Sample records for equivalent potential temperature

  1. Wind shear and wet and dry thermodynamic indices as predictors of thunderstorm motion and severity and application to the AVE 4 experimental data

    NASA Technical Reports Server (NTRS)

    Connell, J. R.; Ey, L.

    1977-01-01

    Two types of parameters are computed and mapped for use in assessing their individual merits as predictors of occurrence and severity of thunderstorms. The first group is comprised of equivalent potential temperature, potential temperature, water vapor mixing ratio, and wind speed. Equivalent potential temperature maxima and strong gradients of equivalent potential temperature at the surface correlate well with regions of thunderstorm activity. The second type, comprised of the energy index, shear index, and energy shear index, incorporates some model dynamics of thunderstorms, including nonthermodynamic forcing. The energy shear index is found to improve prediction of tornadic and high-wind situations slightly better than other indices. It is concluded that further development and refinement of nonthermodynamic aspects of predictive indices are definitely warranted.

  2. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon.

    PubMed

    Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried

    2013-12-01

    There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the interactive effects between equivalent temperature and air pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that interactive effects exist between air pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including interaction terms showed an increased risk of mortality during periods of elevated equivalent temperatures and air pollution. Cold effects were mostly unaffected by air pollution. The study underscores the importance of air pollution control in mitigating heat effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range

    DTIC Science & Technology

    2016-05-12

    and Groundwater Temperature ............................. 102 6.1.2 Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP...22 or equivalent). Parameters, including temperature , conductivity, dissolved oxygen , oxidation-reduction potential (ORP), turbidity, and pH were...3% for temperature and specific conductivity, and ᝺% for dissolved oxygen , ORP, and turbidity. When parameters were stable according to the above

  4. Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures

    NASA Technical Reports Server (NTRS)

    Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.

  5. An equivalent potential vorticity theory applied to the analysis and prediction of severe storm dynamics

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Kaplan, M. L.

    1976-01-01

    Potential vorticity theory is developed in a description of an equivalent potential temperature topography, and a new theory suited to the description of scale interaction is elaborated. Macroscale triggering of ageostrophic flow fields at the mesoscale, in turn leading to release of convective instability along narrow zones at the microscale, is examined. Correlation of appreciable decrease in potential vorticity with such phenomena as cumulonimbi, tornados, and duststorms is examined. The relevance of a multiscale energy-momentum cascade in numerical prediction of severe mesoscale and microscale phenomena from radiosonde data is reviewed. Hypotheses for mesoscale dynamics are constructed.

  6. Thermal fluctuation within nests and predicted sex ratio of Morelet's Crocodile.

    PubMed

    Escobedo-Galván, Armando H; López-Luna, Marco A; Cupul-Magaña, Fabio G

    2016-05-01

    Understanding the interplay between thermal variations and sex ratio in reptiles with temperature-dependent sex determination is the first step for developing long-term conservation strategies. In case of crocodilians, the information is fragmentary and insufficient for establishing a general framework to consider how thermal fluctuation influence sex determination under natural conditions. The main goal of this study was to analyze thermal variation in nests of Crocodylus moreletii and to discuss the potential implications for predicting offspring sex ratio. The study was carried out at the Centro de Estudios Tecnológicos del Mar N° 2 and at the Sistemas Productivos Cocodrilo, Campeche, Mexico. Data was collected in the nesting season of Morelet's Crocodiles during three consecutive seasons (2007-2009). Thermal fluctuations for multiple areas of the nest chamber were registered by data loggers. We calculate the constant temperature equivalent based on thermal profiles among nests to assess whether there are differences between the nest temperature and its equivalent to constant temperature. We observed that mean nest temperature was only different among nests, while daily thermal fluctuations vary depending on the depth position within the nest chamber, years and nests. The constant temperature equivalent was different among and within nests, but not among survey years. We observed differences between constant temperature equivalent and mean nest temperature both at the top and in the middle of the nest cavities, but were not significantly different at the bottom of nest cavities. Our results enable examine and discuss the relevance of daily thermal fluctuations to predict sex ratio of the Morelet's Crocodile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mesoscale surface equivalent temperature (T E) for East Central USA

    NASA Astrophysics Data System (ADS)

    Younger, Keri; Mahmood, Rezaul; Goodrich, Gregory; Pielke, Roger A.; Durkee, Joshua

    2018-04-01

    The purpose of this research is to investigate near surface mesoscale equivalent temperatures (T E) in Kentucky (located in east central USA) and potential land cover influences. T E is a measure of the moist enthalpy composed of the dry bulb temperature, T, and absolute humidity. Kentucky presents a unique opportunity to perform a study of this kind because of the observational infrastructure provided by the Kentucky Mesonet (www.kymesonet.org). This network maintains 69 research-grade, in-situ weather and climate observing stations across the Commonwealth. Equivalent temperatures were calculated utilizing high-quality observations from 33 of these stations. In addition, the Kentucky Mesonet offers higher spatial and temporal resolution than previous research on this topic. As expected, the differences (T E - T) were greatest in the summer (smallest in the winter), with an average of 35 °C (5 °C). In general, the differences were found to be the largest in the western climate division. This is attributed to agricultural land use and poorly drained land. These differences are smaller during periods of drought, signifying less influence of moisture.

  8. Inventory of File sref_nmm.t03z.pgrb221.p1.f00.grib2

    Science.gov Websites

    ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated day acc f Convective Precipitation [kg/m^2] 018 surface WEASD 0-0 day acc f Water Equivalent of Potential Temperature [K] 403 surface NCPCP 0-0 day acc f Large-Scale Precipitation (non-convective) [kg/m^2

  9. Inventory of File sref_nmb.t03z.pgrb221.p1.f00.grib2

    Science.gov Websites

    ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated day acc f Convective Precipitation [kg/m^2] 018 surface WEASD 0-0 day acc f Water Equivalent of Potential Temperature [K] 403 surface NCPCP 0-0 day acc f Large-Scale Precipitation (non-convective) [kg/m^2

  10. The Sensitivity of the Midlatitude Moist Isentropic Circulation on Both Sides of the Climate Model Hierarchy

    NASA Astrophysics Data System (ADS)

    Fajber, R. A.; Kushner, P. J.; Laliberte, F. B.

    2017-12-01

    In the midlatitude atmosphere, baroclinic eddies are able to raise warm, moist air from the surface into the midtroposphere where it condenses and warms the atmosphere through latent heating. This coupling between dynamics and moist thermodynamics motivates using a conserved moist thermodynamic variable, such as the equivalent potential temperature, to study the midlatitude circulation and associated heat transport since it implicitly accounts for latent heating. When the equivalent potential temperature is used to zonally average the circulation, the moist isentropic circulation takes the form of a single cell in each hemisphere. By utilising the statistical transformed Eulerian mean (STEM) circulation we are able to parametrize the moist isentropic circulation in terms of second order dynamic and moist thermodynamic statistics. The functional dependence of the STEM allows us to analytically calculate functional derivatives that reveal the spatially varying sensitivity of the moist isentropic circulation to perturbations in different statistics. Using the STEM functional derivatives as sensitivity kernels we interpret changes in the moist isentropic circulation from two experiments: surface heating in an idealised moist model, and a climate change scenario in a comprehensive atmospheric general circulation model. In both cases we find that the changes in the moist isentropic circulation are well predicted by the functional sensitivities, and that the total heat transport is more sensitive to changes in dynamical processes driving local changes in poleward heat transport than it is to thermodynamic and/or radiative processes driving changes to the distribution of equivalent potential temperature.

  11. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less

  12. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  13. On the Detectability of Oxygen X-Ray Fluorescence and Its Use as a Solar Photospheric Abundance Diagnostic

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Ercolano, Barbara

    2008-08-01

    Monte Carlo calculations of the O Kα line fluoresced by coronal X-rays and emitted just above the temperature minimum region of the solar atmosphere have been employed to investigate the use of this feature as an abundance diagnostic. While they are quite weak, we estimate line equivalent widths in the range 0.02-0.2 Å, depending on the X-ray plasma temperature. The line remains essentially uncontaminated by blends for coronal temperatures T <= 3 × 106 K and should be quite observable, with a flux gtrsim2 photons s-1 arcmin-2. Model calculations for solar chemical mixtures with an O abundance adjusted up and down by a factor of 2 indicate 35%-60% changes in O Kα line equivalent width, providing a potentially useful O abundance diagnostic. Sensitivity of equivalent width to differences between recently recommended chemical compositions with "high" and "low" complements of the CNO trio important for interpreting helioseismological observations is less acute, amounting to 20%-26% at coronal temperatures T <= 2 × 106 K. While still feasible for discriminating between these two mixtures, uncertainties in measured line equivalent widths and in the models used for interpretation would need to be significantly less than 20%. Provided a sensitive X-ray spectrometer with resolving power >=1000 and suitably well-behaved instrumental profile can be built, X-ray fluorescence presents a viable means for resolving the solar "oxygen crisis."

  14. Kalman Filter Chemical Data Assimilation: A Case Study in January 1992

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Khattatov, B.; Atlas, Robert; Mussa, H.

    2002-01-01

    This paper describes a Kalman filter chemical data assimilation system and its use for analysing a vertical atmospheric profile during January 1992. The vertical profile was at an equivalent PV latitude (phi(sub e)) of 55 deg S and consisted of 21 potential temperature (theta) levels spaced equally in log(theta) between 400 K and 2000 K. This equivalent latitude was chosen as it was well observed during January 1992 by instruments on board the Upper Atmosphere Research Satellite (UARS).

  15. Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Chandra, Sagarika; Srivastava, Nishi; Kumar, Manoj

    2018-04-01

    Thermodynamic structure and variability in the atmospheric boundary layer have been investigated with the help of balloon-borne GPS radiosonde over a monsoon trough station Ranchi (Lat. 23°45'N, Long. 85°43'E, India) during the summer monsoon season (June-September) for a period of 2011-2013. Virtual potential temperature gradient method is used for the determination of mixed layer height (MLH). The MLH has been found to vary in the range of 1000-1300 m during the onset, 600-900 m during the active and 1400-1750 m during the break phase of monsoon over this region. Inter-annual variations noticed in MLH could be associated with inter-annual variability in convection and rainfall prevailing over the region. Along with the MLH, the cloud layer heights are also derived from the thermodynamic profiles for the onset, active and break phases of monsoon. Cloud layer height varied a lot during different phases of the monsoon. For the determination of boundary-layer convection, thermodynamic parameter difference (δθ = θ es- θ e) between saturated equivalent potential temperature (θ es ) and equivalent potential temperature (θ e) is used. It is a good indicator of convection and indicates the intense and suppressed convection during different phases of monsoon.

  16. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  17. Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4.

    PubMed

    Shibasaki, Koji; Suzuki, Makoto; Mizuno, Atsuko; Tominaga, Makoto

    2007-02-14

    Physiological body temperature is an important determinant for neural functions, and it is well established that changes in temperature have dynamic influences on hippocampal neural activities. However, the detailed molecular mechanisms have never been clarified. Here, we show that hippocampal neurons express functional transient receptor potential vanilloid 4 (TRPV4), one of the thermosensitive TRP (transient receptor potential) channels, and that TRPV4 is constitutively active at physiological temperature. Activation of TRPV4 at 37 degrees C depolarized the resting membrane potential in hippocampal neurons by allowing cation influx, which was observed in wild-type (WT) neurons, but not in TRPV4-deficient (TRPV4KO) cells, although dendritic morphology, synaptic marker clustering, and synaptic currents were indistinguishable between the two genotypes. Furthermore, current injection studies revealed that TRPV4KO neurons required larger depolarization to evoke firing, equivalent to WT neurons, indicating that TRPV4 is a key regulator for hippocampal neural excitabilities. We conclude that TRPV4 is activated by physiological temperature in hippocampal neurons and thereby controls their excitability.

  18. Dynamics of DNA breathing: weak noise analysis, finite time singularity, and mapping onto the quantum Coulomb problem.

    PubMed

    Fogedby, Hans C; Metzler, Ralf

    2007-12-01

    We study the dynamics of denaturation bubbles in double-stranded DNA on the basis of the Poland-Scheraga model. We show that long time distributions for the survival of DNA bubbles and the size autocorrelation function can be derived from an asymptotic weak noise approach. In particular, below the melting temperature the bubble closure corresponds to a noisy finite time singularity. We demonstrate that the associated Fokker-Planck equation is equivalent to a quantum Coulomb problem. Below the melting temperature, the bubble lifetime is associated with the continuum of scattering states of the repulsive Coulomb potential; at the melting temperature, the Coulomb potential vanishes and the underlying first exit dynamics exhibits a long time power law tail; above the melting temperature, corresponding to an attractive Coulomb potential, the long time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed.

  19. The variability of atmospheric equivalent temperature for radar altimeter range correction

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Mock, Donald

    1990-01-01

    Two sets of data were used to test the validity of the presently used approximation for radar altimeter range correction due to atmospheric water vapor. The approximation includes an assumption of constant atmospheric equivalent temperature. The first data set includes monthly, three-dimensional, gridded temperature and humidity fields over global oceans for a 10-year period, and the second is comprised of daily or semidaily rawinsonde data at 17 island stations for a 7-year period. It is found that the standard method underestimates the variability of the equivalent temperature, and the approximation could introduce errors of 2 cm for monthly means. The equivalent temperature is found to have a strong meridional gradient, and the highest temporal variabilities are found over western boundary currents. The study affirms that the atmospheric water vapor is a good predictor for both the equivalent temperature and the range correction. A relation is proposed to reduce the error.

  20. Comparison of physically- and economically-based CO2-equivalences for methane

    NASA Astrophysics Data System (ADS)

    Boucher, O.

    2012-05-01

    There is a controversy on the role methane (and other short-lived species) should play in climate mitigation policies, and there is no consensus on what an optimal methane CO2-equivalence should be. We revisit this question by discussing some aspects of physically-based (i.e. global- warming potential or GWP and global temperature change potential or GTP) and socio-economically-based climate metrics. To this effect we use a simplified global damage potential (GDP) that was introduced by earlier authors and investigate the uncertainties in the methane CO2-equivalence that arise from physical and socio-economic factors. The median value of the methane GDP comes out very close to the widely used methane 100-yr GWP because of various compensating effects. However, there is a large spread in possible methane CO2-equivalences from this metric (1-99% interval: 10.0-42.5; 5-95% interval: 12.5-38.0) that is essentially due to the choice in some socio-economic parameters (i.e. the damage cost function and the discount rate). The main factor differentiating the methane 100-yr GTP from the methane 100-yr GWP and the GDP is the fact that the former metric is an end-point metric, whereas the latter are cumulative metrics. There is some rationale for an increase in the methane CO2-equivalence in the future as global warming unfolds, as implied by a convex damage function in the case of the GDP metric. We also show that a methane CO2-equivalence based on a pulse emission is sufficient to inform multi-year climate policies and emissions reductions, as long as there is enough visibility on CO2 prices and CO2-equivalences for the stakeholders.

  1. Comparison of physically- and economically-based CO2-equivalences for methane

    NASA Astrophysics Data System (ADS)

    Boucher, O.

    2012-01-01

    There is a controversy on the role methane (and other short-lived species) should play in climate mitigation policies and no consensus on what an optimal methane CO2-equivalence should be. We revisit this question by discussing the relative merits of physically-based (i.e. Global Warming Potential or GWP and Global Temperature change Potential or GTP) and socio-economically-based climate metrics. To this effect we use a simplified Global Damage Potential (GDP) that was introduced by earlier authors and investigate the uncertainties in the methane CO2-equivalence that arise from physical and socio-economic factors. The median value of the methane GDP comes out very close to the widely used methane 100-year GWP because of various compensating effects. However there is a large spread in possible methane CO2-equivalences (1-99% interval: 10.0-42.5; 5-95% interval: 12.5-38.0) that is essentially due to the choice in some socio-economic parameters (i.e. the damage cost function and the discount rate). The methane 100-year GTP falls outside these ranges. It is legitimate to increase the methane CO2-equivalence in the future as global warming unfolds. While changes in biogeochemical cycles and radiative efficiencies cause some small changes to physically-based metrics, a systematic increase in the methane CO2-equivalence can only be achieved by some ad-hoc shortening of the time horizon. In contrast using a convex damage cost function provides a natural increase in the methane CO2-equivalence for the socio-economically-based metrics. We also show that a methane CO2-equivalence based on a pulse emission is sufficient to inform multi-year climate policies and emissions reductions as long as there is some degree of visibility on CO2 prices and CO2-equivalences.

  2. Polar Vortex Dynamics During Spring and Fall Diagnosed Using ATMOS Trace Gas Observation

    NASA Technical Reports Server (NTRS)

    Manney, G.; Michelsen, H.; Santee, M.; Gunson, M.; Irion, F.; Roche, A.; Livesey, N.

    1999-01-01

    Trace gases measured by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during the Mar/Apr 1992(AT-1), Apr 1993(AT-2), and Nov 1994(AT-3) space-shuttle missions have been mapped into equivalent latitude/potential temperature (EqL/0) coordinates.

  3. The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Shorttle, O.; Maclennan, J.

    2016-11-01

    New crystallization temperatures for four eruptions from the Northern Volcanic Zone of Iceland are determined using olivine-spinel aluminum exchange thermometry. Differences in the olivine crystallization temperatures between these eruptions are consistent with variable extents of cooling during fractional crystallization. However, the crystallization temperatures for Iceland are systematically offset to higher temperatures than equivalent olivine-spinel aluminum exchange crystallization temperatures published for MORB, an effect that cannot be explained by fractional crystallization. The highest observed crystallization temperature in Iceland is 1399 ± 20°C. In order to convert crystallization temperatures to mantle potential temperature, we developed a model of multilithology mantle melting that tracks the thermal evolution of the mantle during isentropic decompression melting. With this model, we explore the controls on the temperature at which primary melts begin to crystallize, as a function of source composition and the depth from which the magmas are derived. Large differences (200°C) in crystallization temperature can be generated by variations in mantle lithology, a magma's inferred depth of origin, and its thermal history. Combining this model with independent constraints on the magma volume flux and the effect of lithological heterogeneity on melt production, restricted regions of potential temperature-lithology space can be identified as consistent with the observed crystallization temperatures. Mantle potential temperature is constrained to be 1480-30+37 °C for Iceland and 1318-32+44 °C for MORB.

  4. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar

    PubMed Central

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487

  5. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar.

    PubMed

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.

  6. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    USGS Publications Warehouse

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  7. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... condensing at a minimum temperature of 161 °F. for at least 15 seconds or its equivalent in bacterial.... for 15 seconds or its equivalent in bacterial destruction. (2) All buttermilk to be used in the... temperature of 161 °F for 15 seconds or its equivalent in bacterial destruction. (b) Heat treatment—(1) High...

  8. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Sreenath; Biruduganti, Muni; Bihari, Bipin

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  9. Scanning system, infrared noise equivalent temperature difference: Measurement procedure

    NASA Technical Reports Server (NTRS)

    Cannon, J. B., Jr.

    1975-01-01

    A procedure is described for determining the noise equivalent difference temperature for infrared electro-optical instruments. The instrumentation required, proper measurements, and methods of calculation are included.

  10. Gaussian free field in the background of correlated random clusters, formed by metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheraghalizadeh, Jafar; Najafi, Morteza N.; Mohammadzadeh, Hossein

    2018-05-01

    The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T - T c . The fractal dimension of iso-potential lines ( D f ), the exponent of the distribution function of the gyration radius ( τ r ), and the loop lengths ( τ l ), and also the exponent of the loop Green function x l change in terms of T - T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f ( T) - D f ( T c ) 1/√ ξ( T), in which ξ( T) is the spin correlation length in the Ising model.

  11. Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.

    PubMed

    Dragoman, Daniela; Dragoman, Mircea

    2015-12-04

    We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.

  12. Isentropic Analysis of Convective Motions

    NASA Technical Reports Server (NTRS)

    Pauluis, Olivier M.; Mrowiec, Agnieszka A.

    2013-01-01

    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.

  13. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of themore » cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.« less

  14. A new method of estimating thermal performance of embryonic development rate yields accurate prediction of embryonic age in wild reptile nests.

    PubMed

    Rollinson, Njal; Holt, Sarah M; Massey, Melanie D; Holt, Richard C; Nancekivell, E Graham; Brooks, Ronald J

    2018-05-01

    Temperature has a strong effect on ectotherm development rate. It is therefore possible to construct predictive models of development that rely solely on temperature, which have applications in a range of biological fields. Here, we leverage a reference series of development stages for embryos of the turtle Chelydra serpentina, which was described at a constant temperature of 20 °C. The reference series acts to map each distinct developmental stage onto embryonic age (in days) at 20 °C. By extension, an embryo taken from any given incubation environment, once staged, can be assigned an equivalent age at 20 °C. We call this concept "Equivalent Development", as it maps the development stage of an embryo incubated at a given temperature to its equivalent age at a reference temperature. In the laboratory, we used the concept of Equivalent Development to estimate development rate of embryos of C. serpentina across a series of constant temperatures. Using these estimates of development rate, we created a thermal performance curve measured in units of Equivalent Development (TPC ED ). We then used the TPC ED to predict developmental stage of embryos in several natural turtle nests across six years. We found that 85% of the variation of development stage in natural nests could be explained. Further, we compared the predictive accuracy of the model based on the TPC ED to the predictive accuracy of a degree-day model, where development is assumed to be linearly related to temperature and the amount of accumulated heat is summed over time. Information theory suggested that the model based on the TPC ED better describes variation in developmental stage in wild nests than the degree-day model. We suggest the concept of Equivalent Development has several strengths and can be broadly applied. In particular, studies on temperature-dependent sex determination may be facilitated by the concept of Equivalent Development, as development age maps directly onto the developmental series of the organism, allowing critical periods of sex determination to be delineated without invasive sampling, even under fluctuating temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Revised Thomas-Fermi approximation for singular potentials

    NASA Astrophysics Data System (ADS)

    Dufty, James W.; Trickey, S. B.

    2016-08-01

    Approximations for the many-fermion free-energy density functional that include the Thomas-Fermi (TF) form for the noninteracting part lead to singular densities for singular external potentials (e.g., attractive Coulomb). This limitation of the TF approximation is addressed here by a formal map of the exact Euler equation for the density onto an equivalent TF form characterized by a modified Kohn-Sham potential. It is shown to be a "regularized" version of the Kohn-Sham potential, tempered by convolution with a finite-temperature response function. The resulting density is nonsingular, with the equilibrium properties obtained from the total free-energy functional evaluated at this density. This new representation is formally exact. Approximate expressions for the regularized potential are given to leading order in a nonlocality parameter, and the limiting behavior at high and low temperatures is described. The noninteracting part of the free energy in this approximation is the usual Thomas-Fermi functional. These results generalize and extend to finite temperatures the ground-state regularization by R. G. Parr and S. Ghosh [Proc. Natl. Acad. Sci. U.S.A. 83, 3577 (1986), 10.1073/pnas.83.11.3577] and by L. R. Pratt, G. G. Hoffman, and R. A. Harris [J. Chem. Phys. 88, 1818 (1988), 10.1063/1.454105] and formally systematize the finite-temperature regularization given by the latter authors.

  16. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  17. Identification of structural motifs as tunneling two-level systems in amorphous alumina at low temperatures

    NASA Astrophysics Data System (ADS)

    Paz, Alejandro Pérez; Lebedeva, Irina V.; Tokatly, Ilya V.; Rubio, Angel

    2014-12-01

    One of the most accepted models that describe the anomalous thermal behavior of amorphous materials at temperatures below 1 K relies on the quantum mechanical tunneling of atoms between two nearly equivalent potential energy wells forming a two-level system (TLS). Indirect evidence for TLSs is widely available. However, the atomistic structure of these TLSs remains an unsolved topic in the physics of amorphous materials. Here, using classical molecular dynamics, we found several hitherto unknown bistable structural motifs that may be key to understanding the anomalous thermal properties of amorphous alumina at low temperatures. We show through free energy profiles that the complex potential energy surface can be reduced to canonical TLSs. The tunnel splitting predicted from instanton theory, the number density, dipole moment, and coupling to external strain of the discovered motifs are consistent with experiments.

  18. Premixed Supersonic Combustion (Rev)

    DTIC Science & Technology

    2015-02-20

    the effects of equivalence ratio and inflow gas temperature on flame ignition, propagation, and flameout. This study was performed in collaboration...6 combustor. CFD analysis indicates this feature promotes flame holding in the combustor. The cavity spans the width of the duct and has an...Fig. 1). Figure 2 shows results from a RANS CFD study of several potential strategies based on fuel injection at the upstream end of the isolator

  19. An evaluation of various forms of VAS retrievals in the analysis of a preconvective environment

    NASA Technical Reports Server (NTRS)

    Petersen, R. A.; Keyser, D. A.

    1987-01-01

    VISSR Atmospheric Sounder (VAS) radiance data obtained over the continental United States on July 20, 1981 are used to evaluate a variety of VAS retrieval procedures and parameters in the qualitative analysis and forecasting of severe weather events. The particular case analyzed contains two significantly different mesoscale convective events in the central plains. Retrievals of temperature, dewpoint temperature, equivalent potential temperature, total column precipitable water, and lifted index are shown to be physically consistent in space and time and to compare well with available radiosonde data. The analysis of the VAS retrievals identified significant spatial gradients and temporal changes in the thermal and moisture fields, including times and locations between radiosonde observations.

  20. An innovative HVAC control system: Implementation and testing in a vehicular cabin.

    PubMed

    Fojtlín, Miloš; Fišer, Jan; Pokorný, Jan; Povalač, Aleš; Urbanec, Tomáš; Jícha, Miroslav

    2017-12-01

    Personal vehicles undergo rapid development in every imaginable way. However, a concept of managing a cabin thermal environment remains unchanged for decades. The only major improvement has been an automatic HVAC controller with one user's input - temperature. In this case, the temperature is often deceiving because of thermally asymmetric and dynamic nature of the cabins. As a result, the effects of convection and radiation on passengers are not captured in detail what also reduces the potential to meet thermal comfort expectations. Advanced methodologies are available to assess the cabin environment in a fine resolution (e.g. ISO 14505:2006), but these are used mostly in laboratory conditions. The novel idea of this work is to integrate equivalent temperature sensors into a vehicular cabin in proximity of an occupant. Spatial distribution of the sensors is expected to provide detailed information about the local environment that can be used for personalised, comfort driven HVAC control. The focus of the work is to compare results given by the implemented system and a Newton type thermal manikin. Three different ambient settings were examined in a climate chamber. Finally, the results were compared and a good match of equivalent temperatures was found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. H2O absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems.

    PubMed

    Torek, Paul V; Hall, David L; Miller, Tiffany A; Wooldridge, Margaret S

    2002-04-20

    Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.

  2. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Ping; Yang, Shing-Ru; Chen, Yung-Chang; Matzarakis, Andreas

    2018-02-01

    Physiologically equivalent temperature (PET) is a thermal index that is widely used in the field of human biometeorology and urban bioclimate. However, it has several limitations, including its poor ability to predict thermo-physiological parameters and its weak response to both clothing insulation and humid conditions. A modified PET (mPET) was therefore developed to address these shortcomings. To determine whether the application of mPET in hot-humid regions is more appropriate than the PET, an analysis of a thermal comfort survey database, containing 2071 questionnaires collected from participants in hot-humid Taiwan, was conducted. The results indicate that the thermal comfort range is similar (26-30 °C) when the mPET and PET are applied as thermal indices to the database. The sensitivity test for vapor pressure and clothing insulation also show that the mPET responds well to the behavior and perceptions of local people in a subtropical climate.

  3. Electrophysiological changes correlated with temperature increases induced by high-intensity focused ultrasound ablation.

    PubMed

    Wu, Ziqi; Kumon, Ronald E; Laughner, Jacob I; Efimov, Igor R; Deng, Cheri X

    2015-02-01

    To gain better understanding of the detailed mechanisms of high-intensity focused ultrasound (HIFU) ablation for cardiac arrhythmias, we investigated how the cellular electrophysiological (EP) changes were correlated with temperature increases and thermal dose (cumulative equivalent minutes [CEM43]) during HIFU application using Langendorff-perfused rabbit hearts. Employing voltage-sensitive dye di-4-ANEPPS, we measured the EP and temperature during HIFU using simultaneous optical mapping and infrared imaging. Both action potential amplitude (APA) and action potential duration at 50% repolarization (APD50) decreased with temperature increases, and APD50 was more thermally sensitive than APA. EP and tissue changes were irreversible when HIFU-induced temperature increased above 52.3 ± 1.4°C and log10(CEM43) above 2.16 ± 0.51 (n = 5), but were reversible when temperature was below 50.1 ± 0.8°C and log10(CEM43) below -0.9 ± 0.3 (n = 9). EP and temperature/thermal dose changes were spatially correlated with HIFU-induced tissue necrosis surrounded by a transition zone. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Platinum-free catalysts for low temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Lastovina, Tatiana; Pimonova, Julia; Budnyk, Andriy

    2017-04-01

    In this work, we have successfully prepared Zn/Co-N/C and Zn/Co-Fe/N/C composites, both derived from single zeolitic imidazolate framework (ZIF) precursor Zn/Co-ZIF containing equivalent quantities of Zn and Co metal sites. The composites were formed by pyrolysis of the precursor at 700 °C in inert gas atmosphere as such and after mixing it with Fe(II) salt and 1,10-phenontraline in ethanol. Catalytic tests for oxygen reduction reaction (ORR) in electrochemical cell demonstrated promising results allowing us to consider these composites as potential Pt-free catalysts for low temperature fuel cells.

  5. Effect of temperature oscillation on thermal characteristics of an aluminum thin film

    NASA Astrophysics Data System (ADS)

    Ali, H.; Yilbas, B. S.

    2014-12-01

    Energy transport in aluminum thin film is examined due to temperature disturbance at the film edge. Thermal separation of electron and lattice systems is considered in the analysis, and temperature variation in each sub-system is formulated. The transient analysis of frequency-dependent and frequency-independent phonon radiative transport incorporating electron-phonon coupling is carried out in the thin film. The dispersion relations of aluminum are used in the frequency-dependent analysis. Temperature at one edge of the film is oscillated at various frequencies, and temporal response of phonon intensity distribution in the film is predicted numerically using the discrete ordinate method. To assess the phonon transport characteristics, equivalent equilibrium temperature is introduced. It is found that equivalent equilibrium temperature in the electron and lattice sub-systems oscillates due to temperature oscillation at the film edge. The amplitude of temperature oscillation reduces as the distance along the film thickness increases toward the low-temperature edge of the film. Equivalent equilibrium temperature attains lower values for the frequency-dependent solution of the phonon transport equation than that corresponding to frequency-independent solution.

  6. Nonaqueous Electrical Storage Device

    DOEpatents

    McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.

    1999-10-26

    An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

  7. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries.

    PubMed

    Ye, Hualin; Ma, Lu; Zhou, Yu; Wang, Lu; Han, Na; Zhao, Feipeng; Deng, Jun; Wu, Tianpin; Li, Yanguang; Lu, Jun

    2017-12-12

    Many problems associated with Li-S and Na-S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS 3 as such a material for room-temperature Li-S and Na-S batteries. In Li-S batteries, MoS 3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS 3 can also be used as the cathode material of even more challenging Na-S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS 3 It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.

  8. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries

    PubMed Central

    Ye, Hualin; Ma, Lu; Zhou, Yu; Wang, Lu; Han, Na; Zhao, Feipeng; Deng, Jun; Wu, Tianpin; Li, Yanguang; Lu, Jun

    2017-01-01

    Many problems associated with Li–S and Na–S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS3 as such a material for room-temperature Li–S and Na–S batteries. In Li–S batteries, MoS3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS3 can also be used as the cathode material of even more challenging Na–S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS3. It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates. PMID:29180431

  9. Tropical continental downdraft characteristics: mesoscale systems versus unorganized convection

    NASA Astrophysics Data System (ADS)

    Schiro, Kathleen A.; Neelin, J. David

    2018-02-01

    Downdrafts and cold pool characteristics for strong mesoscale convective systems (MCSs) and isolated, unorganized deep precipitating convection are analyzed using multi-instrument data from the DOE Atmospheric Radiation Measurement (ARM) GoAmazon2014/5 campaign. Increases in column water vapor (CWV) are observed leading convection, with higher CWV preceding MCSs than for isolated cells. For both MCSs and isolated cells, increases in wind speed, decreases in surface moisture and temperature, and increases in relative humidity occur coincidentally with system passages. Composites of vertical velocity data and radar reflectivity from a radar wind profiler show that the downdrafts associated with the sharpest decreases in surface equivalent potential temperature (θe) have a probability of occurrence that increases with decreasing height below the freezing level. Both MCSs and unorganized convection show similar mean downdraft magnitudes and probabilities with height. Mixing computations suggest that, on average, air originating at heights greater than 3 km must undergo substantial mixing, particularly in the case of isolated cells, to match the observed cold pool θe, implying a low typical origin level. Precipitation conditionally averaged on decreases in surface equivalent potential temperature (Δθe) exhibits a strong relationship because the most negative Δθe values are associated with a high probability of precipitation. The more physically motivated conditional average of Δθe on precipitation shows that decreases in θe level off with increasing precipitation rate, bounded by the maximum difference between surface θe and its minimum in the profile aloft. Robustness of these statistics observed across scales and regions suggests their potential use as model diagnostic tools for the improvement of downdraft parameterizations in climate models.

  10. Research on the time-temperature-damage superposition principle of NEPE propellant

    NASA Astrophysics Data System (ADS)

    Han, Long; Chen, Xiong; Xu, Jin-sheng; Zhou, Chang-sheng; Yu, Jia-quan

    2015-11-01

    To describe the relaxation behavior of NEPE (Nitrate Ester Plasticized Polyether) propellant, we analyzed the equivalent relationships between time, temperature, and damage. We conducted a series of uniaxial tensile tests and employed a cumulative damage model to calculate the damage values for relaxation tests at different strain levels. The damage evolution curve of the tensile test at 100 mm/min was obtained through numerical analysis. Relaxation tests were conducted over a range of temperature and strain levels, and the equivalent relationship between time, temperature, and damage was deduced based on free volume theory. The equivalent relationship was then used to generate predictions of the long-term relaxation behavior of the NEPE propellant. Subsequently, the equivalent relationship between time and damage was introduced into the linear viscoelastic model to establish a nonlinear model which is capable of describing the mechanical behavior of composite propellants under a uniaxial tensile load. The comparison between model prediction and experimental data shows that the presented model provides a reliable forecast of the mechanical behavior of propellants.

  11. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek; Yushin, Gleb

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  12. Hawking radiation, Unruh radiation, and the equivalence principle.

    PubMed

    Singleton, Douglas; Wilburn, Steve

    2011-08-19

    We compare the response function of an Unruh-DeWitt detector for different space-times and different vacua and show that there is a detailed violation of the equivalence principle. In particular comparing the response of an accelerating detector to a detector at rest in a Schwarzschild space-time we find that both detectors register thermal radiation, but for a given, equivalent acceleration the fixed detector in the Schwarzschild space-time measures a higher temperature. This allows one to locally distinguish the two cases. As one approaches the horizon the two temperatures have the same limit so that the equivalence principle is restored at the horizon. © 2011 American Physical Society

  13. Compositional and Mechanical Properties of Peanuts Roasted to Equivalent Colors using Different Time/Temperature Combinations

    USDA-ARS?s Scientific Manuscript database

    Peanuts in North America and Europe are primarily consumed after dry roasting. Standard industry practice is to roast peanuts to a specific surface color (Hunter L-value) for a given application; however, equivalent surface colors can be attained using different roast temperature/time combinations,...

  14. Demonstration of a Bias Tunable Quantum Dots-in-a-Well Focal Plane Array

    DTIC Science & Technology

    2009-01-01

    uniformity and mea- sured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original...first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature...infrared photodetectors ( QWIPs ) with various doping and impurities have produced FPAs capable of detection across much of the infrared spectrum from

  15. Night Vision Laboratory Static Performance Model for Thermal Viewing Systems

    DTIC Science & Technology

    1975-04-01

    Research and Development Technical Report f ECOM-� • i’.__1’=• =•NIGHT VISION LABORATORY STATIC PERFORMANCE MODEL 1 S1=• : FOR THERMAL VIEWING...resolvable temperature Infrared imaging Minimum detectable temperature1.Detection and recognition performance Night visi,-)n Noise equivalent temperature...modulation transfer function (MTF). The noise charactcristics are specified by the noise equivalent temper- ature difference (NE AT), The next sections

  16. The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.

    PubMed

    Hunjan, Jagtar Singh; Eu, Byung Chan

    2010-04-07

    The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.

  17. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8.more » Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)« less

  18. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan.

    PubMed

    Tsai, Cheng-Hui; Chen, Tien-Huang; Lin, Cheo; Shu, Pei-Yun; Su, Chien-Ling; Teng, Hwa-Jen

    2017-11-07

    We evaluated the impact of temperature and Wolbachia infection on vector competence of the local Aedes aegypti and Ae. albopictus populations of southern Taiwan in the laboratory. After oral infection with dengue serotype 1 virus (DENV-1), female mosquitoes were incubated at temperatures of 10, 16, 22, 28 and 34 °C. Subsequently, salivary gland, head, and thorax-abdomen samples were analyzed for their virus titer at 0, 5, 10, 15, 20, 25 and 30 days post-infection (dpi) by real-time RT-PCR. The results showed that Ae. aegypti survived significantly longer and that dengue viral genome levels in the thorax-abdomen (10 3.25 ± 0.53 -10 4.09 ± 0.71 PFU equivalents/ml) and salivary gland samples (10 2.67 ± 0.33 -10 3.89 ± 0.58 PFU equivalents/ml) were significantly higher at high temperature (28-34 °C). The survival of Ae. albopictus was significantly better at 16 or 28 °C, but the virus titers from thorax-abdomen (10 0.70 -10 2.39 ± 1.31 PFU equivalents/ml) and salivary gland samples (10 0.12 ± 0.05 -10 1.51 ± 0.31 PFU equivalents/ml) were significantly higher at 22-28 °C. Within viable temperature ranges, the viruses were detectable after 10 dpi in salivary glands and head tissues in Ae. aegypti and after 5-10 dpi in Ae. albopictus. Vector competence was measured in Ae. albopictus with and without Wolbachia at 28 °C. Wolbachia-infected mosquitoes survived significantly better and carried lower virus titers than Wolbachia-free mosquitoes. Wolbachia coinfections (92.8-97.2%) with wAlbA and wAlbB strains were commonly found in a wild population of Ae. albopictus. In southern Taiwan, Ae. aegypti is the main vector of dengue and Ae. albopictus has a non-significant role in the transmission of dengue virus due to the high prevalence of Wolbachia infection in the local mosquito population of southern Taiwan.

  19. Kinetic Energy of a Trapped Fermi Gas at Finite Temperature.

    PubMed

    Grela, Jacek; Majumdar, Satya N; Schehr, Grégory

    2017-09-29

    We study the statistics of the kinetic (or, equivalently, potential) energy for N noninteracting fermions in a 1d harmonic trap of frequency ω at finite temperature T. Remarkably, we find an exact solution for the full distribution of the kinetic energy, at any temperature T and for any N, using a nontrivial mapping to an integrable Calogero-Moser-Sutherland model. As a function of temperature T and for large N, we identify (i) a quantum regime, for T∼ℏω, where quantum fluctuations dominate and (ii) a thermal regime, for T∼Nℏω, governed by thermal fluctuations. We show how the mean and the variance as well as the large deviation function associated with the distribution of the kinetic energy cross over from the quantum to the thermal regime as T increases.

  20. Kinetic Energy of a Trapped Fermi Gas at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Grela, Jacek; Majumdar, Satya N.; Schehr, Grégory

    2017-09-01

    We study the statistics of the kinetic (or, equivalently, potential) energy for N noninteracting fermions in a 1 d harmonic trap of frequency ω at finite temperature T . Remarkably, we find an exact solution for the full distribution of the kinetic energy, at any temperature T and for any N , using a nontrivial mapping to an integrable Calogero-Moser-Sutherland model. As a function of temperature T and for large N , we identify (i) a quantum regime, for T ˜ℏω , where quantum fluctuations dominate and (ii) a thermal regime, for T ˜N ℏω , governed by thermal fluctuations. We show how the mean and the variance as well as the large deviation function associated with the distribution of the kinetic energy cross over from the quantum to the thermal regime as T increases.

  1. Modeling the effects of climate change-induced shifts in reproductive phenology on temperature-dependent traits.

    PubMed

    Telemeco, Rory S; Abbott, Karen C; Janzen, Fredric J

    2013-05-01

    By altering phenology, organisms have the potential to match life-history events with suitable environmental conditions. Because of this, phenological plasticity has been proposed as a mechanism whereby populations might buffer themselves from climate change. We examine the potential buffering power of advancing one aspect of phenology, nesting date, on sex ratio in painted turtles (Chrysemys picta), a species with temperature-dependent sex determination. We developed a modified constant temperature equivalent model that accounts for the effect of the interaction among climate change, oviposition date, and seasonal thermal pattern on temperature during sexual differentiation and thus on offspring sex ratio. Our results suggest that females will not be able to buffer their progeny from the negative consequences of climate change by adjusting nesting date alone. Not only are offspring sex ratios predicted to become 100% female, but our model suggests that many nests will fail. Because the seasonal thermal trends that we consider are experienced by most temperate species, our result that adjusting spring phenology alone will be insufficient to counter the effects of directional climate change may be broadly applicable.

  2. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  3. Implications of possible interpretations of "greenhouse gas balance" in the Paris Agreement

    NASA Astrophysics Data System (ADS)

    Millar, R.; Fuglestvedt, J. S.; Rogelj, J.; Allen, M. R.; Boucher, O.; Forster, P.; Kriegler, E.; Shindell, D. T.

    2017-12-01

    The main goal of the Paris Agreement as stated in its Article 2 is "Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels…". Article 4 points to this long-term goal and the need to "… achieve balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases …". The statement on "greenhouse gas balance" is subject to interpretation, and several clarifications are needed in order to make it operational for implementation in climate policies. Here we study possible interpretations from a scientific perspective and analyze their climatic implications. We clarify how the balance referred to in Article 4 of the Paris Agreement applies to anthropogenic sources and anthropogenic sinks and how the implications for individual gases depends strongly on the emission metrics used to relate them. We also show that the way in which balance is interpreted, achieved and maintained influences the anticipated temperature outcome over time. For example, achieving and maintaining net zero CO2-equivalent emissions calculated with the widely used metric Global Warming Potential with a horizon of 100 years (GWP100) - adopted for the implementation of the Kyoto Protocol and in UNFCCC reporting - would result in a peak and decline in global mean temperature. Adopting a different metric, like GWP* (Allen et al., 2016), would result in global mean temperatures remaining approximately constant once net zero CO2-equivalent emissions are achieved and maintained. Policymakers should be aware of these issues and choices and determine which approach is most appropriate in the context of the goals of the Paris Agreement.Reference:Allen, Fuglestvedt, Shine, Reisinger, Pierrehumbert, Forster: New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nature Climate Change (2016). doi:10.1038/nclimate2998

  4. Back to the future: using historical climate variation to project near-term shifts in habitat suitable for coast redwood.

    PubMed

    Fernández, Miguel; Hamilton, Healy H; Kueppers, Lara M

    2015-11-01

    Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs. © 2015 John Wiley & Sons Ltd.

  5. Shining a light on star formation driven outflows: the physical conditions within galactic outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John P.; Tremonti, Christina A.; Leitherer, Claus; Wofford, Aida; Chen, Yanmei

    2016-01-01

    Stellar feedback drives energy and momentum into the surrounding gas, which drives gas and metals out of galaxies through a galactic outflow. Unfortunately, galactic outflows are difficult to observe and characterize because they are extremely diffuse, and contain gas at many different temperatures. Here we present results from a sample of 37 nearby (z < 0.27) star forming galaxies observed in the ultraviolet with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The sample covers over three decades in stellar mass and star formation rate, probing different morphologies such as dwarf irregulars and high-mass merging systems. Using four different UV absorption lines (O I, Si II, Si III and Si IV) that trace a wide range of temperatures (ionization potentials between 13.6 eV and 45 eV), we find shallow correlations between the outflow velocity or the equivalent width of absorption lines with stellar mass or star formation rate. Absorption lines probing different temperature phases have similar centroid velocities and line widths, indicating that they are comoving. Using the equivalent width ratios of the four different transitions, we find the ratios to be consistent with photo-ionized outflows, with moderately strong ionization parameters. By constraining the ionization mechanism we model the ionization fractions for each transition, but find the ionization fractions depend crucially on input model parameters. The shallow velocity scalings imply that low-mass galaxies launch outflows capable of escaping their galactic potential, while higher mass galaxies retain all of their gas, unless they undergo a merger.

  6. Effects of oxide additions and temperature on sinterability of milled silicon nitride

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1980-01-01

    Specimens of milled alpha-Si3N4 with 0 to 5.07 equivalent percent of oxide additions were pressureless sintered at 1650 to 1820 C for 4 hours in nitrogen while covered with powdered Si3N4 + SiO2. Densities of less than or equal to 97.5 percent resulted with approximately 2.5 equivalent percent of MgO, CeO2, Y2O3, and three mixtures involving these oxides. Densities of greater than or equal to 94 percent were obtained with approximately 0.62 equivalent percent of the same additives. At most temperatures, best sinterability (density maxima) was obtained with 1.2 to 2.5 equivalent percent additive.

  7. Numerical Uncertainties in the Simulation of Reversible Isentropic Processes and Entropy Conservation.

    NASA Astrophysics Data System (ADS)

    Johnson, Donald R.; Lenzen, Allen J.; Zapotocny, Tom H.; Schaack, Todd K.

    2000-11-01

    A challenge common to weather, climate, and seasonal numerical prediction is the need to simulate accurately reversible isentropic processes in combination with appropriate determination of sources/sinks of energy and entropy. Ultimately, this task includes the distribution and transport of internal, gravitational, and kinetic energies, the energies of water substances in all forms, and the related thermodynamic processes of phase changes involved with clouds, including condensation, evaporation, and precipitation processes.All of the processes noted above involve the entropies of matter, radiation, and chemical substances, conservation during transport, and/or changes in entropies by physical processes internal to the atmosphere. With respect to the entropy of matter, a means to study a model's accuracy in simulating internal hydrologic processes is to determine its capability to simulate the appropriate conservation of potential and equivalent potential temperature as surrogates of dry and moist entropy under reversible adiabatic processes in which clouds form, evaporate, and precipitate. In this study, a statistical strategy utilizing the concept of `pure error' is set forth to assess the numerical accuracies of models to simulate reversible processes during 10-day integrations of the global circulation corresponding to the global residence time of water vapor. During the integrations, the sums of squared differences between equivalent potential temperature e numerically simulated by the governing equations of mass, energy, water vapor, and cloud water and a proxy equivalent potential temperature te numerically simulated as a conservative property are monitored. Inspection of the differences of e and te in time and space and the relative frequency distribution of the differences details bias and random errors that develop from nonlinear numerical inaccuracies in the advection and transport of potential temperature and water substances within the global atmosphere.A series of nine global simulations employing various versions of Community Climate Models CCM2 and CCM3-all Eulerian spectral numerics, all semi-Lagrangian numerics, mixed Eulerian spectral, and semi-Lagrangian numerics-and the University of Wisconsin-Madison (UW) isentropic-sigma gridpoint model provides an interesting comparison of numerical accuracies in the simulation of reversibility. By day 10, large bias and random differences were identified in the simulation of reversible processes in all of the models except for the UW isentropic-sigma model. The CCM2 and CCM3 simulations yielded systematic differences that varied zonally, vertically, and temporally. Within the comparison, the UW isentropic-sigma model was superior in transporting water vapor and cloud water/ice and in simulating reversibility involving the conservation of dry and moist entropy. The only relative frequency distribution of differences that appeared optimal, in that the distribution remained unbiased and equilibrated with minimal variance as it remained statistically stationary, was the distribution from the UW isentropic-sigma model. All other distributions revealed nonstationary characteristics with spreading and/or shifting of the maxima as the biases and variances of the numerical differences of e and te amplified.

  8. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    PubMed Central

    Carbajo, Aníbal E; Vera, Carolina; González, Paula LM

    2009-01-01

    Background Oligoryzomys longicaudatus (colilargo) is the rodent responsible for hantavirus pulmonary syndrome (HPS) in Argentine Patagonia. In past decades (1967–1998), trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent distribution in an equivalent period of time only in certain areas. Given that changes maintain for 60 years or double in 30 years, the hantavirus reservoir Oligoryzomys longicaudatus may contract its distribution in Argentine Patagonia extensively. PMID:19607707

  9. Evaluation of Solid Sorbents as a Retrofit Technology for CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrom, Sharon

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO 2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO 2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO 2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbentmore » CO 2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO 2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO 2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO 2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was primarily the result of sorbent circulation limitations at operating temperatures combined with pre-loading of the sorbent with CO 2 prior to entering the adsorber. Specifically, CO 2-rich gas was utilized to convey sorbent from the regenerator to the adsorber. This gas was nominally 45°C below the regenerator temperature during testing. ADA’s post-combustion capture system with modifications to overcome pilot constraints, in conjunction with incorporating a sorbent with CO 2 working capacity of 15 g CO 2/100 g sorbent and a contact time of 10 to 15 minutes or less with flue gas could provide significant cost and performance benefits when compared to an MEA system.« less

  10. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    PubMed

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  11. On the stability of the exact solutions of the dual-phase lagging model of heat conduction.

