Effects of Shallow Water Tables on Height Growth and Phosphorus Uptake by Loblolly and Slash Pines
A.E. Tiarks; E. Shoulders
1982-01-01
In southern Mississippi, the heights of loblolly and slash pines at age 20 were positively correlated with the phosphorus content of the foliage and with depth in the soil to gray (chromas £2) mottles. Slash pine was taller than loblolly at equivalent levels of foliage phosphorus, but the rate of height increase as...
Inventory of File nam.t00z.hawaiinest.hiresf06.tm00.gr
Water Equivalent [kg/m^2/s] 628 surface NCPCP 3-6 hour acc Large-Scale Precipitation (non-convective [non-dim] 010 1 hybrid level HGT 6 hour fcst Geopotential Height [gpm] 011 1 hybrid level TMP 6 hour [non-dim] 056 50 mb HGT 6 hour fcst Geopotential Height [gpm] 057 50 mb TMP 6 hour fcst Temperature [K
Inventory of File nam.t00z.firewxnest.hiresf06.tm00.gr
Water Equivalent [kg/m^2/s] 628 surface NCPCP 5-6 hour acc Large-Scale Precipitation (non-convective [non-dim] 010 1 hybrid level HGT 6 hour fcst Geopotential Height [gpm] 011 1 hybrid level TMP 6 hour [non-dim] 056 50 mb HGT 6 hour fcst Geopotential Height [gpm] 057 50 mb TMP 6 hour fcst Temperature [K
Inventory of File nam.t00z.alaskanest.hiresf06.tm00.gr
Water Equivalent [kg/m^2/s] 628 surface NCPCP 3-6 hour acc Large-Scale Precipitation (non-convective [non-dim] 010 1 hybrid level HGT 6 hour fcst Geopotential Height [gpm] 011 1 hybrid level TMP 6 hour [non-dim] 056 50 mb HGT 6 hour fcst Geopotential Height [gpm] 057 50 mb TMP 6 hour fcst Temperature [K
Inventory of File nam.t00z.conusnest.hiresf06.tm00.gri
Water Equivalent [kg/m^2/s] 628 surface NCPCP 3-6 hour acc Large-Scale Precipitation (non-convective [non-dim] 010 1 hybrid level HGT 6 hour fcst Geopotential Height [gpm] 011 1 hybrid level TMP 6 hour [non-dim] 056 50 mb HGT 6 hour fcst Geopotential Height [gpm] 057 50 mb TMP 6 hour fcst Temperature [K
NASA Technical Reports Server (NTRS)
Voss, Katalyn A.; Famiglietti, James S.; Lo, MinHui; De Linage, Caroline; Rodell, Matthew; Swenson, Sean C.
2013-01-01
In this study, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the north-central Middle East, including portions of the Tigris and Euphrates River Basins and western Iran, from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2 plus or minus 0.6 millimeters per year equivalent water height, equal to a volume of 143.6 cubic kimometers during the course of the study period. Additional remote-sensing information and output from land surface models were used to identify that groundwater losses are the major source of this trend. The approach used in this study provides an example of ''best current capabilities'' in regions like the Middle East, where data access can be severely limited. Results indicate that the region lost 17.3 plus or minus 2.1 millimeters per year equivalent water height of groundwater during the study period, or 91.3 plus or minus 10.9 cubic kilometers in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget.
NASA Technical Reports Server (NTRS)
Voss, Katalyn; Famiglietti, James S.; Lo, MinHui; de Linage, Caroline; Rodell, Matthew; Swenson, Sean C.
2013-01-01
In this study, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the north-central Middle East, including portions of the Tigris and Euphrates River Basins and western Iran, from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2 plus or minus 0.6 mm per yr equivalent water height, equal to a volume of 143.6 cubic kilometers during the course of the study period. Additional remote-sensing information and output from land surface models were used to identify that groundwater losses are the major source of this trend. The approach used in this study provides an example of ''best current capabilities'' in regions like the Middle East, where data access can be severely limited. Results indicate that the region lost 17.3 plus or minus 2.1 mm per yr equivalent water height of groundwater during the study period, or 91.3 plus or minus 10.9 cubic kilometers in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget
NASA Astrophysics Data System (ADS)
Voss, Katalyn A.; Famiglietti, James S.; Lo, MinHui; de Linage, Caroline; Rodell, Matthew; Swenson, Sean C.
2013-02-01
In this study, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the north-central Middle East, including portions of the Tigris and Euphrates River Basins and western Iran, from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2±0.6 mm yr-1 equivalent water height, equal to a volume of 143.6 km3 during the course of the study period. Additional remote-sensing information and output from land surface models were used to identify that groundwater losses are the major source of this trend. The approach used in this study provides an example of "best current capabilities" in regions like the Middle East, where data access can be severely limited. Results indicate that the region lost 17.3±2.1 mm yr-1 equivalent water height of groundwater during the study period, or 91.3±10.9 km3 in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget.
NASA Astrophysics Data System (ADS)
Guo, Jinyun; Mu, Dapeng; Liu, Xin; Yan, Haoming; Dai, Honglei
2014-08-01
The Level-2 monthly GRACE gravity field models issued by Center for Space Research (CSR), GeoForschungs Zentrum (GFZ), and Jet Propulsion Laboratory (JPL) are treated as observations used to extract the equivalent water height (EWH) with the robust independent component analysis (RICA). The smoothing radii of 300, 400, and 500 km are tested, respectively, in the Gaussian smoothing kernel function to reduce the observation Gaussianity. Three independent components are obtained by RICA in the spatial domain; the first component matches the geophysical signal, and the other two match the north-south strip and the other noises. The first mode is used to estimate EWHs of CSR, JPL, and GFZ, and compared with the classical empirical decorrelation method (EDM). The EWH STDs for 12 months in 2010 extracted by RICA and EDM show the obvious fluctuation. The results indicate that the sharp EWH changes in some areas have an important global effect, like in Amazon, Mekong, and Zambezi basins.
NASA Astrophysics Data System (ADS)
Aghakouchak, Amir; Tourian, Mohammad J.
2015-04-01
Development of reliable drought monitoring, prediction and recovery assessment tools are fundamental to water resources management. This presentation focuses on how gravimetry information can improve drought assessment. First, we provide an overview of the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which offers near real-time drought information using remote sensing observations and model simulations. Then, we present a framework for integration of satellite gravimetry information for improving drought prediction and recovery assessment. The input data include satellite-based and model-based precipitation, soil moisture estimates and equivalent water height. Previous studies show that drought assessment based on one single indicator may not be sufficient. For this reason, GIDMaPS provides drought information based on multiple drought indicators including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. MSDI incorporates the meteorological and agricultural drought conditions and provides composite multi-index drought information for overall characterization of droughts. GIDMaPS includes a seasonal prediction component based on a statistical persistence-based approach. The prediction component of GIDMaPS provides the empirical probability of drought for different severity levels. In this presentation we present a new component in which the drought prediction information based on SPI, SSI and MSDI are conditioned on equivalent water height obtained from the Gravity Recovery and Climate Experiment (GRACE). Using a Bayesian approach, GRACE information is used to evaluate persistence of drought. Finally, the deficit equivalent water height based on GRACE is used for assessing drought recovery. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from 2014 California Drought will be presented. Further Reading: Hao Z., AghaKouchak A., Nakhjiri N., Farahmand A., 2014, Global Integrated Drought Monitoring and Prediction System, Scientific Data, 1:140001, 1-10, doi: 10.1038/sdata.2014.1.
Deep circulations under simple classes of stratification
NASA Technical Reports Server (NTRS)
Salby, Murry L.
1989-01-01
Deep circulations where the motion field is vertically aligned over one or more scale heights are studied under barotropic and equivalent barotropic stratifications. The study uses two-dimensional equations reduced from the three-dimensional primitive equations in spherical geometry. A mapping is established between the full primitive equations and general shallow water behavior and the correspondence between variables describing deep atmospheric motion and those of shallow water behavior is established.
Hennig, Anne; Kleinschmit, Jörg R. G.; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea
2015-01-01
Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites. PMID:26042130
Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.
2010-01-01
Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 13 meters per year during balance year 2006 and at a rate of about 8 meters per year during balance year 2007. Glacier area near the end of balance years 2006 and 2007 was 1.74 and 1.73 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2006 and 2007. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier. Air-temperature over the glacier at a height of 2 meters generally was less than at the same altitude in the air mass away from the glacier. Cooling of the air by the glacier increased systematically with increasing ambient air temperature. Empirically based equations were developed to estimate 2-meter-height air temperature over the glacier at five sites from site altitude and temperature at a non-glacier reference site.
NASA Astrophysics Data System (ADS)
Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram
2015-04-01
The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily be installed in parallel with further upGPR systems or as sensor networks to monitor the snowpack evolution in avalanche paths or at a larger scale in an entire hydrological basin to derive distributed melt-water runoff information.
Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T
2011-09-01
Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.
Cloud and boundary layer structure over San Nicolas Island during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.
The Kühtai data set: 25 years of lysimetric, snow pillow, and meteorological measurements
Kirnbauer, R.; Parajka, J.; Schöber, J.; Blöschl, G.
2017-01-01
Abstract Snow measurements at the Kühtai station in Tirol, Austria, (1920 m.a.s.l.) are described. The data set includes snow water equivalent from a 10 m2 snow pillow, snow melt outflow from a 10 m2 snow lysimeter placed at the same location as the pillow, meteorological data (precipitation, incoming shortwave radiation, reflected shortwave radiation, air temperature, relative air humidity, and wind speed), and other data (snow depths, snow temperatures at seven heights) from the period October 1990 to May 2015. All data have been quality checked, and gaps in the meteorological data have been filled in. The data set is unique in that all data are available at a temporal resolution of 15 min over a period of 25 years with minimal changes in the experimental setup. The data set can therefore be used to analyze snow pack processes over a long‐time period, including their extremes and long‐term changes, in an Alpine climate. Analyses may benefit from the combined measurement of snow water equivalent, lysimeter outflow, and precipitation at a wind‐sheltered alpine site. An example use of data shows the temporal variability of daily and 1 April snow water equivalent observed at the Kühtai site. The results indicate that the snow water equivalent maximum varies between 200 and more than 500 mm w.e., but there is no statistically significant temporal trend in the period 1990–2015. PMID:28931957
Thermodynamic and liquid profiling during the 2010 Winter Olympics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, R.; Cimini, D.; Campos, E.
2013-10-01
Tropospheric observations by a microwave profiling radiometer and six-hour radiosondes were obtained during the Alpine Venue of the 2010 Winter Olympic Games at Whistler, British Columbia, by Environment Canada. The radiometer provided continuous temperature, humidity and liquid (water) profiles during all weather conditions including rain, sleet and snow. Gridded analysis was provided by the U.S. National Oceanic and Atmospheric Administration. We compare more than two weeks of radiometer neural network and radiosonde temperature and humidity soundings including clear and precipitating conditions. Corresponding radiometer liquid and radiosonde wind soundings are shown. Close correlation is evident between radiometer and radiosonde temperature andmore » humidity profiles up to 10 km height and among southwest winds, liquid water and upper level thermodynamics, consistent with up-valley advection and condensation of moist maritime air. We compare brightness temperatures observed by the radiometer and forward-modeled from radiosonde and gridded analysis. Radiosonde-equivalent observation accuracy is demonstrated for radiometer neural network temperature and humidity retrievals up to 800 m height and for variational retrievals that combine radiometer and gridded analysis up to 10 km height« less
NASA Astrophysics Data System (ADS)
Cassola, V. F.; Milian, F. M.; Kramer, R.; de Oliveira Lira, C. A. B.; Khoury, H. J.
2011-07-01
Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also been calculated with the 18 anthropometric phantoms. The results show that SAFs decrease with increasing height and increase with increasing body mass. The calculated data suggest that changes of the body mass may have a significant effect on equivalent doses, primarily for external exposure to organs and tissue located below the adipose tissue layer, while for superficial organs, for changes of height and for internal exposures the effects on equivalent dose are small to moderate.
Corps of Engineers Hydraulic Design Criteria. Volume 2
1977-01-01
21.7 (Chart 310-1/1) 6 a = T - =0.3 ft. 2.7 Effective pressure D + a = 75.0 + 0.3 = 75.3 ft. I : CREST GATES1 WAVC PRESSURE SAMPLE COMPUTATION HYDRAULIC... T -x 75.3.- 25.7 ft Maximum hydraulic load on gate (R) RR y + -j--- x gate height V y - specific weight of water -62.4 lb/ft 3 16.41.7;+25.7)2...j- xhih f tutr -62.4 ( -2;5.) 80 - 192,000 lb/ft of width / t Note: Equivalent for still-water level is 175,000 lb/ft of width. CREST GATES WAVE
Microcumpter computation of water quality discharges
Helsel, Dennis R.
1983-01-01
A fully prompted program (SEDQ) has been developed to calculate daily and instantaneous water quality (QW) discharges. It is written in a version of BASIC, and requires inputs of gage heights, discharge rating curve, shifts, and water quality concentration information. Concentration plots may be modified interactively using the display screen. Semi-logarithmic plots of concentration and water quality discharge are output to the display screen, and optionally to plotters. A summary table of data is also output. SEDQ could be a model program for micro and minicomputer systems likely to be in use within the Water Resources Division, USGS, in the near future. The daily discharge-weighted mean concentration is one output from SEDQ. It is defined in this report, differentiated from the currently used mean concentration, and designated the ' equivalent concentration. ' (USGS)
Snow observations in Mount Lebanon (2011-2016)
NASA Astrophysics Data System (ADS)
Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; Fanise, Pascal; Drapeau, Laurent; Somma, Janine; Fadel, Ali; Bitar, Ahmad Al; Escadafal, Richard
2017-08-01
We present a unique meteorological and snow observational dataset in Mount Lebanon, a mountainous region with a Mediterranean climate, where snowmelt is an essential water resource. The study region covers the recharge area of three karstic river basins (total area of 1092 km2 and an elevation up to 3088 m). The dataset consists of (1) continuous meteorological and snow height observations, (2) snowpack field measurements, and (3) medium-resolution satellite snow cover data. The continuous meteorological measurements at three automatic weather stations (MZA, 2296 m; LAQ, 1840 m; and CED, 2834 m a.s.l.) include surface air temperature and humidity, precipitation, wind speed and direction, incoming and reflected shortwave irradiance, and snow height, at 30 min intervals for the snow seasons (November-June) between 2011 and 2016 for MZA and between 2014 and 2016 for CED and LAQ. Precipitation data were filtered and corrected for Geonor undercatch. Observations of snow height (HS), snow water equivalent, and snow density were collected at 30 snow courses located at elevations between 1300 and 2900 m a.s.l. during the two snow seasons of 2014-2016 with an average revisit time of 11 days. Daily gap-free snow cover extent (SCA) and snow cover duration (SCD) maps derived from MODIS snow products are provided for the same period (2011-2016). We used the dataset to characterize mean snow height, snow water equivalent (SWE), and density for the first time in Mount Lebanon. Snow seasonal variability was characterized with high HS and SWE variance and a relatively high snow density mean equal to 467 kg m-3. We find that the relationship between snow depth and snow density is specific to the Mediterranean climate. The current model explained 34 % of the variability in the entire dataset (all regions between 1300 and 2900 m a.s.l.) and 62 % for high mountain regions (elevation 2200-2900 m a.s.l.). The dataset is suitable for the investigation of snow dynamics and for the forcing and validation of energy balance models. Therefore, this dataset bears the potential to greatly improve the quantification of snowmelt and mountain hydrometeorological processes in this data-scarce region of the eastern Mediterranean. The DOI for the data is https://doi.org/10.5281/zenodo.583733.
NASA Astrophysics Data System (ADS)
Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.
2017-12-01
The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south of the Alps, on a region spanning 200 km. Caracterisation of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. This long term change of snow dynamics within moutainuous regions both impacts snow resorts and artificial snow production developments and multi-purposes dam reservoirs managments.
NASA Astrophysics Data System (ADS)
Ardalan, A.; Safari, A.; Grafarend, E.
2003-04-01
A new ellipsoidal gravimetric-satellite altimetry boundary value problem has been developed and successfully tested. This boundary value problem has been constructed for gravity observables of the type (i) gravity potential (ii) gravity intensity (iii) deflection of vertical and (iv) satellite altimetry data. The developed boundary value problem is enjoying the ellipsoidal nature and as such can take advantage of high precision GPS observations in the set-up of the problem. The highlights of the solution are as follows: begin{itemize} Application of ellipsoidal harmonic expansion up to degree/order and ellipsoidal centrifugal field for the reduction of global gravity and isostasy effects from the gravity observable at the surface of the Earth. Application of ellipsoidal Newton integral on the equal area map projection surface for the reduction of residual mass effects within a radius of 55 km around the computational point. Ellipsoidal harmonic downward continuation of the residual observables from the surface of the earth down to the surface of reference ellipsoid using the ellipsoidal height of the observation points derived from GPS. Restore of the removed effects at the application points on the surface of reference ellipsoid. Conversion of the satellite altimetry derived heights of the water bodies into potential. Combination of the downward continued gravity information with the potential equivalent of the satellite altimetry derived heights of the water bodies. Application of ellipsoidal Bruns formula for converting the potential values on the surface of the reference ellipsoid into the geoidal heights (i.e. ellipsoidal heights of the geoid) with respect to the reference ellipsoid. Computation of the high-resolution geoid of Iran has successfully tested this new methodology!
Hirani, Vasant; Mindell, Jennifer
2008-05-01
to examine differences between measured height and demi-span equivalent height (DEH) among people aged >or=65 and investigate the impact on body mass index (BMI) of using DEH. nationally representative cross-sectional sample of adults living in England. 3,346 non-institutionalised adults aged >or=65, taking part in the Health Survey for England (HSE) 2001. height, weight and demi-span measurements were taken according to standardised HSE protocols. DEH was calculated using Bassey's equation. the height measurement was lower than the DEH from age group 70-74 years onwards in men and in each age group in women. No significant differences in mean DEH and measured height were found for men (-0.46) or women (-2.64). BMI derived from measured height did not differ significantly from BMI derived from DEH. The prevalence of underweight was lower when using measured height than when using DEH in women aged >or=65, particularly in those aged 80 years and over. The prevalence of overweight and obesity was higher using measured height than DEH in women aged >or=65. we confirmed in a large nationally representative sample that demi-span measurement may be a useful estimate of stature in people (particularly women) aged >or=65 for BMI calculations.
75 FR 43088 - Personal Communications Services and Miscellaneous Wireless Communications Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... Sec. 27.50, paragraph (d) is revised to read as follows: Sec. 24.232 Power and antenna height limits... isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in... watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT...
NASA Technical Reports Server (NTRS)
Rodell, M.; Chambers, D. P.; Famiglietti, J. S.
2015-01-01
During 2014 dryness continued in the Northern Hemisphere and relative wetness continued in the Southern Hemisphere (Fig. 2.21; Plate 2.1g). These largely canceled out such that the global land surface began and ended the year with a terrestrial water storage (TWS) anomaly slightly below 0 cm (equivalent height of water; Fig. 2.22). TWS is the sum of groundwater, soil moisture, surface water, snow, and ice. Groundwater responds more slowly to meteorological phenomena than the other components because the overlying soil acts as a low pass filter, but often it has a larger range of variability on multiannual timescales (Rodell and Famiglietti 2001; Alley et al. 2002).In situ groundwater data are only archived and made and Tanzania. The rest of the continent experienced mixed to dry conditions. Significant reductions in TWS in Greenland, Antarctica, and southern coastal Alaska reflect ongoing ice sheet and glacier ablation, not groundwater depletion.
Aspects of Mathematical Modelling of Pressure Retarded Osmosis
Anissimov, Yuri G.
2016-01-01
In power generating terms, a pressure retarded osmosis (PRO) energy generating plant, on a river entering a sea or ocean, is equivalent to a hydroelectric dam with a height of about 60 meters. Therefore, PRO can add significantly to existing renewable power generation capacity if economical constrains of the method are resolved. PRO energy generation relies on a semipermeable membrane that is permeable to water and impermeable to salt. Mathematical modelling plays an important part in understanding flows of water and salt near and across semipermeable membranes and helps to optimize PRO energy generation. Therefore, the modelling can help realizing PRO energy generation potential. In this work, a few aspects of mathematical modelling of the PRO process are reviewed and discussed. PMID:26848696
From MERIS To OLCI And Sentinel 2: Harmful Algal Bloom Applications & Modelling In South Africa
NASA Astrophysics Data System (ADS)
Robertson Lain, L.; Bernard, S.; Evers-King, H.; Matthews, M. W.; Smith, M.
2013-12-01
The Sentinel 2 and 3 missions offer new capabilities for Harmful Algal Bloom (HAB) observations in Southern Africa and further afield on the African continent where there is a great need for improved monitoring of water quality: both in freshwater resources where eutrophication is common, and in vulnerable coastal ecosystems. Two well validated algorithms - Equivalent Algal Populations (EAP) & Maximum Peak Height (MPH) - available for operational use on eutrophic waters are described. Spectral remote sensing reflectances (Rrs) and inherent optical properties (IOPs) are characterised via measurement and modelling of phytoplankton assemblages typical of high biomass algal blooms of the Southern Benguela and inland waters of South Africa. Sensitivity to phytoplankton functional types (PFTs) is investigated, with focus on optically significant biological characteristics e.g. particle size distribution and intracellular structure (including vacuoles).
Satellite-based estimates of groundwater depletion in India.
Rodell, Matthew; Velicogna, Isabella; Famiglietti, James S
2009-08-20
Groundwater is a primary source of fresh water in many parts of the world. Some regions are becoming overly dependent on it, consuming groundwater faster than it is naturally replenished and causing water tables to decline unremittingly. Indirect evidence suggests that this is the case in northwest India, but there has been no regional assessment of the rate of groundwater depletion. Here we use terrestrial water storage-change observations from the NASA Gravity Recovery and Climate Experiment satellites and simulated soil-water variations from a data-integrating hydrological modelling system to show that groundwater is being depleted at a mean rate of 4.0 +/- 1.0 cm yr(-1) equivalent height of water (17.7 +/- 4.5 km(3) yr(-1)) over the Indian states of Rajasthan, Punjab and Haryana (including Delhi). During our study period of August 2002 to October 2008, groundwater depletion was equivalent to a net loss of 109 km(3) of water, which is double the capacity of India's largest surface-water reservoir. Annual rainfall was close to normal throughout the period and we demonstrate that the other terrestrial water storage components (soil moisture, surface waters, snow, glaciers and biomass) did not contribute significantly to the observed decline in total water levels. Although our observational record is brief, the available evidence suggests that unsustainable consumption of groundwater for irrigation and other anthropogenic uses is likely to be the cause. If measures are not taken soon to ensure sustainable groundwater usage, the consequences for the 114,000,000 residents of the region may include a reduction of agricultural output and shortages of potable water, leading to extensive socioeconomic stresses.
NASA Technical Reports Server (NTRS)
1994-01-01
The classical method of observing the sea surface height has been to make shipboard measurements of the vertical - density profile, and then calculating the surface height relative to a deeper reference surface. Two methods (a moored vertical string of instruments and an inverted echo sounder) were subsequently developed to obtain longer time in situ measurements. The first of these can be thought of as an extension of the discrete bottle hydrocast while the second integrates acoustically over the water column. One purpose of this note is to compare the result when coincidental observations are made by these two methods. This was done at two sites in the western tropical Pacific. Two inverted echo sounders were deployed alongside two enhanced TOGA-COARE moorings to be used in an in situ evaluation of TOPEX/Poseidon altimetric measurements of sea surface height. The mooring and inverted echo sounder data reproduced one another, at low frequency, with a correlation of 0.93 and 0.95 and the altimeter correlated with each of the above values ranging from 0.84 to 0.94. It is concluded that the altimetric measurements are statistically equivalent to the in situ measurements in the area of study.
Direct absorption spectroscopy sensor for temperature and H2O concentration of flat flame burner
NASA Astrophysics Data System (ADS)
Duan, Jin-hu; Jin, Xing; Wang, Guang-yu; Qu, Dong-sheng
2016-01-01
A tunable diode laser absorption sensor, based on direct absorption spectroscopy and time division multiplexing scheme, was developed to measure H2O concentration and temperature of flat flame burner. At the height of 15mm from the furnace surface, temperature and concentration were measured at different equivalence ratios. Then the distance between the laser and the furnace surface was changed while the equivalence ratio was fixed at 1 and experiments were performed to measure temperature and H2O concentration at every height. At last flame temperatures and H2O concentrations were obtained by simulation and computational analysis and these combustion parameters were compared with the reference. The results showed that the experimental results were in accordance with the reference values. Temperature errors were less than 4% and H2O component concentration errors were less than 5%and both of them reached their maximum when the equivalent ratio was set at 1. The temperature and H2O concentration increased with the height from furnace surface to laser when it varied from 3mm to 9mm and it decreased when it varied from 9mm to 30mm and they reached their maximum at the height of 9mm. Keywords: tunable diode laser, direct absorption spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.; Gulley, J. D.
2016-12-01
The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the assumption is applicable for the current case, i.e., high relative roughness, is a question. Two other roughness heights, i.e., the vertical roughness scale based on structure functions and viscous sublayer thickness determined from the wall boundary layer are also calculated and compared with the equivalent roughness height.
Design Through Simulation of a Molecular Sieve Column for Treatment of MON-3
NASA Technical Reports Server (NTRS)
Swartz, A. Ben; Wilson, D. B.
1999-01-01
The presence of water in propellant-grade MON-3 is a concern in the Aerospace Industry. NASA Johnson Space Center (JSC), White Sands Test Facility (WSTF) Propulsion Department has evaluated many types of molecular sieves for control of iron, the corrosion product of water in Mixed Oxides of Nitrogen (MON-3). In 1995, WSTF initiated laboratory and pilot-scale testing of molecular sieve type 3A for removal of water and iron. These tests showed sufficient promise that a series of continuous recycle tests were conducted at WSTF. Periodic samples of the circulating MON-3 solution were analyzed for water (wt %) and iron (ppm, wt). This test column was modeled as a series of transfer units; i. e., each unit represented the height equivalent of a theoretical plate. Such a model assumes there is equilibrium between the adsorbent material and the effluent stream from the unit. Operational and design parameters were derived based on the simulation results. These parameters were used to predict the design characteristics of a proposed molecular sieve column for removal of water and iron from MON-3 at the NASA Kennedy Space Center (KSC). In addition, these parameters were used to simulate a small, single-pass operation column at KSC currently used for treating MON-3. The results of this work indicated that molecular sieve type 3A in 1/16 in. diameter pellets, in a column 2.5 ft. in diameter, 18 ft. in height, and operated at 25 gpm is adequate for the required removal of water and iron from MON-3.
Tropical continental downdraft characteristics: mesoscale systems versus unorganized convection
NASA Astrophysics Data System (ADS)
Schiro, Kathleen A.; Neelin, J. David
2018-02-01
Downdrafts and cold pool characteristics for strong mesoscale convective systems (MCSs) and isolated, unorganized deep precipitating convection are analyzed using multi-instrument data from the DOE Atmospheric Radiation Measurement (ARM) GoAmazon2014/5 campaign. Increases in column water vapor (CWV) are observed leading convection, with higher CWV preceding MCSs than for isolated cells. For both MCSs and isolated cells, increases in wind speed, decreases in surface moisture and temperature, and increases in relative humidity occur coincidentally with system passages. Composites of vertical velocity data and radar reflectivity from a radar wind profiler show that the downdrafts associated with the sharpest decreases in surface equivalent potential temperature (θe) have a probability of occurrence that increases with decreasing height below the freezing level. Both MCSs and unorganized convection show similar mean downdraft magnitudes and probabilities with height. Mixing computations suggest that, on average, air originating at heights greater than 3 km must undergo substantial mixing, particularly in the case of isolated cells, to match the observed cold pool θe, implying a low typical origin level. Precipitation conditionally averaged on decreases in surface equivalent potential temperature (Δθe) exhibits a strong relationship because the most negative Δθe values are associated with a high probability of precipitation. The more physically motivated conditional average of Δθe on precipitation shows that decreases in θe level off with increasing precipitation rate, bounded by the maximum difference between surface θe and its minimum in the profile aloft. Robustness of these statistics observed across scales and regions suggests their potential use as model diagnostic tools for the improvement of downdraft parameterizations in climate models.
McWethy, D.B.; Austin, J.E.
2009-01-01
Little information exists on breeding Greater Sandhill Cranes (Grus canadensis tabida) in riparian wetlands of the Intermountain West. We examined the nesting ecology of Sandhill Cranes associated with riparian and palustrine wetlands in the Henry's Fork Watershed in eastern Idaho in 2003. We located 36 active crane nests, 19 in riparian wetlands and 17 in palustrine wetlands. Nesting sites were dominated by rushes (Juncus spp.), sedges (Carex spp.), Broad-leaved Cattail (Typha latifolia) and willow (Salix spp.), and adjacent foraging areas were primarily composed of sagebrush (Artemisia spp.), cinquefoil (Potentilla spp.),Rabbitbrush (Ericameria bloomeri) bunch grasses, upland forbs, Quaking Aspen (Populus tremuloides) and cottonwood (Populus spp.). Mean water depth surrounding nests was 23 cm (SD = 22). A majority of nests (61%) were surrounded by vegetation between 3060 cm, 23% by vegetation 60 cm in height. We were able to determine the fate of 29 nests, of which 20 were successful (69%). Daily nest survival was 0.986 (95% LCI 0.963, UCI 0.995), equivalent to a Mayfield nest success of 0.654 (95% LCI 0.324, UCI 0.853). Model selection favored models with the covariates vegetation type, vegetation height, and water depth. Nest survival increased with increasing water depth surrounding nest sites. Mean water depth was higher around successful nests (30 cm, SD = 21) than unsuccessful nests (15 cm, SD 22). Further research is needed to evaluate the relative contribution of cranes nesting in palustrine and riparian wetlands distributed widely across the Intermountain West.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pounds applied within two inches of the top edge, in any outward or downward direction, at any point along the top edge. (3) Top edge height of toprails, or equivalent guardrail system member, shall be 42..., solid panels, and equivalent structural members shall be capable of withstanding, without failure, a...
