to the data. The origin x = 0 was set up correctly, but the wire moved in the opposite direction to what was expected, just as if the arc had been flipped over about the origin. To quantitatively confirm that this was the cause of the observed difference in calibration I used the 'grid data', which was taken with a Hall probe on the BXS magnet originally to measure the FINT (focusing effect) term, and combined it with the Hall probe data taken on the flipped trajectory, and performed the field integral on a path that should give the same result as the design path. This is best illustrated in Figure 2. The integration path is coincident with the desired path from the pivot points (x = 0) outward. Between the pivot points the integration path is a mirror image of the design path, but because the magnet is fairly uniform, for this portion it gives the same result. Most of the calibration error resulted simply from the different path length between the design path and the measured path. The results of the integration on the equivalent path are given in Table 1. The corrected calibration has been used to generate a new polynomial for BXS which was implemented in the control system.« less
Hydrocarbon fluid, ejector refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, G.J.; Foster, A.R.
1993-08-31
A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream ofmore » the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liulin; Webb, Ian K.; Garimella, Sandilya V. B.
Ion mobility (IM) separations have a broad range of analytical applications, but insufficient resolution limits many applications. Here we report on traveling wave (TW) ion mobility (IM) separations in a Serpentine Ultra-long Path with Extended Routing (SUPER) Structures for Lossless Ion Manipulations (SLIM) module in conjunction with mass spectrometry (MS). The extended routing utilized multiple passes was facilitated by the introduction of a lossless ion switch at the end of the ion path that either directed ions to the MS detector or to another pass through the serpentine separation region, providing theoretically unlimited TWIM path lengths. Ions were confined inmore » the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths (e.g., ~1094 meters over 81 passes through the 13.5 m serpentine path). In this multi-pass SUPER TWIM provided resolution approximately proportional to the square root of the number of passes (or path length). More than 30-fold higher IM resolution for Agilent tuning mix m/z 622 and 922 ions (~340 vs. ~10) was achieved for 40 passes compared to commercially available drift tube IM and other TWIM-based platforms. An initial evaluation of the isomeric sugars Lacto-N-hexaose and Lacto-N-neohexaose showed the isomeric structures to be baseline resolved, and a new conformational feature for Lacto-N-neohexaose was revealed after 9 passes. The new SLIM SUPER high resolution TWIM platform has broad utility in conjunction with MS and is expected to enable a broad range of previously challenging or intractable separations.« less
49 CFR 38.29 - Interior circulation, handrails and stanchions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... location from the lift or ramp. (b) Handrails and stanchions shall be provided in the entrance to the... length with front-door lifts or ramps, vertical stanchions immediately behind the driver shall either... of 22 feet in length, the minimum interior height along the path from the lift to the securement...
49 CFR 38.29 - Interior circulation, handrails and stanchions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... location from the lift or ramp. (b) Handrails and stanchions shall be provided in the entrance to the... length with front-door lifts or ramps, vertical stanchions immediately behind the driver shall either... of 22 feet in length, the minimum interior height along the path from the lift to the securement...
Congestion patterns of electric vehicles with limited battery capacity.
Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi
2018-01-01
The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.
Cooperative organic mine avoidance path planning
NASA Astrophysics Data System (ADS)
McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David
2005-06-01
The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.
Congestion patterns of electric vehicles with limited battery capacity
2018-01-01
The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875
Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study
NASA Astrophysics Data System (ADS)
Liu, Zhenyu; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; You, Youbo; Tian, Jie
2012-03-01
Mild cognitive impairment (MCI) was recognized as the prodromal stage of Alzheimer's disease (AD). Recent researches have shown that cognitive and memory decline in AD patients is coupled with losses of small-world attributes. However, few studies pay attention to the characteristics of the whole brain networks in MCI patients. In the present study, we investigated the topological properties of the whole brain networks utilizing graph theoretical approaches in 16 MCI patients, compared with 18 age-matched healthy subjects as a control. Both MCI patients and normal controls showed small-world architectures, with large clustering coefficients and short characteristic path lengths. We detected significantly longer characteristic path length in MCI patients compared with normal controls at the low sparsity. The longer characteristic path lengths in MCI indicated disrupted information processing among distant brain regions. Compared with normal controls, MCI patients showed decreased nodal centrality in the brain areas of the angular gyrus, heschl gyrus, hippocampus and superior parietal gyrus, while increased nodal centrality in the calcarine, inferior occipital gyrus and superior frontal gyrus. These changes in nodal centrality suggested a widespread rewiring in MCI patients, which may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline. Our findings may be helpful for further understanding the pathological mechanisms of MCI.
High-precision diode-laser-based temperature measurement for air refractive index compensation.
Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti
2011-11-01
We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America
Quatman-Yates, Catherine; Bonnette, Scott; Gupta, Resmi; Hugentobler, Jason A; Wade, Shari L; Glauser, Tracy A; Ittenbach, Richard F; Paterno, Mark V; Riley, Michael A
2018-04-01
This study aimed to provide insight into the development of postural control abilities in youth. A total of 276 typically developing adolescents (155 males, 121 females) with a mean age of 13.23 years (range of 7.11-18.80) were recruited for participation. Subjects performed two-minute quiet standing trials in bipedal stance on a force plate. Center of pressure (COP) trajectories were quantified using Sample Entropy (SampEn) in the anterior-posterior direction (SampEn-AP), SampEn in the medial-lateral direction (SampEn-ML), and Path Length (PL) measures. Three separate linear regression analyses were conducted to predict the relationship between age and each of the response variables after adjusting for individuals' physical characteristics. Linear regression models showed an inverse relationship between age and entropy measures after adjusting for body mass index. Results indicated that chronological age was predictive of entropy and path length patterns. Specifically, older adolescents exhibited center of pressure displacement (smaller path length) and less complex, more regular center of pressure displacement patterns (lower SampEn-AP and SampEn-ML values) compared to the younger children. These findings support prior studies suggesting that developmental changes in postural control abilities may continue throughout adolescence and into adulthood. Copyright © 2018 Elsevier B.V. All rights reserved.
Grey matter networks in people at increased familial risk for schizophrenia.
Tijms, Betty M; Sprooten, Emma; Job, Dominic; Johnstone, Eve C; Owens, David G C; Willshaw, David; Seriès, Peggy; Lawrie, Stephen M
2015-10-01
Grey matter brain networks are disrupted in schizophrenia, but it is still unclear at which point during the development of the illness these disruptions arise and whether these can be associated with behavioural predictors of schizophrenia. We investigated if single-subject grey matter networks were disrupted in a sample of people at familial risk of schizophrenia. Single-subject grey matter networks were extracted from structural MRI scans of 144 high risk subjects, 32 recent-onset patients and 36 healthy controls. The following network properties were calculated: size, connectivity density, degree, path length, clustering coefficient, betweenness centrality and small world properties. People at risk of schizophrenia showed decreased path length and clustering in mostly prefrontal and temporal areas. Within the high risk sample, the path length of the posterior cingulate cortex and the betweenness centrality of the left inferior frontal operculum explained 81% of the variance in schizotypal cognitions, which was previously shown to be the strongest behavioural predictor of schizophrenia in the study. In contrast, local grey matter volume measurements explained 48% of variance in schizotypy. The present results suggest that single-subject grey matter networks can quantify behaviourally relevant biological alterations in people at increased risk for schizophrenia before disease onset. Copyright © 2015 Elsevier B.V. All rights reserved.
Graph theoretical analysis of EEG functional connectivity during music perception.
Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle
2012-11-05
The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations. Copyright © 2012 Elsevier B.V. All rights reserved.
Overestimation of Mach number due to probe shadow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosselin, J. J.; Thakur, S. C.; Tynan, G. R.
2016-07-15
Comparisons of the plasma ion flow speed measurements from Mach probes and laser induced fluorescence were performed in the Controlled Shear Decorrelation Experiment. We show the presence of the probe causes a low density geometric shadow downstream of the probe that affects the current density collected by the probe in collisional plasmas if the ion-neutral mean free path is shorter than the probe shadow length, L{sub g} = w{sup 2} V{sub drift}/D{sub ⊥}, resulting in erroneous Mach numbers. We then present a simple correction term that provides the corrected Mach number from probe data when the sound speed, ion-neutral mean free path,more » and perpendicular diffusion coefficient of the plasma are known. The probe shadow effect must be taken into account whenever the ion-neutral mean free path is on the order of the probe shadow length in linear devices and the open-field line region of fusion devices.« less
NASA Astrophysics Data System (ADS)
Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.
2018-04-01
We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.
Hills, Peter J; Eaton, Elizabeth; Pake, J Michael
2016-01-01
Psychometric schizotypy in the general population correlates negatively with face recognition accuracy, potentially due to deficits in inhibition, social withdrawal, or eye-movement abnormalities. We report an eye-tracking face recognition study in which participants were required to match one of two faces (target and distractor) to a cue face presented immediately before. All faces could be presented with or without paraphernalia (e.g., hats, glasses, facial hair). Results showed that paraphernalia distracted participants, and that the most distracting condition was when the cue and the distractor face had paraphernalia but the target face did not, while there was no correlation between distractibility and participants' scores on the Schizotypal Personality Questionnaire (SPQ). Schizotypy was negatively correlated with proportion of time fixating on the eyes and positively correlated with not fixating on a feature. It was negatively correlated with scan path length and this variable correlated with face recognition accuracy. These results are interpreted as schizotypal traits being associated with a restricted scan path leading to face recognition deficits.
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan
2017-02-01
Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.
Protonospheric columnar electron content determination. I - Analysis.
NASA Technical Reports Server (NTRS)
Almeida, O. G.
1973-01-01
A combination of phase-path length difference and Faraday rotation angle data obtained from geostationary satellite transmissions is used to determine the integration constant necessary to convert phase-path length difference information into absolute values of total slant columnar electron content. The total content thus determined, which is the sum of the ionospheric and protonospheric contents, is measured with uncertainties about one order of magnitude smaller than the value of the protonospheric content. It is thus, in principle, possible to determine the latter by subtracting from the measurement the so-called 'Faraday content.' This idea, proposed by several authors in the past, is critically examined in the present paper. It is impossible to totally eliminate the ionospheric contribution to the measurements; however, it is shown that the degree of elimination depends on the type of distribution of the longitudinal component of the geomagnetic field along the path of observation. Satisfactory minimization of the ionospheric contribution can be accomplished only under certain geometries of observation.
SU-F-T-370: A Fast Monte Carlo Dose Engine for Gamma Knife
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, T; Zhou, L; Li, Y
2016-06-15
Purpose: To develop a fast Monte Carlo dose calculation algorithm for Gamma Knife. Methods: To make the simulation more efficient, we implemented the track repeating technique on GPU. We first use EGSnrc to pre-calculate the photon and secondary electron tracks in water from two mono-energy photons of 60Co. The total photon mean free paths for different materials and energies are obtained from NIST. During simulation, each entire photon track was first loaded to shared memory for each block, the incident original photon was then splitted to Nthread sub-photons, each thread transport one sub-photon, the Russian roulette technique was applied formore » scattered and bremsstrahlung photons. The resultant electrons from photon interactions are simulated by repeating the recorded electron tracks. The electron step length is stretched/shrunk proportionally based on the local density and stopping power ratios of the local material. Energy deposition in a voxel is proportional to the fraction of the equivalent step length in that voxel. To evaluate its accuracy, dose deposition in a 300mm*300mm*300mm water phantom is calculated, and compared to EGSnrc results. Results: Both PDD and OAR showed great agreements (within 0.5%) between our dose engine result and the EGSnrc result. It only takes less than 1 min for every simulation, being reduced up to ∼40 times compared to EGSnrc simulations. Conclusion: We have successfully developed a fast Monte Carlo dose engine for Gamma Knife.« less
NASA Astrophysics Data System (ADS)
Liu, L.; Neretnieks, I.
2006-12-01
ABSTRACT In our conceptualisation, water flows in channels in fractures in fractured rocks such as granites. In the Swedish concept for a repository for spent nuclear fuel the canisters containing the spent fuel are embedded in a buffer in holes below the floor of tunnels. The deposition holes can be intersected by fractures with channels with flowing water. The flow in individual channels is determined by the transmissivity properties of the network of the channels. The flowrate around a deposition hole and in the excavation damaged zone around the tunnels will control the rate of mass transfer of corrosive agents and of escaping nuclides. We call the carrying capacity of the solutes an equivalent flowrate. An escaping nuclide will reach the flowing water in the channel and be transported further into the channel network, mixing with water from other channels at some channel intersections and dividing into several channels at other intersection. In order to follow a nuclide from any leaking canister to the effluent points at the ground surface we have integrated our channel network model CHAN3D with our near field mass transfer model NUCTRAN. The NUCTRAN code, based on a compartment model can calculate the release of nuclides from a defective canister through different pathways into the near field of a repository from the local flowrates in the channels near the deposition hole obtained from CHAN3D. The network model CHAN3D uses observed transmissivity distributions and flowing fracture frequencies in boreholes to set up the 3-dimensional network of stochastic fractures. Deterministic fracture zones are described as such with their hydraulic, properties, sizes, locations and extensions. When available, information on fracture length distributions e.g. power law distributions and correlations between sizes and transmissivities are included in the network model. Once flowrates in all channels in the network have been calculated all equivalent flowrates for all canister positions can be calculated. The rate of transport of corrosive agents to and the releases of nuclides from any damaged canister are then calculated. For any given canister location the channel network model is then used to calculate the paths of the nuclides from the canister through the network by particle tracking. A large number of particles are released one by one from the canister and followed from one channel intersection to the next. A mixing rule is used at an intersection to decide which exit the particle takes. We mostly assume full mixing at intersections. The residence time and the ratio of flow wetted surface to flowrate along every path the particles traverse is summed. This information is sufficient to determine the residence time distribution (RTD) of the nuclides along that path also when they are subject to retardation by surface sorption and matrix diffusion. Actually this information is also sufficient to determine the RTD of arbitrary length decay chains subject to some minor (unimportant) simplifying assumptions. In this paper, we discuss in detail the coupling concept of how to integrate the near and far field models, together with the method of how to include transmissive fractures following a power law length distribution and fracture zones into CHAN3D in order to significantly decrease the computer time without loss of important features of the far field. The simulation results regarding a hypothetical repository located at the Forsmark area, Sweden, are also presented and discussed. Our study suggests that the integrated model can be used as an efficient tool to simulate the release of nuclides, including decay chains, from a repository and the transport to recipients.
LapSim virtual reality laparoscopic simulator reflects clinical experience in German surgeons.
Langelotz, C; Kilian, M; Paul, C; Schwenk, W
2005-11-01
The aim of this study was to analyze the ability of a training module on a virtual laparoscopic simulator to assess surgical experience in laparoscopy. One hundred and fifteen participants at the 120th annual convent of the German surgical society took part in this study. All participants were stratified into two groups, one with laparoscopic experience of less than 50 operations (group 1, n=61) and one with laparoscopic experience of more than 50 laparoscopic operations (group 2, n=54). All subjects completed a laparoscopic training module consisting of five different exercises for navigation, coordination, grasping, cutting and clipping. The time to perform each task was measured, as were the path lengths of the instruments and their respective angles representing the economy of the movements. Results between groups were compared using chi(2) or Mann-Whitney U-test. Group 1 needed more time for completion of the exercises (median 424 s, range 99-1,376 s) than group 2 (median 315 s, range 168-625 s) (P<0.01). Instrument movements were less economic in group 1 with larger angular pathways, e.g. in the cutting exercise (median 352 degrees , range 104-1,628 degrees vs median 204 degrees , range 107-444 degrees , P<0.01), and longer path lengths (each instrument P<0.05). As time for completion of exercises, instrument path lengths and angular paths are indicators of clinical experience, it can be concluded that laparoscopic skills acquired in the operating room transfer into virtual reality. A laparoscopic simulator can serve as an instrument for the assessment of experience in laparoscopic surgery.
2D beam hardening correction for micro-CT of immersed hard tissue
NASA Astrophysics Data System (ADS)
Davis, Graham; Mills, David
2016-10-01
Beam hardening artefacts arise in tomography and microtomography with polychromatic sources. Typically, specimens appear to be less dense in the center of reconstructions because as the path length through the specimen increases, so the X-ray spectrum is shifted towards higher energies due to the preferential absorption of low energy photons. Various approaches have been taken to reduce or correct for these artefacts. Pre-filtering the X-ray beam with a thin metal sheet will reduce soft energy X-rays and thus narrow the spectrum. Correction curves can be applied to the projections prior to reconstruction which transform measured attenuation with polychromatic radiation to predicted attenuation with monochromatic radiation. These correction curves can be manually selected, iteratively derived from reconstructions (this generally works where density is assumed to be constant) or derived from a priori information about the X-ray spectrum and specimen composition. For hard tissue specimens, the latter approach works well if the composition is reasonably homogeneous. In the case of an immersed or embedded specimen (e.g., tooth or bone) the relative proportions of mineral and "organic" (including medium and plastic container) species varies considerably for different ray paths and simple beam hardening correction does not give accurate results. By performing an initial reconstruction, the total path length through the container can be determined. By modelling the X-ray properties of the specimen, a 2D correction transform can then be created such that the predicted monochromatic attenuation can be derived as a function of both the measured polychromatic attenuation and the container path length.
Johnson, Robert P.; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F.; Piersimoni, Pierluigi; Plautz, Tia E.; Sadrozinski, Hartmut F.-W.; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy
2016-01-01
We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials. PMID:27127307
Johnson, Robert P; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F; Piersimoni, Pierluigi; Plautz, Tia E; Sadrozinski, Hartmut F-W; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy
2016-02-01
We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials.