    PubMed

    Ordonez-Miranda, Jose; Alvarado-Gil, Juan Jose

    2011-04-13

    The dual-phase lagging (DPL) model has been considered as one of the most promising theoretical approaches to generalize the classical Fourier law for heat conduction involving short time and space scales. Its applicability, potential, equivalences, and possible drawbacks have been discussed in the current literature. In this study, the implications of solving the exact DPL model of heat conduction in a three-dimensional bounded domain solution are explored. Based on the principle of causality, it is shown that the temperature gradient must be always the cause and the heat flux must be the effect in the process of heat transfer under the dual-phase model. This fact establishes explicitly that the single- and DPL models with different physical origins are mathematically equivalent. In addition, taking into account the properties of the Lambert W function and by requiring that the temperature remains stable, in such a way that it does not go to infinity when the time increases, it is shown that the DPL model in its exact form cannot provide a general description of the heat conduction phenomena.

  12. Increasing Operational Stability in Low NOX GT Combustor Using Fuel Rich Concentric Pilot Combustor

    NASA Astrophysics Data System (ADS)

    Levy, Yeshayahou; Erenburg, Vladimir; Sherbaum, Valery; Ovcharenko, Vitali; Rosentsvit, Leonid; Chudnovsky, Boris; Herszage, Amiel; Talanker, Alexander

    2012-03-01

    Lean combustion is a method in which combustion takes place under low equivalence ratio and relatively low combustion temperatures. As such, it has the potential to lower the effect of the relatively high activation energy nitrogen-oxygen reactions which are responsible for substantial NOX formation during combustion processes. However, lowering temperature reduces the reaction rate and deteriorates combustion stability. The objective of the present study is to reduce the lower equivalence ratio limit of the stable combustion operational boundary in lean Gas Turbine (GT) combustors while still maintaining combustion stability. A lean premixed gaseous combustor was equipped with a surrounding concentric pilot flame operating under rich conditions, thus generating a hot stream of combustion products with significant amount of reactive radicals. The main combustor's fuel-air composition was varied from stoichiometric to lean mixtures. The pilot's mixture composition was also varied by changing the air flow rate, within a limited rich mixtures range. The pilot fuel flow rate was always lower than five percent of the total fuel supply at the specific stage of the experiments.

  13. Pollutant emissions from flat-flame burners at high pressures

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1980-01-01

    Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.

  14. Geothermal development plan: Yuma County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential for utilizing geothermal energy was evaluated. Four potential geothermal resource areas with temperatures less than 900C (1940F) were identified, and in addition, two areas are inferred to contain geothermal resources with intermediate temperature potential. The resource areas are isolated. One resource site contains a hot dry rock resource. Anticipated population growth in the county is expected to be 2% per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without adverse affect on agriculture. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. It is suggested that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  15. Influence of climate on malaria transmission depends on daily temperature variation.

    PubMed

    Paaijmans, Krijn P; Blanford, Simon; Bell, Andrew S; Blanford, Justine I; Read, Andrew F; Thomas, Matthew B

    2010-08-24

    Malaria transmission is strongly influenced by environmental temperature, but the biological drivers remain poorly quantified. Most studies analyzing malaria-temperature relations, including those investigating malaria risk and the possible impacts of climate change, are based solely on mean temperatures and extrapolate from functions determined under unrealistic laboratory conditions. Here, we present empirical evidence to show that, in addition to mean temperatures, daily fluctuations in temperature affect parasite infection, the rate of parasite development, and the essential elements of mosquito biology that combine to determine malaria transmission intensity. In general, we find that, compared with rates at equivalent constant mean temperatures, temperature fluctuation around low mean temperatures acts to speed up rate processes, whereas fluctuation around high mean temperatures acts to slow processes down. At the extremes (conditions representative of the fringes of malaria transmission, where range expansions or contractions will occur), fluctuation makes transmission possible at lower mean temperatures than currently predicted and can potentially block transmission at higher mean temperatures. If we are to optimize control efforts and develop appropriate adaptation or mitigation strategies for future climates, we need to incorporate into predictive models the effects of daily temperature variation and how that variation is altered by climate change.

  16. Temperature lapse rates at restricted thermodynamic equilibrium. Part II: Saturated air and further discussions

    NASA Astrophysics Data System (ADS)

    Björnbom, Pehr

    2016-03-01

    In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.

  17. Stratification calculations in a heated cryogenic oxygen storage tank at zero gravity

    NASA Technical Reports Server (NTRS)

    Shuttles, J. T.; Smith, G. L.

    1971-01-01

    A cylindrical one-dimensional model of the Apollo cyrogenic oxygen storage tank has been developed to study the effect of stratification in the tank. Zero gravity was assumed, and only the thermally induced motions were considered. The governing equations were derived from conservation laws and solved on a digital computer. Realistic thermodynamic and transport properties were used. Calculations were made for a wide range of conditions. The results show the fluid behavior to be dependent on the quantity in the tank or equivalently the bulk fluid temperature. For high quantities (low temperatures) the tank pressure rose rapidly with heat addition, the heater temperature remained low, and significant pressure drop potentials accrued. For low quantities the tank pressure rose more slowly with heat addition and the heater temperature became high. A high degree of stratification resulted for all conditions; however, the stratified region extended appreciably into the tank only for the lowest tank quantity.

  18. TECHNICAL NOTE: System for monitoring the evolution of the thermal expansion coefficient and autogenous deformation of hardening materials

    NASA Astrophysics Data System (ADS)

    Viviani, M.; Glisic, B.; Smith, I. F. C.

    2006-12-01

    This article presents an experimental system developed to determine the kinetic parameters of hardening materials. Kinetic parameters allow computation of the degree of reaction indices (DRIs). DRIs are used in predictive formulae for strength and are used to decouple the autogenous deformation (AD) and thermal deformation (TD). Although there are several methods to determine values for kinetic reaction parameters, most require extensive testing and large databases. A measurement system has been developed in order to determine kinetic parameters. The measurement system consists of optical fiber sensors embedded in specimens that are cured at varying temperatures and conditions. Sensors are used in pairs inside each specimen, and each pair has two deformation sensors that, aside from their axial stiffness, have the same characteristics. The study of the interaction between sensors and hardening material leads to establishment of a link between the deformations measured and the degree of reaction, by means of the newly developed concept of the equivalency point. The equivalency point is assumed to be an indicator of the degree of reaction and it allows the determination of the apparent activation energy (Ea) which defines the equivalent time. Equivalent time is a degree of reaction index (DRI) and it accounts for the combined effect of time and temperature in concrete. This new methodology has been used to predict the compressive strength and separate the AD and thermal expansion coefficient (TEC) in seven types of concrete. The measurement system allows gathering of data necessary for fast and efficient predictions. Due to its robustness and reduced dimensions it also has potential for in situ application.

  19. 40 CFR 86.1804-01 - Acronyms and abbreviations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...—Nonmethane Hydrocarbons. NMHCE—Non-Methane Hydrocarbon Equivalent. NMOG—Non-methane organic gases. NO—nitric....—Degree(s). DNPH—2,4-dinitrophenylhydrazine. EDV—Emission Data Vehicle. EP—End point. ETW—Equivalent test...—dispensed fuel temperature. THC—Total Hydrocarbons. THCE—Total Hydrocarbon Equivalent. TLEV—Transitional Low...

  20. 40 CFR 86.1804-01 - Acronyms and abbreviations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...—Nonmethane Hydrocarbons. NMHCE—Non-Methane Hydrocarbon Equivalent. NMOG—Non-methane organic gases. NO—nitric....—Degree(s). DNPH—2,4-dinitrophenylhydrazine. EDV—Emission Data Vehicle. EP—End point. ETW—Equivalent test...—dispensed fuel temperature. THC—Total Hydrocarbons. THCE—Total Hydrocarbon Equivalent. TLEV—Transitional Low...

  1. Statistical analogues of thermodynamic extremum principles

    NASA Astrophysics Data System (ADS)

    Ramshaw, John D.

    2018-05-01

    As shown by Jaynes, the canonical and grand canonical probability distributions of equilibrium statistical mechanics can be simply derived from the principle of maximum entropy, in which the statistical entropy S=- {k}{{B}}{\\sum }i{p}i{log}{p}i is maximised subject to constraints on the mean values of the energy E and/or number of particles N in a system of fixed volume V. The Lagrange multipliers associated with those constraints are then found to be simply related to the temperature T and chemical potential μ. Here we show that the constrained maximisation of S is equivalent to, and can therefore be replaced by, the essentially unconstrained minimisation of the obvious statistical analogues of the Helmholtz free energy F = E ‑ TS and the grand potential J = F ‑ μN. Those minimisations are more easily performed than the maximisation of S because they formally eliminate the constraints on the mean values of E and N and their associated Lagrange multipliers. This procedure significantly simplifies the derivation of the canonical and grand canonical probability distributions, and shows that the well known extremum principles for the various thermodynamic potentials possess natural statistical analogues which are equivalent to the constrained maximisation of S.

  2. Influences of Cr/Ni equivalent ratios of filler wires on pitting corrosion and ductility-dip cracking of AISI 316L weld metals

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, D. G.; Sung, J. H.; Kim, I. S.; Ko, D. E.; Kang, N. H.; Hong, H. U.; Park, J. H.; Lee, H. W.

    2011-02-01

    To study the pitting corrosion of AISI 316L weld metals according to the chromium/nickel equivalent ratio (Creq/Nieq ratio), three filler wires were newly designed for the flux-cored arc welding process. The weld metal with delta-ferrite at less than 3 vol.%, was observed for ductility-dip cracking (DDC) in the reheated region after multi-pass welding. The tensile strength and yield strength increased with increasing Creq/Nieq ratio. The result of anodic polarization tests in a 0.1 M NaCl solution at the room temperature (25) for 45 min, revealed that the base metal and weld metals have a similar corrosion potential of -0.34 VSCE. The weld metal with the highest content of Cr had the highest pitting potential (0.39 VSCE) and the passivation range (0.64 VSCE) was higher than the base metal (0.21 VSCE and 0.46 VSCE, respectively). Adding 0.001 M Na2S to the 0.1M NaCl solution, the corrosion occurred more severely by H2S. The corrosion potentials of the base metal and three weld metals decreased to -1.0 VSCE. DDC caused the decrease of the pitting potential by inducing a locally intense corrosion attack around the crack openings.

  3. A potential drop strain sensor for in-situ power station creep monitoring

    NASA Astrophysics Data System (ADS)

    Corcoran, Joseph; Cawley, Peter; Nagy, Peter B.

    2014-02-01

    Creep is a high temperature damage mechanism of interest to the power industry and at present lacks a satisfactory inspection technique. Existing material inspection techniques are extremely laborious while strain measurements rely on often infrequent off-load measurements. A quasi-DC directional potential drop technique has been suggested that is able to suppress the effects of permeability and is primarily sensitive to changes in resistivity and also the geometry that will develop through strain. The change in creep related resistivity is shown by an equivalent effective resistivity approach to be small at <2% change when compared to the >100% change in transfer resistance that occurs due to strain as observed in laboratory tests. A biaxial inversion is then presented and demonstrated on in-lab samples showing good performance. The result is a sensor that performs as a very robust high temperature strain gauge.

  4. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  5. Temperature and blood flow distribution in the human leg during passive heat stress.

    PubMed

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  6. Temperature and blood flow distribution in the human leg during passive heat stress

    PubMed Central

    Chiesa, Scott T.; Trangmar, Steven J.

    2016-01-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. PMID:26823344

  7. Polyimide Prepregs With Improved Tack

    NASA Technical Reports Server (NTRS)

    Vanucci, R.

    1987-01-01

    Drape and tack improved without loss of strength. Composites made with PMR-15 (or equivalent) polyimides have gained acceptance as viable engineering materials for high-use-temperature applications. Acceptance due to both thermo-oxidative stability of PMR-15 (or equivalent) and ease which PMR-15 (or equivalent) prepreg materials processed into composite structures.

  8. The role of the equivalent blackbody temperature in the study of Atlantic Ocean tropical cyclones

    NASA Technical Reports Server (NTRS)

    Steranka, J.; Rodgers, E. B.; Gentry, R. C.

    1983-01-01

    Satellite measured equivalent blackbody temperatures of Atlantic Ocean tropical cyclones are used to investigate their role in describing the convection and cloud patterns of the storms and in predicting wind intensity. The high temporal resolution of the equivalent blackbody temperature measurements afforded with the geosynchronous satellite provided sequential quantitative measurements of the tropical cyclone which reveal a diurnal pattern of convection at the inner core during the early developmental stage; a diurnal pattern of cloudiness in the storm's outer circulation throughout the life cycle; a semidiurnal pattern of cloudiness in the environmental atmosphere surrounding the storms during the weak storm stage; an outward modulating atmospheric wave originating at the inner core; and long term convective bursts at the inner core prior to wind intensification.

  9. Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH.

    PubMed

    Kostka, Stanislav; Roy, Sukesh; Lakusta, Patrick J; Meyer, Terrence R; Renfro, Michael W; Gord, James R; Branam, Richard

    2009-11-10

    Two-line laser-induced-fluorescence (LIF) thermometry is commonly employed to generate instantaneous planar maps of temperature in unsteady flames. The use of line scanning to extract the ratio of integrated intensities is less common because it precludes instantaneous measurements. Recent advances in the energy output of high-speed, ultraviolet, optical parameter oscillators have made possible the rapid scanning of molecular rovibrational transitions and, hence, the potential to extract information on gas-phase temperatures. In the current study, two-line OH LIF thermometry is performed in a well-calibrated reacting flow for the purpose of comparing the relative accuracy of various line-pair selections from the literature and quantifying the differences between peak-intensity and spectrally integrated line ratios. Investigated are the effects of collisional quenching, laser absorption, and the integration width for partial scanning of closely spaced lines on the measured temperatures. Data from excitation scans are compared with theoretical line shapes, and experimentally derived temperatures are compared with numerical predictions that were previously validated using coherent anti-Stokes-Raman scattering. Ratios of four pairs of transitions in the A2Sigma+<--X2Pi (1,0) band of OH are collected in an atmospheric-pressure, near-adiabatic hydrogen-air flame over a wide range of equivalence ratios--from 0.4 to 1.4. It is observed that measured temperatures based on the ratio of Q1(14)/Q1(5) transition lines result in the best accuracy and that line scanning improves the measurement accuracy by as much as threefold at low-equivalence-ratio, low-temperature conditions. These results provide a comprehensive analysis of the procedures required to ensure accurate two-line LIF measurements in reacting flows over a wide range of conditions.

  10. Effect of the Potential Shape on the Stochastic Resonance Processes

    NASA Astrophysics Data System (ADS)

    Kenmoé, G. Djuidjé; Ngouongo, Y. J. Wadop; Kofané, T. C.

    2015-10-01

    The stochastic resonance (SR) induced by periodic signal and white noises in a periodic nonsinusoidal potential is investigated. This phenomenon is studied as a function of the friction coefficient as well as the shape of the potential. It is done through an investigation of the hysteresis loop area which is equivalent to the input energy lost by the system to the environment per period of the external force. SR is evident in some range of the shape parameter of the potential, but cannot be observed in the other range. Specially, variation of the shape potential affects significantly and not trivially the heigh of the potential barrier in the Kramers rate as well as the occurrence of SR. The finding results show crucial dependence of the temperature of occurrence of SR on the shape of the potential. It is noted that the maximum of the input energy generally decreases when the friction coefficient is increased.

  11. Current and temperature distributions in-situ acquired by electrode-segmentation along a microtubular solid oxide fuel cell operating with syngas

    NASA Astrophysics Data System (ADS)

    Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi

    2015-10-01

    Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by ;Electrode-segmentation; in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.

  12. Techniques for enhancing durability and equivalence ratio control in a rich-lean, three-stage ground power gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1982-01-01

    Rig tests of a can-type combustor were performed to demonstrate two advanced ground power engine combustor concepts: steam cooled rich-burn combustor primary zones for enhanced durability; and variable combustor geometry for three stage combustion equivalence ratio control. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This offers the potential of both long life and reduced use of strategic materials for liner fabrication. Three degrees of variable geometry were successfully implemented to control airflow distribution within the combustor. One was a variable blade angle axial flow air swirler to control primary airflow while the other two consisted of rotating bands to control secondary and tertiary or dilution air flow.

  13. G-Equivalent Acceleration Tolerance in the Eutardigrade Species Hypsibius dujardini

    NASA Astrophysics Data System (ADS)

    Vasanthan, Tarushika; Alejaldre, Lorea; Hider, Jessica; Patel, Shreya; Husain, Nabiha; Umapathisivam, Bavithra; Stone, Jonathon

    2017-01-01

    Tardigrades are microscopic organisms renowned for their ability to survive extreme environmental conditions. Tardigrade extreme-tolerance research has centered on the ability to withstand desiccation, low and high temperatures, and high hydrostatic pressure and radiation levels. Tardigrade tolerance to hypergravity, however, has yet to be described. We used the eutardigrade species Hypsibius dujardini to investigate short-term tolerance to g-equivalent accelerations (i.e., mimicking g-forces). Data obtained from specimens centrifuged between 3421g and 16,060g for 1 min inclusively reveal tolerance in an acceleration-dependent relation, with lower survivorship and egg production at higher accelerations. This is the first study to demonstrate tardigrade potential for tolerance to hypergravity and describe expected effects on tardigrade survival and reproduction. These findings will prove to be useful in lithopanspermia research (i.e., viable spread in meteoritic rocks).

  14. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  15. Shot-noise in resistive-diode mixers and the attenuator noise model

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.

    1979-01-01

    The representation of a pumped exponential diode, operating as a mixer, by an equivalent lossy network, is reexamined. It is shown that the model is correct provided the network has ports for all sideband frequencies at which (real) power flow can occur between the diode and its embedding. The temperature of the equivalent network is eta/2 times the physical temperature of the diode. The model is valid only if the series resistance and nonlinear capacitance of the diode are negligible. Expressions are derived for the input and output noise temperature and the noise-temperature ratio of ideal mixers. Some common beliefs concerning noise-figure and noise-temperature ratio are shown to be incorrect.

  16. Characterization of heat transfer in nutrient materials, part 2

    NASA Technical Reports Server (NTRS)

    Cox, J. E.; Bannerot, R. B.; Chen, C. K.; Witte, L. C.

    1973-01-01

    A thermal model is analyzed that takes into account phase changes in the nutrient material. The behavior of fluids in low gravity environments is discussed along with low gravity heat transfer. Thermal contact resistance in the Skylab food heater is analyzed. The original model is modified to include: equivalent conductance due to radiation, radial equivalent conductance, wall equivalent conductance, and equivalent heat capacity. A constant wall-temperature model is presented.

  17. Glasses and Liquids Low on the Energy Landscape Prepared by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Dalal, Shakeel; Fakhraai, Zahra; Ediger, Mark

    2014-03-01

    The lower portions of the potential energy landscape for glass-forming materials such as polymers and small molecules were historically inaccessible by experiments. Physical vapor deposition is uniquely able to prepare materials in this portion of the energy landscape, with the properties of the deposited material primarily modulated by the substrate temperature. Here we report on high-throughput experiments which utilize a temperature gradient stage to enable rapid screening of vapor-deposited organic glasses. Using ellipsometry, we characterize a 100 K range of substrate temperatures in a single experiment, allowing us to rapidly determine the density, kinetic stability, fictive temperature and molecular orientation of these glasses. Their properties fall into three temperature regimes. At substrate temperatures as low as 0.97Tg, we prepare materials which are equivalent to the supercooled liquid produced by cooling the melt. Below 0.9Tg (1.16TK) the properties of materials are kinetically controlled and highly tunable. At intermediate substrate temperatures we are able to produce materials whose bulk properties match those expected for the equilibrium supercooled liquid, down to 1.16TK, but are structurally anisotropic.

  18. Creep resistant high temperature martensitic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followedmore » by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.« less

  19. Creep resistant high temperature martensitic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followedmore » by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.« less

  20. Mechanical Equivalent of Heat--Software for a Thermistor

    ERIC Educational Resources Information Center

    Boleman, Michael

    2008-01-01

    The Mechanical Equivalent of Heat Apparatus from PASCO scientific provides the means for doing a simple experiment to determine the mechanical equivalent of heat, "J." A necessary step of this experiment is to determine the temperature of an aluminum cylinder. By measuring the resistance of a thermistor embedded in the cylinder, one is able to…

  1. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    PubMed

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    NASA Astrophysics Data System (ADS)

    Bin Mansoor, Saad; Sami Yilbas, Bekir

    2015-08-01

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron-phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system.

  3. Cluster mass estimators from CMB temperature and polarization lensing

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; DeDeo, Simon; Vale, Chris

    2007-12-01

    Upcoming Sunyaev Zel'dovich surveys are expected to return ~104 intermediate mass clusters at high redshift. Their average masses must be known to the same accuracy as desired for the dark energy properties. Internal to the surveys, the cosmic microwave background (CMB) potentially provides a source for lensing mass measurements whose distance is precisely known and behind all clusters. We develop statistical mass estimators from six quadratic combinations of CMB temperature and polarization fields that can simultaneously recover large-scale structure and cluster mass profiles. The performance of these estimators on idealized Navarro Frenk White (NFW) clusters suggests that surveys with a ~1' beam and 10\\,\\muK^{\\prime} noise in uncontaminated temperature maps can make a ~10σ detection, or equivalently a ~10% mass measurement for each 103 set of clusters. With internal or external acoustic scale E-polarization measurements, the ET cross-correlation estimator can provide a stringent test for contaminants on a first detection at ~1/3 the significance. For surveys that reach below 3\\,\\muK^{\\prime}, the EB cross-correlation estimator should provide the most precise measurements and potentially the strongest control over contaminants.

  4. Direct absorption spectroscopy sensor for temperature and H2O concentration of flat flame burner

    NASA Astrophysics Data System (ADS)

    Duan, Jin-hu; Jin, Xing; Wang, Guang-yu; Qu, Dong-sheng

    2016-01-01

    A tunable diode laser absorption sensor, based on direct absorption spectroscopy and time division multiplexing scheme, was developed to measure H2O concentration and temperature of flat flame burner. At the height of 15mm from the furnace surface, temperature and concentration were measured at different equivalence ratios. Then the distance between the laser and the furnace surface was changed while the equivalence ratio was fixed at 1 and experiments were performed to measure temperature and H2O concentration at every height. At last flame temperatures and H2O concentrations were obtained by simulation and computational analysis and these combustion parameters were compared with the reference. The results showed that the experimental results were in accordance with the reference values. Temperature errors were less than 4% and H2O component concentration errors were less than 5%and both of them reached their maximum when the equivalent ratio was set at 1. The temperature and H2O concentration increased with the height from furnace surface to laser when it varied from 3mm to 9mm and it decreased when it varied from 9mm to 30mm and they reached their maximum at the height of 9mm. Keywords: tunable diode laser, direct absorption spectroscopy

  5. Effect of Annealing Temperature on the Mechanical and Corrosion Behavior of a Newly Developed Novel Lean Duplex Stainless Steel.

    PubMed

    Guo, Yanjun; Hu, Jincheng; Li, Jin; Jiang, Laizhu; Liu, Tianwei; Wu, Yanping

    2014-09-12

    The effect of annealing temperature (1000-1150 °C) on the microstructure evolution, mechanical properties, and pitting corrosion behavior of a newly developed novel lean duplex stainless steel with 20.53Cr-3.45Mn-2.08Ni-0.17N-0.31Mo was studied by means of optical metallographic microscopy (OMM), scanning electron microscopy (SEM), magnetic force microscopy (MFM), scanning Kelvin probe force microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDS), uniaxial tensile tests (UTT), and potentiostatic critical pitting temperature (CPT). The results showed that tensile and yield strength, as well as the pitting corrosion resistance, could be degraded with annealing temperature increasing from 1000 up to 1150 °C. Meanwhile, the elongation at break reached the maximum of 52.7% after annealing at 1050 °C due to the effect of martensite transformation induced plasticity (TRIP). The localized pitting attack preferentially occurred at ferrite phase, indicating that the ferrite phase had inferior pitting corrosion resistance as compared to the austenite phase. With increasing annealing temperature, the pitting resistance equivalent number (PREN) of ferrite phase dropped, while that of the austenite phase rose. Additionally, it was found that ferrite possessed a lower Volta potential than austenite phase. Moreover, the Volta potential difference between ferrite and austenite increased with the annealing temperature, which was well consistent with the difference of PREN.

  6. Effect of Annealing Temperature on the Mechanical and Corrosion Behavior of a Newly Developed Novel Lean Duplex Stainless Steel

    PubMed Central

    Guo, Yanjun; Hu, Jincheng; Li, Jin; Jiang, Laizhu; Liu, Tianwei; Wu, Yanping

    2014-01-01

    The effect of annealing temperature (1000–1150 °C) on the microstructure evolution, mechanical properties, and pitting corrosion behavior of a newly developed novel lean duplex stainless steel with 20.53Cr-3.45Mn-2.08Ni-0.17N-0.31Mo was studied by means of optical metallographic microscopy (OMM), scanning electron microscopy (SEM), magnetic force microscopy (MFM), scanning Kelvin probe force microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDS), uniaxial tensile tests (UTT), and potentiostatic critical pitting temperature (CPT). The results showed that tensile and yield strength, as well as the pitting corrosion resistance, could be degraded with annealing temperature increasing from 1000 up to 1150 °C. Meanwhile, the elongation at break reached the maximum of 52.7% after annealing at 1050 °C due to the effect of martensite transformation induced plasticity (TRIP). The localized pitting attack preferentially occurred at ferrite phase, indicating that the ferrite phase had inferior pitting corrosion resistance as compared to the austenite phase. With increasing annealing temperature, the pitting resistance equivalent number (PREN) of ferrite phase dropped, while that of the austenite phase rose. Additionally, it was found that ferrite possessed a lower Volta potential than austenite phase. Moreover, the Volta potential difference between ferrite and austenite increased with the annealing temperature, which was well consistent with the difference of PREN. PMID:28788201

  7. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    NASA Astrophysics Data System (ADS)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations. Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake pressure such that a sizable reduction in the maximum pressure rise rate compared to HCCI can be achieved.

  8. Isentropic Analysis of a Simulated Hurricane

    NASA Technical Reports Server (NTRS)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  9. Synchronous separation, seaming, sealing and sterilization (S4) using brazing for sample containerization and planetary protection

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Lindsey, Cameron; Kutzer, Thomas; Salazar, Eduardo

    2018-03-01

    The return of samples back to Earth in future missions would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. This protection would require "breaking the chain of contact (BTC)", where any returned material reaching Earth for further analysis would have to be sealed inside a container with extremely high confidence. Therefore, the acquired samples would need to be contained while destroying any potential biological materials that may contaminate the external surface of the container. A novel process that could be used to contain returning samples has been developed and demonstrated in a quarter scale size. The process consists of brazing using non-contact induction heating that synchronously separates, seams, seals and sterilizes (S4) the container. The use of brazing involves melting at temperatures higher than 500°C and this level of heating assures sterilization of the exposed areas since all carbon bonds (namely, organic materials) are broken at this temperature. The mechanism consists of a double wall container with inner and outer shells having Earth-clean interior surfaces. The process consists of two-steps, Step-1: the double wall container halves are fabricated and brazed (equivalent to production on Earth); and Step-2 is the S4 process and it is the equivalent to the execution on-orbit around Mars. In a potential future mission, the double wall container would be split into two halves and prepared on Earth. The potential on-orbit execution would consist of inserting the orbiting sample (OS) container into one of the halves and then mated to the other half and brazed. The latest results of this effort will be described and discussed in this manuscript.

  10. Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement

    PubMed Central

    Millar, R. J.; Allen, M.; Boucher, O.; Cain, M.; Forster, P. M.; Shindell, D.

    2018-01-01

    The main goal of the Paris Agreement as stated in Article 2 is ‘holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C’. Article 4 points to this long-term goal and the need to achieve ‘balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases'. This statement on ‘greenhouse gas balance’ is subject to interpretation, and clarifications are needed to make it operational for national and international climate policies. We study possible interpretations from a scientific perspective and analyse their climatic implications. We clarify how the implications for individual gases depend on the metrics used to relate them. We show that the way in which balance is interpreted, achieved and maintained influences temperature outcomes. Achieving and maintaining net-zero CO2-equivalent emissions conventionally calculated using GWP100 (100-year global warming potential) and including substantial positive contributions from short-lived climate-forcing agents such as methane would result in a sustained decline in global temperature. A modified approach to the use of GWP100 (that equates constant emissions of short-lived climate forcers with zero sustained emission of CO2) results in global temperatures remaining approximately constant once net-zero CO2-equivalent emissions are achieved and maintained. Our paper provides policymakers with an overview of issues and choices that are important to determine which approach is most appropriate in the context of the Paris Agreement. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610378

  11. Implications of possible interpretations of 'greenhouse gas balance' in the Paris Agreement.

    PubMed

    Fuglestvedt, J; Rogelj, J; Millar, R J; Allen, M; Boucher, O; Cain, M; Forster, P M; Kriegler, E; Shindell, D

    2018-05-13

    The main goal of the Paris Agreement as stated in Article 2 is 'holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C'. Article 4 points to this long-term goal and the need to achieve 'balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases'. This statement on 'greenhouse gas balance' is subject to interpretation, and clarifications are needed to make it operational for national and international climate policies. We study possible interpretations from a scientific perspective and analyse their climatic implications. We clarify how the implications for individual gases depend on the metrics used to relate them. We show that the way in which balance is interpreted, achieved and maintained influences temperature outcomes. Achieving and maintaining net-zero CO 2 -equivalent emissions conventionally calculated using GWP 100 (100-year global warming potential) and including substantial positive contributions from short-lived climate-forcing agents such as methane would result in a sustained decline in global temperature. A modified approach to the use of GWP 100 (that equates constant emissions of short-lived climate forcers with zero sustained emission of CO 2 ) results in global temperatures remaining approximately constant once net-zero CO 2 -equivalent emissions are achieved and maintained. Our paper provides policymakers with an overview of issues and choices that are important to determine which approach is most appropriate in the context of the Paris Agreement.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.

  12. Implications of possible interpretations of `greenhouse gas balance' in the Paris Agreement

    NASA Astrophysics Data System (ADS)

    Fuglestvedt, J.; Rogelj, J.; Millar, R. J.; Allen, M.; Boucher, O.; Cain, M.; Forster, P. M.; Kriegler, E.; Shindell, D.

    2018-05-01

    The main goal of the Paris Agreement as stated in Article 2 is `holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C'. Article 4 points to this long-term goal and the need to achieve `balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases'. This statement on `greenhouse gas balance' is subject to interpretation, and clarifications are needed to make it operational for national and international climate policies. We study possible interpretations from a scientific perspective and analyse their climatic implications. We clarify how the implications for individual gases depend on the metrics used to relate them. We show that the way in which balance is interpreted, achieved and maintained influences temperature outcomes. Achieving and maintaining net-zero CO2-equivalent emissions conventionally calculated using GWP100 (100-year global warming potential) and including substantial positive contributions from short-lived climate-forcing agents such as methane would result in a sustained decline in global temperature. A modified approach to the use of GWP100 (that equates constant emissions of short-lived climate forcers with zero sustained emission of CO2) results in global temperatures remaining approximately constant once net-zero CO2-equivalent emissions are achieved and maintained. Our paper provides policymakers with an overview of issues and choices that are important to determine which approach is most appropriate in the context of the Paris Agreement. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  13. Ignition of lean fuel-air mixtures in a premixing-prevaporizing duct at temperatures up to 1000 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1980-01-01

    Conditions were determined in a premixing prevaporizing fuel preparation duct at which ignition occurred. An air blast type fuel injector with nineteen fuel injection points was used to provide a uniform spatial fuel air mixture. The range of inlet conditions where ignition occurred were: inlet air temperatures of 600 to 1000 K air pressures of 180 to 660 kPa, equivalence ratios (fuel air ratio divided by stoichiometric fuel air ratio) from 0.12 to 1.05, and velocities from 3.5 to 30 m/s. The duct was insulated and the diameter was 12 cm. Mixing lengths were varied from 16.5 to 47.6 and residence times ranged from 4.6 to 107 ms. The fuel was no. 2 diesel. Results show a strong effect of equivalence ratio, pressure and temperature on the conditions where ignition occurred. The data did not fit the most commonly used model of auto-ignition. A correlation of the conditions where ignition would occur which apply to this test apparatus over the conditions tested is (p/V) phi to the 1.3 power = 0.62 e to the 2804/T power where p is the pressure in kPa, V is the velocity in m/e, phi is the equivalence ratio, and T is the temperature in K. The data scatter was considerable, varying by a maximum value of 5 at a given temperature and equivalence ratio. There was wide spread in the autoignition data contained in the references.

  14. G-Equivalent Acceleration Tolerance in the Eutardigrade Species Hypsibius dujardini.

    PubMed

    Vasanthan, Tarushika; Alejaldre, Lorea; Hider, Jessica; Patel, Shreya; Husain, Nabiha; Umapathisivam, Bavithra; Stone, Jonathon

    2017-01-01

    Tardigrades are microscopic organisms renowned for their ability to survive extreme environmental conditions. Tardigrade extreme-tolerance research has centered on the ability to withstand desiccation, low and high temperatures, and high hydrostatic pressure and radiation levels. Tardigrade tolerance to hypergravity, however, has yet to be described. We used the eutardigrade species Hypsibius dujardini to investigate short-term tolerance to g-equivalent accelerations (i.e., mimicking g-forces). Data obtained from specimens centrifuged between 3421g and 16,060g for 1 min inclusively reveal tolerance in an acceleration-dependent relation, with lower survivorship and egg production at higher accelerations. This is the first study to demonstrate tardigrade potential for tolerance to hypergravity and describe expected effects on tardigrade survival and reproduction. These findings will prove to be useful in lithopanspermia research (i.e., viable spread in meteoritic rocks). Key Words: Astrobiology-Extreme tolerance-Hypergravity-Tardigrade. Astrobiology 17, 55-60.

  15. Investigation of antioxidant potential of peptide fractions from the Tra Catfish by-product-derived hydrolysate using Alcalase® 2.4 L FG

    NASA Astrophysics Data System (ADS)

    Vo, Tam D. L.; Chung, Duy T. M.; Doan, Kien T.; Le, Duy T.; Trinh, Hung V.

    2017-09-01

    In this study, the antioxidant capacity of peptide fractions isolated from the Tra Catfish (Pangasius hypophthalmus) by-product-derived proteolysate using ultrafiltration centrifugal devices with 5 distinct molecular-weight cutoffs (MWCOs) of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa was investigated. Firstly, the chemical composition of the Tra Catfish by-products was analyzed. The result showed that the Tra Catfish by-products contained 58.5% moisture, 33.9% crude protein, 50.1% crude lipid and 15.8% ash (on dry weight basis). Secondly, the effects of hydrolysis time, enzyme content on the antioxidant potential of the proteolysate were studied using DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical scavenging method (DPPH• SM) and FRAP (Ferric Reducing Antioxidant Potential) method. Alcalase® 2.4 L FG was used for hydrolysis. The result of antioxidant activity of the hydrolysate showed that the 50% DPPH• inhibition concentration (IC50) of the hydrolysate reached about 6775 µg/mL which was 1645-fold higher than that of vitamin C and 17-fold higher than that of BHT (ButylatedHydroxytoluene) with the degree of hydrolysis (DH) of the hydrolysate of 14.6% when hydrolysis time was 5 hours, enzyme/substrate (E/S) ratio was 30 U/g protein, hydrolysis temperature was 55°C, and pH was 7.5. The antioxidant potential of hydrolysate using FRAP method reached about 52.12 µM Trolox equivalent which was 53-fold and 18-fold lower than those of vitamin C and BHT, respectively, when the hydrolysis time was 5 h, enzyme/substrate ratio was 30 U/g protein, temperature was 500C, and pH level was 8. Next, the proteolysate was further fractionated using MWCOs of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa and the peptide fractions were investigated for their antioxidant activity. The result showed that the <1 kDa fraction showed strongest antioxidant activity with the IC50 of 1313.31 ± 50.65 µg/mL and FRAP value of 906.90 ± 44.32 µM Trolox equivalent. The second strongest fraction was 1-3 kDa with the IC50 and FRAP value of 2897.85 ± 128.38 µg/mL and 517.7 ± 21.08 µM Trolox equivalent, respectively. The fractions of 3-5 kDa, 5-10 kDa were the third and fourth strongest, respectively. The 10-30 kDa fraction showed weakest antioxidant capacity with the IC50 of 8012.88 ± 280.68 µg/mL and FRAP value of 92.92 ± 0.61 µM Trolox equivalent. The antioxidant peptides derived from Tra Catfish by-products proteolysate showed the potential to be used as natural antioxidant components in pharmaceutical and food industry.

  16. Bistability in dual-frequency nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.

    2007-03-01

    Different modes of bistable switching in liquid crystals with frequency inversion of the dielectric anisotropy sign are discussed. The study is performed by numerical simulation and experimentally. It is shown that dual frequency driving can be effectively used to control switching between topologically equivalent and non-equivalent director field distributions. The experimental results on temperature performance of the dual-frequency switching and possible driving methods for energy consumption and expanding the temperature range are presented.

  17. Characterization of zero-bias microwave diode power detectors at cryogenic temperature.

    PubMed

    Giordano, Vincent; Fluhr, Christophe; Dubois, Benoît; Rubiola, Enrico

    2016-08-01

    We present the characterization of commercial tunnel diode low-level microwave power detectors at room and cryogenic temperatures. The sensitivity as well as the output voltage noise of the tunnel diodes is measured as functions of the applied microwave power. We highlight strong variations of the diode characteristics when the applied microwave power is higher than a few microwatts. For a diode operating at 4 K, the differential gain increases from 1000 V/W to about 4500 V/W when the power passes from -30 dBm to -20 dBm. The diode white noise floor is equivalent to a Noise Equivalent Power of 0.8 pW/Hz and 8 pW/Hz at 4 K and 300 K, respectively. Its flicker noise is equivalent to a relative amplitude noise power spectral density Sα(1 Hz) = - 120 dB/Hz at 4 K. Flicker noise is 10 dB higher at room temperature.

  18. Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah

    FEM simulations of PbSn solder fatigue damage are used to evaluate seven cities that represent a variety of climatic zones. It is shown that the rate of solder fatigue damage is not ranked with the cities' climate designations. For an accurate ranking, the mean maximum daily temperature, daily temperature change and a characteristic of clouding events are all required. A physics-based empirical equation is presented that accurately calculates solder fatigue damage according to these three factors. An FEM comparison of solder damage accumulated through service and thermal cycling demonstrates the number of cycles required for an equivalent exposure. For anmore » equivalent 25-year exposure, the number of thermal cycles (-40 degrees C to 85 degrees C) required ranged from roughly 100 to 630 for the cities examined. It is demonstrated that increasing the maximum cycle temperature may significantly reduce the number of thermal cycles required for an equivalent exposure.« less

  19. Modified Nose-Hoover thermostat for solid state for constant temperature molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wen-Hwa, E-mail: whchen@pme.nthu.edu.tw; National Applied Research Laboratories, Taipei 10622, Taiwan, ROC; Wu, Chun-Hung

    2011-07-10

    Nose-Hoover (NH) thermostat methods incorporated with molecular dynamics (MD) simulation have been widely used to simulate the instantaneous system temperature and feedback energy in a canonical ensemble. The method simply relates the kinetic energy to the system temperature via the particles' momenta based on the ideal gas law. However, when used in a tightly bound system such as solids, the method may suffer from deriving a lower system temperature and potentially inducing early breaking of atomic bonds at relatively high temperature due to the neglect of the effect of the potential energy of atoms based on solid state physics. Inmore » this paper, a modified NH thermostat method is proposed for solid system. The method takes into account the contribution of phonons by virtue of the vibrational energy of lattice and the zero-point energy, derived based on the Debye theory. Proof of the equivalence of the method and the canonical ensemble is first made. The modified NH thermostat is tested on different gold nanocrystals to characterize their melting point and constant volume specific heat, and also their size and temperature dependence. Results show that the modified NH method can give much more comparable results to both the literature experimental and theoretical data than the standard NH. Most importantly, the present model is the only one, among the six thermostat algorithms under comparison, that can accurately reproduce the experimental data and also the T{sup 3}-law at temperature below the Debye temperature, where the specific heat of a solid at constant volume is proportional to the cube of temperature.« less

  20. Equivalent damage: A critical assessment

    NASA Technical Reports Server (NTRS)

    Laflen, J. R.; Cook, T. S.

    1982-01-01

    Concepts in equivalent damage were evaluated to determine their applicability to the life prediction of hot path components of aircraft gas turbine engines. Equivalent damage was defined as being those effects which influence the crack initiation life-time beyond the damage that is measured in uniaxial, fully-reversed sinusoidal and isothermal experiments at low homologous temperatures. Three areas of equivalent damage were examined: mean stress, cumulative damage, and multiaxiality. For each area, a literature survey was conducted to aid in selecting the most appropriate theories. Where possible, data correlations were also used in the evaluation process. A set of criteria was developed for ranking the theories in each equivalent damage regime. These criteria considered aspects of engine utilization as well as the theoretical basis and correlative ability of each theory. In addition, consideration was given to the complex nature of the loading cycle at fatigue critical locations of hot path components; this loading includes non-proportional multiaxial stressing, combined temperature and strain fluctuations, and general creep-fatigue interactions. Through applications of selected equivalent damage theories to some suitable data sets it was found that there is insufficient data to allow specific recommendations of preferred theories for general applications. A series of experiments and areas of further investigations were identified.

  1. Configurational entropy: an improvement of the quasiharmonic approximation using configurational temperature.

    PubMed

    Nguyen, Phuong H; Derreumaux, Philippe

    2012-01-14

    One challenge in computational biophysics and biology is to develop methodologies able to estimate accurately the configurational entropy of macromolecules. Among many methods, the quasiharmonic approximation (QH) is most widely used as it is simple in both theory and implementation. However, it has been shown that this method becomes inaccurate by overestimating entropy for systems with rugged free energy landscapes. Here, we propose a simple method to improve the QH approximation, i.e., to reduce QH entropy. We approximate the potential energy landscape of the system by an effective harmonic potential, and request that this potential must produce exactly the configurational temperature of the system. Due to this constraint, the force constants associated with the effective harmonic potential are increased, or equivalently, entropy of motion governed by this effective harmonic potential is reduced. We also introduce the effective configurational temperature concept which can be used as an indicator to check the anharmonicity of the free energy landscape. To validate the new method we compare it with the recently developed expansion approximate method by calculating entropy of one simple model system and two peptides with 3 and 16 amino acids either in gas phase or in explicit solvent. We show that the new method appears to be a good choice in practice as it is a compromise between accuracy and computational speed. A modification of the expansion approximate method is also introduced and advantages are discussed in some detail.

  2. An Assessment of Combustion Dynamics in a Low-Nox, Second-Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    NASA Technical Reports Server (NTRS)

    Tacina, K. M.; Chang, C. T.; Lee, P.; Mongia, H.; Podboy, D. P.; Dam, B.

    2015-01-01

    Dynamic pressure measurements were taken during flame-tube emissions testing of three second-generation swirl-venturi lean direct injection (SV-LDI) combustor configurations. These measurements show that combustion dynamics were typically small. However, a small number of points showed high combustion dynamics, with peak-to-peak dynamic pressure fluctuations above 0.5 psi. High combustion dynamics occurred at low inlet temperatures in all three SV-LDI configurations, so combustion dynamics were explored further at low temperature conditions. A point with greater than 1.5 psi peak-to-peak dynamic pressure fluctuations was identified at an inlet temperature of 450!F, a pressure of 100 psia, an air pressure drop of 3%, and an overall equivalence ratio of 0.35. This is an off design condition: the temperature and pressure are typical of 7% power conditions, but the equivalence ratio is high. At this condition, the combustion dynamics depended strongly on the fuel staging. Combustion dynamics could be reduced significantly without changing the overall equivalence ratio by shifting the fuel distribution between stages. Shifting the fuel distribution also decreased NOx emissions.

  3. The tropopause cold trap in the Australian Monsoon during STEP/AMEX 1987

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.

    1993-01-01

    The relationship between deep convection and tropopause cold trap conditions is examined for the tropical northern Australia region during the 1986-87 summer monsoon season, emphasizing the Australia Monsoon Experiment (AMEX) period when the NASA Stratosphere-Troposphere Exchange Project (STEP) was being conducted. The factors related to the spatial and temporal variability of the cold point potential temperature (CPPT) are investigated. A framework is developed for describing the relationships among surface average equivalent potential temperature in the surface layer (AEPTSL) the height of deep convection, and stratosphere-troposphere exchange. The time-mean pattern of convection, large-scale circulation, and surface AEPTSL in the Australian monsoon and the evolution of the convective environment during the monsoon period and the extended transition season which preceded it are described. The time-mean fields of cold point level variables are examined and the statistical relationships between mean CPPT, surface AEPTSL, and deep convection are described. Day-to-day variations of CPPT are examined in terms of these time mean relationships.

  4. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    PubMed

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.

  5. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    PubMed

    Hu, Tongxin; Sun, Long; Hu, Haiqing; Guo, Futao

    2017-01-01

    In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent) after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April) in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth) was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March). Mean spring freeze-thaw cycle (FTC) period (April) soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  6. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China

    PubMed Central

    Hu, Tongxin; Guo, Futao

    2017-01-01

    In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent) after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April) in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%–5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth) was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%–79% of the soil respiration variability in winter snow-covering period (November to March). Mean spring freeze–thaw cycle (FTC) period (April) soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change. PMID:28665958

  7. Equivalent of a cartilage tissue for simulations of laser-induced temperature fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondyurin, A V; Sviridov, A P

    2008-07-31

    The thermal and optical properties of polyacrylamide hydrogels and cartilages are studied by the method of IR laser radiometry. The thermal diffusivity, heat capacity, and the effective absorption coefficient at a wavelength of 1.56 {mu}m measured for polyacrylamide gel with 70% water content and the degree of cross-linking 1:9 and for the nasal septum cartilage proved to be close. This allows the use of polyacrylamide hydrogels as equivalents of cartilages in simulations of laser-induced temperature fields. (biophotonics)

  8. Effect of Prestraining of Recrystallization Temperature and Mechanical Properties of Commercial, Sintered, Wrought Molybdenum

    NASA Technical Reports Server (NTRS)

    Dike, Kenneth C; Long, Roger A

    1953-01-01

    Given three presumably identical lots of commercial, sintered, wrought molybdenum, the 1-hour recrystallization temperature of one lot remained above 2900 F by limiting the amount of effective restraining to 35 percent or less. Different recrystallization temperatures were obtained in various atmospheres, the highest in argon and the lowest in hydrogen. Metal thus fabricated and then stress-relieved possessed an ultimate tensile strength at room temperature within 10 percent of metal swaged 99 percent and also possessed equivalent ductility. At 1800 F, equivalent strength and ductility was obtained irrespective of the amount of swaging over the range of 10 to 99 percent. The amount of swaging greatly influenced the recrystallized grain size but the difference in grain size is not the major controlling factor which determines whether recrystallized molybdenum is ductile or brittle at room temperature.

  9. Assessment of VAS soundings in the analysis of a preconvective environment

    NASA Technical Reports Server (NTRS)

    Mostek, A.; Uccellini, L. W.; Petersen, R. A.; Chesters, D.

    1985-01-01

    Retrievals from the VISSR Atmospheric Sounder (VAS) are combined with conventional data to assess the impact of geosynchronous satellite soundings upon the analysis of a preconvective environment. VAS retrievals of temperature, dewpoint, equivalent potential temperature, precipitable water, and lifted index are derived with 60 km resolution at 3 hour intervals. When VAS fields are combined with analyses from conventional data sources, mesoscale regions with convective instability are more clearly delineated prior to the rapid development of the thunderstorms. The retrievals differentiate isolated areas in which air extends throughout the lower troposphere from those regions where moisture is confined to a thin layer near the Earth's surface. The analyses of the VAS retrievals identify significant spatial gradients and temporal changes in the thermal and moisture fields, especially in the regions between radiosonde observations.

  10. Stepwise positional-orientational order and the multicritical-multistructural global phase diagram of the s=3/2 Ising model from renormalization-group theory.

    PubMed

    Yunus, Çağın; Renklioğlu, Başak; Keskin, Mustafa; Berker, A Nihat

    2016-06-01

    The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than 14 different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical end points, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The four-state Potts permutation-symmetric subspace is contained in this model.

  11. A preliminary study of the effect of equivalence ratio on a low emissions gas turbine combustor using KIVA-2

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Chen, R.; Cline, M. C.