Code of Federal Regulations, 2013 CFR
2013-10-01
... pounds applied within two inches of the top edge, in any outward or downward direction, at any point along the top edge. (3) Top edge height of toprails, or equivalent guardrail system member, shall be 42..., solid panels, and equivalent structural members shall be capable of withstanding, without failure, a...
Code of Federal Regulations, 2014 CFR
2014-10-01
... pounds applied within two inches of the top edge, in any outward or downward direction, at any point along the top edge. (3) Top edge height of toprails, or equivalent guardrail system member, shall be 42..., solid panels, and equivalent structural members shall be capable of withstanding, without failure, a...
Code of Federal Regulations, 2011 CFR
2011-10-01
... pounds applied within two inches of the top edge, in any outward or downward direction, at any point along the top edge. (3) Top edge height of toprails, or equivalent guardrail system member, shall be 42..., solid panels, and equivalent structural members shall be capable of withstanding, without failure, a...
NASA Astrophysics Data System (ADS)
Yi, Shuang; Song, Chunqiao; Wang, Qiuyu; Wang, Linsong; Heki, Kosuke; Sun, Wenke
2017-08-01
Artificial reservoirs are important indicators of anthropogenic impacts on environments, and their cumulative influences on the local water storage will change the gravity signal. However, because of their small signal size, such gravity changes are seldom studied using satellite gravimetry from the Gravity Recovery and Climate Experiment (GRACE). Here we investigate the ability of GRACE to detect water storage changes in the Longyangxia Reservoir (LR), which is situated in the upper main stem of the Yellow River. Three different GRACE solutions from the CSR, GFZ, and JPL with three different processing filters are compared here. We find that heavy precipitation in the summer of 2005 caused the LR water storage to increase by 37.9 m in height, which is equivalent to 13.0 Gt in mass, and that the CSR solutions with a DDK4 filter show the best performance in revealing the synthetic gravity signals. We also obtain 109 pairs of reservoir inundation area measurements from satellite imagery and water level changes from laser altimetry and in situ observations to derive the area-height ratios for the LR. The root mean square of GRACE series in the LR is reduced by 39% after removing synthetic signals caused by mass changes in the LR or by 62% if the GRACE series is further smoothed. We conclude that GRACE data show promising potential in detecting water storage changes in this ˜400 km2 reservoir and that a small signal size is not a restricting factor for detection using GRACE data.
Altinok, Ilhan; Capkin, Erol; Boran, Halis
2011-06-01
Effects of water volume and water column height on toxicity of cypermethrin, carbaryl, dichlorvos, tetradifon, maneb, captan, carbosulfan endosulfan and HgCl₂ to juvenile rainbow trout (Oncorhynchus mykiss, 3.2 ± 0.7 g) were evaluated in different glass aquaria under static conditions. When fish were exposed to the chemical compounds in 23 cm water column height (25 L), their mortality ranged between 0% and 58%. At the same water volume, but lower water column height (9 cm), mortality of fish increased significantly and was in a range from 60% to 95%. At the same water column height, toxic effects of chemicals were significantly higher in 25 L water volume than that of 8.5 L, water except maneb which has lowest (-0.45) octanol-water partition coefficient value. Mortality rates ratio of 9 and 23 cm water column height ranged between 1.12 and 90 while mortality rates ratio of 9 and 25 L water volume ranged between 1.20 and 4.0. Because actual exposure concentrations were not affected by either water volume or water column height, we propose that increased pesticides' toxicity was related to an increase in bioassay volume, since more pesticide molecules were able to interact with or accumulate the fish. However, there seem to be no relationship between the effects of water volume, water column height and Kow value of chemicals with regard to toxicity in juvenile rainbow trout.
NASA Astrophysics Data System (ADS)
Waseda, Takuji
2010-03-01
Giant episodic ocean waves that suddenly soar like a wall of water out of an otherwise calm sea are not just a legend. Such waves—which in the past have been called “abnormal,” “exceptional,” “extreme,” and even “vicious killer” waves—are now commonly known as “rogue waves” or “freak waves.” These waves have sunk or severely damaged 22 supercarriers in the world and caused the loss of more than 500 lives in the past 40 years. The largest wave registered by reliable instruments reached 30 meters in height, and the largest wave recorded by visual observation reached about 34 meters, equivalent to the height of an eight-story building. Tales of seafarers from Christopher Columbus to the passengers of luxury cruise ships had long been undervalued by scientists, but in the past 10 or so years, those historical notes and modern testimonies have been scientifically dissected to reveal the nature of these monster waves.
High-frequency fluctuations in Denmark Strait transport
NASA Astrophysics Data System (ADS)
Haine, T. W. N.
2010-07-01
Denmark Strait ocean current transport exhibits quasi-regular fluctuations immediately south of the sill with periods of 2-4 days. The transport variability is similar to the mean transport itself. Using a circulation model we explore prospects to monitor the fluctuations. The model has realistic transport and shows water leaving Denmark Strait in equivalent-barotropic cyclones that are nearly geostrophic and correlate with sea-surface height (SSH). Existing satellite altimeter observations of SSH have adequate space/time sampling to reconstruct the transport fluctuations using a regression developed from the model results, but measurement error overwhelms the signal. From the model results, the pending Surface Water and Ocean Topography (SWOT) wide-swath altimeter appears accurate enough, and with good-enough coverage, to allow the transport fluctuations to be reconstructed. Bottom pressure recorders at the exit of the Denmark Strait can also reproduce the transport variability.
Torek, Paul V; Hall, David L; Miller, Tiffany A; Wooldridge, Margaret S
2002-04-20
Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.
Measured neutron and gamma spectra from californium-252 in a tissue-equivalent medium.
Elson, H R; Stupar, T A; Shapiro, A; Kereiakes, J G
1979-01-01
A method of experimentally obtaining both neutron and gamma-ray spectra in a scattering medium is described. The method utilizes a liquid-organic scintillator (NE-213) coupled with a pulse-shape discrimination circuit. This allows the separation of the neutron-induced pulse-height data from the gamma-ray pulse-height data. Using mathematical unfolding techniques, the two sets of pulse-height data were transformed to obtain the neutron and gamma-ray energy spectra. A small spherical detector was designed and constructed to reduce the errors incurred by attempting spectral measurements in a scattering medium. Demonstration of the utility of the system to obtain the neutron and gamma-ray spectra in a scattering medium was performed by characterizing the neutron and gamma-ray spectra at various sites about a 3.7-microgram (1.5 cm active length) californium-252 source in a tissue-equivalent medium.
Maximum height in a conifer is associated with conflicting requirements for xylem design.
Domec, Jean-Christophe; Lachenbruch, Barbara; Meinzer, Frederick C; Woodruff, David R; Warren, Jeffrey M; McCulloh, Katherine A
2008-08-19
Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height because of path-length resistance and gravity. We used morphological measurements to estimate the hydraulic properties of the bordered pits between tracheids in Douglas-fir trees along a height gradient of 85 m. With increasing height, the xylem structural modifications that satisfied hydraulic requirements for avoidance of runaway embolism imposed increasing constraints on water transport efficiency. In the branches and trunks, the pit aperture diameter of tracheids decreases steadily with height, whereas torus diameter remains relatively constant. The resulting increase in the ratio of torus to pit aperture diameter allows the pits to withstand higher tensions before air-seeding but at the cost of reduced pit aperture conductance. Extrapolations of vertical trends for trunks and branches show that water transport across pits will approach zero at a heights of 109 m and 138 m, respectively, which is consistent with historic height records of 100-127 m for this species. Likewise, the twig water potential corresponding to the threshold for runaway embolism would be attained at a height of approximately 107 m. Our results suggest that the maximum height of Douglas-fir trees may be limited in part by the conflicting requirements for water transport and water column safety.
Cloud/climate sensitivity experiments
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.; Remer, L.
1982-01-01
A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.
The Effects Of Tides And Waves On Water-Table Elevations In Coastal Zones
NASA Astrophysics Data System (ADS)
Turner, Ian L.; Coates, Bruce P.; Acworth, R. Ian
1996-02-01
A resurgence of interest in the literature about coastal zones has highlighted the fact that ocean processes can have a significant influence on unconfined coastal aquifers, resulting in a net super-elevation of the water table at the land-ocean boundary to groundwater discharge. This theoretical and experimental notion appears to be less well recognized in the field of groundwater investigation, where it is more usual to assume that the coastal boundary is equivalent to mean sea level. Coastal over-height is due to the ability of a sloping beach face to `fill' (vertical infiltration) at a greater rate than it can `drain' (horizontal seepage). The results of a three-month monitoring of the groundwater profile within a narrow coastal aquifer at New South Wales, Australia, confirms the significance of tide and wave processes to groundwater elevation. The mean height of the water table on the upper beach face was about 1.2 m above mean sea level, rising to 2.0 m during a period of coincident spring tides, storm waves, and rainfall. This elevation was sufficient to temporarily reverse the direction of groundwater flow. Fourier analysis and cross-correlation are used to help distinguish the role of tides in maintaining groundwater super-elevation from the role of storm waves in further raising the coastal water table for periods of two to three days. The results of a simple numerical simulation demonstrate that estimated rates of groundwater discharge at the study site were halved when the effect of tides and waves was incorporated in the definition of the ocean boundary.
NASA Astrophysics Data System (ADS)
Marty, Christoph; Meister, Roland
2012-12-01
Snow and weather observations at Weissfluhjoch were initiated in 1936, when a research team set a snow stake and started digging snow pits on a plateau located at 2,540 m asl above Davos, Switzerland. This was the beginning of what is now the longest series of daily snow depth, new snow height and bi-monthly snow water equivalent measurements from a high-altitude research station. Our investigations reveal that the snow depth at Weissfluhjoch with regard to the evolution and inter-annual variability represents a good proxy for the entire Swiss Alps. In order to set the snow and weather observations from Weissfluhjoch in a broader context, this paper also shows some comparisons with measurements from five other high-altitude observatories in the European Alps. The results show a surprisingly uniform warming of 0.8°C during the last three decades at the six investigated mountain stations. The long-term snow measurements reveal no change in mid-winter, but decreasing trends (especially since the 1980s) for the solid precipitation ratio, snow fall, snow water equivalent and snow depth during the melt season due to a strong temperature increase of 2.5°C in the spring and summer months of the last three decades.
Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; ...
2015-01-29
We study adsorption of Rb + to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb + distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights ofmore » 1.8 ± 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb + between these two conditions. At pH 7, the lowest energy structure shows that Rb + adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb + coverage was -0.11 C/m 2, in good agreement with the range of the surface charge magnitudes reported in the literature.« less
Analysis of ICESat Data Using Kalman Filter and Kriging to Study Height Changes in East Antarctica
NASA Technical Reports Server (NTRS)
Herring, Thomas A.
2005-01-01
We analyze ICESat derived heights collected between Feb. 03-Nov. 04 using a kriging/Kalman filtering approach to investigate height changes in East Antarctica. The model's parameters are height change to an a priori static digital height model, seasonal signal expressed as an amplitude Beta and phase Theta, and height-change rate dh/dt for each (100 km)(exp 2) block. From the Kalman filter results, dh/dt has a mean of -0.06 m/yr in the flat interior of East Antarctica. Spatially correlated pointing errors in the current data releases give uncertainties in the range 0.06 m/yr, making height change detection unreliable at this time. Our test shows that when using all available data with pointing knowledge equivalent to that of Laser 2a, height change detection with an accuracy level 0.02 m/yr can be achieved over flat terrains in East Antarctica.
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi
2013-01-01
An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.
Scaling depth-induced wave-breaking in two-dimensional spectral wave models
NASA Astrophysics Data System (ADS)
Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.
2015-03-01
Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.
Unravelling the limits to tree height: a major role for water and nutrient trade-offs.
Cramer, Michael D
2012-05-01
Competition for light has driven forest trees to grow exceedingly tall, but the lack of a single universal limit to tree height indicates multiple interacting environmental limitations. Because soil nutrient availability is determined by both nutrient concentrations and soil water, water and nutrient availabilities may interact in determining realised nutrient availability and consequently tree height. In SW Australia, which is characterised by nutrient impoverished soils that support some of the world's tallest forests, total [P] and water availability were independently correlated with tree height (r = 0.42 and 0.39, respectively). However, interactions between water availability and each of total [P], pH and [Mg] contributed to a multiple linear regression model of tree height (r = 0.72). A boosted regression tree model showed that maximum tree height was correlated with water availability (24%), followed by soil properties including total P (11%), Mg (10%) and total N (9%), amongst others, and that there was an interaction between water availability and total [P] in determining maximum tree height. These interactions indicated a trade-off between water and P availability in determining maximum tree height in SW Australia. This is enabled by a species assemblage capable of growing tall and surviving (some) disturbances. The mechanism for this trade-off is suggested to be through water enabling mass-flow and diffusive mobility of P, particularly of relatively mobile organic P, although water interactions with microbial activity could also play a role.
Cold-air performance of a tip turbine designed to drive a lift fan
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.; Hotz, G. M.
1978-01-01
Performance was obtained over a range of speeds and pressure ratios for a 0.4 linear scale version of the LF460 lift fan turbine with the rotor radial tip clearance reduced to about 2.5 percent of the rotor blade height. These tests covered a range of speeds from 60 to 140 percent of design equivalent speed and a range of scroll inlet total to diffuser exit static pressure ratios from 2.6 to 4.2. Results are presented in terms of equivalent mass flow, equivalent torque, equivalent specific work, and efficiency.
Takeishi, Minoru; Shibamichi, Masaru; Malins, Alex; Kurikami, Hiroshi; Murakami, Mitsuhiro; Saegusa, Jun; Yoneya, Masayuki
2017-10-01
In response to the accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP), vehicle-borne monitoring was used to map radiation levels for radiological protection of the public. By convention measurements from vehicle-borne surveys are converted to the ambient dose equivalent rate at 1 m height in the absence of the vehicle. This allows for comparison with results from other types of survey, including surveys with hand-held or airborne instruments. To improve the accuracy of the converted results from vehicle-borne surveys, we investigated combining measurements from two detectors mounted on the vehicle at different heights above the ground. A dual-detector setup was added to a JAEA monitoring car and compared against hand-held survey meter measurements in Fukushima Prefecture. The results obtained by combining measurements from two detectors were within ±20% of the hand-held reference measurements. The mean absolute percentage deviation from the reference measurements was 7.2%. The combined results from the two detectors were more accurate than those from either the roof-mounted detector, or the detector inside the vehicle, taken alone. One issue with vehicle-borne surveys is that ambient dose equivalent rates above roads are not necessarily representative of adjacent areas. This is because radiocesium is often deficient on asphalt surfaces, as it is easily scrubbed off by rain, wind and vehicle tires. To tackle this issue, we investigated mounting heights for vehicle-borne detectors using Monte Carlo gamma-ray simulations. When radiocesium is deficient on a road compared to the adjacent land, mounting detectors high on vehicles yields results closer to the values adjacent to the road. The ratio of ambient dose equivalent rates reported by detectors mounted at different heights in a dual-detector setup indicates whether radiocesium is deficient on the road compared to the adjacent land. Copyright © 2017 Elsevier Ltd. All rights reserved.
Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud
2017-11-28
Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2 = 16.70 ml/(kg.min), V T = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.
Snow Water Equivalent estimation based on satellite observation
NASA Astrophysics Data System (ADS)
Macchiavello, G.; Pesce, F.; Boni, G.; Gabellani, S.
2009-09-01
The availability of remotely sensed images and them analysis is a powerful tool for monitoring the extension and typology of snow cover over territory where the in situ measurements are often difficult. Information on snow are fundamental for monitoring and forecasting the available water above all in regions at mid latitudes as Mediterranean where snowmelt may cause floods. The hydrological model requirements and the daily acquisitions of MODIS (Moderate Resolution Imaging Spectroradiometer), drove, in previous research activities, to the development of a method to automatically map the snow cover from multi-spectral images. But, the major hydrological parameter related to the snow pack is the Snow Water Equivalent (SWE). This represents a direct measure of stored water in the basin. Because of it, the work was focused to the daily estimation of SWE from MODIS images. But, the complexity of this aim, based only on optical data, doesn’t find any information in literature. Since, from the spectral range of MODIS data it is not possible to extract a direct relation between spectral information and the SWE. Then a new method, respectful of the physic of the snow, was defined and developed. Reminding that the snow water equivalent is the product of the three factors as snow density, snow depth and the snow covered areas, the proposed approach works separately on each of these physical behaviors. Referring to the physical characteristic of snow, the snow density is function of the snow age, then it was studied a new method to evaluate this. Where, a module for snow age simulation from albedo information was developed. It activates an age counter updated by new snow information set to estimate snow age from zero accumulation status to the end of melting season. The height of the snow pack, can be retrieved by adopting relation between vegetation and snow depth distributions. This computes snow height distribution by the relation between snow cover fraction and the forest canopy density. Finally, the SWE has to be calculated for the snow covered areas, detected by means of a previously developed decision tree classifier able to classify snow cover by self selecting rules in a statistically optimum way. The advantages introduced from this work are many. Firstly, applying a suitable method with data features, it is possible to automatically obtain snow cover description with high frequency. Moreover, the advantages of the modularity in the proposed approach allows to improve the three factors estimation in an independent way. Limitations lie into clouds problem that affects results by obscuring the observed territory, that is bounded by fusing temporal and spatial information. Then the spatial resolution of data, satisfactory with the scale of hydrological models, mismatch with the available in situ point information, causing difficulties for a method validation or calibration. However this working flow results computationally cost-effectiveness, robust to the radiometric noise of the original data, provides spatially extended and frequent information.
Kujawa-Roeleveld, K; Elmitwalli, T; Gaillard, A; van Leeuwen, M; Zeeman, G
2003-01-01
Co-digestion of concentrated black water and kitchen refuse within the DESAR concept was the objective of this pilot research. The digestion took place in two, non-mixed accumulation reactors (AC1 and AC2) inoculated with digested primary sludge from a WWTP at a temperature of 20 degrees C for a period of around 150 days. Reactor AC1 was fed with a mixture of faeces, urine and kitchen refuse in the equivalent amount that one individual generates per day. The AC2 was fed with a mixture of faeces and kitchen refuse in the equivalent amount that two individuals produce per day. Some contribution of urine to AC2 was not to be avoided. Detailed characterisation of waste(water) was performed. The performance of the stratified reactor was followed by monitoring the reactor content for several reactors' heights as well as being based on the biogas production. In general the system exposed good process stability. The methanisation of 34 and 61% was obtained for AC1 and AC2 respectively. The biogas yield was 26.5 and 50.8 L/p/d for the respective reactors. Proper choice of inoculum as well as good buffering capacity did not lead to accumulation of VFA and an inhibitive effect due to relatively high ammonium concentration. The chosen process is a promising technology showing good process stability especially for high strength influent.
Should tsunami simulations include a nonzero initial horizontal velocity?
NASA Astrophysics Data System (ADS)
Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.
2017-08-01
Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.[Figure not available: see fulltext.
Should tsunami models use a nonzero initial condition for horizontal velocity?
NASA Astrophysics Data System (ADS)
Nava, G.; Lotto, G. C.; Dunham, E. M.
2017-12-01
Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.
Contrails of Small and Very Large Optical Depth
NASA Technical Reports Server (NTRS)
Atlas, David; Wang, Zhien
2010-01-01
This work deals with two kinds of contrails. The first comprises a large number of optically thin contrails near the tropopause. They are mapped geographically using a lidar to obtain their height and a camera to obtain azimuth and elevation. These high-resolution maps provide the local contrail geometry and the amount of optically clear atmosphere. The second kind is a single trail of unprecedentedly large optical thickness that occurs at a lower height. The latter was observed fortuitously when an aircraft moving along the wind direction passed over the lidar, thus providing measurements for more than 3 h and an equivalent distance of 620 km. It was also observed by Geostationary Operational Environmental Satellite (GOES) sensors. The lidar measured an optical depth of 2.3. The corresponding extinction coefficient of 0.023 per kilometer and ice water content of 0.063 grams per cubic meter are close to the maximum values found for midlatitude cirrus. The associated large radar reflectivity compares to that measured by ultrasensitive radar, thus providing support for the reality of the large optical depth.
Electrical Potential of Leaping Eels
Catania, Kenneth C.
2017-01-01
When approached by a large, partially submerged conductor, electric eels (Electrophorus electricus) will often defend themselves by leaping from the water to directly shock the threat. Presumably, the conductor is interpreted as an approaching terrestrial or semiaquatic animal. In the course of this defensive behavior, eels first make direct contact with their lower jaw and then rapidly emerge from the water, ascending the conductor while discharging high-voltage volleys. In this study, the equivalent circuit that develops during this behavior was proposed and investigated. First, the electromotive force and internal resistance of four electric eels were determined. These values were then used to estimate the resistance of the water volume between the eel and the conductor by making direct measurements of current with the eel and water in the circuit. The resistance of the return path from the eel's lower jaw to the main body of water was then determined, based on voltage recordings, for each electric eel at the height of the defensive leap. Finally, the addition of a hypothetical target for the leaping defense was considered as part of the circuit. The results suggest the defensive behavior efficiently directs electrical current through the threat, producing an aversive and deterring experience by activating afferents in potential predators. PMID:28651251
Liew, Bernard X W; Drovandi, Christopher C; Clifford, Samuel; Keogh, Justin W L; Morris, Susan; Netto, Kevin
2018-01-01
There is convincing evidence for the benefits of resistance training on vertical jump improvements, but little evidence to guide optimal training prescription. The inability to detect small between modality effects may partially reflect the use of ANOVA statistics. This study represents the results of a sub-study from a larger project investigating the effects of two resistance training methods on load carriage running energetics. Bayesian statistics were used to compare the effectiveness of isoinertial resistance against speed-power training to change countermovement jump (CMJ) and squat jump (SJ) height, and joint energetics. Active adults were randomly allocated to either a six-week isoinertial ( n = 16; calf raises, leg press, and lunge), or a speed-power training program ( n = 14; countermovement jumps, hopping, with hip flexor training to target pre-swing running energetics). Primary outcome variables included jump height and joint power. Bayesian mixed modelling and Functional Data Analysis were used, where significance was determined by a non-zero crossing of the 95% Bayesian Credible Interval (CrI). The gain in CMJ height after isoinertial training was 1.95 cm (95% CrI [0.85-3.04] cm) greater than the gain after speed-power training, but the gain in SJ height was similar between groups. In the CMJ, isoinertial training produced a larger increase in power absorption at the hip by a mean 0.018% (equivalent to 35 W) (95% CrI [0.007-0.03]), knee by 0.014% (equivalent to 27 W) (95% CrI [0.006-0.02]) and foot by 0.011% (equivalent to 21 W) (95% CrI [0.005-0.02]) compared to speed-power training. Short-term isoinertial training improved CMJ height more than speed-power training. The principle adaptive difference between training modalities was at the level of hip, knee and foot power absorption.
Characterization of the Boundary Layer Wind and Turbulence in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Pichugina, Y. L.; Banta, R. M.; Choukulkar, A.; Brewer, A.; Hardesty, R. M.; McCarty, B.; Marchbanks, R.
2014-12-01
A dataset of ship-borne Doppler lidar measurements taken in the Gulf of Mexico was analyzed to provide insight into marine boundary-layer (BL) features and wind-flow characteristics, as needed for offshore wind energy development. This dataset was obtained as part of the intensive Texas Air Quality Study in summer of 2006 (TexAQS06). During the project, the ship, the R/V Ronald H. Brown, cruised in tracks in the Gulf of Mexico along the Texas coast, in Galveston Bay, and in the Houston Ship Channel obtaining air chemistry and meteorological data, including vertical profile measurements of wind and temperature. The primary observing system used in this paper is NOAA/ESRL's High Resolution Doppler Lidar (HRDL), which features high-precision and high-resolution wind measurements and a motion compensation system to provide accurate wind data despite ship and wave motions. The boundary layer in this warm-water region was found to be weakly unstable typically to a depth of 300 m above the sea surface. HRDL data were analyzed to provide 15-min averaged profiles of wind flow properties (wind speed, direction, and turbulence) from the water surface up to 2.5 km at a vertical resolution of 15 m. The paper will present statistics and distributions of these parameters over a wide range of heights and under various atmospheric conditions. Detailed analysis of the BL features including LLJs, wind and directional ramps, and wind shear through the rotor level heights, along with examples of hub-height and equivalent wind will be presented. The paper will discuss the diurnal fluctuations of all quantities critical to wind energy and their variability along the Texas coast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demez, N; Lee, T; Keppel, Cynthia
Purpose: To verify calculated water equivalent thickness (WET) and water equivalent spreadness (WES) in various tissue equivalent media for proton therapy Methods: Water equivalent thicknesses (WET) of tissue equivalent materials have been calculated using the Bragg-Kleeman rule. Lateral spreadness and fluence reduction of proton beams both in those media were calculated using proton loss model (PLM) algorithm. In addition, we calculated lateral spreadness ratios with respect to that in water at the same WET depth and so the WES was defined. The WETs of those media for different proton beam energies were measured using MLIC (Multi-Layered Ionization Chamber). Also, fluencemore » and field sizes in those materials of various thicknesses were measured with ionization chambers and films Results: Calculated WETs are in agreement with measured WETs within 0.5%. We found that water equivalent spreadness (WES) is constant and the fluence and field size measurements verify that fluence can be estimated using the concept of WES. Conclusions: Calculation of WET based on the Bragg-Kleeman rule as well as the constant WES of proton beams for tissue equivalent phantoms can be used to predict fluence and field sizes at the depths of interest both in tissue equivalent media accurately for clinically available protonenergies.« less
Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.
2004-01-01
Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.
Analytical vacuum force, atmospheric pressure dispute
NASA Astrophysics Data System (ADS)
Yongquan, Han
Typically, the gap gas molecules is 10-9 m, since the center speed of the tornado is over 100 m / sec, it divided by the speed of a tornado, the gap of the gas molecules becomes 10-11m. Equivalent to the gap when there is no tornado that the gas molecules allow radiation to pass through, equivalent to the gap is reduced gas molecules 100 times by a tornado. There is no change in the Earth's radiate, the Earth's radiation is reduced to one percent of the original intensity by the radiation through the tornado periphery into the center of the tornado. According to the APS Division of Nuclear Physics in APS -2013 Fall Meeting - Event - Gravitational radiation theory http://meetings.aps.org/Meeting/DNP13/Session/FB.8, which I published, the gravity will br reduced to the original gravity percentage one. Waterspout by the Earth's gravity to become the original one percent. Cause the external of the tornadoes atmospheric pressure is constant, the height waterspout should support column height atmospheric pressure is 100 times,that height waterspout may reach nearly kilometers.
Study on the radial vibration and acoustic field of an isotropic circular ring radiator.
Lin, Shuyu; Xu, Long
2012-01-01
Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.
Cermák, Jan; Kucera, Jiri; Bauerle, William L; Phillips, Nathan; Hinckley, Thomas M
2007-02-01
Diurnal and seasonal tree water storage was studied in three large Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) trees at the Wind River Canopy Crane Research site. Changes in water storage were based on measurements of sap flow and changes in stem volume and tissue water content at different heights in the stem and branches. We measured sap flow by two variants of the heat balance method (with internal heating in stems and external heating in branches), stem volume with electronic dendrometers, and tissue water content gravimetrically. Water storage was calculated from the differences in diurnal courses of sap flow at different heights and their integration. Old-growth Douglas-fir trees contained large amounts of free water: stem sapwood was the most important storage site, followed by stem phloem, branch sapwood, branch phloem and needles. There were significant time shifts (minutes to hours) between sap flow measured at different positions within the transport system (i.e., stem base to shoot tip), suggesting a highly elastic transport system. On selected fine days between late July and early October, when daily transpiration ranged from 150 to 300 liters, the quantity of stored water used daily ranged from 25 to 55 liters, i.e., about 20% of daily total sap flow. The greatest amount of this stored water came from the lower stem; however, proportionally more water was removed from the upper parts of the tree relative to their water storage capacity. In addition to lags in sap flow from one point in the hydrolic pathway to another, the withdrawal and replacement of stored water was reflected in changes in stem volume. When point-to-point lags in sap flow (minutes to hours near the top and stem base, respectively) were considered, there was a strong linear relationship between stem volume changes and transpiration. Volume changes of the whole tree were small (equivalent to 14% of the total daily use of stored water) indicating that most stored water came from the stem and from its inelastic (sapwood) tissues. Whole tree transpiration can be maintained with stored water for about a week, but it can be maintained with stored water from the upper crown alone for no more than a few hours.
NASA Technical Reports Server (NTRS)
Zapp, E. N.; Townsend, L. W.; Cucinotta, F. A.