NASA Astrophysics Data System (ADS)
Johnson, Robert P.; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F.; Piersimoni, Pierluigi; Plautz, Tia E.; Sadrozinski, Hartmut F.-W.; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy
2016-02-01
We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360 ° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360 ° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials.
Raño, Mariana; Kowalewski, Martin M; Cerezo, Alexis M; Garber, Paul A
2016-08-01
Models used to explain the social organization of primates suggest that variation in daily path length (DPL) is a response to variation in resource distribution and the intensity of intragroup feeding competition. However, daily path length may be affected by a number of other factors including the availability and distribution of nutritionally complementary food items, temperature which can influence activity budget, patterns of subgrouping, and the frequency and function of intergroup encounters. In this 6-month study (total 495 hr of quantitative data), we examined daily path lengths in two neighboring groups of black and gold howler monkeys (Alouatta caraya) inhabiting a semi-deciduous gallery forest in San Cayetano (27° 30'S, 58° 41'W), in the northwest province of Corrientes, Argentina. Both study groups were of similar size and composition. We identified relationships across groups between time spent feeding on fruits, leaves, and flowers, the number of trees visited, group spread, frequency of intergroup encounters, mean daily temperature, and DPL. Our results suggest that variation in food availability had a significant impact on howler ranging behavior by increasing DPL under conditions of high immature and mature fruit availability, and by decreasing DPL with increased availability and increased time invested in feeding on mature leaves. These results do not support the contention that a reduction in food availability or an increase in within-group feeding competition increased DPL in black and gold howler monkeys. DPL in black and gold howlers is influenced by several interrelated factors. In this regard we suggest that models of socio-ecology and ecological constraints need to reconsider how factors such as individual nutritional requirements, social tolerance and group cohesion, and the spatial and temporal availability of preferred and nearby food resources influence primate ranging behavior. Am. J. Primatol. 78:825-837, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Howells, Brooke E; Clark, Ross A; Ardern, Clare L; Bryant, Adam L; Feller, Julian A; Whitehead, Timothy S; Webster, Kate E
2013-09-01
Postural control impairments may persist following anterior cruciate ligament (ACL) reconstruction. The effect of a secondary task on postural control has, however, not been determined. The purpose of this case-control study was to compare postural control in patients following ACL reconstruction with healthy individuals with and without a secondary task. 45 patients (30 men and 15 women) participated at least 6 months following primary ACL reconstruction surgery. Participants were individually matched by age, gender and sports activity to healthy controls. Postural control was measured using a Nintendo Wii Balance Board and customised software during static single-leg stance and with the addition of a secondary task. The secondary task required participants to match the movement of an oscillating marker by adducting and abducting their arm. Centre of pressure (CoP) path length in both medial-lateral and anterior-posterior directions, and CoP total path length. When compared with the control group, the anterior-posterior path length significantly increased in the ACL reconstruction patients' operated (12.3%, p=0.02) and non-operated limbs (12.8%, p=0.02) for the single-task condition, and the non-operated limb (11.5%, p=0.006) for the secondary task condition. The addition of a secondary task significantly increased CoP path lengths in all measures (p<0.001), although the magnitude of the increase was similar in both the ACL reconstruction and control groups. ACL reconstruction patients showed a reduced ability in both limbs to control the movement of the body in the anterior-posterior direction. The secondary task affected postural control by comparable amounts in patients after ACL reconstruction and healthy controls. Devices for the objective measurement of postural control, such as the one used in this study, may help clinicians to more accurately identify patients with deficits who may benefit from targeted neuromuscular training programs.
Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; Parlange, Marc
2013-04-01
A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.
Isospectral drums and simple groups
NASA Astrophysics Data System (ADS)
Thas, Koen
Nearly every known pair of isospectral but nonisometric manifolds — with as most famous members isospectral bounded ℝ-planar domains which makes one “not hear the shape of a drum” [M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73(4 part 2) (1966) 1-23] — arise from the (group theoretical) Gassmann-Sunada method. Moreover, all the known ℝ-planar examples (so counter examples to Kac’s question) are constructed through a famous specialization of this method, called transplantation. We first describe a number of very general classes of length equivalent manifolds, with as particular cases isospectral manifolds, in each of the constructions starting from a given example that arises itself from the Gassmann-Sunada method. The constructions include the examples arising from the transplantation technique (and thus in particular the known planar examples). To that end, we introduce four properties — called FF, MAX, PAIR and INV — inspired by natural physical properties (which rule out trivial constructions), that are satisfied for each of the known planar examples. Vice versa, we show that length equivalent manifolds with FF, MAX, PAIR and INV which arise from the Gassmann-Sunada method, must fall under one of our prior constructions, thus describing a precise classification of these objects. Due to the nature of our constructions and properties, a deep connection with finite simple groups occurs which seems, perhaps, rather surprising in the context of this paper. On the other hand, our properties define in some sense physically irreducible pairs of length equivalent manifolds — “atoms” of general pairs of length equivalent manifolds, in that such a general pair of manifolds is patched up out of irreducible pairs — and that is precisely what simple groups are for general groups.
On the Distribution of Free Path Lengthsfor the Periodic Lorentz Gas
NASA Astrophysics Data System (ADS)
Bourgain, Jean; Golse, François; Wennberg, Bernt
Consider the domain
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Sjogren, Jon A.
1998-01-01
This paper documents the NASA Langley PVS graph theory library. The library provides fundamental definitions for graphs, subgraphs, walks, paths, subgraphs generated by walks, trees, cycles, degree, separating sets, and four notions of connectedness. Theorems provided include Ramsey's and Menger's and the equivalence of all four notions of connectedness.
Vertical Scales of Turbulence at the Mount Wilson Observatory
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.; Lowe, Stephen T.; Bester, Manfred; Danchi, William C.; Townes, Charles H.
1995-01-01
The vertical scales of turbulence at the Mount Wilson Observatory are inferred from data from the University of California at Berkeley Infrared Spatial Interferometer (ISI), by modeling path length fluctuations observed in the interferometric paths to celestial objects and those in instrumental ground-based paths. The correlations between the stellar and ground-based path length fluctuations and the temporal statistics of those fluctuations are modeled on various timescales to constrain the vertical scales. A Kolmogorov-Taylor turbulence model with a finite outer scale was used to simulate ISI data. The simulation also included the white instrumental noise of the interferometer, aperture-filtering effects, and the data analysis algorithms. The simulations suggest that the path delay fluctuations observed in the 1992-1993 ISI data are largely consistent with being generated by refractivity fluctuations at two characteristic vertical scales: one extending to a height of 45 m above the ground, with a wind speed of about 1 m/ s, and another at a much higher altitude, with a wind speed of about 10 m/ s. The height of the lower layer is of the order of the dimensions of trees and other structures near the interferometer, which suggests that these objects, including elements of the interferometer, may play a role in generating the lower layer of turbulence. The modeling indicates that the high- attitude component contributes primarily to short-period (less than 10 s) fluctuations, while the lower component dominates the long-period (up to a few minutes) fluctuations. The lower component turbulent height, along with outer scales of the order of 10 m, suggest that the baseline dependence of long-term interferometric, atmospheric fluctuations should weaken for baselines greater than a few tens of meters. Simulations further show that there is the potential for improving the seeing or astrometric accuracy by about 30%-50% on average, if the path length fluctuations in the lower component are directly calibrated. Statistical and systematic effects induce an error of about 15 m in the estimate of the lower component turbulent altitude.
A Model for Semantic Equivalence Discovery for Harmonizing Master Data
NASA Astrophysics Data System (ADS)
Piprani, Baba
IT projects often face the challenge of harmonizing metadata and data so as to have a "single" version of the truth. Determining equivalency of multiple data instances against the given type, or set of types, is mandatory in establishing master data legitimacy in a data set that contains multiple incarnations of instances belonging to the same semantic data record . The results of a real-life application define how measuring criteria and equivalence path determination were established via a set of "probes" in conjunction with a score-card approach. There is a need for a suite of supporting models to help determine master data equivalency towards entity resolution—including mapping models, transform models, selection models, match models, an audit and control model, a scorecard model, a rating model. An ORM schema defines the set of supporting models along with their incarnation into an attribute based model as implemented in an RDBMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.
Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated pathsmore » of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.« less
Digital Architecture for a Trace Gas Sensor Platform
NASA Technical Reports Server (NTRS)
Gonzales, Paula; Casias, Miguel; Vakhtin, Andrei; Pilgrim, Jeffrey
2012-01-01
A digital architecture has been implemented for a trace gas sensor platform, as a companion to standard analog control electronics, which accommodates optical absorption whose fractional absorbance equivalent would result in excess error if assumed to be linear. In cases where the absorption (1-transmission) is not equivalent to the fractional absorbance within a few percent error, it is necessary to accommodate the actual measured absorption while reporting the measured concentration of a target analyte with reasonable accuracy. This requires incorporation of programmable intelligence into the sensor platform so that flexible interpretation of the acquired data may be accomplished. Several different digital component architectures were tested and implemented. Commercial off-the-shelf digital electronics including data acquisition cards (DAQs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), and microcontrollers have been used to achieve the desired outcome. The most completely integrated architecture achieved during the project used the CPLD along with a microcontroller. The CPLD provides the initial digital demodulation of the raw sensor signal, and then communicates over a parallel communications interface with a microcontroller. The microcontroller analyzes the digital signal from the CPLD, and applies a non-linear correction obtained through extensive data analysis at the various relevant EVA operating pressures. The microcontroller then presents the quantitatively accurate carbon dioxide partial pressure regardless of optical density. This technique could extend the linear dynamic range of typical absorption spectrometers, particularly those whose low end noise equivalent absorbance is below one-part-in-100,000. In the EVA application, it allows introduction of a path-length-enhancing architecture whose optical interference effects are well understood and quantified without sacrificing the dynamic range that allows quantitative detection at the higher carbon dioxide partial pressures. The digital components are compact and allow reasonably complete integration with separately developed analog control electronics without sacrificing size, mass, or power draw.
NASA Astrophysics Data System (ADS)
Vasco, D. W.
2018-04-01
Following an approach used in quantum dynamics, an exponential representation of the hydraulic head transforms the diffusion equation governing pressure propagation into an equivalent set of ordinary differential equations. Using a reservoir simulator to determine one set of dependent variables leaves a reduced set of equations for the path of a pressure transient. Unlike the current approach for computing the path of a transient, based on a high-frequency asymptotic solution, the trajectories resulting from this new formulation are valid for arbitrary spatial variations in aquifer properties. For a medium containing interfaces and layers with sharp boundaries, the trajectory mechanics approach produces paths that are compatible with travel time fields produced by a numerical simulator, while the asymptotic solution produces paths that bend too strongly into high permeability regions. The breakdown of the conventional asymptotic solution, due to the presence of sharp boundaries, has implications for model parameter sensitivity calculations and the solution of the inverse problem. For example, near an abrupt boundary, trajectories based on the asymptotic approach deviate significantly from regions of high sensitivity observed in numerical computations. In contrast, paths based on the new trajectory mechanics approach coincide with regions of maximum sensitivity to permeability changes.
Reaction path of energetic materials using THOR code
NASA Astrophysics Data System (ADS)
Durães, L.; Campos, J.; Portugal, A.
1998-07-01
The method of predicting reaction path, using THOR code, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using HL EoS. The code allows the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, calculated and discussed—pure Ammonium Nitrate and its based explosive ANFO, and Nitromethane—because their equivalence ratio is respectively lower, near and greater than the stoicheiometry. Predictions of reaction path are in good correlation with experimental values, proving the validity of proposed method.
ERIC Educational Resources Information Center
Hwang, Hyekyung; Steinhauer, Karsten
2011-01-01
In spoken language comprehension, syntactic parsing decisions interact with prosodic phrasing, which is directly affected by phrase length. Here we used ERPs to examine whether a similar effect holds for the on-line processing of written sentences during silent reading, as suggested by theories of "implicit prosody." Ambiguous Korean sentence…
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, George R.
1996-01-01
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, G.R.
1996-07-30
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.
Radiative transport equation for the Mittag-Leffler path length distribution
NASA Astrophysics Data System (ADS)
Liemert, André; Kienle, Alwin
2017-05-01
In this paper, we consider the radiative transport equation for infinitely extended scattering media that are characterized by the Mittag-Leffler path length distribution p (ℓ ) =-∂ℓEα(-σtℓα ) , which is a generalization of the usually assumed Lambert-Beer law p (ℓ ) =σtexp(-σtℓ ) . In this context, we derive the infinite-space Green's function of the underlying fractional transport equation for the spherically symmetric medium as well as for the one-dimensional string. Moreover, simple analytical solutions are presented for the prediction of the radiation field in the single-scattering approximation. The resulting equations are compared with Monte Carlo simulations in the steady-state and time domain showing, within the stochastic nature of the simulations, an excellent agreement.
Interferometer with Continuously Varying Path Length Measured in Wavelengths to the Reference Mirror
NASA Technical Reports Server (NTRS)
Ohara, Tetsuo (Inventor)
2016-01-01
An interferometer in which the path length of the reference beam, measured in wavelengths, is continuously changing in sinusoidal fashion and the interference signal created by combining the measurement beam and the reference beam is processed in real time to obtain the physical distance along the measurement beam between the measured surface and a spatial reference frame such as the beam splitter. The processing involves analyzing the Fourier series of the intensity signal at one or more optical detectors in real time and using the time-domain multi-frequency harmonic signals to extract the phase information independently at each pixel position of one or more optical detectors and converting the phase information to distance information.
Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser
NASA Astrophysics Data System (ADS)
Davis, N. M.; Hodgkinson, J.; Francis, D.; Tatam, R. P.
2016-04-01
Detection of methane at 3.3μm using a DFB Interband Cascade Laser and gold coated integrating sphere is performed. A 10cm diameter sphere with effective path length of 54.5cm was adapted for use as a gas cell. A comparison between this system and one using a 25cm path length single-pass gas cell is made using direct TDLS and methane concentrations between 0 and 1000 ppm. Initial investigations suggest a limit of detection of 1.0ppm for the integrating sphere and 2.2ppm for the single pass gas cell. The system has potential applications in challenging or industrial environments subject to high levels of vibration.
Femto-second synchronisation with a waveguide interferometer
NASA Astrophysics Data System (ADS)
Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.
2018-03-01
CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Keller, James F.
This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent surveillance applications but few directly address dynamic maneuver constraints. The key feature of C1 is a two stage sequential solution that discretizes the problem so that graph search techniques can be combined with parametric polynomial curve generation. A method to abstract the kino-dynamics of the aerial platforms is then presented so that a graph search solution can be adapted for this application. An A* Traveling Salesman Problem (TSP) algorithm is developed to search the discretized space using the abstract distance metric to acquire more data or avoid obstacles. Results of the graph search are then transcribed into smooth paths based on vehicle maneuver constraints. A complete solution for a single vehicle periodic tour of the area is developed using the results of the graph search algorithm. To execute the mission, we present a simultaneous arrival algorithm (C2) to coordinate execution by multiple vehicles to satisfy data refresh requirements and to ensure there are no collisions at any of the path intersections. We present a toolbox of spline-based algorithms (C3) to streamline the development of C2 continuous paths with numerical stability. These tools are applied to an aerial persistent surveillance application to illustrate their utility. Comparisons with other parametric polynomial approaches are highlighted to underscore the benefits of the B-spline framework. Performance limits with respect to feasibility constraints are documented.
Analysis of Mechanical Failure of Polymer Microneedles by Axial Force
Park, Jung-Hwan; Prausnitz, Mark R.
2010-01-01
A polymeric microneedle has been developed for drug delivery applications. The ultimate goal of the polymeric microneedle is insertion into the specified region without failure for effective transdermal drug delivery. Mechanical failure of various geometries of microneedles by axial load was modeled using the Euler formula and the Johnson formula to predict the failure force of tapered-column microneedles. These formulas were compared with measured data to identify the mechanical behavior of microneedles by determining the critical factors including the actual length and end-fixed factor. The comparison of the two formulas with the data showed good agreement at the end-fixity (K) of 0.7. This value means that a microneedle column has one fixed end and one pinned end, and that part of the microneedle was overloaded by axial load. When the aspect ratio of length to equivalent diameter is 12:1 at 3 GPa of Young’s modulus, there is a transition from the Euler region to the Johnson region by the decreased length and increased base diameter of the microneedle. A polymer having less than 3 GPa of stiffness would follow the Euler formula. A 12:1 aspect ratio of length to equivalent diameter of the microneedle was the mechanical indicator determining the failure mode between elastic buckling and inelastic buckling at less than 3 GPa of Young’s modulus of polymer. Microneedles with below a 12:1 aspect ratio of length-to-equivalent diameter and more than 3 GPa of Young’s were recommended for reducing sudden failure by buckling and for successfully inserting the microneedle into the skin. PMID:21218133
Distributed multiple path routing in complex networks
NASA Astrophysics Data System (ADS)
Chen, Guang; Wang, San-Xiu; Wu, Ling-Wei; Mei, Pan; Yang, Xu-Hua; Wen, Guang-Hui
2016-12-01
Routing in complex transmission networks is an important problem that has garnered extensive research interest in the recent years. In this paper, we propose a novel routing strategy called the distributed multiple path (DMP) routing strategy. For each of the O-D node pairs in a given network, the DMP routing strategy computes and stores multiple short-length paths that overlap less with each other in advance. And during the transmission stage, it rapidly selects an actual routing path which provides low transmission cost from the pre-computed paths for each transmission task, according to the real-time network transmission status information. Computer simulation results obtained for the lattice, ER random, and scale-free networks indicate that the strategy can significantly improve the anti-congestion ability of transmission networks, as well as provide favorable routing robustness against partial network failures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitinen, T.; Dalla, S.; Huttunen-Heikinmaa, K.