    The staged turbine combustor (STC) concept has drawn more and more attention since the late 70's because of its potential in reducing pollutant emissions where a high power output is required. A numerical study is performed to investigate the chemically reactive flow with sprays inside a STC combustor using a modified version of the KIVA-II code. This STC combustor consists of a fuel nozzle (FN), a rich-burn (RB) zone, a converging connecting section, a quick-quench (QQ) zone, a diverging connecting section, and a lean-combustion (LC) zone. An advanced airblast fuel nozzle, which has two fuel injection passages and four air flow passages for providing swirl, is used in this study. The effect of the equivalence ratio phi on the performance of the STC combustor is reported in this paper for phi range of 1.2 to 2.0. Preliminary results reveal some major features of the flow and temperature fields inside the STC combustor. Distributions of velocity, temperature, and some critical species information inside the FN/RB zone illustrate the effect of phi on the flame temperature and the NO(x) formation in rich burning. The co- and counter-rotating bulk flow, and the sandwiched-ring-shape temperature field in the QQ/LC zone, typical of the confined inclined jet-in-cross flow, are clearly shown from the computation. The predicted mass-weighted standard deviation and the pattern factor of temperature show that the mixing performance of the STC combustor is very good. The temperature of the fluid leaving the LC zone is very uniform. As expected. lower value of the emission index of NO can be achieved with larger value of phi. Prediction of the NO(x) emission shows that there is no excessive thermal NO(x) produced in the QQ/LC zone for all the cases studied.

  12. Isobaric yield ratio difference and Shannon information entropy

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wei, Hui-Ling; Wang, Shan-Shan; Ma, Yu-Gang; Wada, Ryoichi; Zhang, Yan-Li

    2015-03-01

    The Shannon information entropy theory is used to explain the recently proposed isobaric yield ratio difference (IBD) probe which aims to determine the nuclear symmetry energy. Theoretically, the difference between the Shannon uncertainties carried by isobars in two different reactions (ΔIn21), is found to be equivalent to the difference between the chemical potentials of protons and neutrons of the reactions [the IBD probe, IB- Δ(βμ)21, with β the reverse temperature]. From the viewpoints of Shannon information entropy, the physical meaning of the above chemical potential difference is interpreted by ΔIn21 as denoting the nuclear symmetry energy or density difference between neutrons and protons in reactions more concisely than from the statistical ablation-abrasion model.

  13. Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore.

    PubMed

    Paganini, Iván E; Pastorino, Claudio; Urrutia, Ignacio

    2015-06-28

    We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.

  14. Thermodynamic scaling of dynamic properties of liquid crystals: Verifying the scaling parameters using a molecular model

    NASA Astrophysics Data System (ADS)

    Satoh, Katsuhiko

    2013-08-01

    The thermodynamic scaling of molecular dynamic properties of rotation and thermodynamic parameters in a nematic phase was investigated by a molecular dynamic simulation using the Gay-Berne potential. A master curve for the relaxation time of flip-flop motion was obtained using thermodynamic scaling, and the dynamic property could be solely expressed as a function of TV^{γ _τ }, where T and V are the temperature and volume, respectively. The scaling parameter γτ was in excellent agreement with the thermodynamic parameter Γ, which is the logarithm of the slope of a line plotted for the temperature and volume at constant P2. This line was fairly linear, and as good as the line for p-azoxyanisole or using the highly ordered small cluster model. The equivalence relation between Γ and γτ was compared with results obtained from the highly ordered small cluster model. The possibility of adapting the molecular model for the thermodynamic scaling of other dynamic rotational properties was also explored. The rotational diffusion constant and rotational viscosity coefficients, which were calculated using established theoretical and experimental expressions, were rescaled onto master curves with the same scaling parameters. The simulation illustrates the universal nature of the equivalence relation for liquid crystals.

  15. Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paganini, Iván E.; Pastorino, Claudio, E-mail: pastor@cnea.gov.ar; Urrutia, Ignacio, E-mail: iurrutia@cnea.gov.ar

    2015-06-28

    We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surfacemore » tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T − ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.« less

  16. Temperature Dependence of Molecular Line Strengths and Fei 1565 nm Zeeman Splitting in a Sunspot

    NASA Astrophysics Data System (ADS)

    Penn, M. J.; Walton, S.; Chapman, G.; Ceja, J.; Plick, W.

    2003-03-01

    Spectroscopic observations at 1565 nm were made in the eastern half of the main umbra of NOAA 9885 on 1 April 2002 using the National Solar Observatory McMath-Pierce Telescope at Kitt Peak with a tip-tilt image stabilization system and the California State University Northridge-National Solar Observatory infrared camera. The line depth of the OH blend at 1565.1 nm varies with the observed continuum temperature; the variation fits previous observations except that the continuum temperature is lower by 600 K. The equivalent width of the OH absorption line at 1565.2 nm shows a temperature dependence similar to previously published umbral molecular observations at 640 nm. A simple model of expected OH abundance based upon an ionization analogy to molecular dissociation is produced and agrees well with the temperature variation of the line equivalent width. A CN absorption line at 1564.6 nm shows a very different temperature dependence, likely due to complicated formation and destruction processes. Nonetheless a numerical fit of the temperature variation of the CN equivalent width is presented. Finally a comparison of the Zeeman splitting of the Fei 1564.8 nm line with the sunspot temperature derived from the continuum intensity shows an umbra somewhat cooler for a given magnetic field strength than previous comparisons using this infrared 1564.8 nm line, but consistent with these previous infrared measurements the umbra is hotter for a given magnetic field strength than magnetic and temperature measurements at 630.2 nm would suggest. Differences between the 630.2 nm and 1564.8 nm umbral temperature and magnetic field relations are explained with the different heights of formation of the lines and continua at these wavelengths.

  17. New adhesive withstands temperature extremes

    NASA Technical Reports Server (NTRS)

    Park, J. J.; Seidenberg, B.

    1978-01-01

    Adhesive, developed for high-temperature components aboard satellites, is useful at both high and low temperatures and exhibits low-vacuum volatility and low shrinkage. System uses polyfunctional epoxy with high aromatic content, low equivalent weight, and more compact polymer than conventional bisphenol A tape.

  18. Interactive effects of temperature and glyphosate on the behavior of blue ridge two-lined salamanders (Eurycea wilderae).

    PubMed

    Gandhi, Jaina S; Cecala, Kristen K

    2016-09-01

    The objective of the present study was to evaluate the potential interactive effects of stream temperatures and environmentally relevant glyphosate-based herbicide concentrations on movement and antipredator behaviors of larval Eurycea wilderae (Blue Ridge two-lined salamander). Larval salamanders were exposed to 1 of 4 environmentally relevant glyphosate concentrations (0.00 µg acid equivalent [a.e.]/L, 0.73 µg a.e./L, 1.46 µg a.e./L, and 2.92 µg a.e./L) at either ambient (12 °C) or elevated (23 °C) water temperature. Behaviors observed included the exploration of a novel habitat, use of refuge, habitat selection relative to a potential predator, and burst movement distance. In the absence of glyphosate, temperature consistently affected movement and refuge-use behavior, with individuals moving longer distances more frequently and using refuge less at warm temperatures; however, when glyphosate was added, the authors observed inconsistent effects of temperature that may have resulted from differential toxicity at various temperatures. Larval salamanders made shorter, more frequent movements and demonstrated reduced burst distance at higher glyphosate concentrations. The authors also found that lower glyphosate concentrations sometimes had stronger effects than higher concentrations (i.e., nonmonotonic dose responses), suggesting that standard safety tests conducted only at higher glyphosate concentrations might overlook important sublethal effects on salamander behavior. These data demonstrate that sublethal effects of glyphosate-based herbicides on natural behaviors of amphibians can occur with short-term exposure to environmentally relevant concentrations. Environ Toxicol Chem 2016;35:2297-2303. © 2016 SETAC. © 2016 SETAC.

  19. Dissection of the components for PIP2 activation and thermosensation in TRP channels

    PubMed Central

    Brauchi, Sebastian; Orta, Gerardo; Mascayano, Carolina; Salazar, Marcelo; Raddatz, Natalia; Urbina, Hector; Rosenmann, Eduardo; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel–PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis. PMID:17548815

  20. Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions

    NASA Technical Reports Server (NTRS)

    Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail

    2012-01-01

    A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.

  1. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    NASA Astrophysics Data System (ADS)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  2. An equivalent body surface charge model representing three-dimensional bioelectrical activity

    NASA Technical Reports Server (NTRS)

    He, B.; Chernyak, Y. B.; Cohen, R. J.

    1995-01-01

    A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.

  3. Impedance spectroscopy of heterojunction solar cell a-SiC/c-Si with ITO antireflection film investigated at different temperatures

    NASA Astrophysics Data System (ADS)

    Šály, V.; Perný, M.; Janíček, F.; Huran, J.; Mikolášek, M.; Packa, J.

    2017-04-01

    Progressive smart photovoltaic technologies including heterostructures a-SiC/c-Si with ITO antireflection film are one of the prospective replacements of conventional photovoltaic silicon technology. Our paper is focused on the investigation of heterostructures a-SiC/c-Si provided with a layer of ITO (indium oxide/tin oxide 90/10 wt.%) which acts as a passivating and antireflection coating. Prepared photovoltaic cell structure was investigated at various temperatures and the influence of temperature on its operation was searched. The investigation of the dynamic properties of heterojunction PV cells was carried out using impedance spectroscopy. The equivalent AC circuit which approximates the measured impedance data was proposed. Assessment of the influence of the temperature on the operation of prepared heterostructure was carried out by analysis of the temperature dependence of AC equivalent circuit elements.

  4. THz Pyro-Optical Detector Based on LiNbO3 Whispering Gallery Mode Microdisc Resonator

    PubMed Central

    Cosci, Alessandro; Cerminara, Matteo; Nunzi Conti, Gualtiero; Soria, Silvia; Righini, Giancarlo C.; Pelli, Stefano

    2017-01-01

    This study analyzes the capabilities of a LiNbO3 whispering gallery mode microdisc resonator as a potential bolometer detector in the THz range. The resonator is theoretically characterized in the stationary regime by its thermo-optic and thermal coefficients. Considering a Q-factor of 107, a minimum detectable power of 20 μW was evaluated, three orders of magnitude above its noise equivalent power. This value opens up the feasibility of exploiting LiNbO3 disc resonators as sensitive room-temperature detectors in the THz range. PMID:28134857

  5. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  6. Coherence lengths for three-dimensional superconductors in the BCS-Bose picture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, R.M.; Casas, M.; Getino, J.M.

    1995-12-01

    Following an approach similar to that of Miyake or Randeria, Duan, and Shieh in two dimensions, we study a three-dimensional many-fermion gas at zero temperature interacting via some short-ranged two-body potential. To accommodate a possible singularity (e.g., the Coulomb repulsion) in the interaction, the potential is eliminated in favor of the two-body scattering {ital t}-matrix, the low-energy form of which is expressible in terms of the {ital s}-wave scattering length {ital a}{sub {ital s}}. The BCS gap equation for {ital s}-wave pairing is then solved simultaneously with the number equation in order to self-consistently obtain the zero-temperature BCS gap {Delta}more » as well as the chemical potential {mu} as functions of the dimensionless coupling variable {lambda}{equivalent_to}{ital k}{sub {ital F}}{ital a}{sub {ital s}}, where {ital k}{sub {ital F}} is the Fermi momentum. Results are valid for arbitrary coupling strength, and in the weak coupling limit reproduce the standard BCS results. Finally, root-mean-square pair sizes are obtained as a function of {lambda} and compared with experimental values.« less

  7. 40 CFR 86.1839-01 - Carryover of certification data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... distribution of catalyst temperatures of the selected durability configuration is effectively equivalent or lower than the distribution of catalyst temperatures of the vehicle configuration which is the source of...

  8. [Cocoa (Theobroma cacao L.) hulls: a posible commercial source of pectins].

    PubMed

    Barazarte, Humberto; Sangronis, Elba; Unai, Emaldi

    2008-03-01

    Commercial exploitation of cocoa (Theobroma cacao L.) generates a volume of hulls that could be used in the production of pectins on an industrial scale. Therefore, pectins from cocoa hulls were extracted at different pH and temperature conditions, and their main chemical characteristics were evaluated. EDTA at 0.5% was used for the extraction at pHs 3, 4 and 5 and temperatures of 60, 75 and 90 degrees C, under a 3 2 factorial design. The response variables were yield, content of anhydrous galacturonic acid (AGA), content of metoxil, degree of esterification and equivalent weight of the pectins extracted. The strength of the pectic gel was determined with a TA-XT2 texturometer. Strawberry jam was made with the pectin extracted, and its acceptability was determined using a 7-point hedonic scale. The results obtained were as follows: an extraction yield from 2.64 to 4.69 g/100 g; an AGA content between 49.8 and 64.06 g/100 g; a content of metoxil between 4.72 and 7.18 g/100 g; a degree of esterification between 37.94 and 52.20%; an equivalent weight from 385.47 to 464.61 g/equivalent of H+, and a degree of gelation between 28.64 and 806.03 g force. The pectin extracted at pH 4 and 90 degrees C showed a gelation power of 422.16 g force, purity 62.26 g/100 g of AGA, and a yield of extraction of 3.89 g/100 g and allowed to prepare ajam with an average level of liking of "like moderately". Pectins from cocoa hulls show potential application in the food industry, but it is necessary to optimize the extraction parameters to increase its yield.

  9. Equivalent circuit models for interpreting impedance perturbation spectroscopy data

    NASA Astrophysics Data System (ADS)

    Smith, R. Lowell

    2004-07-01

    As in-situ structural integrity monitoring disciplines mature, there is a growing need to process sensor/actuator data efficiently in real time. Although smaller, faster embedded processors will contribute to this, it is also important to develop straightforward, robust methods to reduce the overall computational burden for practical applications of interest. This paper addresses the use of equivalent circuit modeling techniques for inferring structure attributes monitored using impedance perturbation spectroscopy. In pioneering work about ten years ago significant progress was associated with the development of simple impedance models derived from the piezoelectric equations. Using mathematical modeling tools currently available from research in ultrasonics and impedance spectroscopy is expected to provide additional synergistic benefits. For purposes of structural health monitoring the objective is to use impedance spectroscopy data to infer the physical condition of structures to which small piezoelectric actuators are bonded. Features of interest include stiffness changes, mass loading, and damping or mechanical losses. Equivalent circuit models are typically simple enough to facilitate the development of practical analytical models of the actuator-structure interaction. This type of parametric structure model allows raw impedance/admittance data to be interpreted optimally using standard multiple, nonlinear regression analysis. One potential long-term outcome is the possibility of cataloging measured viscoelastic properties of the mechanical subsystems of interest as simple lists of attributes and their statistical uncertainties, whose evolution can be followed in time. Equivalent circuit models are well suited for addressing calibration and self-consistency issues such as temperature corrections, Poisson mode coupling, and distributed relaxation processes.

  10. Coal combustion system

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  11. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh.

    PubMed

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1994-01-01

    A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.

  13. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detector (HFID) for the measurement of hydrocarbons, non-dispersive infrared analyzers (NDIR) for the... converted to nitric oxide before analysis. Other types of analyzers may be used if shown to yield equivalent... room temperature, produces an equivalent CO response, as measured on the most sensitive CO range, which...

  14. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detector (HFID) for the measurement of hydrocarbons, non-dispersive infrared analyzers (NDIR) for the... converted to nitric oxide before analysis. Other types of analyzers may be used if shown to yield equivalent... room temperature, produces an equivalent CO response, as measured on the most sensitive CO range, which...

  15. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  16. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE PAGES

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  17. Steady-state analytical model of suspended p-type 3C-SiC bridges under consideration of Joule heating

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Vivekananthan; Dinh, Toan; Phan, Hoang-Phuong; Kozeki, Takahiro; Namazu, Takahiro; Viet Dao, Dzung; Nguyen, Nam-Trung

    2017-07-01

    This paper reports an analytical model and its validation for a released microscale heater made of 3C-SiC thin films. A model for the equivalent electrical and thermal parameters was developed for the two-layer multi-segment heat and electric conduction. The model is based on a 1D energy equation, which considers the temperature-dependent resistivity and allows for the prediction of voltage-current and power-current characteristics of the microheater. The steady-state analytical model was validated by experimental characterization. The results, in particular the nonlinearity caused by temperature dependency, are in good agreement. The low power consumption of the order of 0.18 mW at approximately 310 K indicates the potential use of the structure as thermal sensors in portable applications.

  18. Stress-Rupture of New Tyranno Si-C-O-Zr Fiber Reinforced Minicomposites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Minicomposites consisting of two varieties of Zr containing SiC-based fibers from Ube (Tyranno) with BN interphases and CVI SiC matrices were studied. The two fiber-types were the ZMI and ZE fiber-types that contain approximately 8 and 2% oxygen, respectively. The minicomposites were precracked and tested under constant load testing at temperatures ranging from 700 to 1200 C. The data were then compared to the rupture behavior of Hi- Nicalon (TM) fiber reinforced minicomposites tested under identical conditions. It was found that the Ube fiber-types had stress rupture life equivalent to Hi- Nicalon (TM) over the entire temperature range. A potential benefit of the ZMI fiber-type is that it offers rupture properties almost as good as Hi-Nicalon (TM) at the cost of ceramic grade Nicalon (TM).

  19. Atom-optics knife-edge: Measuring sub-nanokelvin momentum distributions

    NASA Astrophysics Data System (ADS)

    Ramos, Ramon; Spierings, David; Steinberg, Aephraim

    2017-04-01

    Temperatures below 1 nanokelvin have been achieved in the recent years, enabling new classes of experiments which benefit from the resulting long coherence times. This achievement comes hand in hand with the challenge of measuring such low temperatures. By employing the equivalent of a knife-edge measurement for matter-waves, we have been able to characterize ultra-low momentum widths. We measured a momentum width corresponding to an effective temperature of 900 +/- 200 pK, only limited by our cooling performance. We show that this technique compares favourably with more traditional methods, which would require expansion times of 100's of ms or frequency stability of 10's of Hz. Finally, we show that the effective knife-edge, created by a potential barrier, begins to become ''blunt'' due to tunneling for thin barriers, and we obtain quantitative agreement with a theoretical model. This method is a useful tool for atomic interferometry and other areas in ultracold atoms where a robust and precise technique for characterizing the momentum distribution is required.

  20. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, D. P.; Oettinger, P. E.

    1976-01-01

    The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV.

  1. High operating temperature interband cascade focal plane arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature differencemore » of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.« less

  2. Kinetic Inductance Photodetectors Based on Nonequilibrium Response in Superconducting Thin-Film Structures

    NASA Technical Reports Server (NTRS)

    Sergeev, A. V.; Karasik, B. S.; Gogidze, I. G.; Mitin, V. V.

    2001-01-01

    While experimental studies of kinetic-inductance sensors have been limited so far by the temperature range near the superconducting transition, these detectors can be very sensitivity at temperatures well below the transition, where the number of equilibrium quasiparticles is exponentially small. In this regime, a shift of the quasiparticle chemical potential under radiation results in the change of the kinetic inductance, which can be measured by a sensitive SQUID readout. We modeled the kinetic inductance response of detectors made from disordered superconducting Nb, NbC, and MoRe films. Low phonon transparency of the interface between the superconductor and the substrate causes substantial re-trapping of phonons providing high quantum efficiency and the operating time of approximately 1 ms at 1 K. Due to the small number of quasiparticles, the noise equivalent power of the detector determined by the quasiparticle generation-recombination noise can be as small as approximately 10(exp -19) W/Hz(exp 1/2) at He4 temperatures.

  3. Design and optimization of hot-filling pasteurization conditions: Cupuaçu (Theobroma grandiflorum) fruit pulp case study.

    PubMed

    Silva, Filipa V M; Martins, Rui C; Silva, Cristina L M

    2003-01-01

    Cupuaçu (Theobroma grandiflorum) is an Amazonian tropical fruit with a great economic potential. Pasteurization, by a hot-filling technique, was suggested for the preservation of this fruit pulp at room temperature. The process was implemented with local communities in Brazil. The process was modeled, and a computer program was written in Turbo Pascal. The relative importance among the pasteurization process variables (initial product temperature, heating rate, holding temperature and time, container volume and shape, cooling medium type and temperature) on the microbial target and quality was investigated, by performing simulations according to a screening factorial design. Afterward, simulations of the different processing conditions were carried out. The holding temperature (T(F)) and time (t(hold)) affected pasteurization value (P), and the container volume (V) influenced largely the quality parameters. The process was optimized for retail (1 L) and industrial (100 L) size containers, by maximizing volume average quality in terms of color lightness and sensory "fresh notes" and minimizing volume average total color difference and sensory "cooked notes". Equivalent processes were designed and simulated (P(91)( degrees )(C) = 4.6 min on Alicyclobacillus acidoterrestris spores) and final quality (color, flavor, and aroma attributes) was evaluated. Color was slightly affected by the pasteurization processes, and few differences were observed between the six equivalent treatments designed (T(F) between 80 and 97 degrees C). T(F) >/= 91 degrees C minimized "cooked notes" and maximized "fresh notes" of cupuaçu pulp aroma and flavor for 1 L container. Concerning the 100 L size, the "cooked notes" development can be minimized with T(F) >/= 91 degrees C, but overall the quality was greatly degraded as a result of the long cooling times. A more efficient method to speed up the cooling phase was recommended, especially for the industrial size of containers.

  4. Thermally assisted OSL application for equivalent dose estimation; comparison of multiple equivalent dose values as well as saturation levels determined by luminescence and ESR techniques for a sedimentary sample collected from a fault gouge

    NASA Astrophysics Data System (ADS)

    Şahiner, Eren; Meriç, Niyazi; Polymeris, George S.

    2017-02-01

    Equivalent dose estimation (De) constitutes the most important part of either trap-charge dating techniques or dosimetry applications. In the present work, multiple, independent equivalent dose estimation approaches were adopted, using both luminescence and ESR techniques; two different minerals were studied, namely quartz as well as feldspathic polymineral samples. The work is divided into three independent parts, depending on the type of signal employed. Firstly, different De estimation approaches were carried out on both polymineral and contaminated quartz, using single aliquot regenerative dose protocols employing conventional OSL and IRSL signals, acquired at different temperatures. Secondly, ESR equivalent dose estimations using the additive dose procedure both at room temperature and at 90 K were discussed. Lastly, for the first time in the literature, a single aliquot regenerative protocol employing a thermally assisted OSL signal originating from Very Deep Traps was applied for natural minerals. Rejection criteria such as recycling and recovery ratios are also presented. The SAR protocol, whenever applied, provided with compatible De estimations with great accuracy, independent on either the type of mineral or the stimulation temperature. Low temperature ESR signals resulting from Al and Ti centers indicate very large De values due to bleaching in-ability, associated with large uncertainty values. Additionally, dose saturation of different approaches was investigated. For the signal arising from Very Deep Traps in quartz saturation is extended almost by one order of magnitude. It is interesting that most of De values yielded using different luminescence signals agree with each other and ESR Ge center has very large D0 values. The results presented above highly support the argument that the stability and the initial ESR signal of the Ge center is highly sample-dependent, without any instability problems for the cases of quartz resulting from fault gouge.

  5. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... overall energy efficient and economical manner; (b) Maintain temperatures to maximize customer satisfaction by conforming to local commercial equivalent temperature levels and operating practices; (c) Set...

  6. Synthesis of Aromatic Polyhedral Oligomeric Silsesquioxane (POSS) Dianilines for Use in High-Temperature Polyimides

    DTIC Science & Technology

    2012-05-01

    In all cases, a Grignard reagent of a para- or meta- substituted, protected aniline was reacted with a chlorosilane. Control of the reaction is...one equivalent of Grignard reagent with a small excess of tetrachlorosilane generates a good yield of monosubstituted trichlorosilane (6a). It must...methyltrichlorosilane. It is possible to add either 1 equivalent (to make 4a and 4b) or 2 equivalents of the protected aniline Grignard reagent (to make 5a

  7. Enhanced late gas generation potential of petroleum source rocks via recombination reactions: Evidence from the Norwegian North Sea

    NASA Astrophysics Data System (ADS)

    Erdmann, Michael; Horsfield, Brian

    2006-08-01

    Gas generation in the deep reaches of sedimentary basins is usually considered to take place via the primary cracking of short alkyl groups from overmature kerogen or the secondary cracking of petroleum. Here, we show that recombination reactions ultimately play the dominant role in controlling the timing of late gas generation in source rocks which contain mixtures of terrigeneous and marine organic matter. These reactions, taking place at low levels of maturation, result in the formation of a thermally stable bitumen, which is the major source of methane at very high maturities. The inferences come from pyrolysis experiments performed on samples of the Draupne Formation (liptinitic Type II kerogen) and Heather Formation (mixed marine-terrigeneous Type III kerogen), both Upper Jurassic source rocks stemming from the Norwegian northern North Sea Viking Graben system. Non-isothermal closed system micro scale sealed vessel (MSSV) pyrolysis, non-isothermal open system pyrolysis and Rock Eval type pyrolysis were performed on the solvent extracted, concentrated kerogens of the two immature samples. The decrease of C 6+ products in the closed system MSSV pyrolysis provided the basis for the calculation of secondary gas (C 1-5) formation. Subtraction of the calculated secondary gas from the total observed gas yields a "remaining" gas. In the case of the Draupne Formation this is equivalent to primary gas cracked directly from the kerogen, as detected by a comparison with multistep open pyrolysis data. For the Heather Formation the calculated remaining gas formation profile is initially attributable to primary gas but there is a second major gas pulse at very high temperature (>550 °C at 5.0 K min -1) that is not primary. This has been explained by a recondensation process where first formed high molecular weight compounds in the closed system yield a macromolecular material that undergoes secondary cracking at elevated temperatures. The experiments provided the input for determination of kinetic parameters of the different gas generation types, which were used for extrapolations to a linear geological heating rate of 10 -11 K min -1. Peak generation temperatures for the primary gas generation were found to be higher for Heather Formation ( Tmax = 190 °C, equivalent to Ro appr. 1.7%) compared to Draupne Formation ( Tmax = 175 °C, equivalent to appr. Ro 1.3%). Secondary gas peak generation temperatures were calculated to be 220 °C for the Heather Formation and 205 to 215 °C for the Draupne Formation, respectively, with equivalent vitrinite reflectance values ( Ro) between 2.4% and 2.0%. The high temperature secondary gas formation from cracking of the recombination residue as detected for the Heather Formation is quantitatively important and is suggested to occur at very high temperatures ( Tmax approx. 250 °C) for geological heating rates. The prediction of a significant charge of dry gas from the Heather Formation at very high maturity levels has important implications for petroleum exploration in the region, especially to the north of the Viking Graben where Upper Jurassic sediments are sufficiently deep buried to have experienced such a process.

  8. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... motor vehicles; and non-DOT specification cargo tank motor vehicles equivalent in structural design and...; metal IBCs and non-specification portable tanks equivalent in structural design and accident damage...; Class DOT 106, 110 multi-unit tank car tanks; AAR Class 203W, 206W, 211W tank car tanks; and non-DOT...

  9. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... motor vehicles; and non-DOT specification cargo tank motor vehicles equivalent in structural design and...; metal IBCs and non-specification portable tanks equivalent in structural design and accident damage...; Class DOT 106, 110 multi-unit tank car tanks; AAR Class 203W, 206W, 211W tank car tanks; and non-DOT...

  10. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... motor vehicles; and non-DOT specification cargo tank motor vehicles equivalent in structural design and...; metal IBCs and non-specification portable tanks equivalent in structural design and accident damage...; Class DOT 106, 110 multi-unit tank car tanks; AAR Class 203W, 206W, 211W tank car tanks; and non-DOT...

  11. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... motor vehicles; and non-DOT specification cargo tank motor vehicles equivalent in structural design and...; metal IBCs and non-specification portable tanks equivalent in structural design and accident damage...; Class DOT 106, 110 multi-unit tank car tanks; AAR Class 203W, 206W, 211W tank car tanks; and non-DOT...

  12. Clustering and phase behaviour of attractive active particles with hydrodynamics.

    PubMed

    Navarro, Ricard Matas; Fielding, Suzanne M

    2015-10-14

    We simulate clustering, phase separation and hexatic ordering in a monolayered suspension of active squirming disks subject to an attractive Lennard-Jones-like pairwise interaction potential, taking hydrodynamic interactions between the particles fully into account. By comparing the hydrodynamic case with counterpart simulations for passive and active Brownian particles, we elucidate the relative roles of self-propulsion, interparticle attraction, and hydrodynamic interactions in determining clustering and phase behaviour. Even in the presence of an attractive potential, we find that hydrodynamic interactions strongly suppress the motility induced phase separation that might a priori have been expected in a highly active suspension. Instead, we find only a weak tendency for the particles to form stringlike clusters in this regime. At lower activities we demonstrate phase behaviour that is broadly equivalent to that of the counterpart passive system at low temperatures, characterized by regimes of gas-liquid, gas-solid and liquid-solid phase coexistence. In this way, we suggest that a dimensionless quantity representing the level of activity relative to the strength of attraction plays the role of something like an effective non-equilibrium temperature, counterpart to the (dimensionless) true thermodynamic temperature in the passive system. However there are also some important differences from the equilibrium case, most notably with regards the degree of hexatic ordering, which we discuss carefully.

  13. Dissipative particle dynamics study of velocity autocorrelation function and self-diffusion coefficient in terms of interaction potential strength

    NASA Astrophysics Data System (ADS)

    Zohravi, Elnaz; Shirani, Ebrahim; Pishevar, Ahmadreza; Karimpour, Hossein

    2018-07-01

    This research focuses on numerically investigating the self-diffusion coefficient and velocity autocorrelation function (VACF) of a dissipative particle dynamics (DPD) fluid as a function of the conservative interaction strength. Analytic solutions to VACF and self-diffusion coefficients in DPD were obtained by many researchers in some restricted cases including ideal gases, without the account of conservative force. As departure from the ideal gas conditions are accentuated with increasing the relative proportion of conservative force, it is anticipated that the VACF should gradually deviate from its normally expected exponentially decay. This trend is confirmed through numerical simulations and an expression in terms of the conservative force parameter, density and temperature is proposed for the self-diffusion coefficient. As it concerned the VACF, the equivalent Langevin equation describing Brownian motion of particles with a harmonic potential is adapted to the problem and reveals an exponentially decaying oscillatory pattern influenced by the conservative force parameter, dissipative parameter and temperature. Although the proposed model for obtaining the self-diffusion coefficient with consideration of the conservative force could not be verified due to computational complexities, nonetheless the Arrhenius dependency of the self-diffusion coefficient to temperature and pressure permits to certify our model over a definite range of DPD parameters.

  14. Temperature Prediction Model for Bone Drilling Based on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation.

    PubMed

    Feldmann, Arne; Anso, Juan; Bell, Brett; Williamson, Tom; Gavaghan, Kate; Gerber, Nicolas; Rohrbach, Helene; Weber, Stefan; Zysset, Philippe

    2016-05-01

    Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.

  15. Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops. [regression analysis

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.

    1978-01-01

    A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.

  16. Deconvoluting physical and chemical heat: Temperature and spiciness influence flavor differently.

    PubMed

    Kapaun, Camille L; Dando, Robin

    2017-03-01

    Flavor is an essential, rich and rewarding part of human life. We refer to both physical and chemical heat in similar terms; elevated temperature and capsaicin are both termed hot. Both influence our perception of flavor, however little research exists into the possibly divergent effect of chemical and physical heat on flavor. A human sensory panel was recruited to determine the equivalent level of capsaicin to match the heat of several physical temperatures. In a subsequent session, the intensities of multiple concentrations of tastant solutions were scaled by the same panel. Finally, panelists evaluated tastants plus equivalent chemical or physical "heat". All basic tastes aside from umami were influenced by heat, capsaicin, or both. Interestingly, capsaicin blocked bitter taste input much more powerfully than elevated temperature. This suggests that despite converging percepts, chemical and physical heat have a fundamentally different effect on the perception of flavor. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Geothermal development plan: Cochise/Santa Cruz Counties

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The regional market potential for utilizing geothermal energy was evaluated. Three potential geothermal resource areas with potential for resource temperatures less than 900C (1940F) were identified. Population growth rates are expected to average 3% per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy use analysis is included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan identifies potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.

  18. Fluid-inclusion evidence for previous higher temperatures in the miravalles geothermal field, Costa Rica

    USGS Publications Warehouse

    Bargar, K.E.; Fournier, R.O.

    1988-01-01

    Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.

  19. Mass Energy Equivalence Formula Must Include Rotational and Vibrational Kinetuic Energies as Well As Potential Energies

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2010-11-01

    Originally Einstein proposed the the mass-energy equivalence at low speeds as E=mc^2 + 1/2 mv^2. However, a mass may also be rotating and vibrating as well as moving linearly. Although small, these kinetic energies must be included in formulating a true mathematical statement of the mass-energy equivalence. Also, gravitational, electromagneic and magnetic potential energies must be included in the mass-energy equivalence mathematical statement. While the kinetic energy factors may differ in each physical situation such as types of vibrations and rotations, the basic equation for the mass- energy equivalence is therefore E = m0c^2 + 1/2m0v^2 + 1/2I2̂+ 1/2kx^2 + WG+ WE+ WM.

  20. Parametric test results of a swirl-can combustor

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.; Jones, R. E.

    1973-01-01

    Pollutant levels of oxides of nitrogen, unburned hydrocarbons, and carbon monoxide were measured for three models of an experimental, annular swirl can combustor. The combustor was 1.067 meters in outer diameter, incorporated 120 modules, and was specifically designed for elevated exit temperature performance. Test conditions included combustor inlet temperatures of 589, 756 and 839 K, inlet pressures of 3 to 6.4 atmospheres, reference velocities of 21 to 38 meters per second and combustor equivalence ratios, based on total combustor flows of 0.206 to 1.028. Maximum oxides of nitrogen emission index values occurred at an equivalence ratio of 0.7 with lower values measured for both higher and lower equivalence ratios. Oxides of nitrogen concentrations, to the 0.7 level with 756 K inlet air, were correlated for the three models by a combined parameter consisting of measured flow and geometric parameters. Effects of the individual parameters comprising the correlation are also presented.

  1. Optimizing MOS-gated thyristor using voltage-based equivalent circuit model for designing steep-subthreshold-slope PN-body-tied silicon-on-insulator FET

    NASA Astrophysics Data System (ADS)

    Ueda, Daiki; Takeuchi, Kiyoshi; Kobayashi, Masaharu; Hiramoto, Toshiro

    2018-04-01

    A new circuit model that provides a clear guide on designing a MOS-gated thyristor (MGT) is reported. MGT plays a significant role in achieving a steep subthreshold slope of a PN-body tied silicon-on-insulator (SOI) FET (PNBTFET), which is an SOI MOSFET merged with an MGT. The effects of design parameters on MGT and the proposed equivalent circuit model are examined to determine how to regulate the voltage response of MGT and how to suppress power dissipation. It is demonstrated that MGT with low threshold voltages, small hysteresis widths, and small power dissipation can be designed by tuning design parameters. The temperature dependence of MGT is also examined, and it is confirmed that hysteresis width decreases with the average threshold voltage kept nearly constant as temperature rises. The equivalent circuit model can be conveniently used to design low-power PNBTFET.

  2. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights.

    PubMed

    Giaconia, Carlo; Orioli, Aldo; Di Gangi, Alessandra

    2015-05-01

    The results of an experimental investigation on the human thermal comfort inside the cabin of some Airbus A319 aircrafts during 14 short-haul domestic flights, linking various Italian cities, are presented and used to define a correlation among the predicted mean vote (PMV), a procedure which is commonly used to assess the thermal comfort in inhabited environments, and the equivalent temperature and mean thermal vote (MTV), which are the parameters suggested by the European Standard EN ISO 14505-2 for the evaluation of the thermal environment in vehicles. The measurements of the radiant temperature, air temperature and relative humidity during flights were performed. The air temperature varied between 22.2 °C and 26.0 °C; the relative humidity ranged from 8.7% to 59.2%. The calculated values of the PMV varied from -0.16 to 0.90 and were confirmed by the answers of the passengers. The equivalent temperature was evaluated using the equations of Fanger or on the basis of the values of the skin temperature measured on some volunteers. The correlation linking the thermal sensation scales and zones used by the PMV and the MTV resulted quite accurate because the minimum value of the absolute difference between such environmental indexes equalled 0.0073 and the maximum difference did not exceed the value of 0.0589. Even though the equivalent temperature and the MTV were specifically proposed to evaluate the thermal sensation in vehicles, their use may be effectively extended to the assessment of the thermal comfort in airplanes or other occupied places. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Method of Generating Transient Equivalent Sink and Test Target Temperatures for Swift BAT

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2004-01-01

    The NASA Swift mission has a 600-km altitude and a 22 degrees maximum inclination. The sun angle varies from 45 degrees to 180 degrees in normal operation. As a result, environmental heat fluxes absorbed by the Burst Alert Telescope (BAT) radiator and loop heat pipe (LHP) compensation chambers (CCs) vary transiently. Therefore the equivalent sink temperatures for the radiator and CCs varies transiently. In thermal performance verification testing in vacuum, the radiator and CCs radiated heat to sink targets. This paper presents an analytical technique for generating orbit transient equivalent sink temperatures and a technique for generating transient sink target temperatures for the radiator and LHP CCs. Using these techniques, transient target temperatures for the radiator and LHP CCs were generated for three thermal environmental cases: worst hot case, worst cold case, and cooldown and warmup between worst hot case in sunlight and worst cold case in the eclipse, and three different heat transport values: 128 W, 255 W, and 382 W. The 128 W case assumed that the two LHPs transport 255 W equally to the radiator. The 255 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator. The 382 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator, and has a 50% design margin. All these transient target temperatures were successfully implemented in the engineering test unit (ETU) LHP and flight LHP thermal performance verification tests in vacuum.

  4. The inner core thermodynamics of the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.

    2016-10-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  5. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... overall energy efficient and economical manner; (b) Maintain temperatures to maximize customer satisfaction by conforming to local commercial equivalent temperature levels and operating practices; (c) Set...-conditioning during non-working hours, except as necessary to return space temperatures to a suitable level for...

  6. High Temperature Elastic Properties of Single Crystal Mullite (Approximately 2.5Al2O3.SiO2) by Brillouin Spectroscopy

    NASA Technical Reports Server (NTRS)

    Palko, James W.; Sayir, Ali; Sinogeikin, Stanislav V.; Kriven, Waltraud M.; Bass, Jay D.; Farmer, Serene C. (Technical Monitor)

    2001-01-01

    The complete elastic tensor of mullite has been determined by brillouin spectroscopy at room temperature and elevated temperatures up to 1200C. Equivalent, isotropic moduli (bulk, shear, and Young's) have been calculated. The room temperature values obtained using Voigt-Reuss-Hill averaging are: K(sub VRH) = 173.5 + 6.9 GPa, G(sub VRH) = 88.0 + 3.5 GPa, E(sub VRH) = 225.9 + 9.0 GPa. All moduli show relatively gradual decreases with temperature. The temperature derivatives obtained for the equivalent, isotropic moduli are: dK(sub VRH)/dT = - 17.5 + 2.5 MPa/deg. C, dG(sub VRH)/dT = -8.8 + 1.4 MPa/deg. C, dE(sub VRH)/dT = -22.6 + 2.8 MPa/deg C. Substantial differences between bulk properties calculated from the single crystal measurements in this study and the properties reported in the literature for polycrystalline sintered mullite are identified, indicating the importance of factors such as microstructure, intergranular phases, and composition to the elasticity of mullite ceramics.

  7. Preliminary evaluation of glass resin materials for solar cell cover use. [on spacecraft

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Swartz, C. K.; Baraona, C. R.

    1978-01-01

    Silicon solar cells and silicon wafers coated with a heat-curable resin consisting of alternating Si-O atoms were subjected to three tests to evaluate the potential utility of this coating in space environments. These included UV irradiation in vacuum at an intensity of 10 air mass zero UV energy-equivalent solar constants for 728 hours followed by a long thermal cycle; 15 thermal shock cycles between 100 C and minus 196 C; and high temperature and humidity (65 C at 90% relative humidity). The UV tests resulted in a 8 to 24% loss in short-circuit current and darkening of the covers. Modification of the resin to provide a better match between the coefficients of expansion of the resin and silicon improved resistance to thermal shock, but also increased the darkening effect under UV irradiation. Silicon wafers coated with the resin were not adversely affected by the temperature/humidity test.

  8. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  9. 40 CFR 98.124 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in paragraph (b)(8) of this section only if the total annual CO2-equivalent fluorinated GHG... terms of total CO2 equivalents. For fluorinated GHGs whose GWPs are not listed in Table A-1 to subpart A... control purposes and may include but are not limited to yields, pressures, temperatures, etc. (e.g., of...

  10. 40 CFR 98.124 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in paragraph (b)(8) of this section only if the total annual CO2-equivalent fluorinated GHG... terms of total CO2 equivalents. For fluorinated GHGs whose GWPs are not listed in Table A-1 to subpart A... control purposes and may include but are not limited to yields, pressures, temperatures, etc. (e.g., of...

  11. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    PubMed

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  12. Macromolecular Rate Theory (MMRT) Provides a Thermodynamics Rationale to Underpin the Convergent Temperature Response in Plant Leaf Respiration

    NASA Astrophysics Data System (ADS)

    Liang, L. L.; Arcus, V. L.; Heskel, M.; O'Sullivan, O. S.; Weerasinghe, L. K.; Creek, D.; Egerton, J. J. G.; Tjoelker, M. G.; Atkin, O. K.; Schipper, L. A.

    2017-12-01

    Temperature is a crucial factor in determining the rates of ecosystem processes such as leaf respiration (R) - the flux of plant respired carbon dioxide (CO2) from leaves to the atmosphere. Generally, respiration rate increases exponentially with temperature as modelled by the Arrhenius equation, but a recent study (Heskel et al., 2016) showed a universally convergent temperature response of R using an empirical exponential/polynomial model whereby the exponent in the Arrhenius model is replaced by a quadratic function of temperature. The exponential/polynomial model has been used elsewhere to describe shoot respiration and plant respiration. What are the principles that underlie these empirical observations? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory for chemical kinetics, is equivalent to the exponential/polynomial model. We re-analyse the data from Heskel et al. 2016 using MMRT to show this equivalence and thus, provide an explanation based on thermodynamics, for the convergent temperature response of R. Using statistical tools, we also show the equivalent explanatory power of MMRT when compared to the exponential/polynomial model and the superiority of both of these models over the Arrhenius function. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration is maximum (the so called optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the so called change in heat capacity for the system, ). The latter term originates from the change in heat capacity between an enzyme-substrate complex and an enzyme transition state complex in enzyme-catalysed metabolic reactions. From MMRT, we find the average Topt and Tinf of R are 67.0±1.2 °C and 41.4±0.7 °C across global sites. The average curvature (average negative) is -1.2±0.1 kJ.mol-1K-1. MMRT extends the classic transition state theory to enzyme-catalysed reactions and scales up to more complex processes including micro-organism growth rates and ecosystem processes.

  13. Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans.

    PubMed

    Tester, Nicole J; Plaas, Anna H; Howland, Dena R

    2007-04-01

    Chondroitinase ABC (Ch'ase ABC) is a bacterial lyase that degrades chondroitin sulfate (CS), dermatan sulfate, and hyaluronan glycosaminoglycans (GAGs). This enzyme has received significant attention as a potential therapy for promoting central nervous system and peripheral nervous system repair based on its degradation of CS GAGs. Determination of the stability of Ch'ase ABC activity at temperatures equivalent to normal (37 degrees C) and elevated (39 degrees C) body temperatures is important for optimizing its clinical usage. We report here data obtained from examining enzymatic activity at these temperatures across nine lots of commercially available protease-free Ch'ase ABC. CS GAG degrading activity was assayed by using 1) immunohistochemical detection of unsaturated disaccharide stubs generated by digestion of proteoglycans in tissue sections and 2) fluorophore-assisted carbohydrate electrophoresis (FACE) and/or high-performance liquid chromatography (HPLC) to separate and quantify unsaturated disaccharide digestion products. Our results indicate that there is a significant effect of lot and time on enzymatic thermostability. Average enzymatic activity is significantly decreased at 1 and 3 days at 39 degrees C and 37 degrees C, respectively. Furthermore, the average activity seen after 1 day was significantly different between the two temperatures. Addition of bovine serum albumin as a stabilizer significantly preserved enzymatic activity at 1 day, but not 3 days, at 39 degrees C. These results show that the CS GAG degrading activity of Ch'ase ABC is significantly decreased with incubation at body temperature over time and that all lots do not show equal thermostability. These findings are important for the design and interpretation of experimental and potential clinical studies involving Ch'ase ABC. (c) 2007 Wiley-Liss, Inc.

  14. A numerical analysis of phase-change problems including natural convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y.; Faghri, A.

    1990-08-01

    Fixed grid solutions for phase-change problems remove the need to satisfy conditions at the phase-change front and can be easily extended to multidimensional problems. The two most important and widely used methods are enthalpy methods and temperature-based equivalent heat capacity methods. Both methods in this group have advantages and disadvantages. Enthalpy methods (Shamsundar and Sparrow, 1975; Voller and Prakash, 1987; Cao et al., 1989) are flexible and can handle phase-change problems occurring both at a single temperature and over a temperature range. The drawback of this method is that although the predicted temperature distributions and melting fronts are reasonable, themore » predicted time history of the temperature at a typical grid point may have some oscillations. The temperature-based fixed grid methods (Morgan, 1981; Hsiao and Chung, 1984) have no such time history problems and are more convenient with conjugate problems involving an adjacent wall, but have to deal with the severe nonlinearity of the governing equations when the phase-change temperature range is small. In this paper, a new temperature-based fixed-grid formulation is proposed, and the reason that the original equivalent heat capacity model is subject to such restrictions on the time step, mesh size, and the phase-change temperature range will also be discussed.« less

  15. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  16. Fishing and bottom water temperature as drivers of change in maximum shell length in Atlantic surfclams (Spisula solidissima)

    NASA Astrophysics Data System (ADS)

    Munroe, D. M.; Narváez, D. A.; Hennen, D.; Jacobson, L.; Mann, R.; Hofmann, E. E.; Powell, E. N.; Klinck, J. M.

    2016-03-01

    Maximum shell length of Atlantic surfclams (Spisula solidissima) on the Middle Atlantic Bight (MAB) continental shelf, obtained from federal fishery survey data from 1982-present, has decreased by 15-20 mm. Two potential causes of this decreasing trend, fishery removal of large animals and stress due to warming bottom temperatures, were investigated using an individual-based model for post-settlement surfclams and a fifty-year hindcast of bottom water temperatures on the MAB. Simulations showed that fishing and/or warming bottom water temperature can cause decreases in maximum surfclam shell length (body size) equivalent to those observed in the fished stock. Independently, either localized fishing rates of 20% or sustained bottom temperatures that are 2 °C warmer than average conditions generate the observed decrease in maximum shell length. However, these independent conditions represent extremes and are not sustained in the MAB. The combined effects of fishing and warmer temperatures can generate simulated length decreases that are similar to observed decreases. Interannual variability in bottom water temperatures can also generate fluctuations in simulated shell length of up to 20 mm over a period of 10-15 years. If the change in maximum size is not genotypic, simulations also suggest that shell size composition of surfclam populations can recover if conditions change; however, that recovery could take a decade to become evident.

  17. Experimental study of the effect of cycle pressure on lean combustion emissions

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    Experiments were conducted in which a stream of premixed propane and air was burned under conditions representative of gas turbine operation. Emissions of NOx, CO, and unburned hydrocarbons (UHC) were measured over a range of combustor inlet temperature, pressure, and residence time at equivalence ratios from 0.7 down to the lean stability limit. At an inlet temperature of 600 K, observed NOx levels dropped markedly with decreasing pressure for pressures below 20 atm. The NOx levels are proportional to combustor residence time and formation rates were principally a function of adiabatic flame temperature. For adiabatic flame temperatures of 2050 K and higher, CO reached chemical equilibrium within 2 msec. Unburned hydrocarbon species dropped to a negligible level within 2 msec regardless of inlet temperature, pressure, or equivalence ratio. For a combustor residence time of 2.5 msec, combustion inefficiency became less than 0.01% at an adiabatic flame temperature of 2050 K. The maximum combustion inefficiency observed was on the order of 1% and corresponded to conditions near the lean stability limit. Using a perforated plate flameholder, this limit is well represented by the condition of 1800 K adiabatic flame temperature.