2002-01-01
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to critical body organs of spacecraft crews from energetic space radiation require accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through the spacecraft and overlying tissue. When estimating astronaut radiation organ doses and dose equivalents it is customary to use the Computerized Anatomical Man (CAM) model of human geometry to account for body self-shielding. Usually, the distribution for the 50th percentile man (175 cm height; 70 kg mass) is used. Most male members of the U.S. astronaut corps are taller and nearly all have heights that deviate from the 175 cm mean. In this work, estimates of critical organ doses and dose equivalents for interplanetary crews exposed to an event similar to the October 1989 solar particle event are presented for male body sizes that vary from the 5th to the 95th percentiles. Overall the results suggest that calculations of organ dose and dose equivalent may vary by as much as approximately 15% as body size is varied from the 5th to the 95th percentile in the population used to derive the CAM model data. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Lokotunina, N.
2017-12-01
The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.
NASA Technical Reports Server (NTRS)
Allison, D. E.
1984-01-01
A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.
A vadose zone water fluxmeter with divergence control
NASA Astrophysics Data System (ADS)
Gee, G. W.; Ward, A. L.; Caldwell, T. G.; Ritter, J. C.
2002-08-01
Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self-calibrating tipping bucket, with a sensitivity of ~4 mL tip-1. For our meter this is equivalent to detection limit of ~0.1 mm. Passive-wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two-dimensional (2-D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr-1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr-1 to more than 1000 mm yr-1.
A vadose zone water fluxmeter with divergence control
Gee, G.W.; Ward, A.L.; Caldwell, T.G.; Ritter, J.C.
2002-01-01
Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self‐calibrating tipping bucket, with a sensitivity of ∼4 mL tip−1. For our meter this is equivalent to detection limit of ∼0.1 mm. Passive‐wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two‐dimensional (2‐D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr−1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr−1 to more than 1000 mm yr−1.
NASA Astrophysics Data System (ADS)
Rowley, David
2017-04-01
On a spherical Earth, the mean elevation ( -2440m) would be everywhere at a mean Earth radius from the center. This directly links an elevation at the surface to physical dimensions of the Earth, including surface area and volume that are at most very slowly evolving components of the Earth system. Earth's mean elevation thus provides a framework within which to consider changes in heights of Earth's solid surface as a function of time. In this paper the focus will be on long-term, non-glacially controlled sea level. Long-term sea level has long been argued to be largely controlled by changes in ocean basin volume related to changes in area-age distribution of oceanic lithosphere. As generally modeled by Pitman (1978) and subsequent workers, the age-depth relationship of oceanic lithosphere, including both the ridge depth and coefficients describing the age-depth relationship are assumed constant. This paper examines the consequences of adhering to these assumptions when placed within the larger framework of maintaining a constant mean radius of the Earth. Self-consistent estimates of long-term sea level height and changes in mean depth of the oceanic crust are derived from the assumption that the mean elevation and corresponding mean radius are unchanging aspects of Earth's shorter-term evolution. Within this context, changes in mean depth of the oceanic crust, corresponding with changes in mean age of the oceanic lithosphere, acting over the area of the oceanic crust represent a volume change that is required to be balanced by a compensating equal but opposite volume change under the area of the continental crust. Models of paleo-cumulative hypsometry derived from a starting glacial isostatic adjustment (GIA)-corrected ice-free hypsometry that conserve mean elevation provide a basis for understanding how these compensating changes impact global hypsometry and particularly estimates of global mean shoreline height. Paleo-shoreline height and areal extent of flooding can be defined as the height and corresponding cumulative area of the solid surface of the Earth at which the integral of area as a function of elevation, from the maximum depth upwards, equals the volume of ocean water filling it with respect to cumulative paleo-hypsometry. Present height of the paleo-shoreline is the height on the GIA-corrected cumulative hypsometry at an area equal to the areal extent of flooding. Paleogeographic estimates of global extent of ocean flooding from the Middle Jurassic to end Eocene, when combined with conservation of mean elevation and ocean water volume allow an explicit estimate of the paleo-height and present height of the paleo-shoreline. The best-fitting estimate of present height of the paleo-shoreline, equivalent to a long-term "eustatic" sea level curve, implies very modest (25±22m) changes in long-term sea level above the ice-free sea level height of +40m. These, in turn, imply quite limited changes in mean depth of the oceanic crust (15±11m), and mean age of the oceanic lithosphere ( 62.1±2.4 my) since the Middle Jurassic.
Maximum height in a conifer is associated with conflicting requirements for xylem design
Jean-Chrisophe Domec; Barbara Lachenbruch; Frederick Meinzer; David R. Woodruff; Jeffrey M. Warren; Katherine A. McCulloh
2008-01-01
Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height owing to path-...
Implementation of spaceborne lidar-retrieved canopy height in the WRF model
NASA Astrophysics Data System (ADS)
Lee, Junhong; Hong, Jinkyu
2016-06-01
Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This paper is the first to report impacts of using realistic forest canopy height, retrieved from spaceborne lidar, on regional climate simulation by using the canopy height data in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin during summer season. Over this region, the lidar-retrieved canopy heights were higher than the default values used in the WRF, which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when lidar-retrieved canopy height was used over the Amazon Basin.
Coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions
NASA Astrophysics Data System (ADS)
Lin, Shuyu
2007-08-01
In this paper, the coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions is studied by using an approximate analytic method. According to this method, when the equivalent mechanical coupling coefficient that is defined as the stress ratio is introduced, the coupled vibration of a metal hollow cylinder is reduced to two equivalent one-dimensional vibrations, one is an equivalent longitudinal extensional vibration in the height direction of the cylinder, and the other is an equivalent plane radial vibration in the radius direction. These two equivalent vibrations are coupled to each other by the equivalent mechanical coupling coefficient. The resonance frequency equation of metal hollow cylinders in coupled vibration is derived and longitudinal and radial resonance frequencies are computed. For comparison, the resonance frequencies of the hollow cylinders are also computed by using numerical method. The analysis shows that the results from these two methods are in a good agreement with each other.
Water level observations in mangrove swamps during two hurricanes in Florida
Krauss, K.W.; Doyle, T.W.; Doyle, T.J.; Swarzenski, C.M.; From, A.S.; Day, Richard H.; Conner, W.H.
2009-01-01
Little is known about the effectiveness of mangroves in suppressing water level heights during landfall of tropical storms and hurricanes. Recent hurricane strikes along the Gulf Coast of the United States have impacted wetland integrity in some areas and hastened the need to understand how and to what degree coastal forested wetlands confer protection by reducing the height of peak water level. In recent years, U.S. Geological Survey Gulf Coast research projects in Florida have instrumented mangrove sites with continuous water level recorders. Our ad hoc network of water level recorders documented the rise, peak, and fall of water levels (?? 0.5 hr) from two hurricane events in 2004 and 2005. Reduction of peak water level heights from relatively in-line gages associated with one storm surge event indicated that mangrove wetlands can reduce water level height by as much as 9.4 cm/km inland over intact, relatively unchannelized expanses. During the other event, reductions were slightly less for mangroves along a river corridor. Estimates of water level attenuation were within the range reported in the literature but erred on the conservative side. These synoptic data from single storm events indicate that intact mangroves may support a protective role in reducing maximum water level height associated with surge.
Satellites measure recent rates of groundwater depletion in California's Central Valley
NASA Astrophysics Data System (ADS)
Famiglietti, J. S.; Lo, M.; Ho, S. L.; Bethune, J.; Anderson, K. J.; Syed, T. H.; Swenson, S. C.; de Linage, C. R.; Rodell, M.
2011-02-01
In highly-productive agricultural areas such as California's Central Valley, where groundwater often supplies the bulk of the water required for irrigation, quantifying rates of groundwater depletion remains a challenge owing to a lack of monitoring infrastructure and the absence of water use reporting requirements. Here we use 78 months (October, 2003-March, 2010) of data from the Gravity Recovery and Climate Experiment satellite mission to estimate water storage changes in California's Sacramento and San Joaquin River Basins. We find that the basins are losing water at a rate of 31.0 ± 2.7 mm yr-1 equivalent water height, equal to a volume of 30.9 km3 for the study period, or nearly the capacity of Lake Mead, the largest reservoir in the United States. We use additional observations and hydrological model information to determine that the majority of these losses are due to groundwater depletion in the Central Valley. Our results show that the Central Valley lost 20.4 ± 3.9 mm yr-1 of groundwater during the 78-month period, or 20.3 km3 in volume. Continued groundwater depletion at this rate may well be unsustainable, with potentially dire consequences for the economic and food security of the United States.
Electrical Potential of Leaping Eels.
Catania, Kenneth C
2017-01-01
When approached by a large, partially submerged conductor, electric eels (Electrophorus electricus) will often defend themselves by leaping from the water to directly shock the threat. Presumably, the conductor is interpreted as an approaching terrestrial or semiaquatic animal. In the course of this defensive behavior, eels first make direct contact with their lower jaw and then rapidly emerge from the water, ascending the conductor while discharging high-voltage volleys. In this study, the equivalent circuit that develops during this behavior was proposed and investigated. First, the electromotive force and internal resistance of four electric eels were determined. These values were then used to estimate the resistance of the water volume between the eel and the conductor by making direct measurements of current with the eel and water in the circuit. The resistance of the return path from the eel's lower jaw to the main body of water was then determined, based on voltage recordings, for each electric eel at the height of the defensive leap. Finally, the addition of a hypothetical target for the leaping defense was considered as part of the circuit. The results suggest the defensive behavior efficiently directs electrical current through the threat, producing an aversive and deterring experience by activating afferents in potential predators. © 2017 The Author(s) Published by S. Karger AG, Basel.
A comparison of electromyography and stroke kinematics during ergometer and on-water rowing.
Fleming, Neil; Donne, Bernard; Mahony, Nicholas
2014-01-01
This study assessed muscle recruitment patterns and stroke kinematics during ergometer and on-water rowing to validate the accuracy of rowing ergometry. Male rowers (n = 10; age 21 ± 2 years, height 1.90 ± 0.05 m and body mass 83.3 ± 4.8 kg) performed 3 × 3 min exercise bouts, at heart and stroke rates equivalent to 75, 85 and 95% VO2peak, on both dynamic and stationary rowing ergometers, and on water. During exercise, synchronised data for surface electromyography (EMG) and 2D kinematics were recorded. Overall muscle activity was quantified by the integration of rmsEMG and averaged for each 10% interval of the stroke cycle. Muscle activity significantly increased in rectus femoris (RF) and vastus medialis (VM) (P <0.01), as exercise intensity increased. Comparing EMG data across conditions revealed significantly (P <0.05) greater RF and VM activity during on-water rowing at discrete 10% intervals of stroke cycle. In addition, the drive/recovery ratio was significantly lower during dynamic ergometry compared to on-water (40 ± 1 vs. 44 ± 1% at 95%, P <0.01). Results suggest that significant differences exist while comparing recruitment and kinematic patterns between on-water and ergometer rowing. These differences may be due to altered acceleration and deceleration of moving masses on-ergometer not perfectly simulating the on-water scenario.
Hydraulic resistance of submerged flexible vegetation
NASA Astrophysics Data System (ADS)
Stephan, Ursula; Gutknecht, Dieter
2002-12-01
The main research objective consisted in analysing the influence of roughness caused by aquatic vegetation (av), in particular submerged macrophytes, on the overall flow field. These plants are highly flexible and behave differently depending on the flow situation. They also react substantially to the flow field and thus, the roughness becomes variable and dynamic. Conventional flow formulas, such as the Manning or the Strickler formula, are one-dimensional and based on integral flow parameters. They are not suitable for quantifying the roughness of av, because the flow is complex and more dimensional due to the variable behaviour of the plants. Therefore, the present investigation concentrates on the definition of a characteristic hydraulic roughness parameter to quantify the resistance of av. Within this investigation laboratory experiments were carried out with three different types of av, chosen with respect to varying plant structures as well as stem lengths. Velocity measurements above these plants were conducted to determine the relationship between the hydraulic roughness and the deflected plant height. The deflected plant height is used as the geometric roughness parameter, whereas the equivalent sand roughness based on the universal logarithmic law modified by Nikuradse was used as hydraulic roughness parameter. The influence of relative submergence on the hydraulic roughness was also analysed. The analysis of the velocity measurements illustrates that equivalent sand roughness and zero plane displacement of the logarithmic law are correlated to the deflected plant height and are equally to this height.
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.
1977-01-01
Two tip clearance configurations, one with a recess in the casing and the other with a reduced rotor blade height, were investigated at design equivalent speed over a range of tip clearance from about 2.0 to 5.0 percent of the stator blade height. The optimum configuration with a recess in the casing was the one where the rotor tip diameter was equal to the stator tip diameter (zero blade extension). For this configuration there was an approximate 1.5 percent decrease in total efficiency for an increase in tip clearance of 1 percent of stator blade height. For the reduced blade height configurations there was an approximate 2.0 percent decrease in total efficiency for an increase in tip clearance of 1 percent of stator blade height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
A computer code for calculating hydraulic fracture height and width in a stressed-layer medium has been modified for easy use on a personal computer. HSTRESS allows for up to 51 layers having different thicknesses, stresses and fracture toughnesses. The code can calculate fracture height versus pressure or pressure versus fracture height, depending on the design model in which the data will be used. At any pressure/height, a width profile is calculated and an equivalent width factor and flow resistance factor are determined. This program is written in FORTRAN. Graphics use PLOT88 software by Plotworks, Inc., but the graphics software mustmore » be obtained by the user because of licensing restrictions. A version without graphics can also be run. This code is available through the National Energy Software Center (NESC), operated by Argonne National Laboratory. 14 refs., 21 figs.« less
Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height.
Xu, Peipei; Zhou, Tao; Yi, Chuixiang; Luo, Hui; Zhao, Xiang; Fang, Wei; Gao, Shan; Liu, Xia
2018-06-13
Global climate change is leading to an increase in the frequency, intensity, and duration of drought events, which can affect the functioning of forest ecosystems. Because human activities such as afforestation and forest attributes such as canopy height may exhibit considerable spatial differences, such differences may alter the recovery paths of drought-impacted forests. To accurately assess how climate affects forest recovery, a quantitative evaluation on the effects of forest attributes and their possible interaction with the intensity of water stress is required. Here, forest recovery following extreme drought events was analyzed for Yunnan Province, southwest China. The variation in the recovery of forests with different water availability and canopy heights was quantitatively assessed at the regional scale by using canopy height data based on light detection and ranging (LiDAR) measurements, enhanced vegetation index data, and standardized precipitation evapotranspiration index (SPEI) data. Our results indicated that forest recovery was affected by water availability and canopy height. Based on the enhanced vegetation index measures, shorter trees were more likely to recover than taller ones after drought. Further analyses demonstrated that the effect of canopy height on recovery rates after drought also depends on water availability—the effect of canopy height on recovery diminished as water availability increased after drought. Additional analyses revealed that when the water availability exceeded a threshold (SPEI > 0.85), no significant difference in the recovery was found between short and tall trees ( p > 0.05). In the context of global climate change, future climate scenarios of RCP2.6 and RCP8.5 showed more frequent water stress in Yunnan by the end of the 21st century. In summary, our results indicated that canopy height casts an important influence on forest recovery and tall trees have greater vulnerability and risk to dieback and mortality from drought. These results may have broad implications for policies and practices of forest management.
Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Lit, Q. H.; Zhang, Y. G.; Meng, A. H.
The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.
Water tables constrain height recovery of willow on Yellowstone's northern range.
Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson
2008-01-01
Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery of tall willow stands. Because tall willow stems are important elements of habitat for beaver, mitigating water table decline may be necessary in these areas to promote recovery of historical willow-beaver mutualisms.
Impact of implementation of spaceborne lidar-retrieved canopy height in the WRF model
NASA Astrophysics Data System (ADS)
Lee, Junhong; Hong, Jinkyu
2017-04-01
Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This presentation reports impacts of using realistic forest canopy height, retrieved from spaceborne LiDAR, on regional climate simulation in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin and East Asia during summer season. Over these regions, the LiDAR-retrieved canopy heights were higher than the default values used in the WRF,which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when LiDAR-retrieved canopy height was used over the Amazon Basin.
The Evaluation of the 0.07 and 3 mm Dose Equivalent with a Portable Beta Spectrometer
NASA Astrophysics Data System (ADS)
Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko
Beta spectra of various nuclide species were measured using a commercially available compact spectrometer. The shape of the spectra obtained via the spectrometer was almost similar to that of the theoretical spectra. The beta dose equivalent at any depth was obtained as a product of the measured pulse height spectra and the appropriate conversion coefficients of ICRP Publication 74. The dose rates evaluated from the spectra were comparable with the reference dose rates of standard beta calibration sources. In addition, we were able to determine the dose equivalents with a relative error of indication of 10% without the need for complicated correction.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
.... Village of Endicott Water Plant ($150,000 budgeted) and Western Heights Blvd. Water Tank Access ($6,000... improvements so that water can be provided to the village of Endicott. Union, NY also carefully considered... Plant, Village of Endicott Water Plant, Western Heights Blvd. Water Tank Access, Westover Levee Repair...
Active microwave water equivalence
NASA Technical Reports Server (NTRS)
Boyne, H. S.; Ellerbruch, D. A.
1980-01-01
Measurements of water equivalence using an active FM-CW microwave system were conducted over the past three years at various sites in Colorado, Wyoming, and California. The measurement method is described. Measurements of water equivalence and stratigraphy are compared with ground truth. A comparison of microwave, federal sampler, and snow pillow measurements at three sites in Colorado is described.
Yang, De-Long; Zhang, Guo-Hong; Li, Xing-Mao; Xing, Hua; Cheng, Hong-Bo; Ni, Sheng-Li; Chen, Xiao-Ping
2012-06-01
A total of 120 recombinant inbred lines (RIL) derived from Chinese winter wheat cultivars Longjian 19xQ9086 and the two parents were taken as test materials to study the quantitative genetics characteristics of their plant height at different development stages, thousand-grain mass, as well as the correlations between the two traits under rainfed (drought stress) and well-watered conditions, and evaluate the genetic variation of the RIL. Under the two water conditions, the target traits of the RIL showed substantial transgressive segregation and great sensitivity to water condition. The drought stress coefficient of the plant height was higher at jointing stage, being up to 0.851. There was a significant positive correlation between the plant height at different development stages and the thousand-grain mass, and comparing with that at other growth stages, the plant height at jointing stage had a higher correlation coefficient with the thousand-grain mass (R2DS = 0.32, R2WW = 0.28). The plant height at both jointing and flowering stages had significant positive and direct effect but negative and indirect gross effect on the thousand-grain mass, while the plant height at heading and maturing stages was in adverse. The target traits showed a lower heritability ranged from 0.27 to 0.60. The numbers of the gene pairs controlling the thousand-grain mass were 10 under rainfed and 13 under well-watered conditions, while those of the gene pairs controlling the plant height at different development stages were 3-7 under rainfed and 4-14 under well-watered conditions, respectively. According to the clustering of the drought stress coefficient of plant height, the RIL could be classified into five subgroups, showing the abundant variation of the RIL in their phe- notypes and in the sensitivity to water condition. It was considered that the test RIL were appropriate for the study of the quantitative genetics of wheat drought resistance.
Research Spotlight: Groundwater is being depleted rapidly in California's Central Valley
NASA Astrophysics Data System (ADS)
Tretkoff, Ernie
2011-03-01
Groundwater is being depleted in California's Central Valley at a rapid rate, according to data from the Gravity Recovery and Climate Experiment (GRACE) satellite. Famiglietti et al. analyzed 78 months of GRACE data covering October 2003 to March 2010 to estimate water storage changes in California's Sacramento and San Joaquin river basins. They found that the basins are losing water at a rate of about 30 millimeters per year equivalent water height, or a total of about 30 cubic kilometers over the 78-month period. Furthermore, they found that two thirds of this loss, or a total of 20 cubic kilometers for the study period, came from groundwater depletion in the Central Valley. Quantifying groundwater depletion can be challenging in many areas because of a lack of monitoring infrastructure and reporting requirements; the study shows that satellite-based monitoring can be a useful way to track groundwater volumes. The authors warn that the current rate of groundwater depletion in the Central Valley may be unsustainable and could have “potentially dire consequences for the economic and food security of the United States.” (Geophysical Research Letters, doi:10.1029/2010GL046442, 2011)
Portable neutron spectrometer and dosimeter
Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.
The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.
Portable neutron spectrometer and dosimeter
Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.
1985-01-01
The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.
NASA Technical Reports Server (NTRS)
Luthcke, Scott B.; Sabaka, T. J.; Loomis, B. D.; Arendt, A. A.; McCarthy, J. J.; Camp, J.
2013-01-01
We have determined the ice mass evolution of the Antarctica and Greenland ice sheets (AIS and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with 10 day and 1 arc degree equal-area sampling, applying anisotropic constraints. An ensemble empirical mode decomposition adaptive filter was applied to the mascon time series to compute annual mass balances. The details and causes of the spatial and temporal variability of the land-ice regions studied are discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period 1 December 2003 to 1 December 2010 is -380 plus or minus 31 Gt a(exp -1), equivalent to -1.05 plus or minus 0.09 mma(exp -1) sea-level rise. Over the same time period we estimate the mass acceleration to be -41 plus or minus 27 Gt a(exp -2), equivalent to a 0.11 plus or minus 0.08 mm a(exp -2) rate of change in sea level. The trends and accelerations are dependent on significant seasonal and annual balance anomalies.
NASA Technical Reports Server (NTRS)
Luthcke, Scott B.; Sabaka, T. J.; Loomis, B. D.; Arendt, A. A.; McCarthy, J. J.; Camp, J.
2013-01-01
We have determined the ice mass evolution of the Antarctica and Greenland ice sheets (AIS and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with 10 day and 1 arc degree equal-area sampling, applying anisotropic constraints. An ensemble empirical mode decomposition adaptive filter was applied to the mascon time series to compute annual mass balances. The details and causes of the spatial and temporal variability of the land-ice regions studied are discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period 1 December 2003 to 1 December 2010 is -380 plus or minus 31 Gt a(exp -1), equivalent to -1.05 plus or minus 0.09 mma(exp -1) sea-level rise. Over the same time period we estimate the mass acceleration to be -41 plus or minus 27 Gt a(exp -2), equivalent to a 0.11 plus or minus 0.08 mm a(exp -2) rate of change in sea level. The trends and accelerations are dependent on significant seasonal and annual balance anomalies.
Water-equivalence of gel dosimeters for radiology medical imaging.
Valente, M; Vedelago, J; Chacón, D; Mattea, F; Velásquez, J; Pérez, P
2018-03-08
International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 kVp) were found to be less than 3% in average. Copyright © 2018 Elsevier Ltd. All rights reserved.
Feldman, Max J.; Paul, Rachel E.; Banan, Darshi; ...
2017-06-23
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. For this research, we have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reducedmore » under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Max J.; Paul, Rachel E.; Banan, Darshi
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. For this research, we have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reducedmore » under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.« less
Paul, Rachel E.; Sebastian, Jose; Yee, Muh-Ching; Jiang, Hui; Lipka, Alexander E.; Brutnell, Thomas P.; Dinneny, José R.; Leakey, Andrew D. B.
2017-01-01
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development. PMID:28644860
Feldman, Max J; Paul, Rachel E; Banan, Darshi; Barrett, Jennifer F; Sebastian, Jose; Yee, Muh-Ching; Jiang, Hui; Lipka, Alexander E; Brutnell, Thomas P; Dinneny, José R; Leakey, Andrew D B; Baxter, Ivan
2017-06-01
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.
79. VIEW OF SPILLWAY THAT AUTOMATICALLY REGULATES HEIGHT OF WATER ...
79. VIEW OF SPILLWAY THAT AUTOMATICALLY REGULATES HEIGHT OF WATER IN RESERVOIR, 'BACKWATER OVERFLOW,' Print No. 233, April 1904 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA
Wireless Monitoring of the Height of Condensed Water in Steam Pipes
NASA Technical Reports Server (NTRS)
Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.
2014-01-01
A wireless health monitoring system has been developed for determining the height of water condensation in the steam pipes and the data acquisition is done remotely using a wireless network system. The developed system is designed to operate in the harsh environment encountered at manholes and the pipe high temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware includes a pulser, receiver and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of in the condensed water under high noise conditions and other environmental factors.
DOT National Transportation Integrated Search
2011-05-01
The objectives of this proposed research are to: 1. Develop a 100-year design. a. maximum water surface elevation and associated wave height, b. maximum wave height and associated water elevation atlases for South Louisiana coastal waters. 2. Obtain ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120 Equivalents...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120 Equivalents...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120 Equivalents...
Estimation of the optical errors on the luminescence imaging of water for proton beam
NASA Astrophysics Data System (ADS)
Yabe, Takuya; Komori, Masataka; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi
2018-04-01
Although luminescence imaging of water during proton-beam irradiation can be applied to range estimation, the height of the Bragg peak of the luminescence image was smaller than that measured with an ionization chamber. We hypothesized that the reasons of the difference were attributed to the optical phenomena; parallax errors of the optical system and the reflection of the luminescence from the water phantom. We estimated the errors cause by these optical phenomena affecting the luminescence image of water. To estimate the parallax error on the luminescence images, we measured the luminescence images during proton-beam irradiation using a cooled charge-coupled camera by changing the heights of the optical axis of the camera from those of the Bragg peak. When the heights of the optical axis matched to the depths of the Bragg peak, the Bragg peak heights in the depth profiles were the highest. The reflection of the luminescence of water with a black wall phantom was slightly smaller than that with a transparent phantom and changed the shapes of the depth profiles. We conclude that the parallax error significantly affects the heights of the Bragg peak and the reflection of the phantom affects the shapes of depth profiles of the luminescence images of water.
NASA Astrophysics Data System (ADS)
Boergens, Eva; Dettmering, Denise; Schwatke, Christian
2015-04-01
Since many years the numbers of in-situ gauging stations are declining. Satellite altimetry can be used as a gap-filler even over smaller inland waters like rivers. However, since altimetry measurements are not designed for inland water bodies a special data handling is necessary in order to estimate reliable water level heights over inland waters. We developed a new routine for estimating water level heights over smaller inland waters with satellite altimetry by correcting the hooking effect. The hooking effect occurs when the altimeter is not measuring in nadir before and after passing a water body due to the stronger reflectance of the water than the surrounding land surface. These off-nadir measurements, together with the motion of the satellite, lead to overlong ranges and heights declining in a parabolic shape. The vertex of this parabola is on the water surface. Therefore, by estimating the parabola we are able to determine the water level height without the need of any point over the water body itself. For estimating the parabola we only use selected measurements which are effected by the hooking effect. The applied search approach is based on the RANSAC algorithm (random sample consensus) which is a non-deterministic algorithm especially designed for finding geometric entities in point clouds with many outliers. With the hooking effect correction we are able to retrieve water level height time series from the Mekong River from Envisat and Saral/Altika high frequency data. It is possible to determine reliable time series even if the river has only a width of 500m or less. The expected annual variations are clearly depicted and the comparison of the time series with available in-situ gauging data shows a very good agreement.
Koch, George W; Sillett, Stephen C; Jennings, Gregory M; Davis, Stephen D
2004-04-22
Trees grow tall where resources are abundant, stresses are minor, and competition for light places a premium on height growth. The height to which trees can grow and the biophysical determinants of maximum height are poorly understood. Some models predict heights of up to 120 m in the absence of mechanical damage, but there are historical accounts of taller trees. Current hypotheses of height limitation focus on increasing water transport constraints in taller trees and the resulting reductions in leaf photosynthesis. We studied redwoods (Sequoia sempervirens), including the tallest known tree on Earth (112.7 m), in wet temperate forests of northern California. Our regression analyses of height gradients in leaf functional characteristics estimate a maximum tree height of 122-130 m barring mechanical damage, similar to the tallest recorded trees of the past. As trees grow taller, increasing leaf water stress due to gravity and path length resistance may ultimately limit leaf expansion and photosynthesis for further height growth, even with ample soil moisture.
Unexpected East-West effect in mesopause region SABER temperatures over El Leoncito
NASA Astrophysics Data System (ADS)
Reisin, Esteban R.; Scheer, Jürgen
2017-05-01
We find that mesopause region temperatures determined by the SABER instrument on the TIMED satellite during nocturnal overpasses at El Leoncito (31.8°S, 69.3°W) are several kelvins higher when SABER observes from the East than when it observes from the West. We distinguish between altitudes corresponding to the nominal emission heights of the OH and O2 airglow layers. The East-West temperature differences of 4.5 K obtained for OH-equivalent height, and of 3.5 K for O2-equivalent height are surprising, because an effect of the South Atlantic Anomaly on SABER temperature is unexpected. However, the ground-based data obtained with our airglow spectrometer at El Leoncito show that such a SABER artifact can be ruled out. Rather, the phenomenon is explained as a consequence of the temporal sampling of the nocturnal variation, which is mostly due to the semidiurnal tide. The monthly mean tide is strongest from April to September with a mean amplitude of 6.9 K for OH, and of 10.5 K for O2 rotational temperature, but the contribution to the East-West effect varies strongly from month to month because of differences in the temporal sampling. This mechanism should be active at other sites, as well.
Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season
NASA Astrophysics Data System (ADS)
Chandra, Sagarika; Srivastava, Nishi; Kumar, Manoj
2018-04-01
Thermodynamic structure and variability in the atmospheric boundary layer have been investigated with the help of balloon-borne GPS radiosonde over a monsoon trough station Ranchi (Lat. 23°45'N, Long. 85°43'E, India) during the summer monsoon season (June-September) for a period of 2011-2013. Virtual potential temperature gradient method is used for the determination of mixed layer height (MLH). The MLH has been found to vary in the range of 1000-1300 m during the onset, 600-900 m during the active and 1400-1750 m during the break phase of monsoon over this region. Inter-annual variations noticed in MLH could be associated with inter-annual variability in convection and rainfall prevailing over the region. Along with the MLH, the cloud layer heights are also derived from the thermodynamic profiles for the onset, active and break phases of monsoon. Cloud layer height varied a lot during different phases of the monsoon. For the determination of boundary-layer convection, thermodynamic parameter difference (δθ = θ es- θ e) between saturated equivalent potential temperature (θ es ) and equivalent potential temperature (θ e) is used. It is a good indicator of convection and indicates the intense and suppressed convection during different phases of monsoon.
Estimation of Cirrus and Stratus Cloud Heights Using Landsat Imagery
NASA Technical Reports Server (NTRS)
Inomata, Yasushi; Feind, R. E.; Welch, R. M.
1996-01-01
A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and anti-sunside of the cloud-shadow pair are apparent. The technique requires some intepretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about +/- 250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semi-automated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals.
33 CFR 159.19 - Testing equivalency.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Testing equivalency. 159.19 Section 159.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Certification Procedures § 159.19 Testing equivalency. (a) If a test...
Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François
2015-10-01
Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the Δh-Δc allocation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Quantile equivalence to evaluate compliance with habitat management objectives
Cade, Brian S.; Johnson, Pamela R.
2011-01-01
Equivalence estimated with linear quantile regression was used to evaluate compliance with habitat management objectives at Arapaho National Wildlife Refuge based on monitoring data collected in upland (5,781 ha; n = 511 transects) and riparian and meadow (2,856 ha, n = 389 transects) habitats from 2005 to 2008. Quantiles were used because the management objectives specified proportions of the habitat area that needed to comply with vegetation criteria. The linear model was used to obtain estimates that were averaged across 4 y. The equivalence testing framework allowed us to interpret confidence intervals for estimated proportions with respect to intervals of vegetative criteria (equivalence regions) in either a liberal, benefit-of-doubt or conservative, fail-safe approach associated with minimizing alternative risks. Simple Boolean conditional arguments were used to combine the quantile equivalence results for individual vegetation components into a joint statement for the multivariable management objectives. For example, management objective 2A required at least 809 ha of upland habitat with a shrub composition ≥0.70 sagebrush (Artemisia spp.), 20–30% canopy cover of sagebrush ≥25 cm in height, ≥20% canopy cover of grasses, and ≥10% canopy cover of forbs on average over 4 y. Shrub composition and canopy cover of grass each were readily met on >3,000 ha under either conservative or liberal interpretations of sampling variability. However, there were only 809–1,214 ha (conservative to liberal) with ≥10% forb canopy cover and 405–1,098 ha with 20–30%canopy cover of sagebrush ≥25 cm in height. Only 91–180 ha of uplands simultaneously met criteria for all four components, primarily because canopy cover of sagebrush and forbs was inversely related when considered at the spatial scale (30 m) of a sample transect. We demonstrate how the quantile equivalence analyses also can help refine the numerical specification of habitat objectives and explore specification of spatial scales for objectives with respect to sampling scales used to evaluate those objectives.
Method for detecting water equivalent of snow using secondary cosmic gamma radiation
Condreva, K.J.
1997-01-14
Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attenuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power. 4 figs.
Method for detecting water equivalent of snow using secondary cosmic gamma radiation
Condreva, Kenneth J.
1997-01-01
Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attentuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power.
Woodruff, D R; Meinzer, F C; Lachenbruch, B
2008-01-01
Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (K shoot) at more negative leaf water potentials (Psi l). To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. Values of Psi l at which K shoot was substantially reduced, declined with height by 0.012 Mpa m(-1). Maximum K shoot was reduced by 0.082 mmol m(-2) MPa(-1) s(-1) for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 microm(2) m(-1), 0.029 microm m(-1), 0.42 m(-1) and 5.3 microm m(-1), respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 x 10(-3) m(-1) and pit number per tracheid decreased with height by 0.07 m(-1). Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir.
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
Water availability predicts forest canopy height at the global scale.
Klein, Tamir; Randin, Christophe; Körner, Christian
2015-12-01
The tendency of trees to grow taller with increasing water availability is common knowledge. Yet a robust, universal relationship between the spatial distribution of water availability and forest canopy height (H) is lacking. Here, we created a global water availability map by calculating an annual budget as the difference between precipitation (P) and potential evapotranspiration (PET) at a 1-km spatial resolution, and in turn correlated it with a global H map of the same resolution. Across forested areas over the globe, Hmean increased with P-PET, roughly: Hmean (m) = 19.3 + 0.077*(P-PET). Maximum forest canopy height also increased gradually from ~ 5 to ~ 50 m, saturating at ~ 45 m for P-PET > 500 mm. Forests were far from their maximum height potential in cold, boreal regions and in disturbed areas. The strong association between forest height and P-PET provides a useful tool when studying future forest dynamics under climate change, and in quantifying anthropogenic forest disturbance. © 2015 John Wiley & Sons Ltd/CNRS.
Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling
NASA Astrophysics Data System (ADS)
Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.
2013-09-01
Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows that water barriers are better preserved with the new method. This research confirms the idea that topographical information, mainly the boundary locations and object classes, can enrich the height grid for this hydrological application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorjiara, Tina; Kuncic, Zdenka; Doran, Simon
2012-11-15
Purpose: To evaluate the water and tissue equivalence of a new PRESAGE{sup Registered-Sign} 3D dosimeter for proton therapy. Methods: The GEANT4 software toolkit was used to calculate and compare total dose delivered by a proton beam with mean energy 62 MeV in a PRESAGE{sup Registered-Sign} dosimeter, water, and soft tissue. The dose delivered by primary protons and secondary particles was calculated. Depth-dose profiles and isodose contours of deposited energy were compared for the materials of interest. Results: The proton beam range was found to be Almost-Equal-To 27 mm for PRESAGE{sup Registered-Sign }, 29.9 mm for soft tissue, and 30.5 mmmore » for water. This can be attributed to the lower collisional stopping power of water compared to soft tissue and PRESAGE{sup Registered-Sign }. The difference between total dose delivered in PRESAGE{sup Registered-Sign} and total dose delivered in water or tissue is less than 2% across the entire water/tissue equivalent range of the proton beam. The largest difference between total dose in PRESAGE{sup Registered-Sign} and total dose in water is 1.4%, while for soft tissue it is 1.8%. In both cases, this occurs at the distal end of the beam. Nevertheless, the authors find that PRESAGE{sup Registered-Sign} dosimeter is overall more tissue-equivalent than water-equivalent before the Bragg peak. After the Bragg peak, the differences in the depth doses are found to be due to differences in primary proton energy deposition; PRESAGE{sup Registered-Sign} and soft tissue stop protons more rapidly than water. The dose delivered by secondary electrons in the PRESAGE{sup Registered-Sign} differs by less than 1% from that in soft tissue and water. The contribution of secondary particles to the total dose is less than 4% for electrons and Almost-Equal-To 1% for protons in all the materials of interest. Conclusions: These results demonstrate that the new PRESAGE{sup Registered-Sign} formula may be considered both a tissue- and water-equivalent 3D dosimeter for a 62 MeV proton beam. The results further suggest that tissue-equivalent thickness may provide better dosimetric and geometric accuracy than water-equivalent thickness for 3D dosimetry of this proton beam.« less
NASA Astrophysics Data System (ADS)
Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang
2018-03-01
Tropical cyclones (TCs) and sea level rise (SLR) cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7-11.0 m; significant wave period at the outer ocean: SWPo = 13-15 s) and SLR (0.24-0.98 m). To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr) will increase from 1.05-1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs) will increase from 0.86-2.10 m at present to 1.19-3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at ˜ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of costal damages. Our results showed that a healthy reef will reduce a maximum of 0.44 m of the SWHr. According to analysis of drilled core, corymbose Acropora corals will be key to reducing the risks, and 2.6-5.8 kg CaCO3 m-2 yr-1, equivalent to > 8 % of coral cover, will be required to keep a healthy reef by 2100. This study highlights that the maintaining reef growth (as a function of coral cover) in the future is effective in reducing the risk of coastal damage arising from wave action. Although the present study focuses on Melekeok fringing reef, many coral reefs are in the same situation under conditions of intensified TCs and SLR, and therefore the results of this study are applicable to other reefs. These researches are critical in guiding policy development directed at disaster prevention for small island nations and for developing and developed countries.
Khaki, M; Forootan, E; Kuhn, M; Awange, J; Papa, F; Shum, C K
2018-06-01
Climate change can significantly influence terrestrial water changes around the world particularly in places that have been proven to be more vulnerable such as Bangladesh. In the past few decades, climate impacts, together with those of excessive human water use have changed the country's water availability structure. In this study, we use multi-mission remotely sensed measurements along with a hydrological model to separately analyze groundwater and soil moisture variations for the period 2003-2013, and their interactions with rainfall in Bangladesh. To improve the model's estimates of water storages, terrestrial water storage (TWS) data obtained from the Gravity Recovery And Climate Experiment (GRACE) satellite mission are assimilated into the World-Wide Water Resources Assessment (W3RA) model using the ensemble-based sequential technique of the Square Root Analysis (SQRA) filter. We investigate the capability of the data assimilation approach to use a non-regional hydrological model for a regional case study. Based on these estimates, we investigate relationships between the model derived sub-surface water storage changes and remotely sensed precipitations, as well as altimetry-derived river level variations in Bangladesh by applying the empirical mode decomposition (EMD) method. A larger correlation is found between river level heights and rainfalls (78% on average) in comparison to groundwater storage variations and rainfalls (57% on average). The results indicate a significant decline in groundwater storage (∼32% reduction) for Bangladesh between 2003 and 2013, which is equivalent to an average rate of 8.73 ± 2.45mm/year. Copyright © 2018 Elsevier B.V. All rights reserved.
Associations between birth weight and later body composition: evidence from the 4-component model.
Chomtho, Sirinuch; Wells, Jonathan C K; Williams, Jane E; Lucas, Alan; Fewtrell, Mary S
2008-10-01
Higher birth weight is associated with higher body mass index, traditionally interpreted as greater fatness or obesity, in later life. However, its relation with individual body-composition components and fat distribution remains unclear. We investigated associations between birth weight and later fat mass (FM), fat-free mass (FFM), and fat distribution. Body composition was assessed by the criterion 4-component model in 391 healthy children [mean (+/-SD) age, 11.7 +/- 4.2 y; 188 boys]. FM and FFM were adjusted for height (FMI = FM/height(2); FFMI = FFM/height(2)) and were expressed as SD scores (SDS). Findings were compared between the 4-component and simpler methods. Birth weight was positively associated with height in both sexes and was significantly positively associated with FFMI in boys, equivalent to a 0.18 SDS (95% CI: 0.04, 0.32) increase in FFMI per 1 SDS increase in birth weight. These associations were independent of puberty, physical activity, social class, ethnicity, and parental body mass index. Birth weight was not significantly related to percentage fat, FMI, or trunk FMI in either sex. Equivalent analyses using simpler methods showed a trend for a positive relation between birth weight and FMI in boys that became nonsignificant after adjusting for confounders. FFMI in later life in males is influenced by birth weight, a proxy for prenatal growth, but evidence for fetal programming of later FM or central adiposity is weak. Different body-composition techniques and data interpretation can influence results and should be considered when comparing studies.
Coping with gravity: the foliar water relations of giant sequoia.
Williams, Cameron B; Reese Næsborg, Rikke; Dawson, Todd E
2017-10-01
In tall trees, the mechanisms by which foliage maintains sufficient turgor pressure and water content against height-related constraints remain poorly understood. Pressure-volume curves generated from leafy shoots collected crown-wide from 12 large Sequoiadendron giganteum (Lindley) J. Buchholz (giant sequoia) trees provided mechanistic insights into how the components of water potential vary with height in tree and over time. The turgor loss point (TLP) decreased with height at a rate indistinguishable from the gravitational potential gradient and was controlled by changes in tissue osmotica. For all measured shoots, total relative water content at the TLP remained above 75%. This high value has been suggested to help leaves avoid precipitous declines in leaf-level physiological function, and in giant sequoia was controlled by both tissue elasticity and the balance of water between apoplasm and symplasm. Hydraulic capacitance decreased only slightly with height, but importantly this parameter was nearly double in value to that reported for other tree species. Total water storage capacity also decreased with height, but this trend essentially disappeared when considering only water available within the typical range of water potentials experienced by giant sequoia. From summer to fall measurement periods we did not observe osmotic adjustment that would depress the TLP. Instead we observed a proportional shift of water into less mobile apoplastic compartments leading to a reduction in hydraulic capacitance. This collection of foliar traits allows giant sequoia to routinely, but safely, operate close to its TLP, and suggests that gravity plays a major role in the water relations of Earth's largest tree species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Irigoyen-Camacho, M E; García Pérez, A; Mejía González, A; Huizar Alvarez, R
2016-01-15
Poor water quality and under nutrition are important factors affecting the health of many communities in developing countries. The aims of this study were: i) to describe the fluoride water concentration and the hydrogeological conditions in a region of a state located in the central in Mexico ii) to measure the association between undernutrition and dental fluorosis in children living in communities with different drinking water fluoride concentrations in a state located in the central region of Mexico. Field work was performed in the region to identify the prevailing groundwater flow characteristics and water wells were sampled to analyze water fluoride concentration. Children were selected from three communities that had different drinking water fluoride concentrations (i.e., 0.56, 0.70 and 1.60 mg/l). Fluoridated salt was available in these communities. The Thylstrup-Fejerskov Index (TFI) was used to assess dental fluorosis. Categories four or higher of this index involve changes in the entire tooth surface (ITF ≥ 4). The weight and height of the children were measured. The assessment of undernutrition was based on the World Health Organization criteria: children were classified as being at risk of low-height (Height-for-Age Z score < − 1.0 SD) and having low-height (Height-for-Age Z score < − 2.0 SD) for age and sex, the same cutoff points of the Z score were used to classify "risk of low-weight" and" low-weight children". In the region the mineralization of the water captured by the wells is the result of a reaction with volcanic materials. The water fluoride concentration in the region ranged from 0.2 to 1.6 mg/l. A total of 734 schoolchildren participated in the study. The percentage of children in fluorosis categories (ITF ≥ 4) was 15.9%, 21.1% of the children were at risk of low height-for-age, and 8.0% had low height-for-age. The percentage of children with fluorosis (ITF ≥ 4) was 6.3%, 9.1% and 31.9% (p ˂ 0.001) and low high-for-age was 2.9%, 2.5% and 8.4% (p ˂ 0.001), for the communities with F concentrations of 0.56 mg/l, 0.70 mg/l and 1.6 mg/l, respectively. The logistic regression model showed an association between dental fluorosis (TFI ≥ 4) and low height-for-age (OR 2.09, p = 0.022) after adjusting for sex, number of teeth erupted, source of drinking water, use of fluoridated toothpaste and tap water fluoride concentration in the community. Children with low height-for-age were more likely to have dental fluorosis in the TFI categories that affect the entire tooth surface. The results suggest that subpopulations with chronic undernutrition are more susceptible to dental fluorosis.
Measuring orthometric water heights from lightweight Unmanned Aerial Vehicles (UAVs)
NASA Astrophysics Data System (ADS)
Bandini, Filippo; Olesen, Daniel; Jakobsen, Jakob; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter
2016-04-01
A better quantitative understanding of hydrologic processes requires better observations of hydrological variables, such as surface water area, water surface level, its slope and its temporal change. However, ground-based measurements of water heights are restricted to the in-situ measuring stations. Hence, the objective of remote sensing hydrology is to retrieve these hydraulic variables from spaceborne and airborne platforms. The forthcoming Surface Water and Ocean Topography (SWOT) satellite mission will be able to acquire water heights with an expected accuracy of 10 centimeters for rivers that are at least 100 m wide. Nevertheless, spaceborne missions will always face the limitations of: i) a low spatial resolution which makes it difficult to separate water from interfering surrounding areas and a tracking of the terrestrial water bodies not able to detect water heights in small rivers or lakes; ii) a limited temporal resolution which limits the ability to determine rapid temporal changes, especially during extremes. Unmanned Aerial Vehicles (UAVs) are one technology able to fill the gap between spaceborne and ground-based observations, ensuring 1) high spatial resolution; 2) tracking of the water bodies better than any satellite technology; 3) timing of the sampling which only depends on the operator 4) flexibility of the payload. Hence, this study focused on categorizing and testing sensors capable of measuring the range between the UAV and the water surface. The orthometric height of the water surface is then retrieved by subtracting the height above water measured by the sensors from the altitude above sea level retrieved by the onboard GPS. The following sensors were tested: a) a radar, b) a sonar c) a laser digital-camera based prototype developed at Technical University of Denmark. The tested sensors comply with the weight constraint of small UAVs (around 1.5 kg). The sensors were evaluated in terms of accuracy, maximum ranging distance and beam divergence. The sonar demonstrated a maximum ranging distance of 10 m, the laser prototype of 15 m, whilst the radar is potentially able to measure the range to water surface from a height up to 50 m. After numerous test flights above a lake with an approximately horizontal water surface, estimation of orthometric water height error, including overall accuracy of the system GPS-sensors, was possible. The RTK GPS system proved able to deliver a relative vertical accuracy better than 5-7 cm. The radar confirmed to have the best reliability with an accuracy which is generally few cm (0.7-1.3% of the ranging distance). Whereas the accuracy of the sonar and laser varies from few cm (0.7-1.6% of the ranging distance) to some tens of cm because sonar measurements are generally influenced by noise and turbulence generated by the propellers of the UAV and the laser prototype is affected by drone vibrations and water waviness. However, the laser prototype demonstrated the lowest beam divergence, which is required to measure unconventional remote sensing targets, such as sinkholes and Mexican cenotes, and to clearly distinguish between rivers and interfering surroundings, such as riparian vegetation.
46 CFR 160.171-9 - Construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... allow the wearer to jump from a height of at least 4.5 m into the water without injury and without... so that, following a jump from a height of not less than 4.5 m into the water, there is no undue...
CryoSat-2 SAR and SARin Inland Water Heights from the CRUCIAL project
NASA Astrophysics Data System (ADS)
Benveniste, J.; Restano, M.; Ambrózio, A.; Moore, P.; Birkinshaw, S.
2017-12-01
CRUCIAL was an ESA/STSE funded project investigating innovative land and inland water applications from CryoSat-2 with a forward-look component to the Sentinel-3 and Jason-CS/Sentinel-6 missions. The high along-track sampling of CryoSat-2 in its SAR and SARin modes offers the opportunity to recover high frequency signals over inland waters. A methodology was developed to process the FBR L1A Doppler beams to form a waveform product using ground cell gridding, beam steering and beam stacking. Inland water heights from CryoSat-2 are derived by using a set of empirical retrackers formulated for inland water applications. Results of the processing strategy include a comparison of waveforms and heights from the burst echoes (80 m along-track) and from multi-look waveforms (320 m along-track). SAR and SARin FBR data are available for the Amazon, Brahmaputra and Mekong for 2011-2015. FBR SAR results are compared against stage data from the nearest gauge. Heights from Tonlé Sap are also compared against Jason-2 data from the United States Department of Agriculture. A strategy to select the number of multi-looks over rivers was designed based on the rms of heights across Tonlé Sap. Comparisons include results from the empirical retrackers and from waveforms and heights obtained via ESA's Grid Processing on Demand (G-POD/SARvatore) using the SAMOSA2 retracker. Results of FBR SARin processing for the Amazon and Brahmaputra are presented including comparison of heights from the two antennae, extraction of slope of the ground surface and validation against ground data where appropriate.
Predictive Demi-Span Equations for Estimation of Stature in Aged Mexican Americans.
Siordia, C; Panas, L J; Markides, K
2012-01-01
To develop demi-span height predictive equations for older Mexican Americans. Cross-sectional study. Data files housed by the Sociomedical Division in the department of Community Health and Preventive Medicine at the University of Texas Medical Branch in Galveston, Texas. 1,078 (700 females, 378 males) Southwest U.S.A. community-dwelling older Mexican Americans, aged 80-102 years. Demi-span, height, weight, BMI, demi-span equivalent height (DSEH), DSEH derived BMI (DS-BMI). Bland and Altman agreement analysis on: height and DSEH; BMI and DS-BMI. Paired t-test comparing derived and actual measures by single-age units and sex. DSEH with Bassey equations (DSEHBassey) are significantly different than actual measures. DSEHBassey derived BMIs (DSBasseyBMIs) are significantly different than BMIs computed from actual measures. DSEH with Mexican equations (DSEHMexican) are not significantly different than real measures. DSEHMexican derived BMIs (DSMexicanBMIs) are not significantly different than real measures. These findings provide evidence that both DSEHBassey and DSBasseyBMIs estimates are significantly different from measured height and BMI. Both DSEHMexican and DSMexicanBMIs estimates are shown to produce similar height and BMI estimates to those obtained from real measures. .
Oldham, Alana R; Sillett, Stephen C; Tomescu, Alexandru M F; Koch, George W
2010-07-01
Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. • To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). • Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. • That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.
Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes.
de Castro, C P; Luković, M; Pompanin, G; Andrade, R F S; Herrmann, H J
2018-03-27
Motivated by the fact that many physical landscapes are characterized by long-range height-height correlations that are quantified by the Hurst exponent H, we investigate the statistical properties of the iso-height lines of correlated surfaces in the framework of Schramm-Loewner evolution (SLE). We show numerically that in the continuum limit the external perimeter of a percolating cluster of correlated surfaces with H ∈ [-1, 0] is statistically equivalent to SLE curves. Our results suggest that the external perimeter also retains the Markovian properties, confirmed by the absence of time correlations in the driving function and the fact that the latter is Gaussian distributed for any specific time. We also confirm that for all H the variance of the winding angle grows logarithmically with size.
Derivation of cloud-free-region atmospheric motion vectors from FY-2E thermal infrared imagery
NASA Astrophysics Data System (ADS)
Wang, Zhenhui; Sui, Xinxiu; Zhang, Qing; Yang, Lu; Zhao, Hang; Tang, Min; Zhan, Yizhe; Zhang, Zhiguo
2017-02-01
The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split window (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.
NASA Astrophysics Data System (ADS)
Soomere, T.
2010-07-01
Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.
Lidar measurements of thermal structure
NASA Technical Reports Server (NTRS)
Jenkins, D. B.; Wareing, D. P.; Thomas, L.; Vaughan, G.
1986-01-01
Rayleigh backscatter observations at 532 nm and 355 nm of relative atmospheric density above Aberystwyth on a total of 93 nights between Dec. 1982 and Feb. 1985 were used to derive the height variation of temperature in the upper stratosphere and mesosphere. Preliminary results for height up to about 25 km were also obtained from observations of Raman backscattering from nitrogen molecules. Comparisons were carried out for stratospheric heights with satellite borne measurements; good agreement was found between equivalent black body temperatures derived from the lidar observations and those obtained from nadir measurements in three channels of the stratosphere sounder units on NOAA satellites; the lidar based atmospheric temperatures have shown general agreement with but a greater degree of structure than the limb sounding measurements obtained using the SAMS experiment on the NOAA-7 satellite. In summer, stratospheric and mesospheric temperatures showed a smooth height variation similar to that of the CIRA model atmosphere. In contrast, the winter data showed a great variability with height, and marked temperature changes both from night to night and within a given night.
Sorokowski, Piotr; Sorokowska, Agnieszka; Butovskaya, Marina; Stulp, Gert; Huanca, Tomas; Fink, Bernhard
2015-06-16
Body height influences human mate preferences and choice. A typical finding in Western societies is that women prefer men who are taller than themselves and, equivalently, men prefer women who are shorter than themselves. However, recent reports in non-Western societies (e.g., the Himba in Namibia) challenge the view on the universality of such preferences. Here we report on male and female height preferences in two non-Western populations--the Hadza (Tanzania) and the Tsimane' (Bolivia)--and the relationships between body height preferences and the height of actual partners. In the Hadza, most individuals preferred a sexual dimorphism in stature (SDS) with the man being much taller than the woman. Preferences for SDS and actual partner SDS were positively and significantly correlated in both men and women, suggesting that people who preferred larger height differences also had larger height differences with their partners. In the Tsimane', the majority of men preferred an SDS with the man being taller than the woman, but women did not show such a preference. Unlike in the Hadza, SDS preference was not significantly correlated to actual partner SDS. We conclude that patterns of height preferences and choices in the Hadza and Tsimane' are different than those observed in Western societies, and discuss possible causes for the observed differences between non-Western and Western societies.
NASA Astrophysics Data System (ADS)
Steffen, K.; Zwally, J. H.; Rial, J. A.; Behar, A.; Huff, R.
2006-12-01
The Greenland ice sheet experienced surface melt increase over the past 15 years with record melt years in 1987, 1991, 1998, 2002 and 2005. For the western part of the ice sheet the melt area increased by 30 percent (1979-2005). Monthly mean air temperatures increased in spring and fall by 0.23 deg. C per year since 1990, extending the length of melt and total ablation. Winter air temperatures increased by as much as 0.5 deg. C per year during the past 15 years. The equilibrium line altitude ranged between 400 and 1530 m above sea level at 70 deg. north along the western slope of the ice sheet for the past 15 years, equaling a horizontal distance of 100 km. The ELA has been below the Swiss Camp (1100 m elevation) in the nineties, and since 1997 moved above the Swiss Camp height. An increase in ELA leads to an increase in melt water run-off which has been verified by regional model studies (high-resolution re-analysis). Interannual variability of snow accumulation varies from 0.3 to 2.0 m, whereas snow and ice ablation ranges from 0 to 1.5 m water equivalent at Swiss Camp during 1990-2005. A GPS network (10 stations) monitors ice velocity, acceleration, and surface height change at high temporal resolution throughout the year. The network covers a range of 500 and 1500 m above sea level, close to the Ilulissat Icefjord World Heritage region. The ice sheet continued to accelerate during the height of the melt season with short-term velocity increases up to 100 percent, and vertical uplift rates of 0.5 m. There seems to be a good correlation between the change in ice velocity and total surface melt, suggesting that melt water penetrates to great depth through moulins and cracks, lubricating the bottom of the ice sheet. A new bore-hole video movie will be shown from a 110 m deep moulin close to Swiss Camp. A PASSCAL array of 10 portable, 3-component seismic stations deployed around Swiss Camp from May to August 2006 detected numerous microearthquakes within the ice sheet and possibly at its contact with the underlying bedrock some 60 km to the south of Swiss Camp. The seismic data collected will be discussed.
30 CFR 35.20 - Autogenous-ignition temperature test.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20... (alundum or equivalent) cylinder 5 inches in internal diameter and 5 inches in height; a transite-ring top... is obtained. (d) Appraisal of test. A fluid shall be considered fire-resistant, according to the test...
30 CFR 35.20 - Autogenous-ignition temperature test.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20... (alundum or equivalent) cylinder 5 inches in internal diameter and 5 inches in height; a transite-ring top... is obtained. (d) Appraisal of test. A fluid shall be considered fire-resistant, according to the test...
30 CFR 35.20 - Autogenous-ignition temperature test.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20... (alundum or equivalent) cylinder 5 inches in internal diameter and 5 inches in height; a transite-ring top... is obtained. (d) Appraisal of test. A fluid shall be considered fire-resistant, according to the test...
30 CFR 35.20 - Autogenous-ignition temperature test.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20... (alundum or equivalent) cylinder 5 inches in internal diameter and 5 inches in height; a transite-ring top... is obtained. (d) Appraisal of test. A fluid shall be considered fire-resistant, according to the test...
16 CFR 1507.12 - Multiple-tube fireworks devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 1507.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... the inclined plane (not including the portion of the plane below the mechanical stop) shall be at... equivalent instrument. The mechanical stop on the inclined plane shall be 1/16 inches (1.6 mm) in height and...
Dynamic Heights in the Great Lakes using OPUS Projects
NASA Astrophysics Data System (ADS)
Roman, D. R.; Li, X.
2015-12-01
The U.S. will be implementing new geometric and vertical reference frames in 2022 to replace the North American Datum of 1983 (NAD 83) and the North American Vertical Datum of 1988 (NAVD 88), respectively. Less emphasized is the fact that a new dynamic height datum will also be defined about the same time to replace the International Great Lakes Datum of 1985 (IGLD 85). IGLD 85 was defined concurrent with NAVD 88 and used the same geopotential values. This paper focuses on the use of an existing tool for determining geometric coordinates and a developing geopotential model as a means of determining dynamic heights. The Online Positioning User Service (OPUS) Projects (OP) is an online tool available from the National Geodetic Survey (NGS) for use in developing geometric coordinates from simultaneous observations at multiple sites during multiple occupations. With observations performed at the water level gauges throughout the Great Lakes, the geometric coordinates of the mean water level surface can be determined. NGS has also developed the xGEOID15B model from satellite, airborne and surface gravity data. Using the input geometric coordinates determined through OP, the geopotential values for the water surface at the water level stations around the Great Lakes were determined using the xGEOID15B model. Comparisons were made between water level sites for each Lake as well as to existing IGLD 85 heights. A principal advantage to this approach is the ability to generate new water level control stations using OP, while maintaining the consistency between orthometric and dynamic heights by using the same gravity field model. Such a process may provide a means for determining dynamic heights for a future Great Lakes Datum.
