Sample records for equivalent phantom prepared

  1. NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS.

    PubMed

    Puchalska, Monika; Bilski, Pawel; Berger, Thomas; Hajek, Michael; Horwacik, Tomasz; Körner, Christine; Olko, Pawel; Shurshakov, Vyacheslav; Reitz, Günther

    2014-11-01

    The health effects of cosmic radiation on astronauts need to be precisely quantified and controlled. This task is important not only in perspective of the increasing human presence at the International Space Station (ISS), but also for the preparation of safe human missions beyond low earth orbit. From a radiation protection point of view, the baseline quantity for radiation risk assessment in space is the effective dose equivalent. The present work reports the first successful attempt of the experimental determination of the effective dose equivalent in space, both for extra-vehicular activity (EVA) and intra-vehicular activity (IVA). This was achieved using the anthropomorphic torso phantom RANDO(®) equipped with more than 6,000 passive thermoluminescent detectors and plastic nuclear track detectors, which have been exposed to cosmic radiation inside the European Space Agency MATROSHKA facility both outside and inside the ISS. In order to calculate the effective dose equivalent, a numerical model of the RANDO(®) phantom, based on computer tomography scans of the actual phantom, was developed. It was found that the effective dose equivalent rate during an EVA approaches 700 μSv/d, while during an IVA about 20 % lower values were observed. It is shown that the individual dose based on a personal dosimeter reading for an astronaut during IVA results in an overestimate of the effective dose equivalent of about 15 %, whereas under an EVA conditions the overestimate is more than 200 %. A personal dosemeter can therefore deliver quite good exposure records during IVA, but may overestimate the effective dose equivalent received during an EVA considerably.

  2. Dosimetric verification of the anisotropic analytical algorithm in lung equivalent heterogeneities with and without bone equivalent heterogeneities

    PubMed Central

    Ono, Kaoru; Endo, Satoru; Tanaka, Kenichi; Hoshi, Masaharu; Hirokawa, Yutaka

    2010-01-01

    Purpose: In this study, the authors evaluated the accuracy of dose calculations performed by the convolution∕superposition based anisotropic analytical algorithm (AAA) in lung equivalent heterogeneities with and without bone equivalent heterogeneities. Methods: Calculations of PDDs using the AAA and Monte Carlo simulations (MCNP4C) were compared to ionization chamber measurements with a heterogeneous phantom consisting of lung equivalent and bone equivalent materials. Both 6 and 10 MV photon beams of 4×4 and 10×10 cm2 field sizes were used for the simulations. Furthermore, changes of energy spectrum with depth for the heterogeneous phantom using MCNP were calculated. Results: The ionization chamber measurements and MCNP calculations in a lung equivalent phantom were in good agreement, having an average deviation of only 0.64±0.45%. For both 6 and 10 MV beams, the average deviation was less than 2% for the 4×4 and 10×10 cm2 fields in the water-lung equivalent phantom and the 4×4 cm2 field in the water-lung-bone equivalent phantom. Maximum deviations for the 10×10 cm2 field in the lung equivalent phantom before and after the bone slab were 5.0% and 4.1%, respectively. The Monte Carlo simulation demonstrated an increase of the low-energy photon component in these regions, more for the 10×10 cm2 field compared to the 4×4 cm2 field. Conclusions: The low-energy photon by Monte Carlo simulation component increases sharply in larger fields when there is a significant presence of bone equivalent heterogeneities. This leads to great changes in the build-up and build-down at the interfaces of different density materials. The AAA calculation modeling of the effect is not deemed to be sufficiently accurate. PMID:20879604

  3. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, F; Chofor, N; Schoenfeld, A

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, themore » energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be verified or even determined by measurement in a water phantom and comparison with dose distributions calculated using the TG43 dosimetry formalism. Project is supported by DIN Deutsches Institut fuer Normung.« less

  4. Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams.

    PubMed

    Lourenço, A; Wellock, N; Thomas, R; Homer, M; Bouchard, H; Kanai, T; MacDougall, N; Royle, G; Palmans, H

    2016-11-07

    Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor [Formula: see text] was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11  ×  11 cm 2 , to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured [Formula: see text] correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.

  5. Characterization and validation of the thorax phantom Lungman for dose assessment in chest radiography optimization studies.

    PubMed

    Rodríguez Pérez, Sunay; Marshall, Nicholas William; Struelens, Lara; Bosmans, Hilde

    2018-01-01

    This work concerns the validation of the Kyoto-Kagaku thorax anthropomorphic phantom Lungman for use in chest radiography optimization. The equivalence in terms of polymethyl methacrylate (PMMA) was established for the lung and mediastinum regions of the phantom. Patient chest examination data acquired under automatic exposure control were collated over a 2-year period for a standard x-ray room. Parameters surveyed included exposure index, air kerma area product, and exposure time, which were compared with Lungman values. Finally, a voxel model was developed by segmenting computed tomography images of the phantom and implemented in PENELOPE/penEasy Monte Carlo code to compare phantom tissue-equivalent materials with materials from ICRP Publication 89 in terms of organ dose. PMMA equivalence varied depending on tube voltage, from 9.5 to 10.0 cm and from 13.5 to 13.7 cm, for the lungs and mediastinum regions, respectively. For the survey, close agreement was found between the phantom and the patients' median values (deviations lay between 8% and 14%). Differences in lung doses, an important organ for optimization in chest radiography, were below 13% when comparing the use of phantom tissue-equivalent materials versus ICRP materials. The study confirms the value of the Lungman for chest optimization studies.

  6. New head equivalent phantom for task and image performance evaluation representative for neurovascular procedures occurring in the Circle of Willis

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Loughran, Brendan; Jain, Amit; Swetadri Vasan, S. N.; Bednarek, Daniel R.; Levy, Elad; Siddiqui, Adnan H.; Snyder, Kenneth V.; Hopkins, L. N.; Rudin, Stephen

    2012-03-01

    Phantom equivalents of different human anatomical parts are routinely used for imaging system evaluation or dose calculations. The various recommendations on the generic phantom structure given by organizations such as the AAPM, are not always accurate when evaluating a very specific task. When we compared the AAPM head phantom containing 3 mm of aluminum to actual neuro-endovascular image guided interventions (neuro-EIGI) occurring in the Circle of Willis, we found that the system automatic exposure rate control (AERC) significantly underestimated the x-ray parameter selection. To build a more accurate phantom for neuro-EIGI, we reevaluated the amount of aluminum which must be included in the phantom. Human skulls were imaged at different angles, using various angiographic exposures, at kV's relevant to neuro-angiography. An aluminum step wedge was also imaged under identical conditions, and a correlation between the gray values of the imaged skulls and those of the aluminum step thicknesses was established. The average equivalent aluminum thickness for the skull samples for frontal projections in the Circle of Willis region was found to be about 13 mm. The results showed no significant changes in the average equivalent aluminum thickness with kV or mAs variation. When a uniform phantom using 13 mm aluminum and 15 cm acrylic was compared with an anthropomorphic head phantom the x-ray parameters selected by the AERC system were practically identical. These new findings indicate that for this specific task, the amount of aluminum included in the head equivalent must be increased substantially from 3 mm to a value of 13 mm.

  7. Effects of selected materials and geometries on the beta dose equivalent rate in a tissue equivalent phantom immersed in infinite clouds of 133Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piltingsrud, H.V.; Gels, G.L.

    1986-06-01

    Most calculations of dose equivalent (D.E.) rates at 70-micron tissue depths in tissue equivalent (T.E.) phantoms from infinite clouds (radius exceeds maximum beta range in air) of /sup 133/Xe do not consider the possible effects of clothing overlays. Consequently, a series of measurements were made using a 1-mm-thick plastic scintillation detector assembly mounted in a tissue equivalent (T.E.) phantom with an overlay of 70 micron of T.E. material. This assembly was placed in an infinite cloud containing a known concentration of /sup 133/Xe. Material samples were placed at selected distances from the detector phantom, both individually and in various combinations.more » Pulse-height spectra resulting from beta radiations were converted to relative D.E. rates at a 70-micron tissue depth. The relative D.E. rates were reduced from values with no clothing cover by as little as 45% when placing a single thin nylon cloth 1 cm from the phantom, to 94% for a T-shirt material plus wool material plus denim placed 1/2, 1 and 3 cm, respectively, from the phantom. The results indicate that even loosely fitting clothing can have an important effect on reducing the D.E. rate. Close-fitting clothing appears to provide better protection.« less

  8. MO-F-CAMPUS-I-03: Tissue Equivalent Material Phantom to Test and Optimize Coherent Scatter Imaging for Tumor Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albanese, K; Morris, R; Lakshmanan, M

    Purpose: To accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Methods: A breast phantom has been designed to assess the capability of coded aperture coherent x-ray scatter imaging system to classify different types of breast tissue (adipose, fibroglandular, tumor). The tissue-equivalent phantom was modeled as a hollow plastic cylinder containing multiple cylindrical and spherical inserts that can be positioned, rearranged, or removed to model different breast geometries. Each enclosure can be filled with a tissue-equivalent material and excised human tumors. In this study, beef and lard,more » placed inside 2-mm diameter plastic Nalgene containers, were used as surrogates for fibroglandular and adipose tissue, respectively. The phantom was imaged at 125 kVp, 40 mA for 10 seconds each with a 1-mm pencil beam. The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor, or momentum transfer (q) spectrum of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: The tissue equivalent phantom was found to accurately model different types of breast tissue by qualitatively comparing our measured form factors to those of adipose and fibroglandular tissue from literature. Our imaging system has been able to define the location and composition of the various materials in the phantom. Conclusion: This work introduces a new tissue equivalent phantom for testing and optimization of our coherent scatter imaging system for material classification. In future studies, the phantom will enable the use of a variety of materials including excised human tissue specimens in evaluating and optimizing our imaging system using pencil- and fan-beam geometries. United States Department of Homeland Security Duke University Medical Center - Department of Radiology Carl E Ravin Advanced Imaging Laboratories Duke University Medical Physics Graduate Program.« less

  9. SU-E-T-495: Influence of Reduced Target-To-Nozzle Distance On Secondary Neutron Dose Equivalent in Proton and Carbon Ion Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Y; Shahnazi, K; Wang, W

    Purpose: Ion beams have an unavoidable lateral spread due to nuclear interactions interacting with the air and monitoring systems. To minimize this spread, the distance between the nozzle and the patient should be kept as small as possible.The purpose of this work was to determine the impact of the target-to-nozzle distance reduction on the secondary neutron dose equivalent in proton and carbon ion radiotherapy. Methods: In this study, abdominal and head phantoms were scanned with our CT scanner. Cubical targets with side lengths of 3 cm to 10 cm and 1 cm to 5 cm were drawn in the abdominalmore » and head phantoms respectively. Two intensity-modulated plans were made for each phantom and ion. The first of these plans placed the target at the isocenter while the other shifted the phantom 30 cm towards the nozzle. The plans at both phantom locations were optimized to provide identical dose coverage to the PTVs.Secondary neutron dose equivalent at 50 cm lateral to the center of target. Results: The neutron dose equivalent was higher for the larger field size from 0.25µSv per Gy (RBE) to 72µSv per Gy (RBE). The neutron dose equivalent was smaller when the phantom was placed at the upstream target location versus at the isocenter location by 8.9% to 10.4% and 11.0% to 22.1% for proton plans of the abdominal and head phantoms respectively. Differences for carbon plans with different target-to-nozzle locations were less than 3% for both phantoms. Conclusion: A reduction of target-to-nozzle distance can lead to benefits for proton radiotherapy. In this study, a reduction of secondary neutron dose equivalent was found for proton plans with a smaller target-to-nozzle distance. A greater impact was found for a head phantom with a smaller field size; however, a reduction of the target-to-nozzle distance had little effect for carbon therapy.« less

  10. A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film

    PubMed Central

    Hill, Robin F.; Whitaker, May; Kim, Jung‐Ha; Kuncic, Zdenka

    2012-01-01

    The present study quantified surface doses on several rectangular phantom setups and on curved surface phantoms for a 6 MV photon field using the Attix parallel‐plate chamber and Gafchromic EBT2 film. For the rectangular phantom setups, the surface doses on a homogenous water equivalent phantom and a water equivalent phantom with 60 mm thick lung equivalent material were measured. The measurement on the homogenous phantom setup showed consistency in surface and near‐surface doses between an open field and enhanced dynamic wedge (EDW) fields, whereas physical wedged fields showed small differences. Surface dose measurements made using the EBT2 film showed good agreement with results of the Attix chamber and results obtained in previous studies which used other dosimeters within the measurement uncertainty of 3.3%. The surface dose measurements on the phantom setup with lung equivalent material showed a small increase without bolus and up to 6.9% increase with bolus simulating the increase of chest wall thickness. Surface doses on the cylindrical CT phantom and customized Perspex chest phantom were measured using the EBT2 film with and without bolus. The results indicate the important role of the presence of bolus if the clinical target volume (CTV) is quite close to the surface. Measurements on the cylindrical phantom suggest that surface doses at the oblique positions of 60° and 90° are mainly caused by the lateral scatter from the material inside the phantom. In the case of a single tangential irradiation onto Perspex chest phantom, the distribution of the surface dose with and without bolus materials showed opposing inclination patterns, whereas the dose distribution for two opposed tangential fields gave symmetric dose distribution. This study also demonstrates the suitability of Gafchromic EBT2 film for surface dose measurements in megavoltage photon beams. PACS number: 87.53.Bn PMID:22584169

  11. Dosimetry audit of radiotherapy treatment planning systems.

    PubMed

    Bulski, Wojciech; Chełmiński, Krzysztof; Rostkowska, Joanna

    2015-07-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films.« less

  13. Comparison of Organ Dosimetry for Astronaut Phantoms: Earth-Based vs. Microgravity-Based Anthropometry and Body Positioning

    NASA Technical Reports Server (NTRS)

    VanBaalen, Mary; Bahadon, Amir; Shavers, Mark; Semones, Edward

    2011-01-01

    The purpose of this study is to use NASA radiation transport codes to compare astronaut organ dose equivalents resulting from solar particle events (SPE), geomagnetically trapped protons, and free-space galactic cosmic rays (GCR) using phantom models representing Earth-based and microgravity-based anthropometry and positioning. Methods: The Univer sity of Florida hybrid adult phantoms were scaled to represent male and female astronauts with 5th, 50th, and 95th percentile heights and weights as measured on Earth. Another set of scaled phantoms, incorporating microgravity-induced changes, such as spinal lengthening, leg volume loss, and the assumption of the neutral body position, was also created. A ray-tracer was created and used to generate body self-shielding distributions for dose points within a voxelized phantom under isotropic irradiation conditions, which closely approximates the free-space radiation environment. Simplified external shielding consisting of an aluminum spherical shell was used to consider the influence of a spacesuit or shielding of a hull. These distributions were combined with depth dose distributions generated from the NASA radiation transport codes BRYNTRN (SPE and trapped protons) and HZETRN (GCR) to yield dose equivalent. Many points were sampled per organ. Results: The organ dos e equivalent rates were on the order of 1.5-2.5 mSv per day for GCR (1977 solar minimum) and 0.4-0.8 mSv per day for trapped proton irradiation with shielding of 2 g cm-2 aluminum equivalent. The organ dose equivalents for SPE irradiation varied considerably, with the skin and eye lens having the highest organ dose equivalents and deep-seated organs, such as the bladder, liver, and stomach having the lowest. Conclus ions: The greatest differences between the Earth-based and microgravity-based phantoms are observed for smaller ray thicknesses, since the most drastic changes involved limb repositioning and not overall phantom size. Improved self-shielding models reduce the overall uncertainty in organ dosimetry for mission-risk projections and assessments for astronauts

  14. Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams

    NASA Astrophysics Data System (ADS)

    Lourenço, A.; Wellock, N.; Thomas, R.; Homer, M.; Bouchard, H.; Kanai, T.; MacDougall, N.; Royle, G.; Palmans, H.

    2016-11-01

    Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor {{H}\\text{pl,w}} was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11  ×  11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured H\\text{pl,w}\\exp correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.

  15. Geometrically complex 3D-printed phantoms for diffuse optical imaging.

    PubMed

    Dempsey, Laura A; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C

    2017-03-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution.

  16. Geometrically complex 3D-printed phantoms for diffuse optical imaging

    PubMed Central

    Dempsey, Laura A.; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C.

    2017-01-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution. PMID:28663863

  17. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-12-01

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.

  18. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry.

    PubMed

    Schoenfeld, Andreas A; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-11-21

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w , have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR ( 60 Co), Eckert und Ziegler BEBIG GmbH CSM-11 ( 137 Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 ( 169 Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 ( 131 Cs), IsoAid Advantage I-125 IAI-125A ( 125 I), and IsoAid Advantage Pd-103 IAPd-103A ( 103 Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192 Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192 Ir, 137 Cs and 60 Co most phantom materials can be regarded as water equivalent, for 169 Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106 Pd, 131 Cs and 125 I, only Plastic Water LR can be classified as water equivalent.

  19. Effect of the Scattering Radiation in Air and Two Type of Slap Phantom between PMMA and the ISO Water Phantom for Personal Dosimeters Calibration

    NASA Astrophysics Data System (ADS)

    Kamwang, N.; Rungseesumran, T.; Saengchantr, D.; Monthonwattana, S.; Pungkun, V.

    2017-06-01

    The calibration of personal dosimeter to determine the quantities of the personal dose equivalent, Hp(d), is required to be placed on a suitable phantom in order to provide a reasonable approximation to the radiation backscattering properties as equivalent as part of body. The dosimeter which is worn on the trunk usually calibrated with slap phantom which recommended in ICRU 47 with dimension of 30 cm (w) x 30 cm (h) x 15 cm (t) PMMA slab phantom to achieve uniformity in calibration procedures, on the other hand the International Organization for Standardization (ISO), ISO 4037-3, proposed the ISO water slap phantom, with PMMA walls, same dimension but different wall thickness (front wall 2.5 mm and other side wall 10 mm thick) and fill with water. However, some laboratories are still calibrating a personal dosimeter in air in term of ambient dose equivalent, H*(d). This research study the effect of the scattering radiation in two type of those slap phantoms and in air, to calibrate two type of OSL (XA and LA) and electronic personal dosimeters. The X-ray and Cs-137 radiation field with the energy range from 33 to 662 keV were used. The results of this study will be discussed.

  20. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.

  1. TH-AB-209-12: Tissue Equivalent Phantom with Excised Human Tissue for Assessing Clinical Capabilities of Coherent Scatter Imaging Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albanese, K; Morris, R; Spencer, J

    Purpose: Previously we reported the development of anthropomorphic tissue-equivalent scatter phantoms of the human breast. Here we present the first results from the scatter imaging of the tissue equivalent breast phantoms for breast cancer diagnosis. Methods: A breast phantom was designed to assess the capability of coded aperture coherent x-ray scatter imaging to classify different types of breast tissue (adipose, fibroglandular, tumor). The phantom geometry was obtained from a prone breast geometry scanned on a dedicated breast CT system. The phantom was 3D printed using the segmented DICOM breast CT data. The 3D breast phantom was filled with lard (asmore » a surrogate for adipose tissue) and scanned in different geometries alongside excised human breast tissues (obtained from lumpectomy and mastectomy procedures). The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor (i.e., momentum transfer (q) spectrum) of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: Our scatter imaging system was able to define the location and composition of the various materials and tissues within the phantom. Cancerous breast tissue was detected and classified through automated spectral matching and an 86% correlation threshold. The total scan time for the sample was approximately 10 minutes and approaches workflow times for clinical use in intra-operative or other diagnostic tasks. Conclusion: This work demonstrates the first results from an anthropomorphic tissue equivalent scatter phantom to characterize a coherent scatter imaging system. The functionality of the system shows promise in applications such as intra-operative margin detection or virtual biopsy in the diagnosis of breast cancer. Future work includes using additional patient-derived tissues (e.g., human fat), and modeling additional organs (e.g., lung).« less

  2. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  3. Assessment of the performance characteristics of a prototype 12-element capacitive contact flexible microstrip applicator (CFMA-12) for superficial hyperthermia.

    PubMed

    Lee, W M; Gelvich, E A; van der Baan, P; Mazokhin, V N; van Rhoon, G C

    2004-09-01

    The electrical performance of the CFMA-12 operating at 433 MHz is assessed under laboratory conditions using a RF network analyser. From measurements of the scattering parameters of the CFMA-12 on both a multi-layered muscle- and fat/muscle-equivalent phantom, the optimal water bolus thickness, at which the transfer of the energy to the phantom configuration is maximal, is determined to be approximately 1 cm. The SAR distribution of the CFMA-12 in a multi-layered muscle-equivalent phantom is characterized using Schottky diode sheets and a TVS-600 IR camera. From the SAR measurements using the Schottky diode sheets it is shown that the contribution of the E(x) component to the SAR (SAR(x)) is maximal 7% of the contribution of the E(y)component to the SAR (SAR(y)) at different layers in both phantom configurations. The complete SAR distribution (SAR(tot)) at different depths is measured using the power pulse technique. From these measurements, it can be seen that SAR(y)at a depth of 0 cm in the muscle-equivalent phantom represents up to 80% of SAR(tot). At 1 and 2 cm depth, SAR(y) is up to 95% of SAR(tot). Therefore, in homogeneous muscle-equivalent phantoms, E(y) is the largest E-field component and measurement of SAR(y) distribution is sufficient to characterize SAR-steering performance of the CFMA-12. SAR steering measurements at 1 cm depth in the muscle-equivalent phantom show that the SAR maximum varies by 40% (1 SD) around the average value of 38.8 W kg(-1) (range 10-65 W kg(-1)) between single antenna elements. The effective fieldsize (E(50)) varies by 14% (1 SD) around the average value of 19.1 cm(2).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated bymore » high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power-law descriptions of the phantom images were in general agreement with real human images. The Singlet approach offered more realistic contrast as compared to the Doublet approach, but at the expense of air bubbles and air pockets that formed during the filling process. Conclusions: The presented physical breast phantoms and their matching virtual breast phantoms offer realistic breast anatomy, patient variability, and ease of use, making them a potential candidate for performing both system quality control testing and virtual clinical trials.« less

  5. CORRECTIONS ASSOCIATED WITH ON-PHANTOM CALIBRATIONS OF NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Hawkes, N P; Thomas, D J; Taylor, G C

    2016-09-01

    The response of neutron personal dosemeters as a function of neutron energy and angle of incidence is typically measured by mounting the dosemeters on a slab phantom and exposing them to neutrons from an accelerator-based or radionuclide source. The phantom is placed close to the source (75 cm) so that the effect of scattered neutrons is negligible. It is usual to mount several dosemeters on the phantom together. Because the source is close, the source distance and the neutron incidence angle vary significantly over the phantom face, and each dosemeter may receive a different dose equivalent. This is particularly important when the phantom is angled away from normal incidence. With accelerator-produced neutrons, the neutron energy and fluence vary with emission angle relative to the charged particle beam that produces the neutrons, contributing further to differences in dose equivalent, particularly when the phantom is located at other than the straight-ahead position (0° to the beam). Corrections for these effects are quantified and discussed in this article. © Crown copyright 2015.

  6. Fast, epithermal and thermal photoneutron dosimetry in air and in tissue equivalent phantom for a high-energy X-ray medical accelerator.

    PubMed

    Sohrabi, Mehdi; Hakimi, Amir

    2018-02-01

    Photoneutron (PN) dosimetry in fast, epithermal and thermal energy ranges originated from the beam and albedo neutrons in high-energy X-ray medical accelerators is highly important from scientific, technical, radiation protection and medical physics points of view. Detailed dose equivalents in the fast, epithermal and thermal PN energy ranges in air up to 2m as well as at 35 positions from the central axis of 12 cross sections of the phantom at different depths were determined in 18MV X-ray beams of a Siemens ONCOR accelerator. A novel dosimetry method based on polycarbonate track dosimeters (PCTD)/ 10 B (with/without cadmium cover) was used to determine and separate different PN dose equivalents in air and in a multilayer polyethylene phantom. Dose equivalent distributions of PNs, as originated from the main beam and/or albedo PNs, on cross-plane, in-plane and diagonal axes in 10cm×10cm fields are reported. PN dose equivalent distributions on the 3 axes have their maxima at the isocenter. Epithermal and thermal PN depth dose equivalent distributions in the phantom for different positions studied peak at ∼3cm depth. The neutron dosimeters used for the first time in such studies are highly effective for separating dose equivalents of PNs in the studied energy ranges (beam and/or albedo). The PN dose equivalent data matrix made available in this paper is highly essential for detailed patient dosimetry in general and for estimating secondary cancer risks in particular. Copyright © 2017. Published by Elsevier GmbH.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lujano, C; Hernandez, N; Keith, T

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to bemore » approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647.« less

  8. TU-H-CAMPUS-IeP2-05: Breast and Soft Tissue-Equivalent 3D Printed Phantoms for Imaging and Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hintenlang, D; Terracino, B

    Purpose: The study has the goal to demonstrate that breast and soft tissue-equivalent phantoms for dosimetry applications in the diagnostic energy range can be fabricated using common 3D printing methods. Methods: 3D printing provides the opportunity to rapidly prototype uniquely designed objects from a variety of materials. Common 3D printers are usually limited to printing objects based on thermoplastic materials such as PLA, or ABS. The most commonly available plastic is PLA, which has a density significantly greater than soft tissue. We utilized a popular 3D printer to demonstrate that tissue specific phantom materials can be generated through the carefulmore » selection of 3D printing parameters. A series of stepwedges were designed and printed using a Makerbot Replicator2 3D printing system. The print file provides custom adjustment of the infill density, orientation and position of the object on the printer stage, selection of infill patterns, and other control parameters. The x-ray attenuation and uniformity of fabricated phantoms were evaluated and compared to common tissue-equivalent phantom materials, acrylic and BR12. X-ray exposure measurements were made using narrow beam geometry on a clinical mammography unit at 28 kVp on the series of phantoms. The 3D printed phantoms were imaged at 28 kVp to visualize the internal structure and uniformity in different planes of the phantoms. Results: By utilizing specific in-fill density and patterns we are able to produce a phantom closely matching the attenuation characteristics of BR12 at 28 kVp. The in-fill patterns used are heterogeneous, so a judicious selection of fill pattern and the orientation of the fill pattern must be made in order to obtain homogenous attenuation along the intended direction of beam propagation. Conclusions: By careful manipulation of the printing parameters, breast and soft tissue-equivalent phantoms appropriate for use at imaging energies can be fabricated using 3D printing techniques.« less

  9. In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT.

    PubMed

    Reft, Chester S; Runkel-Muller, Renate; Myrianthopoulos, Leon

    2006-10-01

    For intensity modulated radiation therapy (IMRT) treatments 6 MV photons are typically used, however, for deep seated tumors in the pelvic region, higher photon energies are increasingly being employed. IMRT treatments require more monitor units (MU) to deliver the same dose as conformal treatments, causing increased secondary radiation to tissues outside the treated area from leakage and scatter, as well as a possible increase in the neutron dose from photon interactions in the machine head. Here we provide in vivo patient and phantom measurements of the secondary out-of-field photon radiation and the neutron dose equivalent for 18 MV IMRT treatments. The patients were treated for prostate cancer with 18 MV IMRT at institutions using different therapy machines and treatment planning systems. Phantom exposures at the different facilities were used to compare the secondary photon and neutron dose equivalent between typical IMRT delivered treatment plans with a six field three-dimensional conformal radiotherapy (3DCRT) plan. For the in vivo measurements LiF thermoluminescent detectors (TLDs) and Al2O3 detectors using optically stimulated radiation were used to obtain the photon dose and CR-39 track etch detectors were used to obtain the neutron dose equivalent. For the phantom measurements a Bonner sphere (25.4 cm diameter) containing two types of TLDs (TLD-600 and TLD-700) having different thermal neutron sensitivities were used to obtain the out-of-field neutron dose equivalent. Our results showed that for patients treated with 18 MV IMRT the photon dose equivalent is greater than the neutron dose equivalent measured outside the treatment field and the neutron dose equivalent normalized to the prescription dose varied from 2 to 6 mSv/Gy among the therapy machines. The Bonner sphere results showed that the ratio of neutron equivalent doses for the 18 MV IMRT and 3DCRT prostate treatments scaled as the ratio of delivered MUs. We also observed differences in the measured neutron dose equivalent among the three therapy machines for both the in vivo and phantom exposures.

  10. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  11. Use of maxillofacial laboratory materials to construct a tissue-equivalent head phantom with removable titanium implantable devices for use in verification of the dose of intensity-modulated radiotherapy.

    PubMed

    Morris, K

    2017-06-01

    The dose of radiotherapy is often verified by measuring the dose of radiation at specific points within a phantom. The presence of high-density implant materials such as titanium, however, may cause complications both during calculation and delivery of the dose. Numerous studies have reported photon/electron backscatter and alteration of the dose by high-density implants, but we know of no evidence of a dosimetry phantom that incorporates high density implants or fixtures. The aim of the study was to design and manufacture a tissue-equivalent head phantom for use in verification of the dose in radiotherapy using a combination of traditional laboratory materials and techniques and 3-dimensional technology that can incorporate titanium maxillofacial devices. Digital designs were used together with Mimics® 18.0 (Materialise NV) and FreeForm® software. DICOM data were downloaded and manipulated into the final pieces of the phantom mould. Three-dimensional digital objects were converted into STL files and exported for additional stereolithography. Phantoms were constructed in four stages: material testing and selection, design of a 3-dimensional mould, manufacture of implants, and final fabrication of the phantom using traditional laboratory techniques. Three tissue-equivalent materials were found and used to successfully manufacture a suitable phantom with interchangeable sections that contained three versions of titanium maxillofacial implants. Maxillofacial and other materials can be used to successfully construct a head phantom with interchangeable titanium implant sections for use in verification of doses of radiotherapy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Modification of the NEMA XR21-2000 cardiac phantom for testing of imaging systems used in endovascular image guided interventions.

    PubMed

    Ionita, C N; Dohatcu, A; Jain, A; Keleshis, C; Hoffmann, K R; Bednarek, D R; Rudin, S

    2009-01-01

    X-ray equipment testing using phantoms that mimic the specific human anatomy, morphology, and structure is a very important step in the research, development, and routine quality assurance for such equipment. Although the NEMA XR21 phantom exists for cardiac applications, there is no such standard phantom for neuro-, peripheral and cardio-vascular angiographic applications. We have extended the application of the NEMA XR21-2000 phantom to evaluate neurovascular x-ray imaging systems by structuring it to be head-equivalent; two aluminum plates shaped to fit into the NEMA phantom geometry were added to a 15 cm thick section. Also, to enable digital subtraction angiography (DSA) testing, two replaceable central plates with a hollow slot were made so that various angiographic sections could be inserted into the phantom. We tested the new modified phantom using a flat panel C-arm unit dedicated for endovascular image-guided interventions. All NEMA XR21-2000 standard test sections were used in evaluations with the new "head-equivalent" phantom. DSA and DA are able to be tested using two standard removable blocks having simulated arteries of various thickness and iodine concentrations (AAPM Report 15). The new phantom modifications have the benefits of enabling use of the standard NEMA phantom for angiography in both neuro- and cardio-vascular applications, with the convenience of needing only one versatile phantom for multiple applications. Additional benefits compared to using multiple phantoms are increased portability and lower cost.

  13. Comparison of organ dose and dose equivalent using ray tracing of male and female Voxel phantoms to space flight phantom torso data

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  14. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  15. Study Of Dose Distribution In A Human Body In Space Flight With The Spherical Tissue-Equivalent Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Akatov, Yu; Petrov, V.; Kartsev, I.; Polenov, Boris; Petrov, V.; Lyagushin, V.

    In the space experiment MATROSHKA-R, the spherical tissue equivalent phantom (30 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been installed in the star board crew cabin of the ISS Service Module. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size, and requires less crew time for the detector retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. In the first phase of the experiment the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). There were two experimental sessions with the spherical phantom in the crew cabin, (1) from Jan. 29, 2004 to Apr. 30, 2004 and (2) from Aug. 11, 2004 to Oct. 10, 2005. The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. The results obtained with the passive detectors returned to the ground after each session show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the crew cabin, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom (0.31 mGy/day) is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on the ISS trajectory. Minimum dose rate (0.15 mGy/day) is caused mainly by the strongly penetrating GCR particles and is observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the crew cabin are also estimated with the spherical phantom. The estimated effective dose rate (about 0.49 mSv/day at radiation quality factor of 2.6) is from 12 to 15 per cent lower than the averaged dose on the phantom surface as dependent on the body attitude.

  16. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.

    2008-02-01

    IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).

  17. Quantification of biological tissue and construction of patient equivalent phantom (skull and chest) for infants (1-5 years old)

    NASA Astrophysics Data System (ADS)

    Alves, A. F.; Pina, D. R.; Bacchim Neto, F. A.; Ribeiro, S. M.; Miranda, J. R. A.

    2014-03-01

    Our main purpose in this study was to quantify biological tissue in computed tomography (CT) examinations with the aim of developing a skull and a chest patient equivalent phantom (PEP), both specific to infants, aged between 1 and 5 years old. This type of phantom is widely used in the development of optimization procedures for radiographic techniques, especially in computed radiography (CR) systems. In order to classify and quantify the biological tissue, we used a computational algorithm developed in Matlab ®. The algorithm performed a histogram of each CT slice followed by a Gaussian fitting of each tissue type. The algorithm determined the mean thickness for the biological tissues (bone, soft, fat, and lung) and also converted them into the corresponding thicknesses of the simulator material (aluminum, PMMA, and air). We retrospectively analyzed 148 CT examinations of infant patients, 56 for skull exams and 92 were for chest. The results provided sufficient data to construct a phantom to simulate the infant chest and skull in the posterior-anterior or anterior-posterior (PA/AP) view. Both patient equivalent phantoms developed in this study can be used to assess physical variables such as noise power spectrum (NPS) and signal to noise ratio (SNR) or perform dosimetric control specific to pediatric protocols.

  18. Results on Dose Distributions in a Human Body from the Matroshka-R Experiment onboard the ISS Obtained with the Tissue-Equivalent Spherical Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir

    The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the ISS compartments are also estimated with the spherical phantom data. The estimated effective dose rate is found to be from 10 % to 15 % lower than the averaged dose on the phantom surface as dependent on the attitude of the critical organs. If compared with the anthropomorphic phantom Rando used inside and outside the ISS earlier, the Matroshka-R space experiment spherical phantom has lower mass, smaller size, and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. New sessions with the two tissue-equivalent phantoms are of great interest. Development of modified passive and active detector sets is in progress for the future ISS expeditions. Both the spherical and Rando-type phantoms proved their effectiveness to measure the critical organ doses and effective doses in-flight and if supplied with modernized dosimeters can be recommended for future exploratory manned missions to monitor continuously the crew exposure to space radiation.

  19. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic filmsmore » EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed dose after two parallel opposed irradiation fields. (authors)« less

  20. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS

    NASA Astrophysics Data System (ADS)

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L.; Bolch, Wesley E.

    2017-06-01

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  1. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L; Bolch, Wesley E

    2017-06-21

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  2. Radiation phantom with humanoid shape and adjustable thickness

    DOEpatents

    Lehmann, Joerg [Pleasanton, CA; Levy, Joshua [Salem, NY; Stern, Robin L [Lodi, CA; Siantar, Christine Hartmann [Livermore, CA; Goldberg, Zelanna [Carmichael, CA

    2006-12-19

    A radiation phantom comprising a body with a general humanoid shape and at least a portion having an adjustable thickness. In one embodiment, the portion with an adjustable thickness comprises at least one tissue-equivalent slice.

  3. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Lee, Y. J.; Tung, C. J.; Cheng, H. W.; Chao, T. C.

    2014-02-01

    A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R50%) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent Req,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively.

  4. Air kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities.

    PubMed

    Behrens, R

    2012-09-01

    The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037.

  5. Quantification of breast lesion compositions using low-dose spectral mammography: A feasibility study

    PubMed Central

    Ding, Huanjun; Sennung, David; Cho, Hyo-Min; Molloi, Sabee

    2016-01-01

    Purpose: The positive predictive power for malignancy can potentially be improved, if the chemical compositions of suspicious breast lesions can be reliably measured in screening mammography. The purpose of this study is to investigate the feasibility of quantifying breast lesion composition, in terms of water and lipid contents, with spectral mammography. Methods: Phantom and tissue samples were imaged with a spectral mammography system based on silicon-strip photon-counting detectors. Dual-energy calibration was performed for material decomposition, using plastic water and adipose-equivalent phantoms as the basis materials. The step wedge calibration phantom consisted of 20 calibration configurations, which ranged from 2 to 8 cm in thickness and from 0% to 100% in plastic water density. A nonlinear rational fitting function was used in dual-energy calibration of the imaging system. Breast lesion phantoms, made from various combinations of plastic water and adipose-equivalent disks, were embedded in a breast mammography phantom with a heterogeneous background pattern. Lesion phantoms with water densities ranging from 0% to 100% were placed at different locations of the heterogeneous background phantom. The water density in the lesion phantoms was measured using dual-energy material decomposition. The thickness and density of the background phantom were varied to test the accuracy of the decomposition technique in different configurations. In addition, an in vitro study was also performed using mixtures of lean and fat bovine tissue of 25%, 50%, and 80% lean weight percentages as the background. Lesions were simulated by using breast lesion phantoms, as well as small bovine tissue samples, composed of carefully weighed lean and fat bovine tissues. The water densities in tissue samples were measured using spectral mammography and compared to measurement using chemical decomposition of the tissue. Results: The thickness of measured and known water contents was compared for various lesion configurations. There was a good linear correlation between the measured and the known values. The root-mean-square errors in water thickness measurements were 0.3 and 0.2 mm for the plastic phantom and bovine tissue backgrounds, respectively. Conclusions: The results indicate that spectral mammography can be used to accurately characterize breast lesion composition in terms of their equivalent water and lipid contents. PMID:27782705

  6. Methodological questions of creating tissue-equivalent phantoms

    NASA Technical Reports Server (NTRS)

    Kolodkin, A. V.; Popov, V. I.; Sychkov, M. A.; Nikl, I.; Erdei, M.; Eyben, O.

    1974-01-01

    On the basis of analysis and generalization of literature data, the composition of tissue equivalent plastic was justified, parameters of a standard man were determined, plaster and metal forms were created for casting dummies, and an experimental model was produced from tissue equivalent material.

  7. Heating characteristics of the TRIPAS hyperthermia system for deep seated malignancy.

    PubMed

    Surowiec, A; Bicher, H I

    1995-01-01

    A deep heating hyperthermia device TRIPAS (a triapplicator system) consisting of three independent, dielectrically loaded horn applicators operating in phase at 300 MHz was investigated. The heating characteristics produced by this hyperthermia system were analyzed by means of thermochromic liquid-crystal cards and a modified CDRH (Center for Devices and Regulatory Health) elliptical phantom. Both homogenous and inhomogeneous phantoms were used, simulating high and low permittivity tissues (muscle and lung). These equivalent tissues were made of polyacrylamide gel. The semiquantitative heating pattern analysis showed a central heating of 1/3 of maximum heating at a depth of 10 cm in both homogenous (muscle) and heterogenous (muscle/fat) phantoms. Also more uniform temperature/SAR distributions were generated in muscle equivalent material than those in lung.

  8. A low-cost, durable, combined ultrasound and fluoroscopic phantom for cervical transforaminal injections.

    PubMed

    Lerman, Imanuel R; Souzdalnitski, Dmitri; Narouze, Samer

    2012-01-01

    This technical report describes a durable, low-cost, anatomically accurate, and easy-to-prepare combined ultrasound (US) and fluoroscopic phantom of the cervical spine. This phantom is meant to augment training in US- and fluoroscopic-guided pain medicine procedures. The combined US and fluoroscopic phantom (CUF-P) is prepared from commercially available liquid plastic that is ordinarily used to prepare synthetic fishing lures. The liquid plastic is heated and then poured into a metal canister that houses an anatomical cervical spine model. Drops of dark purple dye are added to make the phantom opaque. After cooling, tubing is attached to the CUF-P to simulate blood vessels. The CUF-P accurately simulates human tissue by imitating both the tactile texture of skin and the haptic resistance of human tissue as the needle is advanced. This phantom contains simulated fluid-filled vertebral arteries that exhibit pulsed flow under color Doppler US. Under fluoroscopic examination, the CUF-P-simulated vertebral arteries also exhibit uptake of contrast dye if mistakenly injected. The creation of a training phantom allows the pain physician to practice needle positioning technique while simultaneously visualizing both targeted and avoidable vascular structures under US and fluoroscopic guidance. This low-cost CUF-P is easy to prepare and is reusable, making it an attractive alternative to current homemade and commercially available phantom simulators.

  9. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-01

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus Hp(3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  10. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications.

    PubMed

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-21

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus H p (3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  11. Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female Caucasian populations

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Milian, F. M.; Kramer, R.; de Oliveira Lira, C. A. B.; Khoury, H. J.

    2011-07-01

    Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also been calculated with the 18 anthropometric phantoms. The results show that SAFs decrease with increasing height and increase with increasing body mass. The calculated data suggest that changes of the body mass may have a significant effect on equivalent doses, primarily for external exposure to organs and tissue located below the adipose tissue layer, while for superficial organs, for changes of height and for internal exposures the effects on equivalent dose are small to moderate.

  12. Depth dose measurements with the Liulin-5 experiment inside the spherical phantom of the MATROSHKA-R project onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Semkova, J.; Koleva, R.; Maltchev, St.; Bankov, N.; Benghin, V.; Chernykh, I.; Shurshakov, V.; Petrov, V.; Drobyshev, S.; Nikolaev, I.

    2012-02-01

    The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6-1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.

  13. Dosimetric evaluation of Plastic Water Diagnostic-Therapy.

    PubMed

    Ramaseshan, Ramani; Kohli, Kirpal; Cao, Fred; Heaton, Robert K

    2008-04-29

    High-precision radiotherapy planning and quality assurance require accurate dosimetric and geometric phantom measurements. Phantom design requires materials with mechanical strength and resilience, and dosimetric properties close to those of water over diagnostic and therapeutic ranges. Plastic Water Diagnostic Therapy (PWDT: CIRS, Norfolk, VA) is a phantom material designed for water equivalence in photon beams from 0.04 MeV to 100 MeV; the material has also good mechanical properties. The present article reports the results of computed tomography (CT) imaging and dosimetric studies of PWDT to evaluate the suitability of the material in CT and therapy energy ranges. We characterized the water equivalence of PWDT in a series of experiments in which the basic dosimetric properties of the material were determined for photon energies of 80 kVp, 100 kVp, 250 kVp, 4 MV, 6 MV, 10 MV, and 18 MV. Measured properties included the buildup and percentage depth dose curves for several field sizes, and relative dose factors as a function of field size. In addition, the PWDT phantom underwent CT imaging at beam qualities ranging from 80 kVp to 140 kVp to determine the water equivalence of the phantom in the diagnostic energy range. The dosimetric quantities measured with PWDT agreed within 1.5% of those determined in water and Solid Water (Gammex rmi, Middleton, WI). Computed tomography imaging of the phantom was found to generate Hounsfield numbers within 0.8% of those generated using water. The results suggest that PWDT material is suitable both for regular radiotherapy quality assurance measurements and for intensity-modulated radiation therapy (IMRT) verification work. Sample IMRT verification results are presented.

  14. Pediatric Phantom Dosimetry of Kodak 9000 Cone-beam Computed Tomography.

    PubMed

    Yepes, Juan F; Booe, Megan R; Sanders, Brian J; Jones, James E; Ehrlich, Ygal; Ludlow, John B; Johnson, Brandon

    2017-05-15

    The purpose of the study was to evaluate the radiation dose of the Kodak 9000 cone-beam computed tomography (CBCT) device for different anatomical areas using a pediatric phantom. Absorbed doses resulting from maxillary and mandibular region three by five cm CBCT volumes of an anthropomorphic 10-year-old child phantom were acquired using optical stimulated dosimetry. Equivalent doses were calculated for radiosensitive tissues in the head and neck area, and effective dose for maxillary and mandibular examinations were calculated following the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Of the mandibular scans, the salivary glands had the highest equivalent dose (1,598 microsieverts [μSv]), followed by oral mucosa (1,263 μSv), extrathoracic airway (pharynx, larynx, and trachea; 859 μSv), and thyroid gland (578 μSv). For the maxilla, the salivary glands had the highest equivalent dose (1,847 μSv), followed closely by oral mucosa (1,673 μSv), followed by the extrathoracic airway (pharynx, larynx, and trachea; 1,011 μSv) and lens of the eye (202 μSv). Compared to previous research of the Kodak 9000, completed with the adult phantom, a child receives one to three times more radiation for mandibular scans and two to 10 times more radiation for maxillary scans.

  15. Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples

    PubMed Central

    Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.

    2014-01-01

    In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822

  16. 17 CFR 229.402 - (Item 402) Executive compensation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., concise and understandable disclosure of all plan and non-plan compensation awarded to, earned by, or paid... stock units, phantom stock, phantom stock units, common stock equivalent units or any similar..., registrants may omit information regarding group life, health, hospitalization, or medical reimbursement plans...

  17. 17 CFR 229.402 - (Item 402) Executive compensation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., concise and understandable disclosure of all plan and non-plan compensation awarded to, earned by, or paid... stock units, phantom stock, phantom stock units, common stock equivalent units or any similar..., registrants may omit information regarding group life, health, hospitalization, or medical reimbursement plans...

  18. 17 CFR 229.402 - (Item 402) Executive compensation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., concise and understandable disclosure of all plan and non-plan compensation awarded to, earned by, or paid... stock units, phantom stock, phantom stock units, common stock equivalent units or any similar... to one person. Registrants may omit information regarding group life, health, hospitalization, or...

  19. 17 CFR 229.402 - (Item 402) Executive compensation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., concise and understandable disclosure of all plan and non-plan compensation awarded to, earned by, or paid... stock units, phantom stock, phantom stock units, common stock equivalent units or any similar... to one person. Registrants may omit information regarding group life, health, hospitalization, or...

  20. High-energy neutron depth-dose distribution experiment.

    PubMed

    Ferenci, M S; Hertel, N E

    2003-01-01

    A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 liquid, tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. This experiment is intended to serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.

  1. A Dosimetric Study on Slab-pinewood-slab Phantom for Developing the Heterogeneous Chest Phantom Mimicking Actual Human Chest

    PubMed Central

    Gurjar, Om Prakash; Paliwal, Radha Kishan; Mishra, Surendra Prasad

    2017-01-01

    The aim is to study the density, isodose depths, and doses at different points in slab-pinewood-slab (SPS) phantom, solid phantom SP34 (made up of polystyrene), and chest level of actual patient for developing heterogeneous chest phantom mimicking thoracic region of human body. A 6 MV photon beam of field size of 10 cm × 10 cm was directed perpendicular to the surface of computed tomography (CT) images of chest level of patient, SPS phantom, and SP34 phantom. Dose was calculated using anisotropic analytical algorithm. Hounsfield units were used to calculate the density of each medium. Isodose depths in all the three sets of CT images were measured. Variations between planned doses on treatment planning system (TPS) and measured on linear accelerator (LA) were calculated for three points, namely, near slab–pinewood interfaces (6 and 18 cm depths) and 10 cm depth in SPS phantom and at the same depths in SP34 phantom. Density of pinewood, SP34 slabs, chest wall, lung, and soft tissue behind lung was measured as 0.329 ± 0.08, 0.999 ± 0.02, 0.898 ± 0.02, 0.291 ± 0.12, and 1.002 ± 0.03 g/cc, respectively. Depths of 100% and 90% isodose curves in all the three sets of CT images were found to be similar. Depths of 80%, 70%, 60%, 50%, and 40% isodose lines in SPS phantom images were found to be equivalent to that in chest images, while it was least in SP34 phantom images. Variations in doses calculated at 6, 10, and 18 cm depths on TPS and measured on LA were found to be 0.36%, 1.65%, and 2.23%, respectively, in case of SPS phantom, while 0.24%, 0.90%, and 0.93%, respectively, in case of SP34 slab phantom. SPS phantom seemed equivalent to the chest level of human body. Dosimetric results of this study indicate that patient-specific quality assurance can be done using chest phantom mimicking thoracic region of human body, which has been fabricated using polystyrene and pinewood. PMID:28706353

  2. SU-E-T-275: Dose Verification in a Small Animal Image-Guided Radiation Therapy X-Ray Machine: A Dose Comparison between TG-61 Based Look-Up Table and MOSFET Method for Various Collimator Sizes.

    PubMed

    Rodrigues, A; Nguyen, G; Li, Y; Roy Choudhury, K; Kirsch, D; Das, S; Yoshizumi, T

    2012-06-01

    To verify the accuracy of TG-61 based dosimetry with MOSFET technology using a tissue-equivalent mouse phantom. Accuracy of mouse dose between a TG-61 based look-up table was verified with MOSFET technology. The look-up table followed a TG-61 based commissioning and used a solid water block and radiochromic film. A tissue-equivalent mouse phantom (2 cm diameter, 8 cm length) was used for the MOSFET method. Detectors were placed in the phantom at the head and center of the body. MOSFETs were calibrated in air with an ion chamber and f-factor was applied to derive the dose to tissue. In CBCT mode, the phantom was positioned such that the system isocenter coincided with the center of the MOSFET with the active volume perpendicular to the beam. The absorbed dose was measured three times for seven different collimators, respectively. The exposure parameters were 225 kVp, 13 mA, and an exposure time of 20 s. For a 10 mm, 15 mm, and 20 mm circular collimator, the dose measured by the phantom was 4.3%, 2.7%, and 6% lower than TG-61 based measurements, respectively. For a 10 × 10 mm, 20 × 20 mm, and 40 × 40 mm collimator, the dose difference was 4.7%, 7.7%, and 2.9%, respectively. The MOSFET data was systematically lower than the commissioning data. The dose difference is due to the increased scatter radiation in the solid water block versus the dimension of the mouse phantom leading to an overestimation of the actual dose in the solid water block. The MOSFET method with the use of a tissue- equivalent mouse phantom provides less labor intensive geometry-specific dosimetry and accuracy with better dose tolerances of up to ± 2.7%. © 2012 American Association of Physicists in Medicine.

  3. Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions.

    PubMed

    Ianniello, Carlotta; de Zwart, Jacco A; Duan, Qi; Deniz, Cem M; Alon, Leeor; Lee, Jae-Seung; Lattanzi, Riccardo; Brown, Ryan

    2018-07-01

    To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue-equivalent dielectric properties. PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured. The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second- (solute concentrations) and seventh- (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes. PVP-based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T 2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413-419, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. SU-F-J-172: Hybrid MR/CT Compatible Phantom for MR-Only Based Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Lee, S; Song, K

    2016-06-15

    Purpose: Development of hybrid MR/CT compatible phantom was introduced to fully establish MR image only radiation treatment and this suggested technique using in-house developed hybrid MR/CT compatible phantom image would utilize to generate radiation treatment planning and perform dose calculation without multi-modal registration process or generation of pseudo CT. Methods: Fundamental characteristics for “hybrid MR/CT compatible phantom” was established: Relaxation times equivalent to human tissue, dielectric properties, homogeneous relaxation times, sufficient strength to fabricate a torso, ease of handling, a wide variety of density material for calibration, chemical and physical stability over an extended time. For this requirements, chemical componentmore » in each tested plug which would be tissue equivalent to human tissue on MR and CT image and production of phantom body and plug was performed. Chemical component has described below: Agaros, GdCl{sub 3}, NaN{sub 3}, NaCl, K{sub 2}Co{sub 3}, deionized-distilled water. Various mixture of chemical component to simulate human tissue on both MR and CT image was tested by measuring T1, T2 relaxation time and signal intensity (SI) on MR image and Hounsfield unit (HU) on CT and each value was compared. The hybrid MR/CT compatible phantom with 14 plugs was designed and has made. Total height and external diameter was decided by internal size of 32 channel MR head-coil. Results: Tissue-equivalent chemical component materials and hybrid MR/CT compatible phantom was developed. The range of T1, T2 relaxation time and SI on MR image, HU on CT was acquired and could be adjusted to correspond to simulated human tissue. Conclusion: Current result shows its possibility for MR-only based radiotherapy and the best mixing rate of chemical component for tissue-equivalent image on MR and CT was founded. However, additional technical issues remain to be overcome. Conversion of SI on MR image into HU and dose calculation based on converted MRI will be progressing.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y; Kumar, P; Mitchell, M

    Purpose: Breast cancer patients who undergo a mastectomy often require post-mastectomy radiation therapy (PMRT) due to high risk disease characteristics. PMRT usually accompanies scar boost irradiation (10–16Gy in 5–8 fractions) using en face electrons, which often results in increased dose to the underlying lungs, thereby potentially increasing the risk of radiation pneumonitis. Hence, this study evaluated water-equivalent phantoms as energy degraders and as an alternative to a bolus to reduce radiation dose to the underlying lungs for electron scar boost irradiation. Methods: Percent depth dose (PDD) profiles of 6 MeV (the lowest electron energy available in most clinics) were obtainedmore » without and with commercial solid water phantoms (1 to 5mm by 1mm increments) placed on top of electron cones. Phantom attenuation was measured by taking a ratio of outputs with to without the phantoms in 10×10cm2 cone size for monitor unit (MU) calculation. In addition, scatter dose to contralateral breast was measured on a human-like phantom using two selected scar (short and long) boost patient setups. Results: The PDD plots showed that the solid water phantoms and the bolus had similar dosimetric effects for the same thickness. Lower skin dose (up to 3%) to ipsilateral breast was observed with a 5mm phantom compared with a 5mm bolus (up to 10%) for all electron cones. Phantom attenuation was increased by 50% with about a 4.5mm phantom. Also, the energy degraders caused scatter dose to contralateral breast by a factor of 3 with a 5mm phantom. Conclusion: Our results demonstrate the feasibility of using water-equivalent phantoms to reduce lung dose using en face electrons in patients with a thin chest wall undergoing PMRT. The disadvantages of this treatment approach (i.e., the increase in MUs and treatment time, and clinically insignificant scatter dose to the contralateral breast given usually 10Gy) are outweighed by its above clinical benefits.« less

  6. MCNP5 evaluation of photoneutron production from the Alexandria University 15 MV Elekta Precise medical LINAC.

    PubMed

    Abou-Taleb, W M; Hassan, M H; El Mallah, E A; Kotb, S M

    2018-05-01

    Photoneutron production, and the dose equivalent, in the head assembly of the 15 MV Elekta Precise medical linac; operating in the faculty of Medicine at Alexandria University were estimated with the MCNP5 code. Photoneutron spectra were calculated in air and inside a water phantom to different depths as a function of the radiation field sizes. The maximum neutron fluence is 3.346×10 -9 n/cm 2 -e for a 30×30 cm 2 field size to 2-4 cm-depth in the phantom. The dose equivalent due to fast neutron increases as the field size increases, being a maximum of 0.912 ± 0.05 mSv/Gy at depth between 2 and 4 cm in the water phantom for 40×40 cm 2 field size. Photoneutron fluence and dose equivalent are larger to 100 cm from the isocenter than to 35 cm from the treatment room wall. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Measurement of the secondary neutron dose distribution from the LET spectrum of recoils using the CR-39 plastic nuclear track detector in 10 MV X-ray medical radiation fields

    NASA Astrophysics Data System (ADS)

    Fujibuchi, Toshioh; Kodaira, Satoshi; Sawaguchi, Fumiya; Abe, Yasuyuki; Obara, Satoshi; Yamaguchi, Masae; Kawashima, Hajime; Kitamura, Hisashi; Kurano, Mieko; Uchihori, Yukio; Yasuda, Nakahiro; Koguchi, Yasuhiro; Nakajima, Masaru; Kitamura, Nozomi; Sato, Tomoharu

    2015-04-01

    We measured the recoil charged particles from secondary neutrons produced by the photonuclear reaction in a water phantom from a 10-MV photon beam from medical linacs. The absorbed dose and the dose equivalent were evaluated from the linear energy transfer (LET) spectrum of recoils using the CR-39 plastic nuclear track detector (PNTD) based on well-established methods in the field of space radiation dosimetry. The contributions and spatial distributions of these in the phantom on nominal photon exposures were verified as the secondary neutron dose and neutron dose equivalent. The neutron dose equivalent normalized to the photon-absorbed dose was 0.261 mSv/100 MU at source to chamber distance 90 cm. The dose equivalent at the surface gave the highest value, and was attenuated to less than 10% at 5 cm from the surface. The dose contribution of the high LET component of ⩾100 keV/μm increased with the depth in water, resulting in an increase of the quality factor. The CR-39 PNTD is a powerful tool that can be used to systematically measure secondary neutron dose distributions in a water phantom from an in-field to out-of-field high-intensity photon beam.

  8. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate predictions are 20% lower than the observations. Assuming that the trapped-belt models lead to a correct orbit-averaged energy spectrum, the measurements of dose rates inside the phantom cannot be fully understood. Passive measurements using 6Li- and 7Li-based detectors on the astronauts and inside the brain and thyroid of the phantom show the presence of a significant contribution due to thermal neutrons, an area requiring additional study.

  9. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.

    2003-08-01

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  10. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams.

    PubMed

    Doucet, R; Olivares, M; DeBlois, F; Podgorsak, E B; Kawrakow, I; Seuntjens, J

    2003-08-07

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  11. Dosimetric impacts of microgravity: an analysis of 5th, 50th and 95th percentile male and female astronauts

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir A.; Van Baalen, Mary; Shavers, Mark R.; Semones, Edward J.; Bolch, Wesley E.

    2012-02-01

    Computational phantoms serve an important role in organ dosimetry and risk assessment performed at the National Aeronautics and Space Administration (NASA). A previous study investigated the impact on organ dose equivalents and effective doses from the use of the University of Florida hybrid adult male (UFHADM) and adult female (UFHADF) phantoms at differing height and weight percentiles versus those given by the two existing NASA phantoms, the computerized anatomical man (CAM) and female (CAF) (Bahadori et al 2011 Phys. Med. Biol. 56 1671-94). In the present study, the UFHADM and UFHADF phantoms of different body sizes were further altered to incorporate the effects of microgravity. Body self-shielding distributions are generated using the voxel-based ray tracer (VoBRaT), and the results are combined with depth dose data from the NASA codes BRYNTRN and HZETRN to yield organ dose equivalents and their rates for a variety of space radiation environments. It is found that while organ dose equivalents are indeed altered by the physiological effects of microgravity, the magnitude of the change in overall risk (indicated by the effective dose) is minimal for the spectra and simplified shielding configurations considered. The results also indicate, however, that UFHADM and UFHADF could be useful in designing dose reduction strategies through optimized positioning of an astronaut during encounters with solar particle events.

  12. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes frommore » an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials such as air, bone, or lungs, produced variations between both phantoms which were at most 35% in the considered organ equivalent doses. Finally, effective doses per clinical absorbed dose from IMRT and proton therapy were comparable to those from both brachytherapy sources, with brachytherapy being advantageous over external beam radiation therapy for the furthest organs. Conclusions: A database of organ equivalent doses when applying HDR brachytherapy to the prostate with either {sup 60}Co or {sup 192}Ir is provided. According to physical considerations, {sup 192}Ir is dosimetrically advantageous over {sup 60}Co sources at large distances, but not in the closest organs. Damage to distant healthy organs per clinical absorbed dose is lower with brachytherapy than with IMRT or protons, although the overall effective dose per Gy given to the prostate seems very similar. Given that there are several possible fractionation schemes, which result in different total amounts of therapeutic absorbed dose, advantage of a radiation treatment (according to equivalent dose to healthy organs) is treatment and facility dependent.« less

  13. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    PubMed Central

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-01-01

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061

  14. Implementation of an analytical model for leakage neutron equivalent dose in a proton radiotherapy planning system.

    PubMed

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  15. Organ doses from radionuclides on the ground. Part I. Simple time dependences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, P.; Paretzke, H.G.; Rosenbaum, H.

    1988-06-01

    Organ dose equivalents of mathematical, anthropomorphical phantoms ADAM and EVA for photon exposures from plane sources on the ground have been calculated by Monte Carlo photon transport codes and tabulated in this article. The calculation takes into account the air-ground interface and a typical surface roughness, the energy and angular dependence of the photon fluence impinging on the phantom and the time dependence of the contributions from daughter nuclides. Results are up to 35% higher than data reported in the literature for important radionuclides. This manuscript deals with radionuclides, for which the time dependence of dose equivalent rates and dosemore » equivalents may be approximated by a simple exponential. A companion manuscript treats radionuclides with non-trivial time dependences.« less

  16. Comparison of adult and child radiation equivalent doses from 2 dental cone-beam computed tomography units.

    PubMed

    Al Najjar, Anas; Colosi, Dan; Dauer, Lawrence T; Prins, Robert; Patchell, Gayle; Branets, Iryna; Goren, Arthur D; Faber, Richard D

    2013-06-01

    With the advent of cone-beam computed tomography (CBCT) scans, there has been a transition toward these scans' replacing traditional radiographs for orthodontic diagnosis and treatment planning. Children represent a significant proportion of orthodontic patients. Similar CBCT exposure settings are predicted to result in higher equivalent doses to the head and neck organs in children than in adults. The purpose of this study was to measure the difference in equivalent organ doses from different scanners under similar settings in children compared with adults. Two phantom heads were used, representing a 33-year-old woman and a 5-year-old boy. Optically stimulated dosimeters were placed at 8 key head and neck organs, and equivalent doses to these organs were calculated after scanning. The manufacturers' predefined exposure settings were used. One scanner had a pediatric preset option; the other did not. Scanning the child's phantom head with the adult settings resulted in significantly higher equivalent radiation doses to children compared with adults, ranging from a 117% average ratio of equivalent dose to 341%. Readings at the cervical spine level were decreased significantly, down to 30% of the adult equivalent dose. When the pediatric preset was used for the scans, there was a decrease in the ratio of equivalent dose to the child mandible and thyroid. CBCT scans with adult settings on both phantom heads resulted in higher radiation doses to the head and neck organs in the child compared with the adult. In practice, this might result in excessive radiation to children scanned with default adult settings. Collimation should be used when possible to reduce the radiation dose to the patient. While CBCT scans offer a valuable tool, use of CBCT scans should be justified on a specific case-by-case basis. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  17. Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps.