  18. Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, N.; Ohashi, Y.; Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223

    2007-03-15

    The superfluid density is a fundamental quantity describing the response to a rotation as well as in two-fluid collisional hydrodynamics. We present extensive calculations of the superfluid density {rho}{sub s} in the BCS-BEC crossover regime of a uniform superfluid Fermi gas at finite temperatures. We include strong-coupling or fluctuation effects on these quantities within a Gaussian approximation. We also incorporate the same fluctuation effects into the BCS single-particle excitations described by the superfluid order parameter {delta} and Fermi chemical potential {mu}, using the Nozieres-Schmitt-Rink approximation. This treatment is shown to be necessary for consistent treatment of {rho}{sub s} over themore » entire BCS-BEC crossover. We also calculate the condensate fraction N{sub c} as a function of the temperature, a quantity which is quite different from the superfluid density {rho}{sub s}. We show that the mean-field expression for the condensate fraction N{sub c} is a good approximation even in the strong-coupling BEC regime. Our numerical results show how {rho}{sub s} and N{sub c} depend on temperature, from the weak-coupling BCS region to the BEC region of tightly bound Cooper pair molecules. In a companion paper [Phys. Rev. A 74, 063626 (2006)], we derive an equivalent expression for {rho}{sub s} from the thermodynamic potential, which exhibits the role of the pairing fluctuations in a more explicit manner.« less

  19. Development of a fixed bed gasifier model and optimal operating conditions determination

    NASA Astrophysics Data System (ADS)

    Dahmani, Manel; Périlhon, Christelle; Marvillet, Christophe; Hajjaji, Noureddine; Houas, Ammar; Khila, Zouhour

    2017-02-01

    The main objective of this study was to develop a fixed bed gasifier model of palm waste and to identify the optimal operating conditions to produce electricity from synthesis gas. First, the gasifier was simulated using Aspen PlusTM software. Gasification is a thermo-chemical process that has long been used, but it remains a perfectible technology. It means incomplete combustion of biomass solid fuel into synthesis gas through partial oxidation. The operating parameters (temperature and equivalence ratio (ER)) were thereafter varied to investigate their effect on the synthesis gas composition and to provide guidance for future research and development efforts in process design. The equivalence ratio is defined as the ratio of the amount of air actually supplied to the gasifier and the stoichiometric amount of air. Increasing ER decreases the production of CO and H2 and increases the production of CO2 and H2O while an increase in temperature increases the fraction of CO and H2. The results show that the optimum temperature to have a syngas able to be effectively used for power generation is 900°C and the optimum equivalence ratio is 0.1.

  20. Chemical kinetic analysis of hydrogen-air ignition and reaction times

    NASA Technical Reports Server (NTRS)

    Rogers, R. C.; Schexnayder, C. J., Jr.

    1981-01-01

    An anaytical study of hydrogen air kinetics was performed. Calculations were made over a range of pressure from 0.2 to 4.0 atm, temperatures from 850 to 2000 K, and mixture equivalence ratios from 0.2 to 2.0. The finite rate chemistry model included 60 reactions in 20 species of the H2-O2-N2 system. The calculations also included an assessment of how small amounts of the chemicals H2O, NOx, H2O2, and O3 in the initial mixture affect ignition and reaction times, and how the variation of the third body efficiency of H2O relative of N2 in certain key reactions may affect reaction time. The results indicate that for mixture equivalence ratios between 0.5 and 1.7, ignition times are nearly constant; however, the presence of H2O and NO can have significant effects on ignition times, depending on the mixture temperature. Reaction time is dominantly influenced by pressure but is nearly independent of initial temperature, equivalence ratio, and the addition of chemicals. Effects of kinetics on reaction at supersonic combustor conditions are discussed.

  1. Development of Equivalent Material Properties of Microbump for Simulating Chip Stacking Packaging

    PubMed Central

    Lee, Chang-Chun; Tzeng, Tzai-Liang; Huang, Pei-Chen

    2015-01-01

    A three-dimensional integrated circuit (3D-IC) structure with a significant scale mismatch causes difficulty in analytic model construction. This paper proposes a simulation technique to introduce an equivalent material composed of microbumps and their surrounding wafer level underfill (WLUF). The mechanical properties of this equivalent material, including Young’s modulus (E), Poisson’s ratio, shear modulus, and coefficient of thermal expansion (CTE), are directly obtained by applying either a tensile load or a constant displacement, and by increasing the temperature during simulations, respectively. Analytic results indicate that at least eight microbumps at the outermost region of the chip stacking structure need to be considered as an accurate stress/strain contour in the concerned region. In addition, a factorial experimental design with analysis of variance is proposed to optimize chip stacking structure reliability with four factors: chip thickness, substrate thickness, CTE, and E-value. Analytic results show that the most significant factor is CTE of WLUF. This factor affects microbump reliability and structural warpage under a temperature cycling load and high-temperature bonding process. WLUF with low CTE and high E-value are recommended to enhance the assembly reliability of the 3D-IC architecture. PMID:28793495

  2. Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

    PubMed Central

    Nottale, Laurent

    2014-01-01

    We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided. PMID:24709901

  3. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum).

    PubMed

    Johnson, Michelle H; Lucius, Anita; Meyer, Tessa; de Mejia, Elvira Gonzalez

    2011-08-24

    The berry fruits of highbush blueberry (Vaccinium corymbosum) contain bioactive compounds with potential health benefits. The objective was to evaluate blueberries grown in southern Illinois as well as the effect of fermentation, at two different temperatures, on chemical and physical parameters. Fruits from fifteen blueberry cultivars were analyzed. Fruit diameter ranged from 12.8 mm to 18.7 mm, pH from 2.6 to 3.7, reducing sugars from 6.4% to 15.2%, total sugars from 13.9% to 21.6%, total polyphenols from 0.39 to 1.00 mg gallic acid equivalents (GAE)/g blueberry and antioxidant capacity from 5.8 to 10.9 μM Trolox equivalents (TE)/g. In vitro α-amylase and α-glucosidase inhibitory capacity relative to the positive control acarbose, a known anti-diabetic drug, showed a range from 91.8 to 103.3% for α-amylase and from 103.2% to 190.8% for α-glucosidase. Wines prepared from several of these blueberry cultivars were analyzed throughout fermentation and compared at room temperature and cold temperature fermentation for pH (3.5 to 6.3), °Brix (13.6 to 29.7), total polyphenols (375.4 to 657.1 μg GAE/mL wine), and antioxidant capacity (4.5 to 25.1 mM TE). The wines were also tested for their in vitro capacity to inhibit α-amylase and α-glucosidase and maintained similar inhibitory action as the berries. Highbush blueberry cultivars and their fermented beverages are good natural sources of antioxidants and starch-degrading enzyme inhibitors important for type 2 diabetes management.

  4. Recent Development of Sb-based Phototransistors in the 0.9- to 2.2-microns Wavelength Range for Applications to Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Sulima, Oleg V.; Singh, Upendra N.

    2006-01-01

    We have investigated commercially available photodiodes and also recent developed Sb-based phototransistors in order to compare their performances for applications to laser remote sensing. A custom-designed phototransistor in the 0.9- to 2.2-microns wavelength range has been developed at AstroPower and characterized at NASA Langley's Detector Characterization Laboratory. The phototransistor's performance greatly exceeds the previously reported results at this wavelength range in the literature. The detector testing included spectral response, dark current and noise measurements. Spectral response measurements were carried out to determine the responsivity at 2-microns wavelength at different bias voltages with fixed temperature; and different temperatures with fixed bias voltage. Current versus voltage characteristics were also recorded at different temperatures. Results show high responsivity of 2650 A/W corresponding to an internal gain of three orders of magnitude, and high detectivity (D*) of 3.9x10(exp 11) cm.Hz(exp 1/2)/W that is equivalent to a noise-equivalent-power of 4.6x10(exp -14) W/Hz(exp 1/2) (-4.0 V @ -20 C) with a light collecting area diameter of 200-microns. It appears that this recently developed 2-micron phototransistor's performances such as responsivity, detectivity, and gain are improved significantly as compared to the previously published APD and SAM APD using similar materials. These detectors are considered as phototransistors based-on their structures and performance characteristics and may have great potential for high sensitivity differential absorption lidar (DIAL) measurements of carbon dioxide and water vapor at 2.05-microns and 1.9-microns, respectively.

  5. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... satisfaction by conforming to local commercial equivalent temperature levels and operating practices; (c) Set heating temperatures no higher than 55 degrees Fahrenheit during non-working hours; (d) Not provide air-conditioning during non-working hours, except as necessary to return space temperatures to a suitable level for...

  6. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... satisfaction by conforming to local commercial equivalent temperature levels and operating practices; (c) Set heating temperatures no higher than 55 degrees Fahrenheit during non-working hours; (d) Not provide air-conditioning during non-working hours, except as necessary to return space temperatures to a suitable level for...

  7. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... satisfaction by conforming to local commercial equivalent temperature levels and operating practices; (c) Set heating temperatures no higher than 55 degrees Fahrenheit during non-working hours; (d) Not provide air-conditioning during non-working hours, except as necessary to return space temperatures to a suitable level for...

  8. Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales.

    PubMed

    Gilman, Sarah E; Wethey, David S; Helmuth, Brian

    2006-06-20

    Global climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment. Using a biophysical model, validated with 5 years of field observations, we examined the relationship between environmental temperature change and body temperature of the intertidal mussel Mytilus californianus over 1,600 km of its geographic distribution. We found that at all locations examined simulated changes in air or water temperature always produced less than equivalent changes in the daily maximum mussel body temperature. Moreover, the magnitude of body temperature change was highly variable, both within and among locations. A simulated 1 degrees C increase in air or water temperature raised the maximum monthly average of daily body temperature maxima by 0.07-0.92 degrees C, depending on the geographic location, vertical position, and temperature variable. We combined these sensitivities with predicted climate change for 2100 and calculated increases in monthly average maximum body temperature of 0.97-4.12 degrees C, depending on location and climate change scenario. Thus geographic variation in body temperature sensitivity can modulate species' experiences of climate change and must be considered when predicting the biological consequences of climate change.

  9. Differences in life-histories refute ecological equivalence of cryptic species and provide clues to the origin of bathyal Halomonhystera (Nematoda).

    PubMed

    Van Campenhout, Jelle; Derycke, Sofie; Moens, Tom; Vanreusel, Ann

    2014-01-01

    The discovery of morphologically very similar but genetically distinct species complicates a proper understanding of the link between biodiversity and ecosystem functioning. Cryptic species have been frequently observed to co-occur and are thus expected to be ecological equivalent. The marine nematode Halomonhystera disjuncta contains five cryptic species (GD1-5) that co-occur in the Westerschelde estuary. In this study, we investigated the effect of three abiotic factors (salinity, temperature and sulphide) on life-history traits of three cryptic H. disjuncta species (GD1-3). Our results show that temperature had the most profound influence on all life-cycle parameters compared to a smaller effect of salinity. Life-history traits of closely related cryptic species were differentially affected by temperature, salinity and presence of sulphides which shows that cryptic H. disjuncta species are not ecologically equivalent. Our results further revealed that GD1 had the highest tolerance to a combination of sulphides, high salinities and low temperatures. The close phylogenetic position of GD1 to Halomonhystera hermesi, the dominant species in sulphidic sediments of the Håkon Mosby mud volcano (Barent Sea, 1280 m depth), indicates that both species share a recent common ancestor. Differential life-history responses to environmental changes among cryptic species may have crucial consequences for our perception on ecosystem functioning and coexistence of cryptic species.

  10. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  11. A model for the estimation of the surface fluxes of momentum, heat and moisture of the cloud topped marine atmospheric boundary layer from satellite measurable parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Allison, D. E.

    1984-01-01

    A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.

  12. The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment.

    PubMed

    Bröde, Peter; Błazejczyk, Krzysztof; Fiala, Dusan; Havenith, George; Holmér, Ingvar; Jendritzky, Gerd; Kuklane, Kalev; Kampmann, Bernhard

    2013-01-01

    The growing need for valid assessment procedures of the outdoor thermal environment in the fields of public weather services, public health systems, urban planning, tourism & recreation and climate impact research raised the idea to develop the Universal Thermal Climate Index UTCI based on the most recent scientific progress both in thermo-physiology and in heat exchange theory. Following extensive validation of accessible models of human thermoregulation, the advanced multi-node 'Fiala' model was selected to form the basis of UTCI. This model was coupled with an adaptive clothing model which considers clothing habits by the general urban population and behavioral changes in clothing insulation related to actual environmental temperature. UTCI was developed conceptually as an equivalent temperature. Thus, for any combination of air temperature, wind, radiation, and humidity, UTCI is defined as the air temperature in the reference condition which would elicit the same dynamic response of the physiological model. This review analyses the sensitivity of UTCI to humidity and radiation in the heat and to wind in the cold and compares the results with observational studies and internationally standardized assessment procedures. The capabilities, restrictions and potential future extensions of UTCI are discussed.

  13. Coral Bleaching Products - Office of Satellite and Product Operations

    Science.gov Websites

    weeks. One DHW is equivalent to one week of sea surface temperatures one degree Celsius greater than the expected summertime maximum. Two DHWs are equivalent to two weeks at one degree above the expected summertime maximum OR one week of two degrees above the expected summertime maximum. Also called Coral Reef

  14. Equivalency Programmes (EPs) for Promoting Lifelong Learning

    ERIC Educational Resources Information Center

    Haddad, Caroline, Ed.

    2006-01-01

    Equivalency programmes (EPs) refers to alternative education programmes that are equivalent to the formal education system in terms of curriculum and certification, policy support mechanisms, mode of delivery, staff training, and other support activities such as monitoring, evaluation and assessment. The development of EPs is potentially an…

  15. Equivalence of electronic and mechanical stresses in structural phase stabilization: A case study of indium wires on Si(111)

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Woo; Kim, Hyun-Jung; Ming, Fangfei; Jia, Yu; Zeng, Changgan; Cho, Jun-Hyung; Zhang, Zhenyu

    2015-05-01

    It was recently proposed that the stress state of a material can also be altered via electron or hole doping, a concept termed electronic stress (ES), which is different from the traditional mechanical stress (MS) due to lattice contraction or expansion. Here we demonstrate the equivalence of ES and MS in structural stabilization, using In wires on Si(111) as a prototypical example. Our systematic density-functional theory calculations reveal that, first, for the same degrees of carrier doping into the In wires, the ES of the high-temperature metallic 4 ×1 structure is only slightly compressive, while that of the low-temperature insulating 8 ×2 structure is much larger and highly anisotropic. As a consequence, the intrinsic energy difference between the two phases is significantly reduced towards electronically phase-separated ground states. Our calculations further demonstrate quantitatively that such intriguing phase tunabilities can be achieved equivalently via lattice-contraction induced MS in the absence of charge doping. We also validate the equivalence through our detailed scanning tunneling microscopy experiments. The present findings have important implications for understanding the underlying driving forces involved in various phase transitions of simple and complex systems alike.

  16. Investigation on minimum ignition energy of mixtures of α-pinene-benzene/air.

    PubMed

    Coudour, B; Chetehouna, K; Rudz, S; Gillard, P; Garo, J P

    2015-01-01

    Minimum ignition energies (MIE) of α-pinene-benzene/air mixtures at a given temperature for different equivalence ratios and fuel proportions are experimented in this paper. We used a cylindrical chamber of combustion using a nanosecond pulse at 1,064 nm from a Q-switched Nd:YAG laser. Laser-induced spark ignitions were studied for two molar proportions of α-pinene/benzene mixtures, respectively 20-80% and 50-50%. The effect of the equivalence ratio (Φ) has been investigated for 0.7, 0.9, 1.1 and 1.5 and ignition of fuel/air mixtures has been experimented for two different incident laser energies: 25 and 33 mJ. This study aims at observing the influence of different α-pinene/benzene proportions on the flammability of the mixture to have further knowledge of the potential of biogenic volatile organic compounds (BVOCs) and smoke mixtures to influence forest fires, especially in the case of the accelerating forest fire phenomenon (AFF). Results of ignition probability and energy absorption are based on 400 laser shots for each studied fuel proportions. MIE results as functions of equivalence ratio compared to data of pure α-pinene and pure benzene demonstrate that the presence of benzene in α-pinene-air mixture tends to increase ignition probability and reduce MIE without depending strongly on the α-pinene/benzene proportion. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1981-01-01

    To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.

  18. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa

    2015-07-01

    An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.

  19. Was That Assumption Necessary? Reconsidering Boundary Conditions for Analytical Solutions to Estimate Streambed Fluxes

    NASA Astrophysics Data System (ADS)

    Luce, Charles H.; Tonina, Daniele; Applebee, Ralph; DeWeese, Timothy

    2017-11-01

    Two common refrains about using the one-dimensional advection diffusion equation to estimate fluid fluxes and thermal conductivity from temperature time series in streambeds are that the solution assumes that (1) the surface boundary condition is a sine wave or nearly so, and (2) there is no gradient in mean temperature with depth. Although the mathematical posing of the problem in the original solution to the problem might lead one to believe these constraints exist, the perception that they are a source of error is a fallacy. Here we develop a mathematical proof demonstrating the equivalence of the solution as developed based on an arbitrary (Fourier integral) surface temperature forcing when evaluated at a single given frequency versus that derived considering a single frequency from the beginning. The implication is that any single frequency can be used in the frequency-domain solutions to estimate thermal diffusivity and 1-D fluid flux in streambeds, even if the forcing has multiple frequencies. This means that diurnal variations with asymmetric shapes or gradients in the mean temperature with depth are not actually assumptions, and deviations from them should not cause errors in estimates. Given this clarification, we further explore the potential for using information at multiple frequencies to augment the information derived from time series of temperature.

  20. In-depth analysis and modelling of self-heating effects in nanometric DGMOSFETs

    NASA Astrophysics Data System (ADS)

    Roldán, J. B.; González, B.; Iñiguez, B.; Roldán, A. M.; Lázaro, A.; Cerdeira, A.

    2013-01-01

    Self-heating effects (SHEs) in nanometric symmetrical double-gate MOSFETs (DGMOSFETs) have been analysed. An equivalent thermal circuit for the transistors has been developed to characterise thermal effects, where the temperature and thickness dependency of the thermal conductivity of the silicon and oxide layers within the devices has been included. The equivalent thermal circuit is consistent with simulations using a commercial technology computer-aided design (TCAD) tool (Sentaurus by Synopsys). In addition, a model for DGMOSFETs has been developed where SHEs have been considered in detail, taking into account the temperature dependence of the low-field mobility, saturation velocity, and inversion charge. The model correctly reproduces Sentaurus simulation data for the typical bias range used in integrated circuits. Lattice temperatures predicted by simulation are coherently reproduced by the model for varying silicon layer geometry.

  1. The relationship between mortality caused by cardiovascular diseases and two climatic factors in densely populated areas in Norway and Ireland.

    PubMed

    Eng, H; Mercer, J B

    2000-10-01

    Seasonal variations in mortality due to cardiovascular disease have been demonstrated in many countries, with the highest levels occurring during the coldest months of the year. It has been suggested that this can be explained by cold climate. In this study, we examined the relationship between mortality and two different climatic factors in two densely populated areas (Dublin, Ireland and Oslo/Akershus, Norway). Meteorological data (mean daily air temperatures and wind speed) and registered daily mortality data for three groups of cardiovascular disease for the period 1985-1994 were obtained for the two respective areas. The daily mortality ratio for both men and women of 60 years and older was calculated from the mortality data. The wind chill temperature equivalent was calculated from the Siple and Passels formula. The seasonal variations in mortality were greater in Dublin than in Oslo/Akershus, with mortality being highest in winter. This pattern was similar to that previously shown for the two respective countries as a whole. There was a negative correlation between mortality and both air temperature and wind chill temperature equivalent for all three groups of diseases. The slopes of the linear regression lines describing the relationship between mortality and air temperature were a lot steeper for the Irish data than for the Norwegian data. However, the difference between the steepness of the linear regression lines for the relationship between mortality and wind chill temperature equivalent was considerably less between the two areas. This can be explained by the fact that Dublin is a much windier area than Oslo/Akershus. The results of this study demonstrate that the inclusion of two climatic factors rather than just one changes the impression of the relationship between climate and cardiovascular disease mortality.

  2. Analysis of temperature influence on the informative parameters of single-coil eddy current sensors

    NASA Astrophysics Data System (ADS)

    Borovik, S. Yu.; Kuteynikova, M. M.; Sekisov, Yu. N.; Skobelev, O. P.

    2017-07-01

    This paper describes the study of temperature in the flowing part of a turbine on the informative parameters (equivalent inductances of primary windings of matching transformers) of single-coil eddy-current sensors with a sensitive element in the form of a conductor section, which are used as part of automation systems for testing gas-turbine engines. In this case, the objects of temperature influences are both sensors and controlled turbine blades. The existing model of electromagnetic interaction of a sensitive element with the end part of a controlled blade is used to obtain quantitative estimates of temperature changes of equivalent inductances of sensitive elements and primary windings of matching transformers. This model is also used to determine the corresponding changes of the informative parameter of the sensor in the process of experimental studies of temperature influences on it (in the absence of blades in the sensitive region). This paper also presents transformations in the form of relationships of informative parameters with radial and axial displacements at normal (20 °C) and nominal (1000 °C) temperatures, and their difference is used to determine the families of dominant functions of temperature, which characterize possible temperature errors for any radial and axial displacements in the ranges of their variation.

  3. P-T composition and evolution of paleofluids in the Paleoproterozoic Mag Hill IOCG system, Contact Lake belt, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Somarin, A. Karimzadeh; Mumin, A. Hamid

    2014-02-01

    The Echo Bay stratovolcano complex and Contact Lake Belt of the Great Bear Magmatic Zone, Northwest Territories, host a series of coalescing Paleoproterozoic hydrothermal systems that affected an area of several hundred square kilometers. They were caused by intrusion of synvolcanic diorite-monzodioritic plutons into andesitic host rocks, producing several characteristic hydrothermal assemblages. They include early and proximal albite, magnetite-actinolite-apatite, and potassic (K-feldspar) alteration, followed by more distal hematite, phyllic (quartz-sericite-pyrite), and propylitic (chlorite-epidote-carbonate±sericite±albite±quartz) alteration, and finally by late-stage polymetallic epithermal veins. These alteration types are characteristic of iron oxide copper-gold deposits, however, with distal and lower-temperature assemblages similar to porphyry Cu systems. Magnetite-actinolite-apatite alteration formed from high temperature (up to 560 °C) fluids with average salinity of 12.8 wt% NaCl equivalent. The prograde propylitic and phyllic alteration stages are associated with fluids with temperatures varying from 80 to 430 °C and a wide salinity range (0.5-45.6 wt% NaCl equivalent). Similarly, wide fluid temperature (104-450 °C) and salinity (4.2-46.1 wt% NaCl equivalent) ranges are recorded for the phyllic alteration. This was followed by Cu-Ag-U-Zn-Co-Pb sulfarsenide mineralization in late-stage epithermal veins formed at shallow depths and temperatures from 270 °C to as low as 105 °C. The polymetallic veins precipitated from high salinity (mean 30 wt% NaCl equivalent) dense fluids (1.14 g/cm3) with a vapor pressure of 3.8 bars, typical of epithermal conditions. Fluid inclusion evidence indicates that mixed fluids with evolving physicochemical properties were responsible for the formation of the alteration assemblages and mineralization at Mag Hill. An early high temperature, moderate salinity, and magmatic fluid was subsequently modified variably by boiling, mixing with cooler low-salinity meteoric water, and simple cooling. The evidence is consistent with emplacement of the source plutons and stocks into an epithermal environment within ~1 km of surface. This generated near-surface high-temperature alteration in a dynamic hydrothermal system that collapsed (telescoped) resulting in widespread evidence of boiling and epithermal mineralization superimposed on earlier stages of alteration.

  4. Numerical Calculation and Exergy Equations of Spray Heat Exchanger Attached to a Main Fan Diffuser

    NASA Astrophysics Data System (ADS)

    Cui, H.; Wang, H.; Chen, S.

    2015-04-01

    In the present study, the energy depreciation rule of spray heat exchanger, which is attached to a main fan diffuser, is analyzed based on the second law of thermodynamics. Firstly, the exergy equations of the exchanger are deduced. The equations are numerically calculated by the fourth-order Runge-Kutta method, and the exergy destruction is quantitatively effected by the exchanger structure parameters, working fluid (polluted air, i.e., PA; sprayed water, i.e., SW) initial state parameters and the ambient reference parameters. The results are showed: (1) heat transfer is given priority to latent transfer at the bottom of the exchanger, and heat transfer of convection and is equivalent to that of condensation in the upper. (2) With the decrease of initial temperature of SW droplet, the decrease of PA velocity or the ambient reference temperature, and with the increase of a SW droplet size or initial PA temperature, exergy destruction both increase. (3) The exergy efficiency of the exchanger is 72.1 %. An approach to analyze the energy potential of the exchanger may be provided for engineering designs.

  5. Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.

    1978-01-01

    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).

  6. Assessment of the in vitro dermal irritation potential of cerium, silver, and titanium nanoparticles in a human skin equivalent model

    EPA Science Inventory

    AbstractDermal exposure to metals may res·ult in irritant contact dermatitis. This study examined the potential of metal nanoparticles to elicit irritant contact dermatitis in a human skin equivalent model (HSEM) derived from epidermal keratinocytes. These cultured cells form a m...

  7. Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology.

    PubMed

    Vitasse, Yann; Porté, Annabel Josée; Kremer, Antoine; Michalet, Richard; Delzon, Sylvain

    2009-08-01

    While changes in spring phenological events due to global warming have been widely documented, changes in autumn phenology, and therefore in growing season length, are less studied and poorly understood. However, it may be helpful to assess the potential lengthening of the growing season under climate warming in order to determine its further impact on forest productivity and C balance. The present study aimed to: (1) characterise the sensitivity of leaf phenological events to temperature, and (2) quantify the relative contributions of leaf unfolding and senescence to the extension of canopy duration with increasing temperature, in four deciduous tree species (Acer pseudoplatanus, Fagus sylvatica, Fraxinus excelsior and Quercus petraea). For 3 consecutive years, we monitored the spring and autumn phenology of 41 populations at elevations ranging from 100 to 1,600 m. Overall, we found significant altitudinal trends in leaf phenology and species-specific differences in temperature sensitivity. With increasing temperature, we recorded an advance in flushing from 1.9 +/- 0.3 to 6.6 +/- 0.4 days degrees C(-1) (mean +/- SD) and a 0 to 5.6 +/- 0.6 days degrees C(-1) delay in leaf senescence. Together both changes resulted in a 6.9 +/- 1.0 to 13.0 +/- 0.7 days degrees C(-1) lengthening of canopy duration depending on species. For three of the four studied species, advances in flushing were the main factor responsible for lengthening canopy duration with increasing temperature, leading to a potentially larger gain in solar radiation than delays in leaf senescence. In contrast, for beech, we found a higher sensitivity to temperature in leaf senescence than in flushing, resulting in an equivalent contribution in solar radiation gain. These results suggest that climate warming will alter the C uptake period and forest productivity by lengthening canopy duration. Moreover, the between-species differences in phenological responses to temperature evidenced here could affect biotic interactions under climate warming.

  8. Gauge equivalence of the Gross Pitaevskii equation and the equivalent Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Radha, R.; Kumar, V. Ramesh

    2007-11-01

    In this paper, we construct an equivalent spin chain for the Gross-Pitaevskii equation with quadratic potential and exponentially varying scattering lengths using gauge equivalence. We have then generated the soliton solutions for the spin components S3 and S-. We find that the spin solitons for S3 and S- can be compressed for exponentially growing eigenvalues while they broaden out for decaying eigenvalues.

  9. The concept of temperature in space plasmas

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.

    2017-12-01

    Independently of the initial distribution function, once the system is thermalized, its particles are stabilized into a specific distribution function parametrized by a temperature. Classical particle systems in thermal equilibrium have their phase-space distribution stabilized into a Maxwell-Boltzmann function. In contrast, space plasmas are particle systems frequently described by stationary states out of thermal equilibrium, namely, their distribution is stabilized into a function that is typically described by kappa distributions. The temperature is well-defined for systems at thermal equilibrium or stationary states described by kappa distributions. This is based on the equivalence of the two fundamental definitions of temperature, that is (i) the kinetic definition of Maxwell (1866) and (ii) the thermodynamic definition of Clausius (1862). This equivalence holds either for Maxwellians or kappa distributions, leading also to the equipartition theorem. The temperature and kappa index (together with density) are globally independent parameters characterizing the kappa distribution. While there is no equation of state or any universal relation connecting these parameters, various local relations may exist along the streamlines of space plasmas. Observations revealed several types of such local relations among plasma thermal parameters.

  10. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change

    USGS Publications Warehouse

    Kirwan, M.L.; Blum, L.K.

    2011-01-01

    Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find that organic decomposition rates increase by about 12% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, twice as high as the response of salt marsh productivity to temperature warming, and roughly equivalent to the productivity response associated with elevated CO2 in C3 marsh plants. Therefore, enhanced CO2 and warmer temperatures may actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments.

  11. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Khoshakhlagh, Arezou; Rafol, Sir B.; Hoeglund, Linda; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Liao, Anna; Ting, David Z.-Y.; hide

    2012-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of Focal Plane Arrays (FPA) based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength infrared focal plane array utilizing CBIRD design. An 11.5 ?m cutoff FPA without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. In addition, we demonstrated 320x256 format FPA based on the n-CBIRD design. The resulting FPAs yielded noise equivalent differential temperature of 26 mK at operating temperature of 80 K, with 300 K background and cold-stop. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  12. Structure and Dynamics of Solvent Landscapes in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Leite, Vitor B. Pereira

    The dynamics of solvent polarization plays a major role in the control of charge transfer reactions. The success of Marcus theory describing the solvent influence via a single collective quadratic polarization coordinate has been remarkable. Onuchic and Wolynes have recently proposed (J. Chem Phys 98 (3) 2218, 1993) a simple model demonstrating how a many-dimensional-complex model composed by several dipole moments (representing solvent molecules or polar groups in proteins) can be reduced under the appropriate limits into the Marcus Model. This work presents a dynamical study of the same model, which is characterized by two parameters, an average dipole-dipole interaction as a term associated with the potential energy landscape roughness. It is shown why the effective potential, obtained using a thermodynamic approach, is appropriate for the dynamics of the system. At high temperatures, the system exhibits effective diffusive one-dimensional dynamics, where the Born-Marcus limit is recovered. At low temperatures, a glassy phase appears with a slow non-self-averaging dynamics. At intermediate temperatures, the concept of equivalent diffusion paths and polarization dependence effects are discussed. This approach is extended to treat more realistic solvent models. Real solvents are discussed in terms of simple parameters described above, and an analysis of how different regimes affect the rate of charge transfer is presented. Finally, these ideas are correlated to analogous problems in other areas.

  13. Metal diffusion barriers for GaAs solar cells.

    PubMed

    van Leest, R H; Mulder, P; Bauhuis, G J; Cheun, H; Lee, H; Yoon, W; van der Heijden, R; Bongers, E; Vlieg, E; Schermer, J J

    2017-03-15

    In this study accelerated ageing testing (AAT), J-V characterization and TEM imaging in combination with phase diagram data from literature are used to assess the potential of Ti, Ni, Pd and Pt as diffusion barriers for Au/Cu-based metallization of III-V solar cells. Ni barriers show the largest potential as at an AAT temperature of 250 °C both cells with 10 and 100 nm thick Ni barriers show significantly better performance compared to Au/Cu cells, with the cells with 10 nm Ni barriers even showing virtually no degradation after 7.5 days at 250 °C (equivalent to 10 years at 100 °C at an E a of 0.70 eV). Detailed investigation shows that Ni does not act as a barrier in the classical sense, i.e. preventing diffusion of Cu and Au across the barrier. Instead Ni modifies or slows down the interactions taking place during device degradation and thus effectively acts as an 'interaction' barrier. Different interactions occur at temperatures below and above 250 °C and for thin (10 nm) and thick (100 nm) barriers. The results of this study indicate that 10-100 nm thick Ni intermediate layers in the Cu/Au based metallization of III-V solar cells may be beneficial to improve the device stability upon exposure to elevated temperatures.

  14. Homogeneous hydride formation path in α-Zr: Molecular dynamics simulations with the charge-optimized many-body potential

    DOE PAGES

    Zhang, Yongfeng; Bai, Xian-Ming; Yu, Jianguo; ...

    2016-06-01

    A formation path for homogeneous γ hydride formation in hcp α-Zr, from solid solution to the ζ and then the γ hydride, was demonstrated using molecular static calculations and molecular dynamic simulations with the charge-optimized many-body (COMB) potential. Hydrogen has limited solubility in α-Zr. Once the solubility limit is exceeded, the stability of solid solution gives way to that of coherent hydride phases such as the ζ hydride by planar precipitation of hydrogen. At finite temperatures, the ζ hydride goes through a partial hcp-fcc transformation via 1/3 <1¯100> slip on the basal plane, and transforms into a mixture of γmore » hydride and α-Zr. In the ζ hydride, slip on the basal plane is favored thermodynamically with negligible barrier, and is therefore feasible at finite temperatures without mechanical loading. The transformation process involves slips of three equivalent shear partials, in contrast to that proposed in the literature where only a single shear partial was involved. The adoption of multiple slip partials minimizes the macroscopic shape change of embedded hydride clusters and the shear strain accumulation in the matrix, and thus reduces the overall barrier needed for homogeneous γ hydride formation. In conclusion, this formation path requires finite temperatures for hydrogen diffusion without mechanical loading. Therefore, it should be effective at the cladding operating conditions.« less

  15. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  16. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

    USGS Publications Warehouse

    Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M.

    2007-01-01

    Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 ?? 109 m3/1.73 ?? 104 m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m3/m3). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  17. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  18. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  19. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  20. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  1. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2,5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  2. Temperature Increases in Preterm Infants During Massage Therapy

    PubMed Central

    Diego, Miguel A.; Field, Tiffany; Hernandez-Reif, Maria

    2008-01-01

    Temperature was assessed in 72 preterm infants randomly assigned to a control or a massage therapy group. A greater increase in temperature was noted for preterm infants receiving massage therapy versus a control group, even though the incubator portholes remained open during the 15-minute massage therapy session but not for the control group over an equivalent time period. PMID:17692385

  3. Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in a bathroom.

    PubMed

    Lu, Jingrang; Buse, Helen; Struewing, Ian; Zhao, Amy; Lytle, Darren; Ashbolt, Nicholas

    2017-01-01

    Opportunistic pathogens (OPs) in drinking water, like Legionella spp., mycobacteria, Pseudomonas aeruginosa, and free-living amobae (FLA) are a risk to human health, due to their post-treatment growth in water systems. To assess and manage these risks, it is necessary to understand their variations and environmental conditions for the water routinely used. We sampled premise tap (N cold  = 26, N hot  = 26) and shower (N shower  = 26) waters in a bathroom and compared water temperatures to levels of OPs via qPCR and identified Legionella spp. by 16S ribosomal RNA (rRNA) gene sequencing. The overall occurrence and cell equivalent quantities (CE L -1 ) of Mycobacterium spp. were highest (100 %, 1.4 × 10 5 ), followed by Vermamoeba vermiformis (91 %, 493), Legionella spp. (59 %, 146), P. aeruginosa (14 %, 10), and Acanthamoeba spp. (5 %, 6). There were significant variations of OP's occurrence and quantities, and water temperatures were associated with their variations, especially for Mycobacterium spp., Legionella spp., and V. vermiformis. The peaks observed for Legionella, mainly consisted of Legionella pneumophila sg1 or Legionella anisa, occurred in the temperature ranged from 19 to 49 °C, while Mycobacterium spp. and V. vermiformis not only co-occurred with Legionella spp. but also trended to increase with increasing temperatures. There were higher densities of Mycobacterium in first than second draw water samples, indicating their release from faucet/showerhead biofilm. Legionella spp. were mostly at detectable levels and mainly consisted of L. pneumophila, L. anisa, Legionella donaldsonii, Legionella tunisiensis, and an unknown drinking water isolate based on sequence analysis. Results from this study suggested potential health risks caused by opportunistic pathogens when exposed to warm shower water with low chlorine residue and the use of Mycobacterium spp. as an indicator of premise pipe biofilm and the control management of those potential pathogens.

  4. Effects of alkaline catalysts on acetone-based organosolv pretreatment of rice straw.

    PubMed

    Raita, Marisa; Denchokepraguy, Naphatsaya; Champreda, Verawat; Laosiripojana, Navadol

    2017-10-01

    Organosolv is an effective pretreatment strategy for increasing digestibility of lignocellulosic materials owing to selectivity of solvents on separating biopolymeric constituents of plant biomass. In the present work, a novel low-temperature alkali-catalyzed organosolv pretreatment of rice straw was studied. The effects of alkaline catalysts (i.e., NaOH, ammonia, and tri-ethylamine) and solvent types (i.e., acetone, ethanol, and water) were carried out. Addition of alkalis led to increasing sugar from enzymatic hydrolysis while acetone was found to be superior to ethanol and water on selectivity towards cellulose preservation. The optimal alkaline-catalyzed pretreatment reaction contained 5% (w/v) NaOH in an aqueous-acetone mixture (1:4) at 80 °C for 5 min. A glucose yield of 913 mg/g of pretreated biomass was achieved, equivalent to a maximal glucose recovery of 93.0% from glucan in the native biomass. Scanning electron microscope revealed efficient removal of non-cellulosic components, resulting in exposed cellulose microfibers with a reduced crystallite size as determined by X-ray diffraction. With potential on obtaining high-quality lignin, the work demonstrated potential of the novel low-temperature alkaline-catalyzed acetone-based organosolv process for pretreatment of lignocellulosic materials in biorefineries.

  5. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals.

    PubMed

    Satoh, Katsuhiko

    2013-03-07

    Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.

  6. Quantification of climate tourism potential of Croatia based on measured data and regional modeling.

    PubMed

    Brosy, Caroline; Zaninovic, Ksenija; Matzarakis, Andreas

    2014-08-01

    Tourism is one of the most important economic sectors in Croatia. The Adriatic coast is a popular travel destination for tourists, especially during the summer months. During their activities, tourists are affected by atmospheric conditions and therefore by weather and climate. Therefore, it is important to have reliable information about thermal conditions as well as their impacts on human beings. Here, the climate tourism potential of Croatia is presented and quantified on the basis of three selected stations in different climatic regions. The physiologically equivalent temperature is used for analysis as well as other climatic parameters relevant for tourism and recreation. The results already point to hot conditions for outdoor activities in summer during afternoons, especially along the coast but also for continental regions, resulting in a reduction of the climate tourism potential. In the future, this trend looks set to increase, possibly leading to a changing tourism sector in Croatia requiring adaptation and new strategies.

  7. Enhanced yield of phenolic extracts from banana peels (Musa acuminata Colla AAA) and cinnamon barks (Cinnamomum varum) and their antioxidative potentials in fish oil.

    PubMed

    Anal, Anil Kumar; Jaisanti, Sirorat; Noomhorm, Athapol

    2014-10-01

    The bioactive compounds of banana peels and cinnamon barks were extracted by vacuum microwave and ultrasonic-assisted extraction methods at pre-determined temperatures and times. These methods enhance the yield extracts in shorter time. The highest yields of both extracts were obtained from the conditions which employed the highest temperature and the longest time. The extracts' yield from cinnamon bark method was higher by ultrasonic than vacuum microwave method, while vacuum microwave method gave higher extraction yield from banana peel than ultrasonic method. The phenolic contents of cinnamon bark and banana peel extracts were 467 and 35 mg gallic acid equivalent/g extract, respectively. The flavonoid content found in banana peel and cinnamon bark extracts were 196 and 428 mg/g quercetin equivalent, respectively. In addition, it was found that cinnamon bark gave higher 2,2-Diphenyl-1-1 picryhydrazyl (DPPH) radical scavenging activity and total antioxidant activity (TAA). The antioxidant activity of the extracts was analyzed by measuring the peroxide and p-anisidine values after oxidation of fish oils, stored for a month (30 days) at 25 °C and showed lesser peroxide and p-anisidine values in the fish oils containing the sample extracts in comparison to the fish oil without containing any extract. The banana peel and cinnamon extracts had shown the ability as antioxidants to prevent the oxidation of fish oil and might be considered as rich sources of natural antioxidant.

  8. Prediction of the Formulation Dependence of the Glass Transition Temperature for Amine-Epoxy Copolymers Using a Quantitative Structure-Property Relationship Based on the AM1 Method

    DTIC Science & Technology

    2004-02-01

    Products and Chemicals , Inc . The stoichiometry of the DGEBA-PACM polymerization reaction was varied to yield epoxy/amine ratios ranging from ~2:1 through...equivalent). The DGEBA epoxy resin was cured with bis(p-aminocyclohexyl)methane (PACM) (EEW = 52.5 g/equivalent), which was acquired from Air

  9. Spinons and holons for the one-dimensional three-band Hubbard models of high-temperature superconductors.

    PubMed Central

    Tahir-Kheli, J; Goddard, W A

    1993-01-01

    The one-dimensional three-band Hubbard Hamiltonian is shown to be equivalent to an effective Hamiltonian that has independent spinon and holon quasiparticle excitations plus a weak coupling of the two. The spinon description includes both copper sites and oxygen hole sites leading to a one-dimensional antiferromagnet incommensurate with the copper lattice. The holons are spinless noninteracting fermions in a simple cosine band. Because the oxygen sites are in the Hamiltonian, the quasiparticles are much simpler than in the exact solution of the t-J model for 2t = +/- J. If a similar description is correct for two dimensions, then the holons will attract in a p-wave potential. PMID:11607436

  10. NOHRSC Interactive Snow Information

    Science.gov Websites

    -present) RFC Basin Other (non-RFC) Basin State NSA region (Discussion) NSA subregion (Disc.) Basins by None Snow Water Equivalent Snow Depth Shallow SWE Shallow Snow Depth Snow Temperature Snow Density Snow Melt Snow Precipitation Non-Snow Precipitation Air Temperature Solar Radiation Relative Humidity

  11. On the application of a new thermal diagnostic model: the passive elements equivalent in term of ventilation inside a room

    NASA Astrophysics Data System (ADS)

    El Khattabi, El Mehdi; Mharzi, Mohamed; Raefat, Saad; Meghari, Zouhair

    2018-05-01

    In this paper, the thermal equivalence of the passive elements of a room in a building located in Fez-Morocco has been studied. The possibility of replacing them with a semi-passive element such as ventilation has been appraised. For this aim a Software in Fortran taking into account the meteorological external conditions along with different parameters of the building envelope has been performed. A new computational approach is adapted to determinate the temperature distribution throughout the building multilayer walls. A novel equation gathering the internal temperature with the external conditions, and the building envelope has been deduced in transient state.

  12. Life Cycle Assessment of Bio-diesel Production—A Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Chatterjee, R.; Sharma, V.; Mukherjee, S.; Kumar, S.

    2014-04-01

    This work deals with the comparative analysis of environmental impacts of bio-diesel produced from Jatropha curcas, Rapeseed and Palm oil by applying the life cycle assessment and eco-efficiency concepts. The environmental impact indicators considered in the present paper include global warming potential (GWP, CO2 equivalent), acidification potential (AP, SO2 equivalent) and eutrophication potential (EP, NO3 equivalent). Different weighting techniques have been used to present and evaluate the environmental characteristics of bio-diesel. With the assistance of normalization values, the eco-efficiency was demonstrated in this work. The results indicate that the energy consumption of bio-diesel production is lowest in Jatropha while AP and EP are more in case of Jatropha than that of Rapeseed and Palm oil.

  13. Experimental insight into redox transfer by iron- and sulfur-bearing serpentinite dehydration in subduction zones

    NASA Astrophysics Data System (ADS)

    Merkulova, M. V.; Muñoz, M.; Brunet, F.; Vidal, O.; Hattori, K.; Vantelon, D.; Trcera, N.; Huthwelker, T.

    2017-12-01

    Dehydration of antigorite in subduction zones releases a large amount of aqueous fluid and volatile elements, which can potentially oxidize the mantle wedge. The redox capacity of three synthetic serpentinites with variable Fetotal, Fe3+ and S- contents is investigated using XANES spectroscopy at both, Fe and S K-edges. Experiments are performed between 450 and 900 °C, at 2 GPa and fO2 ∼QFM-2; conditions similar to those encountered in subduction zones. Redox reactions in the synthetic serpentinites, which involve Fe and S can be summarized as follows: 1) the reduction of (S-)-pyrite into (S2-)-pyrrhotite (∼450 °C), with ∼4.4 mg/g of the sulfur degassed most likely as H2S, 2) the consumption of magnetite that reacts with antigorite to form Fe-rich olivine (<500 °C), 3) the reduction of (Fe3+)-antigorite into (Fe2+)-antigorite (∼580 °C), occurring about 100 °C below the temperature of antigorite breakdown, 4) the main (Fe2+)-antigorite breakdown that forms olivine and enstatite (∼675 °C), and 5) the decomposition of minor amounts of (Fe2+/3+)-clinochlore (∼800 °C). The bulk Fe3+/Fetotal ratio is found to decrease with run temperature from ∼0.82-0.97 depending on the hydrous starting material, down to 0.1-0.2 in the high-temperature anhydrous assemblages. The evolution of mineral modes and Fe3+/Fetotal with temperature in our synthetic samples shows similar trends to what has been reported in serpentinite rocks collected, for example, along a metamorphic transect in the western Alps. We show that a large amount of O2-equivalent - up to 10 mol/kg of rock - can be generated at temperature around 450 °C due to the presence of oxides and sulfides such as magnetite and pyrite. Owing to the poor capacity of aqueous fluid to transfer redox conditions, we surmise that this O2-equivalent is "consumed" at the scale of the lithospheric-mantle top which is partially serpentinized and therefore bear strong redox gradients.

  14. Changing Seasonality of Tundra Vegetation and Associated Climatic Variables

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.

    2014-12-01

    This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over most seasons but shows slight increases in spring in North America and during fall over Eurasia. Later spring or earlier fall snow cover can both lead to reductions in TI-NDVI. The time-varying spatial patterns of NDVI trends can be largely explained using either snow cover or land surface temperature trends.

  15. Future Change of Snow Water Equivalent over Japan

    NASA Astrophysics Data System (ADS)

    Hara, M.; Kawase, H.; Kimura, F.; Fujita, M.; Ma, X.

    2012-12-01

    Western side of Honshu Island and Hokkaido Island in Japan are ones of the heaviest snowfall areas in the world. Although a heavy snowfall often brings disaster, snow is one of the major sources for agriculture, industrial, and house-use in Japan. Even during the winter, the monthly mean of the surface air temperature often exceeds 0 C in large parts of the heavy snow areas along the Sea of Japan. Thus, snow cover may be seriously reduced in these areas as a result of the global warming, which is caused by an increase in greenhouse gases. The change in seasonal march of snow water equivalent, e.g., snowmelt season and amount will strongly influence to social-economic activities. We performed a series of numerical experiments including present and future climate simulations and much-snow and less-snow cases using a regional climate model. Pseudo-Global-Warming (PGW) method (Kimura and Kitoh, 2008) is applied for the future climate simulations. MIROC 3.2 medres 2070s output under IPCC SRES A2 scenario and 1990s output under 20c3m scenario used for PGW method. The precipitation, snow depth, and surface air temperature of the hindcast simulations show good agreement with the AMeDAS station data. In much-snow cases, The decreasing rate of maximum total snow water equivalent over Japan due to climate change was 49%. Main cause of the decrease of the total snow water equivalent is the air temperature rise due to global climate change. The difference in the precipitation amount between the present and the future simulations is small.

  16. Investigation of the Equivalence of National Dew-Point Temperature Realizations in the -50 °C to + 20 °C Range

    NASA Astrophysics Data System (ADS)

    Heinonen, Martti; Anagnostou, Miltiadis; Bell, Stephanie; Stevens, Mark; Benyon, Robert; Bergerud, Reidun Anita; Bojkovski, Jovan; Bosma, Rien; Nielsen, Jan; Böse, Norbert; Cromwell, Plunkett; Kartal Dogan, Aliye; Aytekin, Seda; Uytun, Ali; Fernicola, Vito; Flakiewicz, Krzysztof; Blanquart, Bertrand; Hudoklin, Domen; Jacobson, Per; Kentved, Anders; Lóio, Isabel; Mamontov, George; Masarykova, Alexandra; Mitter, Helmut; Mnguni, Regina; Otych, Jan; Steiner, Anton; Szilágyi Zsófia, Nagyné; Zvizdic, Davor

    2012-09-01

    In the field of humidity quantities, the first CIPM key comparison, CCT-K6 is at its end. The corresponding European regional key comparison, EUROMET.T-K6, was completed in early 2008, about 4 years after the starting initial measurements in the project. In total, 24 NMIs from different countries took part in the comparison. This number includes 22 EURAMET countries, and Russia and South Africa. The comparison covered the dew-point temperature range from -50 °C to +20 °C. It was carried out in three parallel loops, each with two chilled mirror hygrometers as transfer standards in each loop. The comparison scheme was designed to ensure high quality results with evenly spread workload for the participants. It is shown that the standard uncertainty due to the long-term instability was smaller than 0.008 °C in all loops. The standard uncertainties due to links between the loops were found to be smaller than 0.025 °C at -50 °C and 0.010 °C elsewhere. Conclusions on the equivalence of the dew-point temperature standards are drawn on the basis of calculated bilateral degrees of equivalence and deviations from the EURAMET comparison reference values (ERV). Taking into account 16 different primary dew-point realizations and 8 secondary realizations, the results demonstrate the equivalence of a large number of laboratories at an uncertainty level that is better than achieved in other multilateral comparisons so far in the humidity field.