Trawling bats exploit an echo-acoustic ground effect
Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M.; Wiegrebe, Lutz
2013-01-01
A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above. PMID:23576990
Reducing errors in the GRACE gravity solutions using regularization
NASA Astrophysics Data System (ADS)
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.
2012-09-01
The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth's monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003-Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4 solutions (RL04) from the Center for Space Research (CSR). Post-fit residual analysis shows that the regularized solutions fit the data to within the noise level of GRACE. A time series of filtered hydrological model is used to confirm that signal attenuation for basins in the Total Runoff Integrating Pathways (TRIP) database over 320 km radii is less than 1 cm equivalent water height RMS, which is within the noise level of GRACE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syme, Alasdair
2016-08-15
Purpose: To use Monte Carlo simulations to optimize the design of an organic field effect transistor (OFET) to maximize water-equivalence across the diagnostic and therapeutic photon energy ranges. Methods: DOSXYZnrc was used to simulate transport of mono-energetic photon beams through OFETs. Dose was scored in the dielectric region of devices and used for evaluating the response of the device relative to water. Two designs were considered: 1. a bottom-gate device on a substrate of polyethylene terephthalate (PET) with an aluminum gate, a dielectric layer of either PMMA or CYTOP (a fluorocarbon) and an organic semiconductor (pentacene). 2. a symmetric bilayermore » design was employed in which two polymer layers (PET and CYTOP) were deposited both below the gate and above the semiconductor to improve water-equivalence and reduce directional dependence. The relative thickness of the layers was optimized to maximize water-equivalence. Results: Without the bilayer, water-equivalence was diminished relative to OFETs with the symmetric bilayer at low photon energies (below 80 keV). The bilayer’s composition was designed to have one layer with an effective atomic number larger than that of water and the other with an effective atomic number lower than that of water. For the particular materials used in this study, a PET layer 0.1mm thick coupled with a CYTOP layer of 900 nm provided a device with a water-equivalence within 3% between 20 keV and 5 MeV. Conclusions: organic electronic devices hold tremendous potential as water-equivalent dosimeters that could be used in a wide range of applications without recalibration.« less
Chen, Shuwen; Xu, Jingcheng; Liu, Jia; Wei, Qiaoling; Li, Guangming; Huang, Xiangfeng
2014-01-01
Eutrophication of raw water results in outbreaks of algae, which hinders conventional water treatment. In this study, high density microbubble layers combined with micro-flocculation was adopted to remove algae from urban landscape water, and the effects of pressure, hydraulic loading, microbubble layer height and flocculation dosage on the removal efficiency for algae were studied. The greatest removal efficiency for algae, chemical oxygen demand, nitrogen and phosphorus was obtained at 0.42 MPa with hydraulic loading at 5 m/h and a flocculation dosage of 4 mg/L using a microbubble layer with a height of 130 cm. Moreover, the size, clearance distance and concentration of microbubbles were found to be affected by pressure and the height of the microbubble layer. Based on the study, this method was an alternative for algae separation from urban landscape water and water purification.
NASA Astrophysics Data System (ADS)
Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo
An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.
Lourenço, A; Wellock, N; Thomas, R; Homer, M; Bouchard, H; Kanai, T; MacDougall, N; Royle, G; Palmans, H
2016-11-07
Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor [Formula: see text] was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11 × 11 cm 2 , to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured [Formula: see text] correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.
NASA Astrophysics Data System (ADS)
Cenci, Luca; Boni, Giorgio; Pulvirenti, Luca; Gabellani, Simone; Gardella, Fabio; Squicciarino, Giuseppe; Pierdicca, Nazzareno; Benedetto, Catia
2016-04-01
In a reservoir, water level monitoring is important for emergency management purposes. This information can be used to estimate the degree of filling of the water body, thus helping decision makers in flood control operations. Furthermore, if assimilated in hydrological models and coupled with rainfall forecasts, this information can be used for flood forecast and early warning. In many cases, water level is not known (e.g. data-scarce environments), or not shared by operators. Remote sensing may allow overcoming these limitations, enabling its estimation. The objective of this work is to present the Shoreline to Height (S2H) algorithm, developed to retrieve the height of the water stored in reservoirs from satellite images. To this aim, some auxiliary data are needed: a DEM and the maximum/minimum height that can be reached by the water. In data-scarce environments, these information can be easily obtained on the Internet (e.g. free, worldwide DEM and design data for artificial reservoirs). S2H was tested with different satellite data, both optical and SAR (Landsat and Cosmo SkyMed®-CSK®) in order to assess the impact of different sensors on the final estimates. The study area was the Place-Moulin Lake (Valle d'Aosta-VdA, Italy), where it is present a monitoring network that can provide reliable ground-truths for validating the algorithm and assessing its accuracy. When the algorithm was developed, it was assumed to be in absence of any "official"-auxiliary data. Therefore, two DEMs (SRTM 1 arc-second and ASTER GDEM) were used to evaluate their performances. The maximum/minimum water height values were found on the website of VdA Region. The S2H is based on three steps: i) satellite data preprocessing (Landsat: atmospheric correction; CSK®: geocoding and speckle filtering); ii) water mask generation (using a thresholding and region growing algorithm) and shoreline extraction; iii) retrieval of the shoreline height according to the reference DEMs (adopting a statistical approach). The algorithm was tested for different water heights and results were compared against ground-truths. Findings showed that the combination CSK®-SRTM provided more reliable results. It was also found that the overall quality of the estimates increases as the water height increases, reaching an accuracy up to some centimetres. This result is particularly interesting for flood control applications, where it is important to be accurate when the reservoir's degree of filling is high. The potentialities of S2H for operational hydrology purposes were tested in a real-case simulation, in which the river discharge's prediction downstream of the dam was needed for flood risk management purposes. The water height value retrieved with S2H was assimilated within a semi-distributed, event-based, hydrological model (DRiFt) by using a simple direct insertion algorithm. DRiFt is usually run in operative way on the reservoir by using ground-truths as input data. The result of the data assimilation experiment was compared with the "real", operative run of the model. Findings showed a high agreement between the two simulations, proving the utility/quality of the S2H algorithm. "Project carried out using CSK® Products, © of the Italian Space Agency (ASI), delivered under a license to use by ASI."
A statistical estimation of Snow Water Equivalent coupling ground data and MODIS images
NASA Astrophysics Data System (ADS)
Bavera, D.; Bocchiola, D.; de Michele, C.
2007-12-01
The Snow Water Equivalent (SWE) is an important component of the hydrologic balance of mountain basins and snow fed areas in general. The total cumulated snow water equivalent at the end of the accumulation season represents the water availability at melt. Here, a statistical methodology to estimate the Snow Water Equivalent, at April 1st, is developed coupling ground data (snow depth and snow density measurements) and MODIS images. The methodology is applied to the Mallero river basin (about 320 km²) located in the Central Alps, northern Italy, where are available 11 snow gauges and a lot of sparse snow density measurements. The application covers 7 years from 2001 to 2007. The analysis has identified some problems in the MODIS information due to the cloud cover and misclassification for orographic shadow. The study is performed in the framework of AWARE (A tool for monitoring and forecasting Available WAter REsource in mountain environment) EU-project, a STREP Project in the VI F.P., GMES Initiative.
Consistent Pl Analysis of Aqueous Uranium-235 Critical Assemblies
NASA Technical Reports Server (NTRS)
Fieno, Daniel
1961-01-01
The lethargy-dependent equations of the consistent Pl approximation to the Boltzmann transport equation for slowing down neutrons have been used as the basis of an IBM 704 computer program. Some of the effects included are (1) linearly anisotropic center of mass elastic scattering, (2) heavy element inelastic scattering based on the evaporation model of the nucleus, and (3) optional variation of the buckling with lethargy. The microscopic cross-section data developed for this program covered 473 lethargy points from lethargy u = 0 (10 Mev) to u = 19.8 (0.025 ev). The value of the fission neutron age in water calculated here is 26.5 square centimeters; this value is to be compared with the recent experimental value given as 27.86 square centimeters. The Fourier transform of the slowing-down kernel for water to indium resonance energy calculated here compared well with the Fourier transform of the kernel for water as measured by Hill, Roberts, and Fitch. This method of calculation has been applied to uranyl fluoride - water solution critical assemblies. Theoretical results established for both unreflected and fully reflected critical assemblies have been compared with available experimental data. The theoretical buckling curve derived as a function of the hydrogen to uranium-235 atom concentration for an energy-independent extrapolation distance was successful in predicting the critical heights of various unreflected cylindrical assemblies. The critical dimensions of fully water-reflected cylindrical assemblies were reasonably well predicted using the theoretical buckling curve and reflector savings for equivalent spherical assemblies.
The shallow water equation and the vorticity equation for a change in height of the topography.
Da, ChaoJiu; Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian
2017-01-01
We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography.
The shallow water equation and the vorticity equation for a change in height of the topography
Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian
2017-01-01
We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography. PMID:28591129
NASA Astrophysics Data System (ADS)
Marghany, Maged; Ibrahim, Zelina; Van Genderen, Johan
2002-11-01
The present work is used to operationalize the azimuth cut-off concept in the study of significant wave height. Three ERS-1 images have been used along the coastal waters of Terengganu, Malaysia. The quasi-linear transform was applied to map the SAR wave spectra into real ocean wave spectra. The azimuth cut-off was then used to model the significant wave height. The results show that azimuth cut-off varied with the different period of the ERS-1 images. This is because of the fact that the azimuth cut-off is a function of wind speed and significant wave height. It is of interest to find that the significant wave height modeled from azimuth cut-off is in good relation with ground wave conditions. It can be concluded that ERS-1 can be used as a monitoring tool in detecting the significant wave height variation. The azimuth cut-off can be used to model the significant wave height. This means that the quasi-linear transform could be a good application to significant wave height variation during different seasons.
NASA Technical Reports Server (NTRS)
Miller, I. M.
1978-01-01
A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.
Water-level surface in the Chicot equivalent aquifer system in southeastern Louisiana, 2009
Tomaszewski, Dan J.
2011-01-01
The Chicot equivalent aquifer system is an important source of freshwater in southeastern Louisiana. In 2005, about 47 million gallons per day (Mgal/d) were withdrawn from the Chicot equivalent aquifer system in East Baton Rouge, East Feliciana, Livingston, Tangipahoa, St. Helena, St. Tammany, Washington, and West Feliciana Parishes. Concentrated withdrawals exceeded 5 Mgal/d in Bogalusa, the city of Baton Rouge, and in northwestern East Baton Rouge Parish. In the study area, about 30,000 wells screened in the Chicot equivalent aquifer system were registered with the Louisiana Department of Transportation and Development (LaDOTD). These wells were constructed for public-supply, industry, irrigation, and domestic uses. Most of the wells were registered as domestic-use wells and are small-diameter, low-yielding wells. Total withdrawal from the Chicot equivalent aquifer system for domestic use was estimated to be 12 Mgal/d in 2005. This report documents the 2009 water-level surface of the Chicot equivalent aquifer system in southeastern Louisiana. The report also shows differences in water-level measurements for the years 1991 and 2009 at selected sites. Understanding changes and trends in water levels is important for continued use, planning, and management of groundwater resources. The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, conducted this study of the water-level surface of the Chicot equivalent aquifer system as part of an ongoing effort to monitor groundwater levels in aquifers in Louisiana.
NASA Astrophysics Data System (ADS)
Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.
2015-12-01
Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.
Effect of Arctic Amplification on Design Snow Loads in Alaska
2016-09-01
snow water equivalent UFC Unified Facilities Criteria UTC Coordinated Universal Time Keywords: Alaska, Arctic amplification, climate change...extreme value analysis, snow loads, snow water equivalent , SWE Acknowledgements: This work was conducted with support from the Strategic... equivalent (SWE) of the snowpack. We acquired SWE data from a number of sources that provide automatic or manual observations, reanalysis data, or
Gong, Ying; Zhang, Xiaofei; He, Li; Yan, Qiuli; Yuan, Fang; Gao, Yanxiang
2015-03-01
Polyphenols was extracted with subcritical water from the sea buckthorn seed residue (after oil recovery), and the extraction parameters were optimized using response surface methodology (RSM). The independent processing variables were extraction temperature, extraction time and the ratio of water to solid. The optimal extraction parameters for the extracts with highest ABTS radical scavenging activity were 120 °C, 36 min and the water to solid ratio of 20, and the maximize antioxidant capacity value was 32.42 mmol Trolox equivalent (TE)/100 g. Under the optimal conditions, the yield of total phenolics, total flavonoids and proanthocyanidins was 36.62 mg gallic acid equivalents (GAE)/g, 19.98 mg rutin equivalent (RE)/g and 10.76 mg catechin equivalents (CE)/g, respectively.
David R. Woodruff; Frederick C. Meinzer
2011-01-01
We analyzed concentrations of starch, sucrose, glucose and fructose in upper branch wood, foliage and trunk sapwood of Douglas-fir trees in height classes ranging from ~2 to ~57 m. Mean concentrations of non-structural carbohydrates (NSC) for all tissues were highest in the tallest height class and lowest in the lowest height class, and height-related trends in NSC...
Characterizing Physical Habitat of a Mixed-Land Use Stream of the Central U.S.
NASA Astrophysics Data System (ADS)
Hooper, L. W.; Hubbart, J. A.; Hosmer, G. W.; Hogan, M. L.
2014-12-01
Land use altered flow regime impacts on aquatic biological habitat can be quantified by means of a physical habitat assessment (PHA). PHA metrics include (but are not limited to) channel substrate, width and wetted width, bank slope, and bank height. Hinkson Creek, located in Boone County, Missouri, was placed on the Missouri Department of Natural Resources list of impaired waters (Section 303d) of the Clean Water Act in 1998. A physical habitat assessment of Hinkson Creek in 2014 provides quantitative data characterizing the current potential of Hinkson Creek to fully support aquatic life, specifically macroinvertebrates (a goal for delisting). The PHA was conducted every 100m of Hinkson Creek (56km). Results from the lower 87.9% (contiguous) of the drainage indicate channel width ranged from a maximum of 70m to a minimum of 4.6m, with a mean width of 17m and standard deviation (SD) of 7.4m. Bankfull width ranged from a maximum of 74m to a minimum of 8.8m (mean = 26.1m, SD = 8.2). Bank height ranged from a maximum of 5.8m to a minimum of 0.4m (mean = 2.9m, SD = 1m). Mean bank angle for the left and right banks was nearly equivalent (left = 33.8°, right = 34.6°). Bank height and bankfull width increased with increasing drainage distance. Trench pools were the dominant channel unit at 71.4% of the sample transects, while riffles were present at 16.6%. Analysis of stream channel bed composition was conducted using a modified Wolman pebble count survey at each site and Thalweg profile between sites. Size class results were quantified as follows: 56.1% fines (16mm or less), 36.2% intermediate (16mm to 1000mm, plus vegetation and wood), 8.7% large/bedrock (greater than 1000mm, riprap and bedrock). Study results provide science-based information to better equip land planners in Hinkson Creek watershed and similar multi-use watersheds of the central United States for future management decisions and development scenarios.
Signal Processing for Determining Water Height in Steam Pipes with Dynamic Surface Conditions
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph
2015-01-01
An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.
Hirani, Vasant; Tabassum, Faiza; Aresu, Maria; Mindell, Jennifer
2010-08-01
Various measures have been used to estimate height when assessing nutritional status. Current equations to obtain demi-span equivalent height (DEH(Bassey)) are based on a small sample from a single study. The objectives of this study were to develop more robust DEH equations from a large number of men (n = 591) and women (n = 830) aged 25-45 y from a nationally representative cross-sectional sample (Health Survey for England 2007). Sex-specific regression equations were produced from young adults' (aged 25-45 y) measured height and demi-span to estimate new DEH equations (DEH(new)). DEH in people aged >or= 65 y was calculated using DEH(new). DEH(new) estimated current height in people aged 25-45 y with a mean difference of 0.04 in men (P = 0.80) and -0.29 in women (P = 0.05). Height, demi-span, DEH(new), and DEH(Bassey) declined by age group in both sexes aged >or=65 y (P < 0.05); DEH were larger than the measured height for all age groups (mean difference between DEH(new) and current height was -2.64 in men and -3.16 in women; both P < 0.001). Comparisons of DEH estimates showed good agreement, but DEH(new) was significantly higher than DEH(Bassey) in each age and sex group in older people. The new equations that are based on a large, randomly selected, nationally representative sample of young adults are more robust for predicting current height in young adults when height measurements are unavailable and can be used in the future to predict maximal adult height more accurately in currently young adults as they age.
33 CFR 177.07 - Other unsafe conditions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The wave height within the Regulated Boating Area is 4 feet or greater; or (2) The wave height within the Regulated Boating Area is equal to or greater than the wave height determined by the formula L/10... from the lowest point along the upper strake edge to the surface of the water. W=Maximum wave height in...
33 CFR 177.07 - Other unsafe conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) The wave height within the Regulated Boating Area is 4 feet or greater; or (2) The wave height within the Regulated Boating Area is equal to or greater than the wave height determined by the formula L/10... from the lowest point along the upper strake edge to the surface of the water. W=Maximum wave height in...
33 CFR 177.07 - Other unsafe conditions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) The wave height within the Regulated Boating Area is 4 feet or greater; or (2) The wave height within the Regulated Boating Area is equal to or greater than the wave height determined by the formula L/10... from the lowest point along the upper strake edge to the surface of the water. W=Maximum wave height in...
Experimental investigation on ignition schemes of partially covered cavities in a supersonic flow
NASA Astrophysics Data System (ADS)
Cai, Zun; Sun, Mingbo; Wang, Hongbo; Wang, Zhenguo
2016-04-01
In this study, ignition schemes of the partially covered cavity in a scramjet combustor were investigated under inflow conditions of Ma=2.1 with stagnation pressure P0=0.7 Mpa and stagnation temperature T0=947 K. It reveals that the ignition scheme of the partially covered cavity has a great impact on the ignition and flame stabilization process. There always exists an optimized global equivalence ratio of a fixed ignition scheme, and the optimized global equivalence ratio of ignition in the partially covered cavity is lower than that of the uncovered cavity. For tandem dual-cavities, ignition in the partially covered cavity could be enhanced with the optimization of global equivalence ratio. However, ignition in the partially covered cavity would be exacerbated with further increasing the global equivalence ratio. The global equivalence ratio and the jet penetration height have a strong coupling with the combustion flow-field. For multi-cavities, it is assured that fuel injection on the opposite side could hardly be ignited after ignition in the partially covered cavity even with the optimized global equivalence ratio. It is possible to realize ignition enhancement in the partially covered cavity with the optimization of global equivalence ratio, but it is not beneficial for thrust increment during the steady combustion process.
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
High Temperature Monitoring the Height of Condensed Water in Steam Pipes
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian
2011-01-01
An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.
Observations and estimates of wave-driven water level extremes at the Marshall Islands
NASA Astrophysics Data System (ADS)
Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.
2014-10-01
Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.
An Equivalent Fracture Modeling Method
NASA Astrophysics Data System (ADS)
Li, Shaohua; Zhang, Shujuan; Yu, Gaoming; Xu, Aiyun
2017-12-01
3D fracture network model is built based on discrete fracture surfaces, which are simulated based on fracture length, dip, aperture, height and so on. The interesting area of Wumishan Formation of Renqiu buried hill reservoir is about 57 square kilometer and the thickness of target strata is more than 2000 meters. In addition with great fracture density, the fracture simulation and upscaling of discrete fracture network model of Wumishan Formation are very intense computing. In order to solve this problem, a method of equivalent fracture modeling is proposed. First of all, taking the fracture interpretation data obtained from imaging logging and conventional logging as the basic data, establish the reservoir level model, and then under the constraint of reservoir level model, take fault distance analysis model as the second variable, establish fracture density model by Sequential Gaussian Simulation method. Increasing the width, height and length of fracture, at the same time decreasing its density in order to keep the similar porosity and permeability after upscaling discrete fracture network model. In this way, the fracture model of whole interesting area can be built within an accepted time.
Characterization of holding brake friction pad surface after pin-on-plate wear test
NASA Astrophysics Data System (ADS)
Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.
2018-03-01
This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.
NASA Astrophysics Data System (ADS)
Ramillien, Guillaume; Frappart, Frédéric; Seoane, Lucia
2016-04-01
We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission, these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrological mass changes is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources is composed of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics lower than 2). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~100,000 km x km (or equivalently 330 km by 330 km) are defined to be of equal areas over the terrestrial sphere. However they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of improving time and space resolutions for ocean and land studies that would be hopefully brought by future low altitude geodetic missions.
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Sorek Hamer, Meytar; Esswein, Robert F.
2017-01-01
The Western US and many regions globally present daunting difficulties in understanding and mapping PM2.5 episodes. We evaluate extensions of a method independent of source-description and transport/transformation. These regions suffer frequent few-day episodes due to shallow mixing; low satellite AOT and bright surfaces complicate the description. Nevertheless, we expect residual errors in our maps of less than 8 ug/m^3 in episodes reaching 60-100 ug/m^3; maps which detail pollution from Interstate 5. Our current success is due to use of physically meaningful functions of MODIS-MAIAC-derived AOD, afternoon mixed-layer height, and relative humidity for a basin in which the latter are correlated. A mixed-effects model then describes a daily AOT-to-PM2.5 relationship. (Note: in other published mixed-effects models, AOT contributes minimally. We seek to extend on these to develop useful estimation methods for similar situations. We evaluate existing but more spotty information on size distribution (AERONET, MISR, MAIA, CALIPSO, other remote sensing). We also describe the usefulness of an equivalent mixing depth for water vapor vs meteorological boundary layer height. Each has virtues and limitations. Finally, we begin to evaluate methods for removing the complications due to detached but polluted layers (which don't mix to the surface) using geographical, meteorological, and remotely sensed data.
Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes
NASA Astrophysics Data System (ADS)
Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.
2016-12-01
The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud-driven turbulence appear to be dominant. Contrary to previous speculation, the efficiency of turbulent heat exchange is low. The SSHF contribution to ABL mixing is significant during the uplift (low-pressure) followed by the highly stable (stratus cloud) regime.
Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry
NASA Astrophysics Data System (ADS)
Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor
2017-12-01
In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.
Schoenfeld, Andreas A; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor
2017-11-21
In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w , have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR ( 60 Co), Eckert und Ziegler BEBIG GmbH CSM-11 ( 137 Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 ( 169 Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 ( 131 Cs), IsoAid Advantage I-125 IAI-125A ( 125 I), and IsoAid Advantage Pd-103 IAPd-103A ( 103 Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192 Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192 Ir, 137 Cs and 60 Co most phantom materials can be regarded as water equivalent, for 169 Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106 Pd, 131 Cs and 125 I, only Plastic Water LR can be classified as water equivalent.
Social inequality in height. A comparison between 10-year-old Helsinki and Stockholm children.
Cernerud, L; Elfving, J
1995-03-01
The height of children may be used to indicate social inequality. The aim of this study was to analyze the difference in height of the socially more and less privileged 10-year-old Helsinki children in 1963 and 1991 and to compare the social gap to the corresponding gap in 1943, 1963 and 1991 in previous studies of Stockholm children. The difference in mean height of the Helsinki boys in 1963 was 4.5 cm (p < 0.001) and for girls 4.4 cm (p < 0.001). In Stockholm the corresponding differences in 1963 were negligible. Twenty years earlier (in 1943) it was 3.2 cm (p < 0.001) in Stockholm. In 1991 the difference was 1.4 cm (p < 0.05) for boys and 0.6 cm (n.s.) for girls in Helsinki, equivalent to the findings of the Stockholm children at the same time. The well-off Helsinki children already in 1963 were as tall as the Stockholm children. Thus, the decrease of the social gap in height from 1963 to 1991 in Helsinki seems to be mainly due to an increase in height of the socially less privileged children, exactly what was previously found for the Stockholm children between 1943 and 1963. Would the time for the equalization of height mirror the time for the development of the welfare states in Finland and Sweden respectively?
Neuromuscular and technical abilities related to age in water-polo players.
De Siati, Fabio; Laffaye, Guillaume; Gatta, Giorgio; Dello Iacono, Antonio; Ardigò, Luca Paolo; Padulo, Johnny
2016-08-01
Testing is one of the important tasks in any multi-step sport programme. In most ball games, coaches assess motor, physical and technical skills on a regular basis in early stages of talent identification in order to further athletes' development. The purpose of the study was to investigate anthropometric variables and vertical jump heights as a free throw effectiveness predictor in water-polo players of different age groups. Two hundred and thirty-six young (10-18 years) male water-polo players partitioned into three age groups underwent anthropometric variables' measures and squat- and countermovement-jump tests, and performed water-polo free throws. Anthropometric variables, vertical jump heights and throw speed - as a proxy for free throw effectiveness - resulted different over age groups. Particularly, throw speed changed from 9.28 to 13.70 m · s(-1) (+48%) from younger to older players. A multiple-regression model indicated that body height, squat-jump height and throw time together explain 52% of variance of throw speed. In conclusion, tall height, high lower limb power and throwing quickness appeared to be relevant determinants for effective free throws. Such indications can help coaches during talent identification and development processes, even by means of novel training strategies. Further research is needed over different maturity statuses.
Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout
NASA Astrophysics Data System (ADS)
Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry
2018-03-01
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.
Shiraki, Ayumi; Azuma, Wakana; Kuroda, Keiko; Ishii, H Roaki
2017-10-01
Cupressoid (scale-like) leaves are morphologically and functionally intermediate between stems and leaves. While past studies on height acclimation of cupressoid leaves have focused on acclimation to the vertical light gradient, the relationship between morphology and hydraulic function remains unexplored. Here, we compared physiological and morphological characteristics between treetop and lower-crown leaves of 100-year-old Chamaecyparis obtusa Endl. trees (~27 m tall) to investigate whether height-acclimation compensates for hydraulic constraints. We found that physiological acclimation of leaves was determined by light, which drove the vertical gradient of evaporative demand, while leaf morphology and anatomy were determined by height. Compared with lower-crown leaves, treetop leaves were physiologically acclimated to water stress. Leaf hydraulic conductance was not affected by height, and this contributed to higher photosynthetic rates of treetop leaves. Treetop leaves had higher leaf area density and greater leaf mass per area, which increase light interception but could also decrease hydraulic efficiency. We inferred that transfusion tissue flanking the leaf vein, which was more developed in the treetop leaves, contributes to water-stress acclimation and maintenance of leaf hydraulic conductance by facilitating osmotic adjustment of leaf water potential and efficient water transport from xylem to mesophyll. Our findings may represent anatomical adaptation that compensates for hydraulic constraints on physiological function with increasing height. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Design of river height and speed monitoring system by using Arduino
NASA Astrophysics Data System (ADS)
Nasution, T. H.; Siagian, E. C.; Tanjung, K.; Soeharwinto
2018-02-01
River is one part of the hydrologic cycle. Water in rivers is generally collected from precipitation, such as rain, dew, springs, underground runoff, and in certain countries also comes from melt ice/snow. The height and speed of water in a river is always changing. Changes in altitude and speed of water can affect the surrounding environment. In this paper, we will design a system to measure the altitude and speed of the river. In this work we use Arduino Uno, ultrasonic sensors and flow rate sensors. Ultrasonic sensor HC-SR04 is used as a river height meter. Based on the test results, this sensor has an accuracy of 96.6%.
Small-area snow surveys on the northern plains of North Dakota
Emerson, Douglas G.; Carroll, T.R.; Steppuhn, Harold
1985-01-01
Snow-cover data are needed for many facets of hydrology. The variation in snow cover over small areas is the focus of this study. The feasibility of using aerial surveys to obtain information on the snow water equivalent of the snow cover in order to minimize the necessity of labor intensive ground snow surveys was- evaluated. A low-flying aircraft was used to measure attenuations of natural terrestrial gamma radiation by snow cover. Aerial and ground snow surveys of eight 1-mile snow courses and one 4-mile snow course were used in the evaluation, with ground snow surveys used as the base to evaluate aerial data. Each of the 1-mile snow courses consisted of a single land use and all had the same terrain type (plane). The 4-mile snow course consists of a variety of land uses and the same terrain type (plane). Using the aerial snow-survey technique, the snow water equivalent of the 1-mile snow courses was. measured with three passes of the aircraft. Use of more than one pass did not improve the results. The mean absolute difference between the aerial- and ground-measured snow water equivalents for the 1-mile snow courses was 26 percent (0.77 inches). The aerial snow water equivalents determined for the 1-mile snow courses were used to estimate the variations in the snow water equivalents over the 4-mile snow course. The weighted mean absolute difference for the 4-mile snow course was 27 percent (0.8 inches). Variations in snow water equivalents could not be verified adequately by segmenting the aerial snow-survey data because of the uniformity found in the snow cover. On the 4-mile snow coirse, about two-thirds of the aerial snow-survey data agreed with the ground snow-survey data within the accuracy of the aerial technique ( + 0.5 inch of the mean snow water equivalent).
Gage for measuring coastal erosion and sedimentation
NASA Technical Reports Server (NTRS)
Carpini, T. D.; Moughon, W. C.