    PubMed

    Kirkwood, Melissa L; Arbique, Gary M; Guild, Jeffrey B; Zeng, Katie; Xi, Yin; Rectenwald, John; Anderson, Jon A; Timaran, Carlos

    2018-03-12

    Radiation to the interventionalist's brain during fluoroscopically guided interventions (FGIs) may increase the incidence of cerebral neoplasms. Lead equivalent surgical caps claim to reduce radiation brain doses by 50% to 95%. We sought to determine the efficacy of the RADPAD (Worldwide Innovations & Technologies, Lenexa, Kan) No Brainer surgical cap (0.06 mm lead equivalent at 90 kVp) in reducing radiation dose to the surgeon's and trainee's head during FGIs and to a phantom to determine relative brain dose reductions. Optically stimulated, luminescent nanoDot detectors (Landauer, Glenwood, Ill) inside and outside of the cap at the left temporal position were used to measure cap attenuation during FGIs. To check relative brain doses, nanoDot detectors were placed in 15 positions within an anthropomorphic head phantom (ATOM model 701; CIRS, Norfolk, Va). The phantom was positioned to represent a primary operator performing femoral access. Fluorography was performed on a plastic scatter phantom at 80 kVp for an exposure of 5 Gy reference air kerma with or without the hat. For each brain location, the percentage dose reduction with the hat was calculated. Means and standard errors were calculated using a pooled linear mixed model with repeated measurements. Anatomically similar locations were combined into five groups: upper brain, upper skull, midbrain, eyes, and left temporal position. This was a prospective, single-center study that included 29 endovascular aortic aneurysm procedures. The average procedure reference air kerma was 2.6 Gy. The hat attenuation at the temporal position for the attending physician and fellow was 60% ± 20% and 33% ± 36%, respectively. The equivalent phantom measurements demonstrated an attenuation of 71% ± 2.0% (P < .0001). In the interior phantom locations, attenuation was statistically significant for the skull (6% ± 1.4%) and upper brain (7.2% ± 1.0%; P < .0001) but not for the middle brain (1.4% ± 1.0%; P = .15) or the eyes (-1.5% ± 1.4%; P = .28). The No Brainer surgical cap attenuates direct X rays at the superficial temporal location; however, the majority of radiation to an interventionalist's brain originates from scatter radiation from angles not shadowed by the cap as demonstrated by the trivial percentage brain dose reductions measured in the phantom. Radiation protective caps have minimal clinical relevance. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  18. Monte Carlo calculation of the neutron dose to a fetus at commercial flight altitudes

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Galeano, D. C.; Santos, W. S.; Hunt, John G.; d'Errico, Francesco; Souza, S. O.; de Carvalho Júnior, A. B.

    2017-11-01

    Aircrew members are exposed to primary cosmic rays as well as to secondary radiations from the interaction of cosmic rays with the atmosphere and with the aircraft. The radiation field at flight altitudes comprises neutrons, protons, electrons, positrons, photons, muons and pions. Generally, 50% of the effective dose to airplane passengers is due to neutrons. Care must be taken especially with pregnant aircrew members and frequent fliers so that the equivalent dose to the fetus will not exceed prescribed limits during pregnancy (1 mSv according to ICRP, and 5 mSv according to NCRP). Therefore, it is necessary to evaluate the equivalent dose to a fetus in the maternal womb. Up to now, the equivalent dose rate to a fetus at commercial flight altitudes was obtained using stylized pregnant-female phantom models. The aim of this study was calculating neutron fluence to dose conversion coefficients for a fetus of six months of gestation age using a new, realistic pregnant-female mesh-phantom. The equivalent dose rate to a fetus during an intercontinental flight was also calculated by folding our conversion coefficients with published spectral neutron flux data. The calculated equivalent dose rate to the fetus was 2.35 μSv.h-1, that is 1.5 times higher than equivalent dose rates reported in the literature. The neutron fluence to dose conversion coefficients for the fetus calculated in this study were 2.7, 3.1 and 3.9 times higher than those from previous studies using fetus models of 3, 6 and 9 months of gestation age, respectively. The differences between our study and data from the literature highlight the importance of using more realistic anthropomorphic phantoms to estimate doses to a fetus in pregnant aircrew members.

  19. The validation of tomotherapy dose calculations in low-density lung media

    NASA Astrophysics Data System (ADS)

    Chaudhari, Summer R.; Pechenaya, Olga L.; Goddu, S. Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D.; Low, Daniel

    2009-04-01

    The dose-calculation accuracy of the tomotherapy Hi-Art II® (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values <=1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  20. The validation of tomotherapy dose calculations in low-density lung media.

    PubMed

    Chaudhari, Summer R; Pechenaya, Olga L; Goddu, S Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D; Low, Daniel

    2009-04-21

    The dose-calculation accuracy of the tomotherapy Hi-Art II(R) (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values < or =1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  1. Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh

    2015-07-01

    This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found.

  2. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Khoury, H. J.; Vieira, J. W.; de Melo Lima, V. J.; Robson Brown, K.

    2010-01-01

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon exposure showed good agreement between FASH/MASH and REGINA/REX, but large differences between FASH/MASH and the mesh-based RPI_AM and the RPI_AF phantoms, developed at the Rensselaer Polytechnic Institute (RPI).

  3. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.

    PubMed

    DeMarco, J; Kupelian, P; Santhanam, A; Low, D

    2013-07-01

    Intensity modulated proton therapy (IMPT) uses a combination of computer controlled spot scanning and spot-weight optimized planning to irradiate the tumor volume uniformly. In contrast to passive scattering systems, secondary neutrons and photons produced from inelastic proton interactions within the patient represent the major source of emitted radiation during IMPT delivery. Various published studies evaluated the shielding considerations for passive scattering systems but did not directly address secondary neutron production from IMPT and the ambient dose equivalent on surrounding occupational and nonoccupational work areas. Thus, the purpose of this study was to utilize Monte Carlo simulations to evaluate the energy and angular distributions of secondary neutrons and photons following inelastic proton interactions within a tissue-equivalent phantom for incident proton spot energies between 70 and 250 MeV. Monte Carlo simulation methods were used to calculate the ambient dose equivalent of secondary neutrons and photons produced from inelastic proton interactions in a tissue-equivalent phantom. The angular distribution of emitted neutrons and photons were scored as a function of incident proton energy throughout a spherical annulus at 1, 2, 3, 4, and 5 m from the phantom center. Appropriate dose equivalent conversion factors were applied to estimate the total ambient dose equivalent from secondary neutrons and photons. A reference distance of 1 m from the center of the patient was used to evaluate the mean energy distribution of secondary neutrons and photons and the resulting ambient dose equivalent. For an incident proton spot energy of 250 MeV, the total ambient dose equivalent (3.6 × 10(-3) mSv per proton Gy) was greatest along the direction of the incident proton spot (0°-10°) with a mean secondary neutron energy of 71.3 MeV. The dose equivalent decreased by a factor of 5 in the backward direction (170°-180°) with a mean energy of 4.4 MeV. An 8 × 8 × 8 cm(3) volumetric spot distribution (5 mm FWHM spot size, 4 mm spot spacing) optimized to produce a uniform dose distribution results in an ambient dose equivalent of 4.5 × 10(-2) mSv per proton Gy in the forward direction. This work evaluated the secondary neutron and photon emission due to monoenergetic proton spots between 70 and 250 MeV, incident on a tissue equivalent phantom. Example calculations were performed to estimate concrete shield thickness based upon appropriate workload and shielding design assumptions. Although lower than traditional passive scattered proton therapy systems, the ambient dose equivalent from secondary neutrons produced by the patient during IMPT can be significant relative to occupational and nonoccupational workers in the vicinity of the treatment vault. This work demonstrates that Monte Carlo simulations are useful as an initial planning tool for studying the impact of the treatment room and maze design on surrounding occupational and nonoccupational work areas.

  4. Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties.

    PubMed

    Chen, Roland K; Shih, A J

    2013-08-21

    This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.

  5. Fluence-to-dose conversion coefficients based on the posture modification of Adult Male (AM) and Adult Female (AF) reference phantoms of ICRP 110

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.

    2016-04-01

    The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.

  6. Comparison of the ANSI, RSD, KKH, and BRMD thyroid-neck phantoms for 125I thyroid monitoring.

    PubMed

    Kramer, G H; Olender, G; Vlahovich, S; Hauck, B M; Meyerhof, D P

    1996-03-01

    The Human Monitoring Laboratory, which acts as the Canadian National Calibration Reference Centre for In Vivo Monitoring, has determined the performance characteristics of four thyroid phantoms for 125I thyroid monitoring. The phantoms were a phantom built to the specifications of the American National Standards Institute Standard N44.3; the phantom available from Radiology Support Devices; the phantom available from Kyoto Kagaku Hyohon; the phantom manufactured by the Human Monitoring Laboratory and known as the BRMD phantom. The counting efficiencies of the phantoms for 125I were measured at different phantom-to-detector distances. The anthropomorphic characteristics of the phantoms have been compared with the average man parameters. It was concluded that the BRMD, American National Standards Institute, and Radiology Support Devices phantoms have the same performance characteristics when the neck-to-detector distances are greater than 12 cm and all phantoms are essentially equivalent at 30 cm or more. The Kyoto Kagaku Hyohon phantom showed lower counting efficiencies at phantom-to-detector distances less than 30 cm. This was attributed to the design of the phantom. This study has also shown that the phantom need not be highly anthropomorphic provided the calibration is not performed at short neck-detector distances. Indeed, it might be possible to use t simple point source of 125I placed behind a 1.5 cm block of lucite at neck detector distances of 12 cm or more.

  7. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  8. Experimental evaluation of the thermal properties of two tissue equivalent phantom materials.

    PubMed

    Craciunescu, O I; Howle, L E; Clegg, S T

    1999-01-01

    Tissue equivalent radio frequency (RF) phantoms provide a means for measuring the power deposition of various hyperthermia therapy applicators. Temperature measurements made in phantoms are used to verify the accuracy of various numerical approaches for computing the power and/or temperature distributions. For the numerical simulations to be accurate, the electrical and thermal properties of the materials that form the phantom should be accurately characterized. This paper reports on the experimentally measured thermal properties of two commonly used phantom materials, i.e. a rigid material with the electrical properties of human fat, and a low concentration polymer gel with the electrical properties of human muscle. Particularities of the two samples required the design of alternative measuring techniques for the specific heat and thermal conductivity. For the specific heat, a calorimeter method is used. For the thermal diffusivity, a method derived from the standard guarded comparative-longitudinal heat flow technique was used for both materials. For the 'muscle'-like material, the thermal conductivity, density and specific heat at constant pressure were measured as: k = 0.31 +/- 0.001 W(mK)(-1), p = 1026 +/- 7 kgm(-3), and c(p) = 4584 +/- 107 J(kgK)(-1). For the 'fat'-like material, the literature reports on the density and specific heat such that only the thermal conductivity was measured as k = 0.55 W(mK)(-1).

  9. In vivo evaluating skin doses for lung cancer patients undergoing volumetric modulated arc therapy treatment.

    PubMed

    Tseng, Hsien-Chun; Pan, Lung-Kang; Chen, Hsin-Yu; Liu, Wen-Shan; Hsu, Chang-Chieh; Chen, Chien-Yi

    2015-01-01

    This study is the first to use 10- to 90-kg tissue-equivalent phantoms as patient surrogates to measure peripheral skin doses (Dskin) in lung cancer treatment through Volumetric Modulated Arc Therapy of the Axesse linac. Five tissue-equivalent and Rando phantoms were used to simulate lung cancer patients using the thermoluminescent dosimetry (TLD-100H) approach. TLD-100H was calibrated using 6 MV photons coming from the Axesse linac. Then it was inserted into phantom positions that closely corresponded with the position of the represented organs and tissues. TLDs were measured using the Harshaw 3500 TLD reader. The ICRP 60 evaluated the mean Dskin to the lung cancer for 1 fraction (7 Gy) undergoing VMAT. The Dskin of these phantoms ranged from 0.51±0.08 (10-kg) to 0.22±0.03 (90-kg) mSv/Gy. Each experiment examined the relationship between the Dskin and the distance from the treatment field. These revealed strong variations in positions close to the tumor center. The correlation between Dskin and body weight was Dskin (mSv) = -0.0034x + 0.5296, where x was phantom's weight in kg. R2 is equal to 0.9788. This equation can be used to derive an equation for lung cancer in males. Finally, the results are compared to other published research. These findings are pertinent to patients, physicians, radiologists, and the public.

  10. Instrumentation for investigation of the depth-dose distribution by the Liulin-5 instrument of a human phantom on the Russian segment of ISS for estimation of the radiation risk during long term space flights

    NASA Technical Reports Server (NTRS)

    Semkova, J.; Koleva, R.; Todorova, G.; Kanchev, N.; Petrov, V.; Shurshakov, V.; Tchhernykh, I.; Kireeva, S.

    2004-01-01

    Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. The use of noise equivalent count rate and the NEMA phantom for PET image quality evaluation.

    PubMed

    Yang, Xin; Peng, Hao

    2015-03-01

    PET image quality is directly associated with two important parameters among others: count-rate performance and image signal-to-noise ratio (SNR). The framework of noise equivalent count rate (NECR) was developed back in the 1990s and has been widely used since then to evaluate count-rate performance for PET systems. The concept of NECR is not entirely straightforward, however, and among the issues requiring clarification are its original definition, its relationship to image quality, and its consistency among different derivation methods. In particular, we try to answer whether a higher NECR measurement using a standard NEMA phantom actually corresponds to better imaging performance. The paper includes the following topics: 1) revisiting the original analytical model for NECR derivation; 2) validating three methods for NECR calculation based on the NEMA phantom/standard; and 3) studying the spatial dependence of NECR and quantitative relationship between NECR and image SNR. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Quantification of blood volume by electrical impedance tomography using a tissue-equivalent phantom.

    PubMed

    Sadleir, R; Fox, R

    1998-11-01

    An in vivo electrical impedance tomography (EIT) system was designed to accurately estimate quantities of intra-peritoneal blood in the abdominal cavity. For this it is essential that the response is relatively independent of the position of the high conductivity anomaly (blood) in the body. The sensitivity of the system to the introduction of blood-equivalent resistivity anomalies was assessed by using a cylindrical tissue-equivalent phantom. It was found that a satisfactorily uniform response of the system in both radial (transverse) and axial (longitudinal) directions in the phantom could be achieved by filtering resistivity profile images obtained by EIT measurement, and by using extended electrodes to collect data. Post-processing of single impedance images gave rise to a quantity denoted the resistivity index. A filter was then used to remove the remaining radial variation of the resistivity index. It was calculated by evaluating the resistivity index of a number of theoretically calculated images, and constructing a correction filter similar to those used to remove lens imperfections, such as coma, in optical components. The 30% increase in the resistivity index observed when an anomaly was moved to the maximum extent allowed by the filter calculation (0.75 of the phantom radius) was reduced by the filter to 6%. A study of the axial dependence observed in the resistivity index using electrodes extended in the axial direction by +/-5 cm found that the variation in resistivity index with axial position was about half of that observed using small circular electrodes similar to those used in the Sheffield mark I system.

  13. Dose distributions in phantoms irradiated in thermal columns of two different nuclear reactors.

    PubMed

    Gambarini, G; Agosteo, S; Altieri, S; Bortolussi, S; Carrara, M; Gay, S; Nava, E; Petrovich, C; Rosi, G; Valente, M

    2007-01-01

    In-phantom dosimetry studies have been carried out at the thermal columns of a thermal- and a fast-nuclear reactor for investigating: (a) the spatial distribution of the gamma dose and the thermal neutron fluence and (b) the accuracy at which the boron concentration should be estimated in an explanted organ of a boron neutron capture therapy patient. The phantom was a cylinder (11 cm in diameter and 12 cm in height) of tissue-equivalent gel. Dose images were acquired with gel dosemeters across the axial section of the phantom. The thermal neutron fluence rate was measured with activation foils in a few positions of this phantom. Dose and fluence rate profiles were also calculated with Monte Carlo simulations. The trend of these profiles do not show significant differences for the thermal columns considered in this work.

  14. Radio-frequency ring applicator: energy distributions measured in the CDRH phantom.

    PubMed

    van Rhoon, G C; Raskmark, P; Hornsleth, S N; van den Berg, P M

    1994-11-01

    SAR distributions were measured in the CDRH phantom, a 1 cm fat-equivalent shell filled with an abdomen-equivalent liquid (sigma = 0.4-1.0 S m-1; dimensions 22 x 32 x 57 cm) to demonstrate the feasibility of the ring applicator to obtain deep heating. The ring electrodes were fixed in a PVC tube; diameter 48 cm, ring width 20 cm and gap width between both rings 31.6 cm. Radio-frequency energy was fed to the electrodes at eight points. The medium between the electrodes and the phantom was deionised water. The SAR distribution in the liquid tissue volume was obtained by a scanning E-field probe measuring the E-field in all three directions. With equal amplitude and phase applied to all feeding points, a uniform SAR distribution was measured in the central cross-section at 30 MHz. With RF energy supplied to only four adjacent feeding points (others were connected to a 50 omega load), the feasibility to perform amplitude steering was demonstrated; SAR values above 50% of the maximum SAR were measured in one quadrant only. SAR distributions obtained at 70 MHz showed an improved focusing ability; a maximum at the centre exists for an electric conductivity of the abdomen-equivalent tissue of 0.6 and 0.4 S m-1.

  15. Measurement of absorbed dose with a bone-equivalent extrapolation chamber.

    PubMed

    DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B

    2002-03-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.

  16. Feasibility of measuring selenium in humans using in vivo neutron activation analysis.

    PubMed

    Tahir, S N A; Chettle, D R; Byun, S H; Prestwich, W V

    2015-11-01

    Selenium (Se) is an element that, in trace quantities, plays an important role in the normal function of a number of biological processes in humans. Many studies have demonstrated that selenium deficiency in the body may contribute to an increased risk for certain neoplastic, cardiovascular, osseous, and nervous system diseases including retardation of bone formation. However, at higher concentrations Se is cytotoxic. For these reasons it is desirable to have a means of monitoring selenium concentration in humans.This paper presents the outcome of a feasibility study carried out for measuring selenium in humans using in vivo neutron activation analysis (IVNAA). In this technique a small dose of neutrons is delivered to the organ of interest, the neutrons are readily captured by the target nuclei, and the γ-rays given off are detected outside of the body. For the present study, human hand (bone) tissue equivalent phantoms were prepared with varying amounts of Se. These were irradiated by a low energy fast neutron beam produced by the (7)Li(p,n)(7)Be reaction employing the high beam current Tandetron accelerator. The counting data saved using a 4π NaI(TI) detection system were analyzed. The selenium was detected via the neutron capture reaction, (76)Se(n,γ)(77 m)Se, whereas calcium was detected through the (48)Ca(n,γ)(49)Ca reaction for the purpose of normalization of the Se signals to the calcium signals. From the calibration lines drawn between Se/Ca concentrations and Se/Ca counts ratio, the minimum detection limits (MDLs) were computed for two sets of phantoms irradiated under different irradiation parameters.In this study the optimized MDL value was determined to be 81 ng g(-1) (Se/phantom mass) for an equivalent dose of 188 mSv to the phantom. This MDL was found at least 10 times lower than the reported data on Se concentration measured in bone tissues. It was concluded that the NAA technique would be a feasible means of performing in vivo measurements of selenium in humans. Currently the data on in vivo measurement of selenium in humans are limited; the results of the present study would greatly contribute to the present data.

  17. SU-F-I-05: Dose Symmetry for CTDI Equivalent Measurements with Limited Angle CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, V; McKenney, S; Sunde, P

    Purpose: CTDI measurements, useful for characterizing the x-ray output for multi-detector CT (MDCT), require a 360° rotation of the gantry; this presents a problem for cone beam CT (CBCT) due to its limited angular rotation. The purpose of this work is to demonstrate a methodology for overcoming this limited angular rotation so that CTDI measurements can also be made on CBCT systems making it possible to compare the radiation output from both types of system with a common metric. Methods: The symmetry of the CTDI phantom allows a 360° CTDI measurement to be replaced with two 180° measurements. A pencilmore » chamber with a real-time digitizer was placed at the center of the head phantom (16 cm, PMMA) and the resulting exposure measurement from a 180° acquisition was doubled. A pair of edge measurements, each obtained with the gantry passing through the same 180 arc, was obtained with the pencil chamber at opposite edges of the diameter of the phantom and then summed. The method was demonstrated on a clinical CT scanner (Philips, Brilliance6) and then implemented on an interventional system (Siemens, Axiom Artis). Results: The equivalent CTDI measurement agreed with the conventional CTDI measurement within 8%. The discrepancy in the two measurements is largely attributed to uncertainties in cropping the waveform to a 180°acquisition. (Note: Because of the reduced fan angle in the CBCT, CTDI is not directly comparable to MDCT values when a 32 cm phantom is used.) Conclusion: The symmetry-based CTDI measurement is an equivalent measurement to the conventional CTDI measurement when the fan angle is large enough to encompass the phantom diameter. This allows a familiar metric of radiation output to be employed on systems with a limited angular rotation.« less

  18. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination.

    PubMed

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-21

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.

  19. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-01

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm-2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.

  20. Evaluation of film and thermoluminescent dosimetry of high-energy electron beams in heterogeneous phantoms.

    PubMed

    el-Khatib, E; Antolak, J; Scrimger, J

    1992-01-01

    Film and thermoluminescent dosimetry (TLD) are investigated in heterogeneous phantoms irradiated by high-energy electron beams. Both film and TLD are practical dosimeters for multiple and moving beam radiotherapy. The accuracy and precision of these dosimeters for radiation dose measurements in homogeneous water-equivalent phantoms has been discussed in the literature. However, film and TLD are often used for dose measurements in heterogeneous phantoms. In those situations perturbations are produced which are related to the density and atomic number of the phantom material and the physical size and orientation of the dosimeter. In our experiments the relative dose measurements in homogeneous phantoms were the same regardless of dosimeter or dosimeter orientation. However, significant differences were observed between the dose measurements within the inhomogeneity. These differences were influenced by the type and orientation of the dosimeter in addition to the properties of the heterogeneity. These differences could be reproduced with Monte Carlo calculations and modeling of the experimental conditions.

  1. Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architecture in Chronic Spinal Cord Injury

    DTIC Science & Technology

    2015-12-01

    lateral condyles of the tibia and the anterioposterior axis was oriented orthogonally. The CT Hounsfield units were converted to calcium hydroxyapatite...orthogonally. The CT Hounsfield units were converted to calcium hydroxyapatite density rha using a linear relationship established with the phantom...concentration (QRM, Moehrendorf, Germany). The phantom allowed conversion of computed tomography Hounsfield units into hydroxyapatite equivalent density

  2. Classification of electronically generated phantom targets by an Atlantic bottlenose dolphin (Tursiops truncatus).

    PubMed

    Aubauer, R; Au, W W; Nachtigall, P E; Pawloski, D A; DeLong, C M

    2000-05-01

    Animal behavior experiments require not only stimulus control of the animal's behavior, but also precise control of the stimulus itself. In discrimination experiments with real target presentation, the complex interdependence between the physical dimensions and the backscattering process of an object make it difficult to extract and control relevant echo parameters separately. In other phantom-echo experiments, the echoes were relatively simple and could only simulate certain properties of targets. The echo-simulation method utilized in this paper can be used to transform any animal echolocation sound into phantom echoes of high fidelity and complexity. The developed phantom-echo system is implemented on a digital signal-processing board and gives an experimenter fully programmable control over the echo-generating process and the echo structure itself. In this experiment, the capability of a dolphin to discriminate between acoustically simulated phantom replicas of targets and their real equivalents was tested. Phantom replicas were presented in a probe technique during a materials discrimination experiment. The animal accepted the phantom echoes and classified them in the same manner as it classified real targets.

  3. Modification of the NEMA XR21-2000 cardiac phantom for testing of imaging systems used in endovascular image guided interventions

    NASA Astrophysics Data System (ADS)

    Ionita, C. N.; Dohatcu, A.; Jain, A.; Keleshis, C.; Hoffmann, K. R.; Bednarek, D. R.; Rudin, S.

    2009-02-01

    X-ray equipment testing using phantoms that mimic the specific human anatomy, morphology, and structure is a very important step in the research, development, and routine quality assurance for such equipment. Although the NEMA XR21 phantom exists for cardiac applications, there is no such standard phantom for neuro-, peripheral and cardiovascular angiographic applications. We have extended the application of the NEMA XR21-2000 phantom to evaluate neurovascular x-ray imaging systems by structuring it to be head-equivalent; two aluminum plates shaped to fit into the NEMA phantom geometry were added to a 15 cm thick section. Also, to enable digital subtraction angiography (DSA) testing, two replaceable central plates with a hollow slot were made so that various angiographic sections could be inserted into the phantom. We tested the new modified phantom using a flat panel C-arm unit dedicated for endovascular image-guided interventions. All NEMA XR21-2000 standard test sections were used in evaluations with the new "headequivalent" phantom. DSA and DA are able to be tested using two standard removable blocks having simulated arteries of various thickness and iodine concentrations (AAPM Report 15). The new phantom modifications have the benefits of enabling use of the standard NEMA phantom for angiography in both neuro- and cardio-vascular applications, with the convenience of needing only one versatile phantom for multiple applications. Additional benefits compared to using multiple phantoms are increased portability and lower cost.

  4. Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Kawrakow, I.

    2006-12-01

    3D-microCT images of vertebral bodies from three different individuals have been segmented into trabecular bone, bone marrow and bone surface cells (BSC), and then introduced into the spongiosa voxels of the MAX06 and the FAX06 phantoms, in order to calculate the equivalent dose to the red bone marrow (RBM) and the BSC in the marrow cavities of trabecular bone with the EGSnrc Monte Carlo code from whole-body exposure to external photon radiation. The MAX06 and the FAX06 phantoms consist of about 150 million 1.2 mm cubic voxels each, a part of which are spongiosa voxels surrounded by cortical bone. In order to use the segmented 3D-microCT images for skeletal dosimetry, spongiosa voxels in the MAX06 and the FAX06 phantom were replaced at runtime by so-called micro matrices representing segmented trabecular bone, marrow and BSC in 17.65, 30 and 60 µm cubic voxels. The 3D-microCT image-based RBM and BSC equivalent doses for external exposure to photons presented here for the first time for complete human skeletons are in agreement with the results calculated with the three correction factor method and the fluence-to-dose response functions for the same phantoms taking into account the conceptual differences between the different methods. Additionally the microCT image-based results have been compared with corresponding data from earlier studies for other human phantoms. This article is dedicated to Prof. Dr Guenter Drexler from the Laboratório de Ciências Radiológicas, State University of Rio de Janeiro, on the occasion of his 70th birthday.

  5. Robotically Driven CT-guided Needle Insertion: Preliminary Results in Phantom and Animal Experiments.

    PubMed

    Hiraki, Takao; Kamegawa, Tetsushi; Matsuno, Takayuki; Sakurai, Jun; Kirita, Yasuzo; Matsuura, Ryutaro; Yamaguchi, Takuya; Sasaki, Takanori; Mitsuhashi, Toshiharu; Komaki, Toshiyuki; Masaoka, Yoshihisa; Matsui, Yusuke; Fujiwara, Hiroyasu; Iguchi, Toshihiro; Gobara, Hideo; Kanazawa, Susumu

    2017-11-01

    Purpose To evaluate the accuracy of the remote-controlled robotic computed tomography (CT)-guided needle insertion in phantom and animal experiments. Materials and Methods In a phantom experiment, 18 robotic and manual insertions each were performed with 19-gauge needles by using CT fluoroscopic guidance for the evaluation of the equivalence of accuracy of insertion between the two groups with a 1.0-mm margin. Needle insertion time, CT fluoroscopy time, and radiation exposure were compared by using the Student t test. The animal experiments were approved by the institutional animal care and use committee. In the animal experiment, five robotic insertions each were attempted toward targets in the liver, kidneys, lungs, and hip muscle of three swine by using 19-gauge or 17-gauge needles and by using conventional CT guidance. The feasibility, safety, and accuracy of robotic insertion were evaluated. Results The mean accuracies of robotic and manual insertion in phantoms were 1.6 and 1.4 mm, respectively. The 95% confidence interval of the mean difference was -0.3 to 0.6 mm. There were no significant differences in needle insertion time, CT fluoroscopy time, or radiation exposure to the phantom between the two methods. Effective dose to the physician during robotic insertion was always 0 μSv, while that during manual insertion was 5.7 μSv on average (P < .001). Robotic insertion was feasible in the animals, with an overall mean accuracy of 3.2 mm and three minor procedure-related complications. Conclusion Robotic insertion exhibited equivalent accuracy as manual insertion in phantoms, without radiation exposure to the physician. It was also found to be accurate in an in vivo procedure in animals. © RSNA, 2017 Online supplemental material is available for this article.

  6. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Q; Shanghai General Hospital, Shanghai, Shanghai; Zhuo, W

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominalmore » antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)« less

  7. A Head and Neck Simulator for Radiology and Radiotherapy

    NASA Astrophysics Data System (ADS)

    Thompson, Larissa; Campos, Tarcísio P. R.

    2013-06-01

    Phantoms are suitable tools to simulate body tissues and organs in radiology and radiation therapy. This study presents the development of a physical head and neck phantom and its radiological response for simulating brain pathology. The following features on the phantom are addressed and compared to human data: mass density, chemical composition, anatomical shape, computerized tomography images and Hounsfield Units. Mass attenuation and kerma coefficients of the synthetic phantom and normal tissues, as well as their deviations, were also investigated. Radiological experiments were performed, including brain tumors and subarachnoid hemorrhage simulations. Computerized tomography images of such pathologies in phantom and human were obtained. The anthropometric dimensions of the phantom present anatomical conformation similar to a human head and neck. Elemental weight percentages of the equivalent tissues match the human ones. Hounsfield Unit values of the main developed structures are presented, approaching human data. Kerma and mass attenuation coefficients spectra from human and phantom are presented, demonstrating smaller deviations in the radiological X-ray spectral domain. In conclusion, the phantom presented suitable normal and pathological radiological responses relative to those observed in humans. It may improve radiological protocols and education in medical imaging.

  8. Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-07-01

    Our aim in this study is to derive an identification limit on a dosimeter for not disturbing a medical image when patients wear a small-type optically stimulated luminescence (OSL) dosimeter on their bodies during X-ray diagnostic imaging. For evaluation of the detection limit based on an analysis of X-ray spectra, we propose a new quantitative identification method. We performed experiments for which we used diagnostic X-ray equipment, a soft-tissue-equivalent phantom (1-20 cm), and a CdTe X-ray spectrometer assuming one pixel of the X-ray imaging detector. Then, with the following two experimental settings, corresponding X-ray spectra were measured with 40-120 kVp and 0.5-1000 mAs at a source-to-detector distance of 100 cm: (1) X-rays penetrating a soft-tissue-equivalent phantom with the OSL dosimeter attached directly on the phantom, and (2) X-rays penetrating only the soft-tissue-equivalent phantom. Next, the energy fluence and errors in the fluence were calculated from the spectra. When the energy fluence with errors concerning these two experimental conditions was estimated to be indistinctive, we defined the condition as the OSL dosimeter not being identified on the X-ray image. Based on our analysis, we determined the identification limit of the dosimeter. We then compared our results with those for the general irradiation conditions used in clinics. We found that the OSL dosimeter could not be identified under the irradiation conditions of abdominal and chest radiography, namely, one can apply the OSL dosimeter to measurement of the exposure dose in the irradiation field of X-rays without disturbing medical images.

  9. Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Reitz, Günther

    2013-08-01

    Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. In this work, the mean shielding of organs in the different voxel phantoms exposed to isotropic irradiation is presented as well as the corresponding depth in a water sphere. Dose rates for Low-Earth orbit from galactic cosmic rays during solar minimum conditions were calculated using the different phantoms and are compared to the results for a spherical water phantom in combination with the mean organ shielding. For the spherical water phantom the impact of different aluminium shielding between 1 g/cm2 and 100 g/cm2 was calculated. The dose equivalent rates were used to estimate the effective dose rate.

  10. Precise SAR measurements in the near-field of RF antenna systems

    NASA Astrophysics Data System (ADS)

    Hakim, Bandar M.

    Wireless devices must meet specific safety radiation limits, and in order to assess the health affects of such devices, standard procedures are used in which standard phantoms, tissue-equivalent liquids, and miniature electric field probes are used. The accuracy of such measurements depend on the precision in measuring the dielectric properties of the tissue-equivalent liquids and the associated calibrations of the electric-field probes. This thesis describes work on the theoretical modeling and experimental measurement of the complex permittivity of tissue-equivalent liquids, and associated calibration of miniature electric-field probes. The measurement method is based on measurements of the field attenuation factor and power reflection coefficient of a tissue-equivalent sample. A novel method, to the best of the authors knowledge, for determining the dielectric properties and probe calibration factors is described and validated. The measurement system is validated using saline at different concentrations, and measurements of complex permittivity and calibration factors have been made on tissue-equivalent liquids at 900MHz and 1800MHz. Uncertainty analysis have been conducted to study the measurement system sensitivity. Using the same waveguide to measure tissue-equivalent permittivity and calibrate e-field probes eliminates a source of uncertainty associated with using two different measurement systems. The measurement system is used to test GSM cell-phones at 900MHz and 1800MHz for Specific Absorption Rate (SAR) compliance using a Specific Anthropomorphic Mannequin phantom (SAM).

  11. Phantom-derived estimation of effective dose equivalent from X rays with and without a lead apron.

    PubMed

    Mateya, C F; Claycamp, H G

    1997-06-01

    Organ dose equivalents were measured in a humanoid phantom in order to estimate effective dose equivalent (H(E)) and effective dose (E) from low-energy x rays and in the presence or absence of a protective lead apron. Plane-parallel irradiation conditions were approximated using direct x-ray beams of 76 and 104 kVp and resulting dosimetry data was adjusted to model exposures conditions in fluoroscopy settings. Values of H(E) and E estimated under-shielded conditions were compared to the results of several recent studies that used combinations of measured and calculated dosimetry to model exposures to radiologists. While the estimates of H(E) and E without the lead apron were within 0.2 to 20% of expected values, estimates based on personal monitors worn at the (phantom) waist (underneath the apron) underestimated either H(E) or E while monitors placed at the neck (above the apron) significantly overestimated both quantities. Also, the experimentally determined H(E) and E were 1.4 to 3.3 times greater than might be estimated using recently reported "two-monitor" algorithms for the estimation of effective dose quantities. The results suggest that accurate estimation of either H(E) or E from personal monitors under conditions of partial body exposures remains problematic and is likely to require the use of multiple monitors.

  12. Effectiveness of thyroid gland shielding in dental CBCT using a paediatric anthropomorphic phantom

    PubMed Central

    Davies, J; Horner, K; Theodorakou, C

    2015-01-01

    Objectives: The purpose of the study is to evaluate the effectiveness of thyroid shielding in dental CBCT examinations using a paediatric anthropomorphic phantom. Methods: An ATOM® 706-C anthropomorphic phantom (Computerized Imaging Reference Systems Inc., Norfolk, VA) representing a 10-year-old child was loaded with six thermoluminescent dosemeters positioned at the level of the thyroid gland. Absorbed doses to the thyroid were measured for five commercially available thyroid shields using a large field of view (FOV). Results: A statistically significant thyroid gland dose reduction was found using thyroid shielding for paediatric CBCT examinations for a large FOV. In addition, a statistically significant difference in thyroid gland doses was found depending on the position of the thyroid gland. There was little difference in the effectiveness of thyroid shielding when using a lead vs a lead-equivalent thyroid shield. Similar dose reduction was found using 0.25- and 0.50-mm lead-equivalent thyroid shields. Conclusions: Thyroid shields are to be recommended when undertaking large FOV CBCT examinations on young patients. PMID:25411710

  13. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, Srinivasan; Karellas, Andrew

    Purpose: Phase contrast imaging, particularly of the breast, is being actively investigated. The purpose of this work is to investigate the x-ray phase contrast properties of breast tissues and commonly used breast tissue substitutes or phantom materials with an aim of determining the phantom materials best representative of breast tissues. Methods: Elemental compositions of breast tissues including adipose, fibroglandular, and skin were used to determine the refractive index, n= 1 -{delta}+i {beta}. The real part of the refractive index, specifically the refractive index decrement ({delta}), over the energy range of 5-50 keV were determined using XOP software (version 2.3, Europeanmore » Synchrotron Radiation Facility, France). Calcium oxalate and calcium hydroxyapatite were considered to represent the material compositions of microcalcifications in vivo. Nineteen tissue substitutes were considered as possible candidates to represent adipose tissue, fibroglandular tissue and skin, and four phantom materials were considered as possible candidates to represent microcalcifications. For each material, either the molecular formula, if available, or the elemental composition based on weight fraction, was used to determine {delta}. At each x-ray photon energy, the absolute percent difference in {delta} between the breast tissue and the substitute material was determined, from which three candidates were selected. From these candidate tissue substitutes, the material that minimized the absolute percent difference in linear attenuation coefficient {mu}, and hence {beta}, was considered to be best representative of that breast tissue. Results: Over the energy range of 5-50 keV, while the {delta} of CB3 and fibroglandular tissue-equivalent material were within 1% of that of fibroglandular tissue, the {mu} of fibroglandular tissue-equivalent material better approximated the fibroglandular tissue. While the {delta} of BR10 and adipose tissue-equivalent material were within 1% of that of adipose tissue, the tissue-equivalent material better approximated the adipose tissue in terms of {mu}. Polymethyl methacrylate, a commonly used tissue substitute, exhibited {delta} greater than fibroglandular tissue by {approx}12%. The A-150 plastic closely approximated the skin. Several materials exhibited {delta} between that of adipose and fibroglandular tissue. However, there was an energy-dependent mismatch in terms of equivalent fibroglandular weight fraction between {delta} and {mu} for these materials. For microcalcifications, aluminum and calcium carbonate were observed to straddle the {delta} and {mu} of calcium oxalate and calcium hydroxyapatite. Aluminum oxide, commonly used to represent microcalcifications in the American College of Radiology recommended phantoms for accreditation exhibited {delta} greater than calcium hydroxyapatite by {approx}23%. Conclusions: A breast phantom comprising A-150 plastic to represent the skin, commercially available adipose and fibroglandular tissue-equivalent formulations to represent adipose and fibroglandular tissue, respectively, was found to be best suited for x-ray phase-sensitive imaging of the breast. Calcium carbonate or aluminum can be used to represent microcalcifications.« less

  14. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials1

    PubMed Central

    Vedantham, Srinivasan; Karellas, Andrew

    2013-01-01

    Purpose: Phase contrast imaging, particularly of the breast, is being actively investigated. The purpose of this work is to investigate the x-ray phase contrast properties of breast tissues and commonly used breast tissue substitutes or phantom materials with an aim of determining the phantom materials best representative of breast tissues. Methods: Elemental compositions of breast tissues including adipose, fibroglandular, and skin were used to determine the refractive index, n = 1 − δ + i β. The real part of the refractive index, specifically the refractive index decrement (δ), over the energy range of 5–50 keV were determined using XOP software (version 2.3, European Synchrotron Radiation Facility, France). Calcium oxalate and calcium hydroxyapatite were considered to represent the material compositions of microcalcifications in vivo. Nineteen tissue substitutes were considered as possible candidates to represent adipose tissue, fibroglandular tissue and skin, and four phantom materials were considered as possible candidates to represent microcalcifications. For each material, either the molecular formula, if available, or the elemental composition based on weight fraction, was used to determine δ. At each x-ray photon energy, the absolute percent difference in δ between the breast tissue and the substitute material was determined, from which three candidates were selected. From these candidate tissue substitutes, the material that minimized the absolute percent difference in linear attenuation coefficient μ, and hence β, was considered to be best representative of that breast tissue. Results: Over the energy range of 5–50 keV, while the δ of CB3 and fibroglandular tissue-equivalent material were within 1% of that of fibroglandular tissue, the μ of fibroglandular tissue-equivalent material better approximated the fibroglandular tissue. While the δ of BR10 and adipose tissue-equivalent material were within 1% of that of adipose tissue, the tissue-equivalent material better approximated the adipose tissue in terms of μ. Polymethyl methacrylate, a commonly used tissue substitute, exhibited δ greater than fibroglandular tissue by ∼12%. The A-150 plastic closely approximated the skin. Several materials exhibited δ between that of adipose and fibroglandular tissue. However, there was an energy-dependent mismatch in terms of equivalent fibroglandular weight fraction between δ and μ for these materials. For microcalcifications, aluminum and calcium carbonate were observed to straddle the δ and μ of calcium oxalate and calcium hydroxyapatite. Aluminum oxide, commonly used to represent microcalcifications in the American College of Radiology recommended phantoms for accreditation exhibited δ greater than calcium hydroxyapatite by ∼23%. Conclusions: A breast phantom comprising A-150 plastic to represent the skin, commercially available adipose and fibroglandular tissue-equivalent formulations to represent adipose and fibroglandular tissue, respectively, was found to be best suited for x-ray phase-sensitive imaging of the breast. Calcium carbonate or aluminum can be used to represent microcalcifications. PMID:23556900

  15. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. Conclusions: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.« less

  16. Guided Interventions for Prostate Cancer Using 3D-Transurethral Ultrasound and MRI Fusion

    DTIC Science & Technology

    2017-06-01

    standard transrectal ultrasound (TRUS) probe, a TUUS probe, and MRI. (a) (b) Figure 2: 3D printed prostate phantom mold (a), and pelvis phantom mold...with prostate agar phantom in place (b). The TUUS phantoms were prepared using a standard recipe [ii] for the prostate and the 3D printed mold...AWARD NUMBER: W81XWH-14-1-0461 TITLE: Guided Interventions for Prostate Cancer Using 3D -Transurethral Ultrasound and MRI Fusion PRINCIPAL

  17. Technical note: estimating absorbed doses to the thyroid in CT.

    PubMed

    Huda, Walter; Magill, Dennise; Spampinato, Maria V

    2011-06-01

    To describe a method for estimating absorbed doses to the thyroid in patients undergoing neck CT examinations. Thyroid doses in anthropomorphic phantoms were obtained for all 23 scanner dosimetry data sets in the ImPACT CT patient dosimetry calculator. Values of relative thyroid dose [R(thy)(L)], defined as the thyroid dose for a given scan length (L) divided by the corresponding thyroid dose for a whole body scan, were determined for neck CT scans. Ratios of the maximum thyroid dose to the corresponding CTDI(vol) and [D'(thy)], were obtained for two phantom diameters. The mass-equivalent water cylinder of any patient can be derived from the neck cross-sectional area and the corresponding average Hounsfield Unit, and compared to the 16.5-cm diameter water cylinder that models the ImPACT anthropomorphic phantom neck. Published values of relative doses in water cylinders of varying diameter were used to adjust thyroid doses in the anthropomorphic phantom to those of any sized patient. Relative thyroid doses R(thy)(L) increase to unity with increasing scan length and with very small difference between scanners. A 10-cm scan centered on the thyroid would result in a dose that is, nearly 90% of the thyroid dose from a whole body scan when performed using the constant radiographic techniques. At 120 kV, the average value of D'(thy) for the 16-cm diameter was 1.17 +/- 0.05 and was independent of CT vendor and year of CT scanner, and choice of x-ray tube voltage. The corresponding average value of D'(thy) in the 32-cm diameter phantom was 2.28 +/- 0.22 and showed marked variations depending on vendor, year of introduction into clinical practice as well as x-ray tube voltage. At 120 kV, a neck equivalent to a 10-cm diameter cylinder of water would have thyroid doses 36% higher than those in the ImPACT phantom, whereas a neck equivalent to a 25-cm cylinder diameter would have thyroid doses 35% lower. Patient thyroid doses can be estimated by taking into account the amount of radiation used to perform the CT examination (CTDI(vol)) and accounting for scan length and patient anatomy (i.e., neck diameter) at the thyroid location.

  18. Initial evaluation of the Celesteion large-bore PET/CT scanner in accordance with the NEMA NU2-2012 standard and the Japanese guideline for oncology FDG PET/CT data acquisition protocol version 2.0.

    PubMed

    Kaneta, Tomohiro; Ogawa, Matsuyoshi; Motomura, Nobutoku; Iizuka, Hitoshi; Arisawa, Tetsu; Hino-Shishikura, Ayako; Yoshida, Keisuke; Inoue, Tomio

    2017-10-11

    The goal of this study was to evaluate the performance of the Celesteion positron emission tomography/computed tomography (PET/CT) scanner, which is characterized by a large-bore and time-of-flight (TOF) function, in accordance with the NEMA NU-2 2012 standard and version 2.0 of the Japanese guideline for oncology fluorodeoxyglucose PET/CT data acquisition protocol. Spatial resolution, sensitivity, count rate characteristic, scatter fraction, energy resolution, TOF timing resolution, and image quality were evaluated according to the NEMA NU-2 2012 standard. Phantom experiments were performed using 18 F-solution and an IEC body phantom of the type described in the NEMA NU-2 2012 standard. The minimum scanning time required for the detection of a 10-mm hot sphere with a 4:1 target-to-background ratio, the phantom noise equivalent count (NEC phantom ), % background variability (N 10mm ), % contrast (Q H,10mm ), and recovery coefficient (RC) were calculated according to the Japanese guideline. The measured spatial resolution ranged from 4.5- to 5-mm full width at half maximum (FWHM). The sensitivity and scatter fraction were 3.8 cps/kBq and 37.3%, respectively. The peak noise-equivalent count rate was 70 kcps in the presence of 29.6 kBq mL -1 in the phantom. The system energy resolution was 12.4% and the TOF timing resolution was 411 ps at FWHM. Minimum scanning times of 2, 7, 6, and 2 min per bed position, respectively, are recommended for visual score, noise-equivalent count (NEC) phantom , N 10mm , and the Q H,10mm to N 10mm ratio (QNR) by the Japanese guideline. The RC of a 10-mm-diameter sphere was 0.49, which exceeded the minimum recommended value. The Celesteion large-bore PET/CT system had low sensitivity and NEC, but good spatial and time resolution when compared to other PET/CT scanners. The QNR met the recommended values of the Japanese guideline even at 2 min. The Celesteion is therefore thought to provide acceptable image quality with 2 min/bed position acquisition, which is the most common scan protocol in Japan.

  19. Realistic Analytical Polyhedral MRI Phantoms

    PubMed Central

    Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.

    2015-01-01

    Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724

  20. A resistive mesh phantom for assessing the performance of EIT systems.

    PubMed

    Gagnon, Hervé; Cousineau, Martin; Adler, Andy; Hartinger, Alzbeta E

    2010-09-01

    Assessing the performance of electrical impedance tomography (EIT) systems usually requires a phantom for validation, calibration, or comparison purposes. This paper describes a resistive mesh phantom to assess the performance of EIT systems while taking into account cabling stray effects similar to in vivo conditions. This phantom is built with 340 precision resistors on a printed circuit board representing a 2-D circular homogeneous medium. It also integrates equivalent electrical models of the Ag/AgCl electrode impedances. The parameters of the electrode models were fitted from impedance curves measured with an impedance analyzer. The technique used to build the phantom is general and applicable to phantoms of arbitrary shape and conductivity distribution. We describe three performance indicators that can be measured with our phantom for every measurement of an EIT data frame: SNR, accuracy, and modeling accuracy. These performance indicators were evaluated on our EIT system under different frame rates and applied current intensities. The performance indicators are dependent on frame rate, operating frequency, applied current intensity, measurement strategy, and intermodulation distortion when performing simultaneous measurements at several frequencies. These parameter values should, therefore, always be specified when reporting performance indicators to better appreciate their significance.

  1. Does the lead apron and collar always reduce radiation dose?

    PubMed

    Nortje, C J; Harris, A M; Lackovic, K P; Wood, R E

    2001-11-01

    The possibility that personal lead shielding devices can increase absorption of radiation has not been entertained. The purpose of the present investigation specifically was to determine whether pituitary dose might be increased when a leaded apron and thyroid collar are used. Thermoluminescent dosimeters (TLDs) were used to measure absorbed dose. They were calibrated at the kVp used in the clinical situation and a calibration curve relating light output to dose was generated. Lithium fluoride TLD discs were placed in the pituitary gland region of a Rando-Alderson female human phantom. The equivalent of 100 transpharyngeal exposures were delivered. The resultant light output from recovered dosimeters was converted to a uGy value using the calibration curve. The experiment was repeated using a 0.25 mm lead equivalent collar and apron fitted to the phantom in the customary manner. The entire process was repeated in order to have 30 dosimeters for the unshielded and 30 dosimeters for the shielded conditions. A further 30 dosimeters were sham irradiated and served as controls. A statistical comparison between unshielded and shielded conditions was performed. When the leaded apron and thyroid collar were used the absorbed dose to the pituitary gland was increased significantly (P < 0.05). Following this a second group, using a different dosimetry system and a male phantom repeated the experiment. In both cases, the shielded phantom received significantly higher dose to the pituitary region than the unshielded.

  2. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesiummore » oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.« less

  3. All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. R. A.; Fuelle, D.

    2003-05-01

    The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.

  4. Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy

    NASA Astrophysics Data System (ADS)

    Pantelis, E.; Karlis, A. K.; Kozicki, M.; Papagiannis, P.; Sakelliou, L.; Rosiak, J. M.

    2004-08-01

    The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.

  5. Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy.

    PubMed

    Pantelis, E; Karlis, A K; Kozicki, M; Papagiannis, P; Sakelliou, L; Rosiak, J M

    2004-08-07

    The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.

  6. Characterization of the Radiation Shielding Properties of US andRussian EVA Suits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2001-10-26

    Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measuredmore » using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.« less

  7. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms

    NASA Astrophysics Data System (ADS)

    Zacharatou Jarlskog, Christina; Lee, Choonik; Bolch, Wesley E.; Xu, X. George; Paganetti, Harald

    2008-02-01

    Proton beams used for radiotherapy will produce neutrons when interacting with matter. The purpose of this study was to quantify the equivalent dose to tissue due to secondary neutrons in pediatric and adult patients treated by proton therapy for brain lesions. Assessment of the equivalent dose to organs away from the target requires whole-body geometrical information. Furthermore, because the patient geometry depends on age at exposure, age-dependent representations are also needed. We implemented age-dependent phantoms into our proton Monte Carlo dose calculation environment. We considered eight typical radiation fields, two of which had been previously used to treat pediatric patients. The other six fields were additionally considered to allow a systematic study of equivalent doses as a function of field parameters. For all phantoms and all fields, we simulated organ-specific equivalent neutron doses and analyzed for each organ (1) the equivalent dose due to neutrons as a function of distance to the target; (2) the equivalent dose due to neutrons as a function of patient age; (3) the equivalent dose due to neutrons as a function of field parameters; and (4) the ratio of contributions to secondary dose from the treatment head versus the contribution from the patient's body tissues. This work reports organ-specific equivalent neutron doses for up to 48 organs in a patient. We demonstrate quantitatively how organ equivalent doses for adult and pediatric patients vary as a function of patient's age, organ and field parameters. Neutron doses increase with increasing range and modulation width but decrease with field size (as defined by the aperture). We analyzed the ratio of neutron dose contributions from the patient and from the treatment head, and found that neutron-equivalent doses fall off rapidly as a function of distance from the target, in agreement with experimental data. It appears that for the fields used in this study, the neutron dose lateral to the field is smaller than the reported scattered photon doses in a typical intensity-modulated photon treatment. Most importantly, our study shows that neutron doses to specific organs depend considerably on the patient's age and body stature. The younger the patient, the higher the dose deposited due to neutrons. Given the fact that the risk also increases with decreasing patient age, this factor needs to be taken into account when treating pediatric patients of very young ages and/or of small body size. The neutron dose from a course of proton therapy treatment (assuming 70 Gy in 30 fractions) could potentially (depending on patient's age, organ, treatment site and area of CT scan) be equivalent to up to ~30 CT scans.

  8. Dosimetric Comparison in Breast Radiotherapy of 4 MV and 6 MV on Physical Chest Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio; Batista Nogueira, Luciana

    2015-07-01

    According to the World Health Organization (2014) breast cancer is the main cause of death by cancer in women worldwide. The biggest challenge of radiotherapy in the treatment of cancer is to deposit the entire prescribed dose homogeneously in the breast, sparing the surrounding tissue. In this context, this paper aimed at evaluating and comparing internal dose distribution in the mammary gland based on experimental procedures submitted to two distinct energy spectra produced in breast cancer radiotherapy. The methodology consisted of reproducing opposite parallel fields used in the treatment of breast tumors in a chest phantom. This simulator with syntheticmore » breast, composed of equivalent tissue material (TE), was previously developed by the NRI Research Group (UFMG). The computer tomography (CT) scan of the simulator was obtained antecedently. The radiotherapy planning systems (TPS) in the chest phantom were performed in the ECLIPSE system from Varian Medical Systems and CAT 3D system from MEVIS. The irradiations were reproduced in the Varian linear accelerator, model SL- 20 Precise, 6 MV energy and Varian linear accelerator, 4 MV Clinac 6x SN11 model. Calibrations of the absorbed dose versus optical density from radiochromic films were generated in order to obtain experimental dosimetric distribution at the films positioned within the glandular and skin equivalent tissues of the chest phantom. The spatial dose distribution showed equivalence with the TPS on measurement data performed in the 6 MV spectrum. The average dose found in radiochromic films placed on the skin ranged from 49 to 79%, and from 39 to 49% in the mammary areola, for the prescribed dose. Dosimetric comparisons between the spectra of 4 and 6 MV, keeping the constant geometry of the fields applied in the same phantom, will be presented showing their equivalence in breast radiotherapy, as well as the variations will be discussed. To sum up, the dose distribution has reached the value expected in the breast dose of the 180 cGy in a wide range of the film in the glandular TE in both spectra. (authors)« less

  9. Dose measurement in heterogeneous phantoms with an extrapolation chamber

    NASA Astrophysics Data System (ADS)

    Deblois, Francois

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.

  10. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Schuemann, J

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalentmore » was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less

  11. Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams

    NASA Astrophysics Data System (ADS)

    Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.

    2014-02-01

    The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.

  12. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy.

    PubMed

    Du, Yongxing; Zhang, Lingze; Sang, Lulu; Wu, Daocheng

    2016-04-29

    In this paper, an Archimedean planar spiral antenna for the application of thermotherapy was designed. This type of antenna was chosen for its compact structure, flexible application and wide heating area. The temperature field generated by the use of this Two-armed Spiral Antenna in a muscle-equivalent phantom was simulated and subsequently validated by experimentation. First, the specific absorption rate (SAR) of the field was calculated using the Finite Element Method (FEM) by Ansoft's High Frequency Structure Simulation (HFSS). Then, the temperature elevation in the phantom was simulated by an explicit finite difference approximation of the bioheat equation (BHE). The temperature distribution was then validated by a phantom heating experiment. The results showed that this antenna had a good heating ability and a wide heating area. A comparison between the calculation and the measurement showed a fair agreement in the temperature elevation. The validated model could be applied for the analysis of electromagnetic-temperature distribution in phantoms during the process of antenna design or thermotherapy experimentation.

  13. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Qi, E-mail: Qi.Duan@nih.gov; Duyn, Jeff H.; Gudino, Natalia

    2014-10-15

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generatemore » a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B{sub 1}{sup +} mapping, B{sub 1}{sup +} shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.« less

  14. Estimation of Radiation Dose for a Sitting Phantom Using PIMAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkurt, Hatice; Eckerman, Keith F

    2007-01-01

    To assess the radiation dose in different configurations when needed (e.g., occupational exposure or public exposure in a radiologically significant event), the mathematical phantom has recently been revised to enable freely moving abilities for arms and legs. The revised phantom is called PIMAL: Phantom with Moving Arms and Legs. Additionally, a graphical user interface has been developed to assist the analyst with input preparation and output manipulation. To investigate the impact of the phantom configuration on the estimated organ doses, PIMAL has been used in a different posture than the standard vertical-upright position. In this paper, the estimated organ andmore » effective dose values for a representative posture, the phantom in a sitting position, compared with those for the phantom in standing position, are presented.« less

  15. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Higgins, P; Dusenbery, K

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT)more » was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.« less

  16. A physical breast phantom for 2D and 3D x-ray imaging made through inkjet printing

    NASA Astrophysics Data System (ADS)

    Ikejimba, Lynda C.; Graff, Christian G.; Rosenthal, Shani; Badal, Andreu; Ghammraoui, Bahaa; Lo, Joseph Y.; Glick, Stephen J.

    2017-03-01

    Physical breast phantoms are used for imaging evaluation studies with 2D and 3D breast x-ray systems, serving as surrogates for human patients. However, there is a presently a limited selection of available phantoms that are realistic, in terms of containing the complex tissue architecture of the human breast. In addition, not all phantoms can be successfully utilized for both 2D and 3D breast imaging. Additionally, many of the phantoms are uniform or unrealistic in appearance, expensive, or difficult to obtain. The purpose of this work was to develop a new method to generate realistic physical breast phantoms using easy to obtain and inexpensive materials. First, analytical modeling was used to design a virtual model, which was then compressed using finite element modeling. Next, the physical phantom was realized through inkjet printing with a standard inkjet printer using parchment paper and specialized inks, formulated using silver nanoparticles and a bismuth salt. The printed phantom sheets were then aligned and held together using a custom designed support plate made of PMMA, and imaged on clinical FFDM and DBT systems. Objects of interest were also placed within the phantom to simulate microcalcifications, pathologies that often occur in the breast. The linear attenuation coefficients of the inks and parchment were compared against tissue equivalent samples and found to be similar to breast tissue. The phantom is promising for use in imaging studies and developing QC protocols.

  17. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  18. Tissue-mimicking gel phantoms for thermal therapy studies.

    PubMed

    Dabbagh, Ali; Abdullah, Basri Johan Jeet; Ramasindarum, Chanthiriga; Abu Kasim, Noor Hayaty

    2014-10-01

    Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies. © The Author(s) 2014.

  19. Design of a tracked ultrasound calibration phantom made of LEGO bricks

    NASA Astrophysics Data System (ADS)

    Walsh, Ryan; Soehl, Marie; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    PURPOSE: Spatial calibration of tracked ultrasound systems is commonly performed using precisely fabricated phantoms. Machining or 3D printing has relatively high cost and not easily available. Moreover, the possibilities for modifying the phantoms are very limited. Our goal was to find a method to construct a calibration phantom from affordable, widely available components, which can be built in short time, can be easily modified, and provides comparable accuracy to the existing solutions. METHODS: We designed an N-wire calibration phantom made of LEGO® bricks. To affirm the phantom's reproducibility and build time, ten builds were done by first-time users. The phantoms were used for a tracked ultrasound calibration by an experienced user. The success of each user's build was determined by the lowest root mean square (RMS) wire reprojection error of three calibrations. The accuracy and variance of calibrations were evaluated for the calibrations produced for various tracked ultrasound probes. The proposed model was compared to two of the currently available phantom models for both electromagnetic and optical tracking. RESULTS: The phantom was successfully built by all ten first-time users in an average time of 18.8 minutes. It cost approximately $10 CAD for the required LEGO® bricks and averaged a 0.69mm of error in the calibration reproducibility for ultrasound calibrations. It is one third the cost of similar 3D printed phantoms and takes much less time to build. The proposed phantom's image reprojections were 0.13mm more erroneous than those of the highest performing current phantom model The average standard deviation of multiple 3D image reprojections differed by 0.05mm between the phantoms CONCLUSION: It was found that the phantom could be built in less time, was one third the cost, compared to similar 3D printed models. The proposed phantom was found to be capable of producing equivalent calibrations to 3D printed phantoms.

  20. PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants

    PubMed Central

    Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B.; Bonab, Ali A.; Alpert, Nathaniel M.; Lohmann, Kevin; Bortfeld, Thomas

    2008-01-01

    The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of the detector itself. In addition to PET alone, PET/CT imaging provides accurate information on the position of the imaged object and may assess possible anatomical changes during fractionated radiotherapy in clinical applications. PMID:17388158

  1. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redler, G; Cifter, G; Templeton, A

    2016-06-15

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lungmore » tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated patient images demonstrate the clinical utility of scatter imaging for real-time tumor tracking during lung SBRT.« less

  2. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies

    NASA Astrophysics Data System (ADS)

    Holt, Robert W.; Zhang, Rongxiao; Esipova, Tatiana V.; Vinogradov, Sergei A.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2014-09-01

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  3. Scatter Fraction, Count Rates, and Noise Equivalent Count Rate of a Single-Bed Position RPC TOF-PET System Assessed by Simulations Following the NEMA NU2-2001 Standards

    NASA Astrophysics Data System (ADS)

    Couceiro, Miguel; Crespo, Paulo; Marques, Rui F.; Fonte, Paulo

    2014-06-01

    Scatter Fraction (SF) and Noise Equivalent Count Rate (NECR) of a 2400 mm wide axial field-of-view Positron Emission Tomography (PET) system based on Resistive Plate Chamber (RPC) detectors with 300 ps Time Of Flight (TOF) resolution were studied by simulation using Geant4. The study followed the NEMA NU2-2001 standards, using the standard 700 mm long phantom and an axially extended one with 1800 mm, modeling the foreseeable use of this PET system. Data was processed based on the actual RPC readout, which requires a 0.2 μs non-paralyzable dead time for timing signals and a paralyzable dead time (τps) for position signals. For NECR, the best coincidence trigger consisted of a multiple time window coincidence sorter retaining single coincidence pairs (involving only two photons) and all possible coincidence pairs obtained from Multiple coincidences, keeping only those for which the direct TOF-reconstructed point falls inside a tight region surrounding the phantom. For the 700 mm phantom, the SF was 51.8% and, with τps = 3.0 μs, the peak NECR was 167 kcps at 7.6 kBq/cm3. Using τps = 1.0 μs the NECR was 349 kcps at 7.6 kBq/cm3, and no peak was found. For the 1800 mm phantom, the SF was slightly higher, and the NECR curves were identical to those obtained with the standard phantom, but shifted to lower activity concentrations. Although the higher SF, the values obtained for NECR allow concluding that the proposed scanner is expected to outperform current commercial PET systems.

  4. Verification measurements and clinical evaluation of the iPlan RT Monte Carlo dose algorithm for 6 MV photon energy

    NASA Astrophysics Data System (ADS)

    Petoukhova, A. L.; van Wingerden, K.; Wiggenraad, R. G. J.; van de Vaart, P. J. M.; van Egmond, J.; Franken, E. M.; van Santvoort, J. P. C.

    2010-08-01

    This study presents data for verification of the iPlan RT Monte Carlo (MC) dose algorithm (BrainLAB, Feldkirchen, Germany). MC calculations were compared with pencil beam (PB) calculations and verification measurements in phantoms with lung-equivalent material, air cavities or bone-equivalent material to mimic head and neck and thorax and in an Alderson anthropomorphic phantom. Dosimetric accuracy of MC for the micro-multileaf collimator (MLC) simulation was tested in a homogeneous phantom. All measurements were performed using an ionization chamber and Kodak EDR2 films with Novalis 6 MV photon beams. Dose distributions measured with film and calculated with MC in the homogeneous phantom are in excellent agreement for oval, C and squiggle-shaped fields and for a clinical IMRT plan. For a field with completely closed MLC, MC is much closer to the experimental result than the PB calculations. For fields larger than the dimensions of the inhomogeneities the MC calculations show excellent agreement (within 3%/1 mm) with the experimental data. MC calculations in the anthropomorphic phantom show good agreement with measurements for conformal beam plans and reasonable agreement for dynamic conformal arc and IMRT plans. For 6 head and neck and 15 lung patients a comparison of the MC plan with the PB plan was performed. Our results demonstrate that MC is able to accurately predict the dose in the presence of inhomogeneities typical for head and neck and thorax regions with reasonable calculation times (5-20 min). Lateral electron transport was well reproduced in MC calculations. We are planning to implement MC calculations for head and neck and lung cancer patients.