2015-06-10
To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energeticmore » protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA.« less
The effects of session length on demand functions generated using FR schedules.
Foster, T Mary; Kinloch, Jennifer; Poling, Alan
2011-05-01
In comparing open and closed economies, researchers often arrange shorter sessions under the former condition than under the latter. Several studies indicate that session length per se can affect performance and there are some data that indicate that this variable can influence demand functions. To provide further data, the present study exposed domestic hens to series of increasing fixed-ratio schedules with the length of the open-economy sessions varied over 10, 40, 60, and 120 min. Session time affected the total-session response rates and pause lengths. The shortest session gave the greatest response rates and shortest pauses and the longest gave the lowest response rates and longest pauses. The total-session demand functions also changed with session length: The shortest session gave steeper initial slopes (i.e., the functions were more elastic at small ratios) and smaller rates of change of elasticity than the longest session. Response rates, pauses, and demand functions were, however, similar for equivalent periods of responding taken from within sessions of different overall lengths (e.g., total-session data for 10-min sessions and the data for the first 10 min of 120-min sessions). These findings suggest that differences in session length can confound the results of studies comparing open and closed economies when those economies are arranged in sessions that differ substantially in length, hence data for equivalent-length periods of responding, rather than total-session data, should be of primary interest under these conditions.
Path planning and execution monitoring for a planetary rover
NASA Technical Reports Server (NTRS)
Gat, Erann; Slack, Marc G.; Miller, David P.; Firby, R. James
1990-01-01
A path planner and an execution monitoring planner that will enable the rover to navigate to its various destinations safely and correctly while detecting and avoiding hazards are described. An overview of the complete architecture is given. Implementation and testbeds are described. The robot can detect unforseen obstacles and take appropriate action. This includes having the rover back away from the hazard and mark the area as untraversable in the in the rover's internal map. The experiments have consisted of paths roughly 20 m in length. The architecture works with a large variety of rover configurations with different kinematic constraints.
NASA Astrophysics Data System (ADS)
Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani
2018-01-01
In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.
Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Blumenstock, Thomas; Deutscher, Nicholas M; Dohe, Susanne; Macatangay, Ronald; Morino, Isamu; Notholt, Justus; Rettinger, Markus; Petri, Christof; Schneider, Matthias; Sussman, Ralf; Uchino, Osamu; Velazco, Voltaire; Wunch, Debra; Belikov, Dmitry
2013-02-20
This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON).
Logarithmic Sobolev Inequalities on Path Spaces Over Riemannian Manifolds
NASA Astrophysics Data System (ADS)
Hsu, Elton P.
Let Wo(M) be the space of paths of unit time length on a connected, complete Riemannian manifold M such that γ(0) =o, a fixed point on M, and ν the Wiener measure on Wo(M) (the law of Brownian motion on M starting at o).If the Ricci curvature is bounded by c, then the following logarithmic Sobolev inequality holds:
Improved gaseous leak detector
Juravic, F.E. Jr.
1983-10-06
In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.
Juravic, Jr., Frank E.
1988-01-01
In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.
Network Design for Reliability and Resilience to Attack
2014-03-01
attacker can destroy n arcs in the network SPNI Shortest-Path Network-Interdiction problem TSP Traveling Salesman Problem UB upper bound UKR Ukraine...elimination from the traveling salesman problem (TSP). Literature calls a walk that does not contain a cycle a path [19]. The objective function in...arc lengths as random variables with known probability distributions. The m-median problem seeks to design a network with minimum average travel cost
Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths
NASA Astrophysics Data System (ADS)
Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred
2017-09-01
Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.
An in vitro comparison of root canal transportation by reciproc file with and without glide path.
Nazarimoghadam, Kiumars; Daryaeian, Mohammad; Ramazani, Nahid
2014-09-01
The aim of ideal canal preparation is to prevent iatrogenic aberrations such as transportation. The aim of this study was to evaluate the root canal transportation by Reciproc file with and without glide path. Thirty acrylic-resin blocks with a curvature of 60° and size#10 (2% taper) were assigned into two groups (n= 15). In group 1, the glide path was performed using stainless steel k-files size#10 and 15 at working length In group 2, canals were prepared with Reciproc file system at working length. By using digital imaging software (AutoCAD 2008), the pre-instrumentation and post-instrumentation digital images were superimposed over, taking the landmarks as reference points. Then the radius of the internal and external curve of the specimens was calculated at three α, β and γ points (1mm to apex as α, 3mm to apex as β, and 5mm to apex as γ). The data were statically analyzed using the independent T-test and Mann-Whitney U test by SPSS version 16. Glide path was found significant for only external curve in the apical third of the canal; that is, 5mm to apex (P=0.005). But in the other third, canal modification was not significant (P> 0.008). Canal transportation in the apical third of the canal seems to be significantly reduced when glide path is performed using reciprocating files.
An In Vitro Comparison of Root Canal Transportation by Reciproc File With and Without Glide Path
Nazarimoghadam, Kiumars; Daryaeian, Mohammad; Ramazani, Nahid
2014-01-01
Objective: The aim of ideal canal preparation is to prevent iatrogenic aberrations such as transportation. The aim of this study was to evaluate the root canal transportation by Reciproc file with and without glide path. Materials and Methods: Thirty acrylic-resin blocks with a curvature of 60° and size#10 (2% taper) were assigned into two groups (n= 15). In group 1, the glide path was performed using stainless steel k-files size#10 and 15 at working length In group 2, canals were prepared with Reciproc file system at working length. By using digital imaging software (AutoCAD 2008), the pre-instrumentation and post-instrumentation digital images were superimposed over, taking the landmarks as reference points. Then the radius of the internal and external curve of the specimens was calculated at three α, β and γ points (1mm to apex as α, 3mm to apex as β, and 5mm to apex as γ). The data were statically analyzed using the independent T-test and Mann-Whitney U test by SPSS version 16. Results: Glide path was found significant for only external curve in the apical third of the canal; that is, 5mm to apex (P=0.005). But in the other third, canal modification was not significant (P> 0.008). Conclusion: Canal transportation in the apical third of the canal seems to be significantly reduced when glide path is performed using reciprocating files. PMID:25628682
NASA Astrophysics Data System (ADS)
Gelikonov, V. M.; Romashov, V. N.; Shabanov, D. V.; Ksenofontov, S. Yu.; Terpelov, D. A.; Shilyagin, P. A.; Gelikonov, G. V.; Vitkin, I. A.
2018-05-01
We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.
Arctic curves in path models from the tangent method
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Lapa, Matthew F.
2018-04-01
Recently, Colomo and Sportiello introduced a powerful method, known as the tangent method, for computing the arctic curve in statistical models which have a (non- or weakly-) intersecting lattice path formulation. We apply the tangent method to compute arctic curves in various models: the domino tiling of the Aztec diamond for which we recover the celebrated arctic circle; a model of Dyck paths equivalent to the rhombus tiling of a half-hexagon for which we find an arctic half-ellipse; another rhombus tiling model with an arctic parabola; the vertically symmetric alternating sign matrices, where we find the same arctic curve as for unconstrained alternating sign matrices. The latter case involves lattice paths that are non-intersecting but that are allowed to have osculating contact points, for which the tangent method was argued to still apply. For each problem we estimate the large size asymptotics of a certain one-point function using LU decomposition of the corresponding Gessel–Viennot matrices, and a reformulation of the result amenable to asymptotic analysis.
Ovchinnikov, Victor; Karplus, Martin
2012-07-26
The popular targeted molecular dynamics (TMD) method for generating transition paths in complex biomolecular systems is revisited. In a typical TMD transition path, the large-scale changes occur early and the small-scale changes tend to occur later. As a result, the order of events in the computed paths depends on the direction in which the simulations are performed. To identify the origin of this bias, and to propose a method in which the bias is absent, variants of TMD in the restraint formulation are introduced and applied to the complex open ↔ closed transition in the protein calmodulin. Due to the global best-fit rotation that is typically part of the TMD method, the simulated system is guided implicitly along the lowest-frequency normal modes, until the large spatial scales associated with these modes are near the target conformation. The remaining portion of the transition is described progressively by higher-frequency modes, which correspond to smaller-scale rearrangements. A straightforward modification of TMD that avoids the global best-fit rotation is the locally restrained TMD (LRTMD) method, in which the biasing potential is constructed from a number of TMD potentials, each acting on a small connected portion of the protein sequence. With a uniform distribution of these elements, transition paths that lack the length-scale bias are obtained. Trajectories generated by steered MD in dihedral angle space (DSMD), a method that avoids best-fit rotations altogether, also lack the length-scale bias. To examine the importance of the paths generated by TMD, LRTMD, and DSMD in the actual transition, we use the finite-temperature string method to compute the free energy profile associated with a transition tube around a path generated by each algorithm. The free energy barriers associated with the paths are comparable, suggesting that transitions can occur along each route with similar probabilities. This result indicates that a broad ensemble of paths needs to be calculated to obtain a full description of conformational changes in biomolecules. The breadth of the contributing ensemble suggests that energetic barriers for conformational transitions in proteins are offset by entropic contributions that arise from a large number of possible paths.
CHRIS: Hazard Assessment Handbook
1977-12-12
3.10 Vectorial Addition of Sea and Wind Currents 50 B1 Flame Length for Gases Venting Through Holes 177 B2 Equivalent...determined are: • Flame length (flame height), • Safe distance for people (away from the flame) • Safe distance for people in fire-protective clothing (away...pencil so it can be erased) Determine the flame length from Figure B1, using the venting hole diameter and the curve corresponding to the specific
Terahertz atmospheric attenuation and continuum effects
NASA Astrophysics Data System (ADS)
Slocum, David M.; Goyette, Thomas M.; Slingerland, Elizabeth J.; Giles, Robert H.; Nixon, William E.
2013-05-01
Remote sensing over long path lengths has become of greater interest in the terahertz frequency region. Applications such as pollution monitoring and detection of energetic chemicals are of particular interest. Although there has been much attention to atmospheric effects over narrow frequency windows, accurate measurements across a wide spectrum is lacking. The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The continuum effect gives rise to an excess absorption that is unaccounted for in just a resonant line spectrum simulation. The transmission of broadband terahertz radiation from 0.300THz - 1.5THz through air with varying relative humidity levels was recorded for multiple path lengths. From these data, the absorption coefficient as a function of frequency was determined and compared with model calculations. The intensity and location of the strong absorption lines were in good agreement with spectral databases such as the 2008 HITRAN database and the JPL database. However, a noticeable continuum effect was observed particularly in the atmospheric transmission windows. A small discrepancy still remained even after accounting for continuum absorption using the best available data from the literature. This discrepancy, when projected over a one kilometer path length, typical of distances used in remote sensing, can cause a 30dB difference between calculated and observed attenuation. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.
Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.
Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen
2018-09-17
Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.
Construct validity and expert benchmarking of the haptic virtual reality dental simulator.
Suebnukarn, Siriwan; Chaisombat, Monthalee; Kongpunwijit, Thanapohn; Rhienmora, Phattanapon
2014-10-01
The aim of this study was to demonstrate construct validation of the haptic virtual reality (VR) dental simulator and to define expert benchmarking criteria for skills assessment. Thirty-four self-selected participants (fourteen novices, fourteen intermediates, and six experts in endodontics) at one dental school performed ten repetitions of three mode tasks of endodontic cavity preparation: easy (mandibular premolar with one canal), medium (maxillary premolar with two canals), and hard (mandibular molar with three canals). The virtual instrument's path length was registered by the simulator. The outcomes were assessed by an expert. The error scores in easy and medium modes accurately distinguished the experts from novices and intermediates at the onset of training, when there was a significant difference between groups (ANOVA, p<0.05). The trend was consistent until trial 5. From trial 6 on, the three groups achieved similar scores. No significant difference was found between groups at the end of training. Error score analysis was not able to distinguish any group at the hard level of training. Instrument path length showed a difference in performance according to groups at the onset of training (ANOVA, p<0.05). This study established construct validity for the haptic VR dental simulator by demonstrating its discriminant capabilities between that of experts and non-experts. The experts' error scores and path length were used to define benchmarking criteria for optimal performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aushev, A A; Barinov, S P; Vasin, M G
2015-06-30
We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied bymore » alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)« less
NASA Astrophysics Data System (ADS)
Bonchiş, N.; Balint, Şt.
2010-09-01
In this paper the Ramsey optimal growth of the capital stock and consumption on finite horizon is analyzed when the growth rate of consumers is strictly positive. The main purpose is to establish the dependence of the optimal capital stock and consumption evolution on the growth rate of consumers. The analysis reveals: for any initial value k0≥0 there exists a unique optimal evolution path of length N+1 for the capital stock; if k0 is strictly positive then all the elements of the optimal capital stock evolution path are strictly positives except the last one which is zero; the optimal capital stock evolution of length N+1 starting from k0≥0 satisfies the Euler equation; the value function VN is strictly increasing, strictly concave and continuous on R+. The family of functions {VN-T}T = 0…N-1 satisfies the Bellman equation and it is the unique solution of this equation which is both continuous and satisfies the transversality condition. The Mangasarian Lemma is also satisfied. For N tending to infinity the optimal evolution path of length N of the capital stock tends to those on the infinite time horizon. For any k0>0 the value function in k0 decreases when the consumers growth rate increases.
System and Method for Measuring the Transfer Function of a Guided Wave Device
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)
2002-01-01
A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.
Equivalence: A Crucial Financial Concept for Extension, Consumer, and Investor Education
ERIC Educational Resources Information Center
Straka, Thomas J.
2010-01-01
Equivalence is a fundamental concept that is the basis of personal financial planning. Any Extension consumer financial education program would need the concept to explain financial products that involve a series of payments over some length of time (pensions, fixed annuities, and mortgages). A table of annuity factors is presented that can be…
Horton, J.A.
1994-05-03
Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.
Piecha, Magdalena; Juras, Grzegorz; Król, Piotr; Sobota, Grzegorz; Polak, Anna; Bacik, Bogdan
2014-01-01
The study aimed to establish the short-term and long-term effects of whole-body vibration on postural stability. The sample consisted of 28 male subjects randomly allocated to four comparative groups, three of which exercised on a vibration platform with parameters set individually for the groups. The stabilographic signal was recorded before the test commenced, after a single session of whole-body vibration, immediately after the last set of exercises of the 4-week whole-body vibration training, and one week after the training ended. The subjects were exposed to vibrations 3 times a week for 4 weeks. Long-term vibration training significantly shortened the rambling and trembling paths in the frontal plane. The path lengths were significantly reduced in the frontal plane one week after the training end date. Most changes in the values of the center of pressure (COP) path lengths in the sagittal and frontal plane were statistically insignificant. We concluded that long-term vibration training improves the postural stability of young healthy individuals in the frontal plane. PMID:24520362
Design of visible and IR infrared dual-band common-path telescope system
NASA Astrophysics Data System (ADS)
Guo, YuLin; Yu, Xun; Tao, Yu; Jiang, Xu
2018-01-01
The use of visible and IR infrared dual-band combination can effectively improve the performance of photoelectric detection system,TV and IR system were designed with the common path by the common reflection optical system.A TV/IR infrared common-caliber and common-path system is designed,which can realize the Remote and all-day information.For the 640×512 cooled focal plane array,an infrared middle wave system was presented with a focal length of 600mm F number of 4 field of view(FOV) of 0.38°×0.43°, the system uses optical passive thermal design, has o compact structure and can meet 100% cold shield efficiency,meanwhile it meets the design requirements of lightweight and athermalization. For the 1920×1080 pixels CCD,a visible (TV) system ,which had 500mm focal length, 4F number,was completed.The final optical design along with their modulation transfer function is presented,showing excellent imaging performance in dual-band at the temperature range between -40° and 60°.
Correlations and path analysis among agronomic and technological traits of upland cotton.
Farias, F J C; Carvalho, L P; Silva Filho, J L; Teodoro, P E
2016-08-12
To date, path analysis has been used with the aim of breeding different cultures. However, for cotton, there have been few studies using this analysis, and all of these have used fiber productivity as the primary dependent variable. Therefore, the aim of the present study was to identify agronomic and technological properties that can be used as criteria for direct and indirect phenotypes in selecting cotton genotypes with better fibers. We evaluated 16 upland cotton genotypes in eight trials conducted during the harvest 2008/2009 in the State of Mato Grosso, using a randomized block design with four replicates. The evaluated traits were: plant height, average boll weight, percentage of fiber, cotton seed yield, fiber length, uniformity of fiber, short fiber index, fiber strength, elongation, maturity of the fibers, micronaire, reflectance, and the degree of yellowing. Phenotypic correlations between the traits and cotton fiber yield (main dependent variable) were unfolded in direct and indirect effects through path analysis. Fiber strength, uniformity of fiber, and reflectance were found to influence fiber length, and therefore, these traits are recommended for both direct and indirect selection of cotton genotypes.
Path length entropy analysis of diastolic heart sounds.