1970-01-01
Underwater sand height gage, which measures heights up to 12 inches, is comprised of two standard flush-diaphragm pressure transducers. Gage is very sensitive to buried water heights and is useful as a research tool in study of wet earth and landslide phenomena.
Mark, R.K.; Tinsley, J. C.; Newman, E.B.; Gilmore, T.D.; Castle, R.O.
1981-01-01
Examination of the charge that the geodetic measurements which define the southern California uplift are seriously flawed by height-dependent systematic errors indicates that this charge is unfounded. Comparisons between the results of measurements in which the correlation between topography and signal is generally poor reveal large aseismic tilts in a number of places within and around the margins of the uplift. Especially significant in this context are the results of preuplift and postuplift levellings over routes characterized by diverse length, topography, and atmospheric conditions that produce closely matching, temporally equivalent heights for a representative bench mark within the uplift.-from Authors
NASA Astrophysics Data System (ADS)
Lourenço, A.; Wellock, N.; Thomas, R.; Homer, M.; Bouchard, H.; Kanai, T.; MacDougall, N.; Royle, G.; Palmans, H.
2016-11-01
Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor {{H}\\text{pl,w}} was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11 × 11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured H\\text{pl,w}\\exp correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.
Conrads, Paul; Feaster, Toby D.; Harrelson, Larry G.
2008-01-01
The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1-, 3-, 7-, 30-, and 90-day minimum gage heights by as much as 23.9 percent and decreasing the 1-, 3-, 7-, 30-, and 90-day maximum gage heights by as much as 7.2 percent. Analysis of the ground-water elevations in the Congaree National Park flood plain shows similar results as the gage-height analysis--the dam has had the effect of lowering high ground-water elevations and increasing low ground-water elevations. Overall, the operation of the dam has had a greater effect on the gage heights within the river banks than gage heights in the flood plain. This result may have a greater effect on the subsurface water levels of the surficial flood-plain aquifer than the frequency and magnitude of inundation of the flood plain.
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, D.E.; Corletti, M.M.
1993-11-16
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, Douglas E.; Corletti, Michael M.
1993-01-01
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.
The impact of long-term changes in water table height on carbon cycling in sub-boreal peatlands
NASA Astrophysics Data System (ADS)
Pypker, T. G.; Moore, P. A.; Waddington, J. M.; Hribljan, J. A.; Ballantyne, D.; Chimner, R. A.
2011-12-01
Peatlands are a critical component in the global carbon (C) cycle because they have been slowly sequestering atmospheric greenhouse gases as peat since the last glaciation. Today, soil C stocks in peatlands are estimated to represent 224 to 455 Pg, equal to 12-30% of the global soil C pool. At present, peatlands are estimated to sequester 76 Tg C yr-1. The flux of C to and from peatlands is likely to respond to climate change, thereby influencing atmospheric C concentrations. Peatland C budgets are tightly linked to their hydrology, hence, it is critical we understand how changes in hydrology will affect the C budgets of peatlands. The main objective of the project was to determine how long-term changes in water table height affect CO2 and CH4 fluxes from three adjacent peatlands. This study took place in the Seney National Wildlife Refuge (SNWR) in the Upper Peninsula of Michigan. SNWR is home to the largest wetland drainage project in Michigan. In 1912, ditches and dikes were created in an effort to convert approximately 20,000 ha of peatland to agriculture. The ditches and dikes were unsuccessful in creating agricultural land, but they are still in place. The manipulation of water table heights provides an opportunity to research how long-term peat drying or wetting alters C cycling in peatlands. From May to November in 2009, 2010 and 2011, we monitored CO2 fluxes using eddy covariance and chamber techniques in three adjacent peatlands with lowered, relatively unaltered ("control") and raised water table heights. In 2011, we installed CH4 analyzers to continuously monitor CH4 fluxes at the sites with high and relatively unaltered water table heights. The results are compared across sites to determine how changes in water table height might affect C fluxes sub-boreal peatlands.
Snow-depth and water-equivalent data for the Fairbanks area, Alaska, spring 1995
Plumb, E.W.; Lilly, M.R.
1996-01-01
Snow depths at 34 sites and snow-water equivalents at 13 sites in the Fairbanks area were monitored during the 1995 snowmelt period (March 30 to April 26) in the spring of 1995. The U.S. Geological Survey conducted this study in cooperation with the Fairbanks International Airport, the University of Alaska Fairbanks, the Alaska Department of Natural Resources-Division of Mining and Water Management, the U.S Army, Alaska, and the U.S. Army Corps of Engineers-Alaska District. These data were collected to provide information about potential recharge of the ground-and surface-water systems during the snowmelt period in the Fairbanks area. This information is needed by companion geohydrologic studies of areas with known or suspected contaminants in the subsurface. Data-collection sites selected had open, boggy, wooded, or brushy vegetation cover and had different slope aspects. The deepest snow at any site, 27.1 inches, was recorded on April 1, 1995; the shallowest snow measured that day was 19.1 inches. The snow-water equivalents at these two sites were 5.9 inches and 4.5 inches, respectively. Snow depths and water equivalents were comparatively greater at open and bog sites than at wooded or brushy sites. Snow depths and water equivalents at all sites decreased throughout the measuring period. The decrease was more rapid at open and boggy sites than at wooded and brushy sites. Snow had completely disappeared from all sites by April 26, 1995.
Fernandez-Rojo, L; Héry, M; Le Pape, P; Braungardt, C; Desoeuvre, A; Torres, E; Tardy, V; Resongles, E; Laroche, E; Delpoux, S; Joulian, C; Battaglia-Brunet, F; Boisson, J; Grapin, G; Morin, G; Casiot, C
2017-10-15
Passive water treatments based on biological attenuation can be effective for arsenic-rich acid mine drainage (AMD). However, the key factors driving the biological processes involved in this attenuation are not well-known. Here, the efficiency of arsenic (As) removal was investigated in a bench-scale continuous flow channel bioreactor treating As-rich AMD (∼30-40 mg L -1 ). In this bioreactor, As removal proceeds via the formation of biogenic precipitates consisting of iron- and arsenic-rich mineral phases encrusting a microbial biofilm. Ferrous iron (Fe(II)) oxidation and iron (Fe) and arsenic removal rates were monitored at two different water heights (4 and 25 mm) and with/without forced aeration. A maximum of 80% As removal was achieved within 500 min at the lowest water height. This operating condition promoted intense Fe(II) microbial oxidation and subsequent precipitation of As-bearing schwertmannite and amorphous ferric arsenate. Higher water height slowed down Fe(II) oxidation, Fe precipitation and As removal, in relation with limited oxygen transfer through the water column. The lower oxygen transfer at higher water height could be partly counteracted by aeration. The presence of an iridescent floating film that developed at the water surface was found to limit oxygen transfer to the water column and delayed Fe(II) oxidation, but did not affect As removal. The bacterial community structure in the biogenic precipitates in the bottom of the bioreactor differed from that of the inlet water and was influenced to some extent by water height and aeration. Although potential for microbial mediated As oxidation was revealed by the detection of aioA genes, removal of Fe and As was mainly attributable to microbial Fe oxidation activity. Increasing the proportion of dissolved As(V) in the inlet water improved As removal and favoured the formation of amorphous ferric arsenate over As-sorbed schwertmannite. This study proved the ability of this bioreactor-system to treat extreme As concentrations and may serve in the design of future in-situ bioremediation system able to treat As-rich AMD. Copyright © 2017 Elsevier Ltd. All rights reserved.
On Compact Book Storage in Libraries.
ERIC Educational Resources Information Center
Ravindran, Arunachalam
The optimal storage of books by size in libraries is considered in this paper. It is shown that for a given collection of books of various sizes, the optimum number of shelf heights to use can be determined by finding the shortest path in an equivalent network. Applications of this model to inventory control, assortment and packaging problems are…
Determination of vibration-rotation lines intensities from absorption Fourier spectra
NASA Technical Reports Server (NTRS)
Mandin, J. Y.
1979-01-01
The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.
NASA Astrophysics Data System (ADS)
Frasson, Renato Prata de Moraes; Wei, Rui; Durand, Michael; Minear, J. Toby; Domeneghetti, Alessio; Schumann, Guy; Williams, Brent A.; Rodriguez, Ernesto; Picamilh, Christophe; Lion, Christine; Pavelsky, Tamlin; Garambois, Pierre-André
2017-10-01
The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water surface heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measurements will be grouped into reaches (˜5 to 15 km), where slope and discharge are estimated. We describe three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1) arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9 and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare against hydraulic models of each river. Our results show that generally, height, width, and slope errors decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods that preserve the hydraulic properties of the river network may lead to better discharge estimates.
Humphrey, Vincent; Gudmundsson, Lukas; Seneviratne, Sonia I
Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.
Cross-Shore Exchange on Natural Beaches
2014-09-01
87 Figure 2. Wave conditions measured by the ADCP in 13 m water depth of (a) root- mean-square wave height Hrms...horizontal velocity, Umean, measured in the reference level, ∑Tsig,pulse T3−hour ∑Tsig,pulse T3−hour xi (e) local water depth, h, and (f) local root...mean-square wave height normalized by the local water depth, Hrms/h, measured by ADCPin (blue) and ADCPout (red) during the 3HRLTs. Colored lines
Mass change distribution inverted from space-borne gravimetric data using a Monte Carlo method
NASA Astrophysics Data System (ADS)
Zhou, X.; Sun, X.; Wu, Y.; Sun, W.
2017-12-01
Mass estimate plays a key role in using temporally satellite gravimetric data to quantify the terrestrial water storage change. GRACE (Gravity Recovery and Climate Experiment) only observes the low degree gravity field changes, which can be used to estimate the total surface density or equivalent water height (EWH) variation, with a limited spatial resolution of 300 km. There are several methods to estimate the mass variation in an arbitrary region, such as averaging kernel, forward modelling and mass concentration (mascon). Mascon method can isolate the local mass from the gravity change at a large scale through solving the observation equation (objective function) which represents the relationship between unknown masses and the measurements. To avoid the unreasonable local mass inverted from smoothed gravity change map, regularization has to be used in the inversion. We herein give a Markov chain Monte Carlo (MCMC) method to objectively determine the regularization parameter for the non-negative mass inversion problem. We first apply this approach to the mass inversion from synthetic data. Result show MCMC can effectively reproduce the local mass variation taking GRACE measurement error into consideration. We then use MCMC to estimate the ground water change rate of North China Plain from GRACE gravity change rate from 2003 to 2014 under a supposition of the continuous ground water loss in this region. Inversion result show that the ground water loss rate in North China Plain is 7.6±0.2Gt/yr during past 12 years which is coincident with that from previous researches.
Chou, Chung-Lin; Yu, Ming-Jiun; Kassai, Eliza M; Morris, Ryan G; Hoffert, Jason D; Wall, Susan M; Knepper, Mark A
2008-07-01
Collecting duct cells swell when exposed to arginine vasopressin (AVP) in the presence of a transepithelial osmolality gradient. We investigated the mechanisms of AVP-induced cell swelling in isolated, perfused rat inner medullary collecting ducts (IMCDs) using quantitative video microscopy and fluorescence-based measurements of transepithelial water transport. We tested the roles of transepithelial water flow, basolateral solute entry, and the cytoskeleton (actomyosin). When a transepithelial osmolality gradient was imposed by addition of NaCl to the bath, AVP significantly increased both water flux and cell height. When the osmolality gradient was imposed by addition of mannitol, AVP increased water flux but not cell height, suggesting that AVP-induced cell swelling requires a NaCl gradient and is not merely dependent on the associated water flux. Bumetanide (Na-K-2Cl cotransporter inhibitor) added to the bath markedly diminished the AVP-induced cell height increase. AVP-induced cell swelling was absent in IMCDs from NKCC1-knockout mice. In rat IMCDs, replacement of Na, K, or Cl in the peritubular bath caused significant cell shrinkage, consistent with a basolateral solute transport pathway dependent on all three ions. Immunocytochemistry using an antibody to NKCC1 confirmed basolateral expression in IMCD cells. The conventional nonmuscle myosin II inhibitor blebbistatin also diminished the AVP-induced cell height increase and cell shape change, consistent with a role for the actin cytoskeleton and myosin II. We conclude that the AVP-induced cell height increase is dependent on basolateral solute uptake via NKCC1 and changes in actin organization via myosin II, but is not dependent specifically on increased apical water entry.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Boy, J. P.
2003-01-01
With the advances of measurements, modern space geodesy has become a new type of remote sensing for the Earth dynamics, especially for mass transports in the geophysical fluids on large spatial scales. A case in point is the space gravity mission GRACE (Gravity Recovery And Climate Experiment) which has been in orbit collecting gravity data since early 2002. The data promise to be able to detect changes of water mass equivalent to sub-cm thickness on spatial scale of several hundred km every month or so. China s Three-Gorge Reservoir has already started the process of water impoundment in phases. By 2009,40 km3 of water will be stored behind one of the world s highest dams and spanning a section of middle Yangtze River about 600 km in length. For the GRACE observations, the Three-Gorge Reservoir would represent a geophysical controlled experiment , one that offers a unique opportunity to do detailed geophysical studies. -- Assuming a complete documentation of the water level and history of the water impoundment process and aided with a continual monitoring of the lithospheric loading response (such as in area gravity and deformation), one has at hand basically a classical forwardinverse modeling problem of surface loading, where the input and certain output are known. The invisible portion of the impounded water, i.e. underground storage, poses either added values as an observable or a complication as an unknown to be modeled. Wang (2000) has studied the possible loading effects on a local scale; we here aim for larger spatial scales upwards from several hundred km, with emphasis on the time-variable gravity signals that can be detected by GRACE and follow-on missions. Results using the Green s function approach on the PREM elastic Earth model indicate the geoid height variations reaching several millimeters on wavelengths of about a thousand kilometers. The corresponding vertical deformations have amplitude of a few centimeters. In terms of long-wavelength spherical harmonics, the induced geoid height variations are very close to the accuracy of GRACE- recoverable gravity field, while the low-degree (2 to 5) harmonics should be detectable. With a large regional time-variable gravity signal, the Three-Gorge experiment can serve as a useful calibration/verification for GRACE (including the elastic loading effects), and future gravity missions (especially for visco-elastic yielding as well as underground water variations).
Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber
NASA Astrophysics Data System (ADS)
Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien
2015-04-01
This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.
Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences
NASA Technical Reports Server (NTRS)
Rakholia, A.; Sugarbaker, A.; Black, A.; Kasecivh, M.; Saif, B.; Luthcke, S.; Callahan, L.; Seery, B.; Feinberg, L.; Mather, J.;
2017-01-01
We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.
The statistical characteristics of rain-generated stalks on water surface
NASA Astrophysics Data System (ADS)
Liu, Xinan; Liu, Ren; Duncan, James H.
2017-11-01
Laboratory measurements of the stalks generated by the impact of raindrops are performed in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. Simulated raindrops are generated by an array of 22-gauge hypodermic needles that are attached to the bottom of an open-surface rain tank. The raindrop diameter is about 2.6 mm and the height of the rain tank above the water surface of the pool is varied from 1 m to 4.5 m to provide different impact velocities. A number of parameters, including the diameter, height and initial upward velocity of the center jets (stalks) are measured with a cinematic laser-induced- fluorescence technique. It is found that the maximum potential energy of the stalk and the joint distribution of stalk height and diameter are strongly correlated to the impact velocities of raindrops. Comparisons between the rain experiments and single drop impacts on a quiescent water surface are also shown.
NASA Astrophysics Data System (ADS)
Daubner, Tomas; Kizhofer, Jens; Dinulescu, Mircea
2018-06-01
This article describes an experimental investigation in the near field of five parallel plane jets. The study applies 2D Particle Image Velocimetry (PIV) for ventilated and unventilated jets, where ventilated means exiting into a duct with expansion ratio 3.5 and unventilated means exiting to the free atmosphere. Results are presented for Reynolds numbers 1408, 5857 and 10510. The Reynolds number is calculated for the middle channel and is based on the height of the nozzle (channel) equivalent diameter 2h. All characteristic regions of the methodology to describe multiple interacting jets are observed by the PIV measurements - converging, merging and combined. Each of the five parallel channels has an aspect ratio of 25 defined as nozzle width (w) to height (h). The channels have a length of 185 times the channel height guaranteeing a fully developed velocity profile at the exit from the channel. Spacing between the single plane jets is 3 times the channel height. The near field of multiple mixing jets is depended on outlet nozzle geometry. Blunt geometry of the nozzle was chosen (sudden contraction).
USDA-ARS?s Scientific Manuscript database
Snow cover and its melt dominate regional climate and water resources in many of the world’s mountainous regions. Snowmelt timing and magnitude in mountains tend to be controlled by absorption of solar radiation and snow water equivalent, respectively, and yet both of these are very poorly known ev...
Optimal control of build height utilizing optical profilometry in cold spray deposits
NASA Astrophysics Data System (ADS)
Chakraborty, Abhijit; Shishkin, Sergey; Birnkrant, Michael J.
2017-04-01
Part-to-part variability and poor part quality due to failure to maintain geometric specifications pose a challenge for adopting Additive Manufacturing (AM) as a viable manufacturing process. In recent years, In-process Monitoring and Control (InPMC) has received a lot of attention as an approach to overcome these obstacles. The ability to sense geometry of the deposited layers accurately enables effective process monitoring and control of AM application. This paper demonstrates an application of geometry sensing technique for the coating deposition Cold Spray process, where solid powders are accelerated through a nozzle, collides with the substrate and adheres to it. Often the deposited surface has shape irregularities. This paper proposes an approach to suppress the iregularities by controlling the deposition height. An analytical control-oriented model is developed that expresses the resulting height of deposit as an integral function of nozzle velocity and angle. In order to obtain height information at each layer, a Micro-Epsilon laser line scanner was used for surface profiling after each deposition. This surface profile information, specifically the layer height, was then fed back to an optimal control algorithm which manipulated the nozzle speed to control the layer height to a pre specified height. While the problem is heavily nonlinear, we were able to transform it into equivalent Optimal Control problem linear w.r.t. input. That enabled development of two solution methods: one is fast and approximate, while another is more accurate but still efficient.
Investigation of the relationship between hurricane waves and extreme runup
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Stockdon, H. F.
2006-12-01
In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.
England, Jacqueline R; Attiwill, Peter M
2007-08-01
Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.
Global patterns and determinants of forest canopy height.
Tao, Shengli; Guo, Qinghua; Li, Chao; Wang, Zhiheng; Fang, Jingyun
2016-12-01
Forest canopy height is an important indicator of forest biomass, species diversity, and other ecosystem functions; however, the climatic determinants that underlie its global patterns have not been fully explored. Using satellite LiDAR-derived forest canopy heights and field measurements of the world's giant trees, combined with climate indices, we evaluated the global patterns and determinants of forest canopy height. The mean canopy height was highest in tropical regions, but tall forests (>50 m) occur at various latitudes. Water availability, quantified by the difference between annual precipitation and annual potential evapotranspiration (P-PET), was the best predictor of global forest canopy height, which supports the hydraulic limitation hypothesis. However, in striking contrast with previous studies, the canopy height exhibited a hump-shaped curve along a gradient of P-PET: it initially increased, then peaked at approximately 680 mm of P-PET, and finally declined, which suggests that excessive water supply negatively affects the canopy height. This trend held true across continents and forest types, and it was also validated using forest inventory data from China and the United States. Our findings provide new insights into the climatic controls of the world's giant trees and have important implications for forest management and improvement of forest growth models. © 2016 by the Ecological Society of America.
Scaling of human body composition to stature: new insights into body mass index.
Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo
2007-07-01
Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. We examined the critical underlying assumptions of adiposity-body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n=411; organs=76) and the other a larger DXA database (n=1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of approximately 2 (all P<0.001); bone and bone mineral mass scaled to height with powers >2 (2.31-2.48), and the fraction of weight as bone mineral mass was significantly (P<0.001) correlated with height in women. AT scaled weakly to height with powers of approximately 2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P=0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P=0.002). These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long
2016-01-01
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.
Scaling of human body composition to stature: new insights into body mass index 123
Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo
2009-01-01
Background Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. Objective We examined the critical underlying assumptions of adiposity–body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). Design This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n = 411; organs = 76) and the other a larger DXA database (n = 1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Results Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of ≈2 (all P < 0.001); bone and bone mineral mass scaled to height with powers > 2 (2.31–2.48), and the fraction of weight as bone mineral mass was significantly (P < 0.001) correlated with height in women. AT scaled weakly to height with powers of ≈2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P = 0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P = 0.002). Conclusions These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies. PMID:17616766
Statistical Analysis of Terrestrial Water Storage Change Over Southwestern United States
NASA Astrophysics Data System (ADS)
Eibedingil, I. G.; Mubako, S. T.; Hargrove, W. L.; Espino, A. C.
2017-12-01
A warming trend over recent decades has aggravated water resource challenges in the arid southwestern region of the United States (U.S.). An increase in temperature, coupled with decreasing snowpack and rainfall have impacted the region's cities, ecosystems, and agriculture. The region is the largest contributor of agricultural products to the U.S. market resulting from irrigation. Water use through irrigation is stressing already limited terrestrial water resources. Population growth in recent decades has also led to increased water demand. This study utilizes products of the Gravity Recovery and Climate Experiment (GRACE) twin satellites experiment in MATLAB and ArcGIS to examine terrestrial water storage changes in the southwestern region of the U.S., comprised of the eight states of Texas, California, Nevada, Utah, Arizona, Colorado, New Mexico, and Oklahoma. Linear trend analysis was applied to the equivalent water-height data of terrestrial water storage changes (TWSC), precipitation, and air temperature. Correlation analysis was performed on couplings of TWSC - precipitation and TWSC - air temperature to examine the impact of temperature and precipitation on the region's water resources. Our preliminary results show a decreasing trend of TWSC from April 2002 to July 2016 in almost all parts of the region. Precipitation shows a decreasing trend from March 2000 to March 2017 for most of the region, except for sparse areas of increased precipitation near the northwestern coast of California, and a belt running from Oklahoma through the middle of Texas to the El Paso/New Mexico border. From April 2002 to December 2014, air temperature exhibited a negative trend for most of the region, except a larger part of California and a small location in central Texas. Correlation between TWSC and precipitation was mostly positive, but a negative trend was observed when TWSC and air temperature were correlated. The study contributes to the understanding of terrestrial water storage trends and their relationship with climatic variables, crucial for implementing appropriate adaptation and mitigation policies and strategies, and managing water demand.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi
2012-06-01
Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.
Fujisaki, Keisuke; Ikeda, Tomoyuki
2013-01-01
To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395
Soukup, Jan; Jandera, Pavel
2014-12-29
Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences. Copyright © 2014 Elsevier B.V. All rights reserved.
Design and analysis of hydraulic ram water pumping system
NASA Astrophysics Data System (ADS)
Hussin, N. S. M.; Gamil, S. A.; Amin, N. A. M.; Safar, M. J. A.; Majid, M. S. A.; Kazim, M. N. F. M.; Nasir, N. F. M.
2017-10-01
The current pumping system (DC water pump) for agriculture is powered by household electricity, therefore, the cost of electricity will be increased due to the higher electricity consumption. In addition, the water needs to be supplied at different height of trees and different places that are far from the water source. The existing DC water pump can pump the water to 1.5 m height but it cost money for electrical source. The hydraulic ram is a mechanical water pump that suitable used for agriculture purpose. It can be a good substitute for DC water pump in agriculture use. The hydraulic ram water pumping system has ability to pump water using gravitational energy or the kinetic energy through flowing source of water. This project aims to analyze and develop the water ram pump in order to meet the desired delivery head up to 3 meter height with less operation cost. The hydraulic ram is designed using CATIA software. Simulation work has been done using ANSYS CFX software to validate the working concept. There are three design were tested in the experiment study. The best design reached target head of 3 m with 15% efficiency and flow rate of 11.82l/min. The results from this study show that the less diameter of pressure chamber and higher supply head will create higher pressure.
Barlow, Jeannie R.B.; Clark, Brian R.
2011-01-01
The Mississippi River alluvial plain in northwestern Mississippi (referred to as the Delta), once a floodplain to the Mississippi River covered with hardwoods and marshland, is now a highly productive agricultural region of large economic importance to Mississippi. Water for irrigation is supplied primarily by the Mississippi River Valley alluvial aquifer, and although the alluvial aquifer has a large reserve, there is evidence that the current rate of water use from the alluvial aquifer is not sustainable. Using an existing regional groundwater flow model, conservation scenarios were developed for the alluvial aquifer underlying the Delta region in northwestern Mississippi to assess where the implementation of water-use conservation efforts would have the greatest effect on future water availability-either uniformly throughout the Delta, or focused on a cone of depression in the alluvial aquifer underlying the central part of the Delta. Five scenarios were simulated with the Mississippi Embayment Regional Aquifer Study groundwater flow model: (1) a base scenario in which water use remained constant at 2007 rates throughout the entire simulation; (2) a 5-percent 'Delta-wide' conservation scenario in which water use across the Delta was decreased by 5 percent; (3) a 5-percent 'cone-equivalent' conservation scenario in which water use within the area of the cone of depression was decreased by 11 percent (a volume equivalent to the 5-percent Delta-wide conservation scenario); (4) a 25-percent Delta-wide conservation scenario in which water use across the Delta was decreased by 25 percent; and (5) a 25-percent cone-equivalent conservation scenario in which water use within the area of the cone of depression was decreased by 55 percent (a volume equivalent to the 25-percent Delta-wide conservation scenario). The Delta-wide scenarios result in greater average water-level improvements (relative to the base scenario) for the entire Delta area than the cone-equivalent scenarios; however, the cone-equivalent scenarios result in greater average water-level improvements within the area of the cone of depression because of focused conservation efforts within that area. Regardless of where conservation is located, the greatest average improvements in water level occur within the area of the cone of depression because of the corresponding large area of unsaturated aquifer material within the area of the cone of depression and the hydraulic gradient, which slopes from the periphery of the Delta towards the area of the cone of depression. Of the four conservation scenarios, the 25-percent cone-equivalent scenario resulted in the greatest increase in storage relative to the base scenario with a 32-percent improvement over the base scenario across the entire Delta and a 60-percent improvement within the area of the cone of depression. Overall, the results indicate that focusing conservation efforts within the area of the cone of depression, rather than distributing conservation efforts uniformly across the Delta, results in greater improvements in the amount of storage within the alluvial aquifer. Additionally, as the total amount of conservation increases (that is, from 5 to 25 percent), the difference in storage improvement between the Delta-wide and cone-equivalent scenarios also increases, resulting in greater gains in storage in the cone-equivalent scenario than in the Delta-wide scenario for the same amount of conservation.
NASA Astrophysics Data System (ADS)
Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean
2014-05-01
Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.
Hydraulic properties of fronds from palms of varying height and habitat.
Renninger, Heidi J; Phillips, Nathan
2011-12-01
Because palms grow in highly varying climates and reach considerable heights, they present a unique opportunity to evaluate how environment and plant size impact hydraulic function. We studied hydraulic properties of petioles from palms of varying height from three species: Iriartea deltoidea, a tropical rainforest species; Mauritia flexuosa, a tropical rainforest, swamp species; and Washingtonia robusta, a subtropical species. We measured leaf areas, petiole cross-sectional areas, specific conductivity (K(S)), petiole anatomical properties, vulnerability to embolism and leaf water potentials and calculated petiole Huber values and leaf-specific conductivities (K(L)). Leaf and petiole cross-sectional areas varied widely with height. However, hydraulic properties including Huber values, K(S) and K(L), remained constant. The two palmate species, M. flexuosa and W. robusta, had larger Huber values than I. deltoidea, a pinnately-compound species which exhibited the highest K(S). Metaxylem vessel diameters and vascular bundle densities varied with height in opposing patterns to maintain petiole conductivities. I. deltoidea and W. robusta petioles had similar P(50) values (the point at which 50% of hydraulic conductivity is lost) averaged over all crown heights, but W. robusta exhibited more negative P(50) values in taller palms. Comparison of P (50) values with transpiring midday leaf water potentials, as well as a double-dye staining experiment in a 1-m-tall palm, suggested that a fairly significant amount of embolisms were occurring and refilled on a diurnal basis. Therefore, across palms differing widely in height and growing environments, we found convergence in water transport per unit leaf area (K(L)) with individuals exhibiting differing strategies for achieving this.
33 CFR 67.01-30 - Equivalents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Equivalents. 67.01-30 Section 67.01-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements § 67.01-30...
33 CFR 67.01-30 - Equivalents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Equivalents. 67.01-30 Section 67.01-30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements § 67.01-30...
Miyata, Rie; Kubo, Takuya; Nabeshima, Eri; Kohyama, Takashi S.
2011-01-01
Background and Aims Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns. Methods Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan. Key Results Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height. Conclusions In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain. PMID:21914698
MIE Lidar proposed for the German Space Shuttle Mission D2
NASA Technical Reports Server (NTRS)
Renger, W.; Endemann, M.; Quenzel, H.; Werner, C.
1986-01-01
Firm plans for a second German Spacelab mission (D2-mission), originally scheduled for late 1988 is basically a zero-g mission, but will also include earth observation experiments. On board the D2-facility will allow performance of a number of different measurements with the goal to obtain performance data (cloud top heights, height of the planetary boundary layer, optical thickness, and cloud base height of thin and medium thick clouds, ice/water phase discriminatin for clouds, tropopause height, tropaspheric height, tropospheric aerosols, and stratospheric aerosols.