  5. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies.

    PubMed

    Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2014-09-21

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  6. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010

  7. Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.

    PubMed

    Copeland, Kyle; Friedberg, Wallace; Sato, Tatsuhiko; Niita, Koji

    2012-02-01

    Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHITS-ICRP) and the other the Monte Carlo N-Particle eXtended (MCNPX) radiation transport code coupled with modified BodyBuilder™ phantoms (MCNPX-BB). Also, two sets of fluence-to-effective dose equivalent conversion coefficients calculated using the PHITS-ICRP combination were compared: one used quality factors based on linear energy transfer; the other used quality factors based on lineal energy (y). Finally, PHITS-ICRP effective dose coefficients were compared with PHITS-ICRP effective dose equivalent coefficients. The PHITS-ICRP and MCNPX-BB effective dose coefficients were similar, except at high energies, where MCNPX-BB coefficients were higher. For helions, at most energies effective dose coefficients were much greater than effective dose equivalent coefficients. For deuterons and tritons, coefficients were similar when their radiation weighting factor was set to 2.

  8. Radiation investigations with Liulin-5 charged particle telescope on the International Space Station: review of results for years 2007-2015

    NASA Astrophysics Data System (ADS)

    Koleva, Rositza; Semkova, Jordanka; Krastev, Krasimir; Bankov, Nikolay; Malchev, Stefan; Benghin, Victor; Shurshakov, Vyacheslav

    2017-04-01

    The radiation field around the Earth is complex, composed of galactic cosmic rays, trapped particles of the Earth's radiation belts, solar energetic particles, albedo particles from the Earth's atmosphere and secondary radiation produced in the space vehicle shielding materials around the biological objects. Dose characteristics in near Earth and space radiation environment also depend on many other parameters such as the orbit parameters, solar cycle phase and current helio-and geophysical conditions. Since June 2007 till 2015 the Liulin-5 charged particle telescope has been observing the radiation characteristics in two different modules of the International Space Station (ISS). In the period from 2007 to 2009 measurements were conducted in the spherical tissue-equivalent phantom of MATROSHKA-R project located in the PIRS module of ISS. In the period from 2012 to 2015 measurements were conducted in and outside the phantom located in the Small Research Module of ISS. In this presentation attention is drawn to the obtained results for the dose rates, particle fluxes and dose equivalent rates in and outside the phantom from the galactic cosmic rays, trapped protons and solar energetic particle events which occurred in that period.

  9. TU-CD-207-02: Quantification of Breast Lesion Compositions Using Low-Dose Spectral Mammography: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, H; Ding, H; Sennung, D

    2015-06-15

    Purpose: To investigate the feasibility of measuring breast lesion composition with spectral mammography using physical phantoms and bovine tissue. Methods: Phantom images were acquired with a spectral mammography system with a silicon-strip based photon-counting detector. Plastic water and adipose-equivalent phantoms were used to calibrate the system for dual-energy material decomposition. The calibration phantom was constructed in range of 2–8 cm thickness and water densities in the range of 0% to 100%. A non-linear rational fitting function was used to calibrate the imaging system. The phantom studies were performed with uniform background phantom and non-uniform background phantom. The breast lesion phantomsmore » (2 cm in diameter and 0.5 cm in thickness) were made with water densities ranging from 0 to 100%. The lesion phantoms were placed in different positions and depths on the phantoms to investigate the accuracy of the measurement under various conditions. The plastic water content of the lesion was measured by subtracting the total decomposed plastic water signal from a surrounding 2.5 mm thick border outside the lesion. In addition, bovine tissue samples composed of 80 % lean were imaged as background for the simulated lesion phantoms. Results: The thickness of measured and known water contents was compared. The rootmean-square (RMS) errors in water thickness measurements were 0.01 cm for the uniform background phantom, 0.04 cm for non-uniform background phantom, and 0.03 cm for 80% lean bovine tissue background. Conclusion: The results indicate that the proposed technique using spectral mammography can be used to accurately characterize breast lesion compositions.« less

  10. Efficient digitalization method for dental restorations using micro-CT data

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong

    2017-03-01

    The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method.

  11. Dosimetric properties of a Solid Water High Equivalency (SW557) phantom for megavoltage photon beams.

    PubMed

    Araki, Fujio

    2017-07-01

    The dosimetric properties of the recently developed SW557 phantom have been investigated by comparison with those of the existing SW457 phantom in megavoltage photon beams. The electron fluence ratio φ pl w , and chamber ionization ratio k pl , of water to SW457 and water to SW557 for 4-15MV photons were calculated as a function of depth using Monte Carlo simulations, and compared with measured values. Values of φ pl w for SW457 were in the range of 1.004-1.014 for 4MV, and 1.014-1.018 for 15MV photons. The φ pl w for SW557 ranged from 1.005 to 1.008 for 4MV and from 1.010 to 1.015 for 15MV photons and the variation of φ pl w with depth for each beam energy was within ±0.5%. Values of k pl were obtained with a PTW 30013 Farmer-type ionization chamber. The k pl for SW457 ranged from 0.997 to 1.011 for 4-15MV photons. Values of k pl for SW557 were almost unity for 4 and 6MV photons, while in the case of 10 and 15MV photons they were less than 1.006, excepting the build-up region. The measured and calculated k pl values of water to SW557 were in the range of 0.997-1.002 and 1.000-1.006, respectively, for 4-15MV photons, at a depth of 10cm with a source-to-axis distance of 100cm. The measured and calculated k pl values were in agreement within their uncertainty ranges. As a water-equivalent phantom, SW557 can be used with a dosimetric difference within±0.6%, for 4-15MV photons, and is more water-equivalent than SW457 in megavoltage photon beams. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Pure hydroxyapatite phantoms for the calibration of in vivo X-ray fluorescence systems of bone lead and strontium quantification.

    PubMed

    Da Silva, Eric; Kirkham, Brian; Heyd, Darrick V; Pejović-Milić, Ana

    2013-10-01

    Plaster of Paris [poP, CaSO4·(1)/(2) H2O] is the standard phantom material used for the calibration of in vivo X-ray fluorescence (IVXRF)-based systems of bone metal quantification (i.e bone strontium and lead). Calibration of IVXRF systems of bone metal quantification employs the use of a coherent normalization procedure which requires the application of a coherent correction factor (CCF) to the data, calculated as the ratio of the relativistic form factors of the phantom material and bone mineral. Various issues have been raised as to the suitability of poP for the calibration of IVXRF systems of bone metal quantification which include its chemical purity and its chemical difference from bone mineral (a calcium phosphate). This work describes the preparation of a chemically pure hydroxyapatite phantom material, of known composition and stoichiometry, proposed for the purpose of calibrating IVXRF systems of bone strontium and lead quantification as a replacement for poP. The issue with contamination by the analyte was resolved by preparing pure Ca(OH)2 by hydroxide precipitation, which was found to bring strontium and lead levels to <0.7 and <0.3 μg/g Ca, respectively. HAp phantoms were prepared from known quantities of chemically pure Ca(OH)2, CaHPO4·2H2O prepared from pure Ca(OH)2, the analyte, and a HPO4(2-) containing setting solution. The final crystal structure of the material was found to be similar to that of the bone mineral component of NIST SRM 1486 (bone meal), as determined by powder X-ray diffraction spectrometry.

  13. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.

    PubMed

    Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S

    2015-10-01

    Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to commercially available phantoms. They are a viable option for quickly distributing and fabricating low cost, customized phantoms.

  14. The measurement of liver fat from single-energy quantitative computed tomography scans

    PubMed Central

    Cheng, Xiaoguang; Brown, J. Keenan; Guo, Zhe; Zhou, Jun; Wang, Fengzhe; Yang, Liqiang; Wang, Xiaohong; Xu, Li

    2017-01-01

    Background Studies of soft tissue composition using computed tomography (CT) scans are often semi-quantitative and based on Hounsfield units (HU) measurements that have not been calibrated with a quantitative CT (QCT) phantom. We describe a study to establish the water (H2O) and dipotassium hydrogen phosphate (K2HPO4) basis set equivalent densities of fat and fat-free liver tissue. With this information liver fat can be accurately measured from any abdominal CT scan calibrated with a suitable phantom. Methods Liver fat content was measured by comparing single-energy QCT (SEQCT) HU measurements of the liver with predicted HU values for fat and fat-free liver tissue calculated from their H2O and K2HPO4 equivalent densities and calibration data from a QCT phantom. The equivalent densities of fat were derived from a listing of its constituent fatty acids, and those of fat-free liver tissue from a dual-energy QCT (DEQCT) study performed in 14 healthy Chinese subjects. This information was used to calculate liver fat from abdominal SEQCT scans performed in a further 541 healthy Chinese subjects (mean age 62 years; range, 31–95 years) enrolled in the Prospective Urban Rural Epidemiology (PURE) Study. Results The equivalent densities of fat were 941.75 mg/cm3 H2O and –43.72 mg/cm3 K2HPO4, and for fat-free liver tissue 1,040.13 mg/cm3 H2O and 21.34 mg/cm3 K2HPO4. Liver fat in the 14 subjects in the DEQCT study varied from 0–17.9% [median: 4.5%; interquartile range (IQR): 3.0–7.9%]. Liver fat in the 541 PURE study subjects varied from –0.3–29.9% (median: 4.9%; IQR: 3.4–6.9%). Conclusions We have established H2O and K2HPO4 equivalent densities for fat and fat-free liver tissue that allow a measurement of liver fat to be obtained from any abdominal CT scan acquired with a QCT phantom. Although radiation dose considerations preclude the routine use of QCT to measure liver fat, the method described here facilitates its measurement in patients having CT scans performed for other purposes. Further studies comparing the results with magnetic resonance (MR) measurements of liver fat are required to validate the method as a useful clinical tool. PMID:28811994

  15. Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Stakhursky, Vadim L.; Arabe, Omar; Cheng, Kung-Shan; MacFall, James; Maccarini, Paolo; Craciunescu, Oana; Dewhirst, Mark; Stauffer, Paul; Das, Shiva K.

    2009-04-01

    Magnetic resonance (MR) imaging is promising for monitoring and guiding hyperthermia treatments. The goal of this work is to investigate the stability of an algorithm for online MR thermal image guided steering and focusing of heat into the target volume. The control platform comprised a four-antenna mini-annular phased array (MAPA) applicator operating at 140 MHz (used for extremity sarcoma heating) and a GE Signa Excite 1.5 T MR system, both of which were driven by a control workstation. MR proton resonance frequency shift images acquired during heating were used to iteratively update a model of the heated object, starting with an initial finite element computed model estimate. At each iterative step, the current model was used to compute a focusing vector, which was then used to drive the next iteration, until convergence. Perturbation of the driving vector was used to prevent the process from stalling away from the desired focus. Experimental validation of the performance of the automatic treatment platform was conducted with two cylindrical phantom studies, one homogeneous and one muscle equivalent with tumor tissue (conductivity 50% higher) inserted, with initial focal spots being intentionally rotated 90° and 50° away from the desired focus, mimicking initial setup errors in applicator rotation. The integrated MR-HT treatment platform steered the focus of heating into the desired target volume in two quite different phantom tissue loads which model expected patient treatment configurations. For the homogeneous phantom test where the target was intentionally offset by 90° rotation of the applicator, convergence to the proper phase focus in the target occurred after 16 iterations of the algorithm. For the more realistic test with a muscle equivalent phantom with tumor inserted with 50° applicator displacement, only two iterations were necessary to steer the focus into the tumor target. Convergence improved the heating efficacy (the ratio of integral temperature in the tumor to integral temperature in normal tissue) by up to six-fold, compared to the first iteration. The integrated MR-HT treatment algorithm successfully steered the focus of heating into the desired target volume for both the simple homogeneous and the more challenging muscle equivalent phantom with tumor insert models of human extremity sarcomas after 16 and 2 iterations, correspondingly. The adaptive method for MR thermal image guided focal steering shows promise when tested in phantom experiments on a four-antenna phased array applicator.

  16. SU-F-T-292: Imaging and Radiation Oncology Core (IROC) Houston QA Center’s Anthropomorphic Phantom Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrens, H; Lewis, B; Lujano, C

    2016-06-15

    Purpose: To describe the results of IROC Houston’s international and domestic end-to-end QA phantom irradiations. Methods: IROC Houston has anthropomorphic lung, liver, head and neck, prostate, SRS and spine phantoms that are used for credentialing and quality assurance purposes. The phantoms include structures that closely mimic targets and organs at risk and are made from tissue equivalent materials: high impact polystyrene, solid water, cork and acrylic. Motion tables are used to mimic breathing motion for some lung and liver phantoms. Dose is measured with TLD and radiochromic film in various planes within the target of the phantoms. Results: The mostmore » common phantom requested is the head and neck followed by the lung phantom. The head and neck phantom was sent to 800 domestic and 148 international sites between 2011 and 2015, with average pass rates of 89% and 92%, respectively. During the past five years, a general upward trend exists regarding demand for the lung phantom for both international and domestic sites with international sites more than tripling from 5 (2011) to 16 (2015) and domestic sites doubling from 66 (2011) to 152 (2015). The pass rate for lung phantoms has been consistent from year to year despite this large increase in the number of phantoms irradiated with an average pass rate of 85% (domestic) and 95% (international) sites. The percentage of lung phantoms used in combination with motions tables increased from 38% to 79% over the 5 year time span. Conclusion: The number of domestic and international sites irradiating the head and neck and lung phantoms continues to increase and the pass rates remained constant. These end-to-end QA tests continue to be a crucial part of clinical trial credentialing and institution quality assurance. This investigation was supported by IROC grant CA180803 awarded by the NCI.« less

  17. Primary and secondary particle contributions to the depth dose distribution in a phantom shielded from solar flare and Van Allen protons

    NASA Technical Reports Server (NTRS)

    Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.

    1972-01-01

    Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.

  18. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  19. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  20. Commissioning and initial acceptance tests for a commercial convolution dose calculation algorithm for radiotherapy treatment planning in comparison with Monte Carlo simulation and measurement

    PubMed Central

    Moradi, Farhad; Mahdavi, Seyed Rabi; Mostaar, Ahmad; Motamedi, Mohsen

    2012-01-01

    In this study the commissioning of a dose calculation algorithm in a currently used treatment planning system was performed and the calculation accuracy of two available methods in the treatment planning system i.e., collapsed cone convolution (CCC) and equivalent tissue air ratio (ETAR) was verified in tissue heterogeneities. For this purpose an inhomogeneous phantom (IMRT thorax phantom) was used and dose curves obtained by the TPS (treatment planning system) were compared with experimental measurements and Monte Carlo (MCNP code) simulation. Dose measurements were performed by using EDR2 radiographic films within the phantom. Dose difference (DD) between experimental results and two calculation methods was obtained. Results indicate maximum difference of 12% in the lung and 3% in the bone tissue of the phantom between two methods and the CCC algorithm shows more accurate depth dose curves in tissue heterogeneities. Simulation results show the accurate dose estimation by MCNP4C in soft tissue region of the phantom and also better results than ETAR method in bone and lung tissues. PMID:22973081

  1. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.

    PubMed

    Ferrari, P; Gualdrini, G

    2005-09-21

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.

  2. Toward quantifying the composition of soft tissues by spectral CT with Medipix3.

    PubMed

    Ronaldson, J Paul; Zainon, Rafidah; Scott, Nicola Jean Agnes; Gieseg, Steven Paul; Butler, Anthony P; Butler, Philip H; Anderson, Nigel G

    2012-11-01

    To determine the potential of spectral computed tomography (CT) with Medipix3 for quantifying fat, calcium, and iron in soft tissues within small animal models and surgical specimens of diseases such as fatty liver (metabolic syndrome) and unstable atherosclerosis. The spectroscopic method was applied to tomographic data acquired using a micro-CT system incorporating a Medipix3 detector array with silicon sensor layer and microfocus x-ray tube operating at 50 kVp. A 10 mm diameter perspex phantom containing a fat surrogate (sunflower oil) and aqueous solutions of ferric nitrate, calcium chloride, and iodine was imaged with multiple energy bins. The authors used the spectroscopic characteristics of the CT number to establish a basis for the decomposition of soft tissue components. The potential of the method of constrained least squares for quantifying different sets of materials was evaluated in terms of information entropy and degrees of freedom, with and without the use of a volume conservation constraint. The measurement performance was evaluated quantitatively using atheroma and mouse equivalent phantoms. Finally the decomposition method was assessed qualitatively using a euthanized mouse and an excised human atherosclerotic plaque. Spectral CT measurements of a phantom containing tissue surrogates confirmed the ability to distinguish these materials by the spectroscopic characteristics of their CT number. The assessment of performance potential in terms of information entropy and degrees of freedom indicated that certain sets of up to three materials could be decomposed by the method of constrained least squares. However, there was insufficient information within the data set to distinguish calcium from iron within soft tissues. The quantification of calcium concentration and fat mass fraction within atheroma and mouse equivalent phantoms by spectral CT correlated well with the nominal values (R(2) = 0.990 and R(2) = 0.985, respectively). In the euthanized mouse and excised human atherosclerotic plaque, regions of calcium and fat were appropriately decomposed according to their spectroscopic characteristics. Spectral CT, using the Medipix3 detector and silicon sensor layer, can quantify certain sets of up to three materials using the proposed method of constrained least squares. The system has some ability to independently distinguish calcium, fat, and water, and these have been quantified within phantom equivalents of fatty liver and atheroma. In this configuration, spectral CT cannot distinguish iron from calcium within soft tissues.

  3. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    PubMed

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence correction factor is almost solely influenced by non-elastic nuclear interactions the results are also relevant for plastic phantoms that consist of carbon, oxygen and hydrogen atoms as well as for soft tissues.

  4. TU-D-209-07: Monte Carlo Assessment of Dose to the Lens of the Eye of Radiologist Using Realistic Phantoms and Eyeglass Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X; Lin, H; Gao, Y

    Purpose: To study how eyeglass design features and postures of the interventional radiologist affect the radiation dose to the lens of the eye. Methods: A mesh-based deformable phantom, consisting of an ultra-fine eye model, was used to simulate postures of a radiologist in fluoroscopically guided interventional procedure (facing the patient, 45 degree to the left, and 45 degree to the right). Various eyewear design features were studied, including the shape, lead-equivalent thickness, and separation from the face. The MCNPX Monte Carlo code was used to simulate the X-ray source used for the transcatheter arterial chemoembolization procedure (The X-ray tube ismore » located 35 cm from the ground, emitting X-rays toward to the ceiling; Field size is 40cm X 40cm; X-ray tube voltage is 90 kVp). Experiments were also performed using dosimeter placed on a physical phantom behind eyeglasses. Results: Without protective eyewear, the radiologist’s eye lens can receive an annual dose equivalent of about 80 mSv. When wearing a pair of lead eyeglasses with lead-equivalent of 0.5-mm Pb, the annual dose equivalent of the eye lens is reduced to 31.47 mSv, but both exceed the new ICRP limit of 20 mSv. A face shield with a lead-equivalent of 0.125-mm Pb in the shape of a semi-cylinder (13cm in radius and 20-cm in height) would further reduce the exposure to the lens of the eye. Examination of postures and eyeglass features reveal surprising information, including that the glass-to-eye separation also plays an important role in the dose to the eye lens from scattered X-ray from underneath and the side. Results are in general agreement with measurements. Conclusion: There is an urgent need to further understand the relationship between the radiation environment and the radiologist’s eyewear and posture in order to provide necessary protection to the interventional radiologists under newly reduced dose limits.« less

  5. Female gonadal shielding with automatic exposure control increases radiation risks.

    PubMed

    Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Xiao, Rui; Ali, Sayed; Zhu, Xiaowei

    2018-02-01

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.

  6. Anthropomorphic breast phantoms for preclinical imaging evaluation with transmission or emission imaging

    NASA Astrophysics Data System (ADS)

    Tornai, Martin P.; McKinley, Randolph L.; Bryzmialkiewicz, Caryl N.; Cutler, Spencer J.; Crotty, Dominic J.

    2005-04-01

    With the development of several classes of dedicated emission and transmission imaging technologies utilizing ionizing radiation for improved breast cancer detection and in vivo characterization, it is extremely useful to have available anthropomorphic breast phantoms in a variety of shapes, sizes and malleability prior to clinical imaging. These anthropomorphic phantoms can be used to evaluate the implemented imaging approaches given a known quantity, the phantom, and to evaluate the variability of the measurement due to the imaging system chain. Thus, we have developed a set of fillable and incompressible breast phantoms ranging in volume from 240 to 1730mL with nipple-to-chest distances from 3.8 to 12cm. These phantoms are mountable and exchangeable on either a uniform chest plate or anthropomorphic torso phantom containing tissue equivalent bones and surface tissue. Another fillable ~700mL breast phantom with solid anterior chest plate is intentionally compressible, and can be used for direct comparisons between standard planar imaging approaches using mild-to-severe compression, partially compressed tomosynthesis, and uncompressed computed mammotomography applications. These phantoms can be filled with various fluids (water and oil based liquids) to vary the fatty tissue background composition. Shaped cellulose sponges with two cell densities are fabricated and can be added to the breasts to simulate connective tissue. Additionally, microcalcifications can be simulated by peppering slits in the sponges with oyster shell fragments. These phantoms have a utility in helping to evaluate clinical imaging paradigms with known input object parameters using basic imaging characterization, in an effort to further evaluate contemporary and next generation imaging tools. They may additionally provide a means to collect known data samples for task based optimization studies.

  7. Monitoring the eye lens: which dose quantity is adequate?

    NASA Astrophysics Data System (ADS)

    Behrens, R.; Dietze, G.

    2010-07-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity Hp(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity Hp(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of Hp(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of Hp(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of Hp(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.

  8. Monitoring the eye lens: which dose quantity is adequate?

    PubMed

    Behrens, R; Dietze, G

    2010-07-21

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity H(p)(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity H(p)(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of H(p)(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of H(p)(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of H(p)(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.

  9. Analyser-based mammography using single-image reconstruction.

    PubMed

    Briedis, Dahliyani; Siu, Karen K W; Paganin, David M; Pavlov, Konstantin M; Lewis, Rob A

    2005-08-07

    We implement an algorithm that is able to decode a single analyser-based x-ray phase-contrast image of a sample, converting it into an equivalent conventional absorption-contrast radiograph. The algorithm assumes the projection approximation for x-ray propagation in a single-material object embedded in a substrate of approximately uniform thickness. Unlike the phase-contrast images, which have both directional bias and a bias towards edges present in the sample, the reconstructed images are directly interpretable in terms of the projected absorption coefficient of the sample. The technique was applied to a Leeds TOR[MAM] phantom, which is designed to test mammogram quality by the inclusion of simulated microcalcifications, filaments and circular discs. This phantom was imaged at varying doses using three modalities: analyser-based synchrotron phase-contrast images converted to equivalent absorption radiographs using our algorithm, slot-scanned synchrotron imaging and imaging using a conventional mammography unit. Features in the resulting images were then assigned a quality score by volunteers. The single-image reconstruction method achieved higher scores at equivalent and lower doses than the conventional mammography images, but no improvement of visualization of the simulated microcalcifications, and some degradation in image quality at reduced doses for filament features.

  10. MAX meets ADAM: a dosimetric comparison between a voxel-based and a mathematical model for external exposure to photons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. de Andrade

    2004-03-01

    The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.

  11. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jina; Lee, Youngkyu; Shin, Hunjoo

    Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of changemore » of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was − 30 to + 32 mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient's respiratory signal and it acts as a deformable 4-dimensional simulation of a patient's lung with sufficient volume change.« less

  12. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry.

    PubMed

    Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G

    2004-12-07

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  13. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S., E-mail: cslevin@stanford.edu

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom withmore » sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed phantoms can be functionally equivalent to commercially available phantoms. They are a viable option for quickly distributing and fabricating low cost, customized phantoms.« less

  14. Calculated organ doses from selected prostate treatment plans using Monte Carlo simulations and an anatomically realistic computational phantom

    PubMed Central

    Bednarz, Bryan; Hancox, Cindy; Xu, X George

    2012-01-01

    There is growing concern about radiation-induced second cancers associated with radiation treatments. Particular attention has been focused on the risk to patients treated with intensity-modulated radiation therapy (IMRT) due primarily to increased monitor units. To address this concern we have combined a detailed medical linear accelerator model of the Varian Clinac 2100 C with anatomically realistic computational phantoms to calculate organ doses from selected treatment plans. This paper describes the application to calculate organ-averaged equivalent doses using a computational phantom for three different treatments of prostate cancer: a 4-field box treatment, the same box treatment plus a 6-field 3D-CRT boost treatment and a 7-field IMRT treatment. The equivalent doses per MU to those organs that have shown a predilection for second cancers were compared between the different treatment techniques. In addition, the dependence of photon and neutron equivalent doses on gantry angle and energy was investigated. The results indicate that the box treatment plus 6-field boost delivered the highest intermediate- and low-level photon doses per treatment MU to the patient primarily due to the elevated patient scatter contribution as a result of an increase in integral dose delivered by this treatment. In most organs the contribution of neutron dose to the total equivalent dose for the 3D-CRT treatments was less than the contribution of photon dose, except for the lung, esophagus, thyroid and brain. The total equivalent dose per MU to each organ was calculated by summing the photon and neutron dose contributions. For all organs non-adjacent to the primary beam, the equivalent doses per MU from the IMRT treatment were less than the doses from the 3D-CRT treatments. This is due to the increase in the integral dose and the added neutron dose to these organs from the 18 MV treatments. However, depending on the application technique and optimization used, the required MU values for IMRT treatments can be two to three times greater than 3D CRT. Therefore, the total equivalent dose in most organs would be higher from the IMRT treatment compared to the box treatment and comparable to the organ doses from the box treatment plus the 6-field boost. This is the first time when organ dose data for an adult male patient of the ICRP reference anatomy have been calculated and documented. The tools presented in this paper can be used to estimate the second cancer risk to patients undergoing radiation treatment. PMID:19671968

  15. Calculated organ doses from selected prostate treatment plans using Monte Carlo simulations and an anatomically realistic computational phantom

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Hancox, Cindy; Xu, X. George

    2009-09-01

    There is growing concern about radiation-induced second cancers associated with radiation treatments. Particular attention has been focused on the risk to patients treated with intensity-modulated radiation therapy (IMRT) due primarily to increased monitor units. To address this concern we have combined a detailed medical linear accelerator model of the Varian Clinac 2100 C with anatomically realistic computational phantoms to calculate organ doses from selected treatment plans. This paper describes the application to calculate organ-averaged equivalent doses using a computational phantom for three different treatments of prostate cancer: a 4-field box treatment, the same box treatment plus a 6-field 3D-CRT boost treatment and a 7-field IMRT treatment. The equivalent doses per MU to those organs that have shown a predilection for second cancers were compared between the different treatment techniques. In addition, the dependence of photon and neutron equivalent doses on gantry angle and energy was investigated. The results indicate that the box treatment plus 6-field boost delivered the highest intermediate- and low-level photon doses per treatment MU to the patient primarily due to the elevated patient scatter contribution as a result of an increase in integral dose delivered by this treatment. In most organs the contribution of neutron dose to the total equivalent dose for the 3D-CRT treatments was less than the contribution of photon dose, except for the lung, esophagus, thyroid and brain. The total equivalent dose per MU to each organ was calculated by summing the photon and neutron dose contributions. For all organs non-adjacent to the primary beam, the equivalent doses per MU from the IMRT treatment were less than the doses from the 3D-CRT treatments. This is due to the increase in the integral dose and the added neutron dose to these organs from the 18 MV treatments. However, depending on the application technique and optimization used, the required MU values for IMRT treatments can be two to three times greater than 3D CRT. Therefore, the total equivalent dose in most organs would be higher from the IMRT treatment compared to the box treatment and comparable to the organ doses from the box treatment plus the 6-field boost. This is the first time when organ dose data for an adult male patient of the ICRP reference anatomy have been calculated and documented. The tools presented in this paper can be used to estimate the second cancer risk to patients undergoing radiation treatment.

  16. Out-of-Field Dose Equivalents Delivered by Passively Scattered Therapeutic Proton Beams for Clinically Relevant Field Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroe, Andrew; Centre for Medical Radiation Physics, University of Wollongong, Wollongong; Clasie, Ben

    2009-01-01

    Purpose: Microdosimetric measurements were performed at Massachusetts General Hospital, Boston, MA, to assess the dose equivalent external to passively delivered proton fields for various clinical treatment scenarios. Methods and Materials: Treatment fields evaluated included a prostate cancer field, cranial and spinal medulloblastoma fields, ocular melanoma field, and a field for an intracranial stereotactic treatment. Measurements were completed with patient-specific configurations of clinically relevant treatment settings using a silicon-on-insulator microdosimeter placed on the surface of and at various depths within a homogeneous Lucite phantom. The dose equivalent and average quality factor were assessed as a function of both lateral displacement frommore » the treatment field edge and distance downstream of the beam's distal edge. Results: Dose-equivalent value range was 8.3-0.3 mSv/Gy (2.5-60-cm lateral displacement) for a typical prostate cancer field, 10.8-0.58 mSv/Gy (2.5-40-cm lateral displacement) for the cranial medulloblastoma field, 2.5-0.58 mSv/Gy (5-20-cm lateral displacement) for the spinal medulloblastoma field, and 0.5-0.08 mSv/Gy (2.5-10-cm lateral displacement) for the ocular melanoma field. Measurements of external field dose equivalent for the stereotactic field case showed differences as high as 50% depending on the modality of beam collimation. Average quality factors derived from this work ranged from 2-7, with the value dependent on the position within the phantom in relation to the primary beam. Conclusions: This work provides a valuable and clinically relevant comparison of the external field dose equivalents for various passively scattered proton treatment fields.« less

  17. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother.

    PubMed

    Mesoloras, Geraldine; Sandison, George A; Stewart, Robert D; Farr, Jonathan B; Hsi, Wen C

    2006-07-01

    Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10,000 children.

  18. NOTE: On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-11-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP-Man, were obtained from literature sources. The absorbed doses for lungs, oesophagus, liver and kidneys that could be affected by arm structures in the lateral irradiation geometry were obtained for both classes of phantoms in lateral monoenergetic photon irradiation geometries. As expected, those organs in the ORNL phantoms received apparently higher absorbed doses than those in the voxel phantoms. The overestimation is mainly attributed to the relatively poor representation of the arm structure in the ORNL phantom in which the arm bones are embedded within the regions describing the phantom's torso. The results of this study suggest that the overestimation of organ doses, due to unrealistic arm representation, should be taken into account when stylized phantoms are employed for equivalent or effective dose estimates, especially in the case of an irradiation scenario with dominating lateral exposure. For such a reason, the stylized phantom arm structure definition should be revised in order to obtain more realistic evaluations.

  19. [Space radiation doses in the anthropomorphous phantom in space experiment "Matryeshka-R" and spacesuit "Orlan-M" during extravehicular activity].

    PubMed

    Kartashov, D A; Petrov, V M; Kolomenskiĭ, A V; Akatov, Iu A; Shurshakov, V A

    2010-01-01

    Russian space experiment "Matryeshka-R" was conducted in 2004-2005 to study dose distribution in the body of anthropomorphous phantom inserted in a spacesuit imitating container mounted on outer surface of the ISS Service module (experiment "Matryeshka"). The objective was to compare doses inside the phantom in the container to human body donned in spacesuit "Orlan-M" during extravehicular activity (EVA). The shielding function was calculated using the geometric model, specification of the phantom shielded by the container, "Orlan-M" description, and results of ground-based estimation of shielding effectiveness by gamma-raying. Doses were calculated from the dose attenuation curves obtained for galactic cosmic rays, and the AE-8/AP-8 models of electron and proton flows in Earth's radiation belt. Calculated ratios of equivalent doses in representative points of the body critical organs to analogous doses in phantom "Matryeshka" H(ORLAN-M)/H(Matryeshka) for identical radiation conditions vary with organs and solar activity in the range from 0.1 to 1.8 with organs and solar activity. These observations should be taken into account when applying Matryeshka data to the EVA conditions.

  20. Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar, and Mars Missions with Space Radiation Measurement

    NASA Technical Reports Server (NTRS)

    Kim, M.Y.; Cucinotta, F.A.

    2005-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.

  1. A Novel Two-Compartment Model for Calculating Bone Volume Fractions and Bone Mineral Densities From Computed Tomography Images.

    PubMed

    Lin, Hsin-Hon; Peng, Shin-Lei; Wu, Jay; Shih, Tian-Yu; Chuang, Keh-Shih; Shih, Cheng-Ting

    2017-05-01

    Osteoporosis is a disease characterized by a degradation of bone structures. Various methods have been developed to diagnose osteoporosis by measuring bone mineral density (BMD) of patients. However, BMDs from these methods were not equivalent and were incomparable. In addition, partial volume effect introduces errors in estimating bone volume from computed tomography (CT) images using image segmentation. In this study, a two-compartment model (TCM) was proposed to calculate bone volume fraction (BV/TV) and BMD from CT images. The TCM considers bones to be composed of two sub-materials. Various equivalent BV/TV and BMD can be calculated by applying corresponding sub-material pairs in the TCM. In contrast to image segmentation, the TCM prevented the influence of the partial volume effect by calculating the volume percentage of sub-material in each image voxel. Validations of the TCM were performed using bone-equivalent uniform phantoms, a 3D-printed trabecular-structural phantom, a temporal bone flap, and abdominal CT images. By using the TCM, the calculated BV/TVs of the uniform phantoms were within percent errors of ±2%; the percent errors of the structural volumes with various CT slice thickness were below 9%; the volume of the temporal bone flap was close to that from micro-CT images with a percent error of 4.1%. No significant difference (p >0.01) was found between the areal BMD of lumbar vertebrae calculated using the TCM and measured using dual-energy X-ray absorptiometry. In conclusion, the proposed TCM could be applied to diagnose osteoporosis, while providing a basis for comparing various measurement methods.

  2. SU-E-T-409: Evaluation of Tissue Composition Effect On Dose Distribution in Radiotherapy with 6 MV Photon Beam of a Medical Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani

    Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relativemore » to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.« less

  3. [Relationship between image quality and cross-sectional area of phantom in three-dimensional positron emission tomography scan].

    PubMed

    Osawa, Atsushi; Miwa, Kenta; Wagatsuma, Kei; Takiguchi, Tomohiro; Tamura, Shintaro; Akimoto, Kenta

    2012-01-01

    The image quality in (18)FDG PET/CT often degrades as the body size increases. The purpose of this study was to evaluate the relationship between image quality and the body size using original phantoms of variable cross-sectional areas in PET/CT. We produced five water phantoms with different cross-sectional areas. The long axis of phantom was 925 mm, and the cross-sectional area was from 324 to 1189 cm(2). These phantoms with the sphere (diameter 10 mm) were filled with (18)F-FDG solution. The radioactivity concentration of background in the phantom was 1.37, 2.73, 4.09 and 5.46 kBq/mL. The scanning duration was 30 min in list mode acquisition for each measurement. Background variability (N(10 mm)), noise equivalent count rates (NECR(phantom)), hot sphere contrast (Q(H,10 mm)) as physical evaluation and visual score of sphere detection were measured, respectively. The relationship between image quality and the various cross-sectional areas was also analyzed under the above-mentioned conditions. As cross-sectional area increased, NECR(phantom) progressively decreased. Furthermore, as cross-sectional area increased, N(10 mm) increased and Q(H,10 mm) decreased. Image quality became degraded as body weight increased because noise and contrast contributed to image quality. The visual score of sphere detection deteriorated in high background radioactivity concentration because a false positive detection in cross-sectional area of the phantom increased. However, additional increases in scanning periods could improve the visual score. We assessed tendencies in the relationship between image quality and body size in PET/CT. Our results showed that time adjustment was more effective than dose adjustment for stable image quality of heavier patients in terms of the large cross-sectional area.

  4. A Note on Equivalence Among Various Scalar Field Models of Dark Energies

    NASA Astrophysics Data System (ADS)

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2017-08-01

    In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.

  5. TH-AB-209-02: Gadolinium Measurements in Human Bone Using in Vivo K X-Ray Fluorescence (KXRF) Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafaei, F; Nie, L

    Purpose: Improvement in an in vivo K x-ray fluorescence system, based on 109Cd source, for the detection of gadolinium (Gd) in bone has been investigated. Series of improvements to the method is described. Gd is of interest because of the extensive use of Gd-based contrast agents in MR imaging and the potential toxicity of Gd exposure. Methods: A set of seven bone equivalent phantoms with different amount of Gd concentrations (from 0–100 ppm) has been developed. Soft tissue equivalent plastic plates were used to simulate the soft tissue overlaying the tibia bone in an in vivo measurement. A new 5more » GBq 109Cd source was used to improve the source activity in comparison to the previous study (0.17 GBq). An improved spectral fitting program was utilized for data analysis. Results: The previous published minimum detection limit (MDL) for Gd doped phantom measurements using KXRF system was 3.3 ppm. In this study the MDL for bare bone phantoms was found to be 0.8 ppm. Our previous study used only three layers of plastic (0.32, 0.64 and 0.96 mm) as soft tissue equivalent materials and obtained the MDL of 4–4.8 ppm. In this study the plastic plates with more realistic thicknesses to simulate the soft tissue covering tibia bone (nine thicknesses ranging from 0.61–6.13 mm) were used. The MDLs for phantoms were determined to be 1.8–3.5 ppm. Conclusion: With the improvements made to the technology (stronger source, improved data analysis algorithm, realistic soft tissue thicknesses), the MDL of the KXRF system to measure Gd in bare bone was improved by a factor of 4.1. The MDL is at the level of the bone Gd concentration reported in literature. Hence, the system is ready to be tested on human subjects to investigate the use of bone Gd as a biomarker for Gd toxicity.« less

  6. Method for decreasing CT simulation time of complex phantoms and systems through separation of material specific projection data

    NASA Astrophysics Data System (ADS)

    Divel, Sarah E.; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2017-03-01

    Computer simulation is a powerful tool in CT; however, long simulation times of complex phantoms and systems, especially when modeling many physical aspects (e.g., spectrum, finite detector and source size), hinder the ability to realistically and efficiently evaluate and optimize CT techniques. Long simulation times primarily result from the tracing of hundreds of line integrals through each of the hundreds of geometrical shapes defined within the phantom. However, when the goal is to perform dynamic simulations or test many scan protocols using a particular phantom, traditional simulation methods inefficiently and repeatedly calculate line integrals through the same set of structures although only a few parameters change in each new case. In this work, we have developed a new simulation framework that overcomes such inefficiencies by dividing the phantom into material specific regions with the same time attenuation profiles, acquiring and storing monoenergetic projections of the regions, and subsequently scaling and combining the projections to create equivalent polyenergetic sinograms. The simulation framework is especially efficient for the validation and optimization of CT perfusion which requires analysis of many stroke cases and testing hundreds of scan protocols on a realistic and complex numerical brain phantom. Using this updated framework to conduct a 31-time point simulation with 80 mm of z-coverage of a brain phantom on two 16-core Linux serves, we have reduced the simulation time from 62 hours to under 2.6 hours, a 95% reduction.

  7. A correlation study of eye lens dose and personal dose equivalent for interventional cardiologists.

    PubMed

    Farah, J; Struelens, L; Dabin, J; Koukorava, C; Donadille, L; Jacob, S; Schnelzer, M; Auvinen, A; Vanhavere, F; Clairand, I

    2013-12-01

    This paper presents the dosimetry part of the European ELDO project, funded by the DoReMi Network of Excellence, in which a method was developed to estimate cumulative eye lens doses for past practices based on personal dose equivalent values, H(p)(10), measured above the lead apron at several positions at the collar, chest and waist levels. Measurement campaigns on anthropomorphic phantoms were carried out in typical interventional settings considering different tube projections and configurations, beam energies and filtration, operator positions and access routes and using both mono-tube and biplane X-ray systems. Measurements showed that eye lens dose correlates best with H(p)(10) measured on the left side of the phantom at the level of the collar, although this correlation implicates high spreads (41 %). Nonetheless, for retrospective dose assessment, H(p)(10) records are often the only option for eye dose estimates and the typically used chest left whole-body dose measurement remains useful.

  8. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  9. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  10. A comparative study between evaluation methods for quality control procedures for determining the accuracy of PET/CT registration

    NASA Astrophysics Data System (ADS)

    Cha, Min Kyoung; Ko, Hyun Soo; Jung, Woo Young; Ryu, Jae Kwang; Choe, Bo-Young

    2015-08-01

    The Accuracy of registration between positron emission tomography (PET) and computed tomography (CT) images is one of the important factors for reliable diagnosis in PET/CT examinations. Although quality control (QC) for checking alignment of PET and CT images should be performed periodically, the procedures have not been fully established. The aim of this study is to determine optimal quality control (QC) procedures that can be performed at the user level to ensure the accuracy of PET/CT registration. Two phantoms were used to carry out this study: the American college of Radiology (ACR)-approved PET phantom and National Electrical Manufacturers Association (NEMA) International Electrotechnical Commission (IEC) body phantom, containing fillable spheres. All PET/CT images were acquired on a Biograph TruePoint 40 PET/CT scanner using routine protocols. To measure registration error, the spatial coordinates of the estimated centers of the target slice (spheres) was calculated independently for the PET and the CT images in two ways. We compared the images from the ACR-approved PET phantom to that from the NEMA IEC body phantom. Also, we measured the total time required from phantom preparation to image analysis. The first analysis method showed a total difference of 0.636 ± 0.11 mm for the largest hot sphere and 0.198 ± 0.09 mm for the largest cold sphere in the case of the ACR-approved PET phantom. In the NEMA IEC body phantom, the total difference was 3.720 ± 0.97 mm for the largest hot sphere and 4.800 ± 0.85 mm for the largest cold sphere. The second analysis method showed that the differences in the x location at the line profile of the lesion on PET and CT were (1.33, 1.33) mm for a bone lesion, (-1.26, -1.33) mm for an air lesion and (-1.67, -1.60) mm for a hot sphere lesion for the ACR-approved PET phantom. For the NEMA IEC body phantom, the differences in the x location at the line profile of the lesion on PET and CT were (-1.33, 4.00) mm for the air lesion and (1.33, -1.29) mm for a hot sphere lesion. These registration errors from this study were reasonable compared to the errors reported in previous studies. Meanwhile, the total time required from phantom preparation was 67.72 ± 4.50 min for the ACR-approved PET phantom and 96.78 ± 8.50 min for the NEMA IEC body phantom. When the registration errors and the lead times are considered, the method using the ACR-approved PET phantom was more practical and useful than the method using the NEMA IEC body phantom.

  11. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature.

    PubMed

    Rodrigues, Dario B; Maccarini, Paolo F; Salahi, Sara; Oliveira, Tiago R; Pereira, Pedro J S; Limao-Vieira, Paulo; Snow, Brent W; Reudink, Doug; Stauffer, Paul R

    2014-07-01

    We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.

  12. Repeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems

    PubMed Central

    2018-01-01

    This study aimed to assess and validate the repeatability and agreement of quantitative elastography of novel shear wave methods on four individual tissue-mimicking liver fibrosis phantoms with different known Young’s modulus. We used GE Logiq E9 2D-SWE, Philips iU22 ARFI (pSWE), Samsung TS80A SWE (pSWE), Hitachi Ascendus (SWM) and Transient Elastography (TE). Two individual investigators performed all measurements non-continued and in parallel. The methods were evaluated for inter- and intraobserver variability by intraclass correlation, coefficient of variation and limits of agreement using the median elastography value. All systems used in this study provided high repeatability in quantitative measurements in a liver fibrosis phantom and excellent inter- and intraclass correlations. All four elastography platforms showed excellent intra-and interobserver agreement (interclass correlation 0.981–1.000 and intraclass correlation 0.987–1.000) and no significant difference in mean elasticity measurements for all systems, except for TE on phantom 4. All four liver fibrosis phantoms could be differentiated by quantitative elastography, by all platforms (p<0.001). In the Bland-Altman analysis the differences in measurements were larger for the phantoms with higher Young’s modulus. All platforms had a coefficient of variation in the range 0.00–0.21 for all four phantoms, equivalent to low variance and high repeatability. PMID:29293527

  13. Investigation of optimal acquisition time of myocardial perfusion scintigraphy using cardiac focusing-collimator

    NASA Astrophysics Data System (ADS)

    Niwa, Arisa; Abe, Shinji; Fujita, Naotoshi; Kono, Hidetaka; Odagawa, Tetsuro; Fujita, Yusuke; Tsuchiya, Saki; Kato, Katsuhiko

    2015-03-01

    Recently myocardial perfusion SPECT imaging acquired using the cardiac focusing-collimator (CF) has been developed in the field of nuclear cardiology. Previously we have investigated the basic characteristics of CF using physical phantoms. This study was aimed at determining the acquisition time for CF that enables to acquire the SPECT images equivalent to those acquired by the conventional method in 201TlCl myocardial perfusion SPECT. In this study, Siemens Symbia T6 was used by setting the torso phantom equipped with the cardiac, pulmonary, and hepatic components. 201TlCl solution were filled in the left ventricular (LV) myocardium and liver. Each of CF, the low energy high resolution collimator (LEHR), and the low medium energy general purpose collimator (LMEGP) was set on the SPECT equipment. Data acquisitions were made by regarding the center of the phantom as the center of the heart in CF at various acquisition times. Acquired data were reconstructed, and the polar maps were created from the reconstructed images. Coefficient of variation (CV) was calculated as the mean counts determined on the polar maps with their standard deviations. When CF was used, CV was lower at longer acquisition times. CV calculated from the polar maps acquired using CF at 2.83 min of acquisition time was equivalent to CV calculated from those acquired using LEHR in a 180°acquisition range at 20 min of acquisition time.

  14. Austrian results from Matroshka poncho and organ dose determination

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Bergmann, R.; Fugger, M.; Vana, N.

    Cosmic rays in low-earth orbits LEO primarily consist of high-energy charged particles originating from galactic cosmic radiation GCR energetic solar particle events SPE and trapped radiation belts These radiations of high linear energy transfer LET generally inflict greater biological damage than that resulting from typical terrestrial radiation hazards Particle and energy spectra are attenuated in interaction processes within shielding structures and within the human body Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses in critical radiosensitive organs and tissues The European Space Agency ESA Matroshka experiment---conducted under the aegis of the German Aerospace Center DLR ---is aimed at simulating an astronaut s body during extravehicular activities EVA Matroshka basically consists of a human phantom torso attached to a base structure and covered with a protective carbon-fibre container acting as a spacesuit model The phantom is divided into 33 tissue-equivalent polyurethane slices of specific density for tissue and organs Natural bones are embedded Channels and cut-outs enable accommodation of active and passive radiation monitors The torso is dressed by a skin-equivalent poncho which is also designed for dosimeter integration The phantom houses in total 7 active and more than 6000 passive radiation sensors Thereof the Atomic Institute of the Austrian Universities ATI provided more than

  15. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams.

    PubMed

    Künzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar

    2009-12-21

    The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (gamma) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% +/- 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 x 10 cm(2) field at the first density interface from tissue to lung equivalent material. Small fields (2 x 2 cm(2)) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the heterogeneous phantom. For the clinical test cases, the average dose discrepancy was 0.5% +/- 1.1%. Relative dose investigations of the transverse plane for clinical beam arrangements were performed with a 2D gamma-evaluation procedure. For 3% dose difference and 3 mm DTA criteria, the average value for gamma(>1) was 4.7% +/- 3.7%, the average gamma(1%) value was 1.19 +/- 0.16 and the mean 2D gamma-value was 0.44 +/- 0.07 in the heterogeneous phantom. The iPlan MC algorithm leads to accurate dosimetric results under clinical test conditions.

  16. Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.

    PubMed

    Keller, Brad M; Oustimov, Andrew; Wang, Yan; Chen, Jinbo; Acciavatti, Raymond J; Zheng, Yuanjie; Ray, Shonket; Gee, James C; Maidment, Andrew D A; Kontos, Despina

    2015-04-01

    An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges-Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., [Formula: see text]) and with a larger offset length (i.e., [Formula: see text]), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.

  17. Development of an effective dose coefficient database using a computational human phantom and Monte Carlo simulations to evaluate exposure dose for the usage of NORM-added consumer products.

    PubMed

    Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Jaekook; Yeom, Yeon Soo; Kim, Chan Hyeong; Chang, Byung-Uck; Min, Chul Hee

    2017-11-01

    After the Fukushima accident in Japan, the Korean Government implemented the "Act on Protective Action Guidelines Against Radiation in the Natural Environment" to regulate unnecessary radiation exposure to the public. However, despite the law which came into effect in July 2012, an appropriate method to evaluate the equivalent and effective doses from naturally occurring radioactive material (NORM) in consumer products is not available. The aim of the present study is to develop and validate an effective dose coefficient database enabling the simple and correct evaluation of the effective dose due to the usage of NORM-added consumer products. To construct the database, we used a skin source method with a computational human phantom and Monte Carlo (MC) simulation. For the validation, the effective dose was compared between the database using interpolation method and the original MC method. Our result showed a similar equivalent dose across the 26 organs and a corresponding average dose between the database and the MC calculations of < 5% difference. The differences in the effective doses were even less, and the result generally show that equivalent and effective doses can be quickly calculated with the database with sufficient accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. SU-F-J-74: High Z Geometric Integrity and Beam Hardening Artifact Assessment Using a Retrospective Metal Artifact Reduction (MAR) Reconstruction Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, K; DiCostanzo, D; Gupta, N

    Purpose: To test the efficacy of a retrospective metal artifact reduction (MAR) reconstruction algorithm for a commercial computed tomography (CT) scanner for radiation therapy purposes. Methods: High Z geometric integrity and artifact reduction analysis was performed with three phantoms using General Electric’s (GE) Discovery CT. The three phantoms included: a Computerized Imaging Reference Systems (CIRS) electron density phantom (Model 062) with a 6.5 mm diameter titanium rod insert, a custom spine phantom using Synthes Spine hardware submerged in water, and a dental phantom with various high Z fillings submerged in water. Each phantom was reconstructed using MAR and compared againstmore » the original scan. Furthermore, each scenario was tested using standard and extended Hounsfield Unit (HU) ranges. High Z geometric integrity was performed using the CIRS phantom, while the artifact reduction was performed using all three phantoms. Results: Geometric integrity of the 6.5 mm diameter rod was slightly overestimated for non-MAR scans for both standard and extended HU. With MAR reconstruction, the rod was underestimated for both standard and extended HU. For artifact reduction, the mean and standard deviation was compared in a volume of interest (VOI) in the surrounding material (water and water equivalent material, ∼0HU). Overall, the mean value of the VOI was closer to 0 HU for the MAR reconstruction compared to the non-MAR scan for most phantoms. Additionally, the standard deviations for all phantoms were greatly reduced using MAR reconstruction. Conclusion: GE’s MAR reconstruction algorithm improves image quality with the presence of high Z material with minimal degradation of its geometric integrity. High Z delineation can be carried out with proper contouring techniques. The effects of beam hardening artifacts are greatly reduced with MAR reconstruction. Tissue corrections due to these artifacts can be eliminated for simple high Z geometries and greatly reduced for more complex geometries.« less

  19. Magnetic resonance imaging properties of multimodality anthropomorphic silicone rubber phantoms for validating surgical robots and image guided therapy systems

    NASA Astrophysics Data System (ADS)

    Cheung, Carling L.; Looi, Thomas; Drake, James; Kim, Peter C. W.

    2012-02-01

    The development of image guided robotic and mechatronic platforms for medical applications requires a phantom model for initial testing. Finding an appropriate phantom becomes challenging when the targeted patient population is pediatrics, particularly infants, neonates or fetuses. Our group is currently developing a pediatricsized surgical robot that operates under fused MRI and laparoscopic video guidance. To support this work, we describe a method for designing and manufacturing silicone rubber organ phantoms for the purpose of testing the robotics and the image fusion system. A surface model of the organ is obtained and converted into a mold that is then rapid-prototyped using a 3D printer. The mold is filled with a solution containing a particular ratio of silicone rubber to slacker additive to achieve a specific set of tactile and imaging characteristics in the phantom. The expected MRI relaxation times of different ratios of silicone rubber to slacker additive are experimentally quantified so that the imaging properties of the phantom can be matched to those of the organ that it represents. Samples of silicone rubber and slacker additive mixed in ratios ranging from 1:0 to 1:1.5 were prepared and scanned using inversion recovery and spin echo sequences with varying TI and TE, respectively, in order to fit curves to calculate the expected T1 and T2 relaxation times of each ratio. A set of infantsized abdominal organs was prepared, which were successfully sutured by the robot and imaged using different modalities.

  20. Experimental assessment of the Advanced Collapsed-cone Engine for scalp brachytherapy treatments.

    PubMed

    Cawston-Grant, Brie; Morrison, Hali; Sloboda, Ron S; Menon, Geetha

    To experimentally assess the performance of the Advanced Collapsed-cone Engine (ACE) for 192 Ir high-dose-rate brachytherapy treatment planning of nonmelanoma skin cancers of the scalp. A layered slab phantom was designed to model the head (skin, skull, and brain) and surface treatment mold using tissue equivalent materials. Six variations of the phantom were created by varying skin thickness, skull thickness, and size of air gap between the mold and skin. Treatment planning was initially performed using the Task Group 43 (TG-43) formalism with CT images of each phantom variation. Doses were recalculated using standard and high accuracy modes of ACE. The plans were delivered to Gafchromic EBT3 film placed between different layers of the phantom. Doses calculated by TG-43 and ACE and those measured by film agreed with each other at most locations within the phantoms. For a given phantom variation, average TG-43- and ACE-calculated doses were similar, with a maximum difference of (3 ± 12)% (k = 2). Compared to the film measurements, TG-43 and ACE overestimated the film-measured dose by (13 ± 12)% (k = 2) for one phantom variation below the skull layer. TG-43- and ACE-calculated and film-measured doses were found to agree above the skull layer of the phantom, which is where the tumor would be located in a clinical case. ACE appears to underestimate the attenuation through bone relative to that measured by film; however, the dose to bone is below tolerance levels for this treatment. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. A controlled phantom study of a noise equalization algorithm for detecting microcalcifications in digital mammograms.

    PubMed

    Gürün, O O; Fatouros, P P; Kuhn, G M; de Paredes, E S

    2001-04-01

    We report on some extensions and further developments of a well-known microcalcification detection algorithm based on adaptive noise equalization. Tissue equivalent phantom images with and without labeled microcalcifications were subjected to this algorithm, and analyses of results revealed some shortcomings in the approach. Particularly, it was observed that the method of estimating the width of distributions in the feature space was based on assumptions which resulted in the loss of similarity preservation characteristics. A modification involving a change of estimator statistic was made, and the modified approach was tested on the same phantom images. Other modifications for improving detectability such as downsampling and use of alternate local contrast filters were also tested. The results indicate that these modifications yield improvements in detectability, while extending the generality of the approach. Extensions to real mammograms and further directions of research are discussed.

  2. [CALCULATION OF RADIATION LOADS ON THE ANTHROPOMORPHIC PHANTOM ONBOARD THE SPACE STATION IN THE CASE OF ADDITIONAL SHIELDING].

    PubMed

    Kartashov, D A; Shurshakov, V A

    2015-01-01

    The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment.

  3. Comparative power law analysis of structured breast phantom and patient images in digital mammography and breast tomosynthesis.

    PubMed

    Cockmartin, L; Bosmans, H; Marshall, N W

    2013-08-01

    This work characterizes three candidate mammography phantoms with structured background in terms of power law analysis in the low frequency region of the power spectrum for 2D (planar) mammography and digital breast tomosynthesis (DBT). The study was performed using three phantoms (spheres in water, Voxmam, and BR3D CIRS phantoms) on two DBT systems from two different vendors (Siemens Inspiration and Hologic Selenia Dimensions). Power spectra (PS) were calculated for planar projection, DBT projection, and reconstructed images and curve fitted in the low frequency region from 0.2 to 0.7 mm(-1) with a power law function characterized by an exponent β and magnitude κ. The influence of acquisition dose and tube voltage on the power law parameters was first explored. Then power law parameters were calculated from images acquired with the same anode∕filter combination and tube voltage for the three test objects, and compared with each other. Finally, PS curves for automatic exposure controlled acquisitions (anode∕filter combination and tube voltages selected by the systems based on the breast equivalent thickness of the test objects) were compared against PS analysis performed on patient data (for Siemens 80 and for Hologic 48 mammograms and DBT series). Dosimetric aspects of the three test objects were also examined. The power law exponent (β) was found to be independent of acquisition dose for planar mammography but varied more for DBT projections of the sphere-phantom. Systematic increase of tube voltage did not affect β but decreased κ, both in planar and DBT projection phantom images. Power spectra of the BR3D phantom were closer to those of the patients than these of the Voxmam phantom; the Voxmam phantom gave high values of κ compared to the other phantoms and the patient series. The magnitude of the PS curves of the BR3D phantom was within the patient range but β was lower than the average patient value. Finally, PS magnitude for the sphere-phantom coincided with the patient curves for Siemens but was lower for the Hologic system. Close agreement of doses for all three phantoms with patient doses was found. Power law parameters of the phantoms were close to those of the patients but no single phantom matched in terms of both magnitude (κ) and texture (β) for the x-ray systems in this work. PS analysis of structured phantoms is feasible and this methodology can be used to suggest improvements in phantom design.

  4. The UF family of reference hybrid phantoms for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference organ masses from ICRP Publication 89, (3) reference elemental compositions provided in ICRP 89 as well as ICRU Report 46, and (4) reference data on the alimentary tract organs given in ICRP Publications 89 and 100. Various adjustments and refinements to the organ systems of the previously described newborn, 15 year and adult phantoms are also presented. The UF series of hybrid phantoms retain the non-uniform scalability of stylized phantoms while maintaining the anatomical realism of patient-specific voxel phantoms with respect to organ shape, depth and inter-organ distance. While the final versions of these phantoms are in a voxelized format for radiation transport simulation, their primary format is given as NURBS and polygon mesh surfaces, thus permitting one to sculpt non-reference phantoms using the reference phantoms as an anatomic template.

  5. Monte Carlo study of out-of-field exposure in carbon-ion radiotherapy with a passive beam: Organ doses in prostate cancer treatment.

    PubMed

    Yonai, Shunsuke; Matsufuji, Naruhiro; Akahane, Keiichi

    2018-04-23

    The aim of this work was to estimate typical dose equivalents to out-of-field organs during carbon-ion radiotherapy (CIRT) with a passive beam for prostate cancer treatment. Additionally, sensitivity analyses of organ doses for various beam parameters and phantom sizes were performed. Because the CIRT out-of-field dose depends on the beam parameters, the typical values of those parameters were determined from statistical data on the target properties of patients who received CIRT at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). Using these typical beam-parameter values, out-of-field organ dose equivalents during CIRT for typical prostate treatment were estimated by Monte Carlo simulations using the Particle and Heavy-Ion Transport Code System (PHITS) and the ICRP reference phantom. The results showed that the dose decreased with distance from the target, ranging from 116 mSv in the testes to 7 mSv in the brain. The organ dose equivalents per treatment dose were lower than those either in 6-MV intensity-modulated radiotherapy or in brachytherapy with an Ir-192 source for organs within 40 cm of the target. Sensitivity analyses established that the differences from typical values were within ∼30% for all organs, except the sigmoid colon. The typical out-of-field organ dose equivalents during passive-beam CIRT were shown. The low sensitivity of the dose equivalent in organs farther than 20 cm from the target indicated that individual dose assessments required for retrospective epidemiological studies may be limited to organs around the target in cases of passive-beam CIRT for prostate cancer. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37

    PubMed Central

    Smith, M. B.; Khulapko, S.; Andrews, H. R.; Arkhangelsky, V.; Ing, H.; Koslowksy, M. R.; Lewis, B. J.; Machrafi, R.; Nikolaev, I.; Shurshakov, V.

    2016-01-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70 % of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. PMID:25899609

  7. Comparison of a prepCheck-supported self-assessment concept with conventional faculty supervision in a pre-clinical simulation environment.

    PubMed

    Wolgin, M; Grabowski, S; Elhadad, S; Frank, W; Kielbassa, A M

    2018-03-25

    This study aimed to evaluate the educational outcome of a digitally based self-assessment concept (prepCheck; DentsplySirona, Wals, Austria) for pre-clinical undergraduates in the context of a regular phantom-laboratory course. A sample of 47 third-year dental students participated in the course. Students were randomly divided into a prepCheck-supervised (self-assessment) intervention group (IG; n = 24); conventionally supervised students constituted the control group (CG; n = 23). During the preparation of three-surface (MOD) class II amalgam cavities, each IG participant could analyse a superimposed 3D image of his/her preparation against the "master preparation" using the prepCheck software. In the CG, several course instructors performed the evaluations according to pre-defined assessment criteria. After completing the course, a mandatory (blinded) practical examination was taken by all course participants (both IG and CG students), and this assessment involved the preparation of a MOD amalgam cavity. Then, optical impressions by means of a CEREC-Omnicam were taken to digitalize all examination preparations, followed by surveying and assessing the latter using prepCheck. The statistical analysis of the digitalized samples (Mann-Whitney U test) revealed no significant differences between the cavity dimensions achieved in the IG and CG (P = .406). Additionally, the sum score of the degree of conformity with the "master preparation" (maximum permissible 10% of plus or minus deviation) was comparable in both groups (P = .259). The implemented interactive digitally based, self-assessment learning tool for undergraduates appears to be equivalent to the conventional form of supervision. Therefore, such digital learning tools could significantly address the ever-increasing student to faculty ratio. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Poster - Thurs Eve-43: Verification of dose calculation with tissue inhomogeneity using MapCHECK.

    PubMed

    Korol, R; Chen, J; Mosalaei, H; Karnas, S

    2008-07-01

    MapCHECK (Sun Nuclear, Melbourne, FL) with 445 diode detectors has been used widely for routine IMRT quality assurance (QA) 1 . However, routine IMRT QA has not included the verification of inhomogeneity effects. The objective of this study is to use MapCHECK and a phantom to verify dose calculation and IMRT delivery with tissue inhomogeneity. A phantom with tissue inhomogeneities was placed on top of MapCHECK to measure the planar dose for an anterior beam with photon energy 6 MV or 18 MV. The phantom was composed of a 3.5 cm thick block of lung equivalent material and solid water arranged side by side with a 0.5 cm slab of solid water on the top of the phantom. The phantom setup including MapCHECK was CT scanned and imported into Pinnacle 8.0d for dose calculation. Absolute dose distributions were compared with gamma criteria 3% for dose difference and 3 mm for distance-to-agreement. The results are in good agreement between the measured and calculated planar dose with 88% pass rate based on the gamma analysis. The major dose difference was at the lung-water interface. Further investigation will be performed on a custom designed inhomogeneity phantom with inserts of varying densities and effective depth to create various dose gradients at the interface for dose calculation and delivery verification. In conclusion, a phantom with tissue inhomogeneities can be used with MapCHECK for verification of dose calculation and delivery with tissue inhomogeneity. © 2008 American Association of Physicists in Medicine.