Griffel, Benjamin; Zia, Mohammad K; Fridman, Vladamir; Saponieri, Cesare; Semmlow, John L
2013-09-01
Early detection of coronary artery disease (CAD) using the acoustic approach, a noninvasive and cost-effective method, would greatly improve the outcome of CAD patients. To detect CAD, we analyze diastolic sounds for possible CAD murmurs. We observed diastolic sounds to exhibit 1/f structure and developed a new method, path length entropy (PLE) and a scaled version (SPLE), to characterize this structure to improve CAD detection. We compare SPLE results to Hurst exponent, Sample entropy and Multiscale entropy for distinguishing between normal and CAD patients. SPLE achieved a sensitivity-specificity of 80%-81%, the best of the tested methods. However, PLE and SPLE are not sufficient to prove nonlinearity, and evaluation using surrogate data suggests that our cardiovascular sound recordings do not contain significant nonlinear properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ehlers, Kenneth W.; Leung, Ka-Ngo
1988-01-01
A high concentration of positive molecular ions of hydrogen or deuterium gas is extracted from a positive ion source having a short path length of extracted ions, relative to the mean free path of the gas molecules, to minimize the production of other ion species by collision between the positive ions and gas molecules. The ion source has arrays of permanent magnets to produce a multi-cusp magnetic field in regions remote from the plasma grid and the electron emitters, for largely confining the plasma to the space therebetween. The ion source has a chamber which is short in length, relative to its transverse dimensions, and the electron emitters are at an even shorter distance from the plasma grid, which contains one or more extraction apertures.
Attosecond-resolution Hong-Ou-Mandel interferometry.
Lyons, Ashley; Knee, George C; Bolduc, Eliot; Roger, Thomas; Leach, Jonathan; Gauger, Erik M; Faccio, Daniele
2018-05-01
When two indistinguishable photons are each incident on separate input ports of a beamsplitter, they "bunch" deterministically, exiting via the same port as a direct consequence of their bosonic nature. This two-photon interference effect has long-held the potential for application in precision measurement of time delays, such as those induced by transparent specimens with unknown thickness profiles. However, the technique has never achieved resolutions significantly better than the few-femtosecond (micrometer) scale other than in a common-path geometry that severely limits applications. We develop the precision of Hong-Ou-Mandel interferometry toward the ultimate limits dictated by statistical estimation theory, achieving few-attosecond (or nanometer path length) scale resolutions in a dual-arm geometry, thus providing access to length scales pertinent to cell biology and monoatomic layer two-dimensional materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosmanis, Ansis
2011-02-15
I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, whichmore » asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.« less
Path Length Entropy Analysis of Diastolic Heart Sounds
Griffel, B.; Zia, M. K.; Fridman, V.; Saponieri, C.; Semmlow, J. L.
2013-01-01
Early detection of coronary artery disease (CAD) using the acoustic approach, a noninvasive and cost-effective method, would greatly improve the outcome of CAD patients. To detect CAD, we analyze diastolic sounds for possible CAD murmurs. We observed diastolic sounds to exhibit 1/f structure and developed a new method, path length entropy (PLE) and a scaled version (SPLE), to characterize this structure to improve CAD detection. We compare SPLE results to Hurst exponent, Sample entropy and Multi-scale entropy for distinguishing between normal and CAD patients. SPLE achieved a sensitivity-specificity of 80%–81%, the best of the tested methods. However, PLE and SPLE are not sufficient to prove nonlinearity, and evaluation using surrogate data suggests that our cardiovascular sound recordings do not contain significant nonlinear properties. PMID:23930808
Narayanaswamy's 1971 aging theory and material time
NASA Astrophysics Data System (ADS)
Dyre, Jeppe C.
2015-09-01
The Bochkov-Kuzovlev nonlinear fluctuation-dissipation theorem is used to derive Narayanaswamy's phenomenological theory of physical aging, in which this highly nonlinear phenomenon is described by a linear material-time convolution integral. A characteristic property of the Narayanaswamy aging description is material-time translational invariance, which is here taken as the basic assumption of the derivation. It is shown that only one possible definition of the material time obeys this invariance, namely, the square of the distance travelled from a configuration of the system far back in time. The paper concludes with suggestions for computer simulations that test for consequences of material-time translational invariance. One of these is the "unique-triangles property" according to which any three points on the system's path form a triangle such that two side lengths determine the third; this is equivalent to the well-known triangular relation for time-autocorrelation functions of aging spin glasses [L. F. Cugliandolo and J. Kurchan, J. Phys. A: Math. Gen. 27, 5749 (1994)]. The unique-triangles property implies a simple geometric interpretation of out-of-equilibrium time-autocorrelation functions, which extends to aging a previously proposed framework for such functions in equilibrium [J. C. Dyre, e-print arXiv:cond-mat/9712222 (1997)].
Nano-inspired smart interfaces: fluidic interactivity and its impact on heat transfer
NASA Astrophysics Data System (ADS)
Kim, Beom Seok; Lee, Byoung In; Lee, Namkyu; Choi, Geehong; Gemming, Thomas; Cho, Hyung Hee
2017-03-01
Interface-inspired convection is a key heat transfer scheme for hot spot cooling and thermal energy transfer. An unavoidable trade-off of the convective heat transfer is pressure loss caused by fluidic resistance on an interface. To overcome this limitation, we uncover that nano-inspired interfaces can trigger a peculiar fluidic interactivity, which can pursue all the two sides of the coin: heat transfer and fluidic friction. We demonstrate the validity of a quasi-fin effect of Si-based nanostructures based on conductive capability of heat dissipation valid under the interactivity with fluidic viscous sublayer. The exclusive fluid-interface friction is achieved when the height of the nanostructures is much less than the thickness of the viscous sublayers in the turbulent regime. The strategic nanostructures show an enhancement of heat transfer coefficients in the wall jet region by more than 21% without any significant macroscale pressure loss under single-phase impinging jet. Nanostructures guaranteeing fluid access via an equivalent vacancy larger than the diffusive path length of viscid flow lead to local heat transfer enhancement of more than 13% at a stagnation point. Functional nanostructures will give shape to possible breakthroughs in heat transfer and its optimization can be pursued for engineered systems.
NASA Astrophysics Data System (ADS)
Hu, Xuemin; Chen, Long; Tang, Bo; Cao, Dongpu; He, Haibo
2018-02-01
This paper presents a real-time dynamic path planning method for autonomous driving that avoids both static and moving obstacles. The proposed path planning method determines not only an optimal path, but also the appropriate acceleration and speed for a vehicle. In this method, we first construct a center line from a set of predefined waypoints, which are usually obtained from a lane-level map. A series of path candidates are generated by the arc length and offset to the center line in the s - ρ coordinate system. Then, all of these candidates are converted into Cartesian coordinates. The optimal path is selected considering the total cost of static safety, comfortability, and dynamic safety; meanwhile, the appropriate acceleration and speed for the optimal path are also identified. Various types of roads, including single-lane roads and multi-lane roads with static and moving obstacles, are designed to test the proposed method. The simulation results demonstrate the effectiveness of the proposed method, and indicate its wide practical application to autonomous driving.
UAV path planning using artificial potential field method updated by optimal control theory
NASA Astrophysics Data System (ADS)
Chen, Yong-bo; Luo, Guan-chen; Mei, Yue-song; Yu, Jian-qiao; Su, Xiao-long
2016-04-01
The unmanned aerial vehicle (UAV) path planning problem is an important assignment in the UAV mission planning. Based on the artificial potential field (APF) UAV path planning method, it is reconstructed into the constrained optimisation problem by introducing an additional control force. The constrained optimisation problem is translated into the unconstrained optimisation problem with the help of slack variables in this paper. The functional optimisation method is applied to reform this problem into an optimal control problem. The whole transformation process is deduced in detail, based on a discrete UAV dynamic model. Then, the path planning problem is solved with the help of the optimal control method. The path following process based on the six degrees of freedom simulation model of the quadrotor helicopters is introduced to verify the practicability of this method. Finally, the simulation results show that the improved method is more effective in planning path. In the planning space, the length of the calculated path is shorter and smoother than that using traditional APF method. In addition, the improved method can solve the dead point problem effectively.
Traveling salesman problem with a center.
Lipowski, Adam; Lipowska, Dorota
2005-06-01
We study a traveling salesman problem where the path is optimized with a cost function that includes its length L as well as a certain measure C of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behavior of L and C, in efficiency of SA, and in the shape of minimal paths.
False Starts and Breakthroughs: Senior Thesis Research as a Critical Learning Process
ERIC Educational Resources Information Center
Schaus, Margaret; Snyder, Terry
2018-01-01
Every senior at Haverford College writes a thesis or its equivalent, conducting independent research with guidance from faculty and librarians. Students critically engage in investigative work in archives, field studies, and labs. In this article, librarians explore the way anthropology and history thesis writers do research to define paths toward…
Identical Profiles, Different Paths: Addressing Self-Selection Bias in Learning Community Cohorts
ERIC Educational Resources Information Center
Zobac, Stephanie; Spears, Julia; Barker, Gregory
2014-01-01
This article presents a method for addressing the self-selection bias of students who participate in learning communities (LCs). More specifically, this research utilizes equivalent comparison groups based on selected incoming characteristics of students, known as bootstraps, to account for self-selection bias. To address the differences in…
Determining Dynamical Path Distributions usingMaximum Relative Entropy
2015-05-31
entropy to a one-dimensional continuum labeled by a parameter η. The resulting η-entropies are equivalent to those proposed by Renyi [12] or by Tsallis [13...1995). [12] A. Renyi , “On measures of entropy and information,”Proc. 4th Berkeley Simposium on Mathematical Statistics and Probability, Vol 1, p. 547-461
NASA Astrophysics Data System (ADS)
Nicholson, D. E.; Padula, S. A.; Benafan, O.; Vaidyanathan, R.
2017-06-01
In situ neutron diffraction was used to provide insights into martensite variant microstructures during isothermal, isobaric, and isostrain loading in shape memory NiTi. The results show that variant microstructures were equivalent for the corresponding strain, and more importantly, the reversibility and equivalency were immediately evident in variant microstructures that were first formed isobarically but then reoriented to near random self-accommodated microstructures following isothermal deformation. Variant microstructures formed isothermally were not significantly affected by a subsequent thermal cycle under constant strain. In all loading cases considered, the resulting variant microstructure correlated with strain and did not correlate with stress. Based on the ability to select a variant microstructure for a given strain despite thermomechanical loading history, the results demonstrated here can be obtained by following any sequence of thermomechanical loading paths over multiple cycles. Thus, for training shape memory alloys (repeating thermomechanical cycling to obtain the desired variant microstructure), optimal paths can be selected so as to minimize the number of training cycles required, thereby increasing the overall stability and fatigue life of these alloys in actuator or medical applications.
Affordance Equivalences in Robotics: A Formalism
Andries, Mihai; Chavez-Garcia, Ricardo Omar; Chatila, Raja; Giusti, Alessandro; Gambardella, Luca Maria
2018-01-01
Automatic knowledge grounding is still an open problem in cognitive robotics. Recent research in developmental robotics suggests that a robot's interaction with its environment is a valuable source for collecting such knowledge about the effects of robot's actions. A useful concept for this process is that of an affordance, defined as a relationship between an actor, an action performed by this actor, an object on which the action is performed, and the resulting effect. This paper proposes a formalism for defining and identifying affordance equivalence. By comparing the elements of two affordances, we can identify equivalences between affordances, and thus acquire grounded knowledge for the robot. This is useful when changes occur in the set of actions or objects available to the robot, allowing to find alternative paths to reach goals. In the experimental validation phase we verify if the recorded interaction data is coherent with the identified affordance equivalences. This is done by querying a Bayesian Network that serves as container for the collected interaction data, and verifying that both affordances considered equivalent yield the same effect with a high probability. PMID:29937724
Effect of canal length and curvature on working length alteration with WaveOne reciprocating files.
Berutti, Elio; Chiandussi, Giorgio; Paolino, Davide Salvatore; Scotti, Nicola; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano
2011-12-01
This study evaluated the working length (WL) modification after instrumentation with WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) reciprocating files and the incidence of overinstrumentation in relation to the initial WL. Thirty-two root canals of permanent teeth were used. The angles of curvature of the canals were calculated on digital radiographs. The initial WL with K-files was transferred to the matched WaveOne Primary reciprocating files. After glide paths were established with PathFile (Dentsply Maillefer, Ballaigues, Switzerland), canals were shaped with WaveOne Primary referring to the initial WL. The difference between the postinstrumentation canal length and the initial canal length was analyzed by using a fiberoptic inspection microscope. Data were analyzed with a balanced 2-way factorial analysis of variance (P < .05). Referring to the initial WL, 24 of 32 WaveOne Primary files projected beyond the experimental apical foramen (minimum-maximum, 0.14-0.76 mm). A significant decrease in the canal length after instrumentation (95% confidence interval ranging from -0.34 mm to -0.26 mm) was detected. The canal curvature significantly influenced the WL variation (F(1) = 30.65, P < .001). The interaction between the initial canal length and the canal curvature was statistically significant (F(2) = 4.38, P = .014). Checking the WL before preparation of the apical third of the root canal is recommended when using the new WaveOne NiTi single-file system. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Exploration of the psychophysics of a motion displacement hyperacuity stimulus.
Verdon-Roe, Gay Mary; Westcott, Mark C; Viswanathan, Ananth C; Fitzke, Frederick W; Garway-Heath, David F
2006-11-01
To explore the summation properties of a motion-displacement hyperacuity stimulus with respect to stimulus area and luminance, with the goal of applying the results to the development of a motion-displacement test (MDT) for the detection of early glaucoma. A computer-generated line stimulus was presented with displacements randomized between 0 and 40 minutes of arc (min arc). Displacement thresholds (50% seen) were compared for stimuli of equal area but different edge length (orthogonal to the direction of motion) at four retinal locations. Also, MDT thresholds were recorded at five values of Michelson contrast (25%-84%) for each of five line lengths (11-128 min arc) at a single nasal location (-27,3). Frequency-of-seeing (FOS) curves were generated and displacement thresholds and interquartile ranges (IQR, 25%-75% seen) determined by probit analysis. Equivalent displacement thresholds were found for stimuli of equal area but half the edge length. Elevations of thresholds and IQR were demonstrated as line length and contrast were reduced. Equivalent displacement thresholds were also found for stimuli of equivalent energy (stimulus area x [stimulus luminance - background luminance]), in accordance with Ricco's law. There was a linear relationship (slope -0.5) between log MDT threshold and log stimulus energy. Stimulus area, rather than edge length, determined displacement thresholds within the experimental conditions tested. MDT thresholds are linearly related to the square root of the total energy of the stimulus. A new law, the threshold energy-displacement (TED) law, is proposed to apply to MDT summation properties, giving the relationship T = K logE where, T is the MDT threshold, Kis the constant, and E is the stimulus energy.
Özyürek, Taha; Uslu, Gülşah; Yılmaz, Koray; Gündoğar, Mustafa
2018-06-01
The purpose of this article was to compare the cyclic fatigue resistance of Reciproc and Reciproc Blue files (VDW GmbH, Munich, Germany) that were used to prepare root canals of mandibular molar teeth with or without a glide path. Sixty Reciproc R25 and 60 Reciproc Blue R25 files were used. The Reciproc and Reciproc Blue groups were divided into 3 subgroups (ie, as received condition, used without a glide path, and used with a glide path). All the instruments were rotated in a stainless steel artificial canal with an inner diameter of 1.5 mm, a 60° angle of curvature, and a radius of curvature of 5 mm until fracture occurred. The number of cycle to fracture was calculated, and the length of the fractured segments was measured. The Kruskal-Wallis test was performed to statistically analyze the data using SPSS 21.0 software (IBM Corp, Armonk, NY) at a 5% significance level. The cyclic fatigue resistance of as received condition Reciproc Blue files was found to be higher than as received condition Reciproc files (P < .05). Reciproc Blue files used for root canal preparation showed higher cyclic fatigue resistance than Reciproc files used for root canal preparation (P < .05). There was no statistically significant difference between Reciproc and Reciproc Blue files used with a glide path and without a glide path (P > .05). There was no statistically significant difference in the mean length of the fractured fragments of the instruments (P > .05). Within the limitations of this in vitro study, it was concluded that creating a glide path using ProGlider files had no effect on the cyclic fatigue resistance of RPC and RPC Blue files. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The Coherent Flame Model for Turbulent Chemical Reactions
1977-01-01
numerical integration of the resulting differential equations. The model predicts the flame length and superficial comparison with experiments suggest a...value for the single universal constant. The theory correctly predicts the change of flame length with changes in stoich- iometric ratio for the...indicate the X will be some where between 0.1 and 0.5. Figure 13 is presented to show the effect of equivalence ratio, , on the flame length when the
Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path.
Tunick, Arnold
2007-10-17
Experimental research is conducted to determine the characteristic behavior of high frequency laser signal intensity data collected over a 2.33 km optical path. Results focus mainly on calculated power spectra and frequency distributions. In addition, a model is developed to calculate optical turbulence intensity (C(n)/2) as a function of receiving and transmitting aperture diameter, log-amplitude variance, and path length. Initial comparisons of calculated to measured C(n)/2 data are favorable. It is anticipated that this kind of signal data analysis will benefit laser communication systems development and testing at the U.S. Army Research Laboratory (ARL) and elsewhere.
Path-integral theory of an axially confined worm-like chain
NASA Astrophysics Data System (ADS)
Smith, D. A.
2001-06-01
A path-integral formulation is developed for the thermodynamic properties of a worm-like chain moving on a surface and laterally confined by a harmonic potential. The free energy of the chain is calculated as a function of its length and boundary conditions at each end. Distribution functions for chain displacements can be constructed by utilizing the Markov property as a function of displacement φ(s) and its derivative dφ(s)/ds along the path. These quantities are also calculated in the presence of pinning sites which impose fixed positive or negative displacements, foreshadowing their application to a model for the regulation of striated muscle.