  17. Investigation of surface potentials in reduced graphene oxide flake by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Negishi, Ryota; Takashima, Kai; Kobayashi, Yoshihiro

    2018-06-01

    The surface potential (SP) of reduced graphene oxide (rGO) flakes prepared by thermal treatments of GO under several conditions was analyzed by Kelvin probe force microscopy. The low-crystalline rGO flakes in which a significant amount of oxygen functional groups and structural defects remain have a much lower SP than mechanically exfoliated graphene free from oxygen and defects. On the other hand, the highly crystalline rGO flake after a thermal treatment for the efficient removal of oxygen functional groups and healing of structural defects except for domain boundary shows SP equivalent to that of the mechanically exfoliated graphene. These results indicate that the work function of rGO is sensitively modulated by oxygen functional groups and structural defects remaining after the thermal reduction process, but is not affected significantly by the domain boundary remaining after the healing of structural defects through the thermal treatment at high temperature.

  18. Current progress in orchid flowering/flower development research

    PubMed Central

    Wang, Hsin-Mei; Tong, Chii-Gong

    2017-01-01

    ABSTRACT Genetic pathways relevant to flowering of Arabidopsis are under the control of environmental cues such as day length and temperatures, and endogenous signals including phytohormones and developmental aging. However, genes and even regulatory pathways for flowering identified in crops show divergence from those of Arabidopsis and often do not have functional equivalents to Arabidopsis and/or existing species- or genus-specific regulators and show modified or novel pathways. Orchids are the largest, most highly evolved flowering plants, and form an extremely peculiar group of plants. Here, we briefly summarize the flowering pathways of Arabidopsis, rice and wheat and present them alongside recent discoveries/progress in orchid flowering and flower developmental processes including our transgenic Phalaenopsis orchids for LEAFY overexpression. Potential biotechnological applications in flowering/flower development of orchids with potential target genes are also discussed from an interactional and/or comparative viewpoint. PMID:28448202

  19. 21st Century Trends in the Potential for Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.

    2009-05-01

    We find robust trends in the area where Antarctic stratospheric temperatures are below the threshold for polar stratospheric cloud (PSC) formation in Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. In late winter (September-October-November), cold area trends are consistent with the respective trends in equivalent effective stratospheric chlorine (EESC), i.e. negative cold area trends in 'realistic future' simulations where EESC decreases and the ozone layer recovers. In the early winter (April through June), regardless of EESC scenario, we find an increasing cold area trend in all simulations; multiple linear regression analysis shows that this early winter cooling trend is associated with the predicted increase in greenhouse gas concentrations in the future. We compare the seasonality of the potential for Antarctic ozone depletion in two versions of the GEOS CCM and assess the impact of the above-mentioned cold area trends on polar stratospheric chemistry.

  20. Pollutant formation in fuel lean recirculating flows. Ph.D. Thesis. Final Report; [in an Opposed Reacting Jet Combustor

    NASA Technical Reports Server (NTRS)

    Schefer, R. W.; Sawyer, R. F.

    1976-01-01

    An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.

  1. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  2. Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.

    PubMed

    Morgan, R L; Farrar, D F; Rose, J; Forster, H; Morgan, I

    2003-04-01

    The clinical lifetime of poly(methyl methacrylate) (PMMA) bone cement is considerably longer than the time over which it is convenient to perform creep testing. Consequently, it is desirable to be able to predict the long term creep behavior of bone cement from the results of short term testing. A simple method is described for prediction of long term creep using the principle of time-temperature equivalence in polymers. The use of the method is illustrated using a commercial acrylic bone cement. A creep strain of approximately 0.6% is predicted after 400 days under a constant flexural stress of 2 MPa. The temperature range and stress levels over which it is appropriate to perform testing are described. Finally, the effects of physical aging on the accuracy of the method are discussed and creep data from aged cement are reported.

  3. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 13 meters per year during balance year 2006 and at a rate of about 8 meters per year during balance year 2007. Glacier area near the end of balance years 2006 and 2007 was 1.74 and 1.73 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2006 and 2007. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier. Air-temperature over the glacier at a height of 2 meters generally was less than at the same altitude in the air mass away from the glacier. Cooling of the air by the glacier increased systematically with increasing ambient air temperature. Empirically based equations were developed to estimate 2-meter-height air temperature over the glacier at five sites from site altitude and temperature at a non-glacier reference site.

  4. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  5. Effect of Different Time/Temperature Roast Combinations on Nutritional and Mechanical Properties of Peanuts

    USDA-ARS?s Scientific Manuscript database

    Peanuts in North America and Europe are primarily consumed after dry roasting. Standard industry practice is to roast peanuts to a specific surface color (Hunter L-value) for a given application; however, equivalent surface colors can be attained using different roast temperature/time combinations....

  6. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  7. Modified physiologically equivalent temperature—basics and applications for western European climate

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Chang; Matzarakis, Andreas

    2018-05-01

    A new thermal index, the modified physiologically equivalent temperature (mPET) has been developed for universal application in different climate zones. The mPET has been improved against the weaknesses of the original physiologically equivalent temperature (PET) by enhancing evaluation of the humidity and clothing variability. The principles of mPET and differences between original PET and mPET are introduced and discussed in this study. Furthermore, this study has also evidenced the usability of mPET with climatic data in Freiburg, which is located in Western Europe. Comparisons of PET, mPET, and Universal Thermal Climate Index (UTCI) have shown that mPET gives a more realistic estimation of human thermal sensation than the other two thermal indices (PET, UTCI) for the thermal conditions in Freiburg. Additionally, a comparison of physiological parameters between mPET model and PET model (Munich Energy Balance Model for Individual, namely MEMI) is proposed. The core temperatures and skin temperatures of PET model vary more violently to a low temperature during cold stress than the mPET model. It can be regarded as that the mPET model gives a more realistic core temperature and mean skin temperature than the PET model. Statistical regression analysis of mPET based on the air temperature, mean radiant temperature, vapor pressure, and wind speed has been carried out. The R square (0.995) has shown a well co-relationship between human biometeorological factors and mPET. The regression coefficient of each factor represents the influence of the each factor on changing mPET (i.e., ±1 °C of T a = ± 0.54 °C of mPET). The first-order regression has been considered predicting a more realistic estimation of mPET at Freiburg during 2003 than the other higher order regression model, because the predicted mPET from the first-order regression has less difference from mPET calculated from measurement data. Statistic tests recognize that mPET can effectively evaluate the influences of all human biometeorological factors on thermal environments. Moreover, a first-order regression function can also predict the thermal evaluations of the mPET by using human biometeorological factors in Freiburg.

  8. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.

    2007-01-01

    In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near absolute zero instruments, including a wide variety of cryogenically based propulsion, energy, communication, sensing, and computing devices. The required burden of carrying massive life-supporting components from the Earth to the Moon for lunar exploration and research potentially could be reduced.

  9. Tensile properties and impact toughness of S30408 stainless steel and its welded joints at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ding, Huiming; Wu, Yingzhe; Lu, Qunjie; Xu, Ping; Zheng, Jinyang; Wei, Lijun

    2018-06-01

    Designing a cryogenic pressure vessel based on the mechanical properties of the austenitic stainless steel (ASS) at its cryogenic operating temperature fully utilizes the potential of the material at low temperatures, resulting in lightweight and compact products. A series of tensile tests and impact tests were carried out in a wide range of 77-293 K, to investigate the mechanical properties of S30408 base metal (BM) and welded joints (WJ) at cryogenic temperatures. As the temperature decreases, yield stress (Rp0.2) and ultimate tensile stress (Rm) increase significantly thanks to the low-temperature strengthening effects. To estimate strengths at cryogenic temperatures, quadratic polynomial model was used to accurately predict the variations of Rp0.2 and Rm from 77 K to 293 K. As an important phase in the WJ, ferrite presents a radial pattern and an inhomogeneity in the WJ's cross-section. Due to the formation of ferrite in the WJ, the WJ has higher Rp0.2 and lower Rm , Charpy absorbed energy and lateral expansion compared with the BM. Strain-induced martensite transformation is an important role influencing the deformation of ASS at low temperatures. In this study, less martensite amount was measured in the weldment zone with higher Nickel equivalents which stabilize the austenite phase at cryogenic temperatures. Additionally, due to higher ferrite content and more precipitates forming, the SAW joints has lower Rm and impact toughness than PAW + GTAW joints. To ensure the structural integrity and safety, the PAW + GTAW method should be chosen and ferrite content be controlled.

  10. Post-prior equivalence for transfer reactions with complex potentials

    NASA Astrophysics Data System (ADS)

    Lei, Jin; Moro, Antonio M.

    2018-01-01

    In this paper, we address the problem of the post-prior equivalence in the calculation of inclusive breakup and transfer cross sections. For that, we employ the model proposed by Ichimura et al. [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431], conveniently generalized to include the part of the cross section corresponding the transfer to bound states. We pay particular attention to the case in which the unobserved particle is left in a bound state of the residual nucleus, in which case the theory prescribes the use of a complex potential, responsible for the spreading width of the populated single-particle states. We see that the introduction of this complex potential gives rise to an additional term in the prior cross-section formula, not present in the usual case of real binding potentials. The equivalence is numerically tested for the 58Ni(d ,p X ) reaction.

  11. Current matrix element in HAL QCD's wavefunction-equivalent potential method

    NASA Astrophysics Data System (ADS)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-04-01

    We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.

  12. Inventory of File nam.t00z.awip2000.tm00.grib2

    Science.gov Websites

    analysis Pressure Reduced to MSL [Pa] 002 1 hybrid level RIME analysis Rime Factor [non-dim] 003 surface Temperature [K] 014 surface WEASD analysis Water Equivalent of Accumulated Snow Depth [kg/m^2] 015 2 m above ^2] 021 surface WEASD 0-0 day acc f Water Equivalent of Accumulated Snow Depth [kg/m^2] 022 surface

  13. Inventory of File nam.t00z.awip2006.tm00.grib2

    Science.gov Websites

    Pressure Reduced to MSL [Pa] 002 1 hybrid level RIME 6 hour fcst Rime Factor [non-dim] 003 surface VIS 6 ] 013 surface TMP 6 hour fcst Temperature [K] 014 surface WEASD 6 hour fcst Water Equivalent of ACPCP 0-6 hour acc Convective Precipitation [kg/m^2] 021 surface WEASD 0-6 hour acc Water Equivalent of

  14. Comparison of methods of temperature measurement in swine.

    PubMed

    Hanneman, S K; Jesurum-Urbaitis, J T; Bickel, D R

    2004-07-01

    The purpose of these experiments was to test the equivalence of pulmonary artery, urinary bladder, tympanic, rectal and femoral artery methods of temperature measurement in healthy and critically ill swine under clinical intensive care unit (ICU) conditions using a prospective, time series design. First, sensors were tested for error and sensitivity to change in temperature with a precision-controlled water bath and a laboratory-certified digital thermometer for temperatures 34-42 degrees C. There was virtually no systematic (bias) or random (precision) error (<0.2 degrees C). The bladder sensor had the slowest response time to change in temperature (105-120 s). Next, testing was done in an experimental porcine ICU in a non-profit research institution with four male, sedated, and mechanically ventilated domestic farm pigs. The in vivo experiments were conducted over periods of 41-168 h with temperatures measured every 1-5 s. The bladder, tympanic and rectal methods had unacceptable bias (>or=0.5 degrees C) and/or precision (>or=0.2 degrees C). Response time varied from 7 s with the femoral artery method to 280 s (4.7 min) with the tympanic method. We concluded that equivalence of the methods was insufficient for them to be used interchangeably in the porcine ICU. Intravascular monitoring of core body temperature produces optimal measurement of porcine temperature under varying conditions of physiological stability.

  15. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    NASA Astrophysics Data System (ADS)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non-uniform distributions of radical densities and gas temperature obtained after the nanosecond voltage pulse provide accurate initial conditions for 2D reactive flow codes to study the combustion ignition on longer timescales and compare with experiments.

  16. Investigation of Iso-octane Ignition and Validation of a Multizone Modeling Method in an Ignition Quality Tester

    DOE PAGES

    Osecky, Eric M.; Bogin, Gregory E.; Villano, Stephanie M.; ...

    2016-08-18

    An ignition quality tester was used to characterize the autoignition delay times of iso-octane. The experimental data were characterized between temperatures of 653 and 996 K, pressures of 1.0 and 1.5 MPa, and global equivalence ratios of 0.7 and 1.05. A clear negative temperature coefficient behavior was seen at both pressures in the experimental data. These data were used to characterize the effectiveness of three modeling methods: a single-zone homogeneous batch reactor, a multizone engine model, and a three-dimensional computational fluid dynamics (CFD) model. A detailed 874 species iso-octane ignition mechanism (Mehl, M.; Curran, H. J.; Pitz, W. J.; Westbrook,more » C. K.Chemical kinetic modeling of component mixtures relevant to gasoline. Proceedings of the European Combustion Meeting; Vienna, Austria, April 14-17, 2009) was reduced to 89 species for use in these models, and the predictions of the reduced mechanism were consistent with ignition delay times predicted by the detailed chemical mechanism across a broad range of temperatures, pressures, and equivalence ratios. The CFD model was also run without chemistry to characterize the extent of mixing of fuel and air in the chamber. The calculations predicted that the main part of the combustion chamber was fairly well-mixed at longer times (> ~30 ms), suggesting that the simpler models might be applicable in this quasi-homogeneous region. The multizone predictions, where the combustion chamber was divided into 20 zones of temperature and equivalence ratio, were quite close to the coupled CFD-kinetics results, but the calculation time was ~11 times faster than the coupled CFD-kinetics model. Although the coupled CFD-kinetics model captured the observed negative temperature coefficient behavior and pressure dependence, discrepancies remain between the predictions and the observed ignition time delays, suggesting improvements are still needed in the kinetic mechanism and/or the CFD model. This approach suggests a combined modeling approach, wherein the CFD calculations (without chemistry) can be used to examine the sensitivity of various model inputs to in-cylinder temperature and equivalence ratios. In conclusion, these values can be used as inputs to the multizone model to examine the impact on ignition delay. Additionally, the speed of the multizone model also makes it feasible to quickly test more detailed kinetic mechanisms for comparison to experimental data and sensitivity analysis.« less

  17. Investigation of Iso-octane Ignition and Validation of a Multizone Modeling Method in an Ignition Quality Tester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osecky, Eric M.; Bogin, Gregory E.; Villano, Stephanie M.

    An ignition quality tester was used to characterize the autoignition delay times of iso-octane. The experimental data were characterized between temperatures of 653 and 996 K, pressures of 1.0 and 1.5 MPa, and global equivalence ratios of 0.7 and 1.05. A clear negative temperature coefficient behavior was seen at both pressures in the experimental data. These data were used to characterize the effectiveness of three modeling methods: a single-zone homogeneous batch reactor, a multizone engine model, and a three-dimensional computational fluid dynamics (CFD) model. A detailed 874 species iso-octane ignition mechanism (Mehl, M.; Curran, H. J.; Pitz, W. J.; Westbrook,more » C. K.Chemical kinetic modeling of component mixtures relevant to gasoline. Proceedings of the European Combustion Meeting; Vienna, Austria, April 14-17, 2009) was reduced to 89 species for use in these models, and the predictions of the reduced mechanism were consistent with ignition delay times predicted by the detailed chemical mechanism across a broad range of temperatures, pressures, and equivalence ratios. The CFD model was also run without chemistry to characterize the extent of mixing of fuel and air in the chamber. The calculations predicted that the main part of the combustion chamber was fairly well-mixed at longer times (> ~30 ms), suggesting that the simpler models might be applicable in this quasi-homogeneous region. The multizone predictions, where the combustion chamber was divided into 20 zones of temperature and equivalence ratio, were quite close to the coupled CFD-kinetics results, but the calculation time was ~11 times faster than the coupled CFD-kinetics model. Although the coupled CFD-kinetics model captured the observed negative temperature coefficient behavior and pressure dependence, discrepancies remain between the predictions and the observed ignition time delays, suggesting improvements are still needed in the kinetic mechanism and/or the CFD model. This approach suggests a combined modeling approach, wherein the CFD calculations (without chemistry) can be used to examine the sensitivity of various model inputs to in-cylinder temperature and equivalence ratios. In conclusion, these values can be used as inputs to the multizone model to examine the impact on ignition delay. Additionally, the speed of the multizone model also makes it feasible to quickly test more detailed kinetic mechanisms for comparison to experimental data and sensitivity analysis.« less

  18. A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment

    NASA Astrophysics Data System (ADS)

    Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra

    2017-11-01

    Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed ˜ 2 mm h^{-1}, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.

  19. Factors Affecting the Evolution of Hurricane Erin and the Distributions of Hydrometeors: Role of Microphysical Processes

    NASA Technical Reports Server (NTRS)

    McFarquhar, Greg M.; Zhang, Henian; Dudhia, Jimy; Halverson, Jeffrey B.; Heymsfield, Gerald; Hood, Robbie; Marks, Frank, Jr.

    2003-01-01

    Fine-resolution simulations of Hurricane Erin 2001 are conducted using the Penn State University/National Center for Atmospheric Research mesoscale model version 3.5 to investigate the role of thermodynamic, boundary layer and microphysical processes in Erin's growth and maintenance, and their effects on the horizontal and vertical distributions of hydrometeors. Through comparison against radar, radiometer, and dropsonde data collected during the Convection and Moisture Experiment 4, it is seen that realistic simulations of Erin are obtained provided that fine resolution simulations with detailed representations of physical processes are conducted. The principle findings of the study are as follows: 1) a new iterative condensation scheme, which limits the unphysical increase of equivalent potential temperature associated with most condensation schemes, increases the horizontal size of the hurricane, decreases its maximum rainfall rate, reduces its intensity, and makes its eye more moist; 2) in general, microphysical parameterization schemes with more categories of hydrometeors produce more intense hurricanes, larger hydrometeor mixing ratios, and more intense updrafts and downdrafts; 3) the choice of coefficients describing hydrometeor fall velocities has as big of an impact on the hurricane simulations as does choice of microphysical parameterization scheme with no clear relationship between fall velocity and hurricane intensity; and 4) in order for a tropical cyclone to adequately intensify, an advanced boundary layer scheme (e.g., Burk-Thompson scheme) must be used to represent boundary layer processes. The impacts of varying simulations on the horizontal and vertical distributions of different categories of hydrometeor species, on equivalent potential temperature, and on storm updrafts and downdrafts are examined to determine how the release of latent heat feedbacks upon the structure of Erin. In general, all simulations tend to overpredict precipitation rate and hydrometeor mixing ratios. The ramifications of these findings for quantitative precipitation forecasts (QPFs) of tropical cyclones are discussed.

  20. A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment

    NASA Astrophysics Data System (ADS)

    Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra

    Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed 2 mm h-1, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.

  1. Large Nc equivalence and baryons

    NASA Astrophysics Data System (ADS)

    Blake, Mike; Cherman, Aleksey

    2012-09-01

    In the large Nc limit, gauge theories with different gauge groups and matter content sometimes turn out to be “large Nc equivalent,” in the sense of having a set of coincident correlation functions. Large Nc equivalence has mainly been explored in the glueball and meson sectors. However, a recent proposal to dodge the fermion sign problem of QCD with a quark number chemical potential using large Nc equivalence motivates investigating the applicability of large Nc equivalence to correlation functions involving baryon operators. Here we present evidence that large Nc equivalence extends to the baryon sector, under the same type of symmetry realization assumptions as in the meson sector, by adapting the classic Witten analysis of large Nc baryons.

  2. On equivalent resistance of electrical circuits

    NASA Astrophysics Data System (ADS)

    Kagan, Mikhail

    2015-01-01

    While the standard (introductory physics) way of computing the equivalent resistance of nontrivial electrical circuits is based on Kirchhoff's rules, there is a mathematically and conceptually simpler approach, called the method of nodal potentials, whose basic variables are the values of the electric potential at the circuit's nodes. In this paper, we review the method of nodal potentials and illustrate it using the Wheatstone bridge as an example. We then derive a closed-form expression for the equivalent resistance of a generic circuit, which we apply to a few sample circuits. The result unveils a curious interplay between electrical circuits, matrix algebra, and graph theory and its applications to computer science. The paper is written at a level accessible by undergraduate students who are familiar with matrix arithmetic. Additional proofs and technical details are provided in appendices.

  3. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case.

    PubMed

    Stauffer, Paul R; Snow, Brent W; Rodrigues, Dario B; Salahi, Sara; Oliveira, Tiago R; Reudink, Doug; Maccarini, Paolo F

    2014-02-01

    This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differential surface/deep tissue temperatures for quantifying sensitivity to change in brain temperature independent of scalp and surrounding environment. A single band radiometer was calibrated and tested in a multilayer model of the human head with differential scalp and brain temperature. Following calibration of a 500MHz bandwidth microwave radiometer in the head model, feasibility of clinical monitoring was assessed in a pediatric patient during a 2-hour surgery. The results of phantom testing showed that calculated radiometric equivalent brain temperature agreed within 0.4°C of measured temperature when the brain phantom was lowered 10°C and returned to original temperature (37°C), while scalp was maintained constant over a 4.6-hour experiment. The intended clinical use of this system was demonstrated by monitoring brain temperature during surgery of a pediatric patient. Over the 2-hour surgery, the radiometrically measured brain temperature tracked within 1-2°C of rectal and nasopharynx temperatures, except during rapid cooldown and heatup periods when brain temperature deviated 2-4°C from slower responding core temperature surrogates. In summary, the radiometer demonstrated long term stability, accuracy and sensitivity sufficient for clinical monitoring of deep brain temperature during surgery.

  4. Comparison of the Fatigue Behavior of Copper Alloys

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Ellis, David

    2006-01-01

    This presentation is about the development of advanced copper alloys with high thermal conductivity, good creep strength, and adequate fatigue strength for rocket engine applications. It also focuses on the commercial availability of the advanced alloy-GRCop-84 developed at NASA-GRC. The presentation's conclusions are that GRCop-84 has equivalent or better isothermal fatigue lives compared to other commercially available copper alloys, that GRCop-84 can be fabricated in various forms with minimal change in the fatigue lives, that it is equivalent in sothermal, fatigue to AMZIRC at moderate temperatures, and that Narloy-Z is equivalent in fatigue capabilities to GRCop-84 at 400C and below.

  5. High operation temperature of HgCdTe photodiodes by bulk defect passivation

    NASA Astrophysics Data System (ADS)

    Boieriu, Paul; Velicu, S.; Bommena, R.; Buurma, C.; Blisset, C.; Grein, C.; Sivananthan, S.; Hagler, P.

    2013-01-01

    Spatial noise and the loss of photogenerated current due material non-uniformities limit the performance of long wavelength infrared (LWIR) HgCdTe detector arrays. Reducing the electrical activity of defects is equivalent to lowering their density, thereby allowing detection and discrimination over longer ranges. Infrared focal plane arrays (IRFPAs) in other spectral bands will also benefit from detectivity and uniformity improvements. Larger signal-to-noise ratios permit either improved accuracy of detection/discrimination when an IRFPA is employed under current operating conditions, or provide similar performance with the IRFPA operating under less stringent conditions such as higher system temperature, increased system jitter or damaged read out integrated circuit (ROIC) wells. The bulk passivation of semiconductors with hydrogen continues to be investigated for its potential to become a tool for the fabrication of high performance devices. Inductively coupled plasmas have been shown to improve the quality and uniformity of semiconductor materials and devices. The retention of the benefits following various aging conditions is discussed here.

  6. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?

    PubMed

    Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S

    2016-01-01

    Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Study of the dynamic properties and effects of temperature using a spring model for the bouncing ball

    NASA Astrophysics Data System (ADS)

    Wadhwa, Ajay

    2013-05-01

    We studied the motion of a bouncing ball by representing it through an equivalent mass-spring system executing damped harmonic oscillations. We represented the elasticity of the system through the spring constant ‘k’ and the viscous damping effect, causing loss of energy, through damping constant ‘c’. By including these two factors we formed a differential equation for the equivalent mass-spring system of the bouncing ball. This equation was then solved to study the elastic and dynamic properties of its motion by expressing them in terms of experimentally measurable physical quantities such as contact time, coefficient of restitution, etc. We used our analysis for different types of ball material: rubber (lawn-tennis ball, super ball, soccer ball and squash ball) and plastic (table-tennis ball) at room temperature. Since the effect of temperature on the bounce of a squash ball is significant, we studied the temperature dependence of its elastic properties. The experiments were performed using audio and surface-temperature sensors interfaced with a computer through a USB port. The work presented here is suitable for undergraduate laboratories. It particularly emphasizes the use of computer interfacing for conducting conventional physics experiments.

  8. Gasification of refinery sludge in an updraft reactor for syngas production

    NASA Astrophysics Data System (ADS)

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama

    2014-10-01

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H2, CH4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO2+ C = 450 2CO ), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm-3 of, and 2.5 Nm3 kg-1 respectively.

  9. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change

    USGS Publications Warehouse

    Kirwan, M.L.; Blum, L.K.

    2011-01-01

    Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find that organic decomposition rates increase by about 12% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, twice as high as the response of salt marsh productivity to temperature warming, and roughly equivalent to the productivity response associated with elevated CO2 in C3 marsh plants. Therefore, enhanced CO2 and warmer temperatures may actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments. ?? 2011 Author(s).

  10. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects

    NASA Astrophysics Data System (ADS)

    Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.

    2011-05-01

    Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.

  11. Simulating the potential effects of climate change in two Colorado basins and at two Colorado ski areas

    USGS Publications Warehouse

    Battaglin, William; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    The mountainous areas of Colorado are used for tourism and recreation, and they provide water storage and supply for municipalities, industries, and agriculture. Recent studies suggest that water supply and tourist industries such as skiing are at risk from climate change. In this study, a distributed-parameter watershed model, the Precipitation-Runoff Modeling System (PRMS), is used to identify the potential effects of future climate on hydrologic conditions for two Colorado basins, the East River at Almont and the Yampa River at Steamboat Springs, and at the subbasin scale for two ski areas within those basins.Climate-change input files for PRMS were generated by modifying daily PRMS precipitation and temperature inputs with mean monthly climate-change fields of precipitation and temperature derived from five general circulation model (GCM) simulations using one current and three future carbon emission scenarios. All GCM simulations of mean daily minimum and maximum air temperature for the East and Yampa River basins indicate a relatively steady increase of up to several degrees Celsius from baseline conditions by 2094. GCM simulations of precipitation in the two basins indicate little change or trend in precipitation, but there is a large range associated with these projections. PRMS projections of basin mean daily streamflow vary by scenario but indicate a central tendency toward slight decreases, with a large range associated with these projections.Decreases in water content or changes in the spatial extent of snowpack in the East and Yampa River basins are important because of potential adverse effects on water supply and recreational activities. PRMS projections of each future scenario indicate a central tendency for decreases in basin mean snow-covered area and snowpack water equivalent, with the range in the projected decreases increasing with time. However, when examined on a monthly basis, the projected decreases are most dramatic during fall and spring. Presumably, ski area locations are picked because of a tendency to receive snow and keep snowpack relative to the surrounding area. This effect of ski area location within the basin was examined by comparing projections of March snow-covered area and snowpack water equivalent for the entire basin with more local projections for the portion of the basin that represents the ski area in the PRMS models. These projections indicate a steady decrease in March snow-covered area for the basins but only small changes in March snow-covered area at both ski areas for the three future scenarios until around 2050. After 2050, larger decreases are possible, but there is a large range in the projections of future scenarios. The rates of decrease for snowpack water equivalent and precipitation that falls as snow are similar at the basin and subbasin scale in both basins. Results from this modeling effort show that there is a wide range of possible outcomes for future snowpack conditions in Colorado. The results also highlight the differences between projections for entire basins and projections for local areas or subbasins within those basins.

  12. Couplings between the seasonal cycles of surface thermodynamics and radiative fluxes in the semi-arid Sahel

    NASA Astrophysics Data System (ADS)

    Guichard, F.; Kergoat, L.; Mougin, E.; Timouk, F.; Bock, O.; Hiernaux, P.

    2009-04-01

    A good knowledge of surface fluxes and atmospheric low levels is central to improving our understanding of the West African monsoon. This study provides a quantitative analysis of the peculiar seasonal and diurnal cycles of surface thermodynamics and radiative fluxes encountered in Central Sahel. It is based on a multi-year dataset collected in the Malian Gourma over a sandy soil at 1.5°W-15.3°N (a site referred to as Agoufou) with an automated weather station and a sunphotometer (AERONET), complemented by observations from the AMMA field campaign. The seasonal cycle of this Tropical region is characterized by a broad maximum of temperature in May, following the first minimum of the solar zenith angle by a few weeks, when Agoufou lies within the West African Heat-Low, and a late summer maximum of equivalent potential temperature within the core of the monsoon season, around the second yearly maximum of solar zenith angle, as the temperature reaches its Summer minimum. More broadly, subtle balances between surface air temperature and moisture fields are found on a range of scales. For instance, during the monsoon, apart from August, their opposite daytime fluctuations (warming, drying) lead to an almost flat diurnal cycle of the equivalent potential temperature at the surface. This feature stands out in contrast to other more humid continental regions. Here, the strong dynamics associated with the transition from a drier hot Spring to a brief cooler wet tropical Summer climate involves very large transformations of the diurnal cycles. The Summer increase of surface net radiation, Rnet, is also strong; typically 10-day mean Rnet reaches about 5 times its Winter minimum (~30 W.m-2) in August (~150 W.m-2). A major feature revealed by observations is that this increase is mostly driven by modifications of the surface upwelling fluxes shaped by rainfall events and vegetation phenology (surface cooling and darkening), while the direct impact of atmospheric changes on the total incoming radiation is limited to shorter time scales in Summer over this Central Sahelian location. However, observations also reveal astonishing radiative signatures of the monsoon on the surface incoming radiative flux. The incoming longwave flux does not reach its maximum during the monsoon season when the atmosphere is the most cloudy and humid, but earlier, prior to the onset of rainfall, as the dry and warmer atmosphere suddenly becomes moist. This feature points to the significance of the atmospheric cooling during the monsoon season and of the aerosol amounts in Spring. It also reveals that prior to the rainfall onset, the monsoon flow plays a major role on the diurnal cycle of the low-level temperature, due to its radiative properties. Conversely, the incoming solar radiation at the surface increases slightly from late Spring to the core monsoon season even though the atmosphere becomes moister and cloudier; this again involves the high aerosol optical thickness prevailing in late Spring and early Summer against a weaker shortwave forcing by monsoon clouds. The climatological combination of thermodynamic and radiative variations taking place during the monsoon eventually leads to a positive correlation between the equivalent potential temperature and Rnet. This correlation is, in turn, broadly consistent with an overall positive soil moisture rainfall feedback at this scale. Beyond these Sahelian-specific features, and in agreement with some previous studies, strong links are found between the atmospheric humidity and the net longwave flux, LWnet at the surface all year long, even across the much lower humidity ranges encountered in this region. They point to, and locally quantify the major control of water vapour and water-related processes on the surface-atmosphere thermal coupling as measured by LWnet. Namely, they are found to be more tightly coupled (LWnet closer to 0) when the atmosphere is moister and cloudier. Observational results such as presented here provide valuable ground truth for assessing models over a continental area displaying a challenging variety of surface-atmosphere regimes throughout the year, from a desert-like to a rainy tropical-like climate during the core of the monsoon. Indeed, the mechanisms emphasized by these data do not all comply to existing conceptual schemes.

  13. Measurements of Flat-Flame Velocities of Diethyl Ether in Air

    PubMed Central

    Gillespie, Fiona; Metcalfe, Wayne K.; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Curran, Henry J.

    2013-01-01

    This study presents new adiabatic laminar burning velocities of diethyl ether in air, measured on a flat-flame burner using the heat flux method. The experimental pressure was 1 atm and temperatures of the fresh gas mixture ranged from 298 to 398 K. Flame velocities were recorded at equivalence ratios from 0.55 to 1.60, for which stabilization of the flame was possible. The maximum laminar burning velocity was found at an equivalence ratio of 1.10 or 1.15 at different temperatures. These results are compared with experimental and computational data reported in the literature. The data reported in this study deviate significantly from previous experimental results and are well-predicted by a previously reported chemical kinetic mechanism. PMID:23710107

  14. Energy Flux Positivity and Unitarity in Conformal Field Theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulaxizi, Manuela; Parnachev, Andrei

    2011-01-07

    We show that in most conformal field theories the condition of the energy flux positivity, proposed by Hofman and Maldacena, is equivalent to the absence of ghosts. At finite temperature and large energy and momenta, the two-point functions of the stress energy tensor develop light like poles. The residues of the poles can be computed, as long as the only spin-two conserved current, which appears in the stress energy tensor operator-product expansion and acquires a nonvanishing expectation value at finite temperature, is the stress energy tensor. The condition for the residues to stay positive and the theory to remain ghost-freemore » is equivalent to the condition of positivity of energy flux.« less

  15. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices.

    PubMed

    Torres, Juan C; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-05-02

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  16. Titration of Limited Hold to Comparison in Conditional Discrimination Training and Stimulus Equivalence Testing

    ERIC Educational Resources Information Center

    Arntzen, Erik; Haugland, Silje

    2012-01-01

    Reaction time (RT), thought to be important for acquiring a full understanding of the establishment of equivalence classes, has been reported in a number of studies within the area of stimulus equivalence research. In this study, we trained 3 classes of potentially 3 members, with arbitrary stimuli in a one-to-many training structure in 5 adult…

  17. Heat profiles of laser-irradiated nails

    NASA Astrophysics Data System (ADS)

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A.; Kendler, Michael; Simon, Jan C.; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  18. Heat profiles of laser-irradiated nails.

    PubMed

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A; Kendler, Michael; Simon, Jan C; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  19. Environmental harshness, heat stress, and Marmota flaviventris.

    PubMed

    Webb, D R

    1979-01-01

    Yellow-bellied marmots (Marmota flaviventris) were studied at three sites in central Oregon. Juveniles substantially reduced their foraging activity when equivalent black-body temperatures exceeded their upper critical temperature. Inclusion of heat stress into estimates of environmental harshness drastically reduced the differences in available foraging time between high elevation and low elevation sites.

  20. Effect of Different Time/Temperature Roast Combinations on Peanut Flavor-Descriptive Sensory, Electronic Nose and Electronic Eye Characterization

    USDA-ARS?s Scientific Manuscript database

    Roasting is of central importance to peanut flavor. Standard industry practice is to roast peanuts to a specific surface color (Hunter L-value) for a given application; however, equivalent surface colors can be generated using different temperature/time roast combinations. To better understand the e...

  1. The Scaling of Broadband Shock-Associated Noise with Increasing Temperature

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. To isolate the relevant physics, the scaling of BBSAN peak intensity level at the sideline observer location is examined. The equivalent source within the framework of an acoustic analogy for BBSAN is based on local field quantities at shock wave shear layer interactions. The equivalent source combined with accurate calculations of the propagation of sound through the jet shear layer, using an adjoint vector Green's function solver of the linearized Euler equations, allows for predictions that retain the scaling with respect to stagnation pressure and allows for saturation of BBSAN with increasing stagnation temperature. The sources and vector Green's function have arguments involving the steady Reynolds- Averaged Navier-Stokes solution of the jet. It is proposed that saturation of BBSAN with increasing jet temperature occurs due to a balance between the amplication of the sound propagation through the shear layer and the source term scaling.

  2. Theory of noise equivalent power of a high-temperature superconductor far-infrared bolometer in a photo-thermoelectrical mode of operation

    NASA Astrophysics Data System (ADS)

    Kaila, M. M.; Russell, G. J.

    2000-12-01

    We present a theory of noise equivalent power (NEP) and related parameters for a high-temperature superconductor (HTSC) bolometer in which temperature and resistance are the noise sources for open circuit operation and phonon and resistance are the noise sources for voltage-biased operation of the bolometer. The bolometer is designed to use a photo-thermoelectrical mode of operation. A mathematical formulation for the open circuit operation is first presented followed by an analysis of the heterodyne case with a bias applied in constant voltage mode. For the first time electrothermal (ET) and thermoelectrical (TE) feedback are treated in the heat balance equation simultaneously. A parallel resistance geometry consisting of thermoelectric and HTSC material legs has been chosen for the device. Computations for the ET-TE feedback show that the response time improves by three orders of magnitude and the responsivity becomes double for the same TE feedback. In the heat balance equation we have included among the heat transfer processes the temperature dependence of the thermal conductance at the bolometer-substrate interface for the dynamic state.

  3. Ratcheting rotation or speedy spinning: EPR and dynamics of Sc3C2@C80.

    PubMed

    Roukala, Juho; Straka, Michal; Taubert, Stefan; Vaara, Juha; Lantto, Perttu

    2017-08-08

    Besides their technological applications, endohedral fullerenes provide ideal conditions for investigating molecular dynamics in restricted geometries. A representative of this class of systems, Sc 3 C 2 @C 80 displays complex intramolecular dynamics. The motion of the 45 Sc trimer has a remarkable effect on its electron paramagnetic resonance (EPR) spectrum, which changes from a symmetric 22-peak pattern at high temperature to a single broad lineshape at low temperature. The scandium trimer consists of two equivalent and one inequivalent metal atom, due to the carbon dimer rocking through the Sc 3 triangle. We demonstrate through first-principles molecular dynamics (MD), EPR parameter tensor averaging, and spectral modelling that, at high temperatures, three-dimensional movement of the enclosed Sc 3 C 2 moiety takes place, which renders the metal centers equivalent and their magnetic parameters effectively isotropic. In contrast, at low temperatures the dynamics becomes restricted to two dimensions within the equatorial belt of the I h symmetric C 80 host fullerene. This restores the inequivalence of the scandium centers and causes their anisotropic hyperfine couplings to broaden the experimental spectrum.

  4. The Impact on Simulated Storm Structure and Intensity of Variations in the Lifted Condensation Level and the Level of Free Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Cohen, Charles; Arnold, James E. (Technical Monitor)

    2001-01-01

    The sensitivities of convective storm structure and intensity to changes in the altitudes of the prestorm environmental lifted condensation level and level of free convection axe studied using a full-physics three-dimensional cloud model. Matrices of simulations are conducted for a range of LCL=LFC altitudes, using a single moderately-sheared curved hodograph trace in conjunction with 1 convective available potential energy values of either 800 or 2000 J/kg, with the matrices consisting of all four combinations of two distinct choices of buoyancy and shear profile shape. For each value of CAPE, the LCL=LFC altitudes are also allowed to vary in a series of simulations based on the most highly compressed buoyancy and shear profiles for that CAPE, with the environmental buoyancy profile shape, subcloud equivalent potential temperature, subcloud lapse rates of temperature and moisture, and wind profile held fixed. For each CAPE, one final simulation is conducted using a near optimal LFC, but a lowered LCL, with a neutrally buoyant environmental thermal profile specified in between. Results show that, for the buoyancy-starved small-CAPE environments, the simulated storms are supercells and are generally largest and most intense when LCL=LFC altitudes lie in the approximate range 1.5-2.5 km above the surface. The simulations show similar trends for the shear-starved large-CAPE environments, except that conversion from supercell to multicell morphology frequently occurs when the LCL is high. For choices of LCL=LFC height within the optimal 1.5-2.5 km range, peak storm updraft overturning efficiency may approaches unity relative to parcel theory, while for lower LCL=LFC heights, overturning efficiency is reduced significantly. The enhancements of overturning efficiency and updraft diameter with increasing LFC height are shown to be the result of systematic increases in the mean equivalent potential temperature of the updraft at cloud base. For the shear-starved environments, the tendency for outflow dominance is eliminated, but a large overturning efficiency maintained, when a low LCL is used in conjunction with a high LFC. The result regarding outflow dominance at high LCL is consistent with expectations, but the beneficial effect of a high LFC on convective overturning efficiency has not previously been widely recognized. The simulation findings here also appear to be consistent with statistics from previous severe storm environment climatologies, but provide a new framework for interpreting those statistics.

  5. Environmental Effects on Non-oxide Ceramics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.

    1997-01-01

    Non-oxide ceramics such as silicon carbide (SiC) and silicon nitride (Si3N4) are promising materials for a wide range of high temperature applications. These include such diverse applications as components for heat engines, high temperature electronics, and re-entry shields for space vehicles. Table I lists a number of selected applications. Most of the emphasis here will be on SiC and Si3N4. Where appropriate, other non-oxide materials such as aluminum nitride (AlN) and boron nitride (BN) will be discussed. Proposed materials include both monolithic ceramics and composites. Composites are treated in more detail elsewhere in this volume, however, many of the oxidation/corrosion reactions discussed here can be extended to composites. In application these materials will be exposed to a wide variety of environments. Table I also lists reactive components of these environments.It is well-known that SiC and Si3N4 retain their strength to high temperatures. Thus these materials have been proposed for a variety of hot-gas-path components in combustion applications. These include heat exchanger tubes, combustor liners, and porous filters for coal combustion products. All combustion gases contain CO2, CO, H2, H2O, O2, and N2. The exact gas composition is dependent on the fuel to air ratio or equivalence ratio. (Equivalence ratio (EQ) is a fuel-to-air ratio, with total hydrocarbon content normalized to the amount of O2 and defined by EQ=1 for complete combustion to CO2 and H2O). Figure 1 is a plot of equilibrium gas composition vs. equivalence ratio. Note that as a general rule, all combustion atmospheres are about 10% water vapor and 10% CO2. The amounts of CO, H2, and O2 are highly dependent on equivalence ratio.

  6. End of the Little Ice Age in the Alps forced by industrial black carbon

    PubMed Central

    Painter, Thomas H.; Flanner, Mark G.; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A.; Abdalati, Waleed

    2013-01-01

    Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glacier retreats in the Alps that began in the mid-19th century. Ice cores indicate that black carbon concentrations increased abruptly in the mid-19th century and largely continued to increase into the 20th century, consistent with known increases in black carbon emissions from the industrialization of Western Europe. Inferred annual surface radiative forcings increased stepwise to 13–17 W⋅m−2 between 1850 and 1880, and to 9–22 W⋅m−2 in the early 1900s, with snowmelt season (April/May/June) forcings reaching greater than 35 W⋅m−2 by the early 1900s. These snowmelt season radiative forcings would have resulted in additional annual snow melting of as much as 0.9 m water equivalent across the melt season. Simulations of glacier mass balances with radiative forcing-equivalent changes in atmospheric temperatures result in conservative estimates of accumulating negative mass balances of magnitude −15 m water equivalent by 1900 and −30 m water equivalent by 1930, magnitudes and timing consistent with the observed retreat. These results suggest a possible physical explanation for the abrupt retreat of glaciers in the Alps in the mid-19th century that is consistent with existing temperature and precipitation records and reconstructions. PMID:24003138

  7. End of the Little Ice Age in the Alps forced by industrial black carbon.

    PubMed

    Painter, Thomas H; Flanner, Mark G; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A; Abdalati, Waleed

    2013-09-17

    Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glacier retreats in the Alps that began in the mid-19th century. Ice cores indicate that black carbon concentrations increased abruptly in the mid-19th century and largely continued to increase into the 20th century, consistent with known increases in black carbon emissions from the industrialization of Western Europe. Inferred annual surface radiative forcings increased stepwise to 13-17 W⋅m(-2) between 1850 and 1880, and to 9-22 W⋅m(-2) in the early 1900s, with snowmelt season (April/May/June) forcings reaching greater than 35 W⋅m(-2) by the early 1900s. These snowmelt season radiative forcings would have resulted in additional annual snow melting of as much as 0.9 m water equivalent across the melt season. Simulations of glacier mass balances with radiative forcing-equivalent changes in atmospheric temperatures result in conservative estimates of accumulating negative mass balances of magnitude -15 m water equivalent by 1900 and -30 m water equivalent by 1930, magnitudes and timing consistent with the observed retreat. These results suggest a possible physical explanation for the abrupt retreat of glaciers in the Alps in the mid-19th century that is consistent with existing temperature and precipitation records and reconstructions.

  8. The mineralogical consequences and behavior of descending acid-sulfate waters: An example from the Karaha - Telaga Bodas geothermal system, Indonesia

    USGS Publications Warehouse

    Moore, J.N.; Christenson, B.W.; Allis, R.G.; Browne, P.R.L.; Lutz, S.J.

    2004-01-01

    Acidic steam condensates in volcanic systems or shallow, oxygenated geothermal environments are typically enriched in SO4 and poor in Cl. These fluids produce distinctive alteration-induced assemblages as they descend. At Karaha - Telaga Bodas, located on the flank of Galunggung Volcano, Indonesia, neutralization of descending acid waters has resulted in the successive appearance of 1) advanced argillic alteration characterized by alunite, clay minerals and pyrite, 2) anhydrite, pyrite and interlayered sheet silicates, and 3) carbonates. Minor tourmaline, fluorite and native sulfur also are present locally, reflecting interactions with discharging magmatic gases. Water rock interactions were modeled at temperatures up to 250??C using the composition of acidic lake water from Telaga Bodas and that of a typical andesite as reactants. The simulations predict mineral distributions consistent with the observed assemblages and a decrease in the freezing-point depression of the fluid with increasing temperature. Fluids trapped in anhydrite, calcite and fluorite display a similar decrease in their freezing-point depressions, from 2.8?? to 1.5??C, as homogenization temperatures increase from 160?? to 205??C. The simulations indicate that the progressive change in fluid composition is due mainly to the incorporation of SO4 into the newly formed hydrothermal minerals. The salinities of fluid inclusions containing Cl-deficient steam condensates are better expressed in terms of H2SO4 equivalents than the commonly used NaCl equivalents. At solute concentrations >1.5 molal, freezing-point depressions represented as NaCl equivalents overestimate the salinity of Cl-poor waters. At lower concentrations, differences between apparent salinities calculated as NaCl and H2SO 4 equivalents are negligible.

  9. Optimization of subcritical water extraction parameters of antioxidant polyphenols from sea buckthorn (Hippophaë rhamnoides L.) seed residue.

    PubMed

    Gong, Ying; Zhang, Xiaofei; He, Li; Yan, Qiuli; Yuan, Fang; Gao, Yanxiang

    2015-03-01

    Polyphenols was extracted with subcritical water from the sea buckthorn seed residue (after oil recovery), and the extraction parameters were optimized using response surface methodology (RSM). The independent processing variables were extraction temperature, extraction time and the ratio of water to solid. The optimal extraction parameters for the extracts with highest ABTS radical scavenging activity were 120 °C, 36 min and the water to solid ratio of 20, and the maximize antioxidant capacity value was 32.42 mmol Trolox equivalent (TE)/100 g. Under the optimal conditions, the yield of total phenolics, total flavonoids and proanthocyanidins was 36.62 mg gallic acid equivalents (GAE)/g, 19.98 mg rutin equivalent (RE)/g and 10.76 mg catechin equivalents (CE)/g, respectively.

  10. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  11. A study of the transmission characteristics of suppressor nozzles

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Salikuddin, M.; Burrin, R. H.; Plumbee, H. E., Jr.

    1980-01-01

    The internal noise radiation characteristics for a single stream 12 lobe 24 tube suppressor nozzle, and for a dual stream 36 chute suppressor nozzle were investigated. An equivalent single round conical nozzle and an equivalent coannular nozzle system were also tested to provide a reference for the two suppressors. The technique utilized a high voltage spark discharge as a noise source within the test duct which permitted separation of the incident, reflected and transmitted signals in the time domain. These signals were then Fourier transformed to obtain the nozzle transmission coefficient and the power transfer function. These transmission parameters for the 12 lobe, 24 tube suppressor nozzle and the reference conical nozzle are presented as a function of jet Mach number, duct Mach number polar angle and temperature. Effects of simulated forward flight are also considered for this nozzle. For the dual stream, 36 chute suppressor, the transmission parameters are presented as a function of velocity ratios and temperature ratios. Possible data for the equivalent coaxial nozzle is also presented. Jet noise suppression by these nozzles is also discussed.

  12. Metabolic physiology of the invasive clam, Potamocorbula amurensis: the interactive role of temperature, salinity, and food availability.

    PubMed

    Miller, Nathan A; Chen, Xi; Stillman, Jonathon H

    2014-01-01

    In biological systems energy serves as the ultimate commodity, often determining species distributions, abundances, and interactions including the potential impact of invasive species on native communities. The Asian clam Potamocorbula amurensis invaded the San Francisco Estuary (SFE) in 1986 and is implicated in the decline of native fish species through resource competition. Using a combined laboratory/field study we examined how energy expenditure in this clam is influenced by salinity, temperature and food availability. Measures of metabolism were made at whole organism (metabolic rate) and biochemical (pyruvate kinase (PK) and citrate synthase (CS) enzyme activities) levels. We found in the field, over the course of a year, the ratio of PK to CS was typically 1.0 suggesting that aerobic and fermentative metabolism were roughly equivalent, except for particular periods characterized by low salinity, higher temperatures, and intermediate food availabilities. In a 30-day laboratory acclimation experiment, however, neither metabolic rate nor PK:CS ratio was consistently influenced by the same variables, though the potential for fermentative pathways did predominate. We conclude that in field collected animals, the addition of biochemical measures of energetic state provide little additional information to the previously measured whole organism metabolic rate. In addition, much of the variation in the laboratory remained unexplained and additional variables, including reproductive stage or body condition may influence laboratory-based results. Further study of adult clams must consider the role of organismal condition, especially reproductive state, in comparisons of laboratory experiments and field observations.