  9. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP)

    PubMed Central

    Jermoumi, M.; Korideck, H.; Bhagwat, M.; Zygmanski, P.; Makrigiogos, G.M.; Berbeco, R.I.; Cormack, R.C.; Ngwa, W.

    2016-01-01

    Purpose To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). Methods and materials A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Results Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. Conclusions The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. PMID:25964129

  10. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP).

    PubMed

    Jermoumi, M; Korideck, H; Bhagwat, M; Zygmanski, P; Makrigiogos, G M; Berbeco, R I; Cormack, R C; Ngwa, W

    2015-07-01

    To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm(3)) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study

    PubMed Central

    Kishimoto, Riwa; Suga, Mikio; Koyama, Atsuhisa; Omatsu, Tokuhiko; Tachibana, Yasuhiko; Ebner, Daniel K; Obata, Takayuki

    2017-01-01

    Objectives To compare shear-wave speed (SWS) measured by ultrasound-based point shear-wave elastography (pSWE) and MR elastography (MRE) on phantoms with a known shear modulus, and to assess method validity and variability. Methods 5 homogeneous phantoms of different stiffnesses were made. Shear modulus was measured by a rheometer, and this value was used as the standard. 10 SWS measurements were obtained at 4 different depths with 1.0–4.5 MHz convex (4C1) and 4.0–9.0 MHz linear (9L4) transducers using pSWE. MRE was carried out once per phantom, and SWSs at 5 different depths were obtained. These SWSs were then compared with those from a rheometer using linear regression analyses. Results SWSs obtained with both pSWE as well as MRE had a strong correlation with those obtained by a rheometer (R2>0.97). The relative difference in SWS between the procedures was from −25.2% to 25.6% for all phantoms, and from −8.1% to 6.9% when the softest and hardest phantoms were excluded. Depth dependency was noted in the 9L4 transducer of pSWE and MRE. Conclusions SWSs from pSWE and MRE showed a good correlation with a rheometer-determined SWS. Although based on phantom studies, SWSs obtained with these methods are not always equivalent, the measurement can be thought of as reliable and these SWSs were reasonably close to each other for the middle range of stiffness within the measurable range. PMID:28057657

  12. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitzthum, L; Ehler, E; Sterling, D

    2015-06-15

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT imagesmore » of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.« less

  13. Radiation protection of staff in 111In radionuclide therapy--is the lead apron shielding effective?

    PubMed

    Lyra, M; Charalambatou, P; Sotiropoulos, M; Diamantopoulos, S

    2011-09-01

    (111)In (Eγ = 171-245 keV, t1/2 = 2.83 d) is used for targeted therapies of endocrine tumours. An average activity of 6.3 GBq is injected into the liver by catheterisation of the hepatic artery. This procedure is time-consuming (4-5 min) and as a result, both the physicians and the technical staff involved are subjected to radiation exposure. In this research, the efficiency of the use of lead apron has been studied as far as the radiation protection of the working staff is concerned. A solution of (111)In in a cylindrical scattering phantom was used as a source. Close to the scattering phantom, an anthropomorphic male Alderson RANDO phantom was positioned. Thermoluminescent dosemeters were located in triplets on the front surface, in the exit and in various depths in the 26th slice of the RANDO phantom. The experiment was repeated by covering the RANDO phantom by a lead apron 0.25 mm Pb equivalent. The unshielded dose rates and the shielded photon dose rates were measured. Calculations of dose rates by Monte Carlo N-particle transport code were compared with this study's measurements. A significant reduction of 65 % on surface dose was observed when using lead apron. A decrease of 30 % in the mean absorbed dose among the different depths of the 26th slice of the RANDO phantom has also been noticed. An accurate correlation of the experimental results with Monte Carlo simulation has been achieved.

  14. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans.

    PubMed

    Bai, Chuanyong; Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid

    2010-06-01

    We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 muSv). We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 +/- .003/cm in the uniform region of the ACR phantom, .151 +/- .003/cm and .151 +/- .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 +/- 6.5 before and 87.9 +/- 3.3 after AC (average +/- standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC.

  15. SU-G-BRA-15: Dosimetric Evaluation of Dynamic Tumor Tracking Radiation Therapy Using Digital Phantom: A Study On Margin and Desired Accuracy of Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, T; Osanai, M; Homma, N

    2016-06-15

    Purpose: Dynamic tumor tracking radiation therapy can potentially reduce internal margin without prolongation of irradiation time. However, dynamic tumor tracking technique requires an extra margin (tracking margin, TM) for the uncertainty of tumor localization, prediction, and beam repositioning. The purpose of this study was to evaluate a dosimetric impact caused by TM. Methods: We used 4D XCAT to create 9 digital phantom datasets of different tumor size and motion range: tumor diameter TD=(1, 3, 5) cm and motion range MR=(1, 2, 3) cm. For each dataset, respiratory gating (30%–70% phase) and tumor tracking treatment plans were created using 8-field 3D-CRTmore » by 4D dose calculation implemented in RayStation. The dose constraint was based on RTOG0618. For the tracking plan, TMs of (0, 2.5, 5) mm were considered by surrounding a normal setup margin: SM=5 mm. We calculated V20 of normal lung to evaluate the dosimetric impact for each case, and estimated an equivalent TM that affects the same impact on V20 obtained by the gated plan. Results: The equivalent TMs for (TD=1 cm, MR=2 cm), (TD=1 cm, MR=3 cm), (TD=5 cm, MR=2 cm), and (TD=5 cm, MR=3 cm) were estimated as 1.47 mm, 3.95 mm, 1.04 mm, and 2.13 mm, respectively. The larger the tumor size, the equivalent TM became smaller. On the other hand, the larger the motion range, the equivalent TM was found to be increased. Conclusion: Our results showed the equivalent TM changes depending on tumor size and motion range. The tracking plan with TM less than the equivalent TM achieves a dosimetric impact better than the gated plan in less treatment time. This study was partially supported by JSPS Kakenhi and Varian Medical Systems.« less

  16. Organosilicon phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca

    2015-04-01

    Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-to-noise ratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.

  17. Evaluation of the UF/NCI hybrid computational phantoms for use in organ dosimetry of pediatric patients undergoing fluoroscopically guided cardiac procedures

    NASA Astrophysics Data System (ADS)

    Marshall, Emily L.; Borrego, David; Tran, Trung; Fudge, James C.; Bolch, Wesley E.

    2018-03-01

    Epidemiologic data demonstrate that pediatric patients face a higher relative risk of radiation induced cancers than their adult counterparts at equivalent exposures. Infants and children with congenital heart defects are a critical patient population exposed to ionizing radiation during life-saving procedures. These patients will likely incur numerous procedures throughout their lifespan, each time increasing their cumulative radiation absorbed dose. As continued improvements in long-term prognosis of congenital heart defect patients is achieved, a better understanding of organ radiation dose following treatment becomes increasingly vital. Dosimetry of these patients can be accomplished using Monte Carlo radiation transport simulations, coupled with modern anatomical patient models. The aim of this study was to evaluate the performance of the University of Florida/National Cancer Institute (UF/NCI) pediatric hybrid computational phantom library for organ dose assessment of patients that have undergone fluoroscopically guided cardiac catheterizations. In this study, two types of simulations were modeled. A dose assessment was performed on 29 patient-specific voxel phantoms (taken as representing the patient’s true anatomy), height/weight-matched hybrid library phantoms, and age-matched reference phantoms. Two exposure studies were conducted for each phantom type. First, a parametric study was constructed by the attending pediatric interventional cardiologist at the University of Florida to model the range of parameters seen clinically. Second, four clinical cardiac procedures were simulated based upon internal logfiles captured by a Toshiba Infinix-i Cardiac Bi-Plane fluoroscopic unit. Performance of the phantom library was quantified by computing both the percent difference in individual organ doses, as well as the organ dose root mean square values for overall phantom assessment between the matched phantoms (UF/NCI library or reference) and the patient-specific phantoms. The UF/NCI hybrid phantoms performed at percent differences of between 15% and 30% for the parametric set of irradiation events. Among internal logfile reconstructed procedures, the UF/NCI hybrid phantoms performed with RMS organ dose values between 7% and 29%. Percent improvement in organ dosimetry via the use of hybrid library phantoms over the reference phantoms ranged from 6.6% to 93%. The use of a hybrid phantom library, Monte Carlo radiation transport methods, and clinical information on irradiation events provide a means for tracking organ dose in these radiosensitive patients undergoing fluoroscopically guided cardiac procedures. This work was supported by Advanced Laboratory for Radiation Dosimetry Studies, University of Florida, American Association of University Women, National Cancer Institute Grant 1F31 CA159464.

  18. TU-D-209-06: Head and Neck Tissue Dose From X-Ray Scatter to Physicians Performing Cardiovascular Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetterly, K; Schueler, B; Grams, M

    Purpose: The purpose of this work was to characterize the spatial distribution of scatter radiation to the head and neck of a physician performing an x-ray interventional procedure and assess brain, eye lens, and carotid artery dose. Methods: Radiographic x-ray beams were tuned to match the peak energy (56 to 106 keV) and HVL (3.5 to 6.5 mm Al) of x-ray scatter originating from a patient during a fluoroscopic procedure. The radiographic beam was directed upon a Rando phantom from an inferior-left location to mimic a typical patient-operator geometric relationship. A lead-equivalent protective garment was secured to the phantom. Directmore » exposure Gafchromic film (XRQA2) was placed between the transverse plane layers of the head and neck region of the phantom and exposed with 4 scatter-equivalent radiographic beams. A 3×3 cm{sup 2} film placed at the left collar of the phantom was used to monitor incident dose in the position of a radiation monitoring badge. The films were converted to 2D dose distribution maps using FilmQA Pro software and an Epson 11000-XL scanner. The 2D dose distributions maps were normalized by the left collar dose and the percent of left collar dose (%LCD) was calculated for select tissues. Results: The dose maps had high dynamic range (10{sub 4}) and spatial detail. Considering all transverse planes and 4 scatter beam qualities, the median %LCD values were: whole brain 8.5%, left brain 13%, right brain 5.4%, left eye lens 67%, right eye lens 25%, left carotid artery 72%, and right carotid artery 28%. Conclusion: Scatter radiation dose to an operator can be simulated using a tuned radiographic beam and used to expose a phantom and Gafchromic film, thereby creating detailed 2D dose distribution maps. This work facilitates individualized estimation of dose to select head and neck tissues based on an operator’s radiation monitoring badge value.« less

  19. Water-equivalence of gel dosimeters for radiology medical imaging.

    PubMed

    Valente, M; Vedelago, J; Chacón, D; Mattea, F; Velásquez, J; Pérez, P

    2018-03-08

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 kVp) were found to be less than 3% in average. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. IGRT/ART phantom with programmable independent rib cage and tumor motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Olivier C. L., E-mail: o.haas@coventry.ac.uk; Mills, John A.; Land, Imke

    2014-02-15

    Purpose: This paper describes the design and experimental evaluation of the Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology (MAESTRO) thorax phantom, a new anthropomorphic moving ribcage combined with a 3D tumor positioning system to move target inserts within static lungs. Methods: The new rib cage design is described and its motion is evaluated using Vicon Nexus, a commercial 3D motion tracking system. CT studies at inhale and exhale position are used to study the effect of rib motion and tissue equivalence. Results: The 3D target positioning system and the rib cage have millimetre accuracy. Each axismore » of motion can reproduce given trajectories from files or individually programmed sinusoidal motion in terms of amplitude, period, and phase shift. The maximum rib motion ranges from 7 to 20 mm SI and from 0.3 to 3.7 mm AP with LR motion less than 1 mm. The repeatability between cycles is within 0.16 mm root mean square error. The agreement between CT electron and mass density for skin, ribcage, spine hard and inner bone as well as cartilage is within 3%. Conclusions: The MAESTRO phantom is a useful research tool that produces programmable 3D rib motions which can be synchronized with 3D internal target motion. The easily accessible static lungs enable the use of a wide range of inserts or can be filled with lung tissue equivalent and deformed using the target motion system.« less

  1. Dosimetry study for a new in vivo X-ray fluorescence (XRF) bone lead measurement system

    NASA Astrophysics Data System (ADS)

    Nie, Huiling; Chettle, David; Luo, Liqiang; O'Meara, Joanne

    2007-10-01

    A new 109Cd γ-ray induced bone lead measurement system has been developed to reduce the minimum detectable limit (MDL) of the system. The system consists of four 16 mm diameter detectors. It requires a stronger source compared to the "conventional" system. A dosimetry study has been performed to estimate the dose delivered by this system. The study was carried out by using human-equivalent phantoms. Three sets of phantoms were made to estimate the dose delivered to three age groups: 5-year old, 10-year old and adults. Three approaches have been applied to evaluate the dose: calculations, Monte Carlo (MC) simulations, and experiments. Experimental results and analytical calculations were used to validate MC simulation. The experiments were performed by placing Panasonic UD-803AS TLDs at different places in phantoms that representing different organs. Due to the difficulty of obtaining the organ dose and the whole body dose solely by experiments and traditional calculations, the equivalent dose and effective dose were calculated by MC simulations. The result showed that the doses delivered to the organs other than the targeted lower leg are negligibly small. The total effective doses to the three age groups are 8.45/9.37 μSv (female/male), 4.20 μSv, and 0.26 μSv for 5-year old, 10-year old and adult, respectively. An approval to conduct human measurements on this system has been received from the Research Ethics Board based on this research.

  2. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions

    NASA Astrophysics Data System (ADS)

    Kolthammer, Jeffrey A.; Su, Kuan-Hao; Grover, Anu; Narayanan, Manoj; Jordan, David W.; Muzic, Raymond F.

    2014-07-01

    This study evaluated the positron emission tomography (PET) imaging performance of the Ingenuity TF 128 PET/computed tomography (CT) scanner which has a PET component that was designed to support a wider radioactivity range than is possible with those of Gemini TF PET/CT and Ingenuity TF PET/MR. Spatial resolution, sensitivity, count rate characteristics and image quality were evaluated according to the NEMA NU 2-2007 standard and ACR phantom accreditation procedures; these were supplemented by additional measurements intended to characterize the system under conditions that would be encountered during quantitative cardiac imaging with 82Rb. Image quality was evaluated using a hot spheres phantom, and various contrast recovery and noise measurements were made from replicated images. Timing and energy resolution, dead time, and the linearity of the image activity concentration, were all measured over a wide range of count rates. Spatial resolution (4.8-5.1 mm FWHM), sensitivity (7.3 cps kBq-1), peak noise-equivalent count rate (124 kcps), and peak trues rate (365 kcps) were similar to those of the Gemini TF PET/CT. Contrast recovery was higher with a 2 mm, body-detail reconstruction than with a 4 mm, body reconstruction, although the precision was reduced. The noise equivalent count rate peak was broad (within 10% of peak from 241-609 MBq). The activity measured in phantom images was within 10% of the true activity for count rates up to those observed in 82Rb cardiac PET studies.

  3. Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Niita, Koji

    2010-04-21

    The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.

  4. Exposure to 137Cs deposited in soil – A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    da Silveira, Lucas M.; Pereira, Marco A. M.; Neves, Lucio P.; Perini, Ana P.; Belinato, Walmir; Caldas, Linda V. E.; Santos, William S.

    2018-03-01

    In the event of an environmental contamination with radioactive materials, one of the most dangerous materials is 137Cs. In order to evaluate the radiation doses involved in an environmental contamination of soil, with 137Cs, we carried out a computational dosimetric study. We determined the radiation conversion coefficients (CC) for effective (E) and equivalent (H T) doses, using a male and a female anthropomorphic phantoms. These phantoms were coupled with the MCNPX (2.7.0) Monte Carlo simulation software, for three different types of soil. The highest CC[H T] values were for the gonads and skin (male) and bone marrow and skin (female). We found no difference for the different types of soil.

  5. A phantom design and assessment of lesion detectability in PET imaging

    NASA Astrophysics Data System (ADS)

    Wollenweber, Scott D.; Kinahan, Paul E.; Alessio, Adam M.

    2017-03-01

    The early detection of abnormal regions with increased tracer uptake in positron emission tomography (PET) is a key driver of imaging system design and optimization as well as choice of imaging protocols. Detectability, however, remains difficult to assess due to the need for realistic objects mimicking the clinical scene, multiple lesion-present and lesion-absent images and multiple observers. Fillable phantoms, with tradeoffs between complexity and utility, provide a means to quantitatively test and compare imaging systems under truth-known conditions. These phantoms, however, often focus on quantification rather than detectability. This work presents extensions to a novel phantom design and analysis techniques to evaluate detectability in the context of realistic, non-piecewise constant backgrounds. The design consists of a phantom filled with small solid plastic balls and a radionuclide solution to mimic heterogeneous background uptake. A set of 3D-printed regular dodecahedral `features' were included at user-defined locations within the phantom to create `holes' within the matrix of chaotically-packed balls. These features fill at approximately 3:1 contrast to the lumpy background. A series of signal-known-present (SP) and signal-known-absent (SA) sub-images were generated and used as input for observer studies. This design was imaged in a head-like 20 cm diameter, 20 cm long cylinder and in a body-like 36 cm wide by 21 cm tall by 40 cm long tank. A series of model observer detectability indices were compared across scan conditions (count levels, number of scan replicates), PET image reconstruction methods (with/without TOF and PSF) and between PET/CT scanner system designs using the same phantom imaged on multiple systems. The detectability index was further compared to the noise-equivalent count (NEC) level to characterize the relationship between NEC and observer SNR.

  6. X-ray luminescence imaging of water, air, and tissue phantoms

    NASA Astrophysics Data System (ADS)

    Lun, Michael C.; Li, Changqing

    2018-02-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid molecular imaging modality. In XLCT, high energy x-ray photons excite phosphors emitting optical photons for tomographic image reconstruction. During XLCT, the optical signal obtained is thought to only originate from the embedded phosphor particles. However, numerous studies have reported other sources of optical photons such as in air, water, and tissue that are generated from ionization. These sources of optical photons will provide background noise and will limit the molecular sensitivity of XLCT imaging. In this study, using a water-cooled electron multiplying charge-coupled device (EMCCD) camera, we performed luminescence imaging of water, air, and several tissue mimicking phantoms including one embedded with a target containing 0.01 mg/mL of europium-doped gadolinium oxysulfide (GOS:Eu3+) particles during x-ray irradiation using a focused x-ray beam with energy less than the Cerenkov radiation threshold. In addition, a spectrograph was used to measure the x-ray luminescence spectrum. The phantom embedded with the GOS:Eu3+ target displayed the greatest luminescence intensity, followed by the tissue phantom, and finally the water phantom. Our results indicate that the x-ray luminescence intensity from a background phantom is equivalent to a GOS:Eu3+ concentration of 0.8 μg/mL. We also found a 3-fold difference in the radioluminescence intensity between liquid water and air. From the measurements of the emission spectra, we found that water produced a broad spectrum and that a tissue-mimicking phantom made from Intralipid had a different x-ray emission spectrum than one made with TiO2 and India ink. The measured spectra suggest that it is better to use Intralipid instead if TiO2 as optical scatterer for future XLCT imaging.

  7. The effect of anatomical modeling on space radiation dose estimates: a comparison of doses for NASA phantoms and the 5th, 50th, and 95th percentile male and female astronauts.

    PubMed

    Bahadori, Amir A; Van Baalen, Mary; Shavers, Mark R; Dodge, Charles; Semones, Edward J; Bolch, Wesley E

    2011-03-21

    The National Aeronautics and Space Administration (NASA) performs organ dosimetry and risk assessment for astronauts using model-normalized measurements of the radiation fields encountered in space. To determine the radiation fields in an organ or tissue of interest, particle transport calculations are performed using self-shielding distributions generated with the computer program CAMERA to represent the human body. CAMERA mathematically traces linear rays (or path lengths) through the computerized anatomical man (CAM) phantom, a computational stylized model developed in the early 1970s with organ and body profiles modeled using solid shapes and scaled to represent the body morphometry of the 1950 50th percentile (PCTL) Air Force male. With the increasing use of voxel phantoms in medical and health physics, a conversion from a mathematical-based to a voxel-based ray-tracing algorithm is warranted. In this study, the voxel-based ray tracer (VoBRaT) is introduced to ray trace voxel phantoms using a modified version of the algorithm first proposed by Siddon (1985 Med. Phys. 12 252-5). After validation, VoBRAT is used to evaluate variations in body self-shielding distributions for NASA phantoms and six University of Florida (UF) hybrid phantoms, scaled to represent the 5th, 50th, and 95th PCTL male and female astronaut body morphometries, which have changed considerably since the inception of CAM. These body self-shielding distributions are used to generate organ dose equivalents and effective doses for five commonly evaluated space radiation environments. It is found that dosimetric differences among the phantoms are greatest for soft radiation spectra and light vehicular shielding.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.

    Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated pathsmore » of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.« less

  9. The leaded apron revisited: does it reduce gonadal radiation dose in dental radiology?

    PubMed

    Wood, R E; Harris, A M; van der Merwe, E J; Nortjé, C J

    1991-05-01

    A tissue-equivalent anthropomorphic human phantom was used with a lithium fluoride thermoluminescent dosimetry system to evaluate the radiation absorbed dose to the ovarian and testicular region during dental radiologic procedures. Measurements were made with and without personal lead shielding devices consisting of thyroid collar and apron of 0.25 mm lead thickness equivalence. The radiation absorbed dose with or without lead shielding did not differ significantly from control dosimeters in vertex occlusal and periapical views (p greater than 0.05). Personal lead shielding devices did reduce gonadal dose in the case of accidental exposure (p less than 0.05). A leaded apron of 0.25 mm lead thickness equivalent was permeable to radiation in direct exposure testing.

  10. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  11. A method to optimize the processing algorithm of a computed radiography system for chest radiography.

    PubMed

    Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R

    2007-09-01

    A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images.

  12. An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method.

    PubMed

    Karbalaee, Mojtaba; Shahbazi-Gahrouei, Daryoush; Tavakoli, Mohammad B

    2017-01-01

    An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. A program was written for parallel running based on GPU. The code validation was performed by EGSnrc/DOSXYZnrc. Moreover, a semi-automatic, rotary, asymmetric phantom was designed and produced using a bone, the lung, and the soft tissue equivalent materials. All measurements were performed using a Mapcheck dosimeter. The accuracy of the code was validated using the experimental data, which was obtained from the anthropomorphic phantom as the gold standard. The findings showed that, compared with those of DOSXYZnrc in the virtual phantom and for most of the voxels (>95%), <3% dose-difference or 3 mm distance-to-agreement (DTA) was found. Moreover, considering the anthropomorphic phantom, compared to the Mapcheck dose measurements, <5% dose-difference or 5 mm DTA was observed. Fast calculation speed and high accuracy of GPU-based Monte Carlo method in dose calculation may be useful in routine radiation therapy centers as the core and main component of a treatment planning verification system.

  13. The CDRH Helix: an in vivo evaluation.

    PubMed

    Anhalt, D; Hynynen, K; DeYoung, D; Shimm, D; Kundrat, M; Cetas, T

    1990-01-01

    The Helix is an electromagnetic heating device used to induce regional/systemic hyperthermia for cancer therapy. It is a resonant device operating at about 82 MHz with an aperture size of 60 cm x 40 cm (elliptical) x 40 cm long. The Helix deposits power in tissues (or phantoms) by producing a predominantly axial electric field within its radiating aperture. Five pig experiments were performed to provide in vivo verification of specific absorption rate (SAR) measurements and electric field measurements which were obtained earlier in tissue-equivalent phantom and 0.9% saline, respectively. In addition to verifying the power deposition patterns found in phantoms, the pig experiments provided valuable insight into the capabilities and limitations of electromagnetic regional heating. For example, a kidney with limited blood flow, simulating a necrotic tumor, heated very well-although the highest temperature was not always measured there. Also, fat heating may be a problem, since excessive temperatures in the fat were observed in approximately 20% of the heatings. This paper compares the in vivo temperature measurements in pigs with SARs and electric field measurements obtained in phantoms, and also provides a brief overview of results of the Helix in clinical situations.

  14. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR Penta-Guide phantom.

    PubMed

    Sykes, J R; Lindsay, R; Dean, C J; Brettle, D S; Magee, D R; Thwaites, D I

    2008-10-07

    For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF(50)) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of <0.2 mm when compared to the BB method with near equivalent random error (s=0.15 mm). The mean MTF(50) for five measurements was 0.278+/-0.004 lp mm(-1) with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF(50) enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems.

  15. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37.

    PubMed

    Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Koslowksy, M R; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V

    2016-02-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70% of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.

    2007-07-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR™ and Rhinoceros™, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB™ code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm—equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and inter-organ positioning. This work was supported by the National Cancer Institute.

  17. MRI Phantoms – Are There Alternatives to Agar?

    PubMed Central

    Hellerbach, Alexandra; Schuster, Verena; Jansen, Andreas; Sommer, Jens

    2013-01-01

    The suitability of different gelling agents as MRI phantoms was evaluated in terms of homogeneity, gel stability and reproducibility. Time and effort for preparation were also taken into account. The relaxation times of various gel compositions were estimated. Carbomer-980 and Carbopol-974P were determined to be promising novel phantom materials. These gelling agents are readily available, inexpensive and easy to handle given that thermal treatment is not required. Furthermore, the viscoelasticity of their polymer network is pH-dependent. With such characteristics, it was even possible to embed sensitive objects and retrieve them after testing. This was demonstrated with a fiber phantom for Diffusion Weighted MRI applications. Since Carbomer-980 and Carbopol-974P are non-hazardous, they are also suitable for multimodal setups (e.g., MRI as well as ultrasonic imaging). PMID:23940563

  18. MUSCLE EQUIVALENT MATERIAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawashima, K.; Takaku, Y.; Inada, T.

    1961-01-01

    A tissue-equivalent material was constructed from the following components: polyethylene (CH/sub 2/)/sub n/, 71.4% (by weight), NaNO/sub 3/ 21.3%, Al/sub 2/O/sub 3/ 5.5%, and TiC/sub 2/ 1.8%. The attenuation coefficients of this solid compound, Mix. p in x or gamma rays (40kev --1.25 Mev), were shown to be equal to those of a section of pork loin (m. longissimus dorsi). Thus, Mix. p is concluded to be good phantom material for depth dose measuremeat and suitable material for walls of ionizatlon chambers. (Abstr. Japan Med., 2: No. 3, March 1962)

  19. Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique

    NASA Astrophysics Data System (ADS)

    Udayakumar, K.; Sujatha, N.

    2015-03-01

    Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.

  20. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom.

    PubMed

    Craft, Daniel F; Howell, Rebecca M

    2017-09-01

    Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. A new method for CT dose estimation by determining patient water equivalent diameter from localizer radiographs: Geometric transformation and calibration methods using readily available phantoms.

    PubMed

    Zhang, Da; Mihai, Georgeta; Barbaras, Larry G; Brook, Olga R; Palmer, Matthew R

    2018-05-10

    Water equivalent diameter (Dw) reflects patient's attenuation and is a sound descriptor of patient size, and is used to determine size-specific dose estimator from a CT examination. Calculating Dw from CT localizer radiographs makes it possible to utilize Dw before actual scans and minimizes truncation errors due to limited reconstructed fields of view. One obstacle preventing the user community from implementing this useful tool is the necessity to calibrate localizer pixel values so as to represent water equivalent attenuation. We report a practical method to ease this calibration process. Dw is calculated from water equivalent area (Aw) which is deduced from the average localizer pixel value (LPV) of the line(s) in the localizer radiograph that correspond(s) to the axial image. The calibration process is conducted to establish the relationship between Aw and LPV. Localizer and axial images were acquired from phantoms of different total attenuation. We developed a program that automates the geometrical association between axial images and localizer lines and manages the measurements of Dw and average pixel values. We tested the calibration method on three CT scanners: a GE CT750HD, a Siemens Definition AS, and a Toshiba Acquilion Prime80, for both posterior-anterior (PA) and lateral (LAT) localizer directions (for all CTs) and with different localizer filters (for the Toshiba CT). The computer program was able to correctly perform the geometrical association between corresponding axial images and localizer lines. Linear relationships between Aw and LPV were observed (with R 2 all greater than 0.998) on all tested conditions, regardless of the direction and image filters used on the localizer radiographs. When comparing LAT and PA directions with the same image filter and for the same scanner, the slope values were close (maximum difference of 0.02 mm), and the intercept values showed larger deviations (maximum difference of 2.8 mm). Water equivalent diameter estimation on phantoms and patients demonstrated high accuracy of the calibration: percentage difference between Dw from axial images and localizers was below 2%. With five clinical chest examinations and five abdominal-pelvic examinations of varying patient sizes, the maximum percentage difference was approximately 5%. Our study showed that Aw and LPV are highly correlated, providing enough evidence to allow for the Dw determination once the experimental calibration process is established. © 2018 American Association of Physicists in Medicine.

  2. Calibration of a mosfet detection system for 6-MV in vivo dosimetry.

    PubMed

    Scalchi, P; Francescon, P

    1998-03-01

    Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm2. In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 degrees to 90 degrees, the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom irradiation is in agreement with TLD dosimetry within 5%. Ionization chamber and MOSFET midplane dosimetry in inhomogeneous phantoms are in agreement within 2%. MOSFET characteristics are suitable for the in vivo dosimetry relevant to 6-MV treatments, both in normal and TBI setup. The TBI midplane dosimetry using MOSFETs is valid also in the presence of the lung, which is the most critical organ, and allows verifying that calculation of the lung attenuator thicknesses based only on the density is not correct. Our MOSFET dosimetry system can be used also to determine the surface dose by using the water-equivalent depth and extrapolation methods. This procedure depends on the field size used.

  3. Effective dose rate coefficients for exposure to contaminated soil

    DOE PAGES

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.; ...

    2017-05-10

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  4. NOTE: Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool

    NASA Astrophysics Data System (ADS)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  5. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.

    PubMed

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-07

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  6. Effective dose rate coefficients for exposure to contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  7. Validation of a Monte Carlo simulation of the Inveon PET scanner using GATE

    NASA Astrophysics Data System (ADS)

    Lu, Lijun; Zhang, Houjin; Bian, Zhaoying; Ma, Jianhua; Feng, Qiangjin; Chen, Wufan

    2016-08-01

    The purpose of this study is to validate the application of GATE (Geant4 Application for Tomographic Emission) Monte Carlo simulation toolkit in order to model the performance characteristics of Siemens Inveon small animal PET system. The simulation results were validated against experimental/published data in accordance with the NEMA NU-4 2008 protocol for standardized evaluation of spatial resolution, sensitivity, scatter fraction (SF) and noise equivalent counting rate (NECR) of a preclinical PET system. An agreement of less than 18% was obtained between the radial, tangential and axial spatial resolutions of the simulated and experimental results. The simulated peak NECR of mouse-size phantom agreed with the experimental result, while for the rat-size phantom simulated value was higher than experimental result. The simulated and experimental SFs of mouse- and rat- size phantom both reached an agreement of less than 2%. It has been shown the feasibility of our GATE model to accurately simulate, within certain limits, all major performance characteristics of Inveon PET system.

  8. Comparison of the mean quality factors for astronauts calculated using the Q-functions proposed by ICRP, ICRU, and NASA

    NASA Astrophysics Data System (ADS)

    Sato, T.; Endo, A.; Niita, K.

    2013-07-01

    For the estimation of the radiation risk for astronauts, not only the organ absorbed doses but also their mean quality factors must be evaluated. Three functions have been proposed by different organizations for expressing the radiation quality, including the Q(L), Q(y), and QNASA(Z, E) relationships as defined in International Committee of Radiological Protection (ICRP) Publication 60, International Commission on Radiation Units and Measurements (ICRU) Report 40, and National Aeronautics and Space Administration (NASA) TP-2011-216155, respectively. The Q(L) relationship is the most simple and widely used for space dosimetry, but the use of the latter two functions enables consideration of the difference in the track structure of various charged particles during the risk estimation. Therefore, we calculated the mean quality factors in organs and tissues in ICRP/ICRU reference voxel phantoms for the isotropic exposure to various mono-energetic particles using the three Q-functions. The Particle and Heavy Ion Transport code System PHITS was employed to simulate the particle motions inside the phantoms. The effective dose equivalents and the phantom-averaged effective quality factors for the astronauts were then estimated from the calculated mean quality factors multiplied by the fluence-to-dose conversion coefficients and cosmic-ray fluxes inside a spacecraft. It was found from the calculations that QNASA generally gives the largest values for the phantom-averaged effective quality factors among the three Q-functions for neutron, proton, and lighter-ion irradiation, whereas Q(L) provides the largest values for heavier-ion irradiation. Overall, the introduction of QNASA instead of Q(L) or Q(y) in astronaut dosimetry results in the increase the effective dose equivalents because the majority of the doses are composed of the contributions from protons and neutrons, although this tendency may change by the calculation conditions.

  9. Validation of GPU based TomoTherapy dose calculation engine.

    PubMed

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) < 1. The worst case observed in the phantom had 0.22% voxels violating the criterion. In patient cases, the worst percentage of voxels violating the criterion was 0.57%. For absolute point dose verification, all cases agreed with measurement to within ±3% with average error magnitude within 1%. All cases passed the acceptance criterion that more than 95% of the pixels have Γ(3%, 3 mm) < 1 in film measurement, and the average passing pixel percentage is 98.5%-99%. The GPU dose engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  10. A scintillator-based approach to monitor secondary neutron production during proton therapy.

    PubMed

    Clarke, S D; Pryser, E; Wieger, B M; Pozzi, S A; Haelg, R A; Bashkirov, V A; Schulte, R W

    2016-11-01

    The primary objective of this work is to measure the secondary neutron field produced by an uncollimated proton pencil beam impinging on different tissue-equivalent phantom materials using organic scintillation detectors. Additionally, the Monte Carlo code mcnpx-PoliMi was used to simulate the detector response for comparison to the measured data. Comparison of the measured and simulated data will validate this approach for monitoring secondary neutron dose during proton therapy. Proton beams of 155- and 200-MeV were used to irradiate a variety of phantom materials and secondary particles were detected using organic liquid scintillators. These detectors are sensitive to fast neutrons and gamma rays: pulse shape discrimination was used to classify each detected pulse as either a neutron or a gamma ray. The mcnpx-PoliMi code was used to simulate the secondary neutron field produced during proton irradiation of the same tissue-equivalent phantom materials. An experiment was performed at the Loma Linda University Medical Center proton therapy research beam line and corresponding models were created using the mcnpx-PoliMi code. The authors' analysis showed agreement between the simulations and the measurements. The simulated detector response can be used to validate the simulations of neutron and gamma doses on a particular beam line with or without a phantom. The authors have demonstrated a method of monitoring the neutron component of the secondary radiation field produced by therapeutic protons. The method relies on direct detection of secondary neutrons and gamma rays using organic scintillation detectors. These detectors are sensitive over the full range of biologically relevant neutron energies above 0.5 MeV and allow effective discrimination between neutron and photon dose. Because the detector system is portable, the described system could be used in the future to evaluate secondary neutron and gamma doses on various clinical beam lines for commissioning and prospective data collection in pediatric patients treated with proton therapy.

  11. SU-F-J-205: Effect of Cone Beam Factor On Cone Beam CT Number Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W; Hua, C; Farr, J

    Purpose: To examine the suitability of a Catphan™ 700 phantom for image quality QA of a cone beam computed tomography (CBCT) system deployed for proton therapy. Methods: Catphan phantoms, particularly Catphan™ 504, are commonly used in image quality QA for CBCT. As a newer product, Catphan™ 700 offers more tissue equivalent inserts which may be useful for generating the electron density – CT number curve for CBCT based treatment planning. The sensitometry-and-geometry module used in Catphan™ 700 is located at the end of the phantom and after the resolution line pair module. In Catphan™ 504 the line pair module ismore » located at the end of the phantom and after the sensitometry-and-geometry module. To investigate the effect of difference in location on CT number accuracy due to the cone beam factor, we scanned the Catphan™ 700 with the central plane of CBCT at the center of the phantom, line pair and sensitometry-andgeometry modules of the phantom, respectively. The protocol head and thorax scan modes were used. For each position, scans were repeated 4 times. Results: For the head scan mode, the standard deviation (SD) of the CT numbers of each insert under 4 repeated scans was up to 20 HU, 11 HU, and 11 HU, respectively, for the central plane of CBCT located at the center of the phantom, line pair, and sensitometry-and-geometry modules of the phantom. The mean of the SD was 9.9 HU, 5.7 HU, and 5.9 HU, respectively. For the thorax mode, the mean of the SD was 4.5 HU, 4.4 HU, and 4.4 HU, respectively. The assessment of image quality based on resolution and spatial linearity was not affected by imaging location changes. Conclusion: When the Catphan™ 700 was aligned to the center of imaging region, the CT number accuracy test may not meet expectations. We recommend reconfiguration of the modules.« less

  12. SU-E-T-353: Verification of Water Equivalent Thickness (WET) and Water Equivalent Spreadness (WES) of Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demez, N; Lee, T; Keppel, Cynthia

    Purpose: To verify calculated water equivalent thickness (WET) and water equivalent spreadness (WES) in various tissue equivalent media for proton therapy Methods: Water equivalent thicknesses (WET) of tissue equivalent materials have been calculated using the Bragg-Kleeman rule. Lateral spreadness and fluence reduction of proton beams both in those media were calculated using proton loss model (PLM) algorithm. In addition, we calculated lateral spreadness ratios with respect to that in water at the same WET depth and so the WES was defined. The WETs of those media for different proton beam energies were measured using MLIC (Multi-Layered Ionization Chamber). Also, fluencemore » and field sizes in those materials of various thicknesses were measured with ionization chambers and films Results: Calculated WETs are in agreement with measured WETs within 0.5%. We found that water equivalent spreadness (WES) is constant and the fluence and field size measurements verify that fluence can be estimated using the concept of WES. Conclusions: Calculation of WET based on the Bragg-Kleeman rule as well as the constant WES of proton beams for tissue equivalent phantoms can be used to predict fluence and field sizes at the depths of interest both in tissue equivalent media accurately for clinically available protonenergies.« less

  13. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.

    PubMed

    Kim, Hanna; Hau, Nguyen Trung; Chae, Yu-Gyeong; Lee, Byeong-Il; Kang, Hyun Wook

    2016-04-01

    Artificial skin phantoms have been developed as an alternative tissue for human skin experiments due to convenient use and easy storage. However, fabricating both thin (∼100 μm) epidermis and relatively thick dermis is often cumbersome, and most developed phantoms have hardly reflected specific human skin types. The objective of this study was to fabricate skin phantoms with 3D printing technique to emulate various human skin types (I-VI) along with the corresponding optical and mechanical properties for laser tattoo removal. Both gelatin and agar powders were mixed with coffee and TiO2 particles to fabricate skin phantoms with materials properties for various skin types (I-VI). A 3D printer was employed to precisely control the thickness of each phantom for epidermis and dermis layers. A number of concentrations of the coffee and TiO2 particles were used to determine the degree of absorption and scattering effects in various skin types. The optical properties between 500 and 1,000 nm for the fabricated phantoms were measured by double-integrating spheres with an inverse adding-doubling (IAD) algorithm. Optical coherence tomography (OCT) and rheometer were also utilized to evaluate optical (absorption and reduced scattering coefficients) and mechanical properties (compression modulus) of the fabricated phantoms, respectively. Visible color inspections presented that the skin phantoms for types I, III, and VI similarly emulated the color space of the human skin types. The optical property measurements demonstrated that the absorption (μa) and reduced scattering (μ(s')) coefficients decreased with wavelengths. Compared to the human skin type VI, a dermis phantom represented quite equivalent values of μa and μ(s') whereas an epidermis phantom showed up to 30% lower μa but almost identical μ(s') over the wavelengths. The OCT measurements confirmed that the thicknesses of the epidermis and the dermis phantoms were measured to be 138.50 ± 0.01 μm and 0.81 ± 0.04 mm, respectively. The mechanical properties of the phantoms mixed with the agar volume of 40% yielded a compression modulus of 83.7 ± 14.8 kPa, which well corresponded to that of human forearm skin (50-95 kPa). The 3D printing technique was able to reliably fabricate the double-layered phantoms emulating a variety of skin types (I-VI) along with the comparable optical and mechanical properties. Further investigations will incorporate artificial chromophores into the fabricated skin phantoms to reliably evaluate the new therapeutic wavelengths for laser tattoo removal. © 2016 Wiley Periodicals, Inc.

  14. SU-F-I-01: Normalized Mean Glandular Dose Values for Dedicated Breast CT Using Realistic Breast-Shaped Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, A; Boone, J

    Purpose: To estimate normalized mean glandular dose values for dedicated breast CT (DgN-CT) using breast CT-derived phantoms and compare to estimations using cylindrical phantoms. Methods: Segmented breast CT (bCT) volume data sets (N=219) were used to measure effective diameter profiles and were grouped into quintiles by volume. The profiles were averaged within each quintile to represent the range of breast sizes found clinically. These profiles were then used to generate five voxelized computational phantoms (V1, V2, V3, V4, V5 for the small to large phantom sizes, respectively), and loaded into the MCNP6 lattice geometry to simulate normalized mean glandular dosemore » coefficients (DgN-CT) using the system specifications of the Doheny-prototype bCT scanner in our laboratory. The DgN-CT coefficients derived from the bCT-derived breast-shaped phantoms were compared to those generated using a simpler cylindrical phantom using a constant volume, and the following constraints: (1) Length=1.5*radius; (2) radius determined at chest wall (Rcw), and (3) radius determined at the phantom center-of-mass (Rcm). Results: The change in Dg-NCT coefficients averaged across all phantom sizes, was - 0.5%, 19.8%, and 1.3%, for constraints 1–3, respectively. This suggests that the cylindrical assumption is a good approximation if the radius is taken at the breast center-of-mass, but using the radius at the chest wall results in an underestimation of the glandular dose. Conclusion: The DgN-CT coefficients for bCT-derived phantoms were compared against the assumption of a cylindrical phantom and proved to be essentially equivalent when the cylinder radius was set to r=1.5/L or Rcm. While this suggests that for dosimetry applications a patient’s breast can be approximated as a cylinder (if the correct radius is applied), this assumes a homogenous composition of breast tissue and the results may be different if the realistic heterogeneous distribution of glandular tissue is considered. Research reported in this paper was supported in part by the National Cancer Institute of the National Institutes of Health under award R01CA181081. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institue of Health.« less

  15. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-19

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and--most importantly--use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density.more » Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.« less

  16. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization (abstract)

    NASA Astrophysics Data System (ADS)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-01

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and-most importantly-use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  17. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting.

    PubMed

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.

  18. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting

    PubMed Central

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764

  19. Simulations of a micro-PET system based on liquid xenon

    NASA Astrophysics Data System (ADS)

    Miceli, A.; Glister, J.; Andreyev, A.; Bryman, D.; Kurchaninov, L.; Lu, P.; Muennich, A.; Retiere, F.; Sossi, V.

    2012-03-01

    The imaging performance of a high-resolution preclinical micro-positron emission tomography (micro-PET) system employing liquid xenon (LXe) as the gamma-ray detection medium was simulated. The arrangement comprises a ring of detectors consisting of trapezoidal LXe time projection ionization chambers and two arrays of large area avalanche photodiodes for the measurement of ionization charge and scintillation light. A key feature of the LXePET system is the ability to identify individual photon interactions with high energy resolution and high spatial resolution in three dimensions and determine the correct interaction sequence using Compton reconstruction algorithms. The simulated LXePET imaging performance was evaluated by computing the noise equivalent count rate, the sensitivity and point spread function for a point source according to the NEMA-NU4 standard. The image quality was studied with a micro-Derenzo phantom. Results of these simulation studies included noise equivalent count rate peaking at 1326 kcps at 188 MBq (705 kcps at 184 MBq) for an energy window of 450-600 keV and a coincidence window of 1 ns for mouse (rat) phantoms. The absolute sensitivity at the center of the field of view was 12.6%. Radial, tangential and axial resolutions of 22Na point sources reconstructed with a list-mode maximum likelihood expectation maximization algorithm were ⩽0.8 mm (full-width at half-maximum) throughout the field of view. Hot-rod inserts of <0.8 mm diameter were resolvable in the transaxial image of a micro-Derenzo phantom. The simulations show that a LXe system would provide new capabilities for significantly enhancing PET images.

  20. Pencil beam proton radiography using a multilayer ionization chamber

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  1. WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ger, R; Craft, DF; Burgett, EA

    Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by anmore » ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between measured and calculated doses will improve.« less

  2. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans

    PubMed Central

    Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid

    2010-01-01

    Background We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 μSv). Methods We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. Results The reconstructed attenuation coefficient of water at 140 keV was .150 ± .003/cm in the uniform region of the ACR phantom, .151 ± .003/cm and .151 ± .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 ± 6.5 before and 87.9 ± 3.3 after AC (average ± standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. Conclusion The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC. PMID:20169476

  3. Pencil beam proton radiography using a multilayer ionization chamber.

    PubMed

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-07

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  4. Shooting with sound: optimizing an affordable ballistic gelatin recipe in a graded ultrasound phantom education program.

    PubMed

    Tanious, Shariff F; Cline, Jamie; Cavin, Jennifer; Davidson, Nathan; Coleman, J Keegan; Goodmurphy, Craig W

    2015-06-01

    The goal of this study was to investigate the durability and longevity of gelatin formulas for the production of staged ultrasound phantoms for education. Gelatin phantoms were prepared from Knox gelatin (Kraft Foods, Northfield, IL) and a standard 10%-by-mass ordinance gelatin solution. Phantoms were durability tested by compressing to a 2-cm depth until cracking was visible. Additionally, 16 containers with varying combinations of phenol, container type, and storage location were tested for longevity against desiccation and molding. Once formulation was determined, 4 stages of phantoms from novice to clinically relevant were poured, and clinicians with ultrasound training ranked them on a 7-point Likert scale based on task difficulty, phantom suitability, and fidelity. On durability testing, the ballistic gelatin outperformed the Knox gelatin by more than 200 compressions. On longevity testing, gelatin with a 0.5% phenol concentration stored with a lid and refrigeration lasted longest, whereas containers without a lid had desiccation within 1 month, and those without phenol became moldy within 6 weeks. Ballistic gelatin was more expensive when buying in small quantities but was 7.4% less expensive when buying in bulk. The staged phantoms were deemed suitable for training, but clinicians did not consistently rank the phantoms in the intended order of 1 to 4 (44%). Refrigerated and sealed ballistic gelatin with phenol was a cost-effective method for creating in-house staged ultrasound phantoms suitable for large-scale ultrasound educational training needs. Clinician ranking of phantoms may be influenced by current training methods that favor biological tissue scanning as easier. © 2015 by the American Institute of Ultrasound in Medicine.

  5. Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink

    PubMed Central

    Spinelli, L.; Botwicz, M.; Zolek, N.; Kacprzak, M.; Milej, D.; Sawosz, P.; Liebert, A.; Weigel, U.; Durduran, T.; Foschum, F.; Kienle, A.; Baribeau, F.; Leclair, S.; Bouchard, J.-P.; Noiseux, I.; Gallant, P.; Mermut, O.; Farina, A.; Pifferi, A.; Torricelli, A.; Cubeddu, R.; Ho, H.-C.; Mazurenka, M.; Wabnitz, H.; Klauenberg, K.; Bodnar, O.; Elster, C.; Bénazech-Lavoué, M.; Bérubé-Lauzière, Y.; Lesage, F.; Khoptyar, D.; Subash, A. A.; Andersson-Engels, S.; Di Ninni, P.; Martelli, F.; Zaccanti, G.

    2014-01-01

    A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable. PMID:25071947

  6. Organ dose measurement using Optically Stimulated Luminescence Detector (OSLD) during CT examination

    NASA Astrophysics Data System (ADS)

    Yusuf, Muhammad; Alothmany, Nazeeh; Abdulrahman Kinsara, Abdulraheem

    2017-10-01

    This study provides detailed information regarding the imaging doses to patient radiosensitive organs from a kilovoltage computed tomography (CT) scan procedure using OSLD. The study reports discrepancies between the measured dose and the calculated dose from the ImPACT scan, as well as a comparison with the dose from a chest X-ray radiography procedure. OSLDs were inserted in several organs, including the brain, eyes, thyroid, lung, heart, spinal cord, breast, spleen, stomach, liver and ovaries, of the RANDO phantom. Standard clinical scanning protocols were used for each individual site, including the brain, thyroid, lung, breast, stomach, liver and ovaries. The measured absorbed doses were then compared with the simulated dose obtained from the ImPACT scan. Additionally, the equivalent doses for each organ were calculated and compared with the dose from a chest X-ray radiography procedure. Absorbed organ doses measured by OSLD in the RANDO phantom of up to 17 mGy depend on the organ scanned and the scanning protocols used. A maximum 9.82% difference was observed between the target organ dose measured by OSLD and the results from the ImPACT scan. The maximum equivalent organ dose measured during this experiment was equal to 99.899 times the equivalent dose from a chest X-ray radiography procedure. The discrepancies between the measured dose with the OSLD and the calculated dose from the ImPACT scan were within 10%. This report recommends the use of OSLD for measuring the absorbed organ dose during CT examination.

  7. Studies on heavy charged particle interaction, water equivalence and Monte Carlo simulation in some gel dosimeters, water, human tissues and water phantoms

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2015-09-01

    Some gel dosimeters, water, human tissues and water phantoms were investigated with respect to their radiological properties in the energy region 10 keV-10 MeV. The effective atomic numbers (Zeff) and electron densities (Ne) for some heavy charged particles such as protons, He ions, B ions and C ions have been calculated for the first time for Fricke, MAGIC, MAGAT, PAGAT, PRESAGE, water, adipose tissue, muscle skeletal (ICRP), muscle striated (ICRU), plastic water, WT1 and RW3 using mass stopping powers from SRIM Monte Carlo software. The ranges and straggling were also calculated for the given materials. Two different set of mass stopping powers were used to calculate Zeff for comparison. The water equivalence of the given materials was also determined based on the results obtained. The Monte Carlo simulation of the charged particle transport was also done using SRIM code. The heavy ion distribution along with its parameters were shown for the given materials for different heavy ions. Also the energy loss and damage events in water when irradiated with 100 keV heavy ions were studied in detail.

  8. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.

    PubMed

    Zink, K; Wulff, J

    2011-02-01

    In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p(wall) and P(cav)) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount deltaz. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift deltaz for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified. The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps deltaz around the depth of measurement. The optimal shift deltaz is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation correction is calculated as the ratio between doses for the complete chamber and a wall-less air cavity. The high energy part of the fluence spectra within the chamber strongly varies even with small chamber shifts, allowing the determination of deltaz within micrometers. For the NACP-02 chamber a shift deltaz = -0.058 cm results. This value is independent of the energy of the primary electrons as well as of the depth within the phantom and it is in good agreement with the value recommended in the German dosimetry protocol. Applying this shift, the calculated wall perturbation correction as a function of depth is varying less than 1% from zero up to the half value depth R50 for electron energies in the range of 6-21 MeV. The remaining depth dependence can mainly be attributed to the scatter properties of the entrance window. When neglecting the nonwater equivalence of the entrance window, the variation of p(wall) with depth is up to 10% and more, especially for low electron energies. The variation of the wall perturbation correction for the NACP-02 chamber in clinical electron beams strongly depends on the positioning of the chamber. Applying a shift deltaz = -0.058 cm toward the focus ensures that the primary electron spectrum within the chamber bears the largest resemblance to the fluence of a wall-less cavity. Hence, the influence of the chamber walls on the perturbation correction can be separated out and the residual variation of p(wall) with depth is minimized.

  9. Electronic noise in CT detectors: Impact on image noise and artifacts.

    PubMed

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  10. Performance Evaluation of the microPET®—FOCUS-F120

    NASA Astrophysics Data System (ADS)

    Laforest, Richard; Longford, Desmond; Siegel, Stefan; Newport, Danny F.; Yap, Jeffrey

    2007-02-01

    microPETreg-Focus-F120 is the latest model of dedicated small animal PET scanners from CTI-Concorde Microsystems LLC, (Knoxville, TN). This scanner, based on the geometry of the microPET-R4, takes advantage of several detector modifications to the coincidence processing electronics that improve the image resolution, sensitivity, and counting rate performance as compared to the predecessor models. This work evaluates the performance of the Focus-F120 system and shows its improvement over the earlier models. In particular, the spatial resolution is shown to improve from 2.32 to 1.69 mm at 5 mm radial distance and the peak absolute sensitivity increases from 4.1% to 7.1% compared to the microPET-R4. The counting rate capability, expressed in noise equivalent counting rate (NEC-1R), was shown to peak at over 800 kcps at 88 MBq for both systems using a mouse phantom. For this small phantom, the NECR counting rate is limited by the data transmission bandwidth between the scanner and the acquisition console. The rat-like phantom showed peak NEC-1R value at 300 kcps at 140 MBq. Evaluation of image quality and quantitation accuracy was also performed using specially designed phantoms and animal experiments

  11. Transmission imaging for integrated PET-MR systems.

    PubMed

    Bowen, Spencer L; Fuin, Niccolò; Levine, Michael A; Catana, Ciprian

    2016-08-07

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method's performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with (18)F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm(-1) was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly less artifacts and improved dynamic range, and differed greatly for highly attenuating materials in the case of the patient table, compared to CT results. Use of a fixed torus geometry, in combination with translation of the patient table to perform complete tomographic sampling, generated highly quantitative measured μ-maps and is expected to produce images with significantly higher SNR than competing fixed geometries at matched total acquisition time.

  12. Transmission imaging for integrated PET-MR systems

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer L.; Fuin, Niccolò; Levine, Michael A.; Catana, Ciprian

    2016-08-01

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method’s performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with 18F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm-1 was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly less artifacts and improved dynamic range, and differed greatly for highly attenuating materials in the case of the patient table, compared to CT results. Use of a fixed torus geometry, in combination with translation of the patient table to perform complete tomographic sampling, generated highly quantitative measured μ-maps and is expected to produce images with significantly higher SNR than competing fixed geometries at matched total acquisition time.

  13. Performance of two commercial electron beam algorithms over regions close to the lung-mediastinum interface, against Monte Carlo simulation and point dosimetry in virtual and anthropomorphic phantoms.

    PubMed

    Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R

    2014-03-01

    Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  15. WE-DE-207B-04: Quantitative Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, H; Zhou, B; Beidokhti, D

    Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodinemore » signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.« less

  16. Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: comparison between IQ-SPECT and LEHR.

    PubMed

    Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna

    2017-12-01

    Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.

  17. Commissioning a hobby cutting device for radiochromic film preparation.

    PubMed

    Zolfaghari, Somayeh; Francis, Kirby E; Kairn, Tanya; Crowe, Scott B

    2017-06-01

    In addition to a high spatial resolution and well characterised dose response, one of the major advantages of radiochromic film as a dosimeter is that sheets of film can be cut into pieces suitable for use as calibration films, and for in vivo and phantom measurements. The cutting of film is typically done using scissors or a guillotine, and this process can be time-consuming, limited in precision, requires extensive handling and does not allow holes to be cut from the film without cutting from an existing edge. This study investigated the use of a Brother ScanNCut hobby cutting system for EBT3 film preparation. The optimal operating parameters (blade size, pressure, speed) that resulted in precise cuts with minimal delamination at cut edges were identified using test cutting patterns. These parameters were then used to cut a large film insert for a stereotactic head phantom for comparison against an insert cut with scissors. While the hobby cutting system caused a wider region of delamination at the film edge (1.8 mm) compared to scissors (1 mm), the hobby cutting system was found to be able to produce reproducible cuts more efficiently and more accurately than scissors. The use of the hobby cutting system is recommended for complex phantom inserts (containing sharp corners or holes for alignment rods) or in situations where large numbers of film pieces need to be prepared.

  18. MO-B-BRD-01: Creation of 3D Printed Phantoms for Clinical Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E.

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less

  19. Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.

    PubMed

    van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  20. Phantom Preparation and Optical Property Determination

    NASA Astrophysics Data System (ADS)

    He, Di; He, Jie; Mao, Heng

    2018-12-01

    Tissue-like optical phantoms are important in testing new imaging algorithms. Homogeneous optical phantoms with determined optical properties are the first step of making a proper heterogeneous phantom for multi-modality imaging. Typical recipes for such phantoms consist of epoxy resin, hardener, India ink and titanium oxide. By altering the concentration of India ink and titanium oxide, we are able to get multiple homogeneous phantoms with different absorption and scattering coefficients by carefully mixing all the ingredients. After fabricating the phantoms, we need to find their individual optical properties including the absorption and scattering coefficients. This is achieved by solving diffusion equation of each phantom as a homogeneous slab under canonical illumination. We solve the diffusion equation of homogeneous slab in frequency domain and get the formula for theoretical measurements. Under our steady-state diffused optical tomography (DOT) imaging system, we are able to obtain the real distribution of the incident light produced by a laser. With this source distribution we got and the formula we derived, numerical experiments show how measurements change while varying the value of absorption and scattering coefficients. Then we notice that the measurements alone will not be enough for us to get unique optical properties for steady-state DOT problem. Thus in order to determine the optical properties of a homogeneous slab we want to fix one of the coefficients first and use optimization methods to find another one. Then by assemble multiple homogeneous slab phantoms with different optical properties, we are able to obtain a heterogeneous phantom suitable for testing multi-modality imaging algorithms. In this paper, we describe how to make phantoms, derive a formula to solve the diffusion equation, demonstrate the non-uniqueness of steady-state DOT problem by analysing some numerical results of our formula, and finally propose a possible way to determine optical properties for homogeneous slab for our future work.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jermoumi, M; Ngwa, W; Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

    Purpose: Use of Small Animal Radiation Research Platform (SARRP) systems for conducting state-of-the-art image guided radiotherapy (IGRT) research on small animals has become more common over the past years. The purpose of this work is to develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the SARRP. Methods: A QA phantom was developed for carrying out daily, monthly and annual QA tasks including imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of nine (60×60×5 mm3) KV-energy tissue equivalent solid water slabs that can be employed formore » annual dosimetry QA with film. Three of the top slabs are replaceable with ones incorporating Mosfets or OSLDs arranged in a quincunx pattern, or a slab drilled to accommodate an ion chamber insert. These top slabs are designed to facilitate routine daily and monthly QA tasks such as output constancy, isocenter congruency test, treatment planning system (TPS) QA, etc. One slab is designed with inserts for image QA. A prototype of the phantom was applied to test the performance of the imaging, planning and treatment delivery systems. Results: Output constancy test results showed daily variations within 3%. For isocenter congruency test, the phantom could be used to detect 0.3 mm deviations of the CBCT isocenter from the radiation isocenter. Using the Mosfet in phantom as target, the difference between TPS calculations and measurements was within 5%. Image-quality parameters could also be assessed in terms of geometric accuracy, CT number accuracy, linearity, noise and image uniformity, etc. Conclusion: The developed phantom can be employed as a simple tool for comprehensive performance evaluation of the SARRP. The study provides a reference for development of a comprehensive quality assurance program for the SARRP, with proposed tolerances and frequency of required tests.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelletier, C; Jung, J; Lee, C

    Purpose: Epidemiological study of second cancer risk for cancer survivors often requires the dose to normal tissues located outside the anatomy covered by radiological imaging, which is usually limited to tumor and organs at risk. We have investigated the feasibility of using whole body computational human phantoms for estimating out-of-field organ doses for patients treated by Intensity Modulated Radiation Therapy (IMRT). Methods: Identical 7-field IMRT prostate plans were performed using X-ray Voxel Monte Carlo (XVMC), a radiotherapy-specific Monte Carlo transport code, on the computed tomography (CT) images of the torso of an adult male patient (175 cm height, 66 kgmore » weight) and an adult male hybrid computational phantom with the equivalent body size. Dose to the liver, right lung, and left lung were calculated and compared. Results: Considerable differences are seen between the doses calculated by XVMC for the patient CT and the hybrid phantom. One major contributing factor is the treatment method, deep inspiration breath hold (DIBH), used for this patient. This leads to significant differences in the organ position relative to the treatment isocenter. The transverse distances from the treatment isocenter to the inferior border of the liver, left lung, and right lung are 19.5cm, 29.5cm, and 30.0cm, respectively for the patient CT, compared with 24.3cm, 36.6cm, and 39.1cm, respectively, for the hybrid phantom. When corrected for the distance, the mean doses calculated using the hybrid phantom are within 28% of those calculated using the patient CT. Conclusion: This study showed that mean dose to the organs located in the missing CT coverage can be reconstructed by using whole body computational human phantoms within reasonable dosimetric uncertainty, however appropriate corrections may be necessary if the patient is treated with a technique that will significantly deform the size or location of the organs relative to the hybrid phantom.« less

  3. Development of a Standardized Cranial Phantom for Training and Optimization of Functional Stereotactic Operations.

    PubMed

    Krüger, Marie T; Coenen, Volker A; Egger, Karl; Shah, Mukesch; Reinacher, Peter C

    2018-06-13

    In recent years, simulations based on phantom models have become increasingly popular in the medical field. In the field of functional and stereotactic neurosurgery, a cranial phantom would be useful to train operative techniques, such as stereo-electroencephalography (SEEG), to establish new methods as well as to develop and modify radiological techniques. In this study, we describe the construction of a cranial phantom and show examples for it in stereotactic and functional neurosurgery and its applicability with different radiological modalities. We prepared a plaster skull filled with agar. A complete operation for deep brain stimulation (DBS) was simulated using directional leads. Moreover, a complete SEEG operation including planning, implantation of the electrodes, and intraoperative and postoperative imaging was simulated. An optimally customized cranial phantom is filled with 10% agar. At 7°C, it can be stored for approximately 4 months. A DBS and an SEEG procedure could be realistically simulated. Lead artifacts can be studied in CT, X-ray, rotational fluoroscopy, and MRI. This cranial phantom is a simple and effective model to simulate functional and stereotactic neurosurgical operations. This might be useful for teaching and training of neurosurgeons, establishing operations in a new center and for optimization of radiological examinations. © 2018 S. Karger AG, Basel.

  4. EVALUATION OF EYE LENS DOSE TO WORKERS IN THE STEAM GENERATOR AT THE KOREAN OPTIMIZED POWER REACTOR 1000.

    PubMed

    Maeng, Sung Jun; Kim, Jinhwan; Cho, Gyuseong

    2018-03-15

    ICRP (2011) revised the dose limit to the eye lens to 20 mSv/y based on a recent epidemiological study of radiation-induced cataracts. Maintenance of steam generators at nuclear power plants is one of the highest radiation-associated tasks within a non-uniform radiation field. This study aims to evaluate eye lens doses in the steam generators of the Korean OPR1000 design. The source term was characterized based on the CRUD-specific activity, and both the eye lens dose and organ dose were simulated using MCNP6 combined with an ICRP voxel phantom and a mesh phantom, respectively. The eye lens dose was determined to be 5.39E-02-9.43E-02 Sv/h, with a negligible effect by beta particles. As the effective dose was found to be 0.81-1.21 times the lens equivalent dose depending on the phantom angles, the former can be used to estimate the lens dose in the SG of the OPR1000 for radiation monitoring purposes.