Effective pathway of charge transfer in DNA duplex
NASA Astrophysics Data System (ADS)
Kim, Seongjin; Yi, Juyeon; Hwang, Sun-Yong
2009-03-01
We examine the most efficient route for charge propagation in DNA duplex. We find a direct path along one strand and a detour using the complementary strand compete with each other. Charge tends to take the path along the strand whose energy levels are close to its energy, and yet there exists a crossover length Nc so that for a transfer over a distance shorter than Nc the direct path is always advantageous. We obtain the analytic results for the behavior together with various decay types such as a constant decay, an exponential decay, and a crossover between them, whose validity is confirmed by the numerical calculation.
Remote atmospheric probing by ground to ground line of sight optical methods
NASA Technical Reports Server (NTRS)
Lawrence, R. S.
1969-01-01
The optical effects arising from refractive-index variations in the clear air are qualitatively described, and the possibilities are discussed of using those effects for remotely sensing the physical properties of the atmosphere. The effects include scintillations, path length fluctuations, spreading of a laser beam, deflection of the beam, and depolarization. The physical properties that may be measured include the average temperature along the path, the vertical temperature gradient, and the distribution along the path of the strength of turbulence and the transverse wind velocity. Line-of-sight laser beam methods are clearly effective in measuring the average properties, but less effective in measuring distributions along the path. Fundamental limitations to the resolution are pointed out and experiments are recommended to investigate the practicality of the methods.
NASA Astrophysics Data System (ADS)
Bolhuis, Peter
Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.
NASA Technical Reports Server (NTRS)
Rowe, Neil C.; Lewis, David H.
1989-01-01
Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.
Comparison between Mean Forces and Swarms-of-Trajectories String Methods.
Maragliano, Luca; Roux, Benoît; Vanden-Eijnden, Eric
2014-02-11
The original formulation of the string method in collective variable space is compared with a recent variant called string method with swarms-of-trajectories. The assumptions made in the original method are revisited and the significance of the minimum free energy path (MFEP) is discussed in the context of reactive events. These assumptions are compared to those made in the string method with swarms-of-trajectories, and shown to be equivalent in a certain regime: in particular an expression for the path identified by the swarms-of-trajectories method is given and shown to be closely related to the MFEP. Finally, the algorithmic aspects of both methods are compared.
Static Signature Synthesis: A Neuromotor Inspired Approach for Biometrics.
Ferrer, Miguel A; Diaz-Cabrera, Moises; Morales, Aythami
2015-03-01
In this paper we propose a new method for generating synthetic handwritten signature images for biometric applications. The procedures we introduce imitate the mechanism of motor equivalence which divides human handwriting into two steps: the working out of an effector independent action plan and its execution via the corresponding neuromuscular path. The action plan is represented as a trajectory on a spatial grid. This contains both the signature text and its flourish, if there is one. The neuromuscular path is simulated by applying a kinematic Kaiser filter to the trajectory plan. The length of the filter depends on the pen speed which is generated using a scalar version of the sigma lognormal model. An ink deposition model, applied pixel by pixel to the pen trajectory, provides realistic static signature images. The lexical and morphological properties of the synthesized signatures as well as the range of the synthesis parameters have been estimated from real databases of real signatures such as the MCYT Off-line and the GPDS960GraySignature corpuses. The performance experiments show that by tuning only four parameters it is possible to generate synthetic identities with different stability and forgers with different skills. Therefore it is possible to create datasets of synthetic signatures with a performance similar to databases of real signatures. Moreover, we can customize the created dataset to produce skilled forgeries or simple forgeries which are easier to detect, depending on what the researcher needs. Perceptual evaluation gives an average confusion of 44.06 percent between real and synthetic signatures which shows the realism of the synthetic ones. The utility of the synthesized signatures is demonstrated by studying the influence of the pen type and number of users on an automatic signature verifier.
Concept of proton radiography using energy resolved dose measurement.
Bentefour, El H; Schnuerer, Roland; Lu, Hsiao-Ming
2016-08-21
Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.
NASA Astrophysics Data System (ADS)
Krüger, Dennis; Brinkmann, Ralf Peter
2017-11-01
This publication reports analytical and numerical results concerning the interaction of gyrating electrons with a plasma boundary sheath, with focus on partially magnetized technological plasmas. It is assumed that the electron Debye length {λ }{{D}} is much smaller than the electron gyroradius {r}{{L}}, and {r}{{L}} in turn much smaller than the mean free path λ and the gradient length L of the fields. Focusing on the scale of the gyroradius, the sheath is assumed as infinitesimally thin ({λ }{{D}}\\to 0), collisions are neglected (λ \\to ∞ ), the magnetic field is taken as homogeneous, and electric fields (=potential gradients) in the bulk are neglected (L\\to ∞ ). The interaction of an electron with the electric field of the plasma boundary sheath is represented by a specular reflection {v}\\to {v}-2{v}\\cdot {{e}}z {{e}}z of the velocity {v} at the plane z = 0 of a naturally oriented Cartesian coordinate system (x,y,z). The electron trajectory is then given as sequences of helical sections, with the kinetic energy ɛ and the canonical momenta p x and p y conserved, but not the position of the axis (base point {{R}}0), the slope (pitch angle χ), and the phase (gyrophase φ). A ‘virtual interaction’ which directly maps the incoming electrons to the outgoing ones is introduced and studied in dependence of the angle γ between the field and the sheath normal {{e}}z. The corresponding scattering operator is constructed, mathematically characterized, and given as an infinite matrix. An equivalent boundary condition for a transformed kinetic model is derived.
An approach for quantitative image quality analysis for CT
NASA Astrophysics Data System (ADS)
Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe
2016-03-01
An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.
BioProgrammable One, Two, and Three Dimensional Materials
2017-01-18
or three- dimensional architectures. The Mirkin group has used DNA-functionalized nanoparticles as “programmable atom equivalents (PAEs)” as material...with electron beam lithography to simultaneously control material structure at the nano- and macroscopic length scales. The Nguyen group has...synthesized and assembled small molecule-DNA hybrids (SMDHs) as part of programmable atom equivalents . The Rosi group identified design rules for using
NASA Astrophysics Data System (ADS)
Nakayama, M.; Kawakata, H.; Hirano, S.; Doi, I.; Takahashi, N.
2016-12-01
Transmitted waves at high frequencies attenuate strongly through highly porous media such as shallow ground, although the waves enable us to investigate physical properties of the media with high-spatial resolutions. Nakayama et al. (2015, AGU) tried to investigate the spatio-temporal variations in physical properties of a highly porous sand soil during water injection in laboratory. Accelerometers installed in the sand soil received only the signals of no higher than 0.5 kHz, although they used rectangular waveforms as input signals. The wavelength corresponding to 0.5 kHz is about 400 mm because the measured wave velocity is about 200 m/s. The wavelength is comparable to the path lengths of the transmitted waves, so that it cannot be discussed how the temporal variations in physical properties depend on the paths. In this study, we try to transmit waves with wavelengths much shorter than a sand soil and path lengths through a highly porous sand soil. We make a sand soil (750 mm long, 300 mm wide, and 300 mm high) with porosity about 40%. We install a shaker as a wave source at a deep part in the sand soil. In addition, we install accelerometers, pore pressure gauges, and electrodes at different depths. We inject tap water into the sand soil from the bottom, and record transmitted waves together with pore pressure and electrode voltage until the sand soil becomes saturated. Note that we adopt sweep signals (0.1-10 kHz) as the source so that the shaker can generate high frequency waves more strongly than rectangular signals. Accelerometers receive the signals at least up to 5 kHz during the experiment (Figure 1). The wavelength corresponding to 5 kHz is about 40 mm. In conclusion, we succeed in detecting transmitted waves propagating through the highly porous sand soil whose path lengths are about ten times their wave lengths. Acknowledgment: We are grateful to Takayoshi Kishida for supporting the experiment. This work is supported by JSPS KAKENHI Grant Numbers JP15H02996 and 26750135.
Severini, Giacomo; Straudi, Sofia; Pavarelli, Claudia; Da Roit, Marco; Martinuzzi, Carlotta; Di Marco Pizzongolo, Laura; Basaglia, Nino
2017-03-11
The Wii Balance Board (WBB) has been proposed as an inexpensive alternative to laboratory-grade Force Plates (FP) for the instrumented assessment of balance. Previous studies have reported a good validity and reliability of the WBB for estimating the path length of the Center of Pressure. Here we extend this analysis to 18 balance related features extracted from healthy subjects (HS) and individuals affected by Multiple Sclerosis (MS) with minimal balance impairment. Eighteen MS patients with minimal balance impairment (Berg Balance Scale 53.3 ± 3.1) and 18 age-matched HS were recruited in this study. All subjects underwent instrumented balance tests on the FP and WBB consisting of quiet standing with the eyes open and closed. Linear correlation analysis and Bland-Altman plots were used to assess relations between path lengths estimated using the WBB and the FP. 18 features were extracted from the instrumented balance tests. Statistical analysis was used to assess significant differences between the features estimated using the WBB and the FP and between HS and MS. The Spearman correlation coefficient was used to evaluate the validity and the Intraclass Correlation Coefficient was used to assess the reliability of WBB measures with respect to the FP. Classifiers based on Support Vector Machines trained on the FP and WBB features were used to assess the ability of both devices to discriminate between HS and MS. We found a significant linear relation between the path lengths calculated from the WBB and the FP indicating an overestimation of these parameters in the WBB. We observed significant differences in the path lengths between FP and WBB in most conditions. However, significant differences were not found for the majority of the other features. We observed the same significant differences between the HS and MS populations across the two measurement systems. Validity and reliability were moderate-to-high for all the analyzed features. Both the FP and WBB trained classifier showed similar classification performance (>80%) when discriminating between HS and MS. Our results support the observation that the WBB, although not suitable for obtaining absolute measures, could be successfully used in comparative analysis of different populations.
Mixing in the Extratropical Stratosphere: Model-measurements Comparisons using MLM Diagnostics
NASA Technical Reports Server (NTRS)
Ma, Jun; Waugh, Darryn W.; Douglass, Anne R.; Kawa, Stephan R.; Bhartia, P. K. (Technical Monitor)
2001-01-01
We evaluate transport processes in the extratropical lower stratosphere for both models and measurements with the help of equivalent length diagnostic from the modified Lagrangian-mean (MLM) analysis. This diagnostic is used to compare measurements of long-lived tracers made by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on the Upper Atmosphere Research Satellite (UARS) with simulated tracers. Simulations are produced in Chemical and Transport Models (CTMs), in which meteorological fields are taken from the Goddard Earth Observing System Data Assimilation System (GEOS DAS), the Middle Atmosphere Community Climate Model (MACCM2), and the Geophysical Fluid Dynamics Laboratory (GFDL) "SKYHI" model, respectively. Time series of isentropic equivalent length show that these models are able to capture major mixing and transport properties observed by CLAES, such as the formation and destruction of polar barriers, the presence of surf zones in both hemispheres. Differences between each model simulation and the observation are examined in light of model performance. Among these differences, only the simulation driven by GEOS DAS shows one case of the "top-down" destruction of the Antarctic polar vortex, as observed in the CLAES data. Additional experiments of isentropic advection of artificial tracer by GEOS DAS winds suggest that diabatic movement might have considerable contribution to the equivalent length field in the 3D CTM diagnostics.
On the homotopy equivalence of simple AI-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristov, O Yu
1999-02-28
Let A and B be simple unital AI-algebras (an AI-algebra is an inductive limit of C*-algebras of the form BigOplus{sub i}{sup k}C([0,1],M{sub N{sub i}}). It is proved that two arbitrary unital homomorphisms from A into B such that the corresponding maps K{sub 0}A{yields}K{sub 0}B coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for A and B to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same K-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, whichmore » is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix h can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with h.« less
Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes
2017-08-30
Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.
Heritability of refractive error and ocular biometrics: the Genes in Myopia (GEM) twin study.
Dirani, Mohamed; Chamberlain, Matthew; Shekar, Sri N; Islam, Amirul F M; Garoufalis, Pam; Chen, Christine Y; Guymer, Robyn H; Baird, Paul N
2006-11-01
A classic twin study was undertaken to assess the contribution of genes and environment to the development of refractive errors and ocular biometrics in a twin population. A total of 1224 twins (345 monozygotic [MZ] and 267 dizygotic [DZ] twin pairs) aged between 18 and 88 years were examined. All twins completed a questionnaire consisting of a medical history, education, and zygosity. Objective refraction was measured in all twins, and biometric measurements were obtained using partial coherence interferometry. Intrapair correlations for spherical equivalent and ocular biometrics were significantly higher in the MZ than in the DZ twin pairs (P < 0.05), when refraction was considered as a continuous variable. A significant gender difference in the variation of spherical equivalent and ocular biometrics was found (P < 0.05). A genetic model specifying an additive, dominant, and unique environmental factor that was sex limited was the best fit for all measured variables. Heritability of spherical equivalents of 88% and 75% were found in the men and women, respectively, whereas, that of axial length was 94% and 92%, respectively. Additive genetic effects accounted for a greater proportion of the variance in spherical equivalent, whereas the variance in ocular biometrics, particularly axial length was explained mostly by dominant genetic effects. Genetic factors, both additive and dominant, play a significant role in refractive error (myopia and hypermetropia) as well as in ocular biometrics, particularly axial length. The sex limitation ADE model (additive genetic, nonadditive genetic, and environmental components) provided the best-fit genetic model for all parameters.
Raman scattering in a whispering mode optical waveguide
Kurnit, Norman A.
1982-01-01
A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
Pipeline Processing with an Iterative, Context-Based Detection Model
2016-01-22
25: Teleseismic paths from earthquakes in Myanmar to three North American arrays. The path length to ILAR (the nearest array) is about 8950...kilometers. ................................. 57 Figure 26: Waveforms of Myanmar calibration event (left) and target event (right), recorded at ILAR...one Myanmar event (2007 5/16 8:56:16.0, Mw 6.3; 20.47°N 100.69°E) as a calibration for a second event occurring nearly 4 years later (2011 3/24 13:55
Optical pumping in a whispering-mode optical waveguide
Kurnit, N.A.
1981-08-11
A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
The Challenge of Characterizing Branching in Molecular Species.
1986-07-16
representing respectively paths of lengths two and three. Strictly speaking, a septuple rather than a pair should have been used to account for all the paths...same counts, are of fundmental importance in the study of isospectral graphs. These facts were exploited by the latter workers to establish a 1-1...case of the Hosoya index, Z(G), a composition principle was given [38] from which it was apparent that Z(G) depends on certain subgraphs of C for
Steiner trees and spanning trees in six-pin soap films
NASA Astrophysics Data System (ADS)
Dutta, Prasun; Khastgir, S. Pratik; Roy, Anushree
2010-02-01
The problem of finding minimum (local as well as absolute) path lengths joining given points (or terminals) on a plane is known as the Steiner problem. The Steiner problem arises in finding the minimum total road length joining several towns and cities. We study the Steiner tree problem using six-pin soap films. Experimentally, we observe spanning trees as well as Steiner trees partly by varying the pin diameter. We propose a possibly exact expression for the length of a spanning tree or a Steiner tree, which fails mysteriously in certain cases.
Fast exploration of an optimal path on the multidimensional free energy surface
Chen, Changjun
2017-01-01
In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules. PMID:28542475
Redundancy, Self-Motion, and Motor Control
Martin, V.; Scholz, J. P.; Schöner, G.
2011-01-01
Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives input from a neuronal timer that paces end-effector motion along its path. Within this dynamics, virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity vectors that do not. Moreover, the sensed real joint configuration is coupled back into this neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations from the dynamic movement plan. Experimental data from participants who perform in the same task setting as the model are compared in detail to the model predictions. We discover that joint velocities contain a substantial amount of self-motion that does not move the end effector. This is caused by the low impedance of muscle joint systems and by coupling among muscle joint systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We establish a link between the amount of self-motion and how curved the end-effector path is. We show that models in which an inverse dynamics cancels interaction torques predict too little self-motion and too straight end-effector paths. PMID:19718817
A comparative study of inelastic scattering models at energy levels ranging from 0.5 keV to 10 keV
NASA Astrophysics Data System (ADS)
Hu, Chia-Yu; Lin, Chun-Hung
2017-03-01
Six models, including a single-scattering model, four hybrid models, and one dielectric function model, were evaluated using Monte Carlo simulations for aluminum and copper at incident beam energies ranging from 0.5 keV to 10 keV. The inelastic mean free path, mean energy loss per unit path length, and backscattering coefficients obtained by these models are compared and discussed to understand the merits of the various models. ANOVA (analysis of variance) statistical models were used to quantify the effects of inelastic cross section and energy loss models on the basis of the simulated results deviation from the experimental data for the inelastic mean free path, the mean energy loss per unit path length, and the backscattering coefficient, as well as their correlations. This work in this study is believed to be the first application of ANOVA models towards evaluating inelastic electron beam scattering models. This approach is an improvement over the traditional approach which involves only visual estimation of the difference between the experimental data and simulated results. The data suggests that the optimization of the effective electron number per atom, binding energy, and cut-off energy of an inelastic model for different materials at different beam energies is more important than the selection of inelastic models for Monte Carlo electron scattering simulation. During the simulations, parameters in the equations should be tuned according to different materials for different beam energies rather than merely employing default parameters for an arbitrary material. Energy loss models and cross-section formulas are not the main factors influencing energy loss. Comparison of the deviation of the simulated results from the experimental data shows a significant correlation (p < 0.05) between the backscattering coefficient and energy loss per unit path length. The inclusion of backscattering electrons generated by both primary and secondary electrons for backscattering coefficient simulation is recommended for elements with high atomic numbers. In hybrid models, introducing the inner shell ionization model improves the accuracy of simulated results.