  13. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    NASA Astrophysics Data System (ADS)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  14. Potential contribution of mangoes to reduction of vitamin A deficiency in Kenya.

    PubMed

    Muoki, Penina N; Makokha, Anselimo O; Onyango, Christine A; Ojijo, Nelson K O

    2009-01-01

    The β-carotene content of fresh and dried mangoes commonly consumed in Kenya was evaluated and converted to retinol equivalent (RE). Mango fruits of varieties Ngowe, Apple, and Tommy Atkins were harvested at mature green, partially ripe, and ripe stages and their β-carotene content analyzed. The stability of β-carotene in sun dried mangoes was also studied over 6 months under usual marketing conditions used in Kenya. The effect of using simple pretreatment methods prior to drying of mango slices on retention of β-carotene was as well evaluated. In amounts acceptable to children and women, fresh and dried mangoes can supply 50% or more of the daily required retinol equivalent for children and women. Stage of ripeness, variety, postharvest holding temperature, method of drying, and storage time of dried mango slices affected β-carotene content and consequently vitamin A value of the fruits. Apple variety grown in Machakos had the highest β-carotene. It exceeded the daily RE requirements by 11.8% and 21.5% for women and children respectively. Fresh or dried mangoes are a significant provitamin A source and should be included in food-based approaches aiming to reduce vitamin A deficiency.

  15. On-line Ammonia Sensor and Invisible Security Ink by Fluorescent Zwitterionic Spirocyclic Meisenheimer Complex

    PubMed Central

    Das, Tanmay; Pramanik, Apurba; Haldar, Debasish

    2017-01-01

    Ammonia is not only a highly important gas for civilization but also contribute significantly for climate change and human health hazard. Highly sensitive ammonia sensor has been developed from a fluorescent zwitterionic spirocyclic Meisenheimer complex. Moreover, formation of this Meisenheimer complex can also be utilized for selective as well as naked eye instant detection of nitro aromatic explosive picric acid. The presence of a quaternary nitrogen atom directly attached to the spiro carbon is the unique feature of this Meisenheimer complex. This excellent photoluminescent (PL) Meisenheimer complex has two distinct stimuli responsive sites. One is sensitive towards acid while the other one is towards the base. These two positions can be modulated by adding one equivalent acid and one equivalent base to result two new products which are non fluorescent. One of these two non fluorescent species was found very exciting because of its UV/Vis transparency. Utilizing this concept we have fabricated an on-line sensor for measuring ammonia in dry or humid and condensing sewer air. The sensor was robust against ambient temperature and humidity variation. We have also developed an invisible ink from this Meisenheimer complex, with potential application for security purpose. PMID:28091542

  16. On-line Ammonia Sensor and Invisible Security Ink by Fluorescent Zwitterionic Spirocyclic Meisenheimer Complex.

    PubMed

    Das, Tanmay; Pramanik, Apurba; Haldar, Debasish

    2017-01-16

    Ammonia is not only a highly important gas for civilization but also contribute significantly for climate change and human health hazard. Highly sensitive ammonia sensor has been developed from a fluorescent zwitterionic spirocyclic Meisenheimer complex. Moreover, formation of this Meisenheimer complex can also be utilized for selective as well as naked eye instant detection of nitro aromatic explosive picric acid. The presence of a quaternary nitrogen atom directly attached to the spiro carbon is the unique feature of this Meisenheimer complex. This excellent photoluminescent (PL) Meisenheimer complex has two distinct stimuli responsive sites. One is sensitive towards acid while the other one is towards the base. These two positions can be modulated by adding one equivalent acid and one equivalent base to result two new products which are non fluorescent. One of these two non fluorescent species was found very exciting because of its UV/Vis transparency. Utilizing this concept we have fabricated an on-line sensor for measuring ammonia in dry or humid and condensing sewer air. The sensor was robust against ambient temperature and humidity variation. We have also developed an invisible ink from this Meisenheimer complex, with potential application for security purpose.

  17. On-line Ammonia Sensor and Invisible Security Ink by Fluorescent Zwitterionic Spirocyclic Meisenheimer Complex

    NASA Astrophysics Data System (ADS)

    Das, Tanmay; Pramanik, Apurba; Haldar, Debasish

    2017-01-01

    Ammonia is not only a highly important gas for civilization but also contribute significantly for climate change and human health hazard. Highly sensitive ammonia sensor has been developed from a fluorescent zwitterionic spirocyclic Meisenheimer complex. Moreover, formation of this Meisenheimer complex can also be utilized for selective as well as naked eye instant detection of nitro aromatic explosive picric acid. The presence of a quaternary nitrogen atom directly attached to the spiro carbon is the unique feature of this Meisenheimer complex. This excellent photoluminescent (PL) Meisenheimer complex has two distinct stimuli responsive sites. One is sensitive towards acid while the other one is towards the base. These two positions can be modulated by adding one equivalent acid and one equivalent base to result two new products which are non fluorescent. One of these two non fluorescent species was found very exciting because of its UV/Vis transparency. Utilizing this concept we have fabricated an on-line sensor for measuring ammonia in dry or humid and condensing sewer air. The sensor was robust against ambient temperature and humidity variation. We have also developed an invisible ink from this Meisenheimer complex, with potential application for security purpose.

  18. Gas-fired duplex free-piston Stirling refrigerator

    NASA Astrophysics Data System (ADS)

    Urieli, L.

    1984-03-01

    The duplex free-piston Stirling refrigerator is a potentially high efficiency, high reliability device which is ideally suited to the home appliance field, in particular as a gas-fired refrigerator. It has significant advantages over other equivalent devices including freedom from halogenated hydrocarbons, extremely low temperatures available at a high efficiency, integrated water heating, and simple burner system control. The design and development of a portable working demonstration gas-fired duplex Stirling refrigeration unit is described. A unique combination of computer aided development and experimental development was used, enabling a continued interaction between the theoretical analysis and practical testing and evaluation. A universal test rig was developed in order to separately test and evaluate major subunits, enabling a smooth system integration phase.

  19. Collaboration on Development and Validation of the AMSR-E Snow Water Equivalent Algorithm

    NASA Technical Reports Server (NTRS)

    Armstrong, Richard L.

    2000-01-01

    The National Snow and Ice Data Center (NSIDC) has produced a global SMMR and SSM/I Level 3 Brightness Temperature data set in the Equal Area Scalable Earth (EASE) Grid for the period 1978 to 2000. Processing of current data is-ongoing. The EASE-Grid passive microwave data sets are appropriate for algorithm development and validation prior to the launch of AMSR-E. Having the lower frequency channels of SMMR (6.6 and 10.7 GHz) and the higher frequency channels of SSM/I (85.5 GHz) in the same format will facilitate the preliminary development of applications which could potentially make use of similar frequencies from AMSR-E (6.9, 10.7, 89.0 GHz).

  20. Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model

    NASA Astrophysics Data System (ADS)

    Kanazawa, Takuya; Kieburg, Mario

    2018-06-01

    We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.

  1. Comparative study of diode-pumped alkali vapor laser and exciplex-pumped alkali laser systems and selection principal of parameters

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui

    2017-03-01

    A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.

  2. Numerical and experimental studies of particle flow in a high-pressure boundary-layer wind tunnel

    NASA Technical Reports Server (NTRS)

    White, B. R.

    1984-01-01

    The approach was to simulate the surface environment of Venus as closely as practicable and to conduct experiments to determine threshold wind speeds, particle flux, particle velocities, and the characteristics of various aeolian bedforms. The Venus Wind Tunnel (VWT) is described and the experimental procedures that were developed to make the high-pressure wind tunnel measurements are presented. In terrestrial simulations of aeolian activity, it is possible to conduct experiments under pressures and temperatures found in natural environments. Because of the high pressures and temperatures, Venusian simulations are difficult to achieve in this regard. Consequently, extrapolation of results to Venue potentially involves unknown factors. The experimental rationale was developed in the following way: The VWT enables the density of the Venusian atmosphere to be reproduced. Density is the principal atmospheric property for governing saltation threshold, particle flux, and the ballistics of airborne particles (equivalent density maintains dynamic similarity of gas flow). When operated at or near Earth's ambient temperature, VWT achieves Venusian atmospheric density at pressures of about 30 bar, or about one third less than those on Venus, although still maintaining dynamic similarity to Venus.

  3. Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables: from kinetic information to process engineering aspects.

    PubMed

    Ludikhuyze, L; Van Loey, A; Indrawati; Smout, C; Hendrickx, M

    2003-01-01

    Throughout the last decade, high pressure technology has been shown to offer great potential to the food processing and preservation industry in delivering safe and high quality products. Implementation of this new technology will be largely facilitated when a scientific basis to assess quantitatively the impact of high pressure processes on food safety and quality becomes available. Besides, quantitative data on the effects of pressure and temperature on safety and quality aspects of foods are indispensable for design and evaluation of optimal high pressure processes, i.e., processes resulting in maximal quality retention within the constraints of the required reduction of microbial load and enzyme activity. Indeed it has to be stressed that new technologies should deliver, apart from the promised quality improvement, an equivalent or preferably enhanced level of safety. The present paper will give an overview from a quantitative point of view of the combined effects of pressure and temperature on enzymes related to quality of fruits and vegetables. Complete kinetic characterization of the inactivation of the individual enzymes will be discussed, as well as the use of integrated kinetic information in process engineering.

  4. The 2015 drought in Washington State: a harbinger of things to come?

    NASA Astrophysics Data System (ADS)

    Marlier, Miriam E.; Xiao, Mu; Engel, Ruth; Livneh, Ben; Abatzoglou, John T.; Lettenmaier, Dennis P.

    2017-11-01

    Washington State experienced widespread drought in 2015 and the largest burned area in the observational record, attributable in part to exceptionally low winter snow accumulation and high summer temperatures. We examine 2015 drought severity in the Cascade and Olympic mountains relative to the historical climatology (1950-present) and future climate projections (mid-21st century) for a mid-range global greenhouse gas emissions scenario. Although winter precipitation was near normal, the regional winter temperature anomaly was +2.1 °C (+2.0σ) in 2015, consistent with projections of a +2.3 °C (+2.2σ) temperature change and near normal precipitation in the future, relative to the climatology. April 1 snow water equivalent in 2015, -325 mm (-1.5σ), and the future, -252 mm (-1.1σ), were substantially lower than the climatology. Wildfire potential, as indicated by dead fuel moisture content, was higher in 2015 than mid-21st century mean projections. In contrast to most historical droughts, which have been driven by precipitation deficits, our results suggest that 2015 is a useful analog of typical conditions in the Pacific Northwest by the mid-21st century.

  5. Stability of a non-orthogonal stagnation flow to three dimensional disturbances

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Jackson, T. L.

    1991-01-01

    A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case.

  6. Thermodynamics of an ideal generalized gas: I. Thermodynamic laws.

    PubMed

    Lavenda, B H

    2005-11-01

    The equations of state for an ideal relativistic, or generalized, gas, like an ideal quantum gas, are expressed in terms of power laws of the temperature. In contrast to an ideal classical gas, the internal energy is a function of volume at constant temperature, implying that the ideal generalized gas will show either attractive or repulsive interactions. This is a necessary condition in order that the third law be obeyed and for matter to have an electromagnetic origin. The transition from an ideal generalized to a classical gas occurs when the two independent solutions of the subsidiary equation to Lagrange's equation coalesce. The equation of state relating the pressure to the internal energy encompasses the full range of cosmological scenarios, from the radiation to the matter dominated universes and finally to the vacuum energy, enabling the coefficient of proportionality, analogous to the Grüeisen ratio, to be interpreted in terms of the degrees of freedom related to the temperature exponents of the internal energy and the absolute temperature expressed in terms of a power of the empirical temperature. The limit where these exponents merge is shown to be the ideal classical gas limit. A corollary to Carnot's theorem is proved, asserting that the ratio of the work done over a cycle to the heat absorbed to increase the temperature at constant volume is the same for all bodies at the same volume. As power means, the energy and entropy are incomparable, and a new adiabatic potential is introduced by showing that the volume raised to a characteristic exponent is also the integrating factor for the quantity of heat so that the second law can be based on the property that power means are monotonically increasing functions of their order. The vanishing of the chemical potential in extensive systems implies that energy cannot be transported without matter and is equivalent to the condition that Clapeyron's equation be satisfied.

  7. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    PubMed Central

    Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-01-01

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632

  8. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    PubMed

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  9. Characterisation of neutron-sensitive bubble detectors for application in the measurement of jet aircrew exposure to natural background radiation.

    PubMed

    Tume, P; Lewis, B J; Bennett, L G; Cousins, T

    1998-01-01

    A survey of the natural background dose equivalent received by Canadian Forces aircrew was conducted using neutron-sensitive bubble detectors (BDs) as the primary detection tool. Since this study was a new application for these detectors, the BD response to neutron dose equivalent (RD) was extended from thermal to 500 MeV in neutron energy. Based upon the extended RD, it was shown that the manufacturer's calibration can be scaled by 1.5 +/- 0.5 to give a BD sensitivity that takes into account recently recommended fluence-to-neutron dose equivalent conversion functions and the cosmogenic neutron spectrum encountered at jet altitudes. An investigation of the effects of systematic bias caused by the cabin environment (i.e., temperature, pressure and relative humidity) on the in-flight measurements was also conducted. Both simulated and actual aircraft climate tests indicated that the detectors are insensitive to the pressure and relative humidity variations encountered during routine jet aircraft operations. Long term conditioning tests also confirmed that the BD-PND model of detector is sensitive to variations in temperature to within +/- 20%. As part of the testing process, the in-flight measurements also demonstrated that the neutron dose equivalent is distributed uniformly throughout a Boeing 707 jet aircraft, indicating that both pilots and flight attendants are exposed to the same neutron field intensity to within experimental uncertainty.

  10. Effects of a glyphosate-based herbicide on the development of Common toads (Bufo bufo L.; Amphibia) at different temperatures

    NASA Astrophysics Data System (ADS)

    Baier, Fabian; Gruber, Edith; Spangl, Bernhard; Zaller, Johann G.

    2016-04-01

    Herbicides based on the active ingredient glyphosate are frequently applied in agriculture, horticulture and private gardens all over the world. Recently, leaching of glyphosate or its metabolite (AMPA) into water bodies inhabited by amphibians has been reported. However, very little is known about non-target effects of these herbicides on amphibians and even less is known to what extent different temperatures might alter these effects. Using climate chambers, we investigated the effects of the glyphosate-based herbicide Roundup PowerFlex® (480 g L-1 glyphosate, formulated as 588 g L-1 potassium salt) on the larval development of Common toads (Bufo bufo L.; Amphibia: Anura) under different temperature regimes (15°C vs. 20°C). We established five herbicide concentrations: 0, 1.5, 3, 4 mg acid equivalent L-1 and a 4 mg a.e. L-1 pulse treatment (totally three applications of 1.5, 1.5 and another 1 mg a.e. L-1) at each temperature in a full-factorial design. Each treatment combination was replicated five times, the experiment ran for 24 days. Results showed a highly significant effect of temperature on body length and body width but no effect of herbicide concentration on these growth parameters. Moreover, highly significant interactions between herbicide and temperature on body length and body width were observed suggesting that herbicides had different effects on different temperatures. In conclusion, although Roundup PowerFlex® at the tested concentrations appeared to have no acute toxicity to larvae of Common toads, the observed effects on tadpole morphology will potentially affect competitive interactions in spawning ponds of amphibia. Our findings of herbicide x temperature interactions might become more prevalent when human-induced climate change will lead to more extreme temperatures.

  11. Equivalent circuit-level model of quantum cascade lasers with integrated hot-electron and hot-phonon effects

    NASA Astrophysics Data System (ADS)

    Yousefvand, H. R.

    2017-12-01

    We report a study of the effects of hot-electron and hot-phonon dynamics on the output characteristics of quantum cascade lasers (QCLs) using an equivalent circuit-level model. The model is developed from the energy balance equation to adopt the electron temperature in the active region levels, the heat transfer equation to include the lattice temperature, the nonequilibrium phonon rate to account for the hot phonon dynamics and simplified two-level rate equations to incorporate the carrier and photon dynamics in the active region. This technique simplifies the description of the electron-phonon interaction in QCLs far from the equilibrium condition. Using the presented model, the steady and transient responses of the QCLs for a wide range of sink temperatures (80 to 320 K) are investigated and analysed. The model enables us to explain the operating characteristics found in QCLs. This predictive model is expected to be applicable to all QCL material systems operating in pulsed and cw regimes.

  12. EXAMINING TATOOINE: ATMOSPHERIC MODELS OF NEPTUNE-LIKE CIRCUMBINARY PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, E. M.; Rauscher, E.

    2016-08-01

    Circumbinary planets experience a time-varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional energy balance model (EBM) and a three-dimensional general circulation model (GCM), we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more thanmore » 1.0% in the most extreme cases. Based on detailed modeling with the GCM, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling efforts.« less

  13. KSC-04PD-2515

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In this view from the floor of the Orbiter Processing Facility, the first of three Space Shuttle Main Engines (SSME) is seen after installation. Discovery is the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  14. KSC-04PD-2510

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, technicians wait below while a Hyster lift moves the first of three Space Shuttle Main Engines (SSME) into position above for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  15. KSC-04PD-2516

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In this closeup view, the first of three Space Shuttle Main Engines (SSME) is seen after installation on Discovery in the Orbiter Processing Facility. Discovery is the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  16. KSC-04PD-2514

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, the Hyster lift backs away from the orbiter Discovery after placing a Space Shuttle Main Engine (SSME) into position for installation. Discovery is the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  17. KSC-04PD-2512

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, a technician (lower right) watches from inside as a Space Shuttle Main Engine (SSME) on the Hyster lift is maneuvered into position on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  18. KSC-04PD-2509

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, Discovery waits as the first of three Space Shuttle Main Engines (SSME) moves into position for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  19. Experimental investigation on ignition schemes of partially covered cavities in a supersonic flow

    NASA Astrophysics Data System (ADS)

    Cai, Zun; Sun, Mingbo; Wang, Hongbo; Wang, Zhenguo

    2016-04-01

    In this study, ignition schemes of the partially covered cavity in a scramjet combustor were investigated under inflow conditions of Ma=2.1 with stagnation pressure P0=0.7 Mpa and stagnation temperature T0=947 K. It reveals that the ignition scheme of the partially covered cavity has a great impact on the ignition and flame stabilization process. There always exists an optimized global equivalence ratio of a fixed ignition scheme, and the optimized global equivalence ratio of ignition in the partially covered cavity is lower than that of the uncovered cavity. For tandem dual-cavities, ignition in the partially covered cavity could be enhanced with the optimization of global equivalence ratio. However, ignition in the partially covered cavity would be exacerbated with further increasing the global equivalence ratio. The global equivalence ratio and the jet penetration height have a strong coupling with the combustion flow-field. For multi-cavities, it is assured that fuel injection on the opposite side could hardly be ignited after ignition in the partially covered cavity even with the optimized global equivalence ratio. It is possible to realize ignition enhancement in the partially covered cavity with the optimization of global equivalence ratio, but it is not beneficial for thrust increment during the steady combustion process.

  20. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley caldera, Mono County, California, U.S.A

    USGS Publications Warehouse

    Farrar, Christopher; Lyster, Daniel

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long Valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. Early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by groundwater or geothermal development.

  1. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley caldera, Mono County, California, U.S.A.

    USGS Publications Warehouse

    Farrar, C.D.; Lyster, D. L.

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long Valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. Early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by groundwater or geothermal development.

  2. High-Performance Solid-State Thermionic Energy Conversion Based on 2D van der Waals Heterostructures: A First-Principles Study.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2018-06-18

    Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.

  3. Theory and Experiment of Binary Diffusion Coefficient of n-Alkanes in Dilute Gases.

    PubMed

    Liu, Changran; McGivern, W Sean; Manion, Jeffrey A; Wang, Hai

    2016-10-10

    Binary diffusion coefficients were measured for n-pentane, n-hexane, and n-octane in helium and of n-pentane in nitrogen over the temperature range of 300 to 600 K, using reversed-flow gas chromatography. A generalized, analytical theory is proposed for the binary diffusion coefficients of long-chain molecules in simple diluent gases, taking advantage of a recently developed gas-kinetic theory of the transport properties of nanoslender bodies in dilute free-molecular flows. The theory addresses the long-standing question about the applicability of the Chapman-Enskog theory in describing the transport properties of nonspherical molecular structures, or equivalently, the use of isotropic potentials of interaction for a roughly cylindrical molecular structure such as large normal alkanes. An approximate potential energy function is proposed for the intermolecular interaction of long-chain n-alkane with typical bath gases. Using this potential and the analytical theory for nanoslender bodies, we show that the diffusion coefficients of n-alkanes in typical bath gases can be treated by the resulting analytical model accurately, especially for compounds larger than n-butane.

  4. Comparison of the Internal Energy Deposition of Venturi-Assisted Electrospray Ionization and a Venturi-Assisted Array of Micromachined UltraSonic Electrosprays (AMUSE)

    PubMed Central

    Hampton, Christina Y.; Silvestri, Catherine J.; Forbes, Thomas P.; Varady, Mark J.; Meacham, J. Mark; Fedorov, Andrei G.; Degertekin, F. Levent; Fernández, Facundo M.

    2008-01-01

    The internal energy deposition of a Venturi-assisted array of micromachined ultrasonic electrosprays (AMUSE), with and without the application of a DC charging potential, is compared with equivalent experiments for Venturi-assisted electrospray ionization (ESI) using the “survival yield” method on a series of para-substituted benzylpyridinium salts. Under conditions previously shown to provide maximum ion yields for standard compounds, the observed mean internal energies were nearly identical (1.93–2.01eV). Operation of AMUSE without nitrogen flow to sustain the air amplifier focusing effect generated energetically-colder ions with mean internal energies that were up to 39% lower than those for ESI. A balance between improved ion transfer, adequate desolvation and favorable ion energetics was achieved by selection of optimum operational ranges for the parameters that most strongly influence the ion population, namely the air amplifier gas flow rate and API capillary temperature. Examination of the energy landscapes obtained for combinations of these parameters showed that a low internal energy region (≤ 1.0 eV) was present at nitrogen flow rates between 2 – 4 L min−1 and capillary temperatures up to 250°C using ESI (9% of all parameter combinations tested). Using AMUSE, this region was present at nitrogen flow rates up to 2.5 L min−1 and all capillary temperatures (13% of combinations tested). The signal-to-noise ratio (S/N) of the intact p-methylbenzylpyridinium ion obtained from a 5 μM mixture of thermometer compounds using AMUSE at the extremes of the studied temperature range was at least 5 times higher than that of ESI demonstrating the potential of AMUSE ionization as a soft method for the characterization of labile species by mass spectrometry. PMID:18650100

  5. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  6. Four-point probe measurements using current probes with voltage feedback to measure electric potentials

    NASA Astrophysics Data System (ADS)

    Lüpke, Felix; Cuma, David; Korte, Stefan; Cherepanov, Vasily; Voigtländer, Bert

    2018-02-01

    We present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for \

  7. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma composition and thermodynamic properties. The method was applied to compute the thermodynamic properties of hydrogen/air and methane/air plasma mixtures for a wide range of temperatures (1,000-100,000 K), pressures (10-6-100 atm) and different equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function. A new differential-based multi-shell model was developed in conjunction with Schlieren photography to measure laminar burning speed and to study the flame instabilities for different alternative fuels such as syngas and GTL. Flame instabilities such as cracking and wrinkling were observed during flame propagation and discussed in terms of the hydrodynamic and thermo-diffusive effects. Laminar burning speeds were measured using pressure rise data during flame propagation and power law correlations were developed over a wide range of temperatures, pressures and equivalence ratios. As a part of this work, the effect of EGR addition and substitution of nitrogen with helium in air on flame morphology and laminar burning speed were extensively investigated. The effect of cell formation on flame surface area of syngas fuel in terms of a newly defined parameter called cellularity factor was also evaluated. In addition to that the experimental onset of auto-ignition and theoretical ignition delay times of premixed GTL/air mixture were determined at high pressures and low temperatures over a wide range of equivalence ratios.

  8. A comparison of ground-based hydroxyl airglow temperatures with SABER/TIMED measurements over 23° N, India

    NASA Astrophysics Data System (ADS)

    Parihar, Navin; Singh, Dupinder; Gurubaran, Subramanian

    2017-03-01

    Ground-based observations of OH (6, 2) Meinel band nightglow were carried out at Ranchi (23.3° N, 85.3° E), India, during January-March 2011, December 2011-May 2012 and December 2012-March 2013 using an all-sky imaging system. Near the mesopause, OH temperatures were derived from the OH (6, 2) Meinel band intensity information. A limited comparison of OH temperatures (TOH) with SABER/TIMED measurements in 30 cases was performed by defining almost coincident criterion of ±1.5° latitude-longitude and ±3 min of the ground-based observations. Using SABER OH 1.6 and 2.0 µm volume emission rate profiles as the weighing function, two sets of OH-equivalent temperature (T1. 6 and T2. 0 respectively) were estimated from its kinetic temperature profile for comparison with OH nightglow measurements. Overall, fair agreement existed between ground-based and SABER measurements in the majority of events within the limits of experimental errors. Overall, the mean value of OH-derived temperatures and SABER OH-equivalent temperatures were 197.3 ± 4.6, 192.0 ± 10.8 and 192.7 ± 10.3 K, and the ground-based temperatures were 4-5 K warmer than SABER values. A difference of 8 K or more is noted between two measurements when the peak of the OH emission layer lies in the vicinity of large temperature inversions. A comparison of OH temperatures derived using different sets of Einstein transition probabilities and SABER measurements was also performed; however, OH temperatures derived using Langhoff et al. (1986) transition probabilities were found to compare well.

  9. High level gamma radiation effects on Cernox™ cryogenic temperature sensors

    NASA Astrophysics Data System (ADS)

    Courts, S. S.

    2017-12-01

    Cryogenic temperature sensors are used in high energy particle colliders to monitor the temperatures of superconducting magnets, superconducting RF cavities, and cryogen infrastructure. While not intentional, these components are irradiated by leakage radiation during operation of the collider. A common type of cryogenic thermometer used in these applications is the Cernox™ resistance thermometer (CxRT) manufactured by Lake Shore Cryotronics, Inc. This work examines the radiation-induced calibration offsets on CxRT models CX-1050-SD-HT and CX-1080-SD-HT resulting from exposure to very high levels of gamma radiation. Samples from two different wafers of each of the two models tested were subjected to a gamma radiation dose ranging from 10 kGy to 5 MGy. Data were analysed in terms of the temperature-equivalent resistance change between pre- and post-irradiation calibrations. The data show that the resistance of these devices decreased following irradiation resulting in positive temperature offsets across the 1.4 K to 330 K temperature range. Variations in response were observed between wafers of the same CxRT model. Overall, the offsets increased with increasing temperature and increasing gamma radiation dose. At 1.8 K, the average offset increased from 0 mK to +13 mK as total dose increased from 10 kGy to 5 MGy. At 4.2 K, the average offset increased from +4 mK to +33 mK as total dose increased from 10 kGy to 5 MGy. Equivalent temperature offset data are presented over the 1.4 K to 330 K temperature range by CxRT model, wafer, and total gamma dose.

  10. Recursion-transform method and potential formulae of the m × n cobweb and fan networks

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Zhong

    2017-08-01

    In this paper, we made a new breakthrough, which proposes a new Recursion-Transform (RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m× n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161278).

  11. 78 FR 79710 - New Postal Product

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Functionally Equivalent Global Expedited Package Services 3 Negotiated Service Agreement and Application for Non-Public Treatment of Materials Filed Under Seal, December 23, 2013 (Notice). II. Background The.... CP2010-71 to serve as the baseline agreement for comparison of potentially functionally equivalent...

  12. Analytical and numerical construction of equivalent cables.

    PubMed

    Lindsay, K A; Rosenberg, J R; Tucker, G

    2003-08-01

    The mathematical complexity experienced when applying cable theory to arbitrarily branched dendrites has lead to the development of a simple representation of any branched dendrite called the equivalent cable. The equivalent cable is an unbranched model of a dendrite and a one-to-one mapping of potentials and currents on the branched model to those on the unbranched model, and vice versa. The piecewise uniform cable, with a symmetrised tri-diagonal system matrix, is shown to represent the canonical form for an equivalent cable. Through a novel application of the Laplace transform it is demonstrated that an arbitrary branched model of a dendrite can be transformed to the canonical form of an equivalent cable. The characteristic properties of the equivalent cable are extracted from the matrix for the transformed branched model. The one-to-one mapping follows automatically from the construction of the equivalent cable. The equivalent cable is used to provide a new procedure for characterising the location of synaptic contacts on spinal interneurons.

  13. Gasification of refinery sludge in an updraft reactor for syngas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Reem; Eldmerdash, Usama; Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my

    2014-10-24

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4}more » compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C = 450 2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup −3} of, and 2.5 Nm{sup 3} kg{sup −1} respectively.« less

  14. Unexpected East-West effect in mesopause region SABER temperatures over El Leoncito

    NASA Astrophysics Data System (ADS)

    Reisin, Esteban R.; Scheer, Jürgen

    2017-05-01

    We find that mesopause region temperatures determined by the SABER instrument on the TIMED satellite during nocturnal overpasses at El Leoncito (31.8°S, 69.3°W) are several kelvins higher when SABER observes from the East than when it observes from the West. We distinguish between altitudes corresponding to the nominal emission heights of the OH and O2 airglow layers. The East-West temperature differences of 4.5 K obtained for OH-equivalent height, and of 3.5 K for O2-equivalent height are surprising, because an effect of the South Atlantic Anomaly on SABER temperature is unexpected. However, the ground-based data obtained with our airglow spectrometer at El Leoncito show that such a SABER artifact can be ruled out. Rather, the phenomenon is explained as a consequence of the temporal sampling of the nocturnal variation, which is mostly due to the semidiurnal tide. The monthly mean tide is strongest from April to September with a mean amplitude of 6.9 K for OH, and of 10.5 K for O2 rotational temperature, but the contribution to the East-West effect varies strongly from month to month because of differences in the temporal sampling. This mechanism should be active at other sites, as well.

  15. Towards a Model of Cold Denaturation of Proteins

    NASA Astrophysics Data System (ADS)

    Sanchez, Isaac

    2010-10-01

    Proteins/enzymes can undergo cold denaturation or cold deactivation. In the active or natured state, a protein exists in a unique folded/ordered state. In the deactivated (denatured) state, a protein unfolds and exists in a disordered expanded state. This protein folding/unfolding or order/disorder transition can be triggered by a temperature change. What seems paradoxical is that the active (ordered) state can be induced by heating, or equivalently, the disordered inactive state can be induced by cooling. This is equivalent to an Ising spin model passing from a disordered array of spins to an ordered array by increasing temperature! Hydrogels and their corresponding polyelectrolyte chains behave similarly, i.e., the swollen disordered state can be induced by cooling while the more ordered collapsed or globular state is induced by heating (an entropically driven phase transition). In a living cell at the physiological temperature of 37 C, activation and deactivation of proteins is triggered by local environmental changes in pH, salinity, etc. The important physics is that the denaturation temperature can be moved up or down relative to 37 C by these stimuli. Moving the transition temperature up can destabilize the active protein while moving it down leads to stabilization. An analytical polymer model will be described that exhibits cold denaturation behavior.

  16. Fluctuations in the quark-meson model for QCD with isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Kamikado, Kazuhiko; Strodthoff, Nils; von Smekal, Lorenz; Wambach, Jochen

    2013-01-01

    We study the two-flavor quark-meson (QM) model with the functional renormalization group (FRG) to describe the effects of collective mesonic fluctuations on the phase diagram of QCD at finite baryon and isospin chemical potentials, μB and μI. With only isospin chemical potential there is a precise equivalence between the competing dynamics of chiral versus pion condensation and that of collective mesonic and baryonic fluctuations in the quark-meson-diquark model for two-color QCD at finite baryon chemical potential. Here, finite μB = 3 μ introduces an additional dimension to the phase diagram as compared to two-color QCD, however. At zero temperature, the (μI, μ) plane of this phase diagram is strongly constrained by the "Silver Blaze problem." In particular, the onset of pion condensation must occur at μI =mπ / 2, independent of μ as long as μ +μI stays below the constituent quark mass of the QM model or the liquid-gas transition line of nuclear matter in QCD. In order to maintain this relation beyond mean field it is crucial to compute the pion mass from its timelike correlator with the FRG in a consistent way.

  17. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    NASA Astrophysics Data System (ADS)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2018-07-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.

  18. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    NASA Astrophysics Data System (ADS)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.

  19. Novel Strip Test for Circulating Hormones

    DTIC Science & Technology

    1996-10-01

    estrone- 3 -glucuronide was combined with 1 equivalent of 4-amino-benzo-15-crown-5 and 1.2 equivalents of 1 -ethyl- 3 -( 3 - dimethylaminopropyl )carbodiimide...solution containing 5 mg/ml of El-g and 10 mg/ml of 1 -ethyl- 3 -( 3 -dimethylamino-propyl)carbodiimide (EDC) in water at pH 4.2. Fibers are then rinsed with... hydrochloride in water at pH 4.0. The mixture was stirred at room temperature for 48 hours and the resulting estrone- 3 -glucuronide-4-amino-benzo-15-crown

  20. Potential escalation of heat-related working costs with climate and socioeconomic changes in China

    PubMed Central

    Zhao, Yan; Sultan, Benjamin; Vautard, Robert; Braconnot, Pascale; Wang, Huijun J.; Ducharne, Agnes

    2016-01-01

    Global climate change will increase the frequency of hot temperatures, impairing health and productivity for millions of working people and raising labor costs. In mainland China, high-temperature subsidies (HTSs) are allocated to employees for each working day in extremely hot environments, but the potential heat-related increase in labor cost has not been evaluated so far. Here, we estimate the potential HTS cost in current and future climates under different scenarios of socioeconomic development and radiative forcing (Representative Concentration Pathway), taking uncertainties from the climate model structure and bias correction into account. On average, the total HTS in China is estimated at 38.6 billion yuan/y (US $6.22 billion/y) over the 1979–2005 period, which is equivalent to 0.2% of the gross domestic product (GDP). Assuming that the HTS standards (per employee per hot day) remain unchanged throughout the 21st century, the total HTS may reach 250 billion yuan/y in the 2030s and 1,000 billion yuan/y in 2100. We further show that, without specific adaptation, the increased HTS cost is mainly determined by population growth until the 2030s and climate change after the mid-21st century because of increasingly frequent hot weather. Accounting for the likely possibility that HTS standards follow the wages, the share of GDP devoted to HTS could become as high as 3% at the end of 21st century. PMID:27044089

  1. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    NASA Astrophysics Data System (ADS)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  2. A Model for Temperature Fluctuations in a Buoyant Plume

    NASA Astrophysics Data System (ADS)

    Bisignano, A.; Devenish, B. J.

    2015-11-01

    We present a hybrid Lagrangian stochastic model for buoyant plume rise from an isolated source that includes the effects of temperature fluctuations. The model is based on that of Webster and Thomson (Atmos Environ 36:5031-5042, 2002) in that it is a coupling of a classical plume model in a crossflow with stochastic differential equations for the vertical velocity and temperature (which are themselves coupled). The novelty lies in the addition of the latter stochastic differential equation. Parametrizations of the plume turbulence are presented that are used as inputs to the model. The root-mean-square temperature is assumed to be proportional to the difference between the centreline temperature of the plume and the ambient temperature. The constant of proportionality is tuned by comparison with equivalent statistics from large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and linear stratification. We compare plume trajectories for a wide range of crossflow velocities and find that the model generally compares well with the equivalent LES results particularly when added mass is included in the model. The exception occurs when the crossflow velocity component becomes very small. Comparison of the scalar concentration, both in terms of the height of the maximum concentration and its vertical spread, shows similar behaviour. The model is extended to allow for realistic profiles of ambient wind and temperature and the results are compared with LES of the plume that emanated from the explosion and fire at the Buncefield oil depot in 2005.

  3. Compact Ceramic Microchannel Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewinsohn, Charles

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less

  4. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  5. Simultaneous CO concentration and temperature measurements using tunable diode laser absorption spectroscopy near 2.3 μm

    NASA Astrophysics Data System (ADS)

    Sane, Anup; Satija, Aman; Lucht, Robert P.; Gore, Jay P.

    2014-10-01

    Simultaneous measurements of carbon monoxide (CO) mole fraction and temperature using tunable diode laser absorption spectroscopy (TDLAS) near 2.3 μm are reported. The measurement method uses ro-vibrational transitions [R(27): v″ = 1 → v' = 3] and [R(6): v″ = 0 → v' = 2] in the first overtone band of CO near 2.3 μm (~4,278 cm-1). The measurements were performed in the post flame environment of fuel rich premixed ethylene-air flames with a N2 co-flow, stabilized over a water cooled McKenna burner. Non-uniformity in the temperature and CO mole fraction, along the absorption line of sight, in the mixing layer of the co-flow, was considered during data analysis. The TDLAS based temperature measurements (±80 K) were in good agreement with those obtained using N2 vibrational coherent anti-Stokes Raman scattering (±20 K), and the CO mole fraction measurements were in good agreement with the equilibrium values, for equivalence ratios lower than 1.8. A signal to noise ratio of 45 was achieved at an equivalence ratio of 1 for a CO concentration of 0.8 % at 1,854 K.

  6. Airway humidification during high-frequency percussive ventilation.

    PubMed

    Allan, Patrick F; Hollingsworth, Michael J; Maniere, Gordon C; Rakofsky, Anthony K; Chung, Kevin K; Naworol, Gregory A; Ward, John A; Perello, Michelle; Morris, Michael J

    2009-03-01

    We were concerned about the risk of inadequate humidification during high-frequency percussive ventilation (HFPV). We studied 5 humidifiers during HFPV with a lung model, at bias gas flows of 10 L/min, 30 L/min, and 50 L/min, and compared the results to those from a comparator ventilator/humidifier setup and to the minimum temperature (30 degrees C) and humidity (30 mg/L) [corrected] recommended by the American Association for Respiratory Care, at both regular room temperature and a high ambient temperature. Temperature was measured at the humidifier outflow point and at the artificial carina. Humidity was measured at the artificial carina. Of the 7 HFPV/humidifier combinations, 2 (the MR850 at a bias flow of 50 L/min, and the ConchaTherm Hi-Flow with VDR nebulizer) provided a carinal temperature equivalent to the comparator setup at room temperature, whereas one HFPV/humidifier combination (the ConchaTherm Hi-Flow with modified programming, at bias flows of 30 L/min and 50 L/min) provided a higher carinal temperature. At high ambient temperature, all of the setups delivered lower carinal temperature than the comparator setup. Only 2 setups (the ConchaTherm with modified programming at a bias flow of 50 L/min, and the ConchaTherm Hi-Flow with VDR nebulizer) provided carinal humidification equivalent to the comparator setup, without regard to ambient temperature; the other humidifiers were less effective. The ConchaTherm with modified programming, and the ConchaTherm with the VDR nebulizer provided the most consistent humidification. HFPV's distinctive gas-flow mechanism may impair gas heating and humidification, so all humidification systems should be tested with HFPV prior to clinical use.

  7. Assessment of Two Solid Anaerobic Digestate Soil Amendments for Effects on Soil Quality and Biosolarization Efficacy.

    PubMed

    Fernández-Bayo, Jesús D; Achmon, Yigal; Harrold, Duff R; McCurry, Dlinka G; Hernandez, Katie; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-03

    Anaerobic digestion is an organic waste bioconversion process that produces biofuel and digestates. Digestates have potential to be applied as soil amendment to improve properties for crop production including phytonutrient content and pest load. Our objective was to assess the impact of solid anaerobic digestates on weed seed inactivation and soil quality upon soil biosolarization (a pest control technique that combines solar heating and amendment-induced microbial activity). Two solid digestates from thermophilic (TD) and mesophilic (MD) digesters were tested. The solarized TD-amended samples presented significantly higher mortality of Brassica nigra (71%, P = 0.032) than its equivalent incubated at room temperature. However, biosolarization with digestate amendment led to decreased weed seed mortality in certain treatments. The plant-available water, total C, and extractable P and K were significantly increased (P < 0.05) in the incubated amended soils. The results confirm the potential of digestates as beneficial soil amendments. Further studies are needed to elucidate the impacts of digestate stability on biosolarization efficacy and soil properties.

  8. New insight into the discharge mechanism of silicon-air batteries using electrochemical impedance spectroscopy.

    PubMed

    Cohn, Gil; Eichel, Rüdiger A; Ein-Eli, Yair

    2013-03-07

    The mechanism of discharge termination in silicon-air batteries, employing a silicon wafer anode, a room-temperature fluorohydrogenate ionic liquid electrolyte and an air cathode membrane, is investigated using a wide range of tools. EIS studies indicate that the interfacial impedance between the electrolyte and the silicon wafer increases upon continuous discharge. In addition, it is shown that the impedance of the air cathode-electrolyte interface is several orders of magnitude lower than that of the anode. Equivalent circuit fitting parameters indicate the difference in the anode-electrolyte interface characteristics for different types of silicon wafers. Evolution of porous silicon surfaces at the anode and their properties, by means of estimated circuit parameters, is also presented. Moreover, it is found that the silicon anode potential has the highest negative impact on the battery discharge voltage, while the air cathode potential is actually stable and invariable along the whole discharge period. The discharge capacity of the battery can be increased significantly by mechanically replacing the silicon anode.

  9. Oxide Thermoelectric Materials: A Structure-Property Relationship

    NASA Astrophysics Data System (ADS)

    Nag, Abanti; Shubha, V.

    2014-04-01

    Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

  10. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time.

    PubMed

    Sandulache, Vlad C; Chen, Yunyun; Lee, Jaehyuk; Rubinstein, Ashley; Ramirez, Marc S; Skinner, Heath D; Walker, Christopher M; Williams, Michelle D; Tailor, Ramesh; Court, Laurence E; Bankson, James A; Lai, Stephen Y

    2014-01-01

    Ionizing radiation (IR) cytotoxicity is primarily mediated through reactive oxygen species (ROS). Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP) magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC), an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-¹³C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.

  11. Design and experimental verification of an equivalent forebody to produce disturbances equivalent to those of a forebody with flowing inlets

    NASA Technical Reports Server (NTRS)

    Haynes, Davy A.; Miller, David S.; Klein, John R.; Louie, Check M.

    1988-01-01

    A method by which a simple equivalent faired body can be designed to replace a more complex body with flowing inlets has been demonstrated for supersonic flow. An analytically defined, geometrically simple faired inlet forebody has been designed using a linear potential code to generate flow perturbations equivalent to those produced by a much more complex forebody with inlets. An equivalent forebody wind-tunnel model was fabricated and a test was conducted in NASA Langley Research Center's Unitary Plan Wind Tunnel. The test Mach number range was 1.60 to 2.16 for angles of attack of -4 to 16 deg. Test results indicate that, for the purposes considered here, the equivalent forebody simulates the original flowfield disturbances to an acceptable degree of accuracy.

  12. Research ethics across the 49th parallel: the potential value of pilot testing "equivalent protections" in Canadian research institutions.

    PubMed

    Lavery, James V; McDonald, Michael; Meslin, Eric M

    2005-01-01

    Canada and the United States share the world's largest trade partnership and an increasing concern about divergent regulatory approaches to common industries. Canadian research institutes receive more research funding from the U.S. National Institutes of Health than any other country, much of it to fund multi-centre and collaborative research between the two countries. Because of these close economic and research ties, and the extensive similarities between the two countries in the review and oversight of ethics in human subjects research, we propose that Canada would be an ideal country for a pilot-test of the feasibility of "equivalent protections," a U.S. regulation that permits comparison of protections for human subjects between institutions in the two countries. The "equivalent protections" has been advocated by various bodies in the United States as a potentially beneficial mechanism for improving oversight of foreign trials. As well, we argue that "equivalent protections" could prove to be valuable for Canada in five specific ways: (1) by potentially reducing administrative burden on Canadian research institutions administering U.S. federal research funding; (2) by creating symbolic value of an explicit recognition by the United States that procedures normally followed for the protection of human subjects in Canadian research institutions are at least equivalent to those provided by the U.S. regulations; (3) by lowering the opportunity cost of investing in research in Canada; (4) by affording Canada an opportunity to enhance its leadership role in international research by offering an alternative to the U.S. regulatory model for the protection of human subjects; and (5) by providing a model for how the idea of equivalent protections might be addressed for research funded by Canadian agencies but conducted in other countries.

  13. Derivative expansion of wave function equivalent potentials

    NASA Astrophysics Data System (ADS)

    Sugiura, Takuya; Ishii, Noriyoshi; Oka, Makoto

    2017-04-01

    Properties of the wave function equivalent potentials introduced by the HAL QCD collaboration are studied in a nonrelativistic coupled-channel model. The derivative expansion is generalized, and then applied to the energy-independent and nonlocal potentials. The expansion coefficients are determined from analytic solutions to the Nambu-Bethe-Salpeter wave functions. The scattering phase shifts computed from these potentials are compared with the exact values to examine the convergence of the expansion. It is confirmed that the generalized derivative expansion converges in terms of the scattering phase shift rather than the functional structure of the non-local potentials. It is also found that the convergence can be improved by tuning either the choice of interpolating fields or expansion scale in the generalized derivative expansion.

  14. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis.

    PubMed

    Aspinwall, Michael J; Drake, John E; Campany, Courtney; Vårhammar, Angelica; Ghannoum, Oula; Tissue, David T; Reich, Peter B; Tjoelker, Mark G

    2016-10-01

    Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair ) or ambient Tair  + 3°C (i.e. 'warmed'). We measured light- and CO2 -saturated net photosynthesis (Amax ) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source-sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Novel nitrogen-based organosulfur electrodes for advanced intermediate temperature batteries

    NASA Technical Reports Server (NTRS)

    Visco, S. J.; Dejonghe, L. C.

    1989-01-01

    Advanced secondary batteries operating at intermediate temperatures (100 to 200 C) have attracted considerable interest due to their inherent advantages (reduced corrosion and safety risks) over higher temperature systems. Current work in this laboratory has involved research on a class of intermediate temperature Na/beta double prime- alumina/RSSR batteries conceptually similar to Na/S cells, but operating within a temperature range of 100 to 150 C, and having an organosulfur rather than inorganic sulfur positive electrode. The organosulfur electrodes are based on the reversible, two electron eduction of organodisulfides to the corresponding thiolate anions, RSSR + 2 electrons yield 2RS(-), where R is an organic moiety. Among the advantages of such a generic redox couple for battery research is the ability to tailor the physical, chemical, and electrochemical properties of the RSSR molecule through choice of the organic moiety. The viscosity, liquidus range, dielectric constant, equivalent weight, and redox potential can in fact be verified in a largely predictable manner. The current work concerns the use of multiple nitrogen organosulfur molecules, chosen for application in Na/RSSR cells for their expected oxidizing character. In fact, a Na/RSSR cell containing one of these materials, the sodium salt of 5-mercapto 1-methyltetrazole, yielded the highest open circuit voltage obtained yet in the laboratory; 3.0 volts in the charged state and 2.6 volts at 100 percent discharge. Accordingly, the cycling behavior of a series of multiple nitrogen organodisulfides as well as polymeric organodisulfides are presented in this manuscript.

  16. Hydrogen enrichment for low-emission jet combustion

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1978-01-01

    Simultaneous gaseous pollutant emission indexes (g pollutant/kg fuel) for a research combustor with inlet air at 120,900 N/sq m (11.9 atm) pressure and 727 K (849 F) temperature are as low as 1.0 for NOx and CO and 0.5 for unburned HC. Emissions data are presented for hydrogen/jet fuel (JP-5) mixes and for jet fuel only for premixed equivalence ratios from lean blowout to 0.65. Minimized emissions were achieved at an equivalence ratio of 0.38 using 10-12 mass percent hydrogen in the total fuel to depress the lean blowout limit. They were not achievable with jet fuel alone because of the onset of lean blowout at an equivalence ratio too high to reduce the NOx emission sufficiently.

  17. [The temperature factor and magnetic noise under the conditions of stochastic resonance of magnetosomes].

    PubMed

    Bingi, V N; Chernavskiĭ, D S; Rubin, A B

    2006-01-01

    The influence of magnetic noise on the dynamics of magnetic nanoparticles under the conditions of stochastic resonance is considered. The effect of the magnetic noise is shown to be equivalent to the growth of the effective thermostat temperature for the particles at the permanent actual temperature of the medium. This regularity may be used for testing the hypothesis on the involvement of magnetic nanoparticles in the formation of biological effects of weak magnetic fields.