Study of Semi-Span Model Testing Techniques
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; McGhee, Robert J.
1996-01-01
An investigation has been conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel in order to further the development of semi-span testing capabilities. A twin engine, energy efficient transport (EET) model with a four-element wing in a takeoff configuration was used for this investigation. Initially a full span configuration was tested and force and moment data, wing and fuselage surface pressure data, and fuselage boundary layer measurements were obtained as a baseline data set. The semi-span configurations were then mounted on the wind tunnel floor, and the effects of fuselage standoff height and shape as well as the effects of the tunnel floor boundary layer height were investigated. The effectiveness of tangential blowing at the standoff/floor juncture as an active boundary-layer control technique was also studied. Results indicate that the semi-span configuration was more sensitive to variations in standoff height than to variations in floor boundary layer height. A standoff height equivalent to 30 percent of the fuselage radius resulted in better correlation with full span data than no standoff or the larger standoff configurations investigated. Undercut standoff leading edges or the use of tangential blowing in the standoff/ floor juncture improved correlation of semi-span data with full span data in the region of maximum lift coefficient.
NASA Astrophysics Data System (ADS)
Stanca, C.; Acomi, N.; Ancuta, C.; Georgescu, S.
2015-11-01
Container ships carry cargoes that are considered light from the weight point of view, compared to their volumetric capacity. This fact makes the still water vertical bending moment to be in hogging condition. Thus, the double bottom structure is permanent subject to compressive load. With the enlargement of container ships to the Post Panamax vessels, the breadth to depth ratio tends to be increased comparative to those of Panamax container ships that present restriction related to maximum breadth of the ship.The current studies on new build models reveal the impossibility for Panamax container ships to comply with the minimum metacentric height value of stability without loading ballast water in the double bottom tanks. In contrast, the Post-Panamax container ships, as resulted from metacentric height calculation, have adequate stability even if the ballast water is not loaded in the double bottom tanks. This analysis was conducted considering two partially loaded port-container vessels. Given the minimization of ballast quantities, the frequency with which the still water vertical bending moment reaches close to the allowable value increases.This study aims to analyse the ships’ behaviour in partially loaded conditions and carrying ballast water in the double bottom tanks. By calculating the metacentric height that influences the stability of the partially loaded port container vessels, this study will emphasize the critical level of loading condition which triggers the uptake of ballast water in the double bottom tanks, due to metacentric height variation.
Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.
N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer
2003-01-01
The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...
21 CFR 130.12 - General methods for water capacity and fill of containers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... height of the double seam. (2) Measure the vertical distance from the top level of the container to the... or altering the height of the double seam. (2) Wash, dry, and weigh the empty container. (3) Fill the container with distilled water at 68 °F to 3/16 inch vertical distance below the top level of the container...
21 CFR 130.12 - General methods for water capacity and fill of containers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... height of the double seam. (2) Measure the vertical distance from the top level of the container to the... or altering the height of the double seam. (2) Wash, dry, and weigh the empty container. (3) Fill the container with distilled water at 68 °F to 3/16 inch vertical distance below the top level of the container...
21 CFR 130.12 - General methods for water capacity and fill of containers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... height of the double seam. (2) Measure the vertical distance from the top level of the container to the... or altering the height of the double seam. (2) Wash, dry, and weigh the empty container. (3) Fill the container with distilled water at 68 °F to 3/16 inch vertical distance below the top level of the container...
Type of adsorbent and column height in adsorption process of used cooking oil
NASA Astrophysics Data System (ADS)
Hasnelly, Hervelly, Taufik, Yusman; Melany, Ivo Nila
2015-12-01
The purpose of this research was to find out the best adsorbent and column height that can adsorb color and soluble impurities substances in used cooking oil. This research was meant for knowledge development of refined cooking oil technology. The used of this research was giving out information on the recycling process of used cooking oil. Research design used 2 × 2 factorial pattern in randomized group design with 6 repetitions. The first factor is adsorbent type (J) that consist of activated carbon (J1) and Zeolit (J2). The second factor is column height (K) with variations of 15 cm (k1) and 20 cm (k2). Chemical analysis parameter are free fatty acid, water content and saponification value. Physical parameter measurement was done on color with Hunter Lab system analysis and viscosity using viscometer method. Chemical analysis result of preliminary research on used cooking oil showed water content of 1,9%, free fatty acid 1,58%, saponification value 130,79 mg KOH/g oil, viscosity 0,6 d Pas and color with L value of -27,60, a value 1,04 and b value 1,54. Result on main research showed that adsorbent type only gave effect on water content whereas column height and its interaction was not gave significant effect on water content. Interaction between adsorbent type (J) and column height (K) gave significant effect to free fatty acid, saponification value, viscosity and color for L, a and b value of recycled cooking oil.
NASA Astrophysics Data System (ADS)
Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris
2013-04-01
Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be calculated. For the remaining directions the univariate extreme wind velocity distribution is stratified, each class combined with 5 high water levels. The wave height at the model boundaries was taken into account by a regression with the extreme wind velocity at the offshore location. The regression line and the 95% confidence limits where combined with each class. Eventually the wave period is computed by a new regression with the significant wave height. This way 1103 synthetic events were selected and simulated with the SWAN wave model, each of which a frequency of occurrence is calculated for. Hence near shore significant wave heights are obtained with corresponding frequencies. The statistical distribution of the near shore wave heights is determined by sorting the model results in a descending order and accumulating the corresponding frequencies. This approach allows determination of conditional return periods. For example, for the imposed univariate design return periods of 100 years for significant wave height and 30 years for water level, the joint return period for a simultaneous exceedance of both conditions can be computed as 4000 years. Hence, this methodology allows for a probabilistic design of coastal defense structures.
Zhu, Wen-Xu; Zhang, Hui-Hui; Xu, Nan; Wang, Peng; Wang, Shi-Dan; Mu, Shi-Nan; Liang, Ming; Sun, Guang-Yu
2012-07-01
A field investigation was conducted to study the effects of intercropping Morus aIba and Setaria italica on their dry matter production, land use efficiency, and diurnal variation of leaf photosynthesis. Under intercropping, the plant height, basal diameter, root length, and branch number of M. alba increased by 6.0%, 13.7%, 6.8%, and 14.8%, respectively, and the leaf yield of M. alba was increased by 31.3%, as compared with monoculture M. alba. In contrast, the plant height and root length of intercropped S. italica had no significant difference with those of monoculture S. italica. Intercropping enhanced the equivalent ratio and use efficiency of arable land. For both M. alba and S. italica in monoculture or intercropping, their leaf photosynthetic depression all occurred at midday (12 :00), but the leaf photosynthetic depression of monoculture M. alba was heavier than that of intercropped M. alba. Intercropping promoted the leaf stomatal conductance (g(s)) and water use efficiency (WUE) of M. alba at midday, increased the photosynthetic carbon assimilation of M. alba, and inhibited the decline of M. alba leaf actual photochemical efficiency of PS II (phi(PS II)), photosynthetic electron transport rate (ETR), and the maximal photochemical of PS II (F(v)/F(m)) , which might contribute to alleviate the leaf photosynthetic depression of M. alba at midday. It was concluded that M. alba and S. italica intercropping could obviously improve the leaf photosynthetic capacity of M. alba.
Steinhoff, Daniel F.; Monaghan, Andrew J.; Eisen, Lars; Barlage, Michael J.; Hopson, Thomas M.; Tarakidzwa, Isaac; Ortiz-Rosario, Karielys; Lozano-Fuentes, Saul; Hayden, Mary H.; Bieringer, Paul E.; Welsh Rodríguez, Carlos M.
2017-01-01
The mosquito virus vector Aedes (Ae.) aegypti exploits a wide range of containers as sites for egg laying and development of the immature life stages, yet the approaches for modeling meteorologically sensitive container water dynamics have been limited. This study introduces the Water Height and Temperature in Container Habitats Energy Model (WHATCH’EM), a state-of-the-science, physically based energy balance model of water height and temperature in containers that may serve as development sites for mosquitoes. The authors employ WHATCH’EM to model container water dynamics in three cities along a climatic gradient in México ranging from sea level, where Ae. aegypti is highly abundant, to ~2100 m, where Ae. aegypti is rarely found. When compared with measurements from a 1-month field experiment in two of these cities during summer 2013, WHATCH’EM realistically simulates the daily mean and range of water temperature for a variety of containers. To examine container dynamics for an entire season, WHATCH’EM is also driven with field-derived meteorological data from May to September 2011 and evaluated for three commonly encountered container types. WHATCH’EM simulates the highly nonlinear manner in which air temperature, humidity, rainfall, clouds, and container characteristics (shape, size, and color) determine water temperature and height. Sunlight exposure, modulated by clouds and shading from nearby objects, plays a first-order role. In general, simulated water temperatures are higher for containers that are larger, darker, and receive more sunlight. WHATCH’EM simulations will be helpful in understanding the limiting meteorological and container-related factors for proliferation of Ae. aegypti and may be useful for informing weather-driven early warning systems for viruses transmitted by Ae. aegypti. PMID:29123363
Moran, Kevin
2014-01-01
In high-income countries, death as a consequence of recreational jumping into water from height has not been well investigated partly because it traditionally has been a covert activity within youth culture. An observational study of video recordings posted on the YouTube web site was used to gather data on the nature of jumping activity in New Zealand and Australia. An analytical framework was developed to identify site- participant- social characteristics (10 variables) and online feedback (4 variables). Of the 389 videos recorded in New Zealand (n = 210) and Australia (n = 179), 929 jumpers were observed, and rivers were the most frequently reported site of jumping activity (New Zealand 47%; Australia 35%). One fifth (20%) of the jumps in New Zealand and one third (33%) in Australia were from heights estimated to be more than 12 m. The YouTube website portraying jumps from height were visited almost half a million times (495,686 hits). Ways of reducing recreational jumping risk via targeted education interventions may be best directed at young male adults. Use of social network sites to foster safe behaviours may be an effective way to educate young people of the inherent risks of jumping from height into water.
Yanxiang Zhang; Quanshui Zheng; Melvin T. Tyree
2012-01-01
Physiological ecologists have been fascinated by height- or position-linked differences of leaf morphology within tall trees >25 m, but the exact cause is still debated, i.e., is it due to light or height-induced water stress? The aim of this study was to demonstrate that relatively small trees (
Empirical Guidelines for Use of Irregular Wave Model to Estimate Nearshore Wave Height.
1982-07-01
height, the easier to use tech- nique presented by McClenan (1975) was employed. The McClenan technique uti- lizes a monogram which was constructed from...the SPM equations and gives the same results. The inputs to the monogram technique are the period, the deep- water wave height, the deepwater wave
Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees.
Ishii, Hiroaki T; Jennings, Gregory M; Sillett, Stephen C; Koch, George W
2008-07-01
We studied changes in morphological and physiological characteristics of leaves and shoots along a height gradient in Sequoia sempervirens, the tallest tree species on Earth, to investigate whether morphological and physiological acclimation to the vertical light gradient was constrained by hydrostatic limitation in the upper crown. Bulk leaf water potential (Psi) decreased linearly and light availability increased exponentially with increasing height in the crown. During the wet season, Psi was lower in the outer than inner crown. C isotope composition of leaves (delta(13)C) increased with increasing height indicating greater photosynthetic water use efficiency in the upper crown. Leaf and shoot morphology changed continuously with height. In contrast, their relationships with light availability were discontinuous: morphological characteristics did not correspond to increasing light availability above 55-85 m. Mass-based chlorophyll concentration (chl) decreased with increasing height and increasing light availability. In contrast, area-based chl remained constant or increased with increasing height. Mass-based maximum rate of net photosynthesis (P (max)) decreased with increasing height, whereas area-based P (max) reached maximum at 78.4 m and decreased with increasing height thereafter. Mass-based P (max) increased with increasing shoot mass per area (SMA), whereas area-based P (max) was not correlated with SMA in the upper crown. Our results suggest that hydrostatic limitation of morphological development constrains exploitation of light in the upper crown and contributes to reduced photosynthetic rates and, ultimately, reduced height growth at the tops of tall S. sempervirens trees.
Tree height growth indicating drought and nitrogen deposition
NASA Astrophysics Data System (ADS)
Gulyás, Krisztina; Berki, Imre
2016-04-01
Several studies have been reported the increasing trends of forest growth in Europe in the last decades. Sites, where the water is not limiting factor, the increasing carbon dioxide (CO2) concentration and high nitrogen deposition influenced accelerated tree height growth. However few researches show that the drying climate conditions and water deficit cause slow/not definite trend of tree height growth in forests. The aim of our study presents the effects of drying climate and surplus nitrogen on height growth of sessile oak (Quercus petraea). Almost 50 sessile oak stands (with zonal site condition) have been measured along a humid-arid climatic transect in Hungary. Top heights of the trees are the best dendrometric parameter for indicating the changing site conditions. Observed top heights dates were compared with 50-years climate condition along the humid-arid climatic transect. Tree height growth in the dry and mesic section of climatic gradient slowed at the last 4 decades, because of the increasing frequency of dry periods. Accelerated height growth were measured in the mesic and humid section of transect, where the nitrogen deposition due to local air pollution were higher than the background deposition. These results draw attention to the importance of the drying climate and surplus nitrogen in the global changes. Keywords: climate change impacts, drought periods, surplus deposition, tree height growth Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded research project.
Identifying water mass depletion in northern Iraq observed by GRACE
NASA Astrophysics Data System (ADS)
Mulder, G.; Olsthoorn, T. N.; Al-Manmi, D. A. M. A.; Schrama, E. J. O.; Smidt, E. H.
2015-03-01
Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicate a mass loss of 146 ± 6 mm equivalent water height (EWH) in northern Iraq between 2007 and 2009. These data are used as an independent validation of lake mass variations and a rainfall-runoff model, which is based on local geology and climate conditions. Model inputs are precipitation from Tropical Rainfall Measurement Mission (TRMM) observations, and climatic parameters from Global Land Data Assimilation Systems (GLDAS) model parameters. The model is calibrated with observed river discharge and includes a representation of the karstified aquifers in the region to improve model realism. Lake mass variations were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with satellite altimetry and some in situ data. Our rainfall-runoff model confirms that northern Iraq suffered a drought between 2007 and 2009 and captures the annual cycle and longer trend of the observed GRACE data. The total mass depletion seen by GRACE between 2007 and 2009 is mainly explained by a lake mass depletion of 75 ± 3 mm EWH and a natural groundwater depletion of 39 ± 8 mm EWH. Our findings indicate that anthropogenic groundwater extraction has a minor influence in this region, while a decline in lake mass and natural depletion of groundwater play a key role.
Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China.
Jiang, Weiping; Yuan, Peng; Chen, Hua; Cai, Jianqing; Li, Zhao; Chao, Nengfang; Sneeuw, Nico
2017-07-19
The Global Positioning System (GPS) records monsoonal precipitable water vapor (PWV) and vertical crustal displacement (VCD) due to hydrological loading, and can thus be applied jointly to diagnose meteorological and hydrological droughts. We have analyzed the PWV and VCD observations during 2007.0-2015.0 at 26 continuous GPS stations located in Yunnan province, China. We also obtained equivalent water height (EWH) derived from the Gravity Recovery And Climate Experiment (GRACE) and precipitation at these stations with the same period. Then, we quantified the annual variations of PWV, precipitation, EWH and VCD and provided empirical relationships between them. We found that GPS-derived PWV and VCD (positive means downward movement) are in phase with precipitation and GRACE-derived EWH, respectively. The annual signals of VCD and PWV show linearly correlated amplitudes and a two-month phase lag. Furthermore, the results indicate that PWV and VCD anomalies can also be used to explore drought, such as the heavy drought during winter/spring 2010. Our analysis results verify the capability of GPS to monitor monsoon variations and drought in Yunnan and show that a more comprehensive understanding of the characteristics of regional monsoon and drought can be achieved by integrating GPS-derived PWV and VCD with precipitation and GRACE-derived EWH.
Ambrose, Anthony R; Sillett, Stephen C; Koch, George W; Van Pelt, Robert; Antoine, Marie E; Dawson, Todd E
2010-10-01
Treetops become increasingly constrained by gravity-induced water stress as they approach maximum height. Here we examine the effects of height on seasonal and diurnal sap flow dynamics at the tops of 12 unsuppressed Sequoia sempervirens (D. Don) Endl. (coast redwood) trees 68-113 m tall during one growing season. Average treetop sap velocity (V(S)), transpiration per unit leaf area (E(L)) and stomatal conductance per unit leaf area (G(S)) significantly decreased with increasing height. These differences in sap flow were associated with an unexpected decrease in treetop sapwood area-to-leaf area ratios (A(S):A(L)) in the tallest trees. Both E(L) and G(S) declined as soil moisture decreased and vapor pressure deficit (D) increased throughout the growing season with a greater decline in shorter trees. Under high soil moisture and light conditions, reference G(S) (G(Sref); G(S) at D = 1 kPa) and sensitivity of G(S) to D (-δ; dG(S)/dlnD) significantly decreased with increasing height. The close relationship we observed between G(Sref) and -δ is consistent with the role of stomata in regulating E(L) and leaf water potential (Ψ(L)). Our results confirm that increasing tree height reduces gas exchange of treetop foliage and thereby contributes to lower carbon assimilation and height growth rates as S. sempervirens approaches maximum height.
Du, Ning; Fan, Jintu; Chen, Shuo; Liu, Yang
2008-07-21
Although recent investigations [Ryan, M.G., Yoder, B.J., 1997. Hydraulic limits to tree height and tree growth. Bioscience 47, 235-242; Koch, G.W., Sillett, S.C.,Jennings, G.M.,Davis, S.D., 2004. The limits to tree height. Nature 428, 851-854; Niklas, K.J., Spatz, H., 2004. Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proc. Natl Acad. Sci. 101, 15661-15663; Ryan, M.G., Phillips, N., Bond, B.J., 2006. Hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367-381; Niklas, K.J., 2007. Maximum plant height and the biophysical factors that limit it. Tree Physiol. 27, 433-440; Burgess, S.S.O., Dawson, T.E., 2007. Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol. 174, 626-636] suggested that the hydraulic limitation hypothesis (HLH) is the most plausible theory to explain the biophysical limits to maximum tree height and the decline in tree growth rate with age, the analysis is largely qualitative or based on statistical regression. Here we present an integrated biophysical model based on the principle that trees develop physiological compensations (e.g. the declined leaf water potential and the tapering of conduits with heights [West, G.B., Brown, J.H., Enquist, B.J., 1999. A general model for the structure and allometry of plant vascular systems. Nature 400, 664-667]) to resist the increasing water stress with height, the classical HLH and the biochemical limitations on photosynthesis [von Caemmerer, S., 2000. Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Australia]. The model has been applied to the tallest trees in the world (viz. Coast redwood (Sequoia sempervirens)). Xylem water potential, leaf carbon isotope composition, leaf mass to area ratio at different heights derived from the model show good agreements with the experimental measurements of Koch et al. [2004. The limits to tree height. Nature 428, 851-854]. The model also well explains the universal trend of declining growth rate with age.
Height-related growth declines in ponderosa pine are not due to carbon limitation.
Sala, Anna; Hoch, Günter
2009-01-01
Decreased gas exchange as trees grow tall has been proposed to explain age-related growth declines in trees. We examined changes of mobile carbon stores (starch, sugars and lipids) with tree height in ponderosa pine (Pinus ponderosa) at two sites differing in water availability, and tested the following hypotheses: (1) carbon supply does not become increasingly limited as trees grow tall; rather, the concentration of mobile carbon compounds increases with tree height reflecting greater reductions of carbon sink activities relative to carbon assimilation; and (2) increases of stored mobile carbon compounds with tree height are greater in drier sites. Height-related growth reductions were associated with significant increases of non-structural carbohydrates (NSC) and lipid concentrations in all tissues in the upper canopy and of NSC in the bole. Lipid concentrations in the bole decreased with tree height, but such decrease is not necessarily inconsistent with non-limiting carbon supply in tall trees. Furthermore, we found stronger increases of mobile carbon stores with tree height at the dry site relative to the moist site. Our results provide first direct evidence that carbon supply does not limit growth in tall trees and that decreases of water availability might negatively impact growth processes more than net-photosynthesis.
CRISM Limb Observations of Aerosols and Water Vapor
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.
2009-01-01
Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100m, even in partly cloudy conditions. The capability to observe subsurface backscatter profiles is achievable but requires much longer transects of several hundreds of meters.
Coble, Adam P; Cavaleri, Molly A
2015-04-01
Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.
NASA Astrophysics Data System (ADS)
Avery, M. A.; Rosenlof, K. H.; Vaughan, M.; Getzewich, B. J.; Thornberry, T. D.; Gao, R. S.; Rollins, A. W.; Woods, S.; Yorks, J. E.; Jensen, E. J.
2017-12-01
Recent aircraft missions sampling the tropical tropopause layer (TTL) in the tropical Western Pacific have provided a wealth of detailed cloud microphysical and associated aerosol, water vapor and temperature data for understanding processes that regulate stratospheric composition and hydration. This presentation seeks to provide a regional context for these measurements by comparing and contrasting active space-based observations from these time periods (Feb-Mar 2014 for ATTREX-III and Oct 2016 for POSIDON), primarily from the Clouds and Aerosol Lidar with Orthogonal Polarization (CALIOP), with the addition of Cloud Profiling Radar (CPR) and the Cloud-Aerosol Transport System (CATS) where these data sets are available. While the ATTREX III and POSIDON aircraft field missions both took place from Guam in the Western Pacific, there were striking differences between the amount, geographical distribution and properties of cirrus clouds and aerosols in the Tropical TTL. In addition to cloud and aerosol amount and location, we present geometric properties, including cloud top heights, transparent cloud and aerosol layer thicknesses and location of the 532 nm backscatter centroid, which is roughly equivalent to the layer vertical center of mass. We also present differences in the distribution of cirrus cloud extinction coefficients and ice water content, and aerosol optical depths, as detected from space, and compare these with in situ measurements and with temperature and water vapor distributions from the Microwave Limb Sounder (MLS). We find that there is more intense convection reaching the tropical tropopause during the POSIDON mission, and consequently more associated cloud ice observed during POSIDON than during ATTREX-III.
Very high resolution aerial films
NASA Astrophysics Data System (ADS)
Becker, Rolf
1986-11-01
The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.
Dose estimation to eye lens of industrial gamma radiography workers using the Monte Carlo method.
de Lima, Alexandre Roza; Hunt, John Graham; Da Silva, Francisco Cesar Augusto
2017-12-01
The ICRP Statement on Tissue Reactions (2011), based on epidemiological evidence, recommended a reduction for the eye lens equivalent dose limit from 150 to 20 mSv per year. This paper presents mainly the dose estimations received by industrial gamma radiography workers, during planned or accidental exposure to the eye lens, Hp(10) and effective dose. A Brazilian Visual Monte Carlo Dose Calculation program was used and two relevant scenarios were considered. For the planned exposure situation, twelve radiographic exposures per day for 250 days per year, which leads to a direct exposure of 10 h per year, were considered. The simulation was carried out using a 192 Ir source with 1.0 TBq of activity; a source/operator distance between 5 and 10 m and placed at heights of 0.02 m, 1 m and 2 m, and an exposure time of 12 s. Using a standard height of 1 m, the eye lens doses were estimated as being between 16.3 and 60.3 mGy per year. For the accidental exposure situation, the same radionuclide and activity were used, but in this case the doses were calculated with and without a collimator. The heights above ground considered were 1.0 m, 1.5 m and 2.0 m; the source/operator distance was 40 cm, and the exposure time 74 s. The eye lens doses at 1.5 m were 12.3 and 0.28 mGy without and with a collimator, respectively. The conclusions were that: (1) the estimated doses show that the 20 mSv annual limit for eye lens equivalent dose can directly impact industrial gamma radiography activities, mainly in industries with high number of radiographic exposures per year; (2) the risk of lens opacity has a low probability for a single accident, but depending on the number of accidental exposures and the dose levels found in planned exposures, the threshold dose can easily be exceeded during the professional career of an industrial radiography operator, and; (3) in a first approximation, Hp(10) can be used to estimate the equivalent dose to the eye lens.
40 CFR 133.105 - Treatment equivalent to secondary treatment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Treatment equivalent to secondary treatment. 133.105 Section 133.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS SECONDARY TREATMENT REGULATION § 133.105 Treatment equivalent to secondary treatment...
Future change in seasonal march of snow water equivalent due to global climate change
NASA Astrophysics Data System (ADS)
Hara, M.; Kawase, H.; Ma, X.; Wakazuki, Y.; Fujita, M.; Kimura, F.
2012-04-01
Western side of Honshu Island in Japan is one of the heaviest snowfall areas in the world, although the location is relatively lower latitude than other heavy snowfall areas. Snowfall is one of major source for agriculture, industrial, and house-use in Japan. The change in seasonal march of snow water equivalent, e.g., snowmelt season and amount will strongly influence to social-economic activities (ex. Ma et al., 2011). We performed the four numerical experiments including present and future climate simulations and much-snow and less-snow cases using a regional climate model. Pseudo-Global-Warming (PGW) method (Kimura and Kitoh, 2008) is applied for the future climate simulations. NCEP/NCAR reanalysis is used for initial and boundary conditions in present climate simulation and PGW method. MIROC 3.2 medres 2070s output under IPCC SRES A2 scenario and 1990s output under 20c3m scenario used for PGW method. In much-snow cases, Maximum total snow water equivalent over Japan, which is mostly observed in early February, is 49 G ton in the present simulation, the one decreased 26 G ton in the future simulation. The decreasing rate of snow water equivalent due to climate change was 49%. Main cause of the decrease of the total snow water equivalent is strongly affected by the air temperature rise due to global climate change. The difference in present and future precipitation amount is little.
Chaotic Mountain Blocks in Pluto’s Sputnik Planitia
NASA Astrophysics Data System (ADS)
Singer, Kelsi N.; Knight, Katherine I.; Stern, S. Alan; Olkin, Catherine; Grundy, William M.; McKinnon, William B.; Moore, Jeffrey M.; Schenk, Paul M.; Spencer, John R.; Weaver, Harold A.; Young, Leslie; Ennico, Kimberly; New Horizons Geology, Geophysics and Imaging Science Theme Team, The New Horizons Surface Composition Science Theme Team
2017-10-01
One of the first high-resolution Pluto images returned by New Horizons displayed a collection of tall, jagged peaks rising out of the large nitrogen ice sheet informally known as Sputnik Planitia (SP). This mountain range was later revealed to be one of several along the western edge of SP. The mountains are several hundred broken-up blocks of Pluto’s primarily water ice lithosphere and some retain surface terrains similar to the nearby intact crust surrounding SP. Water ice with some fractures or porosity is likely >5% less dense than solid N2 ice at Pluto’s temperatures. Thus it is possible the blocks are, or were, floating icebergs or at least partially suspended to the point that some blocks appear to be tilted as if they have faltered (Moore et al., 2016, Science, 351, 1284-1293).We analyze four mountain ranges on the western edge of SP and compare to chaotic terrains on Europa and Mars. The blocks on Pluto have angular planforms but we characterize their size using block surface area converted to an equivalent circular diameter. Topography was used to define block extents. The blocks range in size from 3-30 km in diameter, with a mode of ~8-10 km. Blocks range from 0.2-3.8 km in height, and block height generally increases with block diameter. One or more dark layers can be identified in a few scarp faces, and are at a similar depth to each other and to layers seen in fault and crater walls elsewhere on Pluto. A large N-S trending fault system runs tangential to SP and may be the source of crustal disruption on the western side.On Europa and Mars block sizes vary greatly between different chaos regions, but Conamara Chaos has an average block size of ~5 km in diameter, smaller than that typically seen on Pluto. Also the blocks often transition into fractured terrain still connected to the surround lithosphere at the periphery of the chaos regions. The source regions for the blocks are more obvious on Europa and Mars. Additionally the block heights on Europa and Mars generally do not increase with block size. Thus, the main mechanism of crustal breakup is likely different between these bodies.
Role of water source in the growth of kale
NASA Astrophysics Data System (ADS)
Coates, M.
2017-12-01
Over the course of 2 months we watered Kale with tap water, water from turtle bayou, rain water, water from university lake, and deionized water. We found little difference between height and number of seedlings with different water treatments even though nutrient levels were different between these water sources.
Structured illumination assisted microdeflectometry with optical depth scanning capability
Lu, Sheng-Huei; Hua, Hong
2018-01-01
Microdeflectometry is a powerful noncontact tool for measuring nanometer defects on a freeform surface. However, it requires a time-consuming process to take measurements at different depths for an extended depth of field (EDOF) and lacks surface information for integrating the measured gradient data to height. We propose an optical depth scanning technique to speed up the measurement process and introduce the structured illumination technique to efficiently determine the focused data among 3D observation and provide surface orientations for reconstructing an unknown surface shape. We demonstrated 3D measurements with an equivalent surface height sensitivity of 7.21 nm and an EDOF of at least 250 μm, which is 15 times that of the diffraction limited depth range. PMID:27607986
D.R. Woodruff; F.C. Meinzer; K.A. McCulloh
2010-01-01
Stomatal responses to leaf-to-air vapour pressure deficit (LVPD), leaf water potential components, and cuticular properties were characterized for Douglas-fir (Pseudotsuga menziesii) foliage collected from treetops along a height gradient from 5 m to 58 m in order to explore height-related trends in stomatal sensitivity to LVPD and to investigate...