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.
2017-12-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
NASA Astrophysics Data System (ADS)
Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari
2017-07-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Properties of a new small-world network with spatially biased random shortcuts
NASA Astrophysics Data System (ADS)
Matsuzawa, Ryo; Tanimoto, Jun; Fukuda, Eriko
2017-11-01
This paper introduces a small-world (SW) network with a power-law distance distribution that differs from conventional models in that it uses completely random shortcuts. By incorporating spatial constraints, we analyze the divergence of the proposed model from conventional models in terms of fundamental network properties such as clustering coefficient, average path length, and degree distribution. We find that when the spatial constraint more strongly prohibits a long shortcut, the clustering coefficient is improved and the average path length increases. We also analyze the spatial prisoner's dilemma (SPD) games played on our new SW network in order to understand its dynamical characteristics. Depending on the basis graph, i.e., whether it is a one-dimensional ring or a two-dimensional lattice, and the parameter controlling the prohibition of long-distance shortcuts, the emergent results can vastly differ.
Beam splitter and method for generating equal optical path length beams
Qian, Shinan; Takacs, Peter
2003-08-26
The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.
A Model of Adding Relations in Multi-levels to a Formal Organization Structure with Two Subordinates
NASA Astrophysics Data System (ADS)
Sawada, Kiyoshi; Amano, Kazuyuki
2009-10-01
This paper proposes a model of adding relations in multi-levels to a formal organization structure with two subordinates such that the communication of information between every member in the organization becomes the most efficient. When edges between every pair of nodes with the same depth in L (L = 1, 2, …, H) levels are added to a complete binary tree of height H, an optimal set of depths {N1, N2, …, NL} (H⩾N1>N2> …>NL⩾1) is obtained by maximizing the total shortening path length which is the sum of shortening lengths of shortest paths between every pair of all nodes in the complete binary tree. It is shown that {N1, N2, …, NL}* = {H, H-1, …, H-L+1}.
The predictive power of local properties of financial networks
NASA Astrophysics Data System (ADS)
Caraiani, Petre
2017-01-01
The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.
Improving the resolution for Lamb wave testing via a smoothed Capon algorithm
NASA Astrophysics Data System (ADS)
Cao, Xuwei; Zeng, Liang; Lin, Jing; Hua, Jiadong
2018-04-01
Lamb wave testing is promising for damage detection and evaluation in large-area structures. The dispersion of Lamb waves is often unavoidable, restricting testing resolution and making the signal hard to interpret. A smoothed Capon algorithm is proposed in this paper to estimate the accurate path length of each wave packet. In the algorithm, frequency domain whitening is firstly used to obtain the transfer function in the bandwidth of the excitation pulse. Subsequently, wavenumber domain smoothing is employed to reduce the correlation between wave packets. Finally, the path lengths are determined by distance domain searching based on the Capon algorithm. Simulations are applied to optimize the number of smoothing times. Experiments are performed on an aluminum plate consisting of two simulated defects. The results demonstrate that spatial resolution is improved significantly by the proposed algorithm.
Light absorption cell combining variable path and length pump
Prather, William S.
1993-01-01
A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.
Eccentric connectivity index of chemical trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haoer, R. S., E-mail: raadsehen@gmail.com; Department of Mathematics, Faculty of Computer Sciences and Mathematics, University Of Kufa, Najaf; Atan, K. A., E-mail: kamel@upm.edu.my
Let G = (V, E) be a simple connected molecular graph. In such a simple molecular graph, vertices and edges are depicted atoms and chemical bonds respectively, we refer to the sets of vertices by V (G) and edges by E (G). If d(u, v) be distance between two vertices u, v ∈ V(G) and can be defined as the length of a shortest path joining them. Then, the eccentricity connectivity index (ECI) of a molecular graph G is ξ(G) = ∑{sub v∈V(G)} d(v) ec(v), where d(v) is degree of a vertex v ∈ V(G). ec(v) is the length ofmore » a greatest path linking to another vertex of v. In this study, we focus the general formula for the eccentricity connectivity index (ECI) of some chemical trees as alkenes.« less
Effective optical path length for tandem diffuse cubic cavities as gas absorption cell
NASA Astrophysics Data System (ADS)
Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.
2014-12-01
Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.
Spectroscopic detection of biological NO with a quantum cascade laser
NASA Technical Reports Server (NTRS)
Menzel, L.; Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.;
2001-01-01
Two configurations of a continuous wave quantum cascade distributed feedback laser-based gas sensor for the detection of NO at a parts per billion (ppb) concentration level, typical of biomedical applications, have been investigated. The laser was operated at liquid nitrogen temperature near lambda = 5.2 microns. In the first configuration, a 100 m optical path length multi-pass cell was employed to enhance the NO absorption. In the second configuration, a technique based on cavity-enhanced spectroscopy (CES) was utilized, with an effective path length of 670 m. Both sensors enabled simultaneous analysis of NO and CO2 concentrations in exhaled air. The minimum detectable NO concentration was found to be 3 ppb with a multi-pass cell and 16 ppb when using CES. The two techniques are compared, and potential future developments are discussed.
Yeo, Ronald A; Ryman, Sephira G; van den Heuvel, Martijn P; de Reus, Marcel A; Jung, Rex E; Pommy, Jessica; Mayer, Andrew R; Ehrlich, Stefan; Schulz, S Charles; Morrow, Eric M; Manoach, Dara; Ho, Beng-Choon; Sponheim, Scott R; Calhoun, Vince D
2016-02-01
One of the most prominent features of schizophrenia is relatively lower general cognitive ability (GCA). An emerging approach to understanding the roots of variation in GCA relies on network properties of the brain. In this multi-center study, we determined global characteristics of brain networks using graph theory and related these to GCA in healthy controls and individuals with schizophrenia. Participants (N=116 controls, 80 patients with schizophrenia) were recruited from four sites. GCA was represented by the first principal component of a large battery of neurocognitive tests. Graph metrics were derived from diffusion-weighted imaging. The global metrics of longer characteristic path length and reduced overall connectivity predicted lower GCA across groups, and group differences were noted for both variables. Measures of clustering, efficiency, and modularity did not differ across groups or predict GCA. Follow-up analyses investigated three topological types of connectivity--connections among high degree "rich club" nodes, "feeder" connections to these rich club nodes, and "local" connections not involving the rich club. Rich club and local connectivity predicted performance across groups. In a subsample (N=101 controls, 56 patients), a genetic measure reflecting mutation load, based on rare copy number deletions, was associated with longer characteristic path length. Results highlight the importance of characteristic path lengths and rich club connectivity for GCA and provide no evidence for group differences in the relationships between graph metrics and GCA.
Tufto, Jarle; Lande, Russell; Ringsby, Thor-Harald; Engen, Steinar; Saether, Bernt-Erik; Walla, Thomas R; DeVries, Philip J
2012-07-01
1. We develop a Bayesian method for analysing mark-recapture data in continuous habitat using a model in which individuals movement paths are Brownian motions, life spans are exponentially distributed and capture events occur at given instants in time if individuals are within a certain attractive distance of the traps. 2. The joint posterior distribution of the dispersal rate, longevity, trap attraction distances and a number of latent variables representing the unobserved movement paths and time of death of all individuals is computed using Gibbs sampling. 3. An estimate of absolute local population density is obtained simply by dividing the Poisson counts of individuals captured at given points in time by the estimated total attraction area of all traps. Our approach for estimating population density in continuous habitat avoids the need to define an arbitrary effective trapping area that characterized previous mark-recapture methods in continuous habitat. 4. We applied our method to estimate spatial demography parameters in nine species of neotropical butterflies. Path analysis of interspecific variation in demographic parameters and mean wing length revealed a simple network of strong causation. Larger wing length increases dispersal rate, which in turn increases trap attraction distance. However, higher dispersal rate also decreases longevity, thus explaining the surprising observation of a negative correlation between wing length and longevity. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Aoun, Georges; Nasseh, Ibrahim; Sokhn, Sayde
2016-01-01
Aim: The aim of this study was to describe the morphology of the component, greater palatine canal-pterygopalatine fossa (GPC-PPF), in a Lebanese population using cone-beam computed tomography (CBCT) technology. Materials and Methods: CBCT images of 79 Lebanese adult patients (38 females and 41 males) were included in this study, and a total of 158 cases were evaluated bilaterally. The length and path of the GPCs-PPFs were determined, and the data obtained analyzed statistically. Results: In the sagittal plane, of all the GPCs-PPFs assessed, the average length was 35.02 mm on the right and 35.01 mm on the left. The most common anatomic path consisted in the presence of a curvature resulting in an internal narrowing whose average diameter was 2.4 mm on the right and 2.45 mm on the left. The mean diameter of the upper opening was 5.85 mm on the right and 5.82 mm on the left. As for the lower opening corresponding to the greater palatine foramen, the right and left average diameters were 6.39 mm and 6.42 mm, respectively. Conclusion: Within the limits of this study, we concluded that throughout the Lebanese population, the GPC-PPF path is variable with a predominance of curved one (77.21% [122/158] in both the right and left sides); however, the GPC-PPF length does not significantly vary according to gender and side. PMID:27833777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toltz, Allison; Hoesl, Michaela; Schuemann, Jan
Purpose: A method to refine the implementation of an in vivo, adaptive proton therapy range verification methodology was investigated. Simulation experiments and in-phantom measurements were compared to validate the calibration procedure of a time-resolved diode dosimetry technique. Methods: A silicon diode array system has been developed and experimentally tested in phantom for passively scattered proton beam range verification by correlating properties of the detector signal to the water equivalent path length (WEPL). The implementation of this system requires a set of calibration measurements to establish a beam-specific diode response to WEPL fit for the selected ‘scout’ beam in a solidmore » water phantom. This process is both tedious, as it necessitates a separate set of measurements for every ‘scout’ beam that may be appropriate to the clinical case, as well as inconvenient due to limited access to the clinical beamline. The diode response to WEPL relationship for a given ‘scout’ beam may be determined within a simulation environment, facilitating the applicability of this dosimetry technique. Measurements for three ‘scout’ beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). Results: Detector response in water equivalent plastic was successfully validated against simulation for spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) with adjusted R{sup 2} of 0.998. Conclusion: Feasibility has been shown for performing calibration of detector response for a given ‘scout’ beam through simulation for the time resolved diode dosimetry technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, E; Jee, K; Zhang, R
Purpose: To evaluate the clinical performance of dual-energy CT (DECT) in determining proton stopping power ratios (SPR) and demonstrate advantages over conventional single-energy CT (SECT). Methods: SECT and DECT scans of tissue-equivalent plastics as well as animal meat samples are performed with a Siemens SOMATOM Definition Flash. The methods of Schneider et al. (1996) and Bourque et al. (2014) are used to determine proton SPR on SECT and DECT images, respectively. Waterequivalent path length (WEPL) measurements of plastics and tissue samples are performed with a 195 MeV proton beam. WEPL values are determined experimentally using the depth-dose shift and dosemore » extinction methods. Results: Comparison between CT-based and experimental WEPL is performed for 12 tissue-equivalent plastic as well as 6 meat boxes containing animal liver, kidney, heart, stomach, muscle and bones. For plastic materials, results show a systematic improvement in determining SPR with DECT, with a mean absolute error of 0.4% compared to 1.7% for SECT. For the meat samples, preliminary results show the ability for DECT to determine WEPL with a mean absolute value of 1.1% over all meat boxes. Conclusion: This work demonstrates the potential in using DECT for determining proton SPR with plastic materials in a clinical context. Further work is required to show the benefits of DECT for tissue samples. While experimental uncertainties could be a limiting factor to show the benefits of DECT over SECT for the meat samples, further work is required to adapt the DECT formalism in the context of clinical use, where noise and artifacts play an important role.« less
The conical pendulum: the tethered aeroplane
NASA Astrophysics Data System (ADS)
Mazza, Anthony P.; Metcalf, William E.; Cinson, Anthony D.; Lynch, John J.
2007-01-01
The introductory physics lab curriculum usually has one experiment on uniform circular motion (UCM). Physics departments typically have several variable-speed rotators in storage that, if they work, no longer work well. Replacing these rotators with new ones is costly, especially when they are only used once a year. This article describes how an inexpensive (ap10) tethered aeroplane, powered by a small electric motor, can be used to study UCM. The aeroplane is easy to see and entertaining to watch. For a given string length and air speed, a tethered aeroplane quickly finds a stable, horizontal, circular orbit. Using a digital video (DV) camcorder, VideoPoint Capture, QuickTime player, metre sticks and a stopwatch, data on the aeroplane's motion were obtained. The length of the string was varied from 120 to 340 cm while the air speed ranged from 200 to 480 cm s-1. For each string length and air speed, the period of the orbit and the diameter of the path were carefully measured. Theoretical values of path radii were then calculated using Newton's second law. The agreement between experiment and theory was usually better than 2%.
Bell's twin rockets non-inertial length enigma resolved by real geometry
NASA Astrophysics Data System (ADS)
Coleman, Brian
A priori uniformity and monotonicity of the 'non-inertial length' expansion of a uniformly co-accelerating medium, uniquely yield an unfamiliar 'hemicoid' real-values metric surface ϒ in R3 . ϒ (τ, l) hosts congruent helicoidally distributed fixed-l 'hemix world-lines' tracing medium increments' clock times τ and crossed by fixed- τ medium helices of parameterized length λ sharing comoving 'non-inertial frames'. Radar intervals and expansion factor ∂λ / ∂l = √ (1 +v2 /c2) conform to requirements established in Coleman, Results in Physics,6, 2016-Minkowski spacetime does not apply to a homogeneously accelerating medium. Co-directional radar paths on ϒ mapped from home frame chart diagonals crossing hyperbolic world-lines, surf 'horizon' increment hemices, whereas counter-directional radar paths tend to 'overlap' horizon medium helices. They also traverse each medium expansion helix at respectively identical angles and geodesic curvatures, independently of differing rocket emission times. Surface ϒ 's real metric is: ds2 = dτ2 + dλ2 +[ 2 tanhτ . (tanhτ - 1 / coshτ) / √ (1 +tanh2 τ) ] dτ . dλ .
Glow discharge based device for solving mazes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D.
2014-09-15
A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in themore » maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.« less
Perturbative Yang-Mills theory without Faddeev-Popov ghost fields
NASA Astrophysics Data System (ADS)
Huffel, Helmuth; Markovic, Danijel
2018-05-01
A modified Faddeev-Popov path integral density for the quantization of Yang-Mills theory in the Feynman gauge is discussed, where contributions of the Faddeev-Popov ghost fields are replaced by multi-point gauge field interactions. An explicit calculation to O (g2) shows the equivalence of the usual Faddeev-Popov scheme and its modified version.
On Compact Book Storage in Libraries.
ERIC Educational Resources Information Center
Ravindran, Arunachalam
The optimal storage of books by size in libraries is considered in this paper. It is shown that for a given collection of books of various sizes, the optimum number of shelf heights to use can be determined by finding the shortest path in an equivalent network. Applications of this model to inventory control, assortment and packaging problems are…
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... depth of modulation of the radio frequency carrier due to each of the 90 Hz and 150 Hz tones must be 40... tone, which is the time average equivalent to amplitude modulation. The pattern must be arranged to... 5220 MHz to 5250 MHz. The frequency tolerance may not exceed ±0.0001 percent. (f) The emission from the...
Generally, the uptake of reactive gases by the respiratory tract is simulated assuming that all path from the trachea to the most distal airspaces ore equivalent. s this is not the case, especially for non-humans, the adequacy of this approach to predict doses that con be useful ...