  5. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, A; Stafford, R; Yung, J

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR.more » Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.« less

  6. Development and characterisation of a brain tumour mimicking protoporphyrin IX fluorescence phantom (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Tisca, Cristiana; Peveler, William; Noimark, Sacha; Desjardins, Adrien E.; Parkin, Ivan P.; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    5-ALA-PpIX fluorescence-guided brain tumour resection can increase the accuracy at which cancerous tissue is removed and thereby improve patient outcomes, as compared with standard white light imaging. Novel optical devices that aim to increase the specificity and sensitivity of PpIX detection are typically assessed by measurements in tissue-mimicking optical phantoms of which all optical properties are defined. Current existing optical phantoms specified for PpIX lack consistency in their optical properties, and stability with respect to photobleaching, thus yielding an unstable correspondence between PpIX concentration and the fluorescence intensity. In this study, we developed a set of aqueous-based phantoms with different compositions, using deionised water or PBS buffer as background medium, intralipid as scattering material, bovine haemoglobin as background absorber, and either PpIX dissolved in DMSO or a novel nanoparticle with similar absorption and emission spectrum to PpIX as the fluorophore. We investigated the phantom stability in terms of aggregation and photobleaching by comparing with different background medium and fluorophores, respectively. We characterised the fluorescence intensity of the fluorescent nanoparticle in different concentration of intralipid and haemoglobin and its time-dependent stability, as compared to the PpIX-induced fluorescence. We corroborated that the background medium was essential to prepare a stable aqueous phantom. The novel fluorescent nanoparticle used as surrogate fluorophore of PpIX presented an improved temporal stability and a reliable correspondence between concentration and emission intensity. We proposed an optimised phantom composition and recipe to produce reliable and repeatable phantom for validation of imaging device.

  7. SU-F-E-10: Student-Driven Exploration of Radiographic Material Properties, Phantom Construction, and Clinical Workflows Or: The Extraordinary Life of CANDY MAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahon, RN; Riblett, MJ; Hugo, GD

    Purpose: To develop a hands-on learning experience that explores the radiological and structural properties of everyday items and applies this knowledge to design a simple phantom for radiotherapy exercises. Methods: Students were asked to compile a list of readily available materials thought to have radiation attenuation properties similar to tissues within the human torso. Participants scanned samples of suggested materials and regions of interest (ROIs) were used to characterize bulk attenuation properties. Properties of each material were assessed via comparison to a Gammex Tissue characterization phantom and used to construct a list of inexpensive near-tissue-equivalent materials. Critical discussions focusing onmore » samples found to differ from student expectations were used to revise and narrow the comprehensive list. From their newly acquired knowledge, students designed and constructed a simple thoracic phantom for use in a simulated clinical workflow. Students were tasked with setting up the phantom and acquiring planning CT images for use in treatment planning and dose delivery. Results: Under engineer and physicist supervision, students were trained to use a CT simulator and acquired images for approximately 60 different foodstuffs, candies, and household items. Through peer discussion, students gained valuable insights and were made to review preconceptions about radiographic material properties. From a subset of imaged materials, a simple phantom was successfully designed and constructed to represent a human thorax. Students received hands-on experience with clinical treatment workflows by learning how to perform CT simulation, create a treatment plan for an embedded tumor, align the phantom for treatment, and deliver a treatment fraction. Conclusion: In this activity, students demonstrated their ability to reason through the radiographic material selection process, construct a simple phantom to specifications, and exercise their knowledge of clinical workflows. Furthermore, the enjoyable and inexpensive nature of this project proved to attract participant interest and drive creative exploration. Mahon and Riblett have nothing to disclose; Hugo has a research agreement with Phillips Medical systems, a license agreement with Varian Medical Systems, research grants from the National Institute of Health. Authors do not have any potential conflicts of interest to disclose.« less

  8. Performance Measurements of the MicroPET FOCUS 120 for Iodine-124 Imaging

    NASA Astrophysics Data System (ADS)

    Taleb, Dounia; Bahri, Mohamed Ali; Warnock, Geoffrey; Salmon, Eric; Luxen, André; Plenevaux, Alain; Anizan, Nadège; Seret, Alain

    2012-10-01

    This study aimed to evaluate the performance of the microPET FOCUS 120 for 124I in terms of counting rate capability and image quality using the NEMA NU 4-2008 methodology. Scanner sensitivity was measured for 124I for comparison and reached 75 cps/kBq, respectively, with the usual 350-650 keV energy window (EW) and 6 ns time window (TW). The noise equivalent count rate (NECR) index was defined as: NECR = RT2 /(RP +RGP) ( T = true, P = prompt, GP = γ-prompt). A rat phantom maximum NECR of 48 kcps was obtained for the 250-590 keV EW with 6 ns TW. An almost identical maximum NECR of 43 kcps was recorded for 350-590 and 350-650 keV EW and 6 ns TW. The 2 ns TW reduced the sensitivity and NECR by 40-50% for all EW. The mouse phantom NECR study was limited because of the maximum available activity concentration of 124I. The 250-590 keV EW showed the largest scatter and γ-prompt plus scatter fractions with 25.7% and 43%, respectively, for the rat phantom and 12.2% and 27% for the mouse phantom. With the 350-590 keV EW, these fractions decreased to 20% and 33.5% for the rat phantom and to 10% and 21% for the mouse phantom. The image quality was investigated with the NEMA NU 4-2008 dedicated phantom for four (two analytic and two iterative) 2D or 3D reconstruction methods. The lowest spillover ratios (SOR) for the phantom non-emitting regions were obtained for the 350-590 and 350-650 keV EWs. Recovery coefficients (RC) of the hot rods were the highest for the 350-590 keV EW except for the 1 mm rod. Scatter correction led to a large decrease in RC. The combination of the 350-590 keV EW with 6 ns TW appeared to be a good compromise between counting rate capability and image quality for the FOCUS 120, especially when maximum a posteriori reconstruction was used without scatter correction. Moreover this combination enabled the best quantification with an error as low as 0.36%.

  9. SU-F-J-77: Variations in the Displacement Vector Fields Calculated by Different Deformable Image Registration Algorithms Used in Helical, Axial and Cone-Beam CT Images of a Mobile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Jaskowiak, J; Ahmad, S

    Purpose: To investigate quantitatively the displacement-vector-fields (DVF) obtained from different deformable image registration algorithms (DIR) in helical (HCT), axial (ACT) and cone-beam CT (CBCT) to register CT images of a mobile phantom and its correlation with motion amplitudes and frequencies. Methods: HCT, ACT and CBCT are used to image a mobile phantom which includes three targets with different sizes that are manufactured from water-equivalent material and embedded in low density foam. The phantom is moved with controlled motion patterns where a range of motion amplitudes (0–40mm) and frequencies (0.125–0.5Hz) are used. The CT images obtained from scanning of the mobilemore » phantom are registered with the stationary CT-images using four deformable image registration algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from DIRART software. Results: The DVF calculated by the different algorithms correlate well with the motion amplitudes that are applied on the mobile phantom where maximal DVF increase linearly with the motion amplitudes of the mobile phantom in CBCT. Similarly in HCT, DVF increase linearly with motion amplitude, however, its correlation is weaker than CBCT. In ACT, the DVF’s do not correlate well with the motion amplitudes where motion induces strong image artifacts and DIR algorithms are not able to deform the ACT image of the mobile targets to the stationary targets. Three DIR-algorithms produce comparable values and patterns of the DVF for certain CT imaging modality. However, DVF from fast-demons deviated strongly from other algorithms at large motion amplitudes. Conclusion: In CBCT and HCT, the DVF correlate well with the motion amplitude of the mobile phantom. However, in ACT, DVF do not correlate with motion amplitudes. Correlations of DVF with motion amplitude as in CBCT and HCT imaging techniques can provide information about unknown motion parameters of the mobile organs in real patients as demonstrated in this phantom visibility study.« less

  10. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source.

    PubMed

    Manohar, Nivedh; Reynoso, Francisco J; Cho, Sang Hyun

    2013-08-01

    To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg∕cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence∕scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm×15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73×10(-2) cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies.

  11. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    PubMed Central

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10−2 cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. Conclusions:L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies. PMID:23927295

  12. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device.

    PubMed

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-21

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  13. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  14. Poster - 16: Time-resolved diode dosimetry for in vivo proton therapy range verification: calibration through numerical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan

    Purpose: A method to refine the implementation of an in vivo, adaptive proton therapy range verification methodology was investigated. Simulation experiments and in-phantom measurements were compared to validate the calibration procedure of a time-resolved diode dosimetry technique. Methods: A silicon diode array system has been developed and experimentally tested in phantom for passively scattered proton beam range verification by correlating properties of the detector signal to the water equivalent path length (WEPL). The implementation of this system requires a set of calibration measurements to establish a beam-specific diode response to WEPL fit for the selected ‘scout’ beam in a solidmore » water phantom. This process is both tedious, as it necessitates a separate set of measurements for every ‘scout’ beam that may be appropriate to the clinical case, as well as inconvenient due to limited access to the clinical beamline. The diode response to WEPL relationship for a given ‘scout’ beam may be determined within a simulation environment, facilitating the applicability of this dosimetry technique. Measurements for three ‘scout’ beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). Results: Detector response in water equivalent plastic was successfully validated against simulation for spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) with adjusted R{sup 2} of 0.998. Conclusion: Feasibility has been shown for performing calibration of detector response for a given ‘scout’ beam through simulation for the time resolved diode dosimetry technique.« less

  15. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case.

    PubMed

    Stauffer, Paul R; Snow, Brent W; Rodrigues, Dario B; Salahi, Sara; Oliveira, Tiago R; Reudink, Doug; Maccarini, Paolo F

    2014-02-01

    This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differential surface/deep tissue temperatures for quantifying sensitivity to change in brain temperature independent of scalp and surrounding environment. A single band radiometer was calibrated and tested in a multilayer model of the human head with differential scalp and brain temperature. Following calibration of a 500MHz bandwidth microwave radiometer in the head model, feasibility of clinical monitoring was assessed in a pediatric patient during a 2-hour surgery. The results of phantom testing showed that calculated radiometric equivalent brain temperature agreed within 0.4°C of measured temperature when the brain phantom was lowered 10°C and returned to original temperature (37°C), while scalp was maintained constant over a 4.6-hour experiment. The intended clinical use of this system was demonstrated by monitoring brain temperature during surgery of a pediatric patient. Over the 2-hour surgery, the radiometrically measured brain temperature tracked within 1-2°C of rectal and nasopharynx temperatures, except during rapid cooldown and heatup periods when brain temperature deviated 2-4°C from slower responding core temperature surrogates. In summary, the radiometer demonstrated long term stability, accuracy and sensitivity sufficient for clinical monitoring of deep brain temperature during surgery.

  16. Validation of a Monte Carlo model used for simulating tube current modulation in computed tomography over a wide range of phantom conditions/challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.

    2014-11-01

    Purpose: Monte Carlo (MC) simulation methods have been widely used in patient dosimetry in computed tomography (CT), including estimating patient organ doses. However, most simulation methods have undergone a limited set of validations, often using homogeneous phantoms with simple geometries. As clinical scanning has become more complex and the use of tube current modulation (TCM) has become pervasive in the clinic, MC simulations should include these techniques in their methodologies and therefore should also be validated using a variety of phantoms with different shapes and material compositions to result in a variety of differently modulated tube current profiles. The purposemore » of this work is to perform the measurements and simulations to validate a Monte Carlo model under a variety of test conditions where fixed tube current (FTC) and TCM were used. Methods: A previously developed MC model for estimating dose from CT scans that models TCM, built using the platform of MCNPX, was used for CT dose quantification. In order to validate the suitability of this model to accurately simulate patient dose from FTC and TCM CT scan, measurements and simulations were compared over a wide range of conditions. Phantoms used for testing range from simple geometries with homogeneous composition (16 and 32 cm computed tomography dose index phantoms) to more complex phantoms including a rectangular homogeneous water equivalent phantom, an elliptical shaped phantom with three sections (where each section was a homogeneous, but different material), and a heterogeneous, complex geometry anthropomorphic phantom. Each phantom requires varying levels of x-, y- and z-modulation. Each phantom was scanned on a multidetector row CT (Sensation 64) scanner under the conditions of both FTC and TCM. Dose measurements were made at various surface and depth positions within each phantom. Simulations using each phantom were performed for FTC, detailed x–y–z TCM, and z-axis-only TCM to obtain dose estimates. This allowed direct comparisons between measured and simulated dose values under each condition of phantom, location, and scan to be made. Results: For FTC scans, the percent root mean square (RMS) difference between measurements and simulations was within 5% across all phantoms. For TCM scans, the percent RMS of the difference between measured and simulated values when using detailed TCM and z-axis-only TCM simulations was 4.5% and 13.2%, respectively. For the anthropomorphic phantom, the difference between TCM measurements and detailed TCM and z-axis-only TCM simulations was 1.2% and 8.9%, respectively. For FTC measurements and simulations, the percent RMS of the difference was 5.0%. Conclusions: This work demonstrated that the Monte Carlo model developed provided good agreement between measured and simulated values under both simple and complex geometries including an anthropomorphic phantom. This work also showed the increased dose differences for z-axis-only TCM simulations, where considerable modulation in the x–y plane was present due to the shape of the rectangular water phantom. Results from this investigation highlight details that need to be included in Monte Carlo simulations of TCM CT scans in order to yield accurate, clinically viable assessments of patient dosimetry.« less

  17. Dose verification with different ion chambers for SRT/SBRT plans

    NASA Astrophysics Data System (ADS)

    Durmus, I. F.; Tas, B.; Okumus, A.; Uzel, O. E.

    2017-02-01

    Verification of patient plan is very important in stereotactic treatments. VMAT plans were prepared with 6MV-FFF or 10MV-FFF energies for 25 intracranial and extracranial stereotactic patients. Absolute dose was measured for dose verification in each plans. Iba® CC01, Iba® CC04, Iba® CC13 ion chambers placed at a depth of 5cm in solid phantom (RW3). Also we scanned this phantom with ion chambers by Siemens® Biograph mCT. QA plans were prepared by transferring twenty five patient plans to phantom assemblies for three ion chambers. All plans were performed separately for three ion chambers at Elekta® Versa HD linear accelerator. Statistical analysis of results were made by Wilcoxon signed-rank test. Difference between dose values were determined %1.84±3.4 (p: 0.001) with Iba CC13 ion chamber, %1.80±3.4 (p: 0.002) with Iba CC04 ion chamber and %0.29±4.6 (p: 0.667) with Iba CC01 ion chamber. In stereotactic treatments, dosimetric uncertainty increases in small areas. We determined more accurate results with small sized detectors. Difference between TPS calculations and all measurements were founded lower than %2.

  18. Dosimetric assessment of static and helical TomoTherapy in the clinical implementation of breast cancer treatments.

    PubMed

    Reynders, Truus; Tournel, Koen; De Coninck, Peter; Heymann, Steve; Vinh-Hung, Vincent; Van Parijs, Hilde; Duchateau, Michaël; Linthout, Nadine; Gevaert, Thierry; Verellen, Dirk; Storme, Guy

    2009-10-01

    Investigation of the use of TomoTherapy and TomoDirect versus conventional radiotherapy for the treatment of post-operative breast carcinoma. This study concentrates on the evaluation of the planning protocol for the TomoTherapy and TomoDirect TPS, dose verification and the implementation of in vivo dosimetry. Eight patients with different breast cancer indications (left/right tumor, axillary nodes involvement (N+)/no nodes (N0), tumorectomy/mastectomy) were enrolled. TomoTherapy, TomoDirect and conventional plans were generated for prone and supine positions leading to six or seven plans per patient. Dose prescription was 42Gy in 15 fractions over 3weeks. Dose verification of a TomoTherapy plan is performed using TLDs and EDR2 film inside a home-made wax breast phantom fixed on a rando-alderson phantom. In vivo dosimetry was performed with TLDs. It is possible to create clinically acceptable plans with TomoTherapy and TomoDirect. TLD calibration protocol with a water equivalent phantom is accurate. TLD verification with the phantom shows measured over calculated ratios within 2.2% (PTV). An overresponse of the TLDs was observed in the low dose regions (<0.1Gy). The film measurements show good agreement for high and low dose regions inside the phantom. A sharp gradient can be created to the thoracic wall. In vivo dosimetry with TLDs was clinically feasible. The TomoTherapy and TomoDirect modalities can deliver dose distributions which the radiotherapist judges to be equal to or better than conventional treatment of breast carcinoma according to the organ to be protected.

  19. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  20. Study of Image Quality From CT Scanner Multi-Detector by using Americans College of Radiology (ACR) Phantom

    NASA Astrophysics Data System (ADS)

    Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang

    2018-03-01

    In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.

  1. Development of a dual-energy computed tomography quality control program: Characterization of scanner response and definition of relevant parameters for a fast-kVp switching dual-energy computed tomography system.

    PubMed

    Nute, Jessica L; Jacobsen, Megan C; Stefan, Wolfgang; Wei, Wei; Cody, Dianna D

    2018-04-01

    A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. A streamlined scan protocol was developed to further investigate the effects of CTDIvol and rotation time while limiting data collection to the DEQC body phantom. Further data collection will be pursued to determine baseline values and statistically based failure thresholds for the validation of long-term DECT scanner performance. © 2018 American Association of Physicists in Medicine.

  2. Engineering and performance (NEMA and animal) of a lower-cost higher-resolution animal PET/CT scanner using photomultiplier-quadrant-sharing detectors.

    PubMed

    Wong, Wai-Hoi; Li, Hongdi; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio A; Liu, Shitao; Wang, Chao; An, Shaohui

    2012-11-01

    The dedicated murine PET (MuPET) scanner is a high-resolution, high-sensitivity, and low-cost preclinical PET camera designed and manufactured at our laboratory. In this article, we report its performance according to the NU 4-2008 standards of the National Electrical Manufacturers Association (NEMA). We also report the results of additional phantom and mouse studies. The MuPET scanner, which is integrated with a CT camera, is based on the photomultiplier-quadrant-sharing concept and comprises 180 blocks of 13 × 13 lutetium yttrium oxyorthosilicate crystals (1.24 × 1.4 × 9.5 mm(3)) and 210 low-cost 19-mm photomultipliers. The camera has 78 detector rings, with an 11.6-cm axial field of view and a ring diameter of 16.6 cm. We measured the energy resolution, scatter fraction, sensitivity, spatial resolution, and counting rate performance of the scanner. In addition, we scanned the NEMA image-quality phantom, Micro Deluxe and Ultra-Micro Hot Spot phantoms, and 2 healthy mice. The system average energy resolution was 14% at 511 keV. The average spatial resolution at the center of the field of view was about 1.2 mm, improving to 0.8 mm and remaining below 1.2 mm in the central 6-cm field of view when a resolution-recovery method was used. The absolute sensitivity of the camera was 6.38% for an energy window of 350-650 keV and a coincidence timing window of 3.4 ns. The system scatter fraction was 11.9% for the NEMA mouselike phantom and 28% for the ratlike phantom. The maximum noise-equivalent counting rate was 1,100 at 57 MBq for the mouselike phantom and 352 kcps at 65 MBq for the ratlike phantom. The 1-mm fillable rod was clearly observable using the NEMA image-quality phantom. The images of the Ultra-Micro Hot Spot phantom also showed the 1-mm hot rods. In the mouse studies, both the left and right ventricle walls were clearly observable, as were the Harderian glands. The MuPET camera has excellent resolution, sensitivity, counting rate, and imaging performance. The data show it is a powerful scanner for preclinical animal study and pharmaceutical development.

  3. MO-FG-CAMPUS-TeP1-04: Pseudo-In-Vivo Dose Verification of a New Mono-Isocentric Technique for the Treatment of Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, E P; Makris, D; Lahanas, V

    2016-06-15

    Purpose: To validate dose calculation and delivery accuracy of a recently introduced mono-isocentric technique for the treatment of multiple brain metastases in a realistic clinical case. Methods: Anonymized CT scans of a patient were used to model a hollow phantom that duplicates anatomy of the skull. A 3D printer was used to construct the phantom of a radiologically bone-equivalent material. The hollow phantom was subsequently filled with a polymer gel 3D dosimeter which also acted as a water-equivalent material. Irradiation plan consisted of 5 targets and was identical to the one delivered to the specific patient except for the prescriptionmore » dose which was optimized to match the gel dose-response characteristics. Dose delivery was performed using a single setup isocenter dynamic conformal arcs technique. Gel dose read-out was carried out by a 1.5 T MRI scanner. All steps of the corresponding patient’s treatment protocol were strictly followed providing an end-to-end quality assurance test. Pseudo-in-vivo measured 3D dose distribution and calculated one were compared in terms of spatial agreement, dose profiles, 3D gamma indices (5%/2mm, 20% dose threshold), DVHs and DVH metrics. Results: MR-identified polymerized areas and calculated high dose regions were found to agree within 1.5 mm for all targets, taking into account all sources of spatial uncertainties involved (i.e., set-up errors, MR-related geometric distortions and registration inaccuracies). Good dosimetric agreement was observed in the vast majority of the examined profiles. 3D gamma index passing rate reached 91%. DVH and corresponding metrics comparison resulted in a satisfying agreement between measured and calculated datasets within targets and selected organs-at-risk. Conclusion: A novel, pseudo-in-vivo QA test was implemented to validate spatial and dosimetric accuracy in treatment of multiple metastases. End-to-end testing demonstrated that our gel dosimetry phantom is suited for such QA procedures, allowing for 3D analysis of both targeting placement and dose.« less

  4. SU-G-IeP2-12: The Effect of Iterative Reconstruction and CT Tube Voltage On Hounsfield Unit Values of Iodinated Contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogden, K; Greene-Donnelly, K; Vallabhaneni, D

    Purpose: To investigate the effects of changing iterative reconstruction strength and tube voltage on Hounsfield Unit (HU) values of varying concentrations of Iodinated contrast medium in a phantom. Method: Iodinated contrast (Omnipaque 300, GE Healthcare, Princeton NJ) was diluted with distilled water to concentrations of 0.6, 0.9, 1.8, 3.6, 7.2, and 10.8 mg/mL of Iodine. The solutions were scanned in a patient equivalent water phantom on two MDCT scanners: VCT 64 slice (GE Medical Systems, Waukesha, WI) and an Aquilion One 320 slice scanner (Toshiba America Medical Systems, Tustin CA). The phantom was scanned at 80, 100, 120, 140 kVmore » using 400, 255, 180, and 130 mAs, respectively, for the VCT scanner, and 80, 100, 120, and 135 kV using 400, 250, 200, and 150 mAs, respectively, on the Aquilion One. Images were reconstructed at 2.5 mm (VCT) and 0.5 mm (Aquilion One). The VCT images were reconstructed using Advanced Statistical Iterative Reconstruction (ASIR) at 6 different strengths: 0%, 20%, 40%, 60%, 80%, and 100%. Aquilion One images were reconstructed using Adaptive Iterative Dose Reduction (AIDR) at 4 strengths: no AIDR, Weak AIDR, Standard AIDR, and Strong AIDR. Regions of interest (ROIs) were drawn on the images to measure the HU values and standard deviations of the diluted contrast. Second order polynomials were used to fit the HU values as a function of Iodine concentration. Results: For both scanners, there was no significant effect of changing the iterative reconstruction strength. The polynomial fits yielded goodness-of-fit (R2) values averaging 0.997. Conclusion: Changing the strength of the iterative reconstruction has no significant effect on the HU values of Iodinated contrast in a tissue-equivalent phantom. Fit values of HU vs Iodine concentration are useful in quantitative imaging protocols such as the determination of cardiac output from time-density curves in the main pulmonary artery.« less

  5. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  6. New eye phantom for ophthalmic surgery

    NASA Astrophysics Data System (ADS)

    Fogli, Gessica; Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Palla, Michele; Rizzo, Stanislao; Vozzi, Giovanni

    2014-06-01

    In this work, we designed and realized a new phantom able to mimic the principal mechanical, rheological, and physical cues of the human eye and that can be used as a common benchmark to validate new surgical procedures, innovative vitrectomes, and as a training system for surgeons. This phantom, in particular its synthetic humor vitreous, had the aim of reproducing diffusion properties of the natural eye and can be used as a system to evaluate the pharmacokinetics of drugs and optimization of their dose, limiting animal experiments. The eye phantom was built layer-by-layer starting from the sclera up to the retina, using low cost and easy to process polymers. The validation of the phantom was carried out by mechanical characterization of each layer, by diffusion test with commercial drugs into a purposely developed apparatus, and finally by a team of ophthalmic surgeons. Experiments demonstrated that polycaprolactone, polydimethylsiloxane, and gelatin, properly prepared, are the best materials to mimic the mechanical properties of sclera, choroid, and retina, respectively. A polyvinyl alcohol-gelatin polymeric system is the best for mimicking the viscosity of the human humor vitreous, even if the bevacizumab half-life is lower than in the human eye.

  7. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    PubMed

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations

    PubMed Central

    Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel

    2014-01-01

    High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by 241Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy-1 for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy-1 achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production. PMID:24600167

  9. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations.

    PubMed

    Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel

    2014-01-01

    High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by (241)Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy(-1) for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy(-1) achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production.

  10. Monte Carlo and analytical calculations for characterization of gas bremsstrahlung in ILSF insertion devices

    NASA Astrophysics Data System (ADS)

    Salimi, E.; Rahighi, J.; Sardari, D.; Mahdavi, S. R.; Lamehi Rachti, M.

    2014-12-01

    Gas bremsstrahlung is generated in high energy electron storage rings through interaction of the electron beam with the residual gas molecules in vacuum chamber. In this paper, Monte Carlo calculation has been performed to evaluate radiation hazard due to gas bremsstrahlung in the Iranian Light Source Facility (ILSF) insertion devices. Shutter/stopper dimensions is determined and dose rate from the photoneutrons via the giant resonance photonuclear reaction which takes place inside the shutter/stopper is also obtained. Some other characteristics of gas bremsstrahlung such as photon fluence, energy spectrum, angular distribution and equivalent dose in tissue equivalent phantom have also been investigated by FLUKA Monte Carlo code.

  11. A novel phantom model for mouse tumor dose assessment under MV beams

    PubMed Central

    Gossman, Michael S.; Das, Indra J.; Sharma, Subhash C.; Lopez, Jeffrey P.; Howard, Candace M.; Claudio, Pier P.

    2011-01-01

    Purpose In order to determine a mouse’s dose accurately and prior to engaging in live mouse radiobiological research, a tissue-equivalent tumor-bearing phantom mouse was constructed and bored to accommodate detectors. Methods and Materials Comparisons were made between four different types of radiation detectors, each inserted into the phantom mouse for radiation measurement under a 6 MV linear accelerator beam. Dose detection response from a diode, thermoluminescent dosimeters, metal-oxide semiconductor field-effect transistors were used and compared to that of a reference pin-point ionization chamber. Likewise, a computerized treatment planning system was also directly compared. Results Each detector system demonstrated results similar to the dose computed by the therapeutic treatment planning system, although some differences were noted. The average disagreement from a accelerator calibrated output dose prescription in the range of 200–400 cGy were −0.4% ± 0.5σ for the diode, −2.4% ± 2.6σ for the TLD, −2.9% ± 5.0σ for the MOSFET and +1.3% ± 1.4σ for the treatment planning system. Conclusions This phantom mouse design is unique, simple, reproducible and therefore recommended as a standard approach to dosimetry for radiobiological mouse studies by means of any of the detectors used in this study. We fully advocate for treatment planning modeling when possible prior to linac-based dose delivery. PMID:22048493

  12. Optimization of the sensitivity/doses relationship for a bench-top EDXRF system used for in vivo quantification of gold nanoparticles.

    PubMed

    Santibáñez, M; Saavedra, R; Vásquez, M; Malano, F; Pérez, P; Valente, M; Figueroa, R G

    2017-11-01

    The present work is devoted to optimizing the sensitivity-doses relationship of a bench-top EDXRF system, with the aim of achieving a detection limit of 0.010mg/ml of gold nanoparticles in tumor tissue (clinical values expected), for doses below 10mGy (value fixed for in vivo application). Tumor phantoms of 0.3cm 3 made of a suspension of gold nanoparticles (15nm AurovistTM, Nanoprobes Inc.) were studied at depths of 0-4mm in a tissue equivalent cylindrical phantom. The optimization process was implemented configuring several tube voltages and aluminum filters, to obtain non-symmetrical narrow spectra with fixed FWHM of 5keV and centered among the 11.2-20.3keV. The used statistical figure of merit was the obtained sensitivity (with each spectrum at each depth) weighted by the delivered surface doses. The detection limit of the system was determined measuring several gold nanoparticles concentrations ranging from 0.0010 to 5.0mg/ml and a blank sample into tumor phantoms, considering a statistical fluctuation within 95% of confidence. The results show the possibility of obtaining a detection limit for gold nanoparticles concentrations around 0.010mg/ml for surface tumor phantoms requiring doses around 2mGy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. MO-B-BRD-03: Principles, Pitfalls and Techniques of 3D Printing for Bolus and Compensators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less

  14. MO-B-BRD-00: Clinical Applications of 3D Printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less

  15. MO-B-BRD-04: Sterilization for 3D Printed Brachytherapy Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunha, J.

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less

  16. MO-B-BRD-02: 3D Printing in the Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmes, N.

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus andmore » compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha: Research support from Phillips Healthcare.« less

  17. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.

    PubMed

    Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-01

    Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a "dual phantom technique" for measuring the fast neutron component of dose is reported. One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % 6LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % 6LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the neutron and gamma-ray components along the central axis was performed at Heavy Water Neutron Irradiation Facility installed at Kyoto University Reactor using activation foils and thermoluminescent dosimeters, respectively. Simulation results demonstrated that the absorbing effect for thermal neutrons occurred when the LiOH concentration was over 1%. The most effective Li-6 concentration was determined to be enriched 6LiOH with a solubility approaching its upper limit. Experiments confirmed that the thermal neutron flux and secondary gamma-ray dose rate decreased substantially; however, the fast neutron flux and primary gamma-ray dose rate were hardly affected in the 10%-6LiOH phantom. It was confirmed that the dose contribution of fast neutrons is improved from approximately 10% in the pure water phantom to approximately 50% in the 10%-6LiOH phantom. The dual phantom technique using the combination of a pure water phantom and a 10%-6LiOH phantom developed in this work provides an effective method for dose estimation of the fast neutron component in BNCT. Improvement in the accuracy achieved with the proposed technique results in improved RBE estimation for biological experiments and clinical practice.

  18. USAF Radiofrequency Radiation Bioeffects Research Program - A Review

    DTIC Science & Technology

    1981-12-01

    Experimental Methods--SARa have been measured in scaled saline spheroidal phantoms irradiated by the near fields of short electric monopoles above ground planes...aperture analysis might be the case where some industrial machines have an equivalent electric dipole parallel to the operator, which causes maximum...short electric monopoles on a ground plane simulating electric dipoles. Some results of these measurements are shown in Fig. 16, with the measured

  19. An MCNP-based model for the evaluation of the photoneutron dose in high energy medical electron accelerators.

    PubMed

    Carinou, Eleutheria; Stamatelatos, Ion Evangelos; Kamenopoulou, Vassiliki; Georgolopoulou, Paraskevi; Sandilos, Panayotis

    The development of a computational model for the treatment head of a medical electron accelerator (Elekta/Philips SL-18) by the Monte Carlo code mcnp-4C2 is discussed. The model includes the major components of the accelerator head and a pmma phantom representing the patient body. Calculations were performed for a 14 MeV electron beam impinging on the accelerator target and a 10 cmx10 cm beam area at the isocentre. The model was used in order to predict the neutron ambient dose equivalent at the isocentre level and moreover the neutron absorbed dose distribution within the phantom. Calculations were validated against experimental measurements performed by gold foil activation detectors. The results of this study indicated that the equivalent dose at tissues or organs adjacent to the treatment field due to photoneutrons could be up to 10% of the total peripheral dose, for the specific accelerator characteristics examined. Therefore, photoneutrons should be taken into account when accurate dose calculations are required to sensitive tissues that are adjacent to the therapeutic X-ray beam. The method described can be extended to other accelerators and collimation configurations as well, upon specification of treatment head component dimensions, composition and nominal accelerating potential.

  20. [Optimizing staff radiation protection in radiology by minimizing the effective dose].

    PubMed

    von Boetticher, H; Lachmund, J; Hoffmann, W; Luska, G

    2006-03-01

    In the present study the optimization of radiation protection devices is achieved by minimizing the effective dose of the staff members since the stochastic radiation effects correlate to the effective dose. Radiation exposure dosimetry was performed with TLD measurements using one Alderson Phantom in the patient position and a second phantom in the typical position of the personnel. Various types of protective clothing as well as fixed shields were considered in the calculations. It was shown that the doses of the unshielded organs (thyroid, parts of the active bone marrow) contribute significantly to the effective dose of the staff. Therefore, there is no linear relationship between the shielding factors for protective garments and the effective dose. An additional thyroid protection collar reduces the effective dose by a factor of 1.7 - 3.0. X-ray protective clothing with a 0.35 mm lead equivalent and an additional thyroid protection collar provides better protection against radiation than an apron with a 0.5 mm lead equivalent but no collar. The use of thyroid protection collars is an effective preventive measure against exceeding occupational organ dose limits, and a thyroid shield also considerably reduces the effective dose. Therefore, thyroid protection collars should be a required component of anti-X protection.

  1. MICRODOSIMETRIC MEASUREMENT OF SECONDARY RADIATION IN THE PASSIVE SCATTERED PROTON THERAPY ROOM OF iTHEMBA LABS USING A TISSUE-EQUIVALENT PROPORTIONAL COUNTER.

    PubMed

    Chiriotti, S; Parisi, A; Vanhavere, F; De Saint-Hubert, M; Vandevoorde, C; Slabbert, J; Beukes, P; de Kock, E; Symons, J

    2018-04-13

    Measurements of the dose equivalent at different distances from the isocenter of the proton therapy center at iThemba LABS were previously performed with a tissue-equivalent proportional counter (TEPC). These measurements showed that the scattered radiation levels were one or two orders of magnitude higher in comparison to other passive scattering delivery systems. In order to reduce these radiation levels, additional shielding was installed shortly after the measurements were done. Therefore, the aim of this work is to quantify and assess the reduction of the secondary doses delivered in the proton therapy room at iThemba LABS after the installation of the additional shielding. This has been performed by measuring microdosimetric spectra with a TEPC at 11 locations around the isocenter when a clinical modulated beam of 200 MeV proton was impinging onto a water phantom placed at the isocenter.

  2. Depth dose distribution study within a phantom torso after irradiation with a simulated Solar Particle Event at NSRL

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations, based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study. The help and support of Adam Russek and Michael Sivertz of the NASA Space Radiation Laboratory (NSRL), Brookhaven, USA during the setup and the irradiation of the phantom are highly appreciated. The Voxel model describing the human phantom used for the GEANT4 simulations was kindly provided by Monika Puchalska (CHALMERS, Gothenburg, Sweden).

  3. Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Hertel, N. E.

    2010-09-27

    The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths,more » d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection (ICRP) guidance.« less

  4. SU-F-T-181: Proton Therapy Tissue-Equivalence of 3D Printed Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P; Craft, D; Followill, D

    Purpose: This work investigated the proton tissue-equivalence of various 3D printed materials. Methods: Three 3D printers were used to create 5 cm cubic phantoms made of different plastics with varying percentages of infill. White resin, polylactic acid (PLA), and NinjaFlex plastics were used. The infills ranged from 15% to 100%. Each phantom was scanned with a CT scanner to obtain the HU value. The relative linear stopping power (RLSP) was then determined using a multi-layer ion chamber in a 200 MeV proton beam. The RLSP was measured both parallel and perpendicular to the print direction for each material. Results: Themore » HU values of the materials ranged from lung-equivalent (−820 HU σ160) when using a low infill, to soft-tissue-equivalent 159 (σ12). The RLSP of the materials depended on the orientation of the beam relative to the print direction. When the proton beam was parallel to the print direction, the RLSP was generally higher than the RLSP in the perpendicular orientation, by up to 45%. This difference was smaller (less than 6%) for the materials with 100% infill. For low infill cubes irradiated parallel to the print direction, the SOBP curve showed extreme degradation of the beam in the distal region. The materials with 15–25% infill had wide-ranging agreement with a clinical HU-RLSP conversion curve, with some measurements falling within 1% of the curve and others deviating up to 45%. The materials with 100% infill all fell within 7% of the curve. Conclusion: While some materials tested fall within 1% of a clinical HU-RLSP curve, caution should be taken when using 3D printed materials with proton therapy, as the orientation of the beam relative to the print direction can result in a large change in RLSP. Further investigation is needed to measure how the infill pattern affects the material RLSP. This work was supported by PHS grant CA180803.« less

  5. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer.

    PubMed

    Tsuruta, Yusuke; Nakata, Manabu; Nakamura, Mitsuhiro; Matsuo, Yukinori; Higashimura, Kyoji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-01

    To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. The results from AXB and XVMC agreed with measurements within ± 3.0% for the lung-equivalent phantom with a 6 × 6 cm(2) field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ± 3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124-358 s), 66.1 ± 16.0 s (range, 42-94 s), and 6.7 ± 1.1 s (range, 5-9 s) for XVMC, AXB, and AAA, respectively. In the phantom evaluations, AXB and XVMC agreed better with measurements than did AAA. Calculations differed in the density-changing zones (substance boundaries) between AXB/XVMC and AAA. In the lung SBRT cases, a comparative analysis of dose-volumetric data and dose distributions with XVMC demonstrated that the AXB provided better agreement with XVMC than AAA. The computation time of AXB was faster than that of XVMC; therefore, AXB has better balance in terms of the dosimetric performance and computation speed for clinical use than XVMC.

  6. [Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].

    PubMed

    Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi

    123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .

  7. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    PubMed

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.

  8. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; de Melo Lima, V. J.; Kramer, R.; Khoury, H. J.

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI_AM and female RPI_AF phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  9. SU-E-T-801: Verification of Dose Information Passed Through 3D-Printed Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, S; Yoon, M; Kim, D

    2015-06-15

    Purpose: When quality assurance (QA) of patient treatment beam is performed, homogeneous water equivalent phantom which has different structure from patient’s internal structure is normally used. In these days, it is possible to make structures which have same shapes of human organs with commercialization of 3D-printer. As a Result, structures with same shape of human organs made by 3D-printer could be used to test qualification of treatment beam with greater accuracy than homogeneous water phantom. In this study, we estimated the dose response of 3D-printer materials to test the probability as a humanoid phantom or new generation of compensator tool.more » Methods: The rectangular products with variety densities (50%, 75% and 100%) were made to verify their characteristics. The products for experiment group and solid water phantom and air for control group with 125 cubic centimeters were put on solid water phantom with enough thickness. CT image of two products were acquired to know their HU values and to know about their radiologic characteristics. 6MV beams with 500MU were exposed for each experiment. Doses were measured behind the 3D-printed products. These measured doses were compared to the results taken by TPS. Results: Absorbed dose penetrated from empty air is normalized to 100%. Doses measured from 6MV photon beams penetrated from 50%, 75% and 100% products were 99%, 96% and 84%, respectively. HU values of 50%, 75% and 100% products are about −910, −860 and −10. Conclusion: 3D-printer can produce structures which have similar characteristics with human organ. These results would be used to make similar phantoms with patient information. This work was supported by the Nuclear Safety Research Program (Grant No. 1305033 and 1403019) of the Korea Radiation Safety Foundation and the Nuclear Safety and Security Commission and Radiation Technology Development Program (2013M2A2A4027117) of the Republic of Korea.« less

  10. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential.

    PubMed

    Euler, André; Solomon, Justin; Marin, Daniele; Nelson, Rendon C; Samei, Ehsan

    2018-06-01

    The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.

  11. Performance evaluation of the Trans-PET® BioCaliburn® LH system: a large FOV small-animal PET system

    NASA Astrophysics Data System (ADS)

    Wang, Luyao; Zhu, Jun; Liang, Xiao; Niu, Ming; Wu, Xiaoke; Kao, Chien-Min; Kim, Heejong; Xie, Qingguo

    2015-01-01

    The Trans-PET® BioCaliburn® LH is a commercial positron emission tomography (PET) system for animal imaging. The system offers a large transaxial field-of-view (FOV) of 13.0 cm to allow imaging of multiple rodents or larger animals. This paper evaluates and reports the performance characteristics of this system. Methods: in this paper, the system was evaluated for its spatial resolutions, sensitivity, scatter fraction, count rate performance and image quality in accordance with the National Electrical Manufacturers Association (NEMA) NU-4 2008 specification with modifications. Phantoms and animals not specified in the NEMA specification were also scanned to provide further demonstration of its imaging capability. Results: the spatial resolution is 1.0 mm at the center. When using a 350-650 keV energy window and a 5 ns coincidence time window, the sensitivity at the center is 2.04%. The noise equivalent count-rate curve reaches a peak value of 62 kcps at 28 MBq for the mouse-sized phantom and a peak value of 25 kcps at 31 MBq for the rat-sized phantom. The scatter fractions are 8.4% and 17.7% for the mouse- and rat-sized phantoms, respectively. The uniformity and recovery coefficients measured by using the NEMA image-quality phantom both indicate good imaging performance, even though the reconstruction algorithm provided by the vendor does not implement all desired corrections. The Derenzo-phantom images show that the system can resolve 1.0 mm diameter rods. Animal studies demonstrate the capabilities of the system in dynamic imaging and to image multiple rodents. Conclusion: the Trans-PET® BioCaliburn® LH system offers high spatial resolution, a large transaixal FOV and adequate sensitivity. It produces animal images of good quality and supports dynamic imaging. The system is an attractive imaging technology for preclinical research.

  12. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.

  13. Assessment of physician and patient (child and adult) equivalent doses during renal angiography by Monte Carlo method.

    PubMed

    Karimian, A; Nikparvar, B; Jabbari, I

    2014-11-01

    Renal angiography is one of the medical imaging methods in which patient and physician receive high equivalent doses due to long duration of fluoroscopy. In this research, equivalent doses of some radiosensitive tissues of patient (adult and child) and physician during renal angiography have been calculated by using adult and child Oak Ridge National Laboratory phantoms and Monte Carlo method (MCNPX). The results showed, in angiography of right kidney in a child and adult patient, that gall bladder with the amounts of 2.32 and 0.35 mSv, respectively, has received the most equivalent dose. About the physician, left hand, left eye and thymus absorbed the most amounts of doses, means 0.020 mSv. In addition, equivalent doses of the physician's lens eye, thyroid and knees were 0.023, 0.007 and 7.9E-4 mSv, respectively. Although these values are less than the reported thresholds by ICRP 103, it should be noted that these amounts are related to one examination. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. WE-AB-BRA-11: Improved Imaging of Permanent Prostate Brachytherapy Seed Implants by Combining an Endorectal X-Ray Sensor with a CT Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, J; Matthews, K; Jia, G

    Purpose: To test feasibility of the use of a digital endorectal x-ray sensor for improved image resolution of permanent brachytherapy seed implants compared to conventional CT. Methods: Two phantoms simulating the male pelvic region were used to test the capabilities of a digital endorectal x-ray sensor for imaging permanent brachytherapy seed implants. Phantom 1 was constructed from acrylic plastic with cavities milled in the locations of the prostate and the rectum. The prostate cavity was filled a Styrofoam plug implanted with 10 training seeds. Phantom 2 was constructed from tissue-equivalent gelatins and contained a prostate phantom implanted with 18 strandsmore » of training seeds. For both phantoms, an intraoral digital dental x-ray sensor was placed in the rectum within 2 cm of the seed implants. Scout scans were taken of the phantoms over a limited arc angle using a CT scanner (80 kV, 120–200 mA). The dental sensor was removed from the phantoms and normal helical CT and scout (0 degree) scans using typical parameters for pelvic CT (120 kV, auto-mA) were collected. A shift-and add tomosynthesis algorithm was developed to localize seed plane location normal to detector face. Results: The endorectal sensor produced images with improved resolution compared to CT scans. Seed clusters and individual seed geometry were more discernable using the endorectal sensor. Seed 3D locations, including seeds that were not located in every projection image, were discernable using the shift and add algorithm. Conclusion: This work shows that digital endorectal x-ray sensors are a feasible method for improving imaging of permanent brachytherapy seed implants. Future work will consist of optimizing the tomosynthesis technique to produce higher resolution, lower dose images of 1) permanent brachytherapy seed implants for post-implant dosimetry and 2) fine anatomic details for imaging and managing prostatic disease compared to CT images. Funding: LSU Faculty Start-up Funding. Disclosure: XDR Radiography has loaned our research group the digital x-ray detector used in this work. CoI: None.« less

  15. Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors

    NASA Astrophysics Data System (ADS)

    Rasouli, Fatemeh S.; Farhad Masoudi, S.; Keshazare, Shiva; Jette, David

    2015-12-01

    Recent studies in eye plaque brachytherapy have found considerable differences between the dosimetric results by using a water phantom, and a complete human eye model. Since the eye continues to be simulated as water-equivalent tissue in the proton therapy literature, a similar study for investigating such a difference in treating eye tumors by protons is indispensable. The present study inquires into this effect in proton therapy utilizing Monte Carlo simulations. A three-dimensional eye model with elemental compositions is simulated and used to examine the dose deposition to the phantom. The beam is planned to pass through a designed beam line to moderate the protons to the desired energies for ocular treatments. The results are compared with similar irradiation to a water phantom, as well as to a material with uniform density throughout the whole volume. Spread-out Bragg peaks (SOBPs) are created by adding pristine peaks to cover a typical tumor volume. Moreover, the corresponding beam parameters recommended by the ICRU are calculated, and the isodose curves are computed. The results show that the maximum dose deposited in ocular media is approximately 5-7% more than in the water phantom, and about 1-1.5% less than in the homogenized material of density 1.05 g cm-3. Furthermore, there is about a 0.2 mm shift in the Bragg peak due to the tissue composition difference between the models. It is found that using the weighted dose profiles optimized in a water phantom for the realistic eye model leads to a small disturbance of the SOBP plateau dose. In spite of the plaque brachytherapy results for treatment of eye tumors, it is found that the differences between the simplified models presented in this work, especially the phantom containing the homogenized material, are not clinically significant in proton therapy. Taking into account the intrinsic uncertainty of the patient dose calculation for protons, and practical problems corresponding to applying patient-specific eye modeling, we found that the results of using a generic phantom containing homogenized material for proton therapy of eye tumors can be satisfactory for designing the beam.

  16. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D; Summers, P; Followill, D

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested tomore » determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis criterion for the film planes. Work supported by grants CA10953, CA059267, and CA81647 (NCI, DHHS)« less

  17. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were usedmore » to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased significantly and that limited image quality and poor correlation between the motion amplitude and DVF was obtained.« less

  18. Dose Calculation on KV Cone Beam CT Images: An Investigation of the Hu-Density Conversion Stability and Dose Accuracy Using the Site-Specific Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong Yi, E-mail: rong@humonc.wisc.ed; Smilowitz, Jennifer; Tewatia, Dinesh

    2010-10-01

    Precise calibration of Hounsfield units (HU) to electron density (HU-density) is essential to dose calculation. On-board kV cone beam computed tomography (CBCT) imaging is used predominantly for patients' positioning, but will potentially be used for dose calculation. The impacts of varying 3 imaging parameters (mAs, source-imager distance [SID], and cone angle) and phantom size on the HU number accuracy and HU-density calibrations for CBCT imaging were studied. We proposed a site-specific calibration method to achieve higher accuracy in CBCT image-based dose calculation. Three configurations of the Computerized Imaging Reference Systems (CIRS) water equivalent electron density phantom were used to simulatemore » sites including head, lungs, and lower body (abdomen/pelvis). The planning computed tomography (CT) scan was used as the baseline for comparisons. CBCT scans of these phantom configurations were performed using Varian Trilogy{sup TM} system in a precalibrated mode with fixed tube voltage (125 kVp), but varied mAs, SID, and cone angle. An HU-density curve was generated and evaluated for each set of scan parameters. Three HU-density tables generated using different phantom configurations with the same imaging parameter settings were selected for dose calculation on CBCT images for an accuracy comparison. Changing mAs or SID had small impact on HU numbers. For adipose tissue, the HU discrepancy from the baseline was 20 HU in a small phantom, but 5 times lager in a large phantom. Yet, reducing the cone angle significantly decreases the HU discrepancy. The HU-density table was also affected accordingly. By performing dose comparison between CT and CBCT image-based plans, results showed that using the site-specific HU-density tables to calibrate CBCT images of different sites improves the dose accuracy to {approx}2%. Our phantom study showed that CBCT imaging can be a feasible option for dose computation in adaptive radiotherapy approach if the site-specific calibration is applied.« less

  19. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom.

    PubMed

    Werner-Wasik, Maria; Nelson, Arden D; Choi, Walter; Arai, Yoshio; Faulhaber, Peter F; Kang, Patrick; Almeida, Fabio D; Xiao, Ying; Ohri, Nitin; Brockway, Kristin D; Piper, Jonathan W; Nelson, Aaron S

    2012-03-01

    To evaluate the accuracy and consistency of a gradient-based positron emission tomography (PET) segmentation method, GRADIENT, compared with manual (MANUAL) and constant threshold (THRESHOLD) methods. Contouring accuracy was evaluated with sphere phantoms and clinically realistic Monte Carlo PET phantoms of the thorax. The sphere phantoms were 10-37 mm in diameter and were acquired at five institutions emulating clinical conditions. One institution also acquired a sphere phantom with multiple source-to-background ratios of 2:1, 5:1, 10:1, 20:1, and 70:1. One observer segmented (contoured) each sphere with GRADIENT and THRESHOLD from 25% to 50% at 5% increments. Subsequently, seven physicians segmented 31 lesions (7-264 mL) from 25 digital thorax phantoms using GRADIENT, THRESHOLD, and MANUAL. For spheres <20 mm in diameter, GRADIENT was the most accurate with a mean absolute % error in diameter of 8.15% (10.2% SD) compared with 49.2% (51.1% SD) for 45% THRESHOLD (p < 0.005). For larger spheres, the methods were statistically equivalent. For varying source-to-background ratios, GRADIENT was the most accurate for spheres >20 mm (p < 0.065) and <20 mm (p < 0.015). For digital thorax phantoms, GRADIENT was the most accurate (p < 0.01), with a mean absolute % error in volume of 10.99% (11.9% SD), followed by 25% THRESHOLD at 17.5% (29.4% SD), and MANUAL at 19.5% (17.2% SD). GRADIENT had the least systematic bias, with a mean % error in volume of -0.05% (16.2% SD) compared with 25% THRESHOLD at -2.1% (34.2% SD) and MANUAL at -16.3% (20.2% SD; p value <0.01). Interobserver variability was reduced using GRADIENT compared with both 25% THRESHOLD and MANUAL (p value <0.01, Levene's test). GRADIENT was the most accurate and consistent technique for target volume contouring. GRADIENT was also the most robust for varying imaging conditions. GRADIENT has the potential to play an important role for tumor delineation in radiation therapy planning and response assessment. Copyright © 2012. Published by Elsevier Inc.

  20. A dual two dimensional electronic portal imaging device transit dosimetry model based on an empirical quadratic formalism

    PubMed Central

    Metwaly, M; Glegg, M; Baggarley, S P; Elliott, A

    2015-01-01

    Objective: This study describes a two dimensional electronic portal imaging device (EPID) transit dosimetry model that can predict either: (1) in-phantom exit dose, or (2) EPID transit dose, for treatment verification. Methods: The model was based on a quadratic equation that relates the reduction in intensity to the equivalent path length (EPL) of the attenuator. In this study, two sets of quadratic equation coefficients were derived from calibration dose planes measured with EPID and ionization chamber in water under reference conditions. With two sets of coefficients, EPL can be calculated from either EPID or treatment planning system (TPS) dose planes. Consequently, either the in-phantom exit dose or the EPID transit dose can be predicted from the EPL. The model was tested with two open, five wedge and seven sliding window prostate and head and neck intensity-modulated radiation therapy (IMRT) fields on phantoms. Results were analysed using absolute gamma analysis (3%/3 mm). Results: The open fields gamma pass rates were >96.8% for all comparisons. For wedge and IMRT fields, comparisons between predicted and TPS-computed in-phantom exit dose resulted in mean gamma pass rate of 97.4% (range, 92.3–100%). As for the comparisons between predicted and measured EPID transit dose, the mean gamma pass rate was 97.5% (range, 92.6–100%). Conclusion: An EPID transit dosimetry model that can predict in-phantom exit dose and EPID transit dose was described and proven to be valid. Advances in knowledge: The described model is practical, generic and flexible to encourage widespread implementation of EPID dosimetry for the improvement of patients' safety in radiotherapy. PMID:25969867

  1. Multi-view 3D echocardiography compounding based on feature consistency

    NASA Astrophysics Data System (ADS)

    Yao, Cheng; Simpson, John M.; Schaeffter, Tobias; Penney, Graeme P.

    2011-09-01

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  2. SU-E-T-161: Characterization and Validation of CT Simulator Hounsfield Units to Relative Stopping Power Values for Proton Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnell, E; Ahmad, S; De La Fuente Herman, T

    2015-06-15

    Purpose: To develop a calibration curve that includes and minimizes the variations of Hounsfield Unit (HU) from a CT scanner to Relative Stopping Power (RSP) of tissues along the proton beam path. The variations are due to scanner and proton energy, technique, phantom size and placement, and tissue arrangement. Methods: A CIRS 062 M phantom with 10 plugs of known relative electron density (RED) was scanned through a 16 slice GE Discovery CT Simulator scanner. Three setup combinations of plug distributions and techniques clinically implemented for five treatment regions were scanned with energies of 100, 120, and 140 kV. Volumetricmore » HU values were measured for each plug and scan. The RSP values derived through the Bethe-Bloch formula are currently being verified with parallel-plate ionization chamber measurements in water using 80, 150, and 225 MeV proton beam. Typical treatment plans for treatment regions of brain, head-&-neck, chest, abdomen, and pelvis are being planned and dose delivered will be compared with film and Optically Stimulated Luminescence (OSL) measurements. Results: Percentage variations were determined for each variable. For tissues close to water, variations were <1% from any given parameter. Tissues far from water equivalence (lung and bone) showed the greatest sensitivity to change (7.4% maximum) with scanner energy and up to 5.3% with positioning of the phantom. No major variations were observed for proton energies within the treatment range. Conclusion: When deriving a calibration curve, attention should be placed to low and high HU values. A thorough verification process of calculated vs. water-phantom measured RSP values at different proton energies, followed by dose validation of planned vs. measured doses in phantom with film and OSL detectors are currently being undertaken.« less

  3. Visualization of air and metal inhomogeneities in phantoms irradiated by carbon ion beams using prompt secondary ions.

    PubMed

    Gaa, T; Reinhart, M; Hartmann, B; Jakubek, J; Soukup, P; Jäkel, O; Martišíková, M

    2017-06-01

    Non-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper. Air and stainless steel inhomogeneities, with PMMA equivalent thickness of 10mm and 4.8mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated. Measured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10mm air cavities and 1mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak. The presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. SU-E-P-05: Is Routine Treatment Planning System Quality Assurance Necessary?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaei, P

    Purpose: To evaluate the variation of dose calculations using a treatment planning system (TPS) over a two year period and assessment of the need for TPS QA on regular intervals. Methods: Two phantoms containing solid water and lung- and bone-equivalent heterogeneities were constructed in two different institutions for the same brand treatment planning system. Multiple plans, consisting of photons and electron beams, including IMRT and VMAT ones, were created and calculated on the phantoms. The accuracy of dose computation in the phantoms was evaluated at the onset by dose measurements within the phantoms. The dose values at up to 24more » points of interest (POI) within the solid water, lung, and bone slabs, as well as mean doses to several regions of interest (ROI), were re-calculated over a two-year period which included two software upgrades. The variations in POI and ROI dose values were analyzed and evaluated. Results: The computed doses vary slightly month-over-month. There are noticeable variations at the times of software upgrade, if the upgrade involves remodeling and/or re-commissioning of the beams. The variations are larger in certain points within the phantom, usually in the buildup region or near interfaces, and are almost non-existent for electron beams. Conclusion: Routine TPS QA is recommended by AAPM and other professional societies, and is often required by accreditation organizations. The frequency and type of QA, though, is subject to debate. The results presented here demonstrate that the frequency of these tests could be at longer intervals than monthly. However, it is essential to perform TPS QA at the time of commissioning and after each software upgrade.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, N

    Purpose: Ocular proton therapy has the following advantages: i) sparing optic nerve, ii) the minimal dose is delivered to surrounding normal tissues. Since the proton therapy center was opened in 2007, 30 patients with ocular tumor have been treated at National Cancer Center using single scattering technique. To develop a solid eye phantom which can verify the output and the beam range with EBT3 film for independent patient QA in ocular proton therapy. Methods: The proton therapy is very effective to treat ocular tumor, because of the Bragg peak feature. In general, the beam shape of eye treatment is aboutmore » 3 cm in diameter and the beam range is under 5 cm. However, proton therapy has uncertainty of beam range problem due to various stopping power of normal tissue, bone, air and so on, so that we should verify the beam range before treatment. For this purpose, a new PMMA phantom with wedge has been developed to use the film dosimetry and the ionization chamber. It is able to place a film on the slope of the phantom, which the spread out Bragg Peak by the water equivalent thickness value of PMMA can be made on the film. We considered to relation with quenching effect of proton energy and range for simple second check. In addition, the ionization chamber (Pin-point chamber, PTW 31014) can be inserted into a hole in the phantom to measure the absolute dose. Results: The output difference and beam range difference were less than 2% and 1.0 mm, respectively, between the measurement and the plan. Conclusion: An eye phantom was developed and its performance was evaluated successfully and it was useful to verify the output. Also with EBT3 film with the quenching effect for measurement depth-dose profile, range to patient QA.« less

  6. Assessment of a fully 3D Monte Carlo reconstruction method for preclinical PET with iodine-124

    NASA Astrophysics Data System (ADS)

    Moreau, M.; Buvat, I.; Ammour, L.; Chouin, N.; Kraeber-Bodéré, F.; Chérel, M.; Carlier, T.

    2015-03-01

    Iodine-124 is a radionuclide well suited to the labeling of intact monoclonal antibodies. Yet, accurate quantification in preclinical imaging with I-124 is challenging due to the large positron range and a complex decay scheme including high-energy gammas. The aim of this work was to assess the quantitative performance of a fully 3D Monte Carlo (MC) reconstruction for preclinical I-124 PET. The high-resolution small animal PET Inveon (Siemens) was simulated using GATE 6.1. Three system matrices (SM) of different complexity were calculated in addition to a Siddon-based ray tracing approach for comparison purpose. Each system matrix accounted for a more or less complete description of the physics processes both in the scanned object and in the PET scanner. One homogeneous water phantom and three heterogeneous phantoms including water, lungs and bones were simulated, where hot and cold regions were used to assess activity recovery as well as the trade-off between contrast recovery and noise in different regions. The benefit of accounting for scatter, attenuation, positron range and spurious coincidences occurring in the object when calculating the system matrix used to reconstruct I-124 PET images was highlighted. We found that the use of an MC SM including a thorough modelling of the detector response and physical effects in a uniform water-equivalent phantom was efficient to get reasonable quantitative accuracy in homogeneous and heterogeneous phantoms. Modelling the phantom heterogeneities in the SM did not necessarily yield the most accurate estimate of the activity distribution, due to the high variance affecting many SM elements in the most sophisticated SM.

  7. Effective doses in children: association with common complex imaging techniques used during interventional radiology procedures.

    PubMed

    Lai, Priscilla; McNeil, Sarah M; Gordon, Christopher L; Connolly, Bairbre L

    2014-12-01

    The purpose of this study was to determine the range of effective doses associated with imaging techniques used during interventional radiology procedures on children. A pediatric phantom set (1, 5, and 10 years) coupled with high-sensitivity metal oxide semiconductor field effect transistor (MOSFET) dosimeters was used to calculate effective doses. Twenty MOSFETs were inserted into each phantom at radiosensitive organ locations. The phantoms were exposed to mock head, chest, and abdominal interventional radiology procedures performed with different geometries and magnifications. Fluoroscopy, digital subtraction angiography (DSA), and spin angiography were simulated on each phantom. Road mapping was conducted only on the 5-year-old phantom. International Commission on Radiological Protection publication 103 tissue weights were applied to the organ doses recorded with the MOSFETs to determine effective dose. For easy application to clinical cases, doses were normalized per minute of fluoroscopy and per 10 frames of DSA or spin angiography. Effective doses from DSA, angiography, and fluoroscopy were higher for younger ages because of magnification use and were largest for abdominal procedures. DSA of the head, chest, and abdomen (normalized per 10 frames) imparted doses 2-3 times as high as corresponding doses per minute of fluoroscopy while all other factors remained unchanged (age, projection, collimation, magnification). Three to five frames of DSA imparted an effective dose equal to doses from 1 minute of fluoroscopy. Doses from spin angiography were almost one-half the doses received from an equivalent number of frames of DSA. Patient effective doses during interventional procedures vary substantially depending on procedure type but tend to be higher because of magnification use in younger children and higher in the abdomen.

  8. Therapeutic ultrasound in physical medicine and rehabilitation: characterization and assessment of its physical effects on joint-mimicking phantoms.

    PubMed

    Lioce, Elisa Edi Anna Nadia; Novello, Matteo; Durando, Gianni; Bistolfi, Alessandro; Actis, Maria Vittoria; Massazza, Giuseppe; Magnetto, Chiara; Guiot, Caterina

    2014-11-01

    The aim of the study described here was to quantitatively assess thermal and mechanical effects of therapeutic ultrasound (US) by sonicating a joint-mimicking phantom, made of muscle-equivalent material, using clinical US equipment. The phantom contains two bone disks simulating a deep joint (treated at 1 MHz) and a superficial joint (3 MHz). Thermal probes were inserted in fixed positions. To test the mechanical (cavitational) effects, we used a latex balloon filled with oxygen-loaded nanobubbles; the dimensions of the oxygen-loaded nanobubbles were determined before and after sonication. Significant increases in temperature (up to 17°C) with fixed field using continuous waves were detected both in front of and behind the bones, depending on the US mode (continuous wave vs. pulsed wave) and on the treatment modality (fixed vs. massage). We found no significant differences in mechanical effects. Although limited by the in vitro design (no blood perfusion, no metabolic compensation), the results can be used to guide operators in their choice of the best US treatment modality for a specific joint. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Dental radiography: tooth enamel EPR dose assessment from Rando phantom measurements

    NASA Astrophysics Data System (ADS)

    Aragno, D.; Fattibene, P.; Onori, S.; Aragno, D.; Fattibene, P.