  18. Experimental Results of Ground Disturbance Detection Using Uncooled Infrared Imagers in Wideband and Multispectral Modes

    DTIC Science & Technology

    2012-02-01

    and undisturbed soil. An uncooled IR imager with sufficient sensitivity ( Noise equivalent of temperature difference or NETD) at around 100mK NETD...Imager temperature sensitivity in bandpass mode: NETD is defined as the temperature difference ( T) for which the signal-to- noise ratio (SNR) equals to...1 where the signal is proportional to radiance L (watt/cm2-ster) while noise level is known. The NETD of the imager, however, will degrade when it

  19. Magnetoimpedance behavior and its equivalent circuit analysis of Co/Cu/Co/Py pseudo-spin-valve with a nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Chien, Wei-Chih; Yao, Yeong-Der; Wu, Jiann-Kuo; Lo, Chi-Kuen; Hung, Ruei-Feng; Lan, M. D.; Lin, Pang

    2009-02-01

    Magnetoimpedance behaviors and thermal effects of a Co/Cu/Co/Py pseudo-spin-valve (PSV) with a nano-oxide layer (NOL) were studied. The PSV can be regarded as a combination of resistances, inductances, and capacitances. In addition, equivalent circuit theory can be used to analyze the ac behavior of this system. The imaginary part of the magnetoimpedance (magnetoreactance) ratio is more than 1700% at the resonance frequency (fr)=476 kHz at room temperature (RT). The dc magnetoresistance (MR) ratio decreases as the annealing temperature increases because the NOL is formed at the interface between the spacer and the magnetic layer. The NOL deteriorates the differential spin scattering and reduces the dc MR ratio. Impedance spectroscopy was utilized to analyze the capacitance effect from NOL after annealing. The effective capacitance of the PSV was 21.8 nF at RT and changed to 11.8 nF after annealing at 200 °C. The useful equivalent capacitor circuit not only is a nondestructive measurement technology but can also explain the experimental results and prove the formation of the NOL.

  20. Complex capacitance in the representation of modulus of the lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Batra, A. K.; Bhattacharjee, Sudip; Aggarwal, M. D.

    2011-03-01

    The lithium niobate (LiNbO 3 or LN) single crystal is grown in-house. The ac small-signal electrical characterization is conducted over a temperature range 35 ≤T≤150 °C as a function of measurement frequency (10 ≤f≤10 6 Hz). Meaningful observation is noted only in a narrow temperature range 59 ≤T≤73 °C. These electrical data when analyzed via complex plane formalisms revealed single semicircular relaxation both in the complex capacitance ( C*) and in the modulus ( M*) planes. The physical meaning of this kind of observation is obtained on identifying the relaxation type, and then incorporating respective equivalent circuit model. The simplistic non-blocking nature of the equivalent circuit model obtained via M*-plane is established as the lumped relaxation is identified in the C*-plane. The feature of the eventual equivalent circuit model allows non-blocking aspect for the LN crystal attributing to the presence of the operative dc conduction process. Identification of this leakage dc conduction via C*-plane is portrayed in the M*-plane where the blocking nature is removed. The interacting interpretation between these two complex planes is successfully presented.

  1. Event-related potential correlates of emergent inference in human arbitrary relational learning.

    PubMed

    Wang, Ting; Dymond, Simon

    2013-01-01

    Two experiments investigated the functional-anatomical correlates of cognition supporting untrained, emergent relational inference in a stimulus equivalence task. In Experiment 1, after learning a series of conditional relations involving words and pseudowords, participants performed a relatedness task during which EEG was recorded. Behavioural performance was faster and more accurate on untrained, indirectly related symmetry (i.e., learn AB and infer BA) and equivalence trials (i.e., learn AB and AC and infer CB) than on unrelated trials, regardless of whether or not a formal test for stimulus equivalence relations had been conducted. Consistent with previous results, event related potentials (ERPs) evoked by trained and emergent trials at parietal and occipital sites differed only for those participants who had not received a prior equivalence test. Experiment 2 further replicated and extended these behavioural and ERP findings using arbitrary symbols as stimuli and demonstrated time and frequency differences for trained and untrained relatedness trials. Overall, the findings demonstrate convincingly the ERP correlates of intra-experimentally established stimulus equivalence relations consisting entirely of arbitrary symbols and offer support for a contemporary cognitive-behavioural model of symbolic categorisation and relational inference. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice.

    PubMed

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-10-10

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic-to-paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models.

  3. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice

    PubMed Central

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-01-01

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic–to–paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models. PMID:27721435

  4. Windward Cooling: An Overlooked Factor in the Calculation of Wind Chill.

    NASA Astrophysics Data System (ADS)

    Osczevski, Randall J.

    2000-12-01

    Wind chill equivalent temperatures calculated from a recent vertical cylinder model of wind chill are several degrees colder than those calculated from a facial cooling model. The latter was based on experiments with a heated model of a face in a wind tunnel. Wind chill has sometimes been modeled as the overall heat transfer from the surface of a cylinder in cross flow, but such models average the cooling over the whole surface and thus minimize the effect of local cooling on the upwind side, particularly at low wind speeds. In this paper, a vertical cylinder model of wind chill has been modified so that just the cooling of its windward side is considered. Wind chill equivalent temperatures calculated with this new model compare favorably with those calculated by the facial cooling model.

  5. Ionomer equivalent weight structuring in the cathode catalyst layer of automotive fuel cells: Effect on performance, current density distribution and electrochemical impedance spectra

    NASA Astrophysics Data System (ADS)

    Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan

    2017-10-01

    To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.

  6. Mapping of the Resistance of a Superconducting Transition Edge Sensor as a Function of Temperature, Current, and Applied Magnetic Field

    NASA Technical Reports Server (NTRS)

    Zhang, Shou; Eckart, Megan E.; Jaeckel, Felix; Kripps, Kari L.; McCammon, Dan; Zhou, Yu; Morgan, Kelsey M.

    2017-01-01

    We have measured the resistance R (T, I, B(sub ext) of a superconducting transition edge sensor over the entire transition region on a fine scale, producing a four-dimensional map of the resistance surface. The dimensionless temperature and current sensitivities (alpha equivalence partial derivative log R/partial derivative log T|(sub I) and beta equivalence partial derivative log R/partial derivative log I|(sub T) of the TES resistance have been determined at each point. alpha and beta are closely related to the sensor performance, but show a great deal of complex, large amplitude fine structure over large portions of the surface that is sensitive to the applied magnetic field. We discuss the relation of this structure to the presence of Josephson weak link fringes.

  7. KSC-04PD-2511

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, a technician appears to ride the Space Shuttle Main Engine (SSME) as he maneuvers the SSME on the Hyster lift into position for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  8. KSC-04PD-2513

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, a technician appears to ride the Space Shuttle Main Engine (SSME) as he maneuvers the SSME on the Hyster lift into position for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  9. Enhancement of Phenolic Production and Antioxidant Activity from Buckwheat Leaves by Subcritical Water Extraction.

    PubMed

    Kim, Dong-Shin; Kim, Mi-Bo; Lim, Sang-Bin

    2017-12-01

    To enhance the production of phenolic compounds with high antioxidant activity and reduce the level of phototoxic fagopyrin, buckwheat leaves were extracted with subcritical water (SW) at 100~220°C for 10~50 min. The major phenolic compounds were quercetin, gallic acid, and protocatechuic acid. The cumulative amount of individual phenolic compounds increased with increasing extraction temperature from 100°C to 180°C and did not change significantly at 200°C and 220°C. The highest yield of individual phenolic compounds was 1,632.2 μg/g dry sample at 180°C, which was 4.7-fold higher than that (348.4 μg/g dry sample) at 100°C. Total phenolic content and total flavonoid content increased with increasing extraction temperature and decreased with increasing extraction time, and peaked at 41.1 mg gallic acid equivalents/g and 26.9 mg quercetin equivalents/g at 180°C/10 min, respectively. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging activity and ferric reducing ability of plasma reached 46.4 mg ascorbic acid equivalents/g and 72.3 mmol Fe 2+ /100 g at 180°C/10 min, respectively. The fagopyrin contents were reduced by 92.5~95.7%. Color values L * and b * decreased, and a * increased with increasing extraction temperature. SW extraction enhanced the yield of phenolic compounds with high antioxidant activity and reduced the fagopyrin content from buckwheat leaves.

  10. Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames

    NASA Astrophysics Data System (ADS)

    Richardson, E. S.; Granet, V. E.; Eyssartier, A.; Chen, J. H.

    2010-11-01

    The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. 'Back supported' lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.

  11. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; McKellip, R. C.; Brannon, D. P.; Underwood, L. W.; Russell, K. J.

    2007-12-01

    In polar regions of the Moon, there are areas within craters that are permanently shadowed from solar illumination, which can reach temperatures of 100K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50K in many cases. Temperatures observed in theses regions suggest that they could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high vacuum cryogenic environments, which in their current state could support cryogenic applications. The unique conditions at the lunar poles, besides ice stores, harbor an environment that provides an opportunity to reduce the power, weight and total mass that needs to be carried from the Earth to the moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few man-made augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist there. Our analysis reveals that lightweight thermal shielding, within shaded craters, could create an environment several Kelvin above absolute zero. The temperature ranges of naturally shaded craters and thermally augmented ones could enable the long-term storage of most gases, low temperature superconductors for large magnetic fields, devices and advanced high speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were to be used to facilitate the operation of near absolute zero instruments, including wide variety of cryogenically based propulsion, energy, communication, sensing and computing devices. Potentially, the required burden of carrying massive life-supporting components from the Earth to the moon for lunar exploration and research could be reduced.

  12. A Comparative Analysis of Phase-Change Wastewater Processing Approaches for Microgravity

    NASA Technical Reports Server (NTRS)

    Lange, Kevin

    2016-01-01

    Two phase-change wastewater processing candidates, the ISS Vapor Compression Distillation (VCD) System and the Cascade Distiller System (CDS), are compared based on dynamic modeling of both technologies. Differences in fluid handling and energy recovery for the technologies are described and contrasted. Model predictions are presented showing how temperatures, pressures, and compositions vary locally within each distiller. These dynamic variations are difficult to observe experimentally and have implications regarding non-condensable buildup and salt precipitation potential. Alternative architectures involving VCD and CDS components are analyzed in terms of predicted performance and equivalent system mass (ESM). The addition of a downstream brine processor to increase water recovery is also evaluated. Options for reducing overall ESM are discussed, including the possibility of developing a single precipitation-tolerant primary wastewater processor.

  13. Detection and characterization of multi-filament evolution during resistive switching

    DOE PAGES

    Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.

    2014-08-05

    We present resistive switching data in TaO x memristors displaying signatures of multi-filament switching modes, and develop a geometrically defined equivalent circuit to separate the individual resistances and powers dissipated in each filament. Using these resolved values, we compare the individual switching curves of each filament and demonstrate that the switching data of each filament collapse onto a single switching curve determined by the analytical steady-state resistive switching solution for filamentary switching. Analyzing our results in terms of this solution, we determine the switching temperature, heat flow, conductivity, and time evolving areas of each filament during resistive switching. Finally, wemore » discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance.« less

  14. The Kühtai data set: 25 years of lysimetric, snow pillow, and meteorological measurements

    PubMed Central

    Kirnbauer, R.; Parajka, J.; Schöber, J.; Blöschl, G.

    2017-01-01

    Abstract Snow measurements at the Kühtai station in Tirol, Austria, (1920 m.a.s.l.) are described. The data set includes snow water equivalent from a 10 m2 snow pillow, snow melt outflow from a 10 m2 snow lysimeter placed at the same location as the pillow, meteorological data (precipitation, incoming shortwave radiation, reflected shortwave radiation, air temperature, relative air humidity, and wind speed), and other data (snow depths, snow temperatures at seven heights) from the period October 1990 to May 2015. All data have been quality checked, and gaps in the meteorological data have been filled in. The data set is unique in that all data are available at a temporal resolution of 15 min over a period of 25 years with minimal changes in the experimental setup. The data set can therefore be used to analyze snow pack processes over a long‐time period, including their extremes and long‐term changes, in an Alpine climate. Analyses may benefit from the combined measurement of snow water equivalent, lysimeter outflow, and precipitation at a wind‐sheltered alpine site. An example use of data shows the temporal variability of daily and 1 April snow water equivalent observed at the Kühtai site. The results indicate that the snow water equivalent maximum varies between 200 and more than 500 mm w.e., but there is no statistically significant temporal trend in the period 1990–2015. PMID:28931957

  15. Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Anderson, William E.

    2005-01-01

    The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.

  16. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  17. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    NASA Astrophysics Data System (ADS)

    Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi

    2017-07-01

    Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was measured to have the highest evaporation temperature, and nitrate had the lowest. The evaporation temperature of ammonium depended on the fractions of nitrate and sulfate in the particles. The average volatility of the total aged particles was measured to be lower than that of primary particles, indicating better stability of the aged natural gas engine-emitted aerosol in the atmosphere. According to the results of this study, the exhaust of a natural gas engine equipped with a catalyst forms secondary aerosol when the atmospheric ages in a PAM chamber are several days long. The secondary aerosol matter has different physical characteristics from those of primary particulate emissions.

  18. Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.

    PubMed

    Gawthrop, Peter J

    2017-04-01

    Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.

  19. Hot spots of Io

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Sinton, W. M.

    1982-01-01

    The size and temperature, morphology and distribution, variability, possible absorption features, and processes of hot spots on Io are discussed, and an estimate of the global heat flux is made. Size and temperature information is deconvolved to obtain equivalent radius and temperature of hot spots, and simultaneously obtained Voyager thermal and imaging data is used to match hot sources with specific geologic features. In addition to their thermal output, it is possible that hot spots are also characterized by production of various gases and particulate materials; the spectral signature of SO2 has been seen. Origins for relatively stable, low temperature sources, transient high temperature sources, and relatively stable, high-tmperature sources are discussed.

  20. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiskó, Mónika; Boda, Dezső, E-mail: boda@almos.vein.hu

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependencemore » of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.« less

  1. Development of a direct experimental test for any violation of the equivalence principle by the weak interaction

    NASA Technical Reports Server (NTRS)

    Parker, P. D. M.

    1981-01-01

    Violation of the equivalence principle by the weak interaction is tested. Any variation of the weak interaction coupling constant with gravitational potential, i.e., a spatial variation of the fundamental constants is investigated. The level of sensitivity required for such a measurement is estimated on the basis of the size of a change in the gravitational potential which is accessible. The alpha particle spectrum is analyzed, and the counting rate was improved by a factor of approximately 100.

  2. The Scaling of Broadband Shock-Associated Noise with Increasing Temperature

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.

    2012-01-01

    A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. For this purpose the acoustic analogy of Morris and Miller is examined. To isolate the relevant physics, the scaling of BBSAN at the peak intensity level at the sideline ( = 90 degrees) observer location is examined. Scaling terms are isolated from the acoustic analogy and the result is compared using a convergent nozzle with the experiments of Bridges and Brown and using a convergent-divergent nozzle with the experiments of Kuo, McLaughlin, and Morris at four nozzle pressure ratios in increments of total temperature ratios from one to four. The equivalent source within the framework of the acoustic analogy for BBSAN is based on local field quantities at shock wave shear layer interactions. The equivalent source combined with accurate calculations of the propagation of sound through the jet shear layer, using an adjoint vector Green s function solver of the linearized Euler equations, allows for predictions that retain the scaling with respect to stagnation pressure and allows for the accurate saturation of BBSAN with increasing stagnation temperature. This is a minor change to the source model relative to the previously developed models. The full development of the scaling term is shown. The sources and vector Green s function solver are informed by steady Reynolds-Averaged Navier-Stokes solutions. These solutions are examined as a function of stagnation temperature at the first shock wave shear layer interaction. It is discovered that saturation of BBSAN with increasing jet stagnation temperature occurs due to a balance between the amplification of the sound propagation through the shear layer and the source term scaling.A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. For this purpose the acoustic analogy of Morris and Miller is examined. To isolate the relevant physics, the scaling of BBSAN at the peak intensity level at the sideline psi = 90 degrees) observer location is examined. Scaling terms are isolated from the acoustic analogy and the result is compared using a convergent nozzle with the experiments of Bridges and Brown and using a convergent-divergent nozzle with the experiments of Kuo, McLaughlin, and Morris at four nozzle pressure ratios in increments of total temperature ratios from one to four. The equivalent source within the framework of the acoustic analogy for BBSAN is based on local field quantities at shock wave shear layer interactions. The equivalent source combined with accurate calculations of the propagation of sound through the jet shear layer, using an adjoint vector Green s function solver of the linearized Euler equations, allows for predictions that retain the scaling with respect to stagnation pressure and allows for the accurate saturation of BBSAN with increasing stagnation temperature. This is a minor change to the source model relative to the previously developed models. The full development of the scaling term is shown. The sources and vector Green s function solver are informed by steady Reynolds-Averaged Navier-Stokes solutions. These solutions are examined as a function of stagnation temperature at the first shock wave shear layer interaction. It is discovered that saturation of BBSAN with increasing jet stagnation temperature occurs due to a balance between the amplification of the sound propagation through the shear layer and the source term scaling.

  3. Evaluation and Application of Gridded Snow Water Equivalent Products for Improving Snowmelt Flood Predictions in the Red River Basin of the North

    NASA Astrophysics Data System (ADS)

    Schroeder, R.; Jacobs, J. M.; Vuyovich, C.; Cho, E.; Tuttle, S. E.

    2017-12-01

    Each spring the Red River basin (RRB) of the North, located between the states of Minnesota and North Dakota and southern Manitoba, is vulnerable to dangerous spring snowmelt floods. Flat terrain, low permeability soils and a lack of satisfactory ground observations of snow pack conditions make accurate predictions of the onset and magnitude of major spring flood events in the RRB very challenging. This study investigated the potential benefit of using gridded snow water equivalent (SWE) products from passive microwave satellite missions and model output simulations to improve snowmelt flood predictions in the RRB using NOAA's operational Community Hydrologic Prediction System (CHPS). Level-3 satellite SWE products from AMSR-E, AMSR2 and SSM/I, as well as SWE computed from Level-2 brightness temperatures (Tb) measurements, including model output simulations of SWE from SNODAS and GlobSnow-2 were chosen to support the snowmelt modeling exercises. SWE observations were aggregated spatially (i.e. to the NOAA North Central River Forecast Center forecast basins) and temporally (i.e. by obtaining daily screened and weekly unscreened maximum SWE composites) to assess the value of daily satellite SWE observations relative to weekly maximums. Data screening methods removed the impacts of snow melt and cloud contamination on SWE and consisted of diurnal SWE differences and a temperature-insensitive polarization difference ratio, respectively. We examined the ability of the satellite and model output simulations to capture peak SWE and investigated temporal accuracies of screened and unscreened satellite and model output SWE. The resulting SWE observations were employed to update the SNOW-17 snow accumulation and ablation model of CHPS to assess the benefit of using temporally and spatially consistent SWE observations for snow melt predictions in two test basins in the RRB.

  4. Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element

    NASA Astrophysics Data System (ADS)

    Hui, Yu; Rinaldi, Matteo

    2013-03-01

    This letter presents a miniaturized, fast, and high resolution thermal detector, in which a heat absorbing element and a temperature sensitive microelectromechanical system (MEMS) resonator are perfectly overlapped but separated by a microscale air gap. This unique design guarantees efficient and fast (˜10s μs) heat transfer from the absorbing element to the temperature sensitive device and enables high resolution thermal power detection (˜nW), thanks to the low noise performance of the high quality factor (Q = 2305) MEMS resonant thermal detector. A device prototype was fabricated, and its detection capabilities were experimentally characterized. A thermal power as low as 150 nW was experimentally measured, and a noise equivalent power of 6.5 nW/Hz1/2 was extracted. A device thermal time constant of only 350 μs was measured (smallest ever reported for MEMS resonant thermal detectors), indicating the great potential of the proposed technology for the implementation of ultra-fast and high resolution un-cooled resonant thermal detectors.

  5. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hiroe; Fujino, Yukiko; Kozono, Suguru; Katayama, Yoshihiro; Nukuda, Toshiyuki; Sakaebe, Hikari; Matsumoto, Hajime; Tatsumi, Kuniaki

    A mixture of flammable organic solvent and nonflammable room temperature ionic liquid (RTIL) has been investigated as a new concept electrolyte to improve the safety of lithium-ion cells. This study focused on the use of N-methyl- N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13-TFSI) as the RTIL for the flame-retardant additive. It was found that a carbon negative electrode, both graphite and hard carbon, could be used with the mixed electrolyte. A 383562-size lithium-ion trial cell made with the mixed electrolyte showed good discharge capacity, which was equivalent to a cell with conventional organic electrolyte up to a discharge current rate of complete discharge in 1 h. Moreover, the mixed electrolyte was observed to be nonflammable at ionic liquid contents of 40 mass% or more. Thus the mixed electrolyte was found to realize both nonflammability and the good discharge performance of lithium-ion cells with carbon negative electrodes. These results indicate that RTILs have potential as a flame-retardant additive for the organic electrolytes used in lithium-ion cells.

  6. Thermal/structural analyses of several hydrogen-cooled leading-edge concepts for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.; Mockler, Theodore T.; Tong, Mike

    1990-01-01

    The aerodynamic heating at high flight Mach numbers, when shock interference heating is included, can be extremely high and can exceed the capability of most conventional metallic and potential ceramic materials available. Numerical analyses of the heat transfer and thermal stresses are performed on three actively cooled leading-edge geometries (models) made of three different materials to address the issue of survivability in a hostile environment. These analyses show a mixture of results from one configuration to the next. Results for each configuration are presented and discussed. Combinations of enhanced internal film coefficients and high material thermal conductivity of copper and tungsten are predicted to maintain the maximum wall temperature for each concept within acceptable operating limits. The exception is the TD nickel material which is predicted to melt for most cases. The wide range of internal impingement film coefficients (based on correlations) for these conditions can lead to a significant uncertainty in expected leading-edge wall temperatures. The equivalent plastic strain, inherent in each configuration which results from the high thermal gradients, indicates a need for further cyclic analysis to determine component life.

  7. Impact of implementation of spaceborne lidar-retrieved canopy height in the WRF model

    NASA Astrophysics Data System (ADS)

    Lee, Junhong; Hong, Jinkyu

    2017-04-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This presentation reports impacts of using realistic forest canopy height, retrieved from spaceborne LiDAR, on regional climate simulation in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin and East Asia during summer season. Over these regions, the LiDAR-retrieved canopy heights were higher than the default values used in the WRF,which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when LiDAR-retrieved canopy height was used over the Amazon Basin.

  8. Implementation of spaceborne lidar-retrieved canopy height in the WRF model

    NASA Astrophysics Data System (ADS)

    Lee, Junhong; Hong, Jinkyu

    2016-06-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This paper is the first to report impacts of using realistic forest canopy height, retrieved from spaceborne lidar, on regional climate simulation by using the canopy height data in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin during summer season. Over this region, the lidar-retrieved canopy heights were higher than the default values used in the WRF, which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when lidar-retrieved canopy height was used over the Amazon Basin.

  9. Component testing of a ground based gas turbine steam cooled rich-burn primary zone combustor for emissions control of nitrogeneous fuels

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    This effort summarizes the work performed on a steam cooled, rich-burn primary zone, variable geometry combustor designed for combustion of nitrogeneous fuels such as heavy oils or synthetic crude oils. The steam cooling was employed to determine its feasibility and assess its usefulness as part of a ground based gas turbine bottoming cycle. Variable combustor geometry was employed to demonstrate its ability to control primary and secondary zone equivalence ratios and overall pressure drop. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This low temperature offers the potential of both long life and reduced use of strategic materials for liner fabrication. These degrees of variable geometry were successfully employed to control air flow distribution within the combustor. A variable blade angle axial flow air swirler was used to control primary zone air flow, while the secondary and tertiary zone air flows were controlled by rotating bands which regulated air flow to the secondary zone quench holes and the dilutions holes respectively.

  10. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?

    PubMed

    Habary, Adam; Johansen, Jacob L; Nay, Tiffany J; Steffensen, John F; Rummer, Jodie L

    2017-02-01

    Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species. © 2016 John Wiley & Sons Ltd.

  11. Temperature characteristics of silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Grynglas, Maria; Wegrzecki, Maciej; Bar, Jan; Grodecki, Remigiusz

    2001-08-01

    The paper presents the results of studies on temperature dependence of such parameters as a dark current, noise current, gain, noise equivalent power and detectivity of silicon epiplanar avalanche photodiodes at the ITE. The photodiode reach-through structure is of an nPLU-p-(pi) - p+ type with an under-contact ring and a channel stopper. The temperature range was stretching from -40 C to +40 C. Specially developed for this purpose an automatic system for low noise measurements was used. A two- stage micro-cooler with a Peltier's element was applied to control and stabilize the temperature of measured structures.

  12. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Satellite data collected over Lake Ontario were processed to observed surface temperature values. This involved computing apparent radiance values for each point where surface temperatures were known from averaged digital count values. These radiance values were then converted by using the LOWTRAN 5A atmospheric propagation model. This model was modified by incorporating a spectral response function for the LANDSAT band 6 sensors. A downwelled radiance term derived from LOWTRAN was included to account for reflected sky radiance. A blackbody equivalent source radiance was computed. Measured temperatures were plotted against the predicted temperature. The RMS error between the data sets is 0.51K.

  13. Calculating Percent Gel For Process Control

    NASA Technical Reports Server (NTRS)

    Webster, Charles Neal; Scott, Robert O.

    1988-01-01

    Reaction state of thermosetting resin tracked to assure desired properties. Rate of gel determined as function of temperature by measuring time to gel of part of graphite fabric impregnated with Hexcel R120 (or equivalent) phenolic resin.

  14. A tool to evaluate local biophysical effects on temperature due to land cover change transitions

    NASA Astrophysics Data System (ADS)

    Perugini, Lucia; Caporaso, Luca; Duveiller, Gregory; Cescatti, Alessandro; Abad-Viñas, Raul; Grassi, Giacomo; Quesada, Benjamin

    2017-04-01

    Land Cover Changes (LCC) affect local, regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. Assessment of the full climate impacts of anthropogenic LCC are incomplete without considering biophysical effects, but the high level of uncertainties in quantifying their impacts to date have made it impractical to offer clear advice on which policy makers could act. To overcome this barrier, we provide a tool to evaluate the biophysical impact of a matrix of land cover transitions, following a tiered methodological approach similar to the one provided by the IPCC to estimate the biogeochemical effects, i.e. through three levels of methodological complexity, from Tier 1 (i.e. default method and factors) to Tier 3 (i.e. specific methods and factors). In particular, the tool provides guidance for quantitative assessment of changes in temperature following a land cover transition. The tool focuses on temperature for two main reasons (i) it is the main variable of interest for policy makers at local and regional level, and (ii) temperature is able to summarize the impact of radiative and non-radiative processes following LULCC. The potential changes in annual air temperature that can be expected from various land cover transitions are derived from a dedicated dataset constructed by the JRC in the framework of the LUC4C FP7 project. The inputs for the dataset are air temperature values derived from satellite Earth Observation data (MODIS) and land cover characterization from the ESA Climate Change Initiative product reclassified into their IPCC land use category equivalent. This data, originally at 0.05 degree of spatial resolution, is aggregated and analysed at regional level to provide guidance on the expected temperature impact following specific LCC transitions.

  15. Low temperature structural transformation in T[Ni(CN){sub 4}].xpyz with x=1,2; T=Mn,Co,Ni,Zn,Cd; pyz=pyrazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Hernandez, J.; Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana; Lemus-Santana, A.A.

    2010-01-15

    The materials under study are pillared solids T[Ni(CN){sub 4}].xpyz with one and two (x=1,2) pyrazine (pyz) molecules and where T=Mn, Co, Ni, Zn, Cd. Stimulated by their structural features and potential role as prototype of porous solids for hydrogen storage, the structural stability under cryogenic conditions for this series of pillared solids was studied. At low temperature, in the 100-200 K range, the occurrence of a reversible structural transformation was found. For T=Mn, Co, Zn, Cd, with x=2, the structural transformation was observed to occur around 185 K, and the low temperature phase crystallizes with a monoclinic unit cell (spacemore » group Pc). This structure change results from certain charge redistribution on cooling within the involved ligands. For T=Ni with x=1, both the low and high temperature phases crystallize with unit cells of tetragonal symmetry, within the same space group but with a different unit cell volume. In this case the structure change is observed around 120 K. Above that temperature the rotational states for the pyrazine molecule are thermally excited and all the pyrazine molecules in the structure become equivalent. Under this condition the material structure is described using a smaller structural unit. The structural study using X-ray powder diffraction data was complemented with calorimetric and Raman spectroscopy measurements. For the low temperature phases the crystal structures were solved from Patterson methods and then refined using the Rietveld method. - Graphical abstract: Low temperature ordered structure for pyrazine in T[Ni(CN){sub 4}].pyz.« less

  16. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites

    PubMed Central

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m-2 and 0.9±0.1 C m-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported. PMID:26193701

  17. Experimental Combustion Dynamics Behavior of a Multi-Element Lean Direct Injection (LDI) Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.; Chang, Clarence T.

    2016-01-01

    An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.

  18. Mammographic film-processor temperature, development time, and chemistry: effect on dose, contrast, and noise.

    PubMed

    Kimme-Smith, C; Rothschild, P A; Bassett, L W; Gold, R H; Moler, C

    1989-01-01

    Six different combinations of film-processor temperature (33.3 degrees C, 35 degrees C), development time (22 sec, 44 sec), and chemistry (Du Pont medium contrast developer [MCD] and Kodak rapid process [RP] developer) were each evaluated by separate analyses with Hurter and Driffield curves, test images of plastic step wedges, noise variance analysis, and phantom images; each combination also was evaluated clinically. Du Pont MCD chemistry produced greater contrast than did Kodak RP chemistry. A change in temperature from 33.3 degrees C (92 degrees F) to 35 degrees C (95 degrees F) had the least effect on dose and image contrast. Temperatures of 36.7 degrees C (98 degrees F) and 38.3 degrees C (101 degrees F) also were tested with extended processing. The speed increased for 36.7 degrees C but decreased at 38.3 degrees C. Base plus fog increased, but contrast decreased for these higher temperatures. Increasing development time had the greatest effect on decreasing the dose required for equivalent film darkening when imaging BR12 breast equivalent test objects; ion chamber measurements showed a 32% reduction in dose when the development time was increased from 22 to 44 sec. Although noise variance doubled in images processed with the extended development time, diagnostic capability was not compromised. Extending the processing time for mammographic films was an effective method of dose reduction, whereas varying the processing temperature and chemicals had less effect on contrast and dose.

  19. High temperature electrical properties study of Sr{sub 2}(Fe,Ti)O{sub 6} double perovskite materials using impedance spectroscopy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triyono, D., E-mail: djoko.triyono@sci.ui.ac.id; Laysandra, Heidi

    2016-04-19

    The structure, thermal, and electrical properties of double perovskite material Sr{sub 2}(Fe,Ti)O{sub 6} at high temperature have been studied. This material was synthesized by a solid state reaction method. X-ray diffraction characterization at room temperature for all samples shows a single phase and having a structure of cubic double perovskite with Pm3m space group. The variation of Fe and Ti atoms are seen in an increasing of lattice parameter and grain size which is found between 30 nm and 80 nm. The electrical properties as a function of temperature and frequency are characterized by using RLC-meter with impedance spectroscopy method. The impedancemore » data are presented in Nyquist and Bode plot resulting in the equivalent circuit and its parameters. The equivalent circuit shows the effect of grain and grain boundary in the electrical properties of materials. DC conductivity of Sr{sub 2}(Fe,Ti)O{sub 6} as a function of temperature was explained by using Arrhenius equation. The value of the activation energy which is evaluated from dc conductivity as a function of temperature shows the effect of grain and grain boundary. The activation energy exhibits of oxygen vacancy in Sr{sub 2}(Fe,Ti)O{sub 6} which is also supported by morphology of Sr{sub 2}(Fe,Ti)O{sub 6} is characterized by field emission scanning electron microscopy (FESEM).« less

  20. Investigation of crop canopy temperature in apple study orchard

    NASA Astrophysics Data System (ADS)

    Tökei, L.; Dunkel, Z.

    2003-04-01

    The paper shows a sophisticated case study for the possible determination of transpiration of apple orchard. A 'Scheduler' type water stress instrument originally developed for crops was used in the study apple orchard of the university. The air and crop canopy temperatures, the relative humidity and the radiation were measured. The aim was to determine the influence of these factors at different level of the canopy, with various exposures of the tree crowns. The measurements were made on several trees in certain selected rows and on those planted in concentric rows in a round field. The relationship between crop canopy and sir temperatures appeared to depend primarily on illumination. This can be greatly affected by shading conditions, but air motion cannot be neglected, the effect of which increases when its direction is in agreement with the direction of the rows. Its efficiency also has a significant effect on air humidity conditions. The relative humidity and air temperature values were used to calculate the equivalent temperature, also considering latent heat flux, and finally the evapotranspiration of plantation. From differences in the equivalent and air temperatures, conclusions can be drawn on the intensity and daily course of transpiration. Using this method differences at given level could not be demonstrated in the relatively opera orchards studied. According to the results, transpiration is the strongest in the morning, after which it significantly decreases by the afternoon and becomes more intense again early at night.

  1. 42 CFR 417.104 - Payment for basic health services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... from each group is substantially equivalent to the revenue that would be derived if the schedule of... authorized in this paragraph, such rates must be equivalent for all individuals in the same group and for all... of potential subscribers: (A) Individual (non-group) subscribers (including their families). (B...

  2. 42 CFR 417.104 - Payment for basic health services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... from each group is substantially equivalent to the revenue that would be derived if the schedule of... authorized in this paragraph, such rates must be equivalent for all individuals in the same group and for all... of potential subscribers: (A) Individual (non-group) subscribers (including their families). (B...

  3. 42 CFR 417.104 - Payment for basic health services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... from each group is substantially equivalent to the revenue that would be derived if the schedule of... authorized in this paragraph, such rates must be equivalent for all individuals in the same group and for all... of potential subscribers: (A) Individual (non-group) subscribers (including their families). (B...

  4. 40 CFR 53.4 - Applications for reference or equivalent method determinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... using information such as service reports and customer complaints to eliminate potential causes of... standards of good practice and by qualified personnel. Test anomalies or irregularities shall be documented... designated as a reference or equivalent method, to ensure that all analyzers or samplers offered for sale...

  5. Insight into climate change from the carbon exchange of biocrusts utilizing non-rainfall water.

    PubMed

    Ouyang, Hailong; Hu, Chunxiang

    2017-05-31

    Biocrusts are model ecosystems of global change studies. However, light and non-rainfall water (NRW) were previously few considered. Different biocrust types further aggravated the inconsistence. So carbon-exchange of biocrusts (cyanobacteria crusts-AC1/AC2; cyanolichen crust-LC1; chlorolichen crust-LC2; moss crust-MC) utilizing NRW at various temperatures and light-intensities were determined under simulated and insitu mesocosm experiments. Carbon input of all biocrusts were negatively correlated with experimental temperature under all light-intensity with saturated water and stronger light with equivalent NRW, but positively correlated with temperature under weak light with equivalent NRW. LCPs and R/Pg of AC1 were lowest, followed in turn by AC2, LC2 and MC. Thus AC1 had most opportunities to use NRW, and 2.5 °C warming did cause significant changes of carbon exchange. Structural equation models further revealed that air-temperature was most important for carbon-exchange of ACs, but equally important as NRW for LC2 and MC; positive influence of warming on carbon-input in ACs was much stronger than the latter. Therefore, temperature effect on biocrust carbon-input depends on both moisture and light. Meanwhile, the role of NRW, transitional states between ACs, and obvious carbon-fixation differences between lichen crusts should be fully considered in the future study of biocrusts responding to climate change.

  6. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The results are reported for high-temperature axial and torsional low-cycle fatigue experiments performed at 760 C in air on thin-walled tubular specimens of Haynes 188, a wrought cobalt-based superalloy. Data are also presented for mean coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. This data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME Boiler and Pressure Code), Manson-Halford, modified multiaxiality factor (proposed in this paper), modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The modified multiaxiality factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  7. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Arrays for Nano-Electronic and Nano-Photonic Applications II

    DTIC Science & Technology

    2010-12-03

    photoluminescence characteristics of equivalent-size controlled silicon quantum dots by employing a nano-porous aluminum oxide membrane as the template for growing...synthesis of Si quantum dots (Si-QDs) embedded in low-temperature (500oC) annealed Si-rich SiOx nano-rod deposited in nano-porous anodic aluminum oxide ...characteristics of the equivalent-size controlled Si-QDs by employing the nano-porous AAO membrane as the template for growing Si-rich SiOx nano-rods

  8. Minimizing the Amount of Nitromethane in Palladium Catalyzed Cross Coupling with Aryl Halides

    PubMed Central

    Walvoord, Ryan R.; Kozlowski, Marisa C.

    2013-01-01

    A method for the formation of arylnitromethanes is described that employs readily available aryl halides or triflates and small amounts of nitromethane in a dioxane solvent, thereby reducing the hazards associated with this reagent. Specifically, 2–10 equivalents (1–5% v/v) of nitromethane can be employed in comparison to prior work that used nitromethane as solvent (185 equivalents). The present transformation provides high yields at relatively low temperatures and tolerates an array of functionality, including heterocycles and substantial steric encumbrance. PMID:23895411

  9. Simulation and experiment of thermal fatigue in the CPV die attach

    NASA Astrophysics Data System (ADS)

    Bosco, Nick; Silverman, Timothy; Kurtz, Sarah

    2012-10-01

    FEM simulation and accelerated thermal cycling have been performed for the CPV die attach. Trends in fatigue damage accumulation and equivalent test time are explored and found to be most sensitive to temperature ramp rate. Die attach crack growth is measured through cycling and found to be in excellent agreement with simulations of the inelastic strain energy accumulated. Simulations of an entire year of weather data provides for the relative ranking of fatigue damage between four cities as well as their equivalent accelerated test time.

  10. Hierarchical equivalence of somatosensory areas I and II for tactile processing in the cerebral cortex of the marmoset monkey.

    PubMed

    Zhang, H Q; Zachariah, M K; Coleman, G T; Rowe, M J

    2001-05-01

    Responsiveness of the first somatosensory area (SI) of the cerebral cortex was investigated in the marmoset monkey (Callithrix jacchus) in association with cooling-induced, reversible inactivation of the second somatosensory area, SII. The aim was to determine whether SI responsiveness to peripheral tactile stimulation depends on SII and therefore whether SI and SII in the marmoset occupy hierarchically equivalent positions in a parallel organizational scheme for thalamocortical tactile processing as appears to be the case in nonprimate mammals. Inactivation of SII was achieved when the temperature over SII was lowered to < or =12 degrees C, as indicated by abolition of the SII-evoked potentials generated by brief tap stimuli to the hand or foot, and by abolition of tactile responses in single SII neurons located at the margin beneath the block. The effect of SII inactivation on SI-evoked potentials was examined in 16 experiments by simultaneous recording of the SI- and SII-evoked potentials. SI-evoked potentials were never abolished and remained unaffected in 11 cases. In three experiments there was a small reduction in amplitude and inconsistent effects in the remaining two. Responsiveness to controlled tactile stimuli was examined quantitatively in 31 individual SI neurons of different functional classes before, during, and after the inactivation of SII. Tactile responsiveness in individual SI neurons was never abolished by SII inactivation, remaining unchanged in 20 neurons (65%) while undergoing some reduction in the remaining 11 SI neurons (35%). This reduction of tactile responsiveness in one-third of SI neurons is most likely attributable to a removal of a facilitatory influence emanating from SII, based on the observation that background activity of the affected neurons was also reduced. Furthermore, phase locking of SI responses to vibrotactile stimulation was unchanged when SII was inactivated. The retention of responsiveness in SI neurons when SII was inactivated by cooling in the marmoset demonstrates that tactile inputs can reach SI without traversing an indirect, serially organized path through SII. The present results, together with our previous observations that responsiveness in the majority of SII neurons survived SI inactivation, demonstrate that there is a parallel organization of the SI and SII areas for tactile processing in the marmoset monkey and that SI and SII occupy hierarchically equivalent positions in a parallel processing network. There is therefore no longer justification for the view that there are fundamental differences in the organization of thalamocortical tactile processing for SI and SII between simian primates, in general, and other mammals.

  11. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    NASA Astrophysics Data System (ADS)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  12. Fuel/air nonuniformity - Effect on nitric oxide emissions

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1981-01-01

    An analytical and experimental study was performed to determine the effect of inlet fuel/air profile nonuniformity on NO(x) emissions. The theoretical NO(x) levels were verified in a flame-tube rig at inlet air temperatures of 600, 700, and 800 K, 0.3 MPa rig pressure, 25 m/sec reference velocity, overall equivalence ratio of 0.6 and residence time near 0.002 sec. The theory predicts an increase in NO(x) emissions for increased fuel/air nonuniformity for average equivalence ratios less than 0.7, while for average equivalence ratios near stoichiometric, increasing the nonuniformity will decrease NO(x) emissions. The results can be used to predict the degree of uniformity of fuel/air profiles necessary to achieve NO(x) emissions goals for actual engines that use lean premixed, prevaporized combustion systems.

  13. Solar Occultation Satellite Data and Derived Meteorological Products: Sampling Issues and Comparisons with Aura MLS

    NASA Technical Reports Server (NTRS)

    Manney, Gloria; Daffer, William H.; Zawodny, Joseph M.; Bernath, Peter F.; Hoppel, Karl W.; Walker, Kaley A.; Knosp, Brian W.; Boone, Chris; Remsberg, Ellis E.; Santee, Michelle L.; hide

    2007-01-01

    Derived Meteorological Products (DMPs, including potential temperature (theta), potential vorticity, equivalent latitude (EqL), horizontal winds and tropopause locations) have been produced for the locations and times of measurements by several solar occultation (SO) instruments and the Aura Microwave Limb Sounder (MLS). DMPs are calculated from several meteorological analyses for the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer, Stratospheric Aerosol and Gas Experiment II and III, Halogen Occultation Experiment, and Polar Ozone and Aerosol Measurement II and III SO instruments and MLS. Time-series comparisons of MLS version 1.5 and SO data using DMPs show good qualitative agreement in time evolution of O3, N2O, H20, CO, HNO3, HCl and temperature; quantitative agreement is good in most cases. EqL-coordinate comparisons of MLS version 2.2 and SO data show good quantitative agreement throughout the stratosphere for most of these species, with significant biases for a few species in localized regions. Comparisons in EqL coordinates of MLS and SO data, and of SO data with geographically coincident MLS data provide insight into where and how sampling effects are important in interpretation of the sparse SO data, thus assisting in fully utilizing the SO data in scientific studies and comparisons with other sparse datasets. The DMPs are valuable for scientific studies and to facilitate validation of non-coincident measurements.

  14. Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii.

    PubMed

    Taha; Siddiqui, K S; Campanaro, S; Najnin, T; Deshpande, N; Williams, T J; Aldrich-Wright, J; Wilkins, M; Curmi, P M G; Cavicchioli, R

    2016-09-01

    TRAM domain proteins present in Archaea and Bacteria have a β-barrel shape with anti-parallel β-sheets that form a nucleic acid binding surface; a structure also present in cold shock proteins (Csps). Aside from protein structures, experimental data defining the function of TRAM domains is lacking. Here, we explore the possible functional properties of a single TRAM domain protein, Ctr3 (cold-responsive TRAM domain protein 3) from the Antarctic archaeon Methanococcoides burtonii that has increased abundance during low temperature growth. Ribonucleic acid (RNA) bound by Ctr3 in vitro was determined using RNA-seq. Ctr3-bound M. burtonii RNA with a preference for transfer (t)RNA and 5S ribosomal RNA, and a potential binding motif was identified. In tRNA, the motif represented the C loop; a region that is conserved in tRNA from all domains of life and appears to be solvent exposed, potentially providing access for Ctr3 to bind. Ctr3 and Csps are structurally similar and are both inferred to function in low temperature translation. The broad representation of single TRAM domain proteins within Archaea compared with their apparent absence in Bacteria, and scarcity of Csps in Archaea but prevalence in Bacteria, suggests they represent distinct evolutionary lineages of functionally equivalent RNA-binding proteins. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. An Experimental Investigation of Self-Excited Combustion Dynamics in a Single Element Lean Direct Injection (LDI) Combustor

    NASA Astrophysics Data System (ADS)

    Gejji, Rohan M.

    The management of combustion dynamics in gas turbine combustors has become more challenging as strict NOx/CO emission standards have led to engine operation in a narrow, lean regime. While premixed or partially premixed combustor configurations such as the Lean Premixed Pre-vaporized (LPP), Rich Quench Lean burn (RQL), and Lean Direct Injection (LDI) have shown a potential for reduced NOx emissions, they promote a coupling between acoustics, hydrodynamics and combustion that can lead to combustion instabilities. These couplings can be quite complex, and their detailed understanding is a pre-requisite to any engine development program and for the development of predictive capability for combustion instabilities through high-fidelity models. The overarching goal of this project is to assess the capability of high-fidelity simulation to predict combustion dynamics in low-emissions gas turbine combustors. A prototypical lean-direct-inject combustor was designed in a modular configuration so that a suitable geometry could be found by test. The combustor comprised a variable length air plenum and combustion chamber, air swirler, and fuel nozzle located inside a subsonic venturi. The venturi cross section and the fuel nozzle were consistent with previous studies. Test pressure was 1 MPa and variables included geometry and acoustic resonance, inlet temperatures, equivalence ratio, and type of liquid fuel. High-frequency pressure measurements in a well-instrumented metal chamber yielded frequencies and mode shapes as a function of inlet air temperature, equivalence ratio, fuel nozzle placement, and combustor acoustic resonances. The parametric survey was a significant effort, with over 105 tests on eight geometric configurations. A good dataset was obtained that could be used for both operating-point-dependent quantitative comparisons, and testing the ability of the simulation to predict more global trends. Results showed a very strong dependence of instability amplitude on the geometric configuration of the combustor, i.e., its acoustic resonance characteristics, with measured pressure fluctuation amplitudes ranged from 5 kPa (0.5% of mean pressure) to 200 kPa ( 20% of mean pressure) depending on combustor geometry. The stability behavior also showed a consistent and pronounced dependence on equivalence ratio and inlet air temperature. Instability amplitude increased with higher equivalence ratio and with lower inlet air temperature. A pronounced effect of fuel nozzle location on the combustion dynamics was also observed. Combustion instabilities with the fuel nozzle at the throat of the venturi throat were stronger than in the configuration with fuel nozzle 2.6 mm upstream of the nozzle. A second set of dynamics data was based on high-response-rate laser-based combustion diagnostics using an optically accessible combustor section. High-frequency measurements of OH*-chemiluminescence and OH-PLIF and velocity fields using PIV were obtained at a relatively stable, low equivalence ratio case and a less stable case at higher equivalence ratio. PIV measurements were performed at 5 kHz for non-reacting flow but glare from the cylindrical quartz chamber limited the field of view to a small region in the combustor. Quantitative and qualitative comparisons were made for five different combinations of geometry and operating condition that yielded discriminating stability behavior in the experiment with simulations that were carried out concurrently. Comparisons were made on the basis of trends and pressure mode data as well as with OH-PLIF measurements for the baseline geometry at equivalence ratios of 0.44 and 0.6. Overall, the ability of the simulation to match experimental data and trends was encouraging. Dynamic Mode Decomposition (DMD) analysis was performed on two sets of computations - a global 2-step chemistry mechanism and an 18-step chemistry mechanism - and the OH-PLIF images to allow comparison of dynamic patterns of heat release and OH distribution in the combustion zone. The DMD analysis was able to identify similar dominant unstable modes in the combustor. Recommendations for future work are based on the continued requirement for quantitative and spatio-temporally resolved data for direct comparison with computational efforts to develop predictive capabilities for combustion instabilities at relevant operating conditions. Discriminating instability behavior for the prototypical combustor demonstrated in this study is critical for any robust validation effort Unit physics based scaling of the current effort to multi-element combustors along with improvement in diagnostic techniques and analysis efforts are recommended for advancement in understanding of the complex physics in the multi-phase, three dimensional and turbulent combustion processes in the LDI combustor.

  16. 20 CFR 654.413 - Cooking and eating facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... storage shelves and a counter for food preparation; and (3) provisions for mechanical refrigeration of... refrigeration for food at a temperature of not more than 45 °F.; and (4) tables and chairs or equivalent seating...

  17. 20 CFR 654.413 - Cooking and eating facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... storage shelves and a counter for food preparation; and (3) provisions for mechanical refrigeration of... refrigeration for food at a temperature of not more than 45 °F.; and (4) tables and chairs or equivalent seating...

  18. 20 CFR 654.413 - Cooking and eating facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... storage shelves and a counter for food preparation; and (3) provisions for mechanical refrigeration of... refrigeration for food at a temperature of not more than 45 °F.; and (4) tables and chairs or equivalent seating...