Some Minorants and Majorants of Random Walks and Levy Processes
NASA Astrophysics Data System (ADS)
Abramson, Joshua Simon
This thesis consists of four chapters, all relating to some sort of minorant or majorant of random walks or Levy processes. In Chapter 1 we provide an overview of recent work on descriptions and properties of the convex minorant of random walks and Levy processes as detailed in Chapter 2, [72] and [73]. This work rejuvenated the field of minorants, and led to the work in all the subsequent chapters. The results surveyed include point process descriptions of the convex minorant of random walks and Levy processes on a fixed finite interval, up to an independent exponential time, and in the infinite horizon case. These descriptions follow from the invariance of these processes under an adequate path transformation. In the case of Brownian motion, we note how further special properties of this process, including time-inversion, imply a sequential description for the convex minorant of the Brownian meander. This chapter is based on [3], which was co-written with Jim Pitman, Nathan Ross and Geronimo Uribe Bravo. Chapter 1 serves as a long introduction to Chapter 2, in which we offer a unified approach to the theory of concave majorants of random walks. The reasons for the switch from convex minorants to concave majorants are discussed in Section 1.1, but the results are all equivalent. This unified theory is arrived at by providing a path transformation for a walk of finite length that leaves the law of the walk unchanged whilst providing complete information about the concave majorant - the path transformation is different from the one discussed in Chapter 1, but this is necessary to deal with a more general case than the standard one as done in Section 2.6. The path transformation of Chapter 1, which is discussed in detail in Section 2.8, is more relevant to the limiting results for Levy processes that are of interest in Chapter 1. Our results lead to a description of a walk of random geometric length as a Poisson point process of excursions away from its concave majorant, which is then used to find a complete description of the concave majorant of a walk of infinite length. In the case where subsets of increments may have the same arithmetic mean (the more general case mentioned above), we investigate three nested compositions that naturally arise from our construction of the concave majorant. This chapter is based on [4], which was co-written with Jim Pitman. In Chapter 3, we study the Lipschitz minorant of a Levy process. For alpha > 0, the alpha-Lipschitz minorant of a function f : R→R is the greatest function m : R→R such that m ≤ f and | m(s) - m(t)| ≤ alpha |s - t| for all s, t ∈ R should such a function exist. If X = Xtt∈ R is a real-valued Levy process that is not pure linear drift with slope +/-alpha, then the sample paths of X have an alpha-Lipschitz minorant almost surely if and only if | E [X1]| < alpha. Denoting the minorant by M, we investigate properties of the random closed set Z := {t ∈ R : Mt = {Xt ∧ Xt-}, which, since it is regenerative and stationary, has the distribution of the closed range of some subordinator "made stationary" in a suitable sense. We give conditions for the contact set Z to be countable or to have zero Lebesgue measure, and we obtain formulas that characterize the Levy measure of the associated subordinator. We study the limit of Z as alpha → infinity and find for the so-called abrupt Levy processes introduced by Vigon that this limit is the set of local infima of X. When X is a Brownian motion with drift beta such that |beta| < alpha, we calculate explicitly the densities of various random variables related to the minorant. This chapter is based on [2], which was co-written with Steven N. Evans. Finally, in Chapter 4 we study the structure of the shocks for the inviscid Burgers equation in dimension 1 when the initial velocity is given by Levy noise, or equivalently when the initial potential is a two-sided Levy process This shock structure turns out to give rise to a parabolic minorant of the Levy process--see Section 4.2 for details. The main results are that when psi0 is abrupt in the sense of Vigon or has bounded variation with limsuph-2 h↓0y0 h=infinity , the set of points with zero velocity is regenerative, and that in the latter case this set is equal to the set of Lagrangian regular points, which is non-empty. When psi0 is abrupt the shock structure is discrete and when psi0 is eroded there are no rarefaction intervals. This chapter is based on [1].
Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.
Abid, Haider J; Chen, Jie; Nassar, Ameen A
2015-01-01
This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.
Energy Harvesting A Nano-Scale Based Magnetothermal-Electric Element
2015-05-21
induction , H is the...field and L is the length of the magnetic circuit . As the area, path length and applied...subsequently annealed to 850 C, for 1 hour, in a tube furnace under a
Energy Harvesting A Nano-Scale Based Magneto-Thermal-Electric Element
2015-05-21
induction , H is...magnetic field and L is the length of the magnetic circuit . As the area, path length and...sample was subsequently annealed to 850 C, for 1 hour, in a tube furnace under
Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho
2013-10-21
Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.
NASA Astrophysics Data System (ADS)
Wang, X.; Holmes, C. S.
2015-08-01
When grinding helical components, errors occur at the beginning and end of the contact path between the component and grinding wheel. This is due to the forces on the component changing as the grinding wheel comes into and out-of full contact with the component. In addition, shaft bending may add depth changes which vary along the length. This may result in an interrupted contact line and increased noise from the rotors. Using on-board scanning, software has been developed to calculate a compensated grinding path, which includes the adjustments of head angle, work rotation and infeed. This grinding path compensates not only lead errors, but also reduces the profile errors as well. The program has been tested in rotor production and the results are shown.
Investigations of ionospheric sporadic Es layer using oblique sounding method
NASA Astrophysics Data System (ADS)
Minullin, R.
The characteristics of Es layer have been studied using oblique sounding at 28 radiolines at the frequencies of 34 -- 73 MHz at the transmission paths 400 -- 1600 km long during 30 years. Reflections from Es layer with a few hours duration were observed. The amplitude of the reflected signal reached 1000 μ V with the registration threshold 0,1 μ V. The borderlines between reflected and scattered signals were observed as sharp curves in 60 -- 100 s range on the distributions of duration of reflected signals for decameter waves. The duration of continuous Es reflections were decreased upon amplification of oblique sounding frequency. The distributions of duration of reflected signals for meter waves showed sharp curves in the range 200 -- 300 s, representing borderlines between signals reflected from meteoric traces and from Es layer. The filling coefficient for the oblique sounding as well as the Es layer emersion probability for the vertical sounding were shown to undergo daily, seasonal and periodic variations. The daily variations of the filling coefficient of Es signals showed clear-cut maximums at 10 -- 12 and 18 -- 20 hours and minimum at 4 -- 6 hours at all paths in summer time and the maximum at 12 -- 14 hours in winter time. The values of the filling coefficient for Es layer declined with the increase of oblique sounding frequency. The minimal values of the filling coefficient were observed in winter and early spring, while the maximal values were observed from May to August. Provided that the averaged filling coefficient is equal to one in summer, it reaches the level 0,25 in equinox and does not exceed the level 0,12 in winter as evident by the of oblique sounding. The filling coefficient relation to the value of the voltage detection threshold was approximated by power-mode law. The filling coefficients for summer period showed exponential relation with equivalent sounding frequencies. The experimental evidence was generalized in an analytical model. Using this model the averaged Es layer filling coefficients for particular season of the year can be forecasted in case of given sounding frequency, path length, and voltage threshold.
HF radar transmissions that deviate from great-circle paths: new insight from e-POP RRI
NASA Astrophysics Data System (ADS)
Perry, G. W.; Miller, E. S.; James, H. G.; Howarth, A. D.; St-Maurice, J. P.; Yau, A. W.
2016-12-01
Significant deviations of SuperDARN radar transmissions from their expected great-circle paths have been detected at ionospheric altitudes using the Radio Receiver Instrument (RRI) on the Enhanced Polar Outflow Probe (e-POP). Experiments between SuperDARN Rankin Inlet and e-POP RRI were conducted at similar local times over consecutive days. Customized experiment modes which incorporated the agile frequency switching capabilities of each system were used. The RRI measurements show deviations of radar transmissions from their expected paths by as much as 2 or 3 SuperDARN beam widths, equivalent to 6° - 10° in bearing from Rankin Inlet. The deviations displayed a dependence on the radar carrier frequency and a day-to-day variability, suggesting that the deviations were transient in nature. We will discuss the deviations in the context of 3D ray trace modeling and measurements from the Resolute Bay Incoherent Scatter Radar - North (RISR-N). The latter provided diagnostic information of the ionosphere along the ray path between RRI and Rankin Inlet during the experiments.
Gain degradation and amplitude scintillation due to tropospheric turbulence
NASA Technical Reports Server (NTRS)
Theobold, D. M.; Hodge, D. B.
1978-01-01
It is shown that a simple physical model is adequate for the prediction of the long term statistics of both the reduced signal levels and increased peak-to-peak fluctuations. The model is based on conventional atmospheric turbulence theory and incorporates both amplitude and angle of arrival fluctuations. This model predicts the average variance of signals observed under clear air conditions at low elevation angles on earth-space paths at 2, 7.3, 20 and 30 GHz. Design curves based on this model for gain degradation, realizable gain, amplitude fluctuation as a function of antenna aperture size, frequency, and either terrestrial path length or earth-space path elevation angle are presented.
A note on subtrees rooted along the primary path of a binary tree
Troutman, B.M.; Karlinger, M.R.
1993-01-01
Let Fn denote the set of rooted binary plane trees with n external nodes, for given T???Fn let ui(T) be the altitude i node along the primary path of T, and let ??i(T) denote the number of external nodes in the induced subtree rooted at ui(T). We set ??i(T) = 0 if i is greater than the length of the primary path of T. We prove limn?????? ???i???x/n En{??i}/???i?? En{??i} = G(x), where En denotes the average over trees T???Fn and where the distribution function G is determined by its moments, for which we present an explicit expression. ?? 1993.
An optically passive method that doubles the rate of 2-Ghz timing fiducials
NASA Astrophysics Data System (ADS)
Boni, R.; Kendrick, J.; Sorce, C.
2017-08-01
Solid-state optical comb-pulse generators provide a convenient and accurate method to include timing fiducials in a streak camera image for time base correction. Commercially available vertical-cavity surface-emitting lasers (VCSEL's) emitting in the visible currently in use can be modulated up to 2 GHz. An optically passive method is presented to interleave a time-delayed path of the 2-GHz comb with itself, producing a 4-GHz comb. This technique can be applied to VCSEL's with higher modulation rates. A fiber-delivered, randomly polarized 2-GHz VCSEL comb is polarization split into s-polarization and p-polarization paths. One path is time delayed relative to the other by twice the 2-GHz rate with +/-1-ps accuracy; the two paths then recombine at the fiber-coupled output. High throughput (>=90%) is achieved by carefully using polarization beam-splitting cubes, a total internal reflection beam-path-steering prism, and antireflection coatings. The glass path-length delay block and turning prism are optically contacted together. The beam polarizer cubes that split and recombine the paths are precision aligned and permanently cemented into place. We expect the palm-sized, inline fiber-coupled, comb-rate-doubling device to maintain its internal alignment indefinitely.
NASA Astrophysics Data System (ADS)
Kapania, Nitin R.; Gerdes, J. Christian
2015-12-01
This paper presents a feedback-feedforward steering controller that simultaneously maintains vehicle stability at the limits of handling while minimising lateral path tracking deviation. The design begins by considering the performance of a baseline controller with a lookahead feedback scheme and a feedforward algorithm based on a nonlinear vehicle handling diagram. While this initial design exhibits desirable stability properties at the limits of handling, the steady-state path deviation increases significantly at highway speeds. Results from both linear and nonlinear analyses indicate that lateral path tracking deviations are minimised when vehicle sideslip is held tangent to the desired path at all times. Analytical results show that directly incorporating this sideslip tangency condition into the steering feedback dramatically improves lateral path tracking, but at the expense of poor closed-loop stability margins. However, incorporating the desired sideslip behaviour into the feedforward loop creates a robust steering controller capable of accurate path tracking and oversteer correction at the physical limits of tyre friction. Experimental data collected from an Audi TTS test vehicle driving at the handling limits on a full length race circuit demonstrates the improved performance of the final controller design.
Stormtime transport of ring current and radiation belt ions
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.
1993-01-01
This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative ions equally spaced in drift time around the steady-state drift shell of interest (L equivalent to 3), we have estimated (from both our forward and our time-reversed simulations) the time-integrated radial-diffusion coefficients D(sup sim)(sub LL) for particles having selected values of mu approximately greater than 15 MeV/G. The results agree surprisingly well with the predictions (D(sup ql)(sub LL)) of quasilinear radial diffusion theory, despite the rather brief duration (approximately 3 hrs) of our model storm and despite the extreme variability (with frequency) of the spectral-density function that characterizes the applied electric field during our model storm. As expected, the values of D(sup sim)(sub LL) deduced (respectively) from our forward and time-reversed simulations agree even better with each other and with D(sup sim)(sub LL) when the impulse amplitudes which characterize the individual substorms of our model storm are systematically reduced.
Yamazaki, Kaoru; Niitsu, Naoyuki; Nakamura, Kosuke; Kanno, Manabu; Kono, Hirohiko
2012-11-26
We investigated the reaction paths of Stone-Wales rearrangement (SWR), i.e., π/2 rotation of two carbon atoms with respect to the midpoint of the bond, in graphene and carbon nanotube quantum chemically. Our particular attention is focused on the roles of electronic excitations and conical intersections (CIs) in the reaction mechanism. We used pyrene as a model system. The reaction paths were determined by constructing potential energy surfaces at the MS-CASPT2//SA-CASSCF level of theory. We found that there are no CIs involved in SWR when both of C-C bond cleavage and formation occur simultaneously (concerted mechanism). In contrast, for the reaction path with stepwise cleavage and formation of C-C bonds, C-C bond breaking and making processes proceed through two CIs. When SWR starts from the ground (S(0)) state, the concerted and stepwise paths have an equivalent reaction barrier ΔE(‡) (9.5-9.6 eV). For the reaction path starting from excited states, only the stepwise mechanism is energetically preferable. This path contains a nonadabatic transition between the S(1) and S(0) states via a CI associated with the first stage of C-C bond cleavage and has ΔE(‡) as large as in the S(0) paths. We confirmed that the main active molecular orbitals and electron configurations for the low-lying electronic states of larger nanocarbons are the same as those in pyrene. This result suggests the importance of the nonadiabatic transitions through CIs in the photochemical reactions in large nanocarbons.
Effect of non-classical current paths in networks of 1-dimensional wires
NASA Astrophysics Data System (ADS)
Echternach, P. M.; Mikhalchuk, A. G.; Bozler, H. M.; Gershenson, M. E.; Bogdanov, A. L.; Nilsson, B.
1996-04-01
At low temperatures, the quantum corrections to the resistance due to weak localization and electron-electron interaction are affected by the shape and topology of samples. We observed these effects in the resistance of 2D percolation networks made from 1D wires and in a series of long 1D wires with regularly spaced side branches. Branches outside the classical current path strongly reduce the quantum corrections to the resistance and these reductions become a measure of the quantum lengths.
Polarization Considerations for the Laser Interferometer Space Antenna
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul
2005-01-01
A polarization ray trace model of the Laser Interferometer Space Antenna s (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model s limitations and serve as a clearly defined starting point for future work.
1979-11-01
diameter test cell used for laser propagation measurements is Path length-84 m to 2.0 km available and has been designed for circulating aerosols or...36- and 110-GHz and found an attenuation ratio of comparison measurements along a 4-km path with rain rate measured near the receiver end. a *02 They...time. Tipping-bucket systems . gauges are reliable, but become increasingly in- accurate at high rates . Flow gauges which The direct field measurement
Single reflector interference spectrometer and drive system therefor
NASA Technical Reports Server (NTRS)
Schindler, R. A. (Inventor)
1974-01-01
In a Fourier interference spectrometer of the doublepass retroreflector type, a single mirror is employed in the path of both split beams of an incoming ray to cause them to double back through separate retroreflectors. Changes in optical path length are achieved by linear displacement of both retroreflectors using a motor driven lead screw on one for large, low frequency changes, a moving-coil actuator on the other for smaller, mid-frequency changes and a piezoelectric actuator on one of these two for small, high frequency changes.
Non-Normal Projectile Penetration in Soil and Rock: User’s Guide for Computer Code PENC02D.
1982-09-01
the path traveled , with projec- tile orientation shown every FREQI projectile lengths. In this run, FREQI was input as 2.5. The horizontal lines...must be a closed surface in the direction of travel ; the bluntness of the nose requires a near 90-deg element for closure. Sheet 3 shows the beginning...plots for this problem. Sheets 1 and 2 automatically verify the projectile shape and path traveled . Sheets 3, 4, and 5 show the axial deceleration
MAS Bulletin. GY-90 Fiber Optic Gyro
1989-07-20
487 GY.9O Fiber Optic Gyro Background. Elettronica San Giorgio ELSAG S.p.A., Genoa, Italy, has developed a fiber optic gyro (FOG) for use on short...to the length of ELSAG S.p.A., Naval Systems Division, Via G. Puccini, 2-16154 the optical path and an extremely long optical path can be Genoa, Italy...Telephone 39 10/60011, Fax 39 10/607329, Telex achieved in a small size by using a many-turn coil of optical fiber. 270660/213847 ELSAG 1. There are
2005-12-31
are utilized with the eikonal equation of geometrical optics to propagate computationally the optical wavefronts in the near field. As long as the...aero-optical interactions. In terms of the refractive index field n and the optical path length (OPL), the eikonal equation is: |∇ (OPL)| = n , (9) (e.g...ray n(`, t) d` . (10) The OPL integral corresponds to inverting the eikonal equation 9. The physical distance along the beam propagation path for
Flame Driving of Longitudinal Instabilities in Liquid Fueled Dump Combustors
1988-10-01
for the first * natural frequency of 80 Hz. As the flame length is much smaller than the acoustic wavelength at 80 Hz the pressure is constant over...release at different locations along the flame. The reason for this is that the flame length is equivalent to several vortical wavelengths as is evident...pressure minimum there was a large radla- flame length . In all cases, it was ?ound that the tion signal at the driving frequency. On the theory
NASA Astrophysics Data System (ADS)
Shimamura, Atsushi; Moritsu, Toshiyuki; Someya, Harushi
To dematerialize the securities such as stocks or cooporate bonds, the securities were registered to account in the registration agencies which were connected as tree. This tree structure had the advantage in the management of the securities those were issued large amount and number of brands of securities were limited. But when the securities such as account receivables or advance notes are dematerialized, number of brands of the securities increases extremely. In this case, the management of securities with tree structure becomes very difficult because of the concentration of information to root of the tree. To resolve this problem, using the graph structure is assumed instead of the tree structure. When the securities are kept with tree structure, the delivery path of securities is unique, but when securities are kept with graph structure, path of delivery is not unique. In this report, we describe the requirement of the delivery path of securities, and we describe selecting method of the path.
Folded path LWIR system for SWAP constrained platforms
NASA Astrophysics Data System (ADS)
Fleet, Erin F.; Wilson, Michael L.; Linne von Berg, Dale; Giallorenzi, Thomas; Mathieu, Barry
2014-06-01
Folded path reflection and catadioptric optics are of growing interest, especially in the long wave infrared (LWIR), due to continuing demands for reductions in imaging system size, weight and power (SWAP). We present the optical design and laboratory data for a 50 mm focal length low f/# folded-path compact LWIR imaging system. The optical design uses 4 concentric aspheric mirrors, each of which is described by annular aspheric functions well suited to the folded path design space. The 4 mirrors are diamond turned onto two thin air-spaced aluminum plates which can be manually focused onto the uncooled LWIR microbolometer array detector. Stray light analysis will be presented to show how specialized internal baffling can be used to reduce stray light propagation through the folded path optical train. The system achieves near diffraction limited performance across the FOV with a 15 mm long optical train and a 5 mm back focal distance. The completed system is small enough to reside within a 3 inch diameter ball gimbal.