    2000-09-01

    Electron paramagnetic resonance dosimetry of tooth enamel is now established as a suitable method for individual dose reconstruction following radiation accidents. The accuracy of the method is limited by some confounding factors, among which is the dose received due to medical x-ray irradiation. In the present paper the EPR response of tooth enamel to endoral examination was experimentally evaluated using an anthropomorphic phantom. The dose to enamel for a single exposure of a typical dental examination performed with a new x-ray generation unit working at 65 kVp gave rise to a CO2- signal of intensity similar to that induced by a dose of about 2 mGy of 60Co. EPR measurements were performed on the entire tooth with no attempt to separate buccal and lingual components. Also the dose to enamel for an orthopantomography exam was estimated. It was derived from TLD measurements as equivalent to 0.2 mGy of 60Co. In view of application to risk assessment analysis, in the present work the value for the ratio of the reference dose at the phantom surface measured with TLD to the dose at the tooth measured with EPR was determined.

  10. Intra-body microwave communication through adipose tissue.

    PubMed

    Asan, Noor Badariah; Noreland, Daniel; Hassan, Emadeldeen; Redzwan Mohd Shah, Syaiful; Rydberg, Anders; Blokhuis, Taco J; Carlsson, Per-Ola; Voigt, Thiemo; Augustine, Robin

    2017-08-01

    The human body can act as a medium for the transmission of electromagnetic waves in the wireless body sensor networks context. However, there are transmission losses in biological tissues due to the presence of water and salts. This Letter focuses on lateral intra-body microwave communication through different biological tissue layers and demonstrates the effect of the tissue thicknesses by comparing signal coupling in the channel. For this work, the authors utilise the R-band frequencies since it overlaps the industrial, scientific and medical radio (ISM) band. The channel model in human tissues is proposed based on electromagnetic simulations, validated using equivalent phantom and ex-vivo measurements. The phantom and ex-vivo measurements are compared with simulation modelling. The results show that electromagnetic communication is feasible in the adipose tissue layer with a low attenuation of ∼2 dB per 20 mm for phantom measurements and 4 dB per 20 mm for ex-vivo measurements at 2 GHz. Since the dielectric losses of human adipose tissues are almost half of ex-vivo tissue, an attenuation of around 3 dB per 20 mm is expected. The results show that human adipose tissue can be used as an intra-body communication channel.

  11. Calibration of phoswich-based lung counting system using realistic chest phantom.

    PubMed

    Manohari, M; Mathiyarasu, R; Rajagopal, V; Meenakshisundaram, V; Indira, R

    2011-03-01

    A phoswich detector, housed inside a low background steel room, coupled with a state-of-art pulse shape discrimination (PSD) electronics is recently established at Radiological Safety Division of IGCAR for in vivo monitoring of actinides. The various parameters of PSD electronics were optimised to achieve efficient background reduction in low-energy regions. The PSD with optimised parameters has reduced steel room background from 9.5 to 0.28 cps in the 17 keV region and 5.8 to 0.3 cps in the 60 keV region. The Figure of Merit for the timing spectrum of the system is 3.0. The true signal loss due to PSD was found to be less than 2 %. The phoswich system was calibrated with Lawrence Livermore National Laboratory realistic chest phantom loaded with (241)Am activity tagged lung set. Calibration factors for varying chest wall composition and chest wall thickness in terms of muscle equivalent chest wall thickness were established. (241)Am activity in the JAERI phantom which was received as a part of IAEA inter-comparison exercise was estimated. This paper presents the optimisation of PSD electronics and the salient results of the calibration.

  12. Digital radiography: optimization of image quality and dose using multi-frequency software.

    PubMed

    Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D

    2012-09-01

    New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

  13. Out of field dose during Gamma Knife treatment: a paediatric case study

    NASA Astrophysics Data System (ADS)

    Moutrie, V.; Grace, M.; Izard, M. A.; Fuller, J. W.

    2017-01-01

    An 11-year-old girl with an arteriovenous malformation (AVM) was referred for Gamma Knife treatment. As this would be the first paediatric treatment in Australia, additional investigations were undertaken into out of field dose to assure the best possible long term outcome for the patient. A phantom was constructed from water equivalent materials to simulate the patient. A target volume was defined to emulate the size and location of the AVM visible in diagnostic images. An ionisation chamber and EBT3 Gafchromic film were used to record absorbed dose at strategic points both on the surface and at depth within the phantom. On the day of treatment, EBT3 Gafchromic film was used to conduct in vivo dosimetry. The pre-treatment phantom measurements matched the planning system for the cranial section (the only modelled section) and no measurable dose above background was detected in the extracranial sites. In vivo measurements of the lenses returned doses of up to 2 cGy for imaging and 8 cGy for treatment which was also consistent with the planned dose. Dose to the thyroid, chest and abdomen was not measurable above background.

  14. Performance evaluation of an Inveon PET preclinical scanner

    NASA Astrophysics Data System (ADS)

    Constantinescu, Cristian C.; Mukherjee, Jogeshwar

    2009-05-01

    We evaluated the performance of an Inveon preclinical PET scanner (Siemens Medical Solutions), the latest MicroPET system. Spatial resolution was measured with a glass capillary tube (0.26 mm inside diameter, 0.29 mm wall thickness) filled with 18F solution. Transaxial and axial resolutions were measured with the source placed parallel and perpendicular to the axis of the scanner. The sensitivity of the scanner was measured with a 22Na point source, placed on the animal bed and positioned at different offsets from the center of the field of view (FOV), as well as at different energy and coincidence windows. The noise equivalent count rates (NECR) and the system scatter fraction were measured using rat-like (Φ = 60, L = 150 mm) and mouse-like (Φ = 25 mm, L = 70 mm) cylindrical phantoms. Line sources filled with high activity 18F (>250 MBq) were inserted parallel to the axes of the phantoms (13.5 and 10 mm offset). For each phantom, list-mode data were collected over 24 h at 350-650 keV and 250-750 keV energy windows and 3.4 ns coincidence window. System scatter fraction was measured when the random event rates were below 1%. Performance phantoms consisting of cylinders with hot rod inserts filled with 18F were imaged. In addition, we performed imaging studies that show the suitability of the Inveon scanner for imaging small structures such as those in mice with a variety of tracers. The radial, tangential and axial resolutions at the center of FOV were 1.46 mm, 1.49 and 1.15 mm, respectively. At a radial offset of 2 cm, the FWHM values were 1.73, 2.20 and 1.47 mm, respectively. At a coincidence window of 3.4 ns, the sensitivity was 5.75% for EW = 350-650 keV and 7.4% for EW = 250-750 keV. For an energy window of 350-650 keV, the peak NECR was 538 kcps at 131.4 MBq for the rat-like phantom, and 1734 kcps at 147.4 MBq for the mouse-like phantom. The system scatter fraction values were 0.22 for the rat phantom and 0.06 for the mouse phantom. The Inveon system presents high image resolution, low scatter fraction values and improved sensitivity and count rate performance.

  15. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne

    2010-01-15

    Purpose: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. Methods: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector insidemore » a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. Results: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth. Conclusions: The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.« less

  16. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditionsmore » in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the neutron and gamma-ray components along the central axis was performed at Heavy Water Neutron Irradiation Facility installed at Kyoto University Reactor using activation foils and thermoluminescent dosimeters, respectively. Results: Simulation results demonstrated that the absorbing effect for thermal neutrons occurred when the LiOH concentration was over 1%. The most effective Li-6 concentration was determined to be enriched {sup 6}LiOH with a solubility approaching its upper limit. Experiments confirmed that the thermal neutron flux and secondary gamma-ray dose rate decreased substantially; however, the fast neutron flux and primary gamma-ray dose rate were hardly affected in the 10%-{sup 6}LiOH phantom. It was confirmed that the dose contribution of fast neutrons is improved from approximately 10% in the pure water phantom to approximately 50% in the 10%-{sup 6}LiOH phantom. Conclusions: The dual phantom technique using the combination of a pure water phantom and a 10%-{sup 6}LiOH phantom developed in this work provides an effective method for dose estimation of the fast neutron component in BNCT. Improvement in the accuracy achieved with the proposed technique results in improved RBE estimation for biological experiments and clinical practice.« less

  17. Clinical Evaluation of Protective Garments with Respect to Garment Characteristics and Manufacturer Label Information.

    PubMed

    Lichliter, Andrew; Weir, Victor; Heithaus, Robert Evans; Gipson, Sean; Syed, Almas; West, James; Rees, Chet

    2017-01-01

    To test operator exposures inside radiation protection garments in a simulated clinical setup, examining trends related to multiple characteristics. Sixteen garment models containing lead or nonlead materials and a suspended device (Zero-Gravity) were tested for operator exposure from X rays scattered from an acrylic patient phantom. Weight and surface area were determined. The operator phantom was a wooden frame containing a dosimeter in its cavity. Garments were draped over the frame, and the setup was placed in a typical working position. There was substantial variability in exposures for all garments, ranging from 0.52 to 13.8 µSv/h (mean, 5.39 µSv/h ± 3.82), with a 12-fold difference for garments labeled 0.5 mm Pb equivalent. Most of the especially poor protectors were nonlead, even when not lightweight. Nonlead models were not more protective per weight overall. For closed-back garments labeled 0.5 mm Pb equivalent, mean exposures were lower for lead than for nonlead materials (mean, 1.48 µSv/h ± 0.434 vs 6.26 µSv/h ± 5.13, respectively). Density per exposure -1 was lower for lead than nonlead materials in the 0.5-mm Pb equivalent group, counter to advertised claims. Open-back configurations were lighter than closed (3.3 kg vs 6.0 kg, respectively), with similar mean exposures (5.30 µSv/h vs 5.39 µSv/h, respectively). The lowest exposure was 0.52 µSv/h (9.8% of the mean of all garments) for the suspended device. Operator exposure in a realistic interventional setup is highly variable for similarly labeled protective garments, highlighting the necessity of internal validation when considering nonlead and lightweight models. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  18. Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies

    NASA Astrophysics Data System (ADS)

    Sen, Anando; Kalantari, Faraz; Gifford, Howard C.

    2016-06-01

    While mathematical model observers are intended for efficient assessment of medical imaging systems, their findings should be relevant for human observers as the primary clinical end users. We have investigated whether pursuing equivalence between the model and human-observer tasks can help ensure this goal. A localization receiver operating characteristic (LROC) study tested prostate lesion detection in simulated In-111 SPECT imaging with anthropomorphic phantoms. The test images were 2D slices extracted from reconstructed volumes. The iterative ordered sets expectation-maximization (OSEM) reconstruction algorithm was used with Gaussian postsmoothing. Variations in the number of iterations and the level of postfiltering defined the test strategies in the study. Human-observer performance was compared with that of a visual-search (VS) observer, a scanning channelized Hotelling observer, and a scanning channelized nonprewhitening (CNPW) observer. These model observers were applied with precise information about the target regions of interest (ROIs). ROI knowledge was a study variable for the human observers. In one study format, the humans read the SPECT image alone. With a dual-modality format, the SPECT image was presented alongside an anatomical image slice extracted from the density map of the phantom. Performance was scored by area under the LROC curve. The human observers performed significantly better with the dual-modality format, and correlation with the model observers was also improved. Given the human-observer data from the SPECT study format, the Pearson correlation coefficients for the model observers were 0.58 (VS), -0.12 (CH), and -0.23 (CNPW). The respective coefficients based on the human-observer data from the dual-modality study were 0.72, 0.27, and -0.11. These results point towards the continued development of the VS observer for enhancing task equivalence in model-observer studies.

  19. Prevention of hypothyroidism related to mantle irradiation for Hodgkin's disease: Preparative phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial-Vega, V.A.; Order, S.E.; Lastner, G.

    1990-03-01

    To decrease the incidence of hypothyroidism related to mantle irradiation for Hodgkin's disease, we initiated a study designed to protect the thyroid gland using a phantom. A thyroid phantom was filled with technetium-99m. The thyroid phantom was placed inside of its corresponding anterior neck position in a whole body phantom. An anterior scintiscan of the head and neck region demonstrated the radioactivity in the simulated thyroid. A mantle port included a focused block that would shield the thyroid from the anterior port. The phantom was exposed (4 MeV) to 180 cGy (AP-PA) at midplane with lithium fluoride dosimeters in themore » position of the thyroid. The thyroid received an average of 12 cGy from the anterior field and 48 cGy from the posterior field for a total of 60 cGy per treatment or 30% of the prescribed dose. A complete mantle field course of radiation of 4000 cGy would lead to a thyroid dose of 1200 cGy at a daily fractional dose of 60 cGy. We elected not to block the thyroid from the posterior field to prevent shielding and potential underdosage of involved nodal sites. The present study suggests a method of safe and effective thyroid shielding which needs to be tested clinically to determine whether it would reduce the incidence of chemical and clinical hypothyroidism or simply extend the period until occurrence.« less

  20. Build-up and surface dose measurements on phantoms using micro-MOSFET in 6 and 10 MV x-ray beams and comparisons with Monte Carlo calculations.

    PubMed

    Xiang, Hong F; Song, Jun S; Chin, David W H; Cormack, Robert A; Tishler, Roy B; Makrigiorgos, G Mike; Court, Laurence E; Chin, Lee M

    2007-04-01

    This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 degrees-80 degrees onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC calculation within 6%, including uncertainties of micro-MOSFET measurements of 2%-3% (1 standard deviation), MOSFET angular dependence of 3.0%-3.5%, and 1%-2% systematical error due to phantom setup geometry asymmetry. Micro-MOSFET can be used for skin dose measurements in 6 and 10 MV beams with an estimated accuracy of +/- 6%.

  1. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation

    PubMed Central

    Ozaki, Y.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.

    2017-01-01

    Abstract Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. PMID:28339846

  2. Development and dosimetry of a small animal lung irradiation platform

    PubMed Central

    McGurk, Ross; Hadley, Caroline; Jackson, Isabel L.; Vujaskovic, Zeljko

    2015-01-01

    Advances in large scale screening of medical counter measures for radiation-induced normal tissue toxicity are currently hampered by animal irradiation paradigms that are both inefficient and highly variable among institutions. Here, we introduce a novel high-throughput small animal irradiation platform for use in orthovoltage small animal irradiators. We used radiochromic film and metal oxide semiconductor field effect transistor detectors to examine several parameters, including 2D field uniformity, dose rate consistency, and shielding transmission. We posit that this setup will improve efficiency of drug screens by allowing for simultaneous, targeted irradiation of multiple animals, improving efficiency within a single institution. Additionally, we suggest that measurement of the described parameters in all centers conducting counter measure studies will improve the translatability of findings among institutions. We also investigated the use of tissue equivalent phantoms in performing dosimetry measurements for small animal irradiation experiments. Though these phantoms are commonly used in dosimetry, we recorded a significant difference in both the entrance and target tissue dose rates between euthanized rats and mice with implanted detectors and the corresponding phantom measurement. This suggests that measurements using these phantoms may not provide accurate dosimetry for in vivo experiments. Based on these measurements, we propose that this small animal irradiation platform can increase the capacity of animal studies by allowing for more efficient animal irradiation. We also suggest that researchers fully characterize the parameters of whatever radiation setup is in use in order to facilitate better comparison among institutions. PMID:23091878

  3. A phantom study on bladder and rectum dose measurements in brachytherapy of cervix cancer using FBX aqueous chemical dosimeter.

    PubMed

    Bansal, Anil K; Semwal, Manoj K; Arora, Deepak; Sharma, D N; Julka, P K; Rath, G K

    2013-06-01

    The ferrous sulphate-benzoic acid-xylenol orange (FBX) chemical dosimeter, due to its aqueous form can measure average volume doses and hence may overcome the limitations of point dosimetry. The present study was undertaken to validate the use of FBX dosimeter for rectum and bladder dose measurement during intracavitary brachytherapy (ICBT) and transperineal interstitial brachytherapy (TIB). We filled cylindrical polypropylene tubes (PT) and Foley balloons (FB) with FBX solution and used them as substitutes for rectum and bladder dose measurements respectively. A water phantom was fabricated with provision to place the Fletcher-type ICBT and MUPIT template applicators, and FBX filled PT and FB within the phantom. The phantom was then CT scanned for treatment planning and subsequent irradiation. Our results show that the average difference between DVH derived dose value and FBX measured dose is 3.5% (PT) and 13.7% (FB) for ICBT, and 9% (PT) and 9.9% (FB) for TIB. We believe that the FBX system should be able to provide accuracy and precision sufficient for routine quality assurance purposes. The advantage of the FBX system is its water equivalent composition, average volume dose measuring capability, and energy and temperature independent response as compared to TLD or semiconductor dosimeters. However, detailed studies will be needed with regards to its safety before actual in-vivo dose measurements are possible with the FBX dosimeter. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Impact of high 131I-activities on quantitative 124I-PET

    NASA Astrophysics Data System (ADS)

    Braad, P. E. N.; Hansen, S. B.; Høilund-Carlsen, P. F.

    2015-07-01

    Peri-therapeutic 124 I-PET/CT is of interest as guidance for radioiodine therapy. Unfortunately, image quality is complicated by dead time effects and increased random coincidence rates from high 131 I-activities. A series of phantom experiments with clinically relevant 124 I/131 I-activities were performed on a clinical PET/CT-system. Noise equivalent count rate (NECR) curves and quantitation accuracy were determined from repeated scans performed over several weeks on a decaying NEMA NU-2 1994 cylinder phantom initially filled with 25 MBq 124 I and 1250 MBq 131 I. Six spherical inserts with diameters 10-37 mm were filled with 124 I (0.45 MBq ml-1 ) and 131 I (22 MBq ml-1 ) and placed inside the background of the NEMA/IEC torso phantom. Contrast recovery, background variability and the accuracy of scatter and attenuation corrections were assessed at sphere-to-background activity ratios of 20, 10 and 5. Results were compared to pure 124 I-acquisitions. The quality of 124 I-PET images in the presence of high 131 I-activities was good and image quantification unaffected except at very high count rates. Quantitation accuracy and contrast recovery were uninfluenced at 131 I-activities below 1000 MBq, whereas image noise was slightly increased. The NECR peaked at 550 MBq of 131 I, where it was 2.8 times lower than without 131 I in the phantom. Quantitative peri-therapeutic 124 I-PET is feasible.

  5. SU-E-T-118: Analysis of Variability and Stability Between Two Water Tank Phantoms Utilizing Water Tank Commissioning Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roring, J; Saenz, D; Cruz, W

    2015-06-15

    Purpose: The commissioning criteria of water tank phantoms are essential for proper accuracy and reproducibility in a clinical setting. This study outlines the results of mechanical and dosimetric testing between PTW MP3-M water tank system and the Standard Imaging Doseview 3D water tank system. Methods: Measurements were taken of each axis of movement on the tank using 30 cm calipers at 1, 5, 10, 50, 100, and 200 mm for accuracy and reproducibility of tank movement. Dosimetric quantities such as percent depth dose and dose profiles were compared between tanks using a 6 MV beam from a Varian 23EX LINAC.more » Properties such as scanning speed effects, central axis depth dose agreement with static measurements, reproducibility of measurements, symmetry and flatness, and scan time between tanks were also investigated. Results: Results showed high geometric accuracy within 0.2 mm. Central axis PDD and in-field profiles agreed within 0.75% between the tanks. These outcomes test many possible discrepancies in dose measurements across the two tanks and form a basis for comparison on a broader range of tanks in the future. Conclusion: Both 3D water scanning phantoms possess a high degree of spatial accuracy, allowing for equivalence in measurements regardless of the phantom used. A commissioning procedure when changing water tanks or upon receipt of a new tank is nevertheless critical to ensure consistent operation before and after the arrival of new hardware.« less

  6. Can conclusions drawn from phantom-based image noise assessments be generalized to in vivo studies for the nonlinear model-based iterative reconstruction method?

    PubMed Central

    Gomez-Cardona, Daniel; Li, Ke; Hsieh, Jiang; Lubner, Meghan G.; Pickhardt, Perry J.; Chen, Guang-Hong

    2016-01-01

    Purpose: Phantom-based objective image quality assessment methods are widely used in the medical physics community. For a filtered backprojection (FBP) reconstruction-based linear or quasilinear imaging system, the use of this methodology is well justified. Many key image quality metrics acquired with phantom studies can be directly applied to in vivo human subject studies. Recently, a variety of image quality metrics have been investigated for model-based iterative image reconstruction (MBIR) methods and several novel characteristics have been discovered in phantom studies. However, the following question remains unanswered: can certain results obtained from phantom studies be generalized to in vivo animal studies and human subject studies? The purpose of this paper is to address this question. Methods: One of the most striking results obtained from phantom studies is a novel power-law relationship between noise variance of MBIR (σ2) and tube current-rotation time product (mAs): σ2 ∝ (mAs)−0.4 [K. Li et al., “Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance,” Med. Phys. 41, 041906 (15pp.) (2014)]. To examine whether the same power-law works for in vivo cases, experimental data from two types of in vivo studies were analyzed in this paper. All scans were performed with a 64-slice diagnostic CT scanner (Discovery CT750 HD, GE Healthcare) and reconstructed with both FBP and a MBIR method (Veo, GE Healthcare). An Institutional Animal Care and Use Committee-approved in vivo animal study was performed with an adult swine at six mAs levels (10–290). Additionally, human subject data (a total of 110 subjects) acquired from an IRB-approved clinical trial were analyzed. In this clinical trial, a reduced-mAs scan was performed immediately following the standard mAs scan; the specific mAs used for the two scans varied across human subjects and were determined based on patient size and clinical indications. The measurements of σ2 were performed at different mAs by drawing regions-of-interest (ROIs) in the liver and the subcutaneous fat. By applying a linear least-squares regression, the β values in the power-law relationship σ2 ∝ (mAs)−β were measured for the in vivo data and compared with the value found in phantom experiments. Results: For the in vivo swine study, an exponent of β = 0.43 was found for MBIR, and the coefficient of determination (R2) for the corresponding least-squares power-law regression was 0.971. As a reference, the β and R2 values for FBP were found to be 0.98 and 0.997, respectively, from the same study, which are consistent with the well-known σ2 ∝ (mAs)−1.0 relationship for linear CT systems. For the human subject study, the measured β values for the MBIR images were 0.41 ± 0.12 in the liver and 0.37 ± 0.12 in subcutaneous fat. In comparison, the β values for the FBP images were 1.04 ± 0.10 in the liver and 0.97 ± 0.12 in subcutaneous fat. The β values of MBIR and FBP obtained from the in vivo studies were found to be statistically equivalent to the corresponding β values from the phantom study within an equivalency interval of [ − 0.1, 0.1] (p < 0.05); across MBIR and FBP, the difference in β was statistically significant (p < 0.05). Conclusions: Despite the nonlinear nature of the MBIR method, the power-law relationship, σ2 ∝ (mAs)−0.4, found from phantom studies can be applied to in vivo animal and human subject studies. PMID:26843232

  7. Can conclusions drawn from phantom-based image noise assessments be generalized to in vivo studies for the nonlinear model-based iterative reconstruction method?

    PubMed

    Gomez-Cardona, Daniel; Li, Ke; Hsieh, Jiang; Lubner, Meghan G; Pickhardt, Perry J; Chen, Guang-Hong

    2016-02-01

    Phantom-based objective image quality assessment methods are widely used in the medical physics community. For a filtered backprojection (FBP) reconstruction-based linear or quasilinear imaging system, the use of this methodology is well justified. Many key image quality metrics acquired with phantom studies can be directly applied to in vivo human subject studies. Recently, a variety of image quality metrics have been investigated for model-based iterative image reconstruction (MBIR) methods and several novel characteristics have been discovered in phantom studies. However, the following question remains unanswered: can certain results obtained from phantom studies be generalized to in vivo animal studies and human subject studies? The purpose of this paper is to address this question. One of the most striking results obtained from phantom studies is a novel power-law relationship between noise variance of MBIR (σ(2)) and tube current-rotation time product (mAs): σ(2) ∝ (mAs)(-0.4) [K. Li et al., "Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance," Med. Phys. 41, 041906 (15pp.) (2014)]. To examine whether the same power-law works for in vivo cases, experimental data from two types of in vivo studies were analyzed in this paper. All scans were performed with a 64-slice diagnostic CT scanner (Discovery CT750 HD, GE Healthcare) and reconstructed with both FBP and a MBIR method (Veo, GE Healthcare). An Institutional Animal Care and Use Committee-approved in vivo animal study was performed with an adult swine at six mAs levels (10-290). Additionally, human subject data (a total of 110 subjects) acquired from an IRB-approved clinical trial were analyzed. In this clinical trial, a reduced-mAs scan was performed immediately following the standard mAs scan; the specific mAs used for the two scans varied across human subjects and were determined based on patient size and clinical indications. The measurements of σ(2) were performed at different mAs by drawing regions-of-interest (ROIs) in the liver and the subcutaneous fat. By applying a linear least-squares regression, the β values in the power-law relationship σ(2) ∝ (mAs)(-β) were measured for the in vivo data and compared with the value found in phantom experiments. For the in vivo swine study, an exponent of β = 0.43 was found for MBIR, and the coefficient of determination (R(2)) for the corresponding least-squares power-law regression was 0.971. As a reference, the β and R(2) values for FBP were found to be 0.98 and 0.997, respectively, from the same study, which are consistent with the well-known σ(2) ∝ (mAs)(-1.0) relationship for linear CT systems. For the human subject study, the measured β values for the MBIR images were 0.41 ± 0.12 in the liver and 0.37 ± 0.12 in subcutaneous fat. In comparison, the β values for the FBP images were 1.04 ± 0.10 in the liver and 0.97 ± 0.12 in subcutaneous fat. The β values of MBIR and FBP obtained from the in vivo studies were found to be statistically equivalent to the corresponding β values from the phantom study within an equivalency interval of [ - 0.1, 0.1] (p < 0.05); across MBIR and FBP, the difference in β was statistically significant (p < 0.05). Despite the nonlinear nature of the MBIR method, the power-law relationship, σ(2) ∝ (mAs)(-0.4), found from phantom studies can be applied to in vivo animal and human subject studies.

  8. A simple calculation method for determination of equivalent square field.

    PubMed

    Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad

    2012-04-01

    Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning.

  9. Correction of scatter in megavoltage cone-beam CT

    NASA Astrophysics Data System (ADS)

    Spies, L.; Ebert, M.; Groh, B. A.; Hesse, B. M.; Bortfeld, T.

    2001-03-01

    The role of scatter in a cone-beam computed tomography system using the therapeutic beam of a medical linear accelerator and a commercial electronic portal imaging device (EPID) is investigated. A scatter correction method is presented which is based on a superposition of Monte Carlo generated scatter kernels. The kernels are adapted to both the spectral response of the EPID and the dimensions of the phantom being scanned. The method is part of a calibration procedure which converts the measured transmission data acquired for each projection angle into water-equivalent thicknesses. Tomographic reconstruction of the projections then yields an estimate of the electron density distribution of the phantom. It is found that scatter produces cupping artefacts in the reconstructed tomograms. Furthermore, reconstructed electron densities deviate greatly (by about 30%) from their expected values. The scatter correction method removes the cupping artefacts and decreases the deviations from 30% down to about 8%.

  10. PET Timing Performance Measurement Method Using NEMA NEC Phantom

    NASA Astrophysics Data System (ADS)

    Wang, Gin-Chung; Li, Xiaoli; Niu, Xiaofeng; Du, Huini; Balakrishnan, Karthik; Ye, Hongwei; Burr, Kent

    2016-06-01

    When comparing the performance of time-of-flight whole-body PET scanners, timing resolution is one important benchmark. Timing performance is heavily influenced by detector and electronics design. Even for the same scanner design, measured timing resolution is a function of many factors including the activity concentration, geometry and positioning of the radioactive source. Due to lack of measurement standards, the timing resolutions reported in the literature may not be directly comparable and may not describe the timing performance under clinically relevant conditions. In this work we introduce a method which makes use of the data acquired during the standard NEMA Noise-Equivalent-Count-Rate (NECR) measurements, and compare it to several other timing resolution measurement methods. The use of the NEMA NEC phantom, with well-defined dimensions and radioactivity distribution, is attractive because it has been widely accepted in the industry and allows for the characterization of timing resolution across a more relevant range of conditions.

  11. Influence of photon energy cuts on PET Monte Carlo simulation results.

    PubMed

    Mitev, Krasimir; Gerganov, Georgi; Kirov, Assen S; Schmidtlein, C Ross; Madzhunkov, Yordan; Kawrakow, Iwan

    2012-07-01

    The purpose of this work is to study the influence of photon energy cuts on the results of positron emission tomography (PET) Monte Carlo (MC) simulations. MC simulations of PET scans of a box phantom and the NEMA image quality phantom are performed for 32 photon energy cut values in the interval 0.3-350 keV using a well-validated numerical model of a PET scanner. The simulations are performed with two MC codes, egs_pet and GEANT4 Application for Tomographic Emission (GATE). The effect of photon energy cuts on the recorded number of singles, primary, scattered, random, and total coincidences as well as on the simulation time and noise-equivalent count rate is evaluated by comparing the results for higher cuts to those for 1 keV cut. To evaluate the effect of cuts on the quality of reconstructed images, MC generated sinograms of PET scans of the NEMA image quality phantom are reconstructed with iterative statistical reconstruction. The effects of photon cuts on the contrast recovery coefficients and on the comparison of images by means of commonly used similarity measures are studied. For the scanner investigated in this study, which uses bismuth germanate crystals, the transport of Bi X(K) rays must be simulated in order to obtain unbiased estimates for the number of singles, true, scattered, and random coincidences as well as for an unbiased estimate of the noise-equivalent count rate. Photon energy cuts higher than 170 keV lead to absorption of Compton scattered photons and strongly increase the number of recorded coincidences of all types and the noise-equivalent count rate. The effect of photon cuts on the reconstructed images and the similarity measures used for their comparison is statistically significant for very high cuts (e.g., 350 keV). The simulation time decreases slowly with the increase of the photon cut. The simulation of the transport of characteristic x rays plays an important role, if an accurate modeling of a PET scanner system is to be achieved. The simulation time decreases slowly with the increase of the cut which, combined with the accuracy loss at high cuts, means that the usage of high photon energy cuts is not recommended for the acceleration of MC simulations.

  12. Double-Referential Holography and Spatial Quadrature Amplitude Modulation

    NASA Astrophysics Data System (ADS)

    Zukeran, Keisuke; Okamoto, Atsushi; Takabayashi, Masanori; Shibukawa, Atsushi; Sato, Kunihiro; Tomita, Akihisa

    2013-09-01

    We proposed a double-referential holography (DRH) that allows phase-detection without external additional beams. In the DRH, phantom beams, prepared in the same optical path as signal beams and preliminary multiplexed in a recording medium along with the signal, are used to produce interference fringes on an imager for converting a phase into an intensity distribution. The DRH enables stable and high-accuracy phase detection independent of the fluctuations and vibrations of the optical system owing to medium shift and temperature variation. Besides, the collinear arrangement of the signal and phantom beams leads to the compactness of the optical data storage system. We conducted an experiment using binary phase modulation signals for verifying the DRH operation. In addition, 38-level spatial quadrature amplitude modulation signals were successfully reproduced with the DRH by numerical simulation. Furthermore, we verified that the distributed phase-shifting method moderates the dynamic range consumption for the exposure of phantom beams.

  13. The Preparation for the Equivalence Examinations, First and Second Levels in the State of Sao Paulo, Brazil: Traditional Means and Educational Media.

    ERIC Educational Resources Information Center

    Gatti, Bernardete A.

    1988-01-01

    Yearly in Sao Paulo (Brazil), official external examinations allow students outside the regular school system to obtain a certificate of education equivalent to grade 8 or 11. A television program that prepares candidates for the examinations and other forms of preparation are compared, using data collected for three years. (TJH)

  14. Evaluation of the resolving potency of a novel reconstruction filter on periodontal ligament space with dental cone-beam CT: a quantitative phantom study

    NASA Astrophysics Data System (ADS)

    Houno, Yuuki; Hishikawa, Toshimitsu; Gotoh, Ken-ichi; Naitoh, Munetaka; Ariji, Eiichiro; Kodera, Yoshie

    2014-03-01

    Diagnosis of the alveolar bone condition is important for the treatment planning of periodontal disease. Especially the determination of periodontal ligament space is the most important remark because it represents the periodontal tissue support for tooth retention. However, owing to the image blur of the current cone-beam CT (CBCT) imaging technique, the periodontal ligament space is difficult to visualize. In this study, we developed an original periodontal ligament phantom (PLP) and evaluated the image quality of simulated periodontal ligament space using a novel reconstruction filter for CBCT that emphasized high frequency component. PLP was composed from two resin blocks of different materials, the bone equivalent block and the dentine equivalent block. They were assembled to make continuously changing space from 0.0 to 1.0 millimeter that mimics periodontal ligament space. PLP was placed in water and the image was obtained by using Alphard-3030 dental cone-beam CT (Asahi Roentgen Industry Co., Ltd.). Then we reconstructed the projection data with a novel reconstruction filter. The axial images were compared with conventional reconstructed images. In novel filter reconstruction images, 0.4 millimeter of the space width was steadily detected by calculation of pixel value, on the other hand 0.6 millimeter was in conventional images. With our method, the resolving potency of conebeam CT images was improved.

  15. Comparison of sliced lungs with whole lung sets for a torso phantom measured with Ge detectors using Monte Carlo simulations (MCNP).

    PubMed

    Kramer, Gary H; Guerriere, Steven

    2003-02-01

    Lung counters are generally used to measure low energy photons (<100 keV). They are usually calibrated with lung sets that are manufactured from a lung tissue substitute material that contains homogeneously distributed activity; however, it is difficult to verify either the activity in the phantom or the homogeneity of the activity distribution without destructive testing. Lung sets can have activities that are as much as 25% different from the expected value. An alternative method to using whole lungs to calibrate a lung counter is to use a sliced lung with planar inserts. Experimental work has already indicated that this alternative method of calibration can be a satisfactory substitute. This work has extended the experimental study by the use of Monte Carlo simulation to validate that sliced and whole lungs are equivalent. It also has determined the optimum slice thicknesses that separate the planar sources in the sliced lung. Slice thicknesses have been investigated in the range of 0.5 cm to 9.0 cm and at photon energies from 17 keV to 1,000 keV. Results have shown that there is little difference between sliced and whole lungs at low energies providing that the slice thickness is 2.0 cm or less. As the photon energy rises the slice thickness can increase substantially with no degradation on equivalence.

  16. A comparison of the fabrication times of all-ceramic partial crowns: Cerec 3D vs IPS Empress.

    PubMed

    Gozdowski, S; Reich, S

    2009-01-01

    Apart from precision, the time factor plays a decisive role in the fabrication of all-ceramic dental restorations. Therefore, the aim of this study was to compare two all-ceramic systems with regard to the time required for the fabrication of partial crowns [MODB]. The null hypothesis tested was that the fabrication times of CAD/CAM generated partial crowns are shorter than the fabrication times of partial crowns manufactured in the laboratory. In sixteen model pairs mounted in the articulator, which corresponded to different clinical situations, tooth 36 was prepared for an all-ceramic partial crown [MODB]. With the Cerec3D method [CHAIR], the fabrication of the restoration was simulated directly on the "phantom patient". The IPS Empress system [LAB] was used forthe indirectfabrication method via an impression of the phantom patient. Both methods were used for each preparation. The adhesive luting procedure was not simulated and, therefore, not measured. The mean processing times [hh:mm:ss] were 00:35:05 (SD +/- 03:27 min) for the Cerec method and 04:17:54 (SD +/- 26:01 min) for the Empress method. The mean time on the phantom patient for process-induced activities was 11:47 minutes (SD +/- 02:08 min) for the Cerec method and 03:58 minutes (SD +/- 02:50 min) for the Empress method. Time expenditure for fabrication is only one aspect in order to assess the suitability of a restoration system. Both methods enable the dentist to provide high quality all ceramic restorations. Although the Empress method showed a time advantage of 65% during the fitting phase and occlusal grinding-in on the phantom patient in comparison to the Cerec method, the time spent during the laboratory phase has to be considered as well.

  17. Three-dimensional ordered-subset expectation maximization iterative protocol for evaluation of left ventricular volumes and function by quantitative gated SPECT: a dynamic phantom study.

    PubMed

    Ceriani, Luca; Ruberto, Teresa; Delaloye, Angelika Bischof; Prior, John O; Giovanella, Luca

    2010-03-01

    The purposes of this study were to characterize the performance of a 3-dimensional (3D) ordered-subset expectation maximization (OSEM) algorithm in the quantification of left ventricular (LV) function with (99m)Tc-labeled agent gated SPECT (G-SPECT), the QGS program, and a beating-heart phantom and to optimize the reconstruction parameters for clinical applications. A G-SPECT image of a dynamic heart phantom simulating the beating left ventricle was acquired. The exact volumes of the phantom were known and were as follows: end-diastolic volume (EDV) of 112 mL, end-systolic volume (ESV) of 37 mL, and stroke volume (SV) of 75 mL; these volumes produced an LV ejection fraction (LVEF) of 67%. Tomographic reconstructions were obtained after 10-20 iterations (I) with 4, 8, and 16 subsets (S) at full width at half maximum (FWHM) gaussian postprocessing filter cutoff values of 8-15 mm. The QGS program was used for quantitative measurements. Measured values ranged from 72 to 92 mL for EDV, from 18 to 32 mL for ESV, and from 54 to 63 mL for SV, and the calculated LVEF ranged from 65% to 76%. Overall, the combination of 10 I, 8 S, and a cutoff filter value of 10 mm produced the most accurate results. The plot of the measures with respect to the expectation maximization-equivalent iterations (I x S product) revealed a bell-shaped curve for the LV volumes and a reverse distribution for the LVEF, with the best results in the intermediate range. In particular, FWHM cutoff values exceeding 10 mm affected the estimation of the LV volumes. The QGS program is able to correctly calculate the LVEF when used in association with an optimized 3D OSEM algorithm (8 S, 10 I, and FWHM of 10 mm) but underestimates the LV volumes. However, various combinations of technical parameters, including a limited range of I and S (80-160 expectation maximization-equivalent iterations) and low cutoff values (< or =10 mm) for the gaussian postprocessing filter, produced results with similar accuracies and without clinically relevant differences in the LV volumes and the estimated LVEF.

  18. WE-EF-303-10: Single- Detector Proton Radiography as a Portal Imaging Equivalent for Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doolan, P; Bentefour, E; Testa, M

    2015-06-15

    Purpose: In proton therapy, patient alignment is of critical importance due to the sensitivity of the proton range to tissue heterogeneities. Traditionally proton radiography is used for verification of the water-equivalent path length (WEPL), which dictates the depth protons reach. In this work we propose its use for alignment. Additionally, many new proton centers have cone-beam computed tomography in place of beamline X-ray imaging and so proton radiography offers a unique patient alignment verification similar to portal imaging in photon therapy. Method: Proton radiographs of a CIRS head phantom were acquired using the Beam Imaging System (BIS) (IBA, Louvain-la-Neuve) inmore » a horizontal beamline. A scattered beam was produced using a small, dedicated, range modulator (RM) wheel fabricated out of aluminum. The RM wheel was rotated slowly (20 sec/rev) using a stepper motor to compensate for the frame rate of the BIS (120 ms). Dose rate functions (DRFs) over two RM wheel rotations were acquired. Calibration was made with known thicknesses of homogeneous solid water. For each pixel the time width, skewness and kurtosis of the DRFs were computed. The time width was used to compute the object WEPL. In the heterogeneous phantom, the excess skewness and excess kurtosis (i.e. difference from homogeneous cases) were computed and assessed for suitability for patient set up. Results: The technique allowed for the simultaneous production of images that can be used for WEPL verification, showing few internal details, and excess skewness and kurtosis images that can be used for soft tissue alignment. These latter images highlight areas where range mixing has occurred, correlating with phantom heterogeneities. Conclusion: The excess skewness and kurtosis images contain details that are not visible in the WET images. These images, unique to the time-resolved proton radiographic method, could be used for patient set up according to soft tissues.« less

  19. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawad, M Abdel; Elgohary, M; Hassaan, M

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less

  20. In vitro Dosimetric Study of Biliary Stent Loaded with Radioactive 125I Seeds

    PubMed Central

    Yao, Li-Hong; Wang, Jun-Jie; Shang, Charles; Jiang, Ping; Lin, Lei; Sun, Hai-Tao; Liu, Lu; Liu, Hao; He, Di; Yang, Rui-Jie

    2017-01-01

    Background: A novel radioactive 125I seed-loaded biliary stent has been used for patients with malignant biliary obstruction. However, the dosimetric characteristics of the stents remain unclear. Therefore, we aimed to describe the dosimetry of the stents of different lengths — with different number as well as activities of 125I seeds. Methods: The radiation dosimetry of three representative radioactive stent models was evaluated using a treatment planning system (TPS), thermoluminescent dosimeter (TLD) measurements, and Monte Carlo (MC) simulations. In the process of TPS calculation and TLD measurement, two different water-equivalent phantoms were designed to obtain cumulative radial dose distribution. Calibration procedures using TLD in the designed phantom were also conducted. MC simulations were performed using the Monte Carlo N-Particle eXtended version 2.5 general purpose code to calculate the radioactive stent's three-dimensional dose rate distribution in liquid water. Analysis of covariance was used to examine the factors influencing radial dose distribution of the radioactive stent. Results: The maximum reduction in cumulative radial dose was 26% when the seed activity changed from 0.5 mCi to 0.4 mCi for the same length of radioactive stents. The TLD's dose response in the range of 0–10 mGy irradiation by 137Cs γ-ray was linear: y = 182225x − 6651.9 (R2= 0.99152; y is the irradiation dose in mGy, x is the TLDs’ reading in nC). When TLDs were irradiated by different energy radiation sources to a dose of 1 mGy, reading of TLDs was different. Doses at a distance of 0.1 cm from the three stents’ surface simulated by MC were 79, 93, and 97 Gy. Conclusions: TPS calculation, TLD measurement, and MC simulation were performed and were found to be in good agreement. Although the whole experiment was conducted in water-equivalent phantom, data in our evaluation may provide a theoretical basis for dosimetry for the clinical application. PMID:28469106

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pino, R; Therriault-Proulx, F; Yang, J

    Purpose: To perform dose profile and output factor measurements for the Exradin W1 plastic scintillation detector (PSD) for the Gamma Knife Perfexion (GKP) collimators in a Lucy phantom and to compare these values to an Exradin A16 ion chamber, EBT3 radiochromic film and treatment planning system (TPS) data. Methods: We used the Exradin W1 PSD which has a small volume, near-water equivalent sensitive element. It has also been shown to be energy independent. This new detector is manufactured and distributed by Standard Imaging, Inc. Measurements were performed for all three collimators (4 mm, 8 mm and 16 mm) for themore » GKP. The Lucy phantom with the PSD inserted was moved in small steps to acquire profiles in all three directions. EBT3 film was inserted in the Lucy phantom and exposed to a single shot for each collimator. Relative output factors were measured using the three detectors while profiles acquired with the PSD were compared to the ones measured with EBT3 radiochromic film. Results: Measured output factors relative to the largest collimator are as followsCollimator PS EBT3 A1616mm 1.000 1.000 1.0008mm 0.892 0.881 0.8834mm 0.795 0.793 0.727 The nominal (vendor) OFs for GKP are 1.000, 0.900, and 0.814, for collimators 16 mm, 8 mm and 4 mm, respectively. There is excellent agreement between all profiles measured with the PSD and EBT3 as well as with the TPS data provided by the vendor. Conclusion: Output factors measured with the W1 were consistent with the ones measured with EBT3 and A16 ion chamber. Measured profiles are in excellent agreement. The W1 detector seems well suited for beam QA for Gamma Knife due to its dosimetric characteristics. Sam Beddar would like to disclose a NIH/NCI SBIR Phase II grant (2R44CA153824-02A1) with Standard Imaging, Title: “Water-Equivalent Plastic Scintillation Detectors for Small Field Radiotherapy”.« less

  2. MRI surface-coil pair with strong inductive coupling.

    PubMed

    Mett, Richard R; Sidabras, Jason W; Hyde, James S

    2016-12-01

    A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

  3. Feasibility of deep-inspiration breath-hold PET/CT with short-time acquisition: detectability for pulmonary lesions compared with respiratory-gated PET/CT.

    PubMed

    Yamashita, Shozo; Yokoyama, Kunihiko; Onoguchi, Masahisa; Yamamoto, Haruki; Hiko, Shigeaki; Horita, Akihiro; Nakajima, Kenichi

    2014-01-01

    Deep-inspiration breath-hold (DIBH) PET/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used.

  4. Voluntary control of a phantom limb.

    PubMed

    Walsh, E; Long, C; Haggard, P

    2015-08-01

    Voluntary actions are often accompanied by a conscious experience of intention. The content of this experience, and its neural basis, remain controversial. On one view, the mind just retrospectively ascribes intentions to explain the occurrence of actions that lack obvious triggering stimuli. Here, we use EEG frequency analysis of sensorimotor rhythms to investigate brain activity when a participant (CL, co-author of this paper) with congenital absence of the left hand and arm, prepared and made a voluntary action with the right or the phantom "left hand". CL reported the moment she experienced the intention to press a key. This timepoint was then used as a marker for aligning and averaging EEG. In a second condition, CL was asked to prepare the action on all trials, but then, on some trials, to cancel the action at the last moment. For the right hand, we observed a typical reduction in beta-band spectral power prior to movement, followed by beta rebound after movement. When CL prepared but then cancelled a movement, we found a characteristic EEG pattern reported previously, namely a left frontal increase in spectral power close to the time of the perceived intention to move. Interestingly, the same neural signatures of positive and inhibitory volition were also present when CL prepared and inhibited movements with her phantom left hand. These EEG signals were all similar to those reported previously in a group of 14 healthy volunteers. Our results suggest that conscious intention may depend on preparatory brain activity, and not on making, or ever having made, the corresponding physical body movement. Accounts that reduce conscious volition to mere retrospective confabulation cannot easily explain our participant's neurophenomenology of action and inhibition. In contrast, the results are consistent with the view that specific neural events prior to movement may generate conscious experiences of positive and negative volition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The entangled accelerating universe

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.; Robles-Pérez, Salvador

    2009-08-01

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  6. Linear energy transfer in water phantom within SHIELD-HIT transport code

    NASA Astrophysics Data System (ADS)

    Ergun, A.; Sobolevsky, N.; Botvina, A. S.; Buyukcizmeci, N.; Latysheva, L.; Ogul, R.

    2017-02-01

    The effect of irradiation in tissue is important in hadron therapy for the dose measurement and treatment planning. This biological effect is defined by an equivalent dose H which depends on the Linear Energy Transfer (LET). Usually, H can be expressed in terms of the absorbed dose D and the quality factor K of the radiation under consideration. In literature, various types of transport codes have been used for modeling and simulation of the interaction of the beams of protons and heavier ions with tissue-equivalent materials. In this presentation we used SHIELD-HIT code to simulate decomposition of the absorbed dose by LET in water for 16O beams. A more detailed description of capabilities of the SHIELD-HIT code can be found in the literature.

  7. Electron Density Calibration for Radiotherapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Martinez, F.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.

    2006-09-08

    Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density ({rho}e) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a largemore » range of {rho}e to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head.« less

  8. Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution

    NASA Astrophysics Data System (ADS)

    Buffard, Edwige; Gschwind, Régine; Makovicka, Libor; David, Céline

    2006-09-01

    Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution.

  9. Development of a silicon diode detector for skin dosimetry in radiotherapy.

    PubMed

    Vicoroski, Nikolina; Espinoza, Anthony; Duncan, Mitchell; Oborn, Bradley M; Carolan, Martin; Metcalfe, Peter; Menichelli, David; Perevertaylo, Vladimir L; Lerch, Michael L F; Rosenfeld, Anatoly B; Petasecca, Marco

    2017-10-01

    The aim of in vivo skin dosimetry was to measure the absorbed dose to the skin during radiotherapy, when treatment planning calculations cannot be relied on. It is of particularly importance in hypo-fractionated stereotactic modalities, where excessive dose can lead to severe skin toxicity. Currently, commercial diodes for such applications are with water equivalent depths ranging from 0.5 to 0.8 mm. In this study, we investigate a new detector for skin dosimetry based on a silicon epitaxial diode, referred to as the skin diode. The skin diode is manufactured on a thin epitaxial layer and packaged using the "drop-in" technology. It was characterized in terms of percentage depth dose, dose linearity, and dose rate dependence, and benchmarked against the Attix ionization chamber. The response of the skin diode in the build-up region of the percentage depth dose (PDD) curve of a 6 MV clinical photon beam was investigated. Geant4 radiation transport simulations were used to model the PDD in order to estimate the water equivalent measurement depth (WED) of the skin diode. Measured output factors using the skin diode were compared with the MOSkin detector and EBT3 film at 10 cm depth and at surface at isocenter of a water equivalent phantom. The intrinsic angular response of the skin diode was also quantified in charge particle equilibrium conditions (CPE) and at the surface of a solid water phantom. Finally, the radiation hardness of the skin diode up to an accumulated dose of 80 kGy using photons from a Co-60 gamma source was evaluated. The PDD curve measured with the skin diode was within 0.5% agreement of the equivalent Geant4 simulated curve. When placed at the phantom surface, the WED of the skin diode was estimated to be 0.075 ± 0.005 mm from Geant4 simulations and was confirmed using the response of a corrected Attix ionization chamber placed at water equivalent depth of 0.075 mm, with the measurement agreement to within 0.3%. The output factor measurements at 10 cm depth were within 2% of those measured with film and the MOSkin detector down to a field size of 2 × 2 cm 2 . The dose-response for all detector samples was linear and with a repeatability within 0.2%. The skin diode intrinsic angular response showed a maximum deviation of 8% at 90 degrees and from 0 to 60 degree is less than 5%. The radiation sensitivity reduced by 25% after an accumulated dose of 20 kGy but after was found to stabilize. At 60 kGy total accumulated dose the response was within 2% of that measured at 20 kGy total accumulated dose. This work characterizes an innovative detector for in vivo and real-time skin dose measurements that is based on an epitaxial silicon diode combined with the Centre for Medical Radiation Physics (CMRP) "drop-in" packaging technology. The skin diode proved to have a water equivalent depth of measurement of 0.075 ± 0.005 mm and the ability to measure doses accurately relative to reference detectors. © 2017 American Association of Physicists in Medicine.

  10. SU-E-T-563: Multi-Fraction Stereotactic Radiosurgery with Extend System of Gamma Knife: Treatment Verification Using Indigenously Designed Patient Simulating Multipurpose Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, R; Kale, S; Gopishankar, N

    2015-06-15

    Purpose: Aim of the study is to evaluate mechanical and radiological accuracy of multi-fraction regimen and validate Gamma knife based fractionation using newly developed patient simulating multipurpose phantom. Methods: A patient simulating phantom was designed to verify fractionated treatments with extend system (ES) of Gamma Knife however it could be used to validate other radiotherapy procedures as well. The phantom has options to insert various density material plugs and mini CT/MR distortion phantoms to analyze the quality of stereotactic imaging. An additional thorax part designed to predict surface doses at various organ sites. The phantom was positioned using vacuum headmore » cushion and patient control unit for imaging and treatment. The repositioning check tool (RCT) was used to predict phantom positioning under ES assembly. The phantom with special inserts for film in axial, coronal and sagittal plane were scanned with X-Ray CT and the acquired images were transferred to treatment planning system (LGP 10.1). The focal precession test was performed with 4mm collimator and an experimental plan of four 16mm collimator shots was prepared for treatment verification of multi-fraction regimen. The prescription dose of 5Gy per fraction was delivered in four fractions. Each fraction was analyzed using EBT3 films scanned with EPSON 10000XL Scanner. Results: The measurement of 38 RCT points showed an overall positional accuracy of 0.28mm. The mean deviation of 0.28% and 0.31 % were calculated as CT and MR image distortion respectively. The radiological focus accuracy test showed its deviation from mechanical center point of 0.22mm. The profile measurement showed close agreement between TPS planned and film measured dose. At tolerance criteria of 1%/1mm gamma index analysis showed a pass rate of > 95%. Conclusion: Our results show that the newly developed multipurpose patient simulating phantom is highly suitable for the verification of fractionated stereotactic radiosurgery using ES of Gamma knife. The study is a part of intramural research project of Research Section, All India Institute of Medical Sciences New Delhi India (A 247)« less

  11. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  12. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography.

    PubMed

    Steiding, Christian; Kolditz, Daniel; Kalender, Willi A

    2014-03-01

    Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, and an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also verified. The maximum percentage interscan variation of repeated measurements was less than 4% and 1.7% on average for all investigated quality criteria. The NPS-based image noise differed by less than 5% from the conventional standard deviation approach and spatially selective 10% MTF values were well comparable to subjective results obtained with 3D resolution pattern. Determining only transverse spatial resolution and global noise behavior in the central field of measurement turned out to be insufficient. The proposed framework transfers QA routines employed in conventional CT in an advanced version to CBCT for fully automated and time-efficient evaluation of technical equipment. With the modular phantom design, a routine as well as an expert version for assessing IQ is provided. The QA program can be used for arbitrary CT units to evaluate 3D imaging characteristics automatically.

  13. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiding, Christian; Kolditz, Daniel; Kalender, Willi A., E-mail: willi.kalender@imp.uni-erlangen.de

    Purpose: Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. Methods: The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, andmore » an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. Results: The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also verified. The maximum percentage interscan variation of repeated measurements was less than 4% and 1.7% on average for all investigated quality criteria. The NPS-based image noise differed by less than 5% from the conventional standard deviation approach and spatially selective 10% MTF values were well comparable to subjective results obtained with 3D resolution pattern. Determining only transverse spatial resolution and global noise behavior in the central field of measurement turned out to be insufficient. Conclusions: The proposed framework transfers QA routines employed in conventional CT in an advanced version to CBCT for fully automated and time-efficient evaluation of technical equipment. With the modular phantom design, a routine as well as an expert version for assessing IQ is provided. The QA program can be used for arbitrary CT units to evaluate 3D imaging characteristics automatically.« less

  14. SU-E-T-102: Determination of Dose Distributions and Water-Equivalence of MAGIC-F Polymer Gel for 60Co and 192Ir Brachytherapy Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quevedo, A; Nicolucci, P

    2014-06-01

    Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with themore » source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.« less

  15. Verification of intensity modulated radiation therapy beams using a tissue equivalent plastic scintillator dosimetry system

    NASA Astrophysics Data System (ADS)

    Petric, Martin Peter

    This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.

  16. Dose reduction of up to 89% while maintaining image quality in cardiovascular CT achieved with prospective ECG gating

    NASA Astrophysics Data System (ADS)

    Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis

    2007-03-01

    We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.

  17. A simple calculation method for determination of equivalent square field

    PubMed Central

    Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad

    2012-01-01

    Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning. PMID:22557801

  18. Lens dose in routine head CT: comparison of different optimization methods with anthropomorphic phantoms.

    PubMed

    Nikupaavo, Ulla; Kaasalainen, Touko; Reijonen, Vappu; Ahonen, Sanna-Mari; Kortesniemi, Mika

    2015-01-01

    The purpose of this study was to study different optimization methods for reducing eye lens dose in head CT. Two anthropomorphic phantoms were scanned with a routine head CT protocol for evaluation of the brain that included bismuth shielding, gantry tilting, organ-based tube current modulation, or combinations of these techniques. Highsensitivity metal oxide semiconductor field effect transistor dosimeters were used to measure local equivalent doses in the head region. The relative changes in image noise and contrast were determined by ROI analysis. The mean absorbed lens doses varied from 4.9 to 19.7 mGy and from 10.8 to 16.9 mGy in the two phantoms. The most efficient method for reducing lens dose was gantry tilting, which left the lenses outside the primary radiation beam, resulting in an approximately 75% decrease in lens dose. Image noise decreased, especially in the anterior part of the brain. The use of organ-based tube current modulation resulted in an approximately 30% decrease in lens dose. However, image noise increased as much as 30% in the posterior and central parts of the brain. With bismuth shields, it was possible to reduce lens dose as much as 25%. Our results indicate that gantry tilt, when possible, is an effective method for reducing exposure of the eye lenses in CT of the brain without compromising image quality. Measurements in two different phantoms showed how patient geometry affects the optimization. When lenses can only partially be cropped outside the primary beam, organ-based tube current modulation or bismuth shields can be useful in lens dose reduction.

  19. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation.

    PubMed

    Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T

    2017-07-01

    Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Quantification of the uncertainty in coronary CTA plaque measurements using dynamic cardiac phantom and 3D-printed plaque models

    NASA Astrophysics Data System (ADS)

    Richards, Taylor; Sturgeon, Gregory M.; Ramirez-Giraldo, Juan Carlos; Rubin, Geoffrey; Segars, Paul; Samei, Ehsan

    2017-03-01

    The purpose of this study was to quantify the accuracy of coronary computed tomography angiography (CTA) stenosis measurements using newly developed physical coronary plaque models attached to a base dynamic cardiac phantom (Shelley Medical DHP-01). Coronary plaque models (5 mm diameter, 50% stenosis, and 32 mm long) were designed and 3D-printed with tissue equivalent materials (calcified plaque with iodine enhanced lumen). Realistic cardiac motion was achieved by fitting known cardiac motion vectors to left ventricle volume-time curves to create synchronized heart motion profiles executed by the base cardiac phantom. Realistic coronary CTA acquisition was accomplished by synthesizing corresponding ECG waveforms for gating and reconstruction purposes. All scans were acquired using a retrospective gating technique on a dual-source CT system (Siemens SOMATOM FLASH) with 75ms temporal resolution. Multi-planar reformatted images were reconstructed along vessel centerlines and the enhanced lumens were manually segmented by 5 independent operators. On average, the stenosis measurement accuracy was 0.9% positive bias for the motion free condition (0 bpm). The measurement accuracy monotonically decreased to 18.5% negative bias at 90 bpm. Contrast-tonoise (CNR), vessel circularity, and segmentation conformity also decreased monotonically with increasing heart rate. These results demonstrate successful implementation of the base cardiac phantom with 3D-printed coronary plaque models, adjustable motion profiles, and coordinated ECG waveforms. They further show the utility of the model to ascertain metrics of coronary CT accuracy and image quality under a variety of plaque, motion, and acquisition conditions.

  1. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience with Phantom Scans

    PubMed Central

    Johnson, Robert P.; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F.; Piersimoni, Pierluigi; Plautz, Tia E.; Sadrozinski, Hartmut F.-W.; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy

    2016-01-01

    We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials. PMID:27127307

  2. A study on rectal dose measurement in phantom and in vivo using Gafchromic EBT3 film in IMRT and CyberKnife treatments of carcinoma of prostate

    PubMed Central

    Ganapathy, K.; Kurup, P. G. G.; Murali, V.; Muthukumaran, M.; Subramanian, S. Balaji; Velmurugan, J.

    2013-01-01

    The objective of this study is to check the feasibility of in vivo rectal dose measurement in intensity-modulated radiotherapy (IMRT) and CyberKnife treatments for carcinoma prostate. An in-house pelvis phantom made with bee's wax was used in this study. Two cylindrical bone equivalent materials were used to simulate the femur. Target and other critical structures associated with carcinoma prostate were delineated on the treatment planning images by the radiation oncologist. IMRT treatment plan was generated in Oncentra Master Plan treatment planning system and CyberKnife treatment plan was generated in Multiplan treatment planning system. Dose measurements were carried out in phantom and in patient using Gafchromic EBT3 films. RIT software was used to analyze the dose measured by EBT3 films. The measured doses using EBT3 films were compared with the TPS-calculated dose along the anterior rectal wall at multiple points. From the in-phantom measurements, it is observed that the difference between calculated and measured dose was mostly within 5%, except for a few measurement points. The difference between calculated and measured dose in the in-patient measurements was higher than 5% in regions which were away from the target. Gafchromic EBT3 film is a suitable detector for in vivo rectal dose measurements as it offers the possibility of analyzing the dose at multiple points. In addition, the method of extending this in vivo rectal dose measurement technique as a tool for patient-specific quality assurance check is also analyzed. PMID:24049320

  3. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience with Phantom Scans.

    PubMed

    Johnson, Robert P; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F; Piersimoni, Pierluigi; Plautz, Tia E; Sadrozinski, Hartmut F-W; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy

    2016-02-01

    We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials.

  4. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience With Phantom Scans

    NASA Astrophysics Data System (ADS)

    Johnson, Robert P.; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F.; Piersimoni, Pierluigi; Plautz, Tia E.; Sadrozinski, Hartmut F.-W.; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy

    2016-02-01

    We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360 ° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360 ° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials.

  5. Reliability of the EchoMRI-Infant System for Water and Fat Measurements in Newborns

    PubMed Central

    Toro-Ramos, Tatiana; Paley, Charles; Wong, William W.; Pi-Sunyer, F. Xavier; Yu, W.; Thornton, John; Gallagher, Dympna

    2017-01-01

    Objective The precision and accuracy of a quantitative magnetic resonance (EchoMRI-Infants™) system in newborn was determined. Methods: Canola oil and drinking water phantoms (increments of 10g to 1.9kg) were scanned four times. Instrument reproducibility was assessed from 3 scans (within 10-minutes) in 42 healthy term newborns (12–70 hours post-birth). Instrument precision was determined from the coefficient of variation (CV) of repeated scans for total water, lean, and fat measures for newborns and the mean difference between weight and measurement for phantoms. In newborns, the system accuracy for total body water (TBW) was tested against deuterium dilution (D2O). Results In phantoms, the repeatability and accuracy of fat and water measurements increased as the weight of oil and water increased. TBW was overestimated in amounts >200g. In newborns weighing 3.14kg, fat, lean and TBW were 0.52kg (16.48%), 2.28kg and 2.40kg, respectively. EchoMRI’s reproducibility (CV) was 3.27%, 1.83% and 1.34% for total body fat, lean, and TBW, respectively. EchoMRI-TBW values did not differ from D2O; mean difference − 1.95±6.76%, p=0.387; mean bias (limits of agreement) 0.046 kg (−0.30 to 0.39 kg). Conclusions EchoMRI infant system’s precision and accuracy for total body fat and lean are better than established techniques and equivalent to D2O for TBW in phantoms and newborns. PMID:28712143

  6. Performance evaluation of the Trans-PET®BioCaliburn® SH system

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Wang, Luyao; Kao, Chien-Min; Kim, Heejong; Xie, Qingguo

    2015-03-01

    The Trans-PET®BioCaliburn® SH system, recently introduced by the Raycan Technology Co. Ltd. (Suzhou, China), is a commercial positron emission tomography (PET) system designed for rodent imaging. The system contains 6 basic detector modules (BDMs) arranged on a 10.8 cm diameter ring to provide a transaxial field of view (FOV) of 6.5 cm and an axial FOV of 5.3 cm. In this paper, we report on its performance properties in accordance with the National Electrical Manufacturers Association (NEMA) 2008 NU-4 standards with modifications. The measured spatial resolution at the center of the FOV was 1.05 mm, 1.12 mm and 1.13 mm in the tangential, radial and axial directions, respectively. The measured system sensitivity was 3.29% for a point source at the center of the FOV when using a 350-650 keV energy window and a 5 ns coincidence time window. When a wider 250-750 keV energy window was used, it increased to 4.21%. For mouse- and rat-sized phantoms, the scatter fraction was 10.7% and 16.1%, respectively. The peak noise equivalent count rate were 36 kcps@8.52 MBq for the mouse-sized phantom and 16 kcps@6.79 MBq for the rat-sized phantom. The Derenzo phantom image showed that the system can resolve 1.0 mm diameter rods. The measured performance properties of the system indicate that the Trans-PET®BioCaliburn® SH is a versatile imaging device that can provide high spatial resolution for rodent imaging while offering competitive sensitivity and count-rate performance.