  19. 20 CFR 654.413 - Cooking and eating facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... storage shelves and a counter for food preparation; and (3) provisions for mechanical refrigeration of... refrigeration for food at a temperature of not more than 45 °F.; and (4) tables and chairs or equivalent seating...

  20. 20 CFR 654.413 - Cooking and eating facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... storage shelves and a counter for food preparation; and (3) provisions for mechanical refrigeration of... refrigeration for food at a temperature of not more than 45 °F.; and (4) tables and chairs or equivalent seating...

  1. Acquisition of an Integrated System for Laser-Assisted Non-Intrusive Experimentation and Data-Driven Reduced-Order Modeling

    DTIC Science & Technology

    2015-05-13

    Tailored Metal Hydride and Innovative Reactor System for High Temperature Thermal Energy Storage” (DOE, APOLLO , FOA# DE-FOA-0001186, pending). Technology Transfer PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number:

  2. Detailed non-LTE calculations of the iron emission from NGC 1068

    NASA Technical Reports Server (NTRS)

    Band, David L.; Klein, Richard I.; Castor, John I.; Nash, J. K.

    1989-01-01

    The X-ray iron line emission from NGC 1068 observed by the Ginga satellite is modeled using the new multiline, multilevel, non-LTE radiative transport code ALTAIR and a detailed atomic model for Ne-like through stripped iron. The parameter space of the obscured type 1 Seyfert nucleus model for this object is studied. The equivalent width is greater than previously predicted. It is found that detailed radiative transfer can have a significant effect on the observed line flux both for the K alpha line and for the L-shell emission. The ionization of the iron increases with temperature. Therefore the K alpha equivalent width and energy is a function not only of the ionization parameter, but also of the column depth and temperature. For a likely model of NGC 1068 it is found that the iron abundance is about twice solar, but that modifications of this model may permit a smaller abundance.

  3. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs.

    PubMed

    Kollamaram, Gayathri; Croker, Denise M; Walker, Gavin M; Goyanes, Alvaro; Basit, Abdul W; Gaisford, Simon

    2018-07-10

    Fused deposition modelling (FDM) is the most commonly investigated 3D printing technology for the manufacture of personalized medicines, however, the high temperatures used in the process limit its wider application. The objective of this study was to print low-melting and thermolabile drugs by reducing the FDM printing temperature. Two immediate release polymers, Kollidon VA64 and Kollidon 12PF were investigated as potential candidates for low-temperature FDM printing. Ramipril was used as the model low melting temperature drug (109 °C); to the authors' knowledge this is the lowest melting point drug investigated to date by FDM printing. Filaments loaded with 3% drug were obtained by hot melt extrusion at 70 °C and ramipril printlets with a dose equivalent of 8.8 mg were printed at 90 °C. HPLC analysis confirmed that the drug was stable with no signs of degradation and dissolution studies revealed that drug release from the printlets reached 100% within 20-30 min. Variable temperature Raman and solid state nuclear magnetic resonance (SSNMR) spectroscopy techniques were used to evaluate drug stability over the processing temperature range. These data indicated that ramipril did not undergo degradation below its melting point (which is above the processing temperature range: 70-90 °C) but it was transformed into the impurity diketopiperazine upon exposure to temperatures higher than its melting point. The use of the excipients Kollidon VA64 and Kollidon 12PF in FDM was further validated by printing with the drug 4-aminosalicylic acid (4-ASA), which in previous work was reported to undergo degradation in FDM printing, but here it was found to be stable. This work demonstrates that the selection and use of new excipients can overcome one of the major disadvantages in FDM printing, drug degradation due to thermal heating, making this technology suitable for drugs with lower melting temperatures. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature.

    PubMed

    Rodrigues, Dario B; Maccarini, Paolo F; Salahi, Sara; Oliveira, Tiago R; Pereira, Pedro J S; Limao-Vieira, Paulo; Snow, Brent W; Reudink, Doug; Stauffer, Paul R

    2014-07-01

    We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.

  5. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Treesearch

    John L. Campbell; Scott V. Ollinger; Gerald N. Flerchinger; Haley Wicklein; Katharine Hayhoe; Amey S. Bailey

    2010-01-01

    Long-term data from the Hubbard Brook Experimental Forest in New Hampshire show that air temperature has increased by about 1 °C over the last half century. The warmer climate has caused significant declines in snow depth, snow water equivalent and snow cover duration. Paradoxically, it has been suggested that warmer air temperatures may result in colder soils...

  6. Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado

    USGS Publications Warehouse

    Meier, Gretchen A.; Brown, Jesslyn F.; Evelsizer, Ross J.; Vogelmann, James E.

    2014-01-01

    Trembling aspen (Populus tremuloides Michx.) occurs over wide geographical, latitudinal, elevational, and environmental gradients, making it a favorable candidate for a study of phenology and climate relationships. Aspen forests and woodlands provide numerous ecosystem services, such as high primary productivity and biodiversity, retention and storage of environmental variables (precipitation, temperature, snow–water equivalent) that affect the spring and fall phenology of the aspen woodland communities of southwestern Colorado. We assessed the land surface phenology of aspen woodlands using two phenology indices, start of season time (SOST) and end of season time (EOST), from the U.S. Geological Survey (USGS) database of conterminous U.S. phenological indicators over an 11-year time period (2001–2011). These indicators were developed with 250 m resolution remotely sensed data from the Moderate Resolution Imaging Spectroradiometer processed to highlight vegetation response. We compiled data on SOST, EOST, elevation, precipitation, air temperature, and snow water equivalent (SWE) for selected sites having more than 80% cover by aspen woodland communities. In the 11-year time frame of our study, EOST had significant positive correlation with minimum fall temperature and significant negative correlation with fall precipitation. SOST had a significant positive correlation with spring SWE and spring maximum temperature.

  7. Altitude Performance of Modified J71 Afterburner with Revised Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Useller, James W.; Russey, Robert E.

    1955-01-01

    An investigation was conducted in an altitude test chamber at the NACA Lewis laboratory to determine the effect of a revision of the rated engine operating conditions and modifications to the afterburner fue1 system, flameholder, and shell cooling on the augmented performance of the J71-A-2 (x-29) turbo jet engine operating at altitude . The afterburner modifications were made by the manufacturer to improve the endurance at sea-level, high-pressure conditions and to reduce the afterburner shell temperatures. The engine operating conditions of rated rotational speed and turbine-outlet gas temperature were increased. Data were obtained at conditions simulating flight at a Mach number of 0.9 and at altitudes from 40,000 to 60,000 feet. The afterburner modifications caused a reduction in afterburner combustion efficiency. The increase in rated engine speed and turbine-outlet temperature coupled with the afterburner modifications resulted in the over-all thrust of the engine and afterburner being unchanged at a given afterburner equivalence ratio, while the specific fuel consumption was increased slightly. A moderate shift in the range of equivalence ratios over which the afterburner would operate was encountered, but the maximum operable altitude remained unaltered. The afterburner-shell temperatures were also slightly reduced because of the modifications to the afterburner.

  8. Influence of temperature and fat content on ideal sucrose concentration, sweetening power, and sweetness equivalence of different sweeteners in chocolate milk beverage.

    PubMed

    Paixão, J A; Rodrigues, J B; Esmerino, E A; Cruz, A G; Bolini, H M A

    2014-12-01

    The introduction of new products catering to specific dietary needs and the corresponding changes in the consumer profile reflect a growing demand for diet and “light” products. However, little information is available regarding the sensory effects of different sweeteners in products consumed at different temperatures and with varying fat contents. In this regard, this study aimed to determine the influence of temperature and fat content on the ideal sucrose concentration and the sweetness equivalence and sweetening power of different sweeteners: Neotame (NutraSweet Corp., Chicago, IL), aspartame, neosucralose, sucralose, and stevia (95% rebaudioside A), with sucrose as reference, in a chocolate milk beverage using a just-about-right (JAR) scale and magnitude estimation. Increasing temperature of consumption had an inverse effect on the ideal sucrose concentration in whole milk beverages, whereas no difference was noted in beverages made skim milk. In addition, a decrease in sweetening power was observed for all of the sweeteners analyzed considering the same conditions. The findings suggest that different optimal conditions exist for consumption of chocolate milk beverage related to sweetness perception, which depends on the fat level of milk used in the formulation. This information can be used by researchers and dairy processors when developing chocolate milk beverage formulations.

  9. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    NASA Astrophysics Data System (ADS)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-11-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  10. Organic synthesis during fluid mixing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1998-12-01

    Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth or Mars. The single largest control on the potential for organic synthesis is the composition of the rock that hosts the hydrothermal system.

  11. Tuning the tetrahedrality of the hydrogen-bonded network of water: Comparison of the effects of pressure and added salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Saurav, E-mail: saurav7188@gmail.com, E-mail: cyz118212@chemistry.iitd.ac.in; Chakravarty, Charusita

    Experiments and simulations demonstrate some intriguing equivalences in the effect of pressure and electrolytes on the hydrogen-bonded network of water. Here, we examine the extent and nature of equivalence effects between pressure and salt concentration using relationships between structure, entropy, and transport properties based on two key ideas: first, the approximation of the excess entropy of the fluid by the contribution due to the atom-atom pair correlation functions and second, Rosenfeld-type excess entropy scaling relations for transport properties. We perform molecular dynamics simulations of LiCl–H{sub 2}O and bulk SPC/E water spanning the concentration range 0.025–0.300 molefraction of LiCl at 1more » atm and pressure range from 0 to 7 GPa, respectively. The temperature range considered was from 225 to 350 K for both the systems. To establish that the time-temperature-transformation behaviour of electrolyte solutions and water is equivalent, we use the additional observation based on our simulations that the pair entropy behaves as a near-linear function of pressure in bulk water and of composition in LiCl–H{sub 2}O. This allows for the alignment of pair entropy isotherms and allows for a simple mapping of pressure onto composition. Rosenfeld-scaling implies that pair entropy is semiquantitatively related to the transport properties. At a given temperature, equivalent state points in bulk H{sub 2}O and LiCl–H{sub 2}O (at 1 atm) are defined as those for which the pair entropy, diffusivity, and viscosity are nearly identical. The microscopic basis for this equivalence lies in the ability of both pressure and ions to convert the liquid phase into a pair-dominated fluid, as demonstrated by the O–O–O angular distribution within the first coordination shell of a water molecule. There are, however, sharp differences in local order and mechanisms for the breakdown of tetrahedral order by pressure and electrolytes. Increasing pressure increases orientational disorder within the first neighbour shell while addition of ions shifts local orientational order from tetrahedral to close-packed as water molecules get incorporated in ionic hydration shells. The variations in local order within the first hydration shell may underlie ion-specific effects, such as the Hofmeister series.« less

  12. Tuning the tetrahedrality of the hydrogen-bonded network of water: Comparison of the effects of pressure and added salts

    NASA Astrophysics Data System (ADS)

    Prasad, Saurav; Chakravarty, Charusita

    2016-06-01

    Experiments and simulations demonstrate some intriguing equivalences in the effect of pressure and electrolytes on the hydrogen-bonded network of water. Here, we examine the extent and nature of equivalence effects between pressure and salt concentration using relationships between structure, entropy, and transport properties based on two key ideas: first, the approximation of the excess entropy of the fluid by the contribution due to the atom-atom pair correlation functions and second, Rosenfeld-type excess entropy scaling relations for transport properties. We perform molecular dynamics simulations of LiCl-H2O and bulk SPC/E water spanning the concentration range 0.025-0.300 molefraction of LiCl at 1 atm and pressure range from 0 to 7 GPa, respectively. The temperature range considered was from 225 to 350 K for both the systems. To establish that the time-temperature-transformation behaviour of electrolyte solutions and water is equivalent, we use the additional observation based on our simulations that the pair entropy behaves as a near-linear function of pressure in bulk water and of composition in LiCl-H2O. This allows for the alignment of pair entropy isotherms and allows for a simple mapping of pressure onto composition. Rosenfeld-scaling implies that pair entropy is semiquantitatively related to the transport properties. At a given temperature, equivalent state points in bulk H2O and LiCl-H2O (at 1 atm) are defined as those for which the pair entropy, diffusivity, and viscosity are nearly identical. The microscopic basis for this equivalence lies in the ability of both pressure and ions to convert the liquid phase into a pair-dominated fluid, as demonstrated by the O-O-O angular distribution within the first coordination shell of a water molecule. There are, however, sharp differences in local order and mechanisms for the breakdown of tetrahedral order by pressure and electrolytes. Increasing pressure increases orientational disorder within the first neighbour shell while addition of ions shifts local orientational order from tetrahedral to close-packed as water molecules get incorporated in ionic hydration shells. The variations in local order within the first hydration shell may underlie ion-specific effects, such as the Hofmeister series.

  13. Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.

    PubMed

    Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter

    2018-06-01

    We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.

  14. Effect of Temperature on the Fracture Toughness of Hot Isostatically Pressed 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-03-01

    Herein, we have performed J- Resistance multi-specimen fracture toughness testing of hot isostatically pressed (HIP'd) and forged 304L austenitic stainless steel, tested at elevated (300 °C) and cryogenic (- 140 °C) temperatures. The work highlights that although both materials fail in a pure ductile fashion, stainless steel manufactured by HIP displays a marked reduction in fracture toughness, defined using J 0.2BL, when compared to equivalently graded forged 304L, which is relatively constant across the tested temperature range.

  15. YBCO microbolometer operating below Tc - A modelization based on critical current-temperature dependence

    NASA Astrophysics Data System (ADS)

    Robbes, D.; Langlois, P.; Dolabdjian, C.; Bloyet, D.; Hamet, J. F.; Murray, H.

    1993-03-01

    Using careful measurements of the I-V curve of a YBCO thin-film microbridge under light irradiation at 780 nm and temperature close to 77 K, it is shown that the critical current versus temperature dependence is a good thermometer for estimating bolometric effects in the film. A novel dynamic voltage bias is introduced which directly gives the device current responsitivity and greatly reduces risks of thermal runaway. Detectivity is very low but it is predicted that a noise equivalent temperature of less than 10 exp -7 K/sq rt Hz would be achievable in a wide temperature range (10-80 K), which is an improvement over thermometry at the resistive transition.

  16. The forcing of monthly precipitation variability over Southwest Asia during the Boreal cold season

    USGS Publications Warehouse

    Hoell, Andrew; Shukla, Shraddhanand; Barlow, Mathew; Cannon, Forest; Kelley, Colin; Funk, Christopher C.

    2015-01-01

    Southwest Asia, deemed as the region containing the countries of Afghanistan, Iran, Iraq and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during8 the boreal cold season of November-April. The forcing of Southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. Here, we examine the inter-monthly differences in precipitation variability over Southwest Asia and the atmospheric conditions directly responsible in forcing monthly November-April precipitation. Seasonally averaged November-April precipitation over Southwest Asia is significantly correlated with sea surface temperature (SST) patterns consistent with Pacific Decadal Variability (PDV), the El Nino-Southern Oscillation (ENSO) and the warming trend of SST (Trend). On the contrary, the precipitation variability during individual months of November-April are unrelated and are correlated with SST signatures that include PDV, ENSO and Trend in different combinations. Despite strong inter-monthly differences in precipitation variability during November- April over Southwest Asia, similar atmospheric circulations, highlighted by a stationary equivalent barotropic Rossby wave centered over Iraq, force the monthly spatial distributions of precipitation. Tropospheric waves on the eastern side of the equivalent barotropic Rossby wave modifies the flux of moisture and advects the mean temperature gradient, resulting in temperature advection that is balanced by vertical motions over Southwest Asia. The forcing of monthly Southwest Asia precipitation by equivalent barotropic Rossby waves is different than the forcing by baroclinic Rossby waves associated with tropically-forced-only modes of climate variability.

  17. Performance of a Model Rich Burn-quick Mix-lean Burn Combustor at Elevated Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Peterson, Christopher O.; Sowa, William A.; Samuelsen, G. S.

    2002-01-01

    As interest in pollutant emission from stationary and aero-engine gas turbines increases, combustor engineers must consider various configurations. One configuration of increasing interest is the staged, rich burn - quick mix - lean burn (RQL) combustor. This report summarizes an investigation conducted in a recently developed high pressure gas turbine combustor facility. The model RQL combustor was plenum fed and modular in design. The fuel used for this study is Jet-A which was injected from a simplex atomizer. Emission (CO2, CO, O2, UHC, NOx) measurements were obtained using a stationary exit plane water-cooled probe and a traversing water-cooled probe which sampled from the rich zone exit and the lean zone entrance. The RQL combustor was operated at inlet temperatures ranging from 367 to 700 K, pressures ranging from 200 to 1000 kPa, and combustor reference velocities ranging from 10 to 20 m/s. Variations were also made in the rich zone and lean zone equivalence ratios. Several significant trends were observed. NOx production increased with reaction temperature, lean zone equivalence ratio and residence time and decreased with increased rich zone equivalence ratio. NOx production in the model RQL combustor increased to the 0.4 power with increased pressure. This correlation, compared to those obtained for non-staged combustors (0.5 to 0.7), suggests a reduced dependence on NOx on pressure for staged combustors. Emissions profiles suggest that rich zone mixing is not uniform and that the rich zone contributes on the order of 16 percent to the total NOx produced.

  18. A minimal model of an autonomous thermal motor

    NASA Astrophysics Data System (ADS)

    Fogedby, Hans C.; Imparato, Alberto

    2017-09-01

    We consider a model of a Brownian motor composed of two coupled overdamped degrees of freedom moving in periodic potentials and driven by two heat reservoirs. This model exhibits a spontaneous breaking of symmetry and gives rise to directed transport in the case of a non-vanishing interparticle interaction strength. For strong coupling between the particles we derive an expression for the propagation velocity valid for arbitrary periodic potentials. In the limit of strong coupling the model is equivalent to the Büttiker-Landauer model for a single particle diffusing in an environment with position-dependent temperature. By using numerical calculations of the Fokker-Planck equation and simulations of the Langevin equations we study the model for arbitrary coupling, retrieving many features of the strong-coupling limit. In particular, directed transport emerges even for symmetric potentials. For distinct heat reservoirs the heat currents are well-defined quantities allowing a study of the motor efficiency. We show that the optimal working regime occurs for moderate coupling. Finally, we introduce a model with discrete phase space which captures the essential features of the continuous model, can be solved in the limit of weak coupling, and exhibits a larger efficiency than the continuous counterpart.

  19. Teaching brain-behavior relations economically with stimulus equivalence technology.

    PubMed

    Fienup, Daniel M; Covey, Daniel P; Critchfield, Thomas S

    2010-03-01

    Instructional interventions based on stimulus equivalence provide learners with the opportunity to acquire skills that are not directly taught, thereby improving the efficiency of instructional efforts. The present report describes a study in which equivalence-based instruction was used to teach college students facts regarding brain anatomy and function. The instruction involved creating two classes of stimuli that students understood as being related. Because the two classes shared a common member, they spontaneously merged, thereby increasing the yield of emergent relations. Overall, students mastered more than twice as many facts as were explicitly taught, thus demonstrating the potential of equivalence-based instruction to reduce the amount of student investment that is required to master advanced academic topics.

  20. Effects of Extraction and Processing Methods on Antioxidant Compound Contents and Radical Scavenging Activities of Laver (Porphyra tenera)

    PubMed Central

    Hwang, Eun-Sun; Thi, Nhuan Do

    2014-01-01

    Laver is one of the most consumed edible red algae seaweeds in the genus Porphyra. Laver is primarily prepared in the form of dried, roasted, and seasoned products. We investigated the total polyphenol and flavonoid contents of laver products, and evaluated the in vitro antioxidant properties of solvent extracts from commercially processed laver products. Significant differences in the concentration of phenolic compounds were found among differently processed laver. The total phenolic content for laver extracts ranged from 10.81 mg gallic acid equivalent (GAE)/g extract to 32.14 mg GAE/g extract, depending on extraction solvent and temperature. Laver extracts contained very few flavonoids (0.55 mg catechin equivalent/g extracts to 1.75 mg catechin equivalent/g extracts). 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), hydroxyl radical, and superoxide anion scavenging assays were used to determine the radical scavenging capacities of laver extracts. These assays revealed that the processing method and extraction condition affected the antioxidant potentials of laver. Antioxidant activity of dried laver, roasted laver, and seasoned laver increased in a concentration-dependent manner (100~1,000 μg/mL). The radical scavenging activities of 37°C and 100°C water extracts were lower than that of a 37°C 70% ethanol extract. The highest radical scavenging capacity was observed in the 37°C 70% ethanol extracts of dried laver, roasted laver, and seasoned laver. Overall, these results support that notion that laver contains bioactive compounds, such as polyphenols and flavonoids, which may have a positive effect on health. PMID:24772408

  1. Effects of Extraction and Processing Methods on Antioxidant Compound Contents and Radical Scavenging Activities of Laver (Porphyra tenera).

    PubMed

    Hwang, Eun-Sun; Thi, Nhuan Do

    2014-01-01

    Laver is one of the most consumed edible red algae seaweeds in the genus Porphyra. Laver is primarily prepared in the form of dried, roasted, and seasoned products. We investigated the total polyphenol and flavonoid contents of laver products, and evaluated the in vitro antioxidant properties of solvent extracts from commercially processed laver products. Significant differences in the concentration of phenolic compounds were found among differently processed laver. The total phenolic content for laver extracts ranged from 10.81 mg gallic acid equivalent (GAE)/g extract to 32.14 mg GAE/g extract, depending on extraction solvent and temperature. Laver extracts contained very few flavonoids (0.55 mg catechin equivalent/g extracts to 1.75 mg catechin equivalent/g extracts). 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), hydroxyl radical, and superoxide anion scavenging assays were used to determine the radical scavenging capacities of laver extracts. These assays revealed that the processing method and extraction condition affected the antioxidant potentials of laver. Antioxidant activity of dried laver, roasted laver, and seasoned laver increased in a concentration-dependent manner (100~1,000 μg/mL). The radical scavenging activities of 37°C and 100°C water extracts were lower than that of a 37°C 70% ethanol extract. The highest radical scavenging capacity was observed in the 37°C 70% ethanol extracts of dried laver, roasted laver, and seasoned laver. Overall, these results support that notion that laver contains bioactive compounds, such as polyphenols and flavonoids, which may have a positive effect on health.

  2. Snow water equivalent mapping in Norway

    NASA Astrophysics Data System (ADS)

    Tveito, O. E.; Udnæs, H.-C.; Engeset, R.; Førland, E. J.; Isaksen, K.; Mengistu, Z.

    2003-04-01

    In high latitude area snow covers the ground large parts of the year. Information about the water volume as snow is of major importance in many respects. Flood forecasters at NVE need it in order to assess possible flood risks. Hydropower producers need it to plan the most efficient production of the water in their reservoirs, traders to estimate the potential energy available for the market. Meteorologists on their side use the information as boundary conditions in weather forecasting models. The Norwegian meteorological institute has provided snow accumulation maps for Norway for more than 50 years. These maps are now produced twice a month in the winter season. They show the accumulated precipitation in the winter season from the day the permanent snow cover is established. They do however not take melting into account, and do therefore not give a good description of the actual snow amounts during and after periods with snowmelt. Due to an increased need for a direct measure of water volumes as snow cover, met.no and NVE initialized a joint project in order to establish maps of the actual snow cover expressed in water equivalents. The project utilizes recent developments in the use of GIS in spatial modeling. Daily precipitation and temperature are distributed in space by using objective spatial interpolation methods. The interpolation considers topographical and other geographical parameters as well as weather type information. A degree-day model is used at each modeling point to calculate snow-accumulation and snowmelt. The maps represent a spatial scale of 1x1 km2. The modeled snow reservoir is validated by snow pillow values as well traditional snow depth observations. Preliminary results show that the new snow modeling approach reproduces the snow water equivalent well. The spatial approach also opens for a wide use in the terms of areal analysis.

  3. Numerical modeling of NO formation in laminar Bunsen flames -- A flamelet approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, C.P.; Chen, J.Y.; Yam, C.G.

    1998-08-01

    Based on the flamelet concept, a numerical model has been developed for fast predictions of NO{sub x} and CO emissions from laminar flames. The model is applied to studying NO formation in the secondary nonpremixed flame zone of fuel-rich methane Bunsen flames. By solving the steady-state flamelet equations with the detailed GR12.1 methane-air mechanism, a flamelet library is generated containing thermochemical information for a range of scalar dissipation rates at the ambient pressure condition. Modeling of NO formation is made by solving its conservation equation with chemical source term evaluated based on flamelet library using the extended Zeldovich mechanism andmore » NO reburning reactions. The optically-thin radiation heat transfer model is used to explore the potential effect of heat loss on thermal NO formation. The numerical scheme solves the two-dimensional Navier-Stokes equations as well as three additional equations: the mixture fraction, the NO mass fraction, and the enthalpy deficit due to radiative heat loss. With an established flamelet library, typical computing times are about 5 hours per calculation on a DEC-3000 300LX workstation. The predicted mixing field, radial temperature profiles, and NO distributions compare favorably with recent experimental data obtained by Nguyen et al. The dependence of NO{sub x} emission on equivalence ratio is studied numerically and the predictions are found to agree reasonably well with the measurements by Muss. The computed results show a decreasing trend of NO{sub x} emission with the equivalence ratio but an increasing trend in the CO emission index. By examining this trade-off between NO{sub x} and CO, an optimal equivalence ratio of 1.4 is found to yield the lowest combined emission.« less

  4. Deep sea water modulates blood pressure and exhibits hypolipidemic effects via the AMPK-ACC pathway: an in vivo study.

    PubMed

    Sheu, Ming-Jyh; Chou, Pei-Yu; Lin, Wen-Hsin; Pan, Chun-Hsu; Chien, Yi-Chung; Chung, Yun-Lung; Liu, Fon-Chang; Wu, Chieh-Hsi

    2013-06-17

    Deep sea water (DSW), originally pumped from the Pacific Rim off the coast of Hualien County (Taiwan), and its mineral constituents, were concentrated by a low-temperature vacuum evaporation system to produce a hardness of approximately 400,000 mg/L of seawater mineral concentrate. The primary composition of this seawater mineral concentrate was ionic magnesium (Mg²⁺), which was approximately 96,000 mg/L. Referring to the human recommended daily allowance (RDA) of magnesium, we diluted the mineral concentrate to three different dosages: 0.1 × DSW (equivalent to 3.75 mg Mg²⁺/kg DSW); 1 × DSW (equivalent to 37.5 mg Mg²⁺/kg DSW); and 2 × DSW (equivalent to 75 mg Mg²⁺/kg DSW). Additionally, a magnesium chloride treatment was conducted for comparison with the DSW supplement. The study indicated that 0.1 × DSW, 1 × DSW and 2 × DSW decreased the systolic and diastolic pressures in spontaneous hypertensive rats in an eight-week experiment. DSW has been shown to reduce serum lipids and prevent atherogenesis in a hypercholesterolemic rabbit model. Our results demonstrated that 1 × DSW and 2 × DSW significantly suppressed the serum cholesterol levels, reduced the lipid accumulation in liver tissues, and limited aortic fatty streaks. These findings indicated that the antiatherogenic effects of DSW are associated with 5'-adenosine monophosphate-activated protein kinase (AMPK) stimulation and the consequent inhibition of phosphorylation of acetyl-CoA carboxylase (ACC) in atherosclerotic rabbits. We hypothesize that DSW could potentially be used as drinking water because it modulates blood pressure, reduces lipids, and prevents atherogenesis.

  5. Rupture model based on non-associated plasticity

    NASA Astrophysics Data System (ADS)

    Pradeau, Adrien; Yoon, Jeong Whan; Thuillier, Sandrine; Lou, Yanshan; Zhang, Shunying

    2018-05-01

    This research work is about modeling the mechanical behavior of metallic sheets of AA6016 up to rupture using non-associated flow rule. Experiments were performed at room temperature in uniaxial tension and simple shear in different directions according to the rolling direction and an additional hydraulic bulge test. The anisotropy of the material is described by a Yld2000-2d yield surface [1], calibrated by stress ratios, and a plastic potential represented by Hill1948 [2], calibrated using Lankford coefficients. That way, the former is able to reproduce the yield stresses in different directions and the latter is able to reproduce the deformations in different directions as well [3], [4]. Indeed, the non-associated flow rule allows for the direction of the plastic flow not to be necessarily normal to the yield surface. Concerning the rupture, the macroscopic ductile fracture criterion DF2014 was used [5]. It indirectly uses the three invariants of the stress tensor by using the three following parameters: the stress triaxiality η, the Lode parameter L and the equivalent plastic strain to fracture ∈f-p . In order to be consistent with the plastic model and to add more flexibility to the p criterion, the equivalent stress σ ¯ and the equivalent strain to fracture ∈f-p have been substituted respectively as Yld2000-2d and Hill1948 in the DF2014 fracture criterion. The parameters for the fracture criterion were obtained by optimization and the fracture locus can be plotted in the (η ,L ,∈-p) space. The damage indicator D is then numerically predicted with respect of average strain values. A good correlation with the experimental results is obtained.

  6. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.

    PubMed

    Yu, Yuanyuan; Li, Hongkai; Sun, Xiaoru; Su, Ping; Wang, Tingting; Liu, Yi; Yuan, Zhongshang; Liu, Yanxun; Xue, Fuzhong

    2017-12-28

    Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method. Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM) were compared. The "do-calculus" was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies. Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal strategy was to adjust for the parent nodes of outcome, which obtained the highest precision. All adjustment strategies through logistic regression were biased for causal effect estimation, while IPW-based-MSM could always obtain unbiased estimation when the adjusted set satisfied G-admissibility. Thus, IPW-based-MSM was recommended to adjust for confounders set.

  7. Antioxidant potential of Juglans nigra, black walnut, husks extracted using supercritical carbon dioxide with an ethanol modifier.

    PubMed

    Wenzel, Jonathan; Storer Samaniego, Cheryl; Wang, Lihua; Burrows, Laron; Tucker, Evan; Dwarshuis, Nathan; Ammerman, Michelle; Zand, Ali

    2017-03-01

    The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt-% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assay.

  8. Combined high vacuum/high frequency fatigue tester

    NASA Technical Reports Server (NTRS)

    Honeycutt, C. R.; Martin, T. F.

    1971-01-01

    Apparatus permits application of significantly greater number of cycles or equivalent number of cycles in shorter time than conventional fatigue test machines. Environment eliminates problems associated with high temperature oxidation and with sensitivity of refractory alloy behavior to atmospheric contamination.

  9. Reutilization of mango byproducts: study of the effect of extraction solvent and temperature on their antioxidant properties.

    PubMed

    Dorta, Eva; Lobo, M Gloria; Gonzalez, Monica

    2012-01-01

    Mango biowastes, obtained after processing, contain large amounts of compounds with antioxidant activity that can be reused to reduce their environmental impact. The present study evaluates the effect of solvent (methanol, ethanol, acetone, water, methanol:water [1:1], ethanol:water [1:1], and acetone:water [1:1]), and temperature (25, 50, and 75 °C) on the efficiency of the extraction of antioxidants from mango peel and seed. Among the factors optimized, extraction solvent was the most important. The solvents that best obtained extracts with high antioxidant capacity were methanol, methanol:water, ethanol:water, and acetone:water (β-carotene test, antioxidant activity coefficient 173 to 926; thiobarbituric acid reactive substances test, inhibition ratio 15% to 89%; 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid ABTS(·+); and 2,2-diphenyl-1-picrylhydrazyl DPPH· scavenging, 7 to 22 and 8 to 28 g trolox equivalent antioxidant capacity [TE] per 100 g mango biowaste on a dry matter basis [DW]). Similarly, the flavonoid (0.21 to 1.4 g (+)-catechin equivalents per 100 g DW), tannin (3.8 to 14 g tannic acid equivalents per 100 g DW), and proanthocyanidin (0.23 to 7.8 g leucoanthocyanidin equivalents per 100 g DW) content was highest in the peel extracts obtained with methanol, ethanol:water, or acetone:water and in the seed extracts obtained with methanol or acetone:water. From the perspective of food security, it is advisable to choose ethanol (which also has a notable antioxidant content), ethanol:water, or acetone:water, as they are all solvents that can be used in compliance with good manufacturing practice. In general, increasing temperature improves the capacity of the extracts obtained from mango peel and seed to inhibit lipid peroxidation; however, its effect on the extraction of phytochemical compounds or on the capacity of the extracts to scavenge free radicals was negligible in comparison to that of the solvent. There are many antioxidant compounds in mango peel and seed, and they could be used as a natural and very inexpensive alternative to synthetic food additives. However, the conditions in which the antioxidants are extracted must be optimized. This work proves that conditions such as extraction solvent or temperature have a crucial impact on obtaining extracts rich in antioxidants from mango biowastes. © 2011 Institute of Food Technologists®

  10. Multi-scale assimilation of remotely sensed snow observations for hydrologic estimation

    NASA Astrophysics Data System (ADS)

    Andreadis, K.; Lettenmaier, D.

    2008-12-01

    Data assimilation provides a framework for optimally merging model predictions and remote sensing observations of snow properties (snow cover extent, water equivalent, grain size, melt state), ideally overcoming limitations of both. A synthetic twin experiment is used to evaluate a data assimilation system that would ingest remotely sensed observations from passive microwave and visible wavelength sensors (brightness temperature and snow cover extent derived products, respectively) with the objective of estimating snow water equivalent. Two data assimilation techniques are used, the Ensemble Kalman filter and the Ensemble Multiscale Kalman filter (EnMKF). One of the challenges inherent in such a data assimilation system is the discrepancy in spatial scales between the different types of snow-related observations. The EnMKF represents the sample model error covariance with a tree that relates the system state variables at different locations and scales through a set of parent-child relationships. This provides an attractive framework to efficiently assimilate observations at different spatial scales. This study provides a first assessment of the feasibility of a system that would assimilate observations from multiple sensors (MODIS snow cover and AMSR-E brightness temperatures) and at different spatial scales for snow water equivalent estimation. The relative value of the different types of observations is examined. Additionally, the error characteristics of both model and observations are discussed.

  11. Experimental verification of a thermal equivalent circuit dynamic model on an extended range electric vehicle battery pack

    NASA Astrophysics Data System (ADS)

    Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn

    2017-03-01

    The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.

  12. Vibrational spectroscopy and microscopic imaging: novel approaches for comparing barrier physical properties in native and human skin equivalents.

    PubMed

    Yu, Guo; Zhang, Guojin; Flach, Carol R; Mendelsohn, Richard

    2013-06-01

    Vibrational spectroscopy and imaging have been used to compare barrier properties in human skin, porcine skin, and two human skin equivalents, Epiderm 200X with an enhanced barrier and Epiderm 200 with a normal barrier. Three structural characterizations were performed. First, chain packing and conformational order were compared in isolated human stratum corneum (SC), isolated porcine SC, and in the Epiderm 200X surface layers. The infrared (IR) spectrum of isolated human SC revealed a large proportion of orthorhombically packed lipid chains at physiological temperatures along with a thermotropic phase transition to a state with hexagonally packed chains. In contrast, the lipid phase at physiological temperatures in both porcine SC and in Epiderm 200X, although dominated by conformationally ordered chains, lacked significant levels of orthorhombic subcell packing. Second, confocal Raman imaging of cholesterol bands showed extensive formation of cholesterol-enriched pockets within the human skin equivalents (HSEs). Finally, IR imaging tracked lipid barrier dimensions as well as the spatial disposition of ordered lipids in human SC and Epiderm 200X. These approaches provide a useful set of experiments for exploring structural differences between excised human skin and HSEs, which in turn may provide a rationale for the functional differences observed among these preparations.

  13. Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

    NASA Astrophysics Data System (ADS)

    Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG

    2018-02-01

    The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50-300 W and pressure is 25-250 Pa, the average electron temperature is about 1.7-2.1 eV and the average electron density is about 0.5 × 1017-3.6 × 1017 m-3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.

  14. Comparative study of DPAL and XPAL systems and selection principal of parameters

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui

    2016-10-01

    A theoretical model based on common pump structure is proposed to analyze the laser output characteristics of DPAL (Diode pumped alkali vapor laser) and XPAL (Exciplex pumped alkali laser) in this paper. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-XPAL systems with broadband pumping which is several times of pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell' s length, mixed gas concentration, pumped linewidth and output mirror reflectivity are analyzed for DPAL and XPAL systems basing on the kinetic model. The result shows a better performance in Cs-Ar XPAL laser with requirements of relatively high Ar concentration, high pumped intensity and high temperature. Comparatively, for Cs-DPAL laser, lower temperature and lower pumped intensity should be acquired. In addition, the predictions of selection principal of temperature and cell's length are also presented. The conception of the equivalent "alkali areal density" is proposed in this paper. It is defined as the product of the alkali density and cell's length. The result shows that the output characteristics of DPAL (or XPAL) system with the same alkali areal density but different temperatures turn out to be equal. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented. The detailed results of continuous-wave DPAL and XPAL performances as a function of pumped laser linewidth and mixed gas pressure are presented along with an analysis of influences of output coupler.

  15. Hydrated states of MgSO4 at equatorial latiudes on Mars

    USGS Publications Warehouse

    Feldman, W.C.; Mellon, M.T.; Maurice, S.; Prettyman, T.H.; Carey, J.W.; Vaniman, D.T.; Bish, D.L.; Fialips, C.I.; Chipera, S.J.; Kargel, J.S.; Elphic, R.C.; Funsten, H.O.; Lawrence, D.J.; Tokar, R.L.

    2004-01-01

    The stability of water ice, epsomite, and hexahydrite to loss of H 2O molecules to the atmosphere at equatorial latitudes of Mars was studied to determine their potential contributions to the measured abundance of water-equivalent hydrogen (WEH). Calculation of the relative humidity based on estimates of yearly averages of water-vapor pressures and temperatures at the Martian surface was used for this purpose. Water ice was found to be sufficiently unstable everywhere within 45?? of the equator that if the observed WEH is due to water ice, it requires a low-permeability cover layer near the surface to isolate the water ice below from the atmosphere above. In contrast, epsomite or hexahydrite may be stable in many near-equatorial locations where significant amounts of WEH are observed. Copyright 2004 by the American Geophysical Union.

  16. Entropic vs. elastic models of fragility of glass-forming liquids: Two sides of the same coin?

    NASA Astrophysics Data System (ADS)

    Sen, Sabyasachi

    2012-10-01

    The two most influential atomistic models that have been proposed in the literature to explain the temperature dependent activation energy of viscous flow of a glass-forming liquid, i.e., its fragility, are the configurational entropy model of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965), 10.1063/1.1696442] and the elastic "shoving" model of Dyre et al. [J. Non-Cryst. Solids 352, 4635 (2006), 10.1016/j.jnoncrysol.2006.02.173]. Here we demonstrate a qualitative equivalence between these two models starting from the well-established general relationships between the interatomic potentials, elastic constants, structural rearrangement, and entropy in amorphous materials. The unification of these two models provides important predictions that are consistent with experimental observations and shed new light into the problem of glass transition.

  17. Isotopic orientational order in acetyl salicylic acid

    NASA Astrophysics Data System (ADS)

    Schiebel, P.; Prandl, W.; Papoular, R.; Paulus, W.; Detken, A.; Haeberlen, U.; Zimmermann, H.

    2000-03-01

    Isotopically mixed methyl groups CD xH 3- x with zero averaged deuteron/hydrogen scattering length 0=< a>= xaD+(3- x) aH are expected to be invisible in a neutron diffraction experiment. We find, indeed, in the scattering length density of aspirin-CD xH 3- x, reconstructed by maximum-entropy methods, at room temperature only three very week minima. At 10 K, however, one positive and two negative extrema are visible: unique evidence for orientational isotopic order. From a combination of 1-d-Fourier and algebraic methods we deconvolute < a> and derive the orientational distribution function f( φ) which has three equivalent maxima/minima at 300 K and loses this 3 φ periodicity at 10 K. f( φ) is the basis for the determination of the hindrance potential with cos( φ) as the leading term.

  18. Thermodynamics of ideal quantum gas with fractional statistics in D dimensions.

    PubMed

    Potter, Geoffrey G; Müller, Gerhard; Karbach, Michael

    2007-06-01

    We present exact and explicit results for the thermodynamic properties (isochores, isotherms, isobars, response functions, velocity of sound) of a quantum gas in dimensions D > or = 1 and with fractional exclusion statistics 0 < or = g < or =1 connecting bosons (g=0) and fermions (g=1) . In D=1 the results are equivalent to those of the Calogero-Sutherland model. Emphasis is given to the crossover between bosonlike and fermionlike features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T dependence of the velocity of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential.

  19. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models

    NASA Astrophysics Data System (ADS)

    Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello

    2017-07-01

    The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow-climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow processes - near-surface air temperature and precipitation - against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around the ensemble mean. We find that GCMs at spatial resolutions equal to or finer than 1.25° longitude are in closer agreement with the ensemble mean of satellite and reanalysis products in terms of root mean square error and standard deviation than lower-resolution GCMs. The set of regional climate models from the EURO-CORDEX ensemble provides estimates of snow water equivalent at 0.11° resolution that are locally much larger than those indicated by the gridded data sets, and only in a few cases are these differences smoothed out when snow water equivalent is spatially averaged over the entire Alpine domain. ERA-Interim-driven RCM simulations show an annual snow cycle that is comparable in amplitude to those provided by the reference data sets, while GCM-driven RCMs present a large positive bias. RCMs and higher-resolution GCM simulations are used to provide an estimate of the snow reduction expected by the mid-21st century (RCP 8.5 scenario) compared to the historical climatology, with the main purpose of highlighting the limits of our current knowledge and the need for developing more reliable snow simulations.

  20. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  1. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach

    NASA Astrophysics Data System (ADS)

    Borrelli, Raffaele; Gelin, Maxim F.

    2016-12-01

    Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.

  2. Short-time quantum dynamics of sharp boundaries potentials

    NASA Astrophysics Data System (ADS)

    Granot, Er'el; Marchewka, Avi

    2015-02-01

    Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.

  3. Adipose-derived stromal cells for the reconstruction of a human vesical equivalent.

    PubMed

    Rousseau, Alexandre; Fradette, Julie; Bernard, Geneviève; Gauvin, Robert; Laterreur, Véronique; Bolduc, Stéphane

    2015-11-01

    Despite a wide panel of tissue-engineering models available for vesical reconstruction, the lack of a differentiated urothelium remains their main common limitation. For the first time to our knowledge, an entirely human vesical equivalent, free of exogenous matrix, has been reconstructed using the self-assembly method. Moreover, we tested the contribution of adipose-derived stromal cells, an easily available source of mesenchymal cells featuring many potential advantages, by reconstructing three types of equivalent, named fibroblast vesical equivalent, adipose-derived stromal cell vesical equivalent and hybrid vesical equivalent--the latter containing both adipose-derived stromal cells and fibroblasts. The new substitutes have been compared and characterized for matrix composition and organization, functionality and mechanical behaviour. Although all three vesical equivalents displayed adequate collagen type I and III expression, only two of them, fibroblast vesical equivalent and hybrid vesical equivalent, sustained the development of a differentiated and functional urothelium. The presence of uroplakins Ib, II and III and the tight junction marker ZO-1 was detected and correlated with impermeability. The mechanical resistance of these tissues was sufficient for use by surgeons. We present here in vitro tissue-engineered vesical equivalents, built without the use of any exogenous matrix, able to sustain mechanical stress and to support the formation of a functional urothelium, i.e. able to display a barrier function similar to that of native tissue. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Angle-resolved and core-level photoemission study of interfacing the topological insulator Bi1.5Sb0.5Te1.7Se1.3 with Ag, Nb, and Fe

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Frantzeskakis, E.; Zwartsenberg, B.; Huang, Y. K.; Wu, D.; Hlawenka, P.; Sańchez-Barriga, J.; Varykhalov, A.; van Heumen, E.; Golden, M. S.

    2015-08-01

    Interfaces between a bulk-insulating topological insulator (TI) and metallic adatoms have been studied using high-resolution, angle-resolved, and core-level photoemission. Fe, Nb, and Ag were evaporated onto Bi1 .5Sb0 .5Te1 .7Se1 .3 (BSTS) surfaces both at room temperature and 38 K. The coverage and temperature dependence of the adsorption and interfacial formation process have been investigated, highlighting the effects of the overlayer growth on the occupied electronic structure of the TI. For all coverages at room temperature and for those equivalent to less than 0.2 monolayer at low temperature all three metals lead to a downward shift of the TI bands with respect to the Fermi level. At room temperature Ag appears to intercalate efficiently into the van der Waals gap of BSTS, accompanied by low-level substitution for the Te/Se atoms of the termination layer of the crystal. This Te/Se substitution with silver increases significantly for low temperature adsorption, and can even dominate the electrostatic environment of the Bi/Sb atoms in the BSTS near-surface region. On the other hand, Fe and Nb evaporants remain close to the termination layer of the crystal. On room temperature deposition, they initially substitute isoelectronically for Bi as a function of coverage, before substituting for Te/Se atoms. For low temperature deposition, Fe and Nb are too immobile for substitution processes and show a behavior consistent with clustering on the surface. For both Ag and Fe/Nb, these differing adsorption pathways still lead to the qualitatively similar and remarkable behavior for low temperature deposition that the chemical potential first moves downward (p -type dopant behavior) and then upward (n -type behavior) on increasing coverage.

  5. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction.

    PubMed

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  6. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  7. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H{sub 2}O mole fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang

    2016-01-15

    To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less

  8. Conditional equivalence testing: An alternative remedy for publication bias

    PubMed Central

    Gustafson, Paul

    2018-01-01

    We introduce a publication policy that incorporates “conditional equivalence testing” (CET), a two-stage testing scheme in which standard NHST is followed conditionally by testing for equivalence. The idea of CET is carefully considered as it has the potential to address recent concerns about reproducibility and the limited publication of null results. In this paper we detail the implementation of CET, investigate similarities with a Bayesian testing scheme, and outline the basis for how a scientific journal could proceed to reduce publication bias while remaining relevant. PMID:29652891

  9. Temperature Dependence of Optical Linewidth in Single InAs Quantum Dots

    DTIC Science & Technology

    2006-10-19

    the linear temperature coefficient and its dependence on mesa size are described well by exciton scattering by acoustic phonons whose lifetimes are...transformation of a one-particle time-dependent exciton Green’s function. This is equivalent to using a two-particle interband correlation function in...For the disklike case of 2RL we neglect the lateral tunneling . The anisotropy of the valence band should be taken into account: mxy mz. For the

  10. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    DTIC Science & Technology

    2015-06-01

    e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than

  11. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  12. Developing a Model to Estimate Freshwater Gross Primary Production Using MODIS Surface Temperature Observations

    NASA Astrophysics Data System (ADS)

    Saberi, S. J.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Solomon, C.; Boucher, J. M.

    2016-12-01

    Lakes contribute to local and regional climate conditions, cycle nutrients, and are viable indicators of climate change due to their sensitivity to disturbances in their water and airsheds. Utilizing spaceborne remote sensing (RS) techniques has considerable potential in studying lake dynamics because it allows for coherent and consistent spatial and temporal observations as well as estimates of lake functions without in situ measurements. However, in order for RS products to be useful, algorithms that relate in situ measurements to RS data must be developed. Estimates of lake metabolic rates are of particular scientific interest since they are indicative of lakes' roles in carbon cycling and ecological function. Currently, there are few existing algorithms relating remote sensing products to in-lake estimates of metabolic rates and more in-depth studies are still required. Here we use satellite surface temperature observations from Moderate Resolution Imaging Spectroradiometer (MODIS) product (MYD11A2) and published in-lake gross primary production (GPP) estimates for eleven globally distributed lakes during a one-year period to produce a univariate quadratic equation model. The general model was validated using other lakes during an equivalent one-year time period (R2=0.76). The statistical analyses reveal significant positive relationships between MODIS temperature data and the previously modeled in-lake GPP. Lake-specific models for Lake Mendota (USA), Rotorua (New Zealand), and Taihu (China) showed stronger relationships than the general combined model, pointing to local influences such as watershed characteristics on in-lake GPP in some cases. These validation data suggest that the developed algorithm has a potential to predict lake GPP on a global scale.

  13. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city.

    PubMed

    Provençal, Simon; Bergeron, Onil; Leduc, Richard; Barrette, Nathalie

    2016-04-01

    The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices' sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI's stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

  14. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city

    NASA Astrophysics Data System (ADS)

    Provençal, Simon; Bergeron, Onil; Leduc, Richard; Barrette, Nathalie

    2016-04-01

    The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices' sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI's stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

  15. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment

    NASA Astrophysics Data System (ADS)

    Höppe, P.

    With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.

  16. Equivalent circuit model of converse magnetoelectric effect for the tri-layer magnetoelectric laminates with thermal and stress loadings

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le

    2015-12-01

    For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.

  17. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Astrophysics Data System (ADS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-06-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  18. Assessment of the effects of environmental radiation on wind chill equivalent temperatures.

    PubMed

    Shitzer, Avraham

    2008-09-01

    Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.

  19. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  20. Oxidation and the Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.

    2012-01-01

    Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a transgranular initiation typical to that observed in unexposed specimens.

Top