Shrager, Yael; Kirwan, C Brock; Squire, Larry R
2008-08-19
The hippocampus and entorhinal cortex have been linked to both memory functions and to spatial cognition, but it has been unclear how these ideas relate to each other. An important part of spatial cognition is the ability to keep track of a reference location using self-motion cues (sometimes referred to as path integration), and it has been suggested that the hippocampus or entorhinal cortex is essential for this ability. Patients with hippocampal lesions or larger lesions that also included entorhinal cortex were led on paths while blindfolded (up to 15 m in length) and were asked to actively maintain the path in mind. Patients pointed to and estimated their distance from the start location as accurately as controls. A rotation condition confirmed that performance was based on self-motion cues. When demands on long-term memory were increased, patients were impaired. Thus, in humans, the hippocampus and entorhinal cortex are not essential for path integration.
Inertia and Double Bending of Light from Equivalence
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr.
2010-01-01
Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Dioumaev, Andrei K.; Ziaee, Ali; Minniti, Marco; Dunn-Rankin, Derek
2017-08-01
This paper describes research that demonstrated gated, femtosecond, digital holography, enabling 3D microscopic viewing inside dense, almost opaque sprays, and providing a new and powerful diagnostics capability for viewing fuel atomization processes never seen before. The method works by exploiting the extremely short coherence and pulse length (approximately 30 micrometers in this implementation) provided by a femtosecond laser combined with digital holography to eliminate multiple and wide angle scattered light from particles surrounding the injection region, which normally obscures the image of interest. Photons that follow a path that differs in length by more than 30 micrometers from a straight path through the field to the sensor do not contribute to the holographic recording of photons that travel in a near straight path (ballistic and "snake" photons). To further enhance the method, off-axis digital holography was incorporated to enhance signal to noise ratio and image processing capability in reconstructed images by separating the conjugate images, which overlap and interfere in conventional in-line holography. This also enables digital holographic interferometry. Fundamental relationships and limitations were also examined. The project is a continuing collaboration between MetroLaser and the University of California, Irvine.
Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.
2012-01-01
The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crittendon, J. A.; Burke, D. C.; Fuentes, Y. L.P.
2017-01-06
The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150 MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams.more » The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifi- cations and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.« less
Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks
NASA Astrophysics Data System (ADS)
Frey, Hannes; Rührup, Stefan
A spanner is a subgraph of a given graph that supports the original graph's shortest path lengths up to a constant factor. Planar spanners and their distributed construction are of particular interest for geographic routing, which is an efficient localized routing scheme for wireless ad hoc and sensor networks. Planarity of the network graph is a key criterion for guaranteed delivery, while the spanner property supports efficiency in terms of path length. We consider the problem of reactive local spanner construction, where a node's local topology is determined on demand. Known message-efficient reactive planarization algorithms do not preserve the spanner property, while reactive spanner constructions with a low message overhead have not been described so far. We introduce the concept of direct planarization which may be an enabler of efficient reactive spanner construction. Given an edge, nodes check for all incident intersecting edges a certain geometric criterion and withdraw the edge if this criterion is not satisfied. We use this concept to derive a generic reactive topology control mechanism and consider two geometric criteria. Simulation results show that direct planarization increases the performance of localized geographic routing by providing shorter paths than existing reactive approaches.
Stochastic stability properties of jump linear systems
NASA Technical Reports Server (NTRS)
Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.
1992-01-01
Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.
[Remote system of natural gas leakage based on multi-wavelength characteristics spectrum analysis].
Li, Jing; Lu, Xu-Tao; Yang, Ze-Hui
2014-05-01
In order to be able to quickly, to a wide range of natural gas pipeline leakage monitoring, the remote detection system for concentration of methane gas was designed based on static Fourier transform interferometer. The system used infrared light, which the center wavelength was calibrated to absorption peaks of methane molecules, to irradiated tested area, and then got the interference fringes by converging collimation system and interference module. Finally, the system calculated the concentration-path-length product in tested area by multi-wavelength characteristics spectrum analysis algorithm, furthermore the inversion of the corresponding concentration of methane. By HITRAN spectrum database, Selected wavelength position of 1. 65 microm as the main characteristic absorption peaks, thereby using 1. 65 pm DFB laser as the light source. In order to improve the detection accuracy and stability without increasing the hardware configuration of the system, solved absorbance ratio by the auxiliary wave-length, and then get concentration-path-length product of measured gas by the method of the calculation proportion of multi-wavelength characteristics. The measurement error from external disturbance is caused by this innovative approach, and it is more similar to a differential measurement. It will eliminate errors in the process of solving the ratio of multi-wavelength characteristics, and can improve accuracy and stability of the system. The infrared absorption spectrum of methane is constant, the ratio of absorbance of any two wavelengths by methane is also constant. The error coefficients produced by the system is the same when it received the same external interference, so the measured noise of the system can be effectively reduced by the ratio method. Experimental tested standards methane gas tank with leaking rate constant. Using the tested data of PN1000 type portable methane detector as the standard data, and were compared to the tested data of the system, while tested distance of the system were 100, 200 and 500 m. Experimental results show that the methane concentration detected value was stable after a certain time leakage, the concentration-path-length product value of the system was stable. For detection distance of 100 m, the detection error of the concentration-path-length product was less than 1. 0%. With increasing distance from tested area, the detection error is increased correspondingly. When the distance was 500 m, the detection error was less than 4. 5%. In short, the detected error of the system is less than 5. 0% after the gas leakage stable, to meet the requirements of the field of natural gas leakage remote sensing.
In-Situ Adhesive Bond Assessment
2010-08-01
a list of AR coefficients. The use of the VCC metric , with appropriate extreme value statistics models as described in detail below, allowed...equivalent PZT with thickness equal to the MFC electrode spacing , a , and length equal to the MFC net electrode length, (p le), where p is the number of ...particular geometry of the test specimen and with MFC patches affixed to the
Dividing the Force Concept Inventory into Two Equivalent Half-Length Tests
ERIC Educational Resources Information Center
Han, Jing; Bao, Lei; Chen, Li; Cai, Tianfang; Pi, Yuan; Zhou, Shaona; Tu, Yan; Koenig, Kathleen
2015-01-01
The Force Concept Inventory (FCI) is a 30-question multiple-choice assessment that has been a building block for much of the physics education research done today. In practice, there are often concerns regarding the length of the test and possible test-retest effects. Since many studies in the literature use the mean score of the FCI as the…
An evaluation of spatial resolution of a prototype proton CT scanner.
Plautz, Tia E; Bashkirov, V; Giacometti, V; Hurley, R F; Johnson, R P; Piersimoni, P; Sadrozinski, H F-W; Schulte, R W; Zatserklyaniy, A
2016-12-01
To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF 10% ) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u - , at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between 6.31 ± 0.36 lp/cm for W = 197 mm i.e., close to the center of the phantom, and 13.79 ± 0.36 lp/cm for W = 97 mm, near the periphery of the phantom. The azimuthal spatial resolution ranged from 6.99 ± 0.23 lp/cm at u - = 75 mm (near the center) to 11.20 ± 0.26 lp/cm at u - = 20 mm (near the periphery). Multiple Coulomb scattering limits the radial spatial resolution for path lengths greater than approximately 130 mm, and the azimuthal spatial resolution for positions of evaluation greater than approximately 40 mm for W = 199 mm. The radial spatial resolution of the image reconstructed from data from the 4° stepped experimental scan ranged from 5.11 ± 0.61 lp/cm for W = 197 mm to 8.58 ± 0.50 lp/cm for W = 97 mm. In the azimuthal direction, the spatial resolution ranged from 5.37 ± 0.40 lp/cm at u - = 75 mm to 7.27 ± 0.39 lp/cm at u - = 20 mm. The continuous scan achieved the same spatial resolution as that of the stepped scan. Multiple Coulomb scattering in the phantom is the limiting physical factor of the achievable spatial resolution of proton CT; additional loss of spatial resolution in the prototype system is associated with scattering in the proton tracking system and inadequacies of the proton path estimate used in the iterative reconstruction algorithm. Improvement in spatial resolution may be achievable by improving the most likely path estimate by incorporating information about high and low density materials, and by minimizing multiple Coulomb scattering in the proton tracking system.
An evaluation of spatial resolution of a prototype proton CT scanner
Plautz, Tia E.; Bashkirov, V.; Giacometti, V.; Hurley, R. F.; Piersimoni, P.; Sadrozinski, H. F.-W.; Schulte, R. W.; Zatserklyaniy, A.
2016-01-01
Purpose: To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. Methods: A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF10%) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. Results: The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u−, at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between 6.31 ± 0.36 lp/cm for W = 197 mm i.e., close to the center of the phantom, and 13.79 ± 0.36 lp/cm for W = 97 mm, near the periphery of the phantom. The azimuthal spatial resolution ranged from 6.99 ± 0.23 lp/cm at u− = 75 mm (near the center) to 11.20 ± 0.26 lp/cm at u− = 20 mm (near the periphery). Multiple Coulomb scattering limits the radial spatial resolution for path lengths greater than approximately 130 mm, and the azimuthal spatial resolution for positions of evaluation greater than approximately 40 mm for W = 199 mm. The radial spatial resolution of the image reconstructed from data from the 4° stepped experimental scan ranged from 5.11 ± 0.61 lp/cm for W = 197 mm to 8.58 ± 0.50 lp/cm for W = 97 mm. In the azimuthal direction, the spatial resolution ranged from 5.37 ± 0.40 lp/cm at u− = 75 mm to 7.27 ± 0.39 lp/cm at u− = 20 mm. The continuous scan achieved the same spatial resolution as that of the stepped scan. Conclusions: Multiple Coulomb scattering in the phantom is the limiting physical factor of the achievable spatial resolution of proton CT; additional loss of spatial resolution in the prototype system is associated with scattering in the proton tracking system and inadequacies of the proton path estimate used in the iterative reconstruction algorithm. Improvement in spatial resolution may be achievable by improving the most likely path estimate by incorporating information about high and low density materials, and by minimizing multiple Coulomb scattering in the proton tracking system. PMID:27908179
Bartols, Andreas; Robra, Bernt-Peter; Walther, Winfried
2017-01-01
Reciproc instruments are the only contemporary root canal instruments where glide path preparation is no longer strictly demanded by the manufacturer. As the complete preparation of root canals is associated with success in endodontic treatment we wanted to assess the ability and find predictors for Reciproc instruments to reach full working length (RFWL) in root canals of maxillary molars in primary root canal treatment (1°RCTx) and retreatment (2°RCTx) cases. This retrospective study evaluated 255 endodontic treatment cases of maxillary molars. 180 were 1°RCTx and 75 2°RCTx. All root canals were prepared with Reciproc instruments. The groups were compared and in a binary logistic regression model predictors for RFWL were evaluated. A total of 926 root canals were treated with Reciproc without glide path preparation. This was possible in 885 canals (95.6%). In 1°RCTx cases 625 of 649 (96.3%) canals were RFWL and in 2°RCTx cases 260 of 277 (93.9%). In second and third mesiobuccal canals (MB2/3) 90 out of 101 (89.1%) were RFWL with Reciproc in 1°RCTx and in the 2°RCTx treatment group 49 out of 51 cases (96.1%). In mesio-buccal (MB1) canals "2°RCTx" was identified as negative predictor for RFWL (OR 0.24 (CI [0.08-0.77])). In MB2/3 canals full working length was reached less often (OR 0.04 (CI [0.01-0.31])) if the tooth was constricted and more often if MB2/3 and MB1 canals were convergent (OR 4.60 (CI [1.07-19.61])). Using Reciproc instruments, the vast majority of root canals in primary treatment and retreatment cases can be prepared without glide path preparation.
Investigating scintillometer source areas
NASA Astrophysics Data System (ADS)
Perelet, A. O.; Ward, H. C.; Pardyjak, E.
2017-12-01
Scintillometry is an indirect ground-based method for measuring line-averaged surface heat and moisture fluxes on length scales of 0.5 - 10 km. These length scales are relevant to urban and other complex areas where setting up traditional instrumentation like eddy covariance is logistically difficult. In order to take full advantage of scintillometry, a better understanding of the flux source area is needed. The source area for a scintillometer is typically calculated as a convolution of point sources along the path. A weighting function is then applied along the path to compensate for a total signal contribution that is biased towards the center of the beam path, and decreasing near the beam ends. While this method of calculating the source area provides an estimate of the contribution of the total flux along the beam, there are still questions regarding the physical meaning of the weighted source area. These questions are addressed using data from an idealized experiment near the Salt Lake City International Airport in northern Utah, U.S.A. The site is a flat agricultural area consisting of two different land uses. This simple heterogeneity in the land use facilitates hypothesis testing related to source areas. Measurements were made with a two wavelength scintillometer system spanning 740 m along with three standard open-path infrared gas analyzer-based eddy-covariance stations along the beam path. This configuration allows for direct observations of fluxes along the beam and comparisons to the scintillometer average. The scintillometer system employed measures the refractive index structure parameter of air for two wavelengths of electromagnetic radiation, 880 μm and 1.86 cm to simultaneously estimate path-averaged heat and moisture fluxes, respectively. Meteorological structure parameters (CT2, Cq2, and CTq) as well as surface fluxes are compared for various amounts of source area overlap between eddy covariance and scintillometry. Additionally, surface properties from LANDSAT 7 & 8 are used to help understand source area composition for different times throughout the experiment.
Verrel, Julius; Lövdén, Martin; Lindenberger, Ulman
2012-01-01
Stable walking depends on the coordination of multiple biomechanical degrees of freedom to ensure the dynamic maintenance of whole-body equilibrium as well as continuous forward progression. We investigated adult age-related differences in whole-body coordination underlying stabilization of center of mass (CoM) position and step pattern during locomotion. Sixteen younger (20-30 years) and 16 healthy older men (65-80 years) walked on a motorized treadmill at 80%, 100% and 120% of their self-selected preferred speed. Preferred speeds did not differ between the age groups. Motor-equivalent stabilization of step parameters (step length and width) and CoM position relative to the support (back and front foot) was examined using a generalized covariation analysis. Across age groups, covariation indices were highest for CoM position relative to the front foot, the measure most directly related to body equilibrium. Compared to younger adults, older adults showed lower covariation indices with respect to step length, extending previous findings of age-related differences in motor-equivalent coordination. In contrast, no reliable age differences were found regarding stabilization of step width or any of the CoM parameters. The observed pattern of results may reflect robust prioritization of balance over step pattern regularity, which may be adaptive in the face of age-associated sensorimotor losses and decline of coordinative capacities.
Age-related changes in optical and biometric characteristics of emmetropic eyes.
Atchison, David A; Markwell, Emma L; Kasthurirangan, Sanjeev; Pope, James M; Smith, George; Swann, Peter G
2008-04-28
We measured optical and biometric parameters of emmetropic eyes as a function of age. There were approximately 20 subjects each in age groups 18-29, 30-39, 40-49, 50-59, and 60-69 years with similar male and female numbers. One eye was tested for each subject, having spherical equivalent in the range -0.88 D to +0.75 D and
Coupling between absorption and scattering in disordered colloids
NASA Astrophysics Data System (ADS)
Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.
We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.
ERIC Educational Resources Information Center
van der Wel, Robrecht P. R. D.; Fleckenstein, Robin M.; Jax, Steven A.; Rosenbaum, David A.
2007-01-01
Previous research suggests that motor equivalence is achieved through reliance on effector-independent spatiotemporal forms. Here the authors report a series of experiments investigating the role of such forms in the production of movement sequences. Participants were asked to complete series of arm movements in time with a metronome and, on some…
Determining average path length and average trapping time on generalized dual dendrimer
NASA Astrophysics Data System (ADS)
Li, Ling; Guan, Jihong
2015-03-01
Dendrimer has wide number of important applications in various fields. In some cases during transport or diffusion process, it transforms into its dual structure named Husimi cactus. In this paper, we study the structure properties and trapping problem on a family of generalized dual dendrimer with arbitrary coordination numbers. We first calculate exactly the average path length (APL) of the networks. The APL increases logarithmically with the network size, indicating that the networks exhibit a small-world effect. Then we determine the average trapping time (ATT) of the trapping process in two cases, i.e., the trap placed on a central node and the trap is uniformly distributed in all the nodes of the network. In both case, we obtain explicit solutions of ATT and show how they vary with the networks size. Besides, we also discuss the influence of the coordination number on trapping efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinyard, Natalia Sergeevna; Perry, Theodore Sonne; Usov, Igor Olegovich
2017-10-04
We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk =more » $$\\partial k$$\\ $$\\partial T$$ ΔT + $$\\partial k$$\\ $$\\partial (pL)$$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B 0 is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB 0/B 0, and consequently Δk/k = 1/T (ΔB/B + ΔB$$_0$$/B$$_0$$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2« less
Estimate of higher order ionospheric errors in GNSS positioning
NASA Astrophysics Data System (ADS)
Hoque, M. Mainul; Jakowski, N.
2008-10-01
Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.
Slow light enhanced gas sensing in photonic crystals
NASA Astrophysics Data System (ADS)
Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.
2018-02-01
Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.