  7. Using an external gating signal to estimate noise in PET with an emphasis on tracer avid tumors

    NASA Astrophysics Data System (ADS)

    Schmidtlein, C. R.; Beattie, B. J.; Bailey, D. L.; Akhurst, T. J.; Wang, W.; Gönen, M.; Kirov, A. S.; Humm, J. L.

    2010-10-01

    The purpose of this study is to establish and validate a methodology for estimating the standard deviation of voxels with large activity concentrations within a PET image using replicate imaging that is immediately available for use in the clinic. To do this, ensembles of voxels in the averaged replicate images were compared to the corresponding ensembles in images derived from summed sinograms. In addition, the replicate imaging noise estimate was compared to a noise estimate based on an ensemble of voxels within a region. To make this comparison two phantoms were used. The first phantom was a seven-chamber phantom constructed of 1 liter plastic bottles. Each chamber of this phantom was filled with a different activity concentration relative to the lowest activity concentration with ratios of 1:1, 1:1, 2:1, 2:1, 4:1, 8:1 and 16:1. The second phantom was a GE Well-Counter phantom. These phantoms were imaged and reconstructed on a GE DSTE PET/CT scanner with 2D and 3D reprojection filtered backprojection (FBP), and with 2D- and 3D-ordered subset expectation maximization (OSEM). A series of tests were applied to the resulting images that showed that the region and replicate imaging methods for estimating standard deviation were equivalent for backprojection reconstructions. Furthermore, the noise properties of the FBP algorithms allowed scaling the replicate estimates of the standard deviation by a factor of 1/\\sqrt{N}, where N is the number of replicate images, to obtain the standard deviation of the full data image. This was not the case for OSEM image reconstruction. Due to nonlinearity of the OSEM algorithm, the noise is shown to be both position and activity concentration dependent in such a way that no simple scaling factor can be used to extrapolate noise as a function of counts. The use of the Well-Counter phantom contributed to the development of a heuristic extrapolation of the noise as a function of radius in FBP. In addition, the signal-to-noise ratio for high uptake objects was confirmed to be higher with backprojection image reconstruction methods. These techniques were applied to several patient data sets acquired in either 2D or 3D mode, with 18F (FLT and FDG). Images of the standard deviation and signal-to-noise ratios were constructed and the standard deviations of the tumors' uptake were determined. Finally, a radial noise extrapolation relationship deduced in this paper was applied to patient data.

  8. SU-G-IeP3-09: Investigating the Interplay of Antiscatter Grids with Modern Detectors and Image Processing in Digital Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, A; Little, K; Baad, M

    Purpose: To use phantom and simulation experiments to relate technique factors, patient size and antiscatter grid use to image quality in portable digital radiography (DR), in light of advancements in detector design and image processing. Methods: Image contrast-to-noise ratio (CNR) on a portable DR system (MobileDaRt Evolution, Shimadzu) was measured by imaging four aluminum inserts of varying thickness, superimposed on a Lucite slab phantom using a pediatric abdominal protocol. Three thicknesses of Lucite were used: 6.1cm, 12cm, and 18.2cm, with both 55 and 65 kVp beams. The mAs was set so that detector entrance exposure (DEE) was matched between kVpmore » values. Each technique and phantom was used with and without an antiscatter grid (focused linear grid embedded in aluminum with an 8:1 ratio). The CNR-improvement-factor was then used to determine the thickness- and technique-dependent appropriateness of grid use. Finally, the same experiment was performed via Monte Carlo simulation, integrating incident energy fluence at each detector pixel, so that effects of detector design and image processing could be isolated from physical factors upstream of the detector. Results: The physical phantom experiment demonstrated a clear improvement for the lower tube voltage (55kVp), along with substantial CNR benefits with grid use for 12–18cm phantoms. Neither trend was evident with Monte Carlo, suggesting that suboptimal quantum-detection-efficiency and automated grid-removal could explain trends in kVp and grid use, respectively. Conclusion: Physical experiments demonstrate marked improvement in CNR when using a grid for phantoms of 12 and 18cm Lucite thickness (above ∼10cm soft-tissue equivalent). This benefit is likely due to image processing, as this result was not seen with Monte Carlo. The impact of image processing on image resolution should also be investigated, and the CNR benefit of low kVp and grid use should be weighed against the increased exposure time necessary to achieve adequate DEE.« less

  9. Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature.

    PubMed

    Knowles, Nikolas K; Reeves, Jacob M; Ferreira, Louis M

    2016-12-01

    Finite element modeling of human bone provides a powerful tool to evaluate a wide variety of outcomes in a highly repeatable and parametric manner. These models are most often derived from computed tomography data, with mechanical properties related to bone mineral density (BMD) from the x-ray energy attenuation provided from this data. To increase accuracy, many researchers report the use of quantitative computed tomography (QCT), in which a calibration phantom is used during image acquisition to improve the estimation of BMD. Since model accuracy is dependent on the methods used in the calculation of BMD and density-mechanical property relationships, it is important to use relationships developed for the same anatomical location and using the same scanner settings, as these may impact model accuracy. The purpose of this literature review is to report the relationships used in the conversion of QCT equivalent density measures to ash, apparent, and/or tissue densities in recent finite element (FE) studies used in common density-modulus relationships. For studies reporting experimental validation, the validation metrics and results are presented. Of the studies reviewed, 29% reported the use of a dipotassium phosphate (K 2 HPO 4 ) phantom, 47% a hydroxyapatite (HA) phantom, 13% did not report phantom type, 7% reported use of both K 2 HPO 4 and HA phantoms, and 4% alternate phantom types. Scanner type and/or settings were omitted or partially reported in 31% of studies. The majority of studies used densitometric and/or density-modulus relationships derived from different anatomical locations scanned in different scanners with different scanner settings. The methods used to derive various densitometric relationships are reported and recommendations are provided toward the standardization of reporting metrics. This review assessed the current state of QCT-based FE modeling with use of clinical scanners. It was found that previously developed densitometric relationships vary by anatomical location, scanner type and settings. Reporting of all parameters used when referring to previously developed relationships, or in the development of new relationships, may increase the accuracy and repeatability of future FE models.

  10. Evaluation of 3D printing materials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quality

    NASA Astrophysics Data System (ADS)

    Alssabbagh, Moayyad; Tajuddin, Abd Aziz; Abdulmanap, Mahayuddin; Zainon, Rafidah

    2017-06-01

    Recently, the three-dimensional printer has started to be utilized strongly in medical industries. In the human body, many parts or organs can be printed from 3D images to meet accurate organ geometries. In this study, five common 3D printing materials were evaluated in terms of their elementary composition and the mass attenuation coefficients. The online version of XCOM photon cross-section database was used to obtain the attenuation values of each material. The results were compared with the attenuation values of the thyroid listed in the International Commission on Radiation Units and Measurements - ICRU 44. Two original thyroid models (hollow-inside and solid-inside) were designed from scratch to be used in nuclear medicine, diagnostic radiology and radiotherapy for dosimetry and image quality purposes. Both designs have three holes for installation of radiation dosimeters. The hollow-inside model has more two holes in the top for injection the radioactive materials. The attenuation properties of the Polylactic Acid (PLA) material showed a very good match with the thyroid tissue, which it was selected to 3D print the phantom using open source RepRap, Prusa i3 3D printer. The scintigraphy images show that the phantom simulates a real healthy thyroid gland and thus it can be used for image quality purposes. The measured CT numbers of the PA material after the 3D printing show a close match with the human thyroid CT numbers. Furthermore, the phantom shows a good accommodation of the TLD dosimeters inside the holes. The 3D fabricated thyroid phantom simulates the real shape of the human thyroid gland with a changeable geometrical shape-size feature to fit different age groups. By using 3D printing technology, the time required to fabricate the 3D phantom was considerably shortened compared to the longer conventional methods, where it took only 30 min to print out the model. The 3D printing material used in this study is commercially available and cost-effective compared to current commercial tissue-equivalent materials.

  11. SU-E-T-608: Perturbation Corrections for Alanine Dosimeters in Different Phantom Materials in High-Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigts-Rhetz, P von; Czarnecki, D; Anton, M

    Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from {sup 60}Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k{sub env} for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted withmore » BEAMnrc to a {sup 60}Co unit and an Elekta (E{sub nom}=6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n{sub e}/n{sub e,w}) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k{sub env}=0.9991+0.0049 *((n{sub e}/n{sub e,w})−0.7659){sup 3} Conclusion: A perturbation correction factor k{sub env} accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n{sub e}/n{sub e,w}) between 1 and 1.4. For denser materials such as bone or much less dense surroundings such as lung, a small correction would be appropriate.« less

  12. Comparison between Measured and Simulated Radiation Doses in the Matoroshka-R Spherical phantom Experiment#1 and Area Monitoring aboard International Space Station using PADLES from May - Sep. 2012

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Aiko; Tolochek, Raisa; Shurshakov, Vyacheslav; Nikolaev, Igor; Tawara, Hiroko; Kitajo, Keiichi; Shimada, Ken

    The measurement of radiation environmental parameters in space is essential to support radiation risk assessments for astronauts and establish a benchmark for space radiation models for present and future human space activities. Since Japanese Experiment Module ‘KIBO’ was attached to the International Space Station (ISS) in 2008, we have been performing continuous space radiation dosimetery using a PADLES (Passive Dosimeter for Life-Science Experiments in Space) consisting of CR-39 PNTDs (Plastic Nuclear track detectors) and TLD-MSOs (Mg2SiO4:Tb) for various space experiments onboard the ‘KIBO’ part of the ISS. The MATROSHKA-R experiments aims to verify of dose distributions in a human body during space flight. The phantom consists of tissue equivalent material covered by a poncho jacket with 32 pockets on the surface. 20 container rods with dosimeters can be struck into the spherical phantom. Its diameter is 370 mm and it is 32 kg in weight. The first experiment onboard the KIBO at Forward No.2 area (JPM1F2 Rack2) was conducted over 114 days from 21 May to 12 September 2012 (the installation schedule inside the phantom) on the way to solar cycle 24th upward curve. 16 PADLES packages were deployed into 16 poncho pockets on the surface of the spherical phantom. Another 12 PADLES packages were deployed inside 4 rods (3 packages per rod in the outer, middle and inner side). Area monitoring in the KIBO was conducted in the same period (Area PADLES series #8 from 15 May to 16 September, 2012). Absorbed doses were measured at 17 area monitoring points in the KIBO and 28 locations (16 packages in poncho pockets and 12 inside 4 rods) in the phantom. The maximum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the outer wall was 0.43 mGy/day and the minimum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the KIBO interior was 0.30 mGy/day. The maximum absorbed doses measured inside rods was 0.28 mGy/day and the minimum value was 0.19 mGy/day. This indicates doses measured from the dosimeters placed in the outer side of each rod are relatively high compared to the doses placed in the center of rod. At this time, we also would like to show the preliminary results of comparative study between measured and Simulated Radiation Doses using the Particle and Heavy Ion Transport code System (PHITS) calculations with well developed shielding model of the KIBO and numerical spherical phantom inside.

  13. A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion

    NASA Astrophysics Data System (ADS)

    Kanagaki, Brian; Read, Paul W.; Molloy, Janelle A.; Larner, James M.; Sheng, Ke

    2007-01-01

    Helical tomotherapy (HT) can potentially be used for lung cancer treatment including stereotactic radiosurgery because of its advanced image guidance and its ability to deliver highly conformal dose distributions. However, previous theoretical and simulation studies reported that the effect of respiratory motion on statically planned tomotherapy treatments may cause substantial differences between the calculated and actual delivered radiation isodose distribution, particularly when the treatment is hypofractionated. In order to determine the dosimetric effects of motion upon actual HT treatment delivery, phantom film dosimetry measurements were performed under static and moving conditions using a clinical HT treatment unit. The motion phantom system was constructed using a programmable motor, a base, a moving platform and a life size lung heterogeneity phantom with wood inserts representing lung tissue with a 3.0 cm diameter spherical tumour density equivalent insert. In order to determine the effects of different motion and tomotherapy delivery parameters, treatment plans were created using jaw sizes of 1.04 cm and 2.47 cm, with incremental gantry rotation periods between the minimum allowed (10 s) and the maximum allowed (60 s). The couch speed varied from 0.009 cm s-1 to 0.049 cm s-1, and delivered to a phantom under static and dynamic conditions with peak-to-peak motion amplitudes of 1.2 cm and 2 cm and periods of 3 and 5 s to simulate human respiratory motion of lung tumours. A cylindrical clinical target volume (CTV) was contoured to tightly enclose the tumour insert. 2.0 Gy was prescribed to 95% of the CTV. Two-dimensional dose was measured by a Kodak EDR2 film. Dynamic phantom doses were then quantitatively compared to static phantom doses in terms of axial dose profiles, cumulative dose volume histograms (DVH), percentage of CTV receiving the prescription dose and the minimum dose received by 95% of the CTV. The larger motion amplitude resulted in more under-dosing at the ends of the CTV in the axis of motion, and this effect was greater for the smaller jaw size plans. Due to the size of the penumbra, the 2.47 cm jaw plans provide adequate coverage for smaller amplitudes of motion, ±0.6 cm in our experiment, without adding any additional margin in the axis of motion to the treatment volume. The periodic heterogeneous patterns described by previous studies were not observed from the single fraction of the phantom measurement. Besides the jaw sizes, CTV dose coverage is not significantly dependent on machine and phantom motion periods. The lack of adverse synchronization patterns from both results validate that HT is a safe technique for treating moving target and hypofractionation.

  14. The development and validation of a Monte Carlo model for calculating the out-of-field dose from radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Kry, Stephen

    Introduction. External beam photon radiotherapy is a common treatment for many malignancies, but results in the exposure of the patient to radiation away from the treatment site. This out-of-field radiation irradiates healthy tissue and may lead to the induction of secondary malignancies. Out-of-field radiation is composed of photons and, at high treatment energies, neutrons. Measurement of this out-of-field dose is time consuming, often difficult, and is specific to the conditions of the measurements. Monte Carlo simulations may be a viable approach to determining the out-of-field dose quickly, accurately, and for arbitrary irradiation conditions. Methods. An accelerator head, gantry, and treatment vault were modeled with MCNPX and 6 MV and 18 MV beams were simulated. Photon doses were calculated in-field and compared to measurements made with an ion chamber in a water tank. Photon doses were also calculated out-of-field from static fields and compared to measurements made with thermoluminescent dosimeters in acrylic. Neutron fluences were calculated and compared to measurements made with gold foils. Finally, photon and neutron dose equivalents were calculated in an anthropomorphic phantom following intensity-modulated radiation therapy and compared to previously published dose equivalents. Results. The Monte Carlo model was able to accurately calculate the in-field dose. From static treatment fields, the model was also able to calculate the out-of-field photon dose within 16% at 6 MV and 17% at 18 MV and the neutron fluence within 19% on average. From the simulated IMRT treatments, the calculated out-of-field photon dose was within 14% of measurement at 6 MV and 13% at 18 MV on average. The calculated neutron dose equivalent was much lower than the measured value but is likely accurate because the measured neutron dose equivalent was based on an overestimated neutron energy. Based on the calculated out-of-field doses generated by the Monte Carlo model, it was possible to estimate the risk of fatal secondary malignancy, which was consistent with previous estimates except for the neutron discrepancy. Conclusions. The Monte Carlo model developed here is well suited to studying the out-of-field dose equivalent from photons and neutrons under a variety of irradiation configurations, including complex treatments on complex phantoms. Based on the calculated dose equivalents, it is possible to estimate the risk of secondary malignancy associated with out-of-field doses. The Monte Carlo model should be used to study, quantify, and minimize the out-of-field dose equivalent and associated risks received by patients undergoing radiation therapy.

  15. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: A review of the fifty-year history

    PubMed Central

    Xu, X. George

    2014-01-01

    Radiation dose calculation using models of the human anatomy has been a subject of great interest to radiation protection, medical imaging, and radiotherapy. However, early pioneers of this field did not foresee the exponential growth of research activity as observed today. This review article walks the reader through the history of the research and development in this field of study which started some 50 years ago. This review identifies a clear progression of computational phantom complexity which can be denoted by three distinct generations. The first generation of stylized phantoms, representing a grouping of less than dozen models, was initially developed in the 1960s at Oak Ridge National Laboratory to calculate internal doses from nuclear medicine procedures. Despite their anatomical simplicity, these computational phantoms were the best tools available at the time for internal/external dosimetry, image evaluation, and treatment dose evaluations. A second generation of a large number of voxelized phantoms arose rapidly in the late 1980s as a result of the increased availability of tomographic medical imaging and computers. Surprisingly, the last decade saw the emergence of the third generation of phantoms which are based on advanced geometries called boundary representation (BREP) in the form of Non-Uniform Rational B-Splines (NURBS) or polygonal meshes. This new class of phantoms now consists of over 287 models including those used for non-ionizing radiation applications. This review article aims to provide the reader with a general understanding of how the field of computational phantoms came about and the technical challenges it faced at different times. This goal is achieved by defining basic geometry modeling techniques and by analyzing selected phantoms in terms of geometrical features and dosimetric problems to be solved. The rich historical information is summarized in four tables that are aided by highlights in the text on how some of the most well-known phantoms were developed and used in practice. Some of the information covered in this review has not been previously reported, for example, the CAM and CAF phantoms developed in 1970s for space radiation applications. The author also clarifies confusion about “population-average” prospective dosimetry needed for radiological protection under the current ICRP radiation protection system and “individualized” retrospective dosimetry often performed for medical physics studies. To illustrate the impact of computational phantoms, a section of this article is devoted to examples from the author’s own research group. Finally the author explains an unexpected finding during the course of preparing for this article that the phantoms from the past 50 years followed a pattern of exponential growth. The review ends on a brief discussion of future research needs (A supplementary file “3DPhantoms.pdf” to Figure 15 is available for download that will allow a reader to interactively visualize the phantoms in 3D). PMID:25144730

  16. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history.

    PubMed

    Xu, X George

    2014-09-21

    Radiation dose calculation using models of the human anatomy has been a subject of great interest to radiation protection, medical imaging, and radiotherapy. However, early pioneers of this field did not foresee the exponential growth of research activity as observed today. This review article walks the reader through the history of the research and development in this field of study which started some 50 years ago. This review identifies a clear progression of computational phantom complexity which can be denoted by three distinct generations. The first generation of stylized phantoms, representing a grouping of less than dozen models, was initially developed in the 1960s at Oak Ridge National Laboratory to calculate internal doses from nuclear medicine procedures. Despite their anatomical simplicity, these computational phantoms were the best tools available at the time for internal/external dosimetry, image evaluation, and treatment dose evaluations. A second generation of a large number of voxelized phantoms arose rapidly in the late 1980s as a result of the increased availability of tomographic medical imaging and computers. Surprisingly, the last decade saw the emergence of the third generation of phantoms which are based on advanced geometries called boundary representation (BREP) in the form of Non-Uniform Rational B-Splines (NURBS) or polygonal meshes. This new class of phantoms now consists of over 287 models including those used for non-ionizing radiation applications. This review article aims to provide the reader with a general understanding of how the field of computational phantoms came about and the technical challenges it faced at different times. This goal is achieved by defining basic geometry modeling techniques and by analyzing selected phantoms in terms of geometrical features and dosimetric problems to be solved. The rich historical information is summarized in four tables that are aided by highlights in the text on how some of the most well-known phantoms were developed and used in practice. Some of the information covered in this review has not been previously reported, for example, the CAM and CAF phantoms developed in 1970s for space radiation applications. The author also clarifies confusion about 'population-average' prospective dosimetry needed for radiological protection under the current ICRP radiation protection system and 'individualized' retrospective dosimetry often performed for medical physics studies. To illustrate the impact of computational phantoms, a section of this article is devoted to examples from the author's own research group. Finally the author explains an unexpected finding during the course of preparing for this article that the phantoms from the past 50 years followed a pattern of exponential growth. The review ends on a brief discussion of future research needs (a supplementary file '3DPhantoms.pdf' to figure 15 is available for download that will allow a reader to interactively visualize the phantoms in 3D).

  17. Breast dosimetry in clinical mammography

    NASA Astrophysics Data System (ADS)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric measurements enabled the development of analytical equations to calculate the whole breast area, estimate for the skin layer thickness and optimal location for automatic exposure control ionization chamber. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  18. 4D modeling in a gimbaled linear accelerator by using gold anchor markers.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Matsuura, Takaaki; Kawakubo, Atsushi; Hosono, Fumika; Yamada, Kiyoshi; Nagata, Yasushi

    2018-01-01

    The purpose of this study was to verify whether the dynamic tumor tracking (DTT) feature of a Vero4DRT system performs with 10-mm-long and 0.28 mm diameter gold anchor markers. Gold anchor markers with a length of 10 mm and a diameter of 0.28 mm were used. Gold anchor markers were injected with short and long types into bolus material. These markers were sandwiched by a Tough Water (TW) phantom in the bolus material. For the investigation of 4-dimensional (4D) modeling feasibility under various phantom thicknesses, the TW phantom was added at 2 cm intervals (in upper and lower each by 1 cm). A programmable respiratory motion table was used to simulate breathing-induced organ motion, with an amplitude of 30 mm and a breathing cycle of 3 s. X-ray imaging parameters of 80 kV and 125 kV (320 mA and 5 ms) were used. The least detection error of the fiducial marker was defined as the 4D-modeling limitation. The 4D modeling process was attempted using short and long marker types and its limitation with the short and long types was with phantom thicknesses of 6 and 10 cm at 80 kV and 125 kV, respectively. However, the loss in detectability of the gold anchor because of 4D-modeling errors was found to be approximately 6% (2/31) with a phantom thickness of 2 cm under 125 kV. 4D-modeling could be performed except under the described conditions. This work showed that a 10-mm-long gold anchor marker in short and long types can be used with DTT for short water equivalent path length site, such as lung cancer patients, in the Vero4DRT system.

  19. Assessment of absorbed dose to thyroid, parotid and ovaries in patients undergoing Gamma Knife radiosurgery.

    PubMed

    Hasanzadeh, H; Sharafi, A; Allah Verdi, M; Nikoofar, A

    2006-09-07

    Stereotactic radiosurgery was originally introduced by Lars Leksell in 1951. This treatment refers to the noninvasive destruction of an intracranial target localized stereotactically. The purpose of this study was to identify the dose delivered to the parotid, ovaries, testis and thyroid glands during the Gamma Knife radiosurgery procedure. A three-dimensional, anthropomorphic phantom was developed using natural human bone, paraffin and sodium chloride as the equivalent tissue. The phantom consisted of a thorax, head and neck and hip. In the natural places of the thyroid, parotid (bilateral sides) and ovaries (midline), some cavities were made to place TLDs. Three TLDs were inserted in a batch with 1 cm space between the TLDs and each batch was inserted into a single cavity. The final depth of TLDs was 3 cm from the surface for parotid and thyroid and was 15 cm for the ovaries. Similar batches were placed superficially on the phantom. The phantom was gamma irradiated using a Leksell model C Gamma Knife unit. Subsequently, the same batches were placed superficially over the thyroid, parotid, testis and ovaries in 30 patients (15 men and 15 women) who were undergoing radiosurgery treatment for brain tumours. The mean dosage for treating these patients was 14.48 +/- 3.06 Gy (10.5-24 Gy) to a mean tumour volume of 12.30 +/- 9.66 cc (0.27-42.4 cc) in the 50% isodose curve. There was no significant difference between the superficial and deep batches in the phantom studies (P-value < 0.05). The mean delivered doses to the parotid, thyroid, ovaries and testis in human subjects were 21.6 +/- 15.1 cGy, 9.15 +/- 3.89 cGy, 0.47 +/- 0.3 cGy and 0.53 +/- 0.31 cGy, respectively. The data can be used in making decisions for special clinical situations such as treating pregnant patients or young patients with benign lesions who need radiosurgery for eradication of brain tumours.

  20. Amplitude gating for a coached breathing approach in respiratory gated 10 MV flattening filter‐free VMAT delivery

    PubMed Central

    Lee, Richard; Gete, Ermias; Duzenli, Cheryl

    2015-01-01

    The purpose of this study was to investigate amplitude gating combined with a coached breathing strategy for 10 MV flattening filter‐free (FFF) volumetric‐modulated arc therapy (VMAT) on the Varian TrueBeam linac. Ten patient plans for VMAT SABR liver were created using the Eclipse treatment planning system (TPS). The verification plans were then transferred to a CT‐scanned Quasar phantom and delivered on a TrueBeam linac using a 10 MV FFF beam and Varian's real‐time position management (RPM) system for respiratory gating based on breathing amplitude. Breathing traces were acquired from ten patients using two kinds of breathing patterns: free breathing and an interrupted (~5 s pause) end of exhale coached breathing pattern. Ion chamber and Gafchromic film measurements were acquired for a gated delivery while the phantom moved under the described breathing patterns, as well as for a nongated stationary phantom delivery. The gate window was set to obtain a range of residual target motion from 2–5 mm. All gated deliveries on a moving phantom have been shown to be dosimetrically equivalent to the nongated deliveries on a static phantom, with differences in point dose measurements under 1% and average gamma 2%/2 mm agreement above 98.7%. Comparison with the treatment planning system also resulted in good agreement, with differences in point‐dose measurements under 2.5% and average gamma 3%/3 mm agreement of 97%. The use of a coached breathing pattern significantly increases the duty cycle, compared with free breathing, and allows for shorter treatment times. Patients' free‐breathing patterns contain considerable variability and, although dosimetric results for gated delivery may be acceptable, it is difficult to achieve efficient treatment delivery. A coached breathing pattern combined with a 5 mm amplitude gate, resulted in both high‐quality dose distributions and overall shortest gated beam delivery times. PACS number: 87.55.Qr PMID:26219000

  1. dAcquisition setting optimization and quantitative imaging for 124I studies with the Inveon microPET-CT system.

    PubMed

    Anizan, Nadège; Carlier, Thomas; Hindorf, Cecilia; Barbet, Jacques; Bardiès, Manuel

    2012-02-13

    Noninvasive multimodality imaging is essential for preclinical evaluation of the biodistribution and pharmacokinetics of radionuclide therapy and for monitoring tumor response. Imaging with nonstandard positron-emission tomography [PET] isotopes such as 124I is promising in that context but requires accurate activity quantification. The decay scheme of 124I implies an optimization of both acquisition settings and correction processing. The PET scanner investigated in this study was the Inveon PET/CT system dedicated to small animal imaging. The noise equivalent count rate [NECR], the scatter fraction [SF], and the gamma-prompt fraction [GF] were used to determine the best acquisition parameters for mouse- and rat-sized phantoms filled with 124I. An image-quality phantom as specified by the National Electrical Manufacturers Association NU 4-2008 protocol was acquired and reconstructed with two-dimensional filtered back projection, 2D ordered-subset expectation maximization [2DOSEM], and 3DOSEM with maximum a posteriori [3DOSEM/MAP] algorithms, with and without attenuation correction, scatter correction, and gamma-prompt correction (weighted uniform distribution subtraction). Optimal energy windows were established for the rat phantom (390 to 550 keV) and the mouse phantom (400 to 590 keV) by combining the NECR, SF, and GF results. The coincidence time window had no significant impact regarding the NECR curve variation. Activity concentration of 124I measured in the uniform region of an image-quality phantom was underestimated by 9.9% for the 3DOSEM/MAP algorithm with attenuation and scatter corrections, and by 23% with the gamma-prompt correction. Attenuation, scatter, and gamma-prompt corrections decreased the residual signal in the cold insert. The optimal energy windows were chosen with the NECR, SF, and GF evaluation. Nevertheless, an image quality and an activity quantification assessment were required to establish the most suitable reconstruction algorithm and corrections for 124I small animal imaging.

  2. Comparative analysis for evaluating the traceability of interventional devices using blood vessel phantom models made of PVA-H or silicone.

    PubMed

    Yu, Chang-Ho; Kwon, Tae-Kyu; Park, Chan Hee; Ohta, Makoto; Kim, Sung Hoon

    2015-01-01

    In this paper, we investigated the parameters with effective traceability to assess the mechanical properties of interventional devices. In our evaluation system, a box-shaped poly (vinyl alcohol) hydrogel (PVA-H) and silicone were prepared with realistic geometry, and the measurement and evaluation of traceability were carried out on devices using load hand force. The phantom models had a total of five curve pathways to reach the aneurysm sac. Traceability depends on the performance of the interventional devices in order to pass through the curved part of the model simulation track. The traceability of the guide wire was found to be much better than that of the balloon and stent loading catheter, as it reached the aneurysm sac in both phantom models. Observation using the video record is another advantage of our system, because the high transparency of the materials with silicone and PVA-H can allow visualization of the inside of an artery.

  3. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    NASA Astrophysics Data System (ADS)

    Martínez, José M.; Jarosz, Boguslaw J.

    2015-03-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20-32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10-11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m-1, 115  ±  4 dB m-1 and 175  ±  9 dB m-1, respectively. The density and acoustic speed determination at room temperature (~24 °C) gave 1040  ±  40 kg m-3 and 1545  ±  44 m s-1, respectively. The average thermal conductivity was 0.532 W m-1 K-1. The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies.

  4. The PACT trial: PAtient Centered Telerehabilitation: effectiveness of software-supported and traditional mirror therapy in patients with phantom limb pain following lower limb amputation: protocol of a multicentre randomised controlled trial.

    PubMed

    Rothgangel, Andreas Stefan; Braun, Susy; Schulz, Ralf Joachim; Kraemer, Matthias; de Witte, Luc; Beurskens, Anna; Smeets, Rob Johannes

    2015-01-01

    Non-pharmacological interventions such as mirror therapy are gaining increased recognition in the treatment of phantom limb pain; however, the evidence in people with phantom limb pain is still weak. In addition, compliance to self-delivered exercises is generally low. The aim of this randomised controlled study is to investigate the effectiveness of mirror therapy supported by telerehabilitation on the intensity, duration and frequency of phantom limb pain and limitations in daily activities compared to traditional mirror therapy and care as usual in people following lower limb amputation. A three-arm multi-centre randomised controlled trial will be performed. Participants will be randomly assigned to care as usual, traditional mirror therapy or mirror therapy supported by telerehabilitation. During the first 4 weeks, at least 10 individual sessions will take place in every group. After the first 4 weeks, participants will be encouraged to perform self-delivered exercises over a period of 6 weeks. Outcomes will be assessed at 4 and 10 weeks after baseline and at 6 months follow-up. The primary outcome measure is the average intensity of phantom limb pain during the last week. Secondary outcome measures include the different dimensions of phantom limb pain, pain-related limitations in daily activities, global perceived effect, pain-specific self-efficacy, and quality of life. Several questions concerning the study design that emerged during the preparation of this trial will be discussed. This will include how these questions were addressed and arguments for the choices that were made. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  5. SU-F-T-580: New Tumor Modeling Using 3D Gel Dosimeter for Brain Stereoctactic Radiotherpy (SRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, K; Kim, M; Kwak, J

    Purpose: The purpose of this study is to develop new tumor model using 3D printing with 3D dosimeter for brain stereoctactic radiotherpy (SRT). Methods: BANG{sup 3} polymer gel was prepared and the gel-filled glass vials were irradiated with a 6 MV photon beam to acquire the calibration curve that present the change of R2 (1/T{sub 2}) value with dose. Graded doses from 0 to 12 Gy with an interval of 2 Gy were delivered. A kit for calibration of gel dosimeter and an 2 tumor model phantoms with a spherical shape were produced using a 3D printer with a polylacticmore » acid after its 3D images were created using Autodesk software. 3D printed tumor phantoms and EBT3 films were irradiated to compare with treatment plan. After irradiation, vials for calibration and tumor model phantoms were scanned at 9.4T MRI. The spin-spin relaxation times (T{sub 2}) according to the each dose were calculated to evaluate the dose response. Acquired images were analyzed using an ImageJ. Scanned MRI images of tumor models were transferred treatment planning system and these were registered to the CT images. In all treatment plans, two arc plans (CW and CCW) were designed to deliver 50 Gy for 10 fractions. For first PTV, treatment plan was accurately designed that 95% of dose to cover 100% of PTV. But 2nd PTV was not intentionally cover 100% of PTV to evaluate the intensity of delivered tumor phantom with polymer gel. We compared the 3D dose distributions obtained from measurements with the 3D printed phantom and calculated with the TPS. Results: 3D printed phantom with a polymer gel was successfully produced. The dose distributions showed qualitatively good agreement among gel, film, and RTP data. Conclusion: A hybrid phantom represents a useful to validate the 3D dose distributions for patient-specific QA.« less

  6. Freeform fabrication of tissue-simulating phantoms by combining three-dimensional printing and casting

    NASA Astrophysics Data System (ADS)

    Shen, Shuwei; Zhao, Zuhua; Wang, Haili; Han, Yilin; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Ray, William; Hoehne, Brad; Xu, Ronald

    2016-03-01

    Appropriate surgical planning is important for improved clinical outcome and minimal complications in many surgical operations, such as a conjoined twin separation surgery. We combine 3D printing with casting and assembling to produce a solid phantom of high fidelity to help surgeons for better preparation of the conjoined twin separation surgery. 3D computer models of individual organs were reconstructed based on CT scanned data of the conjoined twins. The models were sliced, processed, and converted to an appropriate format for Fused Deposition Modeling (FDM). The skeletons of the phantom were printed directly by FDM using Acrylonitrile-Butadiene-Styrene (ABS) material, while internal soft organs were fabricated by casting silicon materials of different compositions in FDM printed molds. The skeleton and the internal organs were then assembled with appropriate fixtures to maintain their relative positional accuracies. The assembly was placed in a FMD printed shell mold of the patient body for further casting. For clear differentiation of different internal organs, CT contrast agents of different compositions were added in the silicon cast materials. The produced phantom was scanned by CT again and compared with that of the original computer models of the conjoined twins in order to verify the structural and positional fidelity. Our preliminary experiments showed that combining 3D printing with casting is an effective way to produce solid phantoms of high fidelity for the improved surgical planning in many clinical applications.

  7. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    NASA Astrophysics Data System (ADS)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  8. Phantom Torso in HRF section of Destiny module

    NASA Image and Video Library

    2001-05-02

    ISS002-E-6080 (2 May 2001) --- The Phantom Torso, seen here in the Human Research Facility (HRF) section of the Destiny/U.S. laboratory on the International Space Station (ISS), is designed to measure the effects of radiation on organs inside the body by using a torso that is similar to those used to train radiologists on Earth. The torso is equivalent in height and weight to an average adult male. It contains radiation detectors that will measure, in real-time, how much radiation the brain, thyroid, stomach, colon, and heart and lung area receive on a daily basis. The data will be used to determine how the body reacts to and shields its internal organs from radiation, which will be important for longer duration space flights. The experiment was delivered to the orbiting outpost during by the STS-100/6A crew in April 2001. Dr. Gautam Badhwar, NASA JSC, Houston, TX, is the principal investigator for this experiment. A digital still camera was used to record this image.

  9. Dosimetric comparison of extended dose range film with ionization measurements in water and lung equivalent heterogeneous media exposed to megavoltage photons

    PubMed Central

    Charland, Paule M.; Chetty, Indrin J.; Yokoyama, Shigeru; Fraass, Benedick A.

    2003-01-01

    In this study, a dosimetric evaluation of the new Kodak extended dose range (EDR) film versus ionization measurements has been conducted in homogeneous solid water and water‐lung equivalent layered heterogeneous phantoms for a relevant range of field sizes (up to a field size of 25×25 cm2 and a depth of 15 cm) for 6 and 15 MV photon beams from a linear accelerator. The optical density of EDR film was found to be linear up to about 350 cGy and over‐responded for larger fields and depths (5% for 25×25 cm2 at depth of 15 cm compared to a 10×10 cm2, 5 cm depth reference value). Central axis depth dose measurements in solid water with the film in a perpendicular orientation were within 2% of the Wellhöfer IC‐10 measurements for the smaller field sizes. A maximum discrepancy of 8.4% and 3.9% was found for the 25×25 cm2 field at 15 cm depth for 6 and 15 MV photons, respectively (with curve normalization at a depth of 5 cm). Compared to IC‐10 measurements, film measured central axis depth dose inside the lung slab showed a slight over‐response (at most 2%). At a depth of 15 cm in the lung phantom the over‐response was found to be 7.4% and 3.7% for the 25×25 cm2 field for 6 and 15 MV photons, respectively. When results were presented as correction factors, the discrepancy between the IC‐10 and the EDR was greatest for the lowest energy and the largest field size. The effect of the finite size of the ion chamber was most evident at smaller field sizes where profile differences versus film were observed in the penumbral region. These differences were reduced at larger field sizes and in situations where lateral electron transport resulted in a lateral spread of the beam, such as inside lung material. Film profiles across a lung tumor geometry phantom agreed with the IC‐10 chamber within the experimental uncertainties. From this investigation EDR film appears to be a useful medium for relative dosimetry in higher dose ranges in both water and lung equivalent material for moderate field sizes and depths. © 2003 American College of Medical Physics. PACS number(s): 87.53.Dq, 87.66.Cd, 87.66.Jj, 87.66.Xa PMID:12540816

  10. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions

    NASA Astrophysics Data System (ADS)

    La Tessa, C.; Berger, T.; Kaderka, R.; Schardt, D.; Burmeister, S.; Labrenz, J.; Reitz, G.; Durante, M.

    2014-04-01

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient’s body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm3 cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence 6LiF:Mg, Ti (TLD-600) and 7LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ⩽ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 < E < 10 MeV during the treatment with scanned carbon ions. The highest yield of thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of magnitude lower than charged fragments. We conclude that, within the energy range explored in this experimental work, the out-of-field dose from secondary neutrons is lowest for ions delivered by scanning, followed by passive modulation, and finally by high-energy IMRT photons.

  11. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.

    PubMed

    Tessa, C La; Berger, T; Kaderka, R; Schardt, D; Burmeister, S; Labrenz, J; Reitz, G; Durante, M

    2014-04-21

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient's body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm³ cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence ⁶LiF:Mg, Ti (TLD-600) and ⁷LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ≤ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 < E < 10 MeV during the treatment with scanned carbon ions. The highest yield of thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of magnitude lower than charged fragments. We conclude that, within the energy range explored in this experimental work, the out-of-field dose from secondary neutrons is lowest for ions delivered by scanning, followed by passive modulation, and finally by high-energy IMRT photons.

  12. Effective dose equivalent on the ninth Shuttle--Mir mission (STS-91)

    NASA Technical Reports Server (NTRS)

    Yasuda, H.; Badhwar, G. D.; Komiyama, T.; Fujitaka, K.

    2000-01-01

    Organ and tissue doses and effective dose equivalent were measured using a life-size human phantom on the ninth Shuttle-Mir Mission (STS-91, June 1998), a 9.8-day spaceflight at low-Earth orbit (about 400 km in altitude and 51.65 degrees in inclination). The doses were measured at 59 positions using a combination of thermoluminescent dosimeters of Mg(2)SiO(4):Tb (TDMS) and plastic nuclear track detectors (PNTD). In correcting the change in efficiency of the TDMS, it was assumed that reduction of efficiency is attributed predominantly to HZE particles with energy greater than 100 MeV nucleon(-1). A conservative calibration curve was chosen for determining LET from the PNTD track-formation sensitivities. The organ and tissue absorbed doses during the mission ranged from 1.7 to 2.7 mGy and varied by a factor of 1.6. The dose equivalent ranged from 3.4 to 5.2 mSv and varied by a factor of 1.5 on the basis of the dependence of Q on LET in the 1990 recommendations of the ICRP. The effective quality factor (Q(e)) varied from 1.7 to 2.4. The dose equivalents for several radiation-sensitive organs, such as the stomach, lung, gonad and breast, were not significantly different from the skin dose equivalent (H(skin)). The effective dose equivalent was evaluated as 4.1 mSv, which was about 90% of the H(skin).

  13. Paint-only is equivalent to scrub-and-paint in preoperative preparation of abdominal surgery sites.

    PubMed

    Ellenhorn, Joshua D I; Smith, David D; Schwarz, Roderich E; Kawachi, Mark H; Wilson, Timothy G; McGonigle, Kathryn F; Wagman, Lawrence D; Paz, I Benjamin

    2005-11-01

    Antiseptic preoperative skin site preparation is used to prepare the operative site before making a surgical incision. The goal of this preparation is a reduction in postoperative wound infection. The most straightforward technique necessary to achieve this goal remains controversial. A prospective randomized trial was designed to prove equivalency for two commonly used techniques of surgical skin site preparation. Two hundred thirty-four patients undergoing nonlaparoscopic abdominal operations were consented for the trial. Exclusion criteria included presence of active infection at the time of operation, neutropenia, history of skin reaction to iodine, or anticipated insertion of prosthetic material at the time of operation. Patients were randomized to receive either a vigorous 5-minute scrub with povidone-iodine soap, followed by absorption with a sterile towel, and a paint with aqueous povidone-iodine or surgical site preparation with a povidone-iodine paint only. The primary end point of the study was wound infection rate at 30 days, defined as presence of clinical signs of infection requiring therapeutic intervention. Patients randomized to the scrub-and-paint arm (n = 115) and the paint-only arm (n = 119) matched at baseline with respect to age, comorbidity, wound classification, mean operative time, placement of drains, prophylactic antibiotic use, and surgical procedure (all p > 0.09). Wound infection occurred in 12 (10%) scrub-and-paint patients, and 12 (10%) paint-only patients. Based on our predefined equivalency parameters, we conclude equivalence of infection rates between the two preparations. Preoperative preparation of the abdomen with a scrub with povidone-iodine soap followed by a paint with aqueous povidone-iodine can be abandoned in favor of a paint with aqueous povidone-iodine alone. This change will result in reductions in operative times and costs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Shang-Lung; Chu, Tieh-Chi; Lin, Yung-Chien

    Purpose: Polymethylmethacrylate (PMMA) slab is one of the mostly used phantoms for studying breast dosimetry in mammography. The purpose of this study was to evaluate the equivalence between exposure factors acquired from PMMA slabs and patient cases of different age groups of Taiwanese women in mammography. Methods: This study included 3910 craniocaudal screen/film mammograms on Taiwanese women acquired on one mammographic unit. The tube loading, compressed breast thickness (CBT), compression force, tube voltage, and target/filter combination for each mammogram were collected for all patients. The glandularity and the equivalent thickness of PMMA were determined for each breast using the exposuremore » factors of the breast in combination with experimental measurements from breast-tissue-equivalent attenuation slabs. Equivalent thicknesses of PMMA to the breasts of Taiwanese women were then estimated. Results: The average {+-} standard deviation CBT and breast glandularity in this study were 4.2 {+-} 1.0 cm and 54% {+-} 23%, respectively. The average equivalent PMMA thickness was 4.0 {+-} 0.7 cm. PMMA slabs producing equivalent exposure factors as in the breasts of Taiwanese women were determined for the age groups 30-49 yr and 50-69 yr. For the 4-cm PMMA slab, the CBT and glandularity values of the equivalent breast were 4.1 cm and 65%, respectively, for the age group 30-49 yr and 4.4 cm and 44%, respectively, for the age group 50-69 yr. Conclusions: The average thickness of PMMA slabs producing the same exposure factors as observed in a large group of Taiwanese women is less than that reported for American women. The results from this study can provide useful information for determining a suitable thickness of PMMA for mammographic dose survey in Taiwan. The equivalence of PMMA slabs and the breasts of Taiwanese women is provided to allow average glandular dose assessment in clinical practice.« less

  15. [Quality assurance of a virtual simulation software: application to IMAgo and SIMAgo (ISOgray)].

    PubMed

    Isambert, A; Beaudré, A; Ferreira, I; Lefkopoulos, D

    2007-06-01

    Virtual simulation process is often used to prepare three dimensional conformal radiation therapy treatments. As the quality of the treatment is widely dependent on this step, it is mandatory to perform extensive controls on this software before clinical use. The tests presented in this work have been carried out on the treatment planning system ISOgray (DOSIsoft), including the delineation module IMAgo and the virtual simulation module SIMAgo. According to our experience, the most relevant controls of international protocols have been selected. These tests mainly focused on measuring and delineation tools, virtual simulation functionalities, and have been performed with three phantoms: the Quasar Multi-Purpose Body Phantom, the Quasar MLC Beam Geometry Phantom (Modus Medical Devices Inc.) and a phantom developed at Hospital Tenon. No major issues have been identified while performing the tests. These controls have emphasized the necessity for the user to consider with a critical eye the results displayed by a virtual simulation software. The contrast of visualisation, the slice thickness, the calculation and display mode of 3D structures used by the software are many factors of uncertainties. A virtual simulation software quality assurance procedure has been written and applied on a set of CT images. Similar tests have to be performed periodically and at minimum at each change of major version.

  16. Quantitative evaluation of lipid concentration in atherosclerotic plaque phantom by near-infrared multispectral angioscope at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2015-07-01

    Atherosclerosis is a primary cause of critical ischemic diseases like heart infarction or stroke. A method that can provide detailed information about the stability of atherosclerotic plaques is required. We focused on spectroscopic techniques that could evaluate the chemical composition of lipid in plaques. A novel angioscope using multispectral imaging at wavelengths around 1200 nm for quantitative evaluation of atherosclerotic plaques was developed. The angioscope consists of a halogen lamp, an indium gallium arsenide (InGaAs) camera, 3 optical band pass filters transmitting wavelengths of 1150, 1200, and 1300 nm, an image fiber having 0.7 mm outer diameter, and an irradiation fiber which consists of 7 multimode fibers. Atherosclerotic plaque phantoms with 100, 60, 20 vol.% of lipid were prepared and measured by the multispectral angioscope. The acquired datasets were processed by spectral angle mapper (SAM) method. As a result, simulated plaque areas in atherosclerotic plaque phantoms that could not be detected by an angioscopic visible image could be clearly enhanced. In addition, quantitative evaluation of atherosclerotic plaque phantoms based on the lipid volume fractions was performed up to 20 vol.%. These results show the potential of a multispectral angioscope at wavelengths around 1200 nm for quantitative evaluation of the stability of atherosclerotic plaques.

  17. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms

    NASA Astrophysics Data System (ADS)

    Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben

    2017-12-01

    As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.

  18. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redler, G; Bernard, D; Templeton, A

    2015-06-15

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing themore » scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive approach, employing multiple simulation techniques and experiments, is taken to demonstrate the feasibility of a novel scatter imaging modality for the necessary real-time image guidance.« less

  19. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    PubMed

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  20. Automatic exposure control calibration and optimisation for abdomen, pelvis and lumbar spine imaging with an Agfa computed radiography system.

    PubMed

    Moore, C S; Wood, T J; Avery, G; Balcam, S; Needler, L; Joshi, H; Saunderson, J R; Beavis, A W

    2016-11-07

    The use of three physical image quality metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQ m ) have recently been examined by our group for their appropriateness in the calibration of an automatic exposure control (AEC) device for chest radiography with an Agfa computed radiography (CR) imaging system. This study uses the same methodology but investigates AEC calibration for abdomen, pelvis and spine CR imaging. AEC calibration curves were derived using a simple uniform phantom (equivalent to 20 cm water) to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated abdomen, pelvis and spine images (created from real patient CT datasets) with appropriate detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated images contained clinically realistic projected anatomy and were scored by experienced image evaluators. Constant DDI and CNR curves did not provide optimized performance but constant eNEQ m and SNR did, with the latter being the preferred calibration metric given that it is easier to measure in practice. This result was consistent with the previous investigation for chest imaging with AEC devices. Medical physicists may therefore use a simple and easily accessible uniform water equivalent phantom to measure the SNR image quality metric described here when calibrating AEC devices for abdomen, pelvis and spine imaging with Agfa CR systems, in the confidence that clinical image quality will be sufficient for the required clinical task. However, to ensure appropriate levels of detector air kerma the advice of expert image evaluators must be sought.

  1. Automatic exposure control calibration and optimisation for abdomen, pelvis and lumbar spine imaging with an Agfa computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Avery, G.; Balcam, S.; Needler, L.; Joshi, H.; Saunderson, J. R.; Beavis, A. W.

    2016-11-01

    The use of three physical image quality metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm) have recently been examined by our group for their appropriateness in the calibration of an automatic exposure control (AEC) device for chest radiography with an Agfa computed radiography (CR) imaging system. This study uses the same methodology but investigates AEC calibration for abdomen, pelvis and spine CR imaging. AEC calibration curves were derived using a simple uniform phantom (equivalent to 20 cm water) to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated abdomen, pelvis and spine images (created from real patient CT datasets) with appropriate detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated images contained clinically realistic projected anatomy and were scored by experienced image evaluators. Constant DDI and CNR curves did not provide optimized performance but constant eNEQm and SNR did, with the latter being the preferred calibration metric given that it is easier to measure in practice. This result was consistent with the previous investigation for chest imaging with AEC devices. Medical physicists may therefore use a simple and easily accessible uniform water equivalent phantom to measure the SNR image quality metric described here when calibrating AEC devices for abdomen, pelvis and spine imaging with Agfa CR systems, in the confidence that clinical image quality will be sufficient for the required clinical task. However, to ensure appropriate levels of detector air kerma the advice of expert image evaluators must be sought.

  2. Evaluation of mineral oil as an acoustic coupling medium in clinical MRgFUS.

    PubMed

    Gorny, K R; Hangiandreou, N J; Hesley, G K; Felmlee, J P

    2007-01-07

    We empirically evaluate mineral oil as an alternative to the mixture of de-gassed water and ultrasound gel, which is currently used as an acoustic coupling medium in clinical magnetic resonance guided focused ultrasound (MRgFUS) treatments. The tests were performed on an ExAblate 2000 MRgFUS system (InSightec Inc., Haifa, Israel) using a clinical patient set-up. Acoustic reflections, treatment temperatures, sonication spot dimensions and position with respect to target location were measured, using both coupling media, in repeated sonications in a tissue mimicking gel phantom. In comparison with the water-gel mix, strengths of acoustic reflections from coupling layers prepared with mineral oil were on average 39% lower and the difference was found to be statistically significant (p = 3.3 x 10(-8)). The treatment temperatures were found to be statistically equivalent for both coupling media, although temperatures corresponding to mineral oil tended to be somewhat higher (on average 1.9 degrees C) and their standard deviations were reduced by about 1 degrees C. Measurements of sonication spot dimensions and positions with respect to target location did not reveal systematic differences. We conclude that mineral oil may be used as an effective non-evaporating acoustic coupling medium for clinical MRgFUS treatments.

  3. An Accurate Scatter Measurement and Correction Technique for Cone Beam Breast CT Imaging Using Scanning Sampled Measurement (SSM) Technique.

    PubMed

    Liu, Xinming; Shaw, Chris C; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C; Kappadath, S Cheenu

    2006-02-28

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images.Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  4. Poster — Thur Eve — 11: Validation of the orthopedic metallic artifact reduction tool for CT simulations at the Ottawa Hospital Cancer Centre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J; Foottit, C

    Metallic implants in patients can produce image artifacts in kilovoltage CT simulation images which can introduce noise and inaccuracies in CT number, affecting anatomical segmentation and dose distributions. The commercial orthopedic metal artifact reduction algorithm (O-MAR) (Philips Healthcare System) was recently made available on CT simulation scanners at our institution. This study validated the clinical use of O-MAR by investigating its effects on CT number and dose distributions. O-MAR corrected and uncorrected images were acquired with a Philips Brilliance Big Bore CT simulator of a cylindrical solid water phantom that contained various plugs (including metal) of known density. CT numbermore » accuracy was investigated by determining the mean and standard deviation in regions of interest (ROI) within each plug for uncorrected and O-MAR corrected images and comparing with no-metal image values. Dose distributions were calculated using the Monaco treatment planning system. Seven open fields were equally spaced about the phantom around a ROI near the center of the phantom. These were compared to a “correct” dose distribution calculated by overriding electron densities a no-metal phantom image to produce an image containing metal but no artifacts. An overall improvement in CT number and dose distribution accuracy was achieved by applying the O-MAR correction. Mean CT numbers and standard deviations were found to be generally improved. Exceptions included lung equivalent media, which is consistent with vendor specified contraindications. Dose profiles were found to vary by ±4% between uncorrected or O-MAR corrected images with O-MAR producing doses closer to ground truth.« less

  5. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  6. Evaluation of effective detective quantum efficiency considering breast thickness and glandularity in prototype digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Choi, Seungyeon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Young-Wook; Kim, Hee-Joung

    2017-03-01

    Digital breast tomosynthesis (DBT) system is a novel imaging modality which is strongly depended on the performance of a detector. Recently, effective detective quantum efficiency (eDQE) has been introduced to solve the disadvantages of conventional DQE evaluations which do not consider clinical operating conditions. For eDQE evaluation, the variety of patient breast, especially the glandularity and thickness needs to be studied to consider different races of patient. For these reasons, eDQE in a prototype DBT system considering different breast thickness and glandularity was evaluated. In this study, we used the prototype DBT system with CsI(Tl) scintillator/CMOS flat panel digital detector developed by Korea Electrotechnology Research Institute (KERI). A scatter fraction, a transmission factor, an effective modulation transfer function (eMTF) and an effective normalized noise power spectrum (eNNPS) were measured in different thickness and glandularity of breast equivalent phantom. As results, scatter fraction increased and transmission fraction decreased by a factor of 2.09 and 6.25, respectively, as increasing glandularity and thickness. We also found that the breast phantom with small thickness presented high eMTF and low eNNPS. As results, eDQE from 4 cm thick breast phantom with 30% and 70% glandularity showed small changes from 0.20 to 0.19 at 0.1 mm-1, whereas eDQE from 50% glandularity of 3 cm and 5 cm presented relatively significant increase from 0.16 to 0.20 at 0.1 mm-1 spatial frequency. These indicated that eDQE was strongly affected by phantom thickness, but the effect of glandularity seemed to be trivial. According to our study, the whole system evaluation considering the races of patients from standard to abnormal cases is needed to be studied in future works.

  7. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise.

    PubMed

    Stolarczyk, L; Trinkl, S; Romero-Expósito, M; Mojżeszek, N; Ambrozova, I; Domingo, C; Davídková, M; Farah, J; Kłodowska, M; Knežević, Ž; Liszka, M; Majer, M; Miljanić, S; Ploc, O; Schwarz, M; Harrison, R M; Olko, P

    2018-04-19

    Systematic 3D mapping of out-of-field doses induced by a therapeutic proton pencil scanning beam in a 300  ×  300  ×  600 mm 3 water phantom was performed using a set of thermoluminescence detectors (TLDs): MTS-7 ( 7 LiF:Mg,Ti), MTS-6 ( 6 LiF:Mg,Ti), MTS-N ( nat LiF:Mg,Ti) and TLD-700 ( 7 LiF:Mg,Ti), radiophotoluminescent (RPL) detectors GD-352M and GD-302M, and polyallyldiglycol carbonate (PADC)-based (C 12 H 18 O 7 ) track-etched detectors. Neutron and gamma-ray doses, as well as linear energy transfer distributions, were experimentally determined at 200 points within the phantom. In parallel, the Geant4 Monte Carlo code was applied to calculate neutron and gamma radiation spectra at the position of each detector. For the cubic proton target volume of 100  ×  100  ×  100 mm 3 (spread out Bragg peak with a modulation of 100 mm) the scattered photon doses along the main axis of the phantom perpendicular to the primary beam were approximately 0.5 mGy Gy -1 at a distance of 100 mm and 0.02 mGy Gy -1 at 300 mm from the center of the target. For the neutrons, the corresponding values of dose equivalent were found to be ~0.7 and ~0.06 mSv Gy -1 , respectively. The measured neutron doses were comparable with the out-of-field neutron doses from a similar experiment with 20 MV x-rays, whereas photon doses for the scanning proton beam were up to three orders of magnitude lower.

  8. Accuracy of the raw-data-based effective atomic numbers and monochromatic CT numbers for contrast medium with a dual-energy CT technique.

    PubMed

    Kawahara, Daisuke; Ozawa, Shuichi; Yokomachi, Kazushi; Tanaka, Sodai; Higaki, Toru; Fujioka, Chikako; Suzuki, Tatsuhiko; Tsuneda, Masato; Nakashima, Takeo; Ohno, Yoshimi; Nagata, Yasushi

    2018-02-01

    To evaluate the accuracy of raw-data-based effective atomic number (Z eff ) values and monochromatic CT numbers for contrast material of varying iodine concentrations, obtained using dual-energy CT. We used a tissue characterization phantom and varying concentrations of iodinated contrast medium. A comparison between the theoretical values of Z eff and that provided by the manufacturer was performed. The measured and theoretical monochromatic CT numbers at 40-130 keV were compared. The average difference between the Z eff values of lung (inhale) inserts in the tissue characterization phantom was 81.3% and the average Z eff difference was within 8.4%. The average difference between the Z eff values of the varying concentrations of iodinated contrast medium was within 11.2%. For the varying concentrations of iodinated contrast medium, the differences between the measured and theoretical monochromatic CT values increased with decreasing monochromatic energy. The Z eff and monochromatic CT numbers in the tissue characterization phantom were reasonably accurate. The accuracy of the raw-data-based Z eff values was higher than that of image-based Z eff values in the tissue-equivalent phantom. The accuracy of Z eff values in the contrast medium was in good agreement within the maximum SD found in the iodine concentration range of clinical dynamic CT imaging. Moreover, the optimum monochromatic energy for human tissue and iodinated contrast medium was found to be 70 keV. Advances in knowledge: The accuracy of the Z eff values and monochromatic CT numbers of the contrast medium created by raw-data-based, dual-energy CT could be sufficient in clinical conditions.

  9. Dose distribution of secondary radiation in a water phantom for a proton pencil beam—EURADOS WG9 intercomparison exercise

    NASA Astrophysics Data System (ADS)

    Stolarczyk, L.; Trinkl, S.; Romero-Expósito, M.; Mojżeszek, N.; Ambrozova, I.; Domingo, C.; Davídková, M.; Farah, J.; Kłodowska, M.; Knežević, Ž.; Liszka, M.; Majer, M.; Miljanić, S.; Ploc, O.; Schwarz, M.; Harrison, R. M.; Olko, P.

    2018-04-01

    Systematic 3D mapping of out-of-field doses induced by a therapeutic proton pencil scanning beam in a 300  ×  300  ×  600 mm3 water phantom was performed using a set of thermoluminescence detectors (TLDs): MTS-7 (7LiF:Mg,Ti), MTS-6 (6LiF:Mg,Ti), MTS-N (natLiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti), radiophotoluminescent (RPL) detectors GD-352M and GD-302M, and polyallyldiglycol carbonate (PADC)-based (C12H18O7) track-etched detectors. Neutron and gamma-ray doses, as well as linear energy transfer distributions, were experimentally determined at 200 points within the phantom. In parallel, the Geant4 Monte Carlo code was applied to calculate neutron and gamma radiation spectra at the position of each detector. For the cubic proton target volume of 100  ×  100  ×  100 mm3 (spread out Bragg peak with a modulation of 100 mm) the scattered photon doses along the main axis of the phantom perpendicular to the primary beam were approximately 0.5 mGy Gy‑1 at a distance of 100 mm and 0.02 mGy Gy‑1 at 300 mm from the center of the target. For the neutrons, the corresponding values of dose equivalent were found to be ~0.7 and ~0.06 mSv Gy‑1, respectively. The measured neutron doses were comparable with the out-of-field neutron doses from a similar experiment with 20 MV x-rays, whereas photon doses for the scanning proton beam were up to three orders of magnitude lower.

  10. High dose microCT does not contribute towards improved microPET/CT image quantitative accuracy and can limit longitudinal scanning of small animals

    NASA Astrophysics Data System (ADS)

    McDougald, Wendy A.; Collins, Richard; Green, Mark; Tavares, Adriana A. S.

    2017-10-01

    Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT) imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1) to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2) to evaluate the absorbed dose associated with varying CT parameters. Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA) software implemented by Mediso. Measured Hounsfield Unit (HU) in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC), uniformity and quantitative bias were also measured. Results: Only less than 2% and 1% of CT acquisition protocols yielded water HU values < -80 and air HU values < -840, respectively. Four out of eleven CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration. Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed towards improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  11. Evaluation of the radiation dose in the thyroid gland using different protective collars in panoramic imaging.

    PubMed

    Hafezi, Ladan; Arianezhad, S Marjan; Hosseini Pooya, Seyed Mahdi

    2018-04-25

    The value for the use of thyroid shield is one of the issues in radiation protection of patients in dental panoramic imaging. The objective of this research is to investigate the attenuation characteristics of some models of thyroid shielding in dental panoramic examinations. The effects of five different types of lead and lead-free (Pb-equivalent) shields on dose reduction of thyroid gland were investigated using implanted Thermoluminescence Dosemeters (TLDs) in head-neck parts of a Rando phantom. The results show that frontal lead and Pb-equivalent shields can reduce the thyroid dose around 50% and 19%, respectively. It can be concluded that the effective shielding area is an important parameter in thyroid gland dose reduction. Lead frontal collars with large effective shielding areas (>~300 cm 2 but not necessarily very large) are appropriate for an optimized thyroid gland dose reduction particularly for the critical patients in dental panoramic imaging. Regardless of the shape and thickness, using the Pb-equivalent shields is not justifiable in dental panoramic imaging.

  12. Electron density of Rhizophora spp. wood using Compton scattering technique at 15.77, 17.48 and 22.16 keV XRF energies

    NASA Astrophysics Data System (ADS)

    Shakhreet, B. Z.; Bauk, S.; Shukri, A.

    2015-02-01

    Compton (incoherently) scattered photons which are directly proportional to the electron density of the scatterer, have been employed in characterizing Rhizophora spp. as breast tissue equivalent. X-ray fluorescent scattered incoherently from Rhizophora spp. sample was measured using Si-PIN detector and three XRF energy values 15.77, 17.48 and 22.16 keV. This study is aimed at providing electron density information in support of the introduction of new tissue substitute materials for mammography phantoms.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; Cammin, J; Solberg, T

    Purpose: Proton radiography and proton computed tomography (PCT) can be used to measure proton stopping power directly. However, practical and cost effective proton imaging detectors are not widely available. In this study, the authors investigated the feasibility of proton imaging using a silicon diode array. Methods: A one-dimensional silicon-diode detector array (1DSDA) was aligned with the central axis (CAX) of the proton beam. Polymethyl methacrylate (PMMA) slabs were used to find the correspondence between the water equivalent thickness (WET) and 1DSDA channel number. 2D proton radiographs (PR) were obtained by translation and rotation of a phantom relative to CAX whilemore » the proton nozzle and 1DSDA were kept stationary. A PCT image of one slice of the phantom was reconstructed using filtered backprojection. Results: PR and PCT images of the PMMA cube were successfully acquired using the 1DSDA. The WET of the phantom was measured using PR data with an accuracy of 4.2% or better. Structures down to 1 mm in size could be resolved. Reconstruction of a PCT image showed very good agreement with simulation. Limitations in spatial resolution are attributed to limited spatial sampling, beam collimation, and proton scatter. Conclusion: The results demonstrate the feasibility of using silicon diode arrays for proton imaging. Such a device can potentially offer fast image acquisition, high spatial and energy resolution for PR and PCT.« less

  14. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  15. The effect of surgical titanium rods on proton therapy delivered for cervical bone tumors: experimental validation using an anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Dietlicher, Isabelle; Casiraghi, Margherita; Ares, Carmen; Bolsi, Alessandra; Weber, Damien C.; Lomax, Antony J.; Albertini, Francesca

    2014-12-01

    To investigate the effect of metal implants in proton radiotherapy, dose distributions of different, clinically relevant treatment plans have been measured in an anthropomorphic phantom and compared to treatment planning predictions. The anthropomorphic phantom, which is sliced into four segments in the cranio-caudal direction, is composed of tissue equivalent materials and contains a titanium implant in a vertebral body in the cervical region. GafChromic® films were laid between the different segments to measure the 2D delivered dose. Three different four-field plans have then been applied: a Single-Field-Uniform-Dose (SFUD) plan, both with and without artifact correction implemented, and an Intensity-Modulated-Proton-Therapy (IMPT) plan with the artifacts corrected. For corrections, the artifacts were manually outlined and the Hounsfield Units manually set to an average value for soft tissue. Results show a surprisingly good agreement between prescribed and delivered dose distributions when artifacts have been corrected, with > 97% and 98% of points fulfilling the gamma criterion of 3%/3 mm for both SFUD and the IMPT plans, respectively. In contrast, without artifact corrections, up to 18% of measured points fail the gamma criterion of 3%/3 mm for the SFUD plan. These measurements indicate that correcting manually for the reconstruction artifacts resulting from metal implants substantially improves the accuracy of the calculated dose distribution.

  16. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms.

    PubMed

    Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan

    2016-12-01

    To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels) as a function of dose were constructed for each reconstruction algorithm and background texture. FBP and SAFIRE were compared for each background type to determine the improvement in detectability at a given dose, and the reduced dose at which SAFIRE had equivalent performance compared to FBP at 100% dose. Detectability increased with increasing radiation dose (P = 2.7 × 10 -59 ) and contrast level (P = 2.2 × 10 -86 ) and was higher in the uniform phantom compared to the textured phantoms (P = 6.9 × 10 -51 ). Overall, SAFIRE had higher d' compared to FBP (P = 0.02). The estimated dose reduction potential of SAFIRE was found to be 8%, 10%, 27%, and 8% for Texture-A, Texture-B, Texture-C and uniform phantoms. In all background types, detectability was higher with SAFIRE compared to FBP. However, the relative improvement observed from SAFIRE was highly dependent on the complexity of the background texture. Iterative algorithms such as SAFIRE should be assessed in the most realistic context possible.

  17. Effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral pediatric and adult CT angiography: a phantom study.

    PubMed

    Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John

    2013-04-01

    The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P < 0.0001). Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. For the same CNR, a reduction by 25% of the administered CM concentration may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. In cerebral CT angiographic studies, appropriate adjustment of the preset tube current-time product settings is required to achieve the same image noise level among participants of different age. Cerebral CT angiography at 80 kV significantly improves CNR and significantly reduces radiation dose. Moreover, at 80 kV, a considerable reduction of the administered amount of the CM may be reached, thus reducing potential risks for contrast-induced nephropathy.

  18. Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL

    NASA Technical Reports Server (NTRS)

    Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther

    2010-01-01

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The initial focus of the present experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on, the results of the passive dosimetry within the anthropomorphic phantoms represent the best tool to generate reliable data to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study.

  19. Daily QA of linear accelerators using only EPID and OBI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Baozhou, E-mail: bsun@radonc.wustl.edu; Goddu, S. Murty; Yaddanapudi, Sridhar

    2015-10-15

    Purpose: As treatment delivery becomes more complex, there is a pressing need for robust quality assurance (QA) tools to improve efficiency and comprehensiveness while simultaneously maintaining high accuracy and sensitivity. This work aims to present the hardware and software tools developed for comprehensive QA of linear accelerator (LINAC) using only electronic portal imaging devices (EPIDs) and kV flat panel detectors. Methods: A daily QA phantom, which includes two orthogonally positioned phantoms for QA of MV-beams and kV onboard imaging (OBI) is suspended from the gantry accessory holder to test both geometric and dosimetric components of a LINAC and an OBI.more » The MV component consists of a 0.5 cm water-equivalent plastic sheet incorporating 11 circular steel plugs for transmission measurements through multiple thicknesses and one resolution plug for MV-image quality testing. The kV-phantom consists of a Leeds phantom (TOR-18 FG phantom supplied by Varian) for testing low and high contrast resolutions. In the developed process, the existing LINAC tools were used to automate daily acquisition of MV and kV images and software tools were developed for simultaneous analysis of these images. A method was developed to derive and evaluate traditional QA parameters from these images [output, flatness, symmetry, uniformity, TPR{sub 20/10}, and positional accuracy of the jaws and multileaf collimators (MLCs)]. The EPID-based daily QA tools were validated by performing measurements on a detuned 6 MV beam to test its effectiveness in detecting errors in output, symmetry, energy, and MLC positions. The developed QA process was clinically commissioned, implemented, and evaluated on a Varian TrueBeam LINAC (Varian Medical System, Palo Alto, CA) over a period of three months. Results: Machine output constancy measured with an EPID (as compared against a calibrated ion-chamber) is shown to be within ±0.5%. Beam symmetry and flatness deviations measured using an EPID and a 2D ion-chamber array agree within ±0.5% and ±1.2% for crossline and inline profiles, respectively. MLC position errors of 0.5 mm can be detected using a picket fence test. The field size and phantom positioning accuracy can be determined within 0.5 mm. The entire daily QA process takes ∼15 min to perform tests for 5 photon beams, MLC tests, and imaging checks. Conclusions: The exclusive use of EPID-based QA tools, including a QA phantom and simultaneous analysis software tools, has been demonstrated as a viable, efficient, and comprehensive process for daily evaluation of LINAC performance.« less

  20. SU-E-J-28: Gantry Speed Significantly Affects Image Quality and Imaging Dose for 4D Cone-Beam Computed Tomography On the Varian Edge Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoso, A; Song, K; Gardner, S

    Purpose: 4D-CBCT facilitates assessment of tumor motion at treatment position. We investigated the effect of gantry speed on 4D-CBCT image quality and dose using the Varian Edge On-Board Imager (OBI). Methods: A thoracic protocol was designed using a 125 kVp spectrum. Image quality parameters were obtained via 4D acquisition using a Catphan phantom with a gating system. A sinusoidal waveform was executed with a five second period and superior-inferior motion. 4D-CBCT scans were sorted into 4 and 10 phases. Image quality metrics included spatial resolution, contrast-to-noise ratio (CNR), uniformity index (UI), Hounsfield unit (HU) sensitivity, and RMS error (RMSE) ofmore » motion amplitude. Dosimetry was accomplished using Gafchromic XR-QA2 films within a CIRS Thorax phantom. This was placed on the gating phantom using the same motion waveform. Results: High contrast resolution decreased linearly from 5.93 to 4.18 lp/cm, 6.54 to 4.18 lp/cm, and 5.19 to 3.91 lp/cm for averaged, 4 phase, and 10 phase 4DCBCT volumes respectively as gantry speed increased from 1.0 to 6.0 degs/sec. CNRs decreased linearly from 4.80 to 1.82 as the gantry speed increased from 1.0 to 6.0 degs/sec, respectively. No significant variations in UIs, HU sensitivities, or RMSEs were observed with variable gantry speed. Ion chamber measurements compared to film yielded small percent differences in plastic water regions (0.1–9.6%), larger percent differences in lung equivalent regions (7.5–34.8%), and significantly larger percent differences in bone equivalent regions (119.1–137.3%). Ion chamber measurements decreased from 17.29 to 2.89 cGy with increasing gantry speed from 1.0 to 6.0 degs/sec. Conclusion: Maintaining technique factors while changing gantry speed changes the number of projections used for reconstruction. Increasing the number of projections by decreasing gantry speed decreases noise, however, dose is increased. The future of 4DCBCT’s clinical utility relies on further investigation of image optimization.« less

  1. 80-kVp CT Using Iterative Reconstruction in Image Space Algorithm for the Detection of Hypervascular Hepatocellular Carcinoma: Phantom and Initial Clinical Experience

    PubMed Central

    Hur, Saebeom; Kim, Soo Jin; Park, Ji Hoon; Han, Joon Koo; Choi, Byung Ihn

    2012-01-01

    Objective To investigate whether the low-tube-voltage (80-kVp), intermediate-tube-current (340-mAs) MDCT using the Iterative Reconstruction in Image Space (IRIS) algorithm improves lesion-to-liver contrast at reduced radiation dosage while maintaining acceptable image noise in the detection of hepatocellular carcinomas (HCC) in thin (mean body mass index, 24 ± 0.4 kg/m2) adults. Subjects and Methods A phantom simulating the liver with HCC was scanned at 50-400 mAs for 80, 100, 120 and 140-kVp. In addition, fifty patients with HCC who underwent multiphasic liver CT using dual-energy (80-kVp and 140-kVp) arterial scans were enrolled. Virtual 120-kVP scans (protocol A) and 80-kVp scans (protocol B) of the late arterial phase were reconstructed with filtered back-projection (FBP), while corresponding 80-kVp scans were reconstructed with IRIS (protocol C). Contrast-to-noise ratio (CNR) of HCCs and abdominal organs were assessed quantitatively, whereas lesion conspicuity, image noise, and overall image quality were assessed qualitatively. Results IRIS effectively reduced image noise, and yielded 29% higher CNR than the FBP at equivalent tube voltage and current in the phantom study. In the quantitative patient study, protocol C helped improve CNR by 51% and 172% than protocols A and B (p < 0.001), respectively, at equivalent radiation dosage. In the qualitative study, protocol C acquired the highest score for lesion conspicuity albeit with an inferior score to protocol A for overall image quality (p < 0.001). Mean effective dose was 2.63-mSv with protocol A and 1.12-mSv with protocols B and C. Conclusion CT using the low-tube-voltage, intermediate-tube-current and IRIS help improve lesion-to-liver CNR of HCC in thin adults during the arterial phase at a lower radiation dose when compared with the standard technique using 120-kVp and FBP. PMID:22438682

  2. Clinical implementation and evaluation of the Acuros dose calculation algorithm.

    PubMed

    Yan, Chenyu; Combine, Anthony G; Bednarz, Greg; Lalonde, Ronald J; Hu, Bin; Dickens, Kathy; Wynn, Raymond; Pavord, Daniel C; Saiful Huq, M

    2017-09-01

    The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and computation time for other plans will be discussed at the end. Maximum difference between dose calculated by AAA and dose-to-medium by Acuros XB (Acuros_D m,m ) was 4.3% on patient plans at the isocenter, and maximum difference between D 100 calculated by AAA and by Acuros_D m,m was 11.3%. When calculating the maximum dose to spinal cord on patient plans, differences between dose calculated by AAA and Acuros_D m,m were more than 3%. Compared with AAA, Acuros XB improves accuracy in the presence of inhomogeneity, and also significantly reduces computation time for VMAT plans. Dose differences between AAA and Acuros_D w,m were generally less than the dose differences between AAA and Acuros_D m,m . Clinical practitioners should consider making Acuros XB available in clinics, however, further investigation and clarification is needed about which dose reporting mode (dose-to-water or dose-to-medium) should be used in clinics. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality.

    PubMed

    Flohr, Thomas G; Leng, Shuai; Yu, Lifeng; Aiimendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H

    2009-12-01

    To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom acquired with the ECG-triggered high-pitch scan mode were visually free from motion artifacts at heart rates of 60 and 70 bpm. However, image quality started to deteriorate for higher heart rates. At equivalent image quality, the ECG-triggered high-pitch scan mode demonstrated lower radiation dose than other cardiac scan techniques on the same DSCT equipment (25% and 60% dose reduction compared to ECG-triggered sequential step-and-shoot and ECG-gated spiral with x-ray pulsing). A high-pitch (up to pitch = 3.2), high-temporal-resolution (up to 75 ms) dual-source CT scan mode produced equivalent image quality relative to single-source scans using a more typical pitch value (pitch = 1.0). The resultant reduction in the overall acquisition time may offer clinical advantage for cardiovascular, trauma, and pediatric CT applications. In addition, ECG-triggered high-pitch scanning may be useful as an alternative to ECG-triggered sequential scanning for patients with low to moderate heart rates up to 70 bpm, with the potential to scan the heart within one heart beat at reduced radiation dose.

  4. Simultaneous experimental determination of labile proton fraction ratio and exchange rate with irradiation radio frequency power-dependent quantitative CEST MRI analysis.

    PubMed

    Sun, Phillip Zhe; Wang, Yu; Xiao, Gang; Wu, Renhua

    2013-01-01

    Chemical exchange saturation transfer (CEST) imaging is sensitive to dilute proteins/peptides and microenvironmental properties, and has been increasingly evaluated for molecular imaging and in vivo applications. However, the experimentally measured CEST effect depends on the CEST agent concentration, exchange rate and relaxation time. In addition, there may be non-negligible direct radio-frequency (RF) saturation effects, particularly severe for diamagnetic CEST (DIACEST) agents owing to their relatively small chemical shift difference from that of the bulk water resonance. As such, the commonly used asymmetry analysis only provides CEST-weighted information. Recently, it has been shown with numerical simulation that both labile proton concentration and exchange rate can be determined by evaluating the RF power dependence of DIACEST effect. To validate the simulation results, we prepared and imaged two CEST phantoms: a pH phantom of serially titrated pH at a fixed creatine concentration and a concentration phantom of serially varied creatine concentration titrated to the same pH, and solved the labile proton fraction ratio and exchange rate per-pixel. For the concentration phantom, we showed that the labile proton fraction ratio is proportional to the CEST agent concentration with negligible change in the exchange rate. Additionally, we found the exchange rate of the pH phantom is dominantly base-catalyzed with little difference in the labile proton fraction ratio. In summary, our study demonstrated quantitative DIACEST MRI, which remains promising to augment the conventional CEST-weighted MRI analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  5. A Projection Quality-Driven Tube Current Modulation Method in Cone-Beam CT for IGRT: Proof of Concept.

    PubMed

    Men, Kuo; Dai, Jianrong

    2017-12-01

    To develop a projection quality-driven tube current modulation method in cone-beam computed tomography for image-guided radiotherapy based on the prior attenuation information obtained by the planning computed tomography and then evaluate its effect on a reduction in the imaging dose. The QCKV-1 phantom with different thicknesses (0-400 mm) of solid water upon it was used to simulate different attenuation (μ). Projections were acquired with a series of tube current-exposure time product (mAs) settings, and a 2-dimensional contrast to noise ratio was analyzed for each projection to create a lookup table of mAs versus 2-dimensional contrast to noise ratio, μ. Before a patient underwent computed tomography, the maximum attenuation [Formula: see text] within the 95% range of each projection angle (θ) was estimated according to the planning computed tomography images. Then, a desired 2-dimensional contrast to noise ratio value was selected, and the mAs setting at θ was calculated with the lookup table of mAs versus 2-dimensional contrast to noise ratio,[Formula: see text]. Three-dimensional cone-beam computed tomography images were reconstructed using the projections acquired with the selected mAs. The imaging dose was evaluated with a polymethyl methacrylate dosimetry phantom in terms of volume computed tomography dose index. Image quality was analyzed using a Catphan 503 phantom with an oval body annulus and a pelvis phantom. For the Catphan 503 phantom, the cone-beam computed tomography image obtained by the projection quality-driven tube current modulation method had a similar quality to that of conventional cone-beam computed tomography . However, the proposed method could reduce the imaging dose by 16% to 33% to achieve an equivalent contrast to noise ratio value. For the pelvis phantom, the structural similarity index was 0.992 with a dose reduction of 39.7% for the projection quality-driven tube current modulation method. The proposed method could reduce the additional dose to the patient while not degrading the image quality for cone-beam computed tomography. The projection quality-driven tube current modulation method could be especially beneficial to patients who undergo cone-beam computed tomography frequently during a treatment course.

  6. TH-CD-207B-11: Multi-Vendor Phantom Study of CT Lung Density Metrics: Is a Reproducibility of Less Than 1 HU Achievable?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Mayer, H; Judy, P; Fain, S

    Purpose: To standardize the calibration procedures of CT lung density measurements using low-density reference foams in a phantom, and to demonstrate a reproducibility of less than 1 HU for lung equivalent foam densities measured across CT vendor platforms and protocols. Methods: A phantom study was conducted on CT scanner models from 4 vendors at 100, 120, and 135/140 kVp and 1.5, 3, and 6 mGy dose settings, using a lung density phantom containing air, water, and 3 reference foams (indirectly calibrated) with discrete densities simulating a 5-cm slice of the human chest. Customized segmentation software was used to analyze themore » images and generate a mean HU and variance for each of the density for the 22 vendor/protocols. A 3-step calibration process was devised to remove a scanner-dependent parameter using linear regression of the HU value vs the relative electron density. The results were mapped to a single energy (80 keV) for final comparison. Results: The heterogeneity across vendor platforms for each density assessed by a random effects model was reduced by 50% after re-calibration, while the standard deviation of the mean HU values also improved by about the same amount. The 95% CI of the final HU value was within +/−1 HU for all 3 reference foam densities. For the backing lung foam in the phantom (served as an “unknown”), this CI is +/− 1.6 HU. The kVp and dose settings did not appear to have significant contributions to the variability. Conclusion: With the proposed calibration procedures, the inter-scanner reproducibility of better than 1 HU is demonstrated in the current phantom study for the reference foam densities, but not yet achieved for a test density. The sources of error are being investigated in the next round of scanning with a certified Standard Reference Material for direct calibration. Fain: research funding from GE Healthcare to develop pulmonary MRI techniques. Hoppel: employee of Toshiba Medical Research Institute USA/financial interest with GE Healthcare. M. Fuld: employee of Siemens Healthcare for medical device equipment and software. This project is supported partially by RSNA QIBA Concept Award (Fain), NIH/NIBIB, HHSN268201300071C (Y).« less

  7. SU-E-T-519: Investigation of the CyberKnife MultiPlan Monte Carlo Dose Calculation Using EBT3 Film Absolute Dosimetry for Delivery in a Heterogeneous Thorax Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberto, M; Chen, H; Huang, K

    2015-06-15

    Purpose To characterize the Cyberknife (CK) robotic system’s dosimetric accuracy of the delivery of MultiPlan’s Monte Carlo dose calculations using EBT3 radiochromic film inserted in a thorax phantom. Methods The CIRS XSight Lung Tracking (XLT) Phantom (model 10823) was used in this study with custom cut EBT3 film inserted in the horizontal (coronal) plane inside the lung tissue equivalent phantom. CK MultiPlan v3.5.3 with Monte Carlo dose calculation algorithm (1.5 mm grid size, 2% statistical uncertainty) was used to calculate a clinical plan for a 25-mm lung tumor lesion, as contoured by the physician, and then imported onto the XLTmore » phantom CT. Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0– 800 cGy. The test films (n=3) were irradiated using 325 cGy to the prescription point. Films were scanned 48 hours after irradiation using an Epson v700 scanner (48 bits color scan, extracted red channel only, 96 dpi). Percent absolute dose and relative isodose distribution difference relative to the planned dose were quantified using an in-house QA software program. Multiplan Monte Carlo dose calculation was validated using RCF dosimetry (EBT3) and gamma index criteria of 3%/3mm and 2%/2mm for absolute dose and relative isodose distribution measurement comparisons. Results EBT3 film measurements of the patient plans calculated with Monte Carlo in MultiPlan resulted in an absolute dose passing rate of 99.6±0.4% for the Gamma Index of 3%/3mm, 10% dose threshold, and 95.6±4.4% for 2%/2mm, 10% threshold criteria. The measured central axis absolute dose was within 1.2% (329.0±2.5 cGy) of the Monte Carlo planned dose (325.0±6.5 cGy) for that same point. Conclusion MultiPlan’s Monte Carlo dose calculation was validated using the EBT3 film absolute dosimetry for delivery in a heterogeneous thorax phantom.« less

  8. TU-FG-BRB-04: A New Optimization Method for Pre-Treatment Patient-Specific Stopping-Power by Combining Proton Radiography and X-Ray CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins-Fekete, C; Centre Hospitalier University de Quebec, Quebec, QC; Mass General Hospital

    Purpose: The relative stopping power (RSP) uncertainty is the largest contributor to the range uncertainty in proton therapy. The purpose of this work is to develop a robust and systematic method that yields accurate patient specific RSPs by combining pre-treatment X-ray CT and daily proton radiography. Methods: The method is formulated as a penalized least squares optimization (PLSO) problem min(|Ax-B|). The matrix A represents the cumulative path-length crossed in each material computed by calculating proton trajectories through the X-ray CT. The material RSPs are denoted by x and B is the pRad, expressed as water equivalent thickness. The equation ismore » solved using a convex-conic optimizer. Geant4 simulations were made to assess the feasibility of the method. RSP extracted from the Geant4 materials were used as a reference and the clinical HU-RSP curve as a comparison. The PLSO was first tested on a Gammex RMI-467 phantom. Then, anthropomorphic phantoms of the head, pelvis and lung were studied and resulting RSPs were evaluated. A pencil beam was generated in each phantom to evaluate the proton range accuracy achievable by using the optimized RSPs. Finally, experimental data of a pediatric head phantom (CIRS) were acquired using a recently completed experimental pCT scanner. Results: Numerical simulations showed precise RSP (<0.75%) for Gammex materials except low-density lung (LN-300) (1.2%). Accurate RSP have been obtained for the head (µ=−0.10%, 1.5σ=1.12%), lung (µ=−0.33, 1.5σ=1.02%) and pelvis anthropomorphic phantoms (µ=0.12, 1.5σ=0,99%). The range precision has been improved with an average R80 difference to the reference (µ±1.5σ) of −0.20±0.35%, −0.47±0.92% and −0.06±0.17% in the head, lung and pelvis phantoms respectively, compared to the 3.5% clinical margin. Experimental HU-RSP curve have been produced on the CIRS pediatric head. Conclusion: The proposed PLSO with prior knowledge X-ray CT shows promising potential (R80 σ<1.0% over all sites) to decrease the range uncertainty.« less

  9. Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99 m Tc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad

    2014-09-01

    The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.

  10. Comparative analysis on reproducibility among 5 intraoral scanners: sectional analysis according to restoration type and preparation outline form

    PubMed Central

    2016-01-01

    PURPOSE The trueness and precision of acquired images of intraoral digital scanners could be influenced by restoration type, preparation outline form, scanning technology and the application of power. The aim of this study is to perform the comparative evaluation of the 3-dimensional reproducibility of intraoral scanners (IOSs). MATERIALS AND METHODS The phantom containing five prepared teeth was scanned by the reference scanner (Dental Wings) and 5 test IOSs (E4D dentist, Fastscan, iTero, Trios and Zfx Intrascan). The acquired images of the scanner groups were compared with the image from the reference scanner (trueness) and within each scanner groups (precision). Statistical analysis was performed using independent two-samples t-test and analysis of variance (α=.05). RESULTS The average deviations of trueness and precision of Fastscan, iTero and Trios were significantly lower than the other scanners. According to the restoration type, significantly higher trueness was observed in crown and inlay than in bridge. However, no significant difference was observed among four sites of preparation outline form. If compared by the characteristics of IOS, high trueness was observed in the group adopting the active triangulation and using powder. However, there was no significant difference between the still image acquisition and video acquisition groups. CONCLUSION Except for two intraoral scanners, Fastscan, iTero and Trios displayed comparable levels of trueness and precision values in tested phantom model. Difference in trueness was observed depending on the restoration type, the preparation outline form and characteristics of IOS, which should be taken into consideration when the intraoral scanning data are utilized. PMID:27826385

  11. Flour pads: devices to improve CHESS fat suppression.

    PubMed

    Moriya, Susumu; Miki, Yukio; Miyati, Tosiaki; Kanagaki, Mitsunori; Yokobayashi, Tsuneo

    2014-01-01

    We compared the suppression of lingering fat signals in chemical shift selective (CHESS) images by pads filled with flour and pads filled with rice in a phantom and human subjects. First, we prepared a phantom by creating an empty space in a mass of lard and filling the space with air, rice, or flour. Then, we obtained MR images of the phantoms in the center of the magnetic field and at a position 8 cm to the left (off-center) to compare lingering fat signals. MR images of the knee were obtained in 10 healthy volunteers using CHESS after placing a polyurethane sponge pillow, rice pad, or flour pad in the popliteal space under the flexed knee. We visually assessed the number of areas with lingering fat signals and the statistical differences among the groups were assessed using Tukey's test. Similarly to rice, flour clearly decreased lingering fat signals in the phantom study. A similar effect was obtained in the off-center images. In the volunteer study, the mean number of areas with lingering fat signals was 2.5 with a sponge pillow, 0.5 with the rice pad, and 0.3 with the flour pad. Those numbers were significantly different using flour pad and rice pad compared with sponge pillow (P < 0.001). No significant differences were seen between flour pads and rice pads (P = 0.662). Flour pads can suppress lingering fat signals in CHESS images.

  12. Shielding Effect of Lead Glasses on Radiologists' Eye Lens Exposure in Interventional Procedures.

    PubMed

    Hu, Panpan; Kong, Yan; Chen, Bo; Liu, Qianqian; Zhuo, Weihai; Liu, Haikuan

    2017-04-20

    To study the shielding effect of radiologists' eye lens with lead glasses of different equivalent thicknesses and sizes in interventional radiology procedures. Using the human voxel phantom with a more accurate model of the eye and MCNPX software, eye lens doses of the radiologists who wearing different kinds of lead glasses were simulated, different beam projections were taken into consideration during the simulation. Measurements were also performed with the physical model to verify simulation results. Simulation results showed that the eye lens doses were reduced by a factor from 3 to 9 when wearing a 20 cm2-sized lead glasses with the equivalent thickness ranging from 0.1 to 1.0 mm Pb. The increase of dose reduction factor (DRF) was not significant whenever increase the lead equivalent of glasses of which larger than 0.35 mm. Furthermore, the DRF was proportional to the size of glass lens from 6 to 30 cm2 with the same lead equivalent. The simulation results were in well agreements with the measured ones. For more reasonable and effective protection of the eye lens of interventional radiologists, a pair of glasses with a lead equivalent of 0.5 mm Pb and large-sized (at least 27 cm2 per glass) lens are recommended. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study

    NASA Astrophysics Data System (ADS)

    D'Souza, Warren D.; Naqvi, Shahid A.; Yu, Cedric X.

    2005-09-01

    Significant differences between planned and delivered treatments may occur due to respiration-induced tumour motion, leading to underdosing of parts of the tumour and overdosing of parts of the surrounding critical structures. Existing methods proposed to counter tumour motion include breath-holds, gating and MLC-based tracking. Breath-holds and gating techniques increase treatment time considerably, whereas MLC-based tracking is limited to two dimensions. We present an alternative solution in which a robotic couch moves in real time in response to organ motion. To demonstrate proof-of-principle, we constructed a miniature adaptive couch model consisting of two movable platforms that simulate tumour motion and couch motion, respectively. These platforms were connected via an electronic feedback loop so that the bottom platform responded to the motion of the top platform. We tested our model with a seven-field step-and-shoot delivery case in which we performed three film-based experiments: (1) static geometry, (2) phantom-only motion and (3) phantom motion with simulated couch motion. Our measurements demonstrate that the miniature couch was able to compensate for phantom motion to the extent that the dose distributions were practically indistinguishable from those in static geometry. Motivated by this initial success, we investigated a real-time couch compensation system consisting of a stereoscopic infra-red camera system interfaced to a robotic couch known as the Hexapod™, which responds in real time to any change in position detected by the cameras. Optical reflectors placed on a solid water phantom were used as surrogates for motion. We tested the effectiveness of couch-based motion compensation for fixed fields and a dynamic arc delivery cases. Due to hardware limitations, we performed film-based experiments (1), (2) and (3), with the robotic couch at a phantom motion period and dose rate of 16 s and 100 MU min-1, respectively. Analysis of film measurements showed near-equivalent dose distributions (<=2 mm agreement of corresponding isodose lines) for static geometry and motion-synchronized real-time robotic couch tracking-based radiation delivery.

  14. A maximum likelihood method for high resolution proton radiography/proton CT

    NASA Astrophysics Data System (ADS)

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K. N.; Beaulieu, Luc; Seco, Joao

    2016-12-01

    Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography’s spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm-1 to 4.53 lp cm-1 in the 200 MeV beam and from 3.49 lp cm-1 to 5.76 lp cm-1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm-1 to 5.76 lp cm-1) or conical beam (from 3.49 lp cm-1 to 5.56 lp cm-1). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm-1 for the parallel beam and from 3.03 to 5.15 lp cm-1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65 % ) in proton radiography and greatly accelerate proton computed tomography reconstruction.

  15. A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions

    NASA Astrophysics Data System (ADS)

    Song, Bongyong; Park, Justin C.; Song, William Y.

    2014-11-01

    The Barzilai-Borwein (BB) 2-point step size gradient method is receiving attention for accelerating Total Variation (TV) based CBCT reconstructions. In order to become truly viable for clinical applications, however, its convergence property needs to be properly addressed. We propose a novel fast converging gradient projection BB method that requires ‘at most one function evaluation’ in each iterative step. This Selective Function Evaluation method, referred to as GPBB-SFE in this paper, exhibits the desired convergence property when it is combined with a ‘smoothed TV’ or any other differentiable prior. This way, the proposed GPBB-SFE algorithm offers fast and guaranteed convergence to the desired 3DCBCT image with minimal computational complexity. We first applied this algorithm to a Shepp-Logan numerical phantom. We then applied to a CatPhan 600 physical phantom (The Phantom Laboratory, Salem, NY) and a clinically-treated head-and-neck patient, both acquired from the TrueBeam™ system (Varian Medical Systems, Palo Alto, CA). Furthermore, we accelerated the reconstruction by implementing the algorithm on NVIDIA GTX 480 GPU card. We first compared GPBB-SFE with three recently proposed BB-based CBCT reconstruction methods available in the literature using Shepp-Logan numerical phantom with 40 projections. It is found that GPBB-SFE shows either faster convergence speed/time or superior convergence property compared to existing BB-based algorithms. With the CatPhan 600 physical phantom, the GPBB-SFE algorithm requires only 3 function evaluations in 30 iterations and reconstructs the standard, 364-projection FDK reconstruction quality image using only 60 projections. We then applied the algorithm to a clinically-treated head-and-neck patient. It was observed that the GPBB-SFE algorithm requires only 18 function evaluations in 30 iterations. Compared with the FDK algorithm with 364 projections, the GPBB-SFE algorithm produces visibly equivalent quality CBCT image for the head-and-neck patient with only 180 projections, in 131.7 s, further supporting its clinical applicability.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, A; Tailor, R; Melancon, A

    Purpose: To simulate and measure magnetic-field-induced radiation dose effects in a mouse lung phantom. This data will be used to support pre-clinical experiments related to MRI-guided radiation therapy systems. Methods: A mouse lung phantom was constructed out of 1.5×1.5×2.0-cm{sup 3} lung-equivalent material (0.3 g/cm{sup 3}) surrounded by a 0.6-cm solid water shell. EBT3 film was inserted into the phantom and the phantom was placed between the poles of an H-frame electromagnet. The phantom was irradiated with a cobalt-60 beam (1.25 MeV) with the electromagnet set to various magnetic field strengths (0T, 0.35T, 0.9T, and 1.5T). These magnetic field strengths correspondmore » to the range of field strengths seen in MRI-guided radiation therapy systems. Dose increases at the solid-water-to-lung-interface and dose decreases at the lung-to-solid-water interface were compared with results of Monte Carlo simulations performed with MCNP6. Results: The measured dose to lung at the solid-water-to-lung interface increased by 0%, 16%, and 29% with application of the 0.35T, 0.9T, and 1.5T magnetic fields, respectively. The dose to lung at the lung-to-solid-water interface decreased by 4%, 18%, and 24% with application of the 0.35T, 0.9T, and 1.5T magnetic fields, respectively. Monte Carlo simulations showed dose increases of 0%, 16%, and 31% and dose decreases of 4%, 16%, and 25%. Conclusion: Only small dose perturbations were observed at the lung-solid-water interfaces for the 0.35T case, while more substantial dose perturbations were observed for the 0.9T and 1.5T cases. There is good agreement between the Monte Carlo calculations and the experimental measurements (within 2%). These measurements will aid in designing pre-clinical studies which investigate the potential biological effects of radiation therapy in the presence of a strong magnetic field. This work was partially funded by Elekta.« less

  17. Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E.

    2007-01-01

    The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, wT. ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion coefficients for newly identified radiosensitive organs—salivary glands, gall bladder, heart and prostate—were reported, as well as the brain, which was originally considered in ICRP Publication 60 as a member of the remainder category of the effective dose.

  18. Commissioning an in-room mobile CT for adaptive proton therapy with a compact proton system.

    PubMed

    Oliver, Jasmine A; Zeidan, Omar; Meeks, Sanford L; Shah, Amish P; Pukala, Jason; Kelly, Patrick; Ramakrishna, Naren R; Willoughby, Twyla R

    2018-05-01

    To describe the commissioning of AIRO mobile CT system (AIRO) for adaptive proton therapy on a compact double scattering proton therapy system. A Gammex phantom was scanned with varying plug patterns, table heights, and mAs on a CT simulator (CT Sim) and on the AIRO. AIRO-specific CT-stopping power ratio (SPR) curves were created with a commonly used stoichiometric method using the Gammex phantom. A RANDO anthropomorphic thorax, pelvis, and head phantom, and a CIRS thorax and head phantom were scanned on the CT Sim and AIRO. Clinically realistic treatment plans and nonclinical plans were generated on the CT Sim images and subsequently copied onto the AIRO CT scans for dose recalculation and comparison for various AIRO SPR curves. Gamma analysis was used to evaluate dosimetric deviation between both plans. AIRO CT values skewed toward solid water when plugs were scanned surrounded by other plugs in phantom. Low-density materials demonstrated largest differences. Dose calculated on AIRO CT scans with stoichiometric-based SPR curves produced over-ranged proton beams when large volumes of low-density material were in the path of the beam. To create equivalent dose distributions on both data sets, the AIRO SPR curve's low-density data points were iteratively adjusted to yield better proton beam range agreement based on isodose lines. Comparison of the stoichiometric-based AIRO SPR curve and the "dose-adjusted" SPR curve showed slight improvement on gamma analysis between the treatment plan and the AIRO plan for single-field plans at the 1%, 1 mm level, but did not affect clinical plans indicating that HU number differences between the CT Sim and AIRO did not affect dose calculations for robust clinical beam arrangements. Based on this study, we believe the AIRO can be used offline for adaptive proton therapy on a compact double scattering proton therapy system. © 2018 Orlando Health UF Health Cancer Center. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions.

    PubMed

    Song, Bongyong; Park, Justin C; Song, William Y

    2014-11-07

    The Barzilai-Borwein (BB) 2-point step size gradient method is receiving attention for accelerating Total Variation (TV) based CBCT reconstructions. In order to become truly viable for clinical applications, however, its convergence property needs to be properly addressed. We propose a novel fast converging gradient projection BB method that requires 'at most one function evaluation' in each iterative step. This Selective Function Evaluation method, referred to as GPBB-SFE in this paper, exhibits the desired convergence property when it is combined with a 'smoothed TV' or any other differentiable prior. This way, the proposed GPBB-SFE algorithm offers fast and guaranteed convergence to the desired 3DCBCT image with minimal computational complexity. We first applied this algorithm to a Shepp-Logan numerical phantom. We then applied to a CatPhan 600 physical phantom (The Phantom Laboratory, Salem, NY) and a clinically-treated head-and-neck patient, both acquired from the TrueBeam™ system (Varian Medical Systems, Palo Alto, CA). Furthermore, we accelerated the reconstruction by implementing the algorithm on NVIDIA GTX 480 GPU card. We first compared GPBB-SFE with three recently proposed BB-based CBCT reconstruction methods available in the literature using Shepp-Logan numerical phantom with 40 projections. It is found that GPBB-SFE shows either faster convergence speed/time or superior convergence property compared to existing BB-based algorithms. With the CatPhan 600 physical phantom, the GPBB-SFE algorithm requires only 3 function evaluations in 30 iterations and reconstructs the standard, 364-projection FDK reconstruction quality image using only 60 projections. We then applied the algorithm to a clinically-treated head-and-neck patient. It was observed that the GPBB-SFE algorithm requires only 18 function evaluations in 30 iterations. Compared with the FDK algorithm with 364 projections, the GPBB-SFE algorithm produces visibly equivalent quality CBCT image for the head-and-neck patient with only 180 projections, in 131.7 s, further supporting its clinical applicability.

  20. Dose perturbations by two carbon fiber treatment couches and the ability of a commercial treatment planning system to predict these effects.

    PubMed

    Gerig, L H; Niedbala, M; Nyiri, B J

    2010-01-01

    To measure the effect of the treatment couch on dose distributions and to investigate the ability of a modern planning system to accurately model these effects. This work measured the dose perturbation at depth and in the dose buildup region when one of two treatment couches, CIVCO (formerly MED-TEC) or Medical Intelligence, was placed between a photon beam source (6, 10, and 18 MV) and the phantom. Beam attenuation was measured in the center of a cylindrical acrylic phantom with a Farmer type ion chamber at multiple gantry angles. Dose buildup was measured in Solid Water with plane parallel ion chambers (NACP-02 and PTW Markus) with the beam normal to both the phantom and couch surfaces. The effective point of measurement method as described [M. R. McEwen et al. "The effective point of measurement of ionization chambers and the build-up anomaly in MV x-ray beams," Med. Phys. 35(3), 950-958 (2008)] was employed to calculate dose in the buildup region. Both experiments were modeled in XiO. Images of the treatment couches were merged with images of the phantoms such that they were included as part of the "patient" image. Dose distributions calculated with superposition and fast superposition algorithms were compared to measurement. The two treatment couches have different radiological signatures and dissimilar water equivalent thicknesses (4.2 vs 6.3 mm.) Maximum attenuation was 7%. Both couches caused significant loss of skin sparing, the worst case showing an increase in surface dose from 17% (no couch) to 88% (with couch). The TPS accurately predicted the surface dose (+/-3%) and the attenuation at depth when the phantom was in contact with the couch. For the open beam the TPS was less successful in the buildup region. The treatment couch is not radio-transparent. Its presence between the patient and beam source significantly alters dose in the patient. For the most part, a modern treatment planning system can adequately predict the altered dose distribution.

  1. Experimental evaluation of a GPU-based Monte Carlo dose calculation algorithm in the Monaco treatment planning system.

    PubMed

    Paudel, Moti R; Kim, Anthony; Sarfehnia, Arman; Ahmad, Sayed B; Beachey, David J; Sahgal, Arjun; Keller, Brian M

    2016-11-08

    A new GPU-based Monte Carlo dose calculation algorithm (GPUMCD), devel-oped by the vendor Elekta for the Monaco treatment planning system (TPS), is capable of modeling dose for both a standard linear accelerator and an Elekta MRI linear accelerator. We have experimentally evaluated this algorithm for a standard Elekta Agility linear accelerator. A beam model was developed in the Monaco TPS (research version 5.09.06) using the commissioned beam data for a 6 MV Agility linac. A heterogeneous phantom representing several scenarios - tumor-in-lung, lung, and bone-in-tissue - was designed and built. Dose calculations in Monaco were done using both the current clinical Monte Carlo algorithm, XVMC, and the new GPUMCD algorithm. Dose calculations in a Pinnacle TPS were also produced using the collapsed cone convolution (CCC) algorithm with heterogeneity correc-tion. Calculations were compared with the measured doses using an ionization chamber (A1SL) and Gafchromic EBT3 films for 2 × 2 cm2, 5 × 5 cm2, and 10 × 10 cm2 field sizes. The percentage depth doses (PDDs) calculated by XVMC and GPUMCD in a homogeneous solid water phantom were within 2%/2 mm of film measurements and within 1% of ion chamber measurements. For the tumor-in-lung phantom, the calculated doses were within 2.5%/2.5 mm of film measurements for GPUMCD. For the lung phantom, doses calculated by all of the algorithms were within 3%/3 mm of film measurements, except for the 2 × 2 cm2 field size where the CCC algorithm underestimated the depth dose by ~ 5% in a larger extent of the lung region. For the bone phantom, all of the algorithms were equivalent and calculated dose to within 2%/2 mm of film measurements, except at the interfaces. Both GPUMCD and XVMC showed interface effects, which were more pronounced for GPUMCD and were comparable to film measurements, whereas the CCC algorithm showed these effects poorly. © 2016 The Authors.

  2. Assessment of absorbed dose to thyroid, parotid and ovaries in patients undergoing Gamma Knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Hasanzadeh, H.; Sharafi, A.; Allah Verdi, M.; Nikoofar, A.

    2006-09-01

    Stereotactic radiosurgery was originally introduced by Lars Leksell in 1951. This treatment refers to the noninvasive destruction of an intracranial target localized stereotactically. The purpose of this study was to identify the dose delivered to the parotid, ovaries, testis and thyroid glands during the Gamma Knife radiosurgery procedure. A three-dimensional, anthropomorphic phantom was developed using natural human bone, paraffin and sodium chloride as the equivalent tissue. The phantom consisted of a thorax, head and neck and hip. In the natural places of the thyroid, parotid (bilateral sides) and ovaries (midline), some cavities were made to place TLDs. Three TLDs were inserted in a batch with 1 cm space between the TLDs and each batch was inserted into a single cavity. The final depth of TLDs was 3 cm from the surface for parotid and thyroid and was 15 cm for the ovaries. Similar batches were placed superficially on the phantom. The phantom was gamma irradiated using a Leksell model C Gamma Knife unit. Subsequently, the same batches were placed superficially over the thyroid, parotid, testis and ovaries in 30 patients (15 men and 15 women) who were undergoing radiosurgery treatment for brain tumours. The mean dosage for treating these patients was 14.48 ± 3.06 Gy (10.5-24 Gy) to a mean tumour volume of 12.30 ± 9.66 cc (0.27-42.4 cc) in the 50% isodose curve. There was no significant difference between the superficial and deep batches in the phantom studies (P-value < 0.05). The mean delivered doses to the parotid, thyroid, ovaries and testis in human subjects were 21.6 ± 15.1 cGy, 9.15 ± 3.89 cGy, 0.47 ± 0.3 cGy and 0.53 ± 0.31 cGy, respectively. The data can be used in making decisions for special clinical situations such as treating pregnant patients or young patients with benign lesions who need radiosurgery for eradication of brain tumours.

  3. Feasibility of estimating volumetric breast density from mammographic x-ray spectra using a cadmium telluride photon-counting detector.

    PubMed

    Ghammraoui, Bahaa; Badal, Andreu; Glick, Stephen J

    2018-06-03

    Mammographic density of glandular breast tissue has a masking effect that can reduce lesion detection accuracy and is also a strong risk factor for breast cancer. Therefore, accurate quantitative estimation of breast density is clinically important. In this study, we investigate experimentally the feasibility of quantifying volumetric breast density with spectral mammography using a CdTe-based photon-counting detector. To demonstrate proof-of-principle, this study was carried out using the single pixel Amptek XR-100T-CdTe detector. The total number of x rays recorded by the detector from a single pencil-beam projection through 50%/50% of adipose/glandular mass fraction-equivalent phantoms was measured. Material decomposition assuming two, four, and eight energy bins was then applied to characterize the inspected phantom into adipose and glandular using log-likelihood estimation, taking into account the polychromatic source, the detector response function, and the energy-dependent attenuation. Measurement tests were carried out for different doses, kVp settings, and different breast sizes. For dose of 1 mGy and above, the percent relative root mean square (RMS) errors of the estimated breast density was measured below 7% for all three phantom studies. It was also observed that some decrease in RMS errors was achieved using eight energy bins. For 3 and 4 cm thick phantoms, performance at 40 and 45 kVp showed similar performance. However, it was observed that 45 kVp showed better performance for a phantom thickness of 6 cm at low dose levels due to increased statistical variation at lower photon count levels with 40 kVp. The results of the current study suggest that photon-counting spectral mammography systems using CdTe detectors have the potential to be used for accurate quantification of volumetric breast density on a pixel-to-pixel basis, with an RMS error of less than 7%. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  4. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement.

    PubMed

    Byrne, H L; Gholami, Y; Kuncic, Z

    2017-04-21

    The addition of gold nanoparticles within target tissue (i.e. a tumour) to enhance the delivered radiation dose is a well studied radiotherapy treatment strategy, despite not yet having been translated into standard clinical practice. While several studies have used Monte Carlo simulations to investigate radiation dose enhancement by Auger electrons emitted from irradiated gold nanoparticles, none have yet considered the effects due to escaping fluorescence photons. Geant4 was used to simulate a water phantom containing 10 mg ml -1 uniformly dispersed gold (1% by mass) at 5 cm depth. Incident monoenergetic photons with energies either side of the gold K-edge at 73 keV and 139.5 keV were chosen to give the same attenuation contrast against water, where water is used as a surrogate for biological tissue. For 73 keV incident photons, adding 1% gold into the water phantom enhances the energy deposited in the phantom by a factor of  ≈1.9 while 139.5 keV incident photons give a lower enhancement ratio of  ≈1.5. This difference in enhancement ratio, despite the equivalent attenuation ratios, can be attributed to energy carried from the target into the surrounding volume by fluorescence photons for the higher incident photon energy. The energy de-localisation is maximal just above the K-edge with 36% of the initial energy deposit in the phantom lost to escaping fluorescence photons. Conversely we find that the absorption of more photons by gold in the phantom reduces the number of scattered photons and hence energy deposited in the surrounding volume by up to 6% for incident photons below the K-edge. For incident photons above the K-edge this is somewhat offset by fluorescence. Our results give new insight into the previously unstudied centimetre scale energy deposition outside a target, which will be valuable for the future development of treatment plans using gold nanoparticles. From these results, we can conclude that gold nanoparticles delivered to a target tumour are capable of increasing dose to the tumour whilst simultaneously decreasing scatter dose to surrounding healthy tissue.

  5. A maximum likelihood method for high resolution proton radiography/proton CT.

    PubMed

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao

    2016-12-07

    Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography's spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm -1 to 4.53 lp cm -1 in the 200 MeV beam and from 3.49 lp cm -1 to 5.76 lp cm -1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm -1 to 5.76 lp cm -1 ) or conical beam (from 3.49 lp cm -1 to 5.56 lp cm -1 ). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm -1 for the parallel beam and from 3.03 to 5.15 lp cm -1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65[Formula: see text]) in proton radiography and greatly accelerate proton computed tomography reconstruction.

  6. Effective doses and organ doses in the MIRD-5 phantom exposed to monoenergetic 0.1 MeV to 200 MeV electrons in the LAT direction.

    PubMed

    Katagiri, M; Hikoji, M; Kitaichi, M; Aoki, Y; Sawamura, S

    2001-01-01

    Organ doses and effective doses were calculated using the EGS-4 Monte Carlo simulation code and a MIRD-5 mathematical human phantom placed in a vacuum. For broad right and left lateral beams of monoenergetic (0.1-200 MeV) electrons, conversion coefficients from the incident fluence to organ dose, to effective dose, and to effective dose equivalent were obtained. There were no clear differences between the conversion coefficients in the case of left-lateral (LLAT) and right-lateral (RLAT) irradiation. Therefore, when investigating lateral geometries for electron exposure, it is not necessary to evaluate both directions independently. In general, conversion coefficients for lateral irradiation (LAT) were smaller than those for AP and PA. The difference between the AP and PA conversion coefficients and LAT became smaller with increasing incident energy; at 200 MeV the conversion coefficients were almost independent of the irradiation geometry. The agreement between the results of the present study and those of other studies was acceptable within the statistical uncertainties.

  7. Measurements of eye lens doses in interventional cardiology using OSL and electronic dosemeters†.

    PubMed

    Sanchez, R M; Vano, E; Fernandez, J M; Ginjaume, M; Duch, M A

    2014-12-01

    The purpose of this paper is to test the appropriateness of OSL and electronic dosemeters to estimate eye lens doses at interventional cardiology environment. Using TLD as reference detectors, personal dose equivalent was measured in phantoms and during clinical procedures. For phantom measurements, OSL dose values resulted in an average difference of -15 % vs. TLD. Tests carried out with other electronic dosemeters revealed differences up to ±20 % versus TLD. With dosemeters positioned outside the goggles and when TLD doses were >20 μSv, the average difference OSL vs. TLD was -9 %. Eye lens doses of almost 700 μSv per procedure were measured in two cases out of a sample of 33 measurements in individual clinical procedures, thus showing the risk of high exposure to the lenses of the eye when protection rules are not followed. The differences found between OSL and TLD are acceptable for the purpose and range of doses measured in the survey. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Weyl metrics and wormholes

    NASA Astrophysics Data System (ADS)

    Gibbons, Gary W.; Volkov, Mikhail S.

    2017-05-01

    We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescaling them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular matter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings literally produce holes in flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality transformations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for example the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from solutions with locally flat geometry.

  9. A non-invasive diffuse reflectance calibration-free method for absolute determination of exogenous biochemicals concentration in biological tissues

    NASA Astrophysics Data System (ADS)

    Lappa, Alexander V.; Kulikovskiy, Artem N.; Busarov, Oleg G.

    2014-03-01

    The paper presents a new method for distant non-destructive determination of concentration of light absorbing admixtures in turbid media. In particular, it is intended for non-invasive in vivo control of accumulation in patient tissues of various biochemicals introduced to the patients for chemotherapy, photodynamic therapy or diagnostics. It is require that the admixture absorption spectrum should have a clearly marked peak in the wavelength region where the pure medium one varies regularly. Fluorescence of admixtures is not required. The method uses the local diffuse reflectance spectroscopy with optical fiber probe including one emitting and two reading There are several features in the method: the value to be determined is absolute concentration of admixtures; the method needs no calibration measurements on phantoms; it needs no reference measurements on sample with zero admixture concentration; it uses a two parametric kinetic light propagation model and original algorithms to resolve direct and inverse tasks of radiation transport theory. Experimental testing passed with tissue equivalent phantoms and different admixtures, including a chlorine photosensitizer, showed accuracy under 10% in all cases.

  10. Development and validation of RAYDOSE: a Geant4-based application for molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    Marcatili, S.; Pettinato, C.; Daniels, S.; Lewis, G.; Edwards, P.; Fanti, S.; Spezi, E.

    2013-04-01

    We developed and validated a Monte-Carlo-based application (RAYDOSE) to generate patient-specific 3D dose maps on the basis of pre-treatment imaging studies. A CT DICOM image is used to model patient geometry, while repeated PET scans are employed to assess radionuclide kinetics and distribution at the voxel level. In this work, we describe the structure of this application and present the tests performed to validate it against reference data and experiments. We used the spheres of a NEMA phantom to calculate S values and total doses. The comparison with reference data from OLINDA/EXM showed an agreement within 2% for a sphere size above 2.8 cm diameter. A custom heterogeneous phantom composed of several layers of Perspex and lung equivalent material was used to compare TLD measurements of gamma radiation from 131I to Monte Carlo simulations. An agreement within 5% was found. RAYDOSE has been validated against reference data and experimental measurements and can be a useful multi-modality platform for treatment planning and research in MRT.

  11. Proton Beam Therapy Interference With Implanted Cardiac Pacemakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshiro, Yoshiko; Sugahara, Shinji; Noma, Mio

    2008-11-01

    Purpose: To investigate the effect of proton beam therapy (PBT) on implanted cardiac pacemaker function. Methods and Materials: After a phantom study confirmed the safety of PBT in patients with cardiac pacemakers, we treated 8 patients with implanted pacemakers using PBT to a total tumor dose of 33-77 gray equivalents (GyE) in dose fractions of 2.2-6.6 GyE. The combined total number of PBT sessions was 127. Although all pulse generators remained outside the treatment field, 4 patients had pacing leads in the radiation field. All patients were monitored by means of electrocardiogram during treatment, and pacemakers were routinely examined beforemore » and after PBT. Results: The phantom study showed no effect of neutron scatter on pacemaker generators. In the study, changes in heart rate occurred three times (2.4%) in 2 patients. However, these patients remained completely asymptomatic throughout the PBT course. Conclusions: PBT can result in pacemaker malfunctions that manifest as changes in pulse rate and pulse patterns. Therefore, patients with cardiac pacemakers should be monitored by means of electrocardiogram during PBT.« less

  12. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  13. Phantom auditory sensation in rats: an animal model for tinnitus.

    PubMed

    Jastreboff, P J; Brennan, J F; Coleman, J K; Sasaki, C T

    1988-12-01

    In order to measure tinnitus induced by sodium salicylate injections, 84 pigmented rats, distributed among 14 groups in five experiments, were used in a conditioned suppression paradigm. In Experiment 1, all groups were trained with a conditioned stimulus (CS) consisting of the offset of a continuous background noise. One group began salicylate injections before Pavlovian training, a second group started injections after training, and a control group received daily saline injections. Resistance to extinction was profound when injections started before training, but minimal when initiated after training, which suggests that salicylate-induced effects acquired differential conditioned value. In Experiment 2 we mimicked the salicylate treatments by substituting a 7 kHz tone in place of respective injections, resulting in effects equivalent to salicylate-induced behavior. In a third experiment we included a 3 kHz CS, and again replicated the salicylate findings. In Experiment 4 we decreased the motivational level, and the sequential relation between salicylate-induced effects and suppression training was retained. Finally, no salicylate effects emerged when the visual modality was used. These findings support the demonstration of phantom auditory sensations in animals.

  14. Recovering the superficial microvascular pattern via diffuse reflection imaging: phantom validation.

    PubMed

    Chen, Chen; Florian, Klämpfl; Rajesh, Kanawade; Max, Riemann; Christian, Knipfer; Florian, Stelzle; Michael, Schmidt

    2015-09-30

    Diffuse reflection imaging could potentially be used to recover the superficial microvasculature under cutaneous tissue and the associated blood oxygenation status with a modified imaging resolution. The aim of this work is to deliver a new approach of local off-axis scanning diffuse reflection imaging, with the revisit of the modified Beer-Lambert Law (MBLL). To validate this, the system is used to recover the micron-scale subsurface vessel structure interiorly embedded in a skin equivalent tissue phantom. This vessel structure is perfused with oxygenated meta-hemoglobin solution. Our preliminary results confirm that the thin vessel structure can be mapped into a 2-D planar image. The distributions of oxygenated hemoglobin concentration ([Formula: see text]) and deoxygenated hemoglobin concentration ([Formula: see text]) can be co-registerated through the MBLL upon the CW spectroscopy, the scattering issue is addressed in the reformed MBLL. The recovered pattern matches to the estimation from the simultaneous optical coherence tomography studies. With further modification, this system may serve as the first prototype to investigate the superficial microvasculature in the expotential skin cancer loci, or a micro-lesion of vascular dermatosis.

  15. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry.

    PubMed

    Fernández-Varea, J M; Andreo, P; Tabata, T

    1996-07-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth-dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies.

  16. Implementation of radiochromic film dosimetry protocol for volumetric dose assessments to various organs during diagnostic CT procedures

    PubMed Central

    Brady, Samuel; Yoshizumi, Terry; Toncheva, Greta; Frush, Donald

    2010-01-01

    Purpose: The authors present a means to measure high-resolution, two-dimensional organ dose distributions in an anthropomorphic phantom of heterogeneous tissue composition using XRQA radiochromic film. Dose distributions are presented for the lungs, liver, and kidneys to demonstrate the organ volume dosimetry technique. XRQA film response accuracy was validated using thermoluminescent dosimeters (TLDs). Methods: XRQA film and TLDs were first exposed at the center of two CTDI head phantoms placed end-to-end, allowing for a simple cylindrical phantom of uniform scatter material for verification of film response accuracy and sensitivity in a computed tomography (CT) exposure geometry; the TLD and film dosimeters were exposed separately. In a similar manner, TLDs and films were placed between cross-sectional slabs of a 5 yr old anthropomorphic phantom’s thorax and abdomen regions. The anthropomorphic phantom was used to emulate real pediatric patient geometry and scatter conditions. The phantom consisted of five different tissue types manufactured to attenuate the x-ray beam within 1%–3% of normal tissues at CT beam energies. Software was written to individually calibrate TLD and film dosimeter responses for different tissue attenuation factors, to spatially register dosimeters, and to extract dose responses from film for TLD comparison. TLDs were compared to film regions of interest extracted at spatial locations corresponding to the TLD locations. Results: For the CTDI phantom exposure, the film and TLDs measured an average difference in dose response of 45% (SD±2%). Similar comparisons within the anthropomorphic phantom also indicated a consistent difference, tracking along the low and high dose regions, for the lung (28%) (SD±8%) and liver and kidneys (15%) (SD±4%). The difference between the measured film and TLD dose values was due to the lower response sensitivity of the film that arose when the film was oriented with its large surface area parallel to the main axis of the CT beam. The consistency in dose response difference allowed for a tissue specific correction to be applied. Once corrected, the average film response agreed to better than 3% (SD±2%) for the CTDI scans, and for the anthropomorphic phantom scans: 3% (SD±3%) for the lungs, 5% (SD±3%) for the liver, and 4% (SD±3%) for the kidneys. Additionally, XRQA film measured a heterogeneous dose distribution within the organ volumes. The extent of the dose distribution heterogeneity was not measurable with the TLDs due to the limitation on the number of TLDs loadable in the regions of the phantom organs. In this regard, XRQA film demonstrated an advantage over the TLD method by discovering a 15% greater maximum dose to lung in a region unmeasured by TLDs. Conclusions: The films demonstrated a lower sensitivity to absorbed dose measurements due to the geometric inefficiency of measuring dose from a beam situated end-on to the film. Once corrected, the film demonstrated equivalent dose measurement accuracy as TLD detectors with the added advantage of relatively simple measurement of high-resolution dose distributions throughout organ volumes. PMID:20964198

  17. Development of an imaging-planning program for screen/film and computed radiography mammography for breasts with short chest wall to nipple distance.

    PubMed

    Dong, S L; Su, J L; Yeh, Y H; Chu, T C; Lin, Y C; Chuang, K S

    2011-04-01

    Imaging breasts with a short chest wall to nipple distance (CWND) using a traditional mammographic X-ray unit is a technical challenge for mammographers. The purpose of this study is the development of an imaging-planning program to assist in determination of imaging parameters of screen/film (SF) and computed radiography (CR) mammography for short CWND breasts. A traditional mammographic X-ray unit (Mammomat 3000, Siemens, Munich, Germany) was employed. The imaging-planning program was developed by combining the compressed breast thickness correction, the equivalent polymethylmethacrylate thickness assessment for breasts and the tube loading (mAs) measurement. Both phantom exposures and a total of 597 exposures were used for examining the imaging-planning program. Results of the phantom study show that the tube loading rapidly decreased with the CWND when the automatic exposure control (AEC) detector was not fully covered by the phantom. For patient exposures with the AEC fully covered by breast tissue, the average fractional tube loadings, defined as the ratio of the predicted mAs using the imaging-planning program and mAs of the mammogram, were 1.10 and 1.07 for SF and CR mammograms, respectively. The predicted mAs values were comparable to the mAs values, as determined by the AEC. By applying the imaging-planning program in clinical practice, the experiential dependence of the mammographer for determination of the imaging parameters for short CWND breasts is minimised.

  18. Phantom torso experiment on the international space station; flight measurements and calculations

    NASA Astrophysics Data System (ADS)

    Atwell, W.; Semones, E.; Cucinotta, F.

    The Phantom Torso Experiment (PTE) first flew on the 10-day Space Shuttle mission STS-91 in June 1998 during a period near solar minimum. The PTE was re- f l o w n on the I ternational Space Station (ISS) Increment 2 mission from April-n A u g u s t 2001 during a period near solar maximum. The experiment was located with a suite of other radiation experiments in the US Lab module Human Research Facility (HRF) rack. The objective of the experiment was to measure space radiation exposures at several radiosensitive critical body organs (brain, thyroid, heart/lung, stomach and colon) and two locations on the surface (skin) of a modified RandoTM phantom. Prior to flight, active solid -state silicon dosimeters were located at the RandoTM critical body organ locations and passive dosimeters were placed at the two surface locations. Using a mathematically modified Computerized Anatomical Male (CAM) model, shielding distributions were generated for the five critical body organ and two skin locations. These shielding distributions were then combined with the ISS HRF rack shielding distribution to account for the total shielding "seen" by the PTE. Using the trapped proton and galactic cosmic radiation environment models and high -energy particle transport codes, absorbed dose, dose equivalent, and LET (linear energy transfer) values were computed for the seven dose point locations of interest. The results of these computations are compared with the actual flight measurements.

  19. Decomposed direct matrix inversion for fast non-cartesian SENSE reconstructions.

    PubMed

    Qian, Yongxian; Zhang, Zhenghui; Wang, Yi; Boada, Fernando E

    2006-08-01

    A new k-space direct matrix inversion (DMI) method is proposed here to accelerate non-Cartesian SENSE reconstructions. In this method a global k-space matrix equation is established on basic MRI principles, and the inverse of the global encoding matrix is found from a set of local matrix equations by taking advantage of the small extension of k-space coil maps. The DMI algorithm's efficiency is achieved by reloading the precalculated global inverse when the coil maps and trajectories remain unchanged, such as in dynamic studies. Phantom and human subject experiments were performed on a 1.5T scanner with a standard four-channel phased-array cardiac coil. Interleaved spiral trajectories were used to collect fully sampled and undersampled 3D raw data. The equivalence of the global k-space matrix equation to its image-space version, was verified via conjugate gradient (CG) iterative algorithms on a 2x undersampled phantom and numerical-model data sets. When applied to the 2x undersampled phantom and human-subject raw data, the decomposed DMI method produced images with small errors (< or = 3.9%) relative to the reference images obtained from the fully-sampled data, at a rate of 2 s per slice (excluding 4 min for precalculating the global inverse at an image size of 256 x 256). The DMI method may be useful for noise evaluations in parallel coil designs, dynamic MRI, and 3D sodium MRI with fixed coils and trajectories. Copyright 2006 Wiley-Liss, Inc.

  20. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less

Top