A comparison of several techniques to assign heights to cloud tracers
NASA Technical Reports Server (NTRS)
Nieman, Steven J.; Schmetz, Johannes; Menzel, W. P.
1993-01-01
Experimental results are presented which suggest that the water-vapor technique of radiance measurement is a viable alternative to the CO2 technique for inferring the height of semitransparent cloud elements. Future environmental satellites will rely on H2O-derived cloud-height assignments in the wind-field determinations with the next operational geostationary satellite. On a given day, the heights from the H2O and CO2 approaches compare to within 60-110 hPa rms.
The Effect of Clouds on Water Vapor Profiling from the Millimeter-Wave Radiometric Measurements
NASA Technical Reports Server (NTRS)
Wang, J. R.; Spinhirne, J. D.; Racette, P.; Chang, L. A.; Hart, W.
1997-01-01
Simultaneous measurements with the millimeter-wave imaging radiometer (MIR), cloud lidar system (CLS), and the MODIS airborne simulator (MAS) were made aboard the NASA ER-2 aircraft over the western Pacific Ocean on 17-18 January 1993. These measurements were used to study the effects of clouds on water vapor profile retrievals based on millimeter-wave radiometer measurements. The CLS backscatter measurements (at 0.532 and 1.064 am) provided information on the heights and a detailed structure of cloud layers; the types of clouds could be positively identified. All 12 MAS channels (0.6-13 Am) essentially respond to all types of clouds, while the six MIR channels (89-220 GHz) show little sensitivity to cirrus clouds. The radiances from the 12-/Am and 0.875-gm channels of the MAS and the 89-GHz channel of the MIR were used to gauge the performance of the retrieval of water vapor profiles from the MIR observations under cloudy conditions. It was found that, for cirrus and absorptive (liquid) clouds, better than 80% of the retrieval was convergent when one of the three criteria was satisfied; that is, the radiance at 0.875 Am is less than 100 W/cm.sr, or the brightness at 12 Am is greater than 260 K, or brightness at 89 GHz is less than 270 K (equivalent to cloud liquid water of less than 0.04 g/cm). The range of these radiances for convergent retrieval increases markedly when the condition for convergent retrieval was somewhat relaxed. The algorithm of water vapor profiling from the MIR measurements could not perform adequately over the areas of storm-related clouds that scatter radiation at millimeter wavelengths.
Sea ice ridging in the eastern Weddell Sea
NASA Astrophysics Data System (ADS)
Lytle, V. I.; Ackley, S. F.
1991-10-01
In August 1986, sea ice ridge heights and spatial frequency in the eastern Weddell Sea were measured using a ship-based acoustical sounder. Using a minimum ridge sail height of 0.75 m, a total of 933 ridges were measured along a track length of 415 km. The ridge frequency varied from 0.4 to 10.5 ridges km-1. The mean height of the ridges was found to be about 1.1 m regardless of the ridge frequency. These results are compared to other ridging statistics from the Ross Sea and found to be similar. Comparison with Arctic data, however, indicates that the height and frequency of the ridges are considerably less in the Weddell Sea than in the Arctic. Whereas in the Arctic the mean ridge height tends to increase with the ridge frequency, we found that this was not the case in the Weddell Sea, where the mean ridge height remained constant irrespective of the ridge frequency. Estimates of the contribution of deformed ice to the total ice thickness are generally low except for a single 53-km section where the ridge frequency increased by an order of magnitude. This resulted in an increase in the equivalent mean ice thickness due to ridging from 0.04 m in the less deformed areas to 0.45 m in the highly deformed section. These values were found to be consistent with values obtained from drilled profile lines during the same cruise.
Resistivity Distribution of Multicrystalline Silicon Ingot Grown by Directional Solidification
NASA Astrophysics Data System (ADS)
Sun, S. H.; Tan, Y.; Dong, W.; Zhang, H. X.; Zhang, J. S.
2012-06-01
The effects of impurities on the resistivity distribution and polarity of multicrystalline silicon ingot prepared by directional solidification were investigated in this article. The shape of the equivalence line of the resistivity in the vertical and cross sections was determined by the solid-liquid interface. Along the solidification height of silicon ingot, the conductive type changed from p-type in the lower part of the silicon ingot to n-type in the upper part of the silicon ingot. The resistivity in the vertical section of the silicon ingot initially increased along the height of the solidified part, and reached its maximum at the polarity transition position, then decreased rapidly along the height of solidified part and approached zero on the top of the ingot because of the accumulation of impurities. The variation of resistivity in the vertical section of the ingot has been proven to be deeply relevant to the distribution of Al, B, and P in the growth direction of solidification.
Size matters: Perceived depth magnitude varies with stimulus height.
Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S
2016-06-01
Both the upper and lower disparity limits for stereopsis vary with the size of the targets. Recently, Tsirlin, Wilcox, and Allison (2012) suggested that perceived depth magnitude from stereopsis might also depend on the vertical extent of a stimulus. To test this hypothesis we compared apparent depth in small discs to depth in long bars with equivalent width and disparity. We used three estimation techniques: a virtual ruler, a touch-sensor (for haptic estimates) and a disparity probe. We found that depth estimates were significantly larger for the bar stimuli than for the disc stimuli for all methods of estimation and different configurations. In a second experiment, we measured perceived depth as a function of the height of the bar and the radius of the disc. Perceived depth increased with increasing bar height and disc radius suggesting that disparity is integrated along the vertical edges. We discuss size-disparity correlation and inter-neural excitatory connections as potential mechanisms that could account for these results. Copyright © 2016 Elsevier Ltd. All rights reserved.
SU-F-J-172: Hybrid MR/CT Compatible Phantom for MR-Only Based Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Lee, S; Song, K
2016-06-15
Purpose: Development of hybrid MR/CT compatible phantom was introduced to fully establish MR image only radiation treatment and this suggested technique using in-house developed hybrid MR/CT compatible phantom image would utilize to generate radiation treatment planning and perform dose calculation without multi-modal registration process or generation of pseudo CT. Methods: Fundamental characteristics for “hybrid MR/CT compatible phantom” was established: Relaxation times equivalent to human tissue, dielectric properties, homogeneous relaxation times, sufficient strength to fabricate a torso, ease of handling, a wide variety of density material for calibration, chemical and physical stability over an extended time. For this requirements, chemical componentmore » in each tested plug which would be tissue equivalent to human tissue on MR and CT image and production of phantom body and plug was performed. Chemical component has described below: Agaros, GdCl{sub 3}, NaN{sub 3}, NaCl, K{sub 2}Co{sub 3}, deionized-distilled water. Various mixture of chemical component to simulate human tissue on both MR and CT image was tested by measuring T1, T2 relaxation time and signal intensity (SI) on MR image and Hounsfield unit (HU) on CT and each value was compared. The hybrid MR/CT compatible phantom with 14 plugs was designed and has made. Total height and external diameter was decided by internal size of 32 channel MR head-coil. Results: Tissue-equivalent chemical component materials and hybrid MR/CT compatible phantom was developed. The range of T1, T2 relaxation time and SI on MR image, HU on CT was acquired and could be adjusted to correspond to simulated human tissue. Conclusion: Current result shows its possibility for MR-only based radiotherapy and the best mixing rate of chemical component for tissue-equivalent image on MR and CT was founded. However, additional technical issues remain to be overcome. Conversion of SI on MR image into HU and dose calculation based on converted MRI will be progressing.« less
Effect of end-wall riblets on radial turbine performance
NASA Astrophysics Data System (ADS)
Khader, M. A.; Sayma, A. I.
2017-08-01
This paper presents a detailed study of the impact of manufacturing residual riblets at the rotor hub surface of a radial inflow turbine on the flow within the rotor passages and their contribution to drag reduction. Numerical analysis has been used to study the effects of those features at design point conditions. Riblets with different height and spacing have been examined to determine the riblet geometry where the maximum drag reduction is achieved. The relative height of the riblets to rotor inlet blade height was introduced to generalise the results. At the end of this study the results were compared with the available data in literature. It was found that the introduction of riblets could reduce the wall shear stress at the hub surface, while they contribute to increasing the streamwise vorticity within the rotor passage. For the geometries tested, the minimum drag was achieved using riblets with relative height hrel = 2.5% equivalent to 19.3 wall units. The results revealed that the spacing between riblets have a minor effect on their performance, this is due to the size of the streamwise vortex above the hub surface which will be discussed in this work.
In-Service Monitoring of Steam Pipe Systems at High Temperatures
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Scott, James S.; Blosiu, Julian O.; Widholm, Scott E.
2011-01-01
An effective, in-service health monitoring system is needed to track water condensation in real time through the walls of steam pipes. The system is required to measure the height of the condensed water from outside the pipe, while operating at temperatures that are as high as 250 C. The system needs to account for the effects of water flow and cavitation. In addition, it is desired that the system does not require perforating the pipes and thereby reducing the structural integrity. Generally, steam pipes are used as part of the district heating system carrying steam from central power stations under the streets to heat, cool, or supply power to high-rise buildings and businesses. This system uses ultrasonic waves in pulse-echo and acquires reflected signal data. Via autocorrelation, it determines the water height while eliminating the effect of noise and multiple reflections from the wall of the pipe. The system performs nondestructive monitoring through the walls of steam pipes, and automatically measures the height of condensed water while operating at the high-temperature conditions of 250 C. For this purpose, the ultrasonic pulse-echo method is used where the time-of-flight of the wave reflections inside the water are measured, and it is multiplied by the wave velocity to determine the height. The pulse-echo test consists of emitting ultrasonic wave pulses from a piezoelectric transducer and receiving the reflections from the top and bottom of the condensed water. A single transducer is used as a transmitter as well as the receiver of the ultrasonic waves. To obtain high resolution, a broadband transducer is used and the frequency can be in the range of 2.25 to 10 MHz, providing sharp pulses in the time domain allowing for higher resolution in identifying the individual reflections.
Emanuel, Kaj S; van der Veen, Albert J; Rustenburg, Christine M E; Smit, Theodoor H; Kingma, Idsart
2018-03-21
The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atmospheric Science Data Center
2013-05-20
... Surface Emissivity Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Sun, Zong-ke; Wu, Rong; Ding, Pei; Xue, Jin-Rong
2006-07-01
To compare between rapid detection method of enzyme substrate technique and multiple-tube fermentation technique in water coliform bacteria detection. Using inoculated and real water samples to compare the equivalence and false positive rate between two methods. Results demonstrate that enzyme substrate technique shows equivalence with multiple-tube fermentation technique (P = 0.059), false positive rate between the two methods has no statistical difference. It is suggested that enzyme substrate technique can be used as a standard method for water microbiological safety evaluation.
Pitch chroma discrimination, generalization, and transfer tests of octave equivalence in humans.
Hoeschele, Marisa; Weisman, Ronald G; Sturdy, Christopher B
2012-11-01
Octave equivalence occurs when notes separated by an octave (a doubling in frequency) are judged as being perceptually similar. Considerable evidence points to the importance of the octave in music and speech. Yet, experimental demonstration of octave equivalence has been problematic. Using go/no-go operant discrimination and generalization, we studied octave equivalence in humans. In Experiment 1, we found that a procedure that failed to show octave equivalence in European starlings also failed in humans. In Experiment 2, we modified the procedure to control for the effects of pitch height perception by training participants in Octave 4 and testing in Octave 5. We found that the pattern of responding developed by discrimination training in Octave 4 generalized to Octave 5. We replicated and extended our findings in Experiment 3 by adding a transfer phase: Participants were trained with either the same or a reversed pattern of rewards in Octave 5. Participants transferred easily to the same pattern of reward in Octave 5 but struggled to learn the reversed pattern. We provided minimal instruction, presented no ordered sequences of notes, and used only sine-wave tones, but participants nonetheless constructed pitch chroma information from randomly ordered sequences of notes. Training in music weakly hindered octave generalization but moderately facilitated both positive and negative transfer.
Landscape structure and climate influences on hydrologic response
NASA Astrophysics Data System (ADS)
Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.
2011-12-01
Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.
NASA Astrophysics Data System (ADS)
Fleisher, Adam J.; Young, Justin W.; Pratt, David W.
2010-06-01
An understanding of the structure and internal dynamics of water attached to the photoacid β-naphthol is attainable through rotationally resolved electronic spectroscopy. Here, we present rotational constants for the 1:1 acid-base cluster in both S0 and S1, which provide the location of water within the cluster, as well as the barrier height to internal rotation of water in each electronic state. The barrier height decreases slightly upon excitation, from 206 wn in S0, to 182 wn in S1. There is also little evidence of a large change in water location, orientation, or overall hydrogen bond length upon irradiation with UV light. Thus, a single water molecule has relatively little affect on the substrate photo-acidity measured in the liquid phase.
Influence of water drinking on resting energy expenditure in overweight children.
Dubnov-Raz, G; Constantini, N W; Yariv, H; Nice, S; Shapira, N
2011-10-01
It was previously demonstrated that drinking water significantly elevates the resting energy expenditure (REE) in adults, and that low water intake is associated with obesity and lesser success in weight reduction. This study addressed the potential of water drinking to increase the REE in children, as an additional tool for weight management. To examine the effect of drinking water on the REE of overweight children. A total of 21 overweight, otherwise-healthy children (age 9.9±1.4 years, 11 males) drank 10 ml kg(-1) cold water (4 °C). REE was measured before and after water ingestion, for 66 min. The main outcome measure was the change in mean REE from baseline values. Immediately after drinking water, there was a transient decrease in REE, from a baseline value of 3.32±1.15 kilojoule (kJ) per min to 2.56±0.66 kJ per min at minute 3 (P=0.005). A subsequent rise in REE was then observed, which was significantly higher than baseline after 24 min (3.89±0.78 kJ/min (P=0.021)), and at most time points thereafter. Maximal mean REE values were seen at 57 min after water drinking (4.16±1.43 kJ per min (P=0.004)), which were 25% higher than baseline. REE was significantly correlated with age, height, weight and fat-free mass; the correlations with maximal REE values after water drinking were stronger than with baseline REE values. This study demonstrated an increase of up to 25% in REE following the drinking of 10 ml kg(-1) of cold water in overweight children, lasting for over 40 min. Consuming the recommended daily amount of water for children could result in an energy expenditure equivalent to an additional weight loss of about 1.2 kg per year. These findings reinforce the concept of water-induced REE elevation shown in adults, suggesting that water drinking could assist overweight children in weight loss or maintenance, and may warrant emphasis in dietary guidelines against the obesity epidemic.
NASA Astrophysics Data System (ADS)
Basu, Biswajit
2017-12-01
Bounds on estimates of wave heights (valid for large amplitudes) from pressure and flow measurements at an arbitrary intermediate depth have been provided. Two-dimensional irrotational steady water waves over a flat bed with a finite depth in the presence of underlying uniform currents have been considered in the analysis. Five different upper bounds based on a combination of pressure and velocity field measurements have been derived, though there is only one available lower bound on the wave height in the case of the speed of current greater than or less than the wave speed. This article is part of the theme issue 'Nonlinear water waves'.
Zhao, Jian-Liang; Ying, Guang-Guo; Yang, Bin; Liu, Shan; Zhou, Li-Jun; Chen, Zhi-Feng; Lai, Hua-Jie
2011-10-01
This paper reports screening of multiple hormonal activities (estrogenic and androgenic activities, antiestrogenic and antiandrogenic activities) for surface water and sediment from the Pearl River system (Liuxi, Zhujiang, and Shijing rivers) in South China, using in vitro recombinant yeast bioassays. The detection frequencies for estrogenic and antiandrogenic activities were both 100% in surface water and 81 and 93% in sediment, respectively. The levels of estrogenic activity were 0.23 to 324 ng 17β-estradiol equivalent concentration (EEQ)/L in surface water and 0 to 101 ng EEQ/g in sediment. Antiandrogenic activities were in the range of 20.4 to 935 × 10(3) ng flutamide equivalent concentration (FEQ)/L in surface water and 0 to 154 × 10(3) ng FEQ/g in sediment. Moreover, estrogenic activity and antiandrogenic activity in sediment showed good correlation (R(2) = 0.7187), suggesting that the agonists of estrogen receptor and the antagonists of androgen receptor co-occurred in sediment. The detection frequencies for androgenic and antiestrogenic activities were 41 and 29% in surface water and 61 and 4% in sediment, respectively. The levels of androgenic activities were 0 to 45.4 ng dihydrotestosterone equivalent concentration (DEQ)/L in surface water, and the potency was very weak in the only detected sediment site. The levels of antiestrogenic activity were 0 to 1,296 × 10(3) ng tamoxifen equivalent concentration (TEQ)/L in surface water and 0 to 89.5 × 10(3) ng TEQ/g in sediment. The Shijing River displayed higher levels of hormonal activities than the Zhujiang and Liuxi rivers, indicating that the Shijing River had been suffering from heavy contamination with endocrine-disrupting chemicals. The equivalent concentrations of hormonal activities in some sites were greater than the lowest-observed-effect concentrations reported in the literature, suggesting potential adverse effects on aquatic organisms. Copyright © 2011 SETAC.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Chang, Grace; Jones, Craig
The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. Themore » maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.« less
Huang, Ping; Wan, Xianchong; Lieffers, Victor J
2016-05-01
This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response. © 2015 Scandinavian Plant Physiology Society.
Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees.
Ambrose, Anthony R; Baxter, Wendy L; Wong, Christopher S; Burgess, Stephen S O; Williams, Cameron B; Næsborg, Rikke R; Koch, George W; Dawson, Todd E
2016-11-01
Optimality theory states that whole-tree carbon gain is maximized when leaf N and photosynthetic capacity profiles are distributed along vertical light gradients such that the marginal gain of nitrogen investment is identical among leaves. However, observed photosynthetic N gradients in trees do not follow this prediction, and the causes for this apparent discrepancy remain uncertain. Our objective was to evaluate how hydraulic limitations potentially modify crown-level optimization in Sequoiadendron giganteum (giant sequoia) trees up to 90 m tall. Leaf water potential (Ψ l ) and branch sap flow closely followed diurnal patterns of solar radiation throughout each tree crown. Minimum leaf water potential correlated negatively with height above ground, while leaf mass per area (LMA), shoot mass per area (SMA), leaf nitrogen content (%N), and bulk leaf stable carbon isotope ratios (δ(13)C) correlated positively with height. We found no significant vertical trends in maximum leaf photosynthesis (A), stomatal conductance (g s), and intrinsic water-use efficiency (A/g s), nor in branch-averaged transpiration (E L), stomatal conductance (G S), and hydraulic conductance (K L). Adjustments in hydraulic architecture appear to partially compensate for increasing hydraulic limitations with height in giant sequoia, allowing them to sustain global maximum summer water use rates exceeding 2000 kg day(-1). However, we found that leaf N and photosynthetic capacity do not follow the vertical light gradient, supporting the hypothesis that increasing limitations on water transport capacity with height modify photosynthetic optimization in tall trees.
Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis
Lawrence D. Garrett
1977-01-01
A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...
Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements
Reginald R. Muskett; Vladimir E. Romanovsky
2011-01-01
The Arctic is in transition from climate-driven thawing of permafrost. We investigate satellite-derived water equivalent mass changes, snow water equivalent with in situ measurements of runoff and ground-survey derived geoid models from 1999 through 2009. The Alaskan Arctic coastal plain groundwater storage (including wetland bog, thaw pond and lake) is increasing by 1...
Atmospheric Science Data Center
2013-05-20
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Atmospheric Science Data Center
2013-05-17
... Flux - Down Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Vial, Philip; Gustafsson, Helen; Oliver, Lyn; Baldock, Clive; Greer, Peter B
2009-12-07
The routine use of electronic portal imaging devices (EPIDs) as dosimeters for radiotherapy quality assurance is complicated by the non-water equivalence of the EPID's dose response. A commercial EPID modified to a direct-detection configuration was previously demonstrated to provide water-equivalent dose response with d(max) solid water build-up and 10 cm solid water backscatter. Clinical implementation of the direct EPID (dEPID) requires a design that maintains the water-equivalent dose response, can be incorporated onto existing EPID support arms and maintains sufficient image quality for clinical imaging. This study investigated the dEPID dose response with different configurations of build-up and backscatter using varying thickness of solid water and copper. Field size output factors and beam profiles measured with the dEPID were compared with ionization chamber measurements of dose in water for both 6 MV and 18 MV. The dEPID configured with d(max) solid water build-up and no backscatter (except for the support arm) was within 1.5% of dose in water data for both energies. The dEPID was maintained in this configuration for clinical dosimetry and image quality studies. Close agreement between the dEPID and treatment planning system was obtained for an IMRT field with 98.4% of pixels within the field meeting a gamma criterion of 3% and 3 mm. The reduced sensitivity of the dEPID resulted in a poorer image quality based on quantitative (contrast-to-noise ratio) and qualitative (anthropomorphic phantom) studies. However, clinically useful images were obtained with the dEPID using typical treatment field doses. The dEPID is a water-equivalent dosimeter that can be implemented with minimal modifications to the standard commercial EPID design. The proposed dEPID design greatly simplifies the verification of IMRT dose delivery.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nanometer laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland waterbodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the data sets of three MABEL transects observed from 20 kilometers above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 kilometers in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision ofapproximately 5-7 centimeters per 100-meter segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR (sub 0), were observed over a range of 1.3 to 9.3 meters, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 meters under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100 meters, even in partly cloudy conditions. The capability to observe subsurface backscatterprofiles is achievable but requires much longer transects of several hundreds of meters.
Fritz, Ann-Kristina; Amrein, Irmgard; Wolfer, David P
2017-09-01
Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water-maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water-maze acquisition and in the open field, males tended to perform less reliably in the water-maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water-maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water-maze are used in preclinical research. © 2017 The Authors. American Journal of Medical Genetics Part C Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng
2018-03-01
The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.
The variability of atmospheric equivalent temperature for radar altimeter range correction
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Mock, Donald
1990-01-01
Two sets of data were used to test the validity of the presently used approximation for radar altimeter range correction due to atmospheric water vapor. The approximation includes an assumption of constant atmospheric equivalent temperature. The first data set includes monthly, three-dimensional, gridded temperature and humidity fields over global oceans for a 10-year period, and the second is comprised of daily or semidaily rawinsonde data at 17 island stations for a 7-year period. It is found that the standard method underestimates the variability of the equivalent temperature, and the approximation could introduce errors of 2 cm for monthly means. The equivalent temperature is found to have a strong meridional gradient, and the highest temporal variabilities are found over western boundary currents. The study affirms that the atmospheric water vapor is a good predictor for both the equivalent temperature and the range correction. A relation is proposed to reduce the error.
NASA Astrophysics Data System (ADS)
Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa
2018-02-01
Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with a maximum of 14.4 km3 observed in 2006. The good agreement between the total surface water volume retrievals and in situ river discharges (R = 0.66) allows for validation of this innovative multi-mission approach and highlights the high potential to study the surface water extent dynamics.
Atmospheric Science Data Center
2013-05-17
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Water-equivalent fiber radiation dosimeter with two scintillating materials
Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed
2016-01-01
An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715
Predicting the limits to tree height using statistical regressions of leaf traits.
Burgess, Stephen S O; Dawson, Todd E
2007-01-01
Leaf morphology and physiological functioning demonstrate considerable plasticity within tree crowns, with various leaf traits often exhibiting pronounced vertical gradients in very tall trees. It has been proposed that the trajectory of these gradients, as determined by regression methods, could be used in conjunction with theoretical biophysical limits to estimate the maximum height to which trees can grow. Here, we examined this approach using published and new experimental data from tall conifer and angiosperm species. We showed that height predictions were sensitive to tree-to-tree variation in the shape of the regression and to the biophysical endpoints selected. We examined the suitability of proposed end-points and their theoretical validity. We also noted that site and environment influenced height predictions considerably. Use of leaf mass per unit area or leaf water potential coupled with vulnerability of twigs to cavitation poses a number of difficulties for predicting tree height. Photosynthetic rate and carbon isotope discrimination show more promise, but in the second case, the complex relationship between light, water availability, photosynthetic capacity and internal conductance to CO(2) must first be characterized.
Improving paddling efficiency through raising sitting height in female white water kayakers.
Broomfield, Shelley A L; Lauder, Mike
2015-01-01
The study compared female white water paddlers over two conditions: with seat raise and with no seat raise. The aim was to determine whether raising the sitting height would improve paddling efficiency. Sitting height of each participant was recorded in order to calculate the seat raise height required and three-dimensional kinematic data was collected for six participants over both conditions. Twelve measures of efficiency were utilised. The efficiency of all participants improved on the seat condition for ≥4 of the measures, with three participants showing improvement for ≥6 of the measures. The stern snaking measure had the highest value of significance (P = 0.1455) and showed an average of 11.98% reduction in movement between no seat and seat conditions. The results indicate that improvements were seen although these were individualistic. Therefore it can be concluded that it is worth experimenting with a seat raise for a female kayaker who is lacking efficiency, noting, however, that improvements might depend on anthropometrics and the seat height selected, and therefore could elicit differing results.
MULTIFUNCTION ENERGY PLATFORM (MFP) PILOT
Jabbari, Fatemeh; Wiklander, Laila; Reiser, Erika; Thor, Andreas; Hakelius, Malin; Nowinski, Daniel
2018-02-01
To identify factors of oral health important for the final outcome, after secondary alveolar bone grafting in patients born with unilateral cleft lip and palate and compare occlusal radiographs with cone beam computed tomography (CBCT) in assessment of alveolar bone height. Observational follow-up study. Cleft Lip and Palate Team, Craniofacial Center, Uppsala University Hospital, Sweden. 40 nonsyndromic, Caucasian patients with unilateral complete cleft lip and palate. Clinical examination, CBCT, and occlusal radiographs. Alveolar bone height was evaluated according to Bergland index at a 20-year follow-up. The alveolar bone height in the cleft area was significantly reduced compared to a previously reported 10-year follow-up in the same cohort by total ( P = .045) and by subgroup with dental restoration ( P = .0078). This was positively correlated with the gingival bleeding index (GBI) ( r = 0.51, P = .0008) and presence of dental restorations in the cleft area ( r = 0.45, P = .0170). There was no difference in the Bergland index generated from scoring the alveolar bone height on occlusal radiographs as with the equivalent index on CBCT. Patients rehabilitated with complex dental restoration seems to be at higher risk for progression of bone loss in the cleft area. Supportive periodontal therapy should be implemented after complex dental restorations in cleft patients. Conventional occlusal radiographs provide an adequate image for evaluating postoperative bone height in clinical follow-up.
Discounting the value of safety: effects of perceived risk and effort.
Sigurdsson, Sigurdur O; Taylor, Matthew A; Wirth, Oliver
2013-09-01
Although falls from heights remain the most prevalent cause of fatalities in the construction industry, factors impacting safety-related choices associated with work at heights are not completely understood. Better tools are needed to identify and study the factors influencing safety-related choices and decision making. Using a computer-based task within a behavioral economics paradigm, college students were presented a choice between two hypothetical scenarios that differed in working height and effort associated with retrieving and donning a safety harness. Participants were instructed to choose the scenario in which they were more likely to wear the safety harness. Based on choice patterns, switch points were identified, indicating when the perceived risk in both scenarios was equivalent. Switch points were a systematic function of working height and effort, and the quantified relation between perceived risk and effort was described well by a hyperbolic equation. Choice patterns revealed that the perceived risk of working at heights decreased as the effort to retrieve and don a safety harness increased. Results contribute to the development of computer-based procedure for assessing risk discounting within a behavioral economics framework. Such a procedure can be used as a research tool to study factors that influence safety-related decision making with a goal of informing more effective prevention and intervention strategies. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ichikawa, Kaoru; Akiyama, Hiroaki; Ebinuma, Takuji; Isoguchi, Osamu; Kimura, Noriaki; Kitazawa, Yukihito; Konda, Masanori; Kouguchi, Nobuyuki; Tamura, Hitoshi; Tomita, Hiroyuki; Yoshikawa, Yutaka; Waseda, Takuji
2016-04-01
There has been considerable interest in GNSS Reflectometry (GNSS-R) as a new remote-sensing method. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH. It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 200 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results obtained by the multi-sensor platform at observation towers, and preparation status of a ground station that will be supplied to receive CYGNSS data at Japan.
Wide-area mapping of snow water equivalent by Sentinel-1&2 data
NASA Astrophysics Data System (ADS)
Conde, Vasco; Nico, Giovanni; Catalao, Joao; Kontu, Anna; Gritsevich, Maria
2017-04-01
The mapping of snow physical properties over large mountain areas of remote areas is an important topic in both climatological studies and hydrological models where the effects of snow melting are modeled and used to forecast extreme flood events. Usually, these models are run using in-situ measurements of snow which are expensive and statistically not representative of the spatial distribution of snow properties due to slope orientation of terrain, local terrain morphology and height as well as vegetation cover. In this work we investigate the use of data acquired by Sentinel-1 and 2 missions using a C-band SAR and multispectral sensor, respectively. The Sentinel-1 SAR data are processed to estimate the Snow Water Equivalent (SWE) using both the radar amplitude and the output of the SAR interferometry processing. Both approaches need in-situ data to process SAR data and calibrate SWE estimates. The use of SAR amplitude to estimate the SWE is well established and the basic idea is that the radar signal backscattered by snow is related to the SWE so, after modeling the relationship between these two quantities at the site of in-situ measurements this relationship can be used to map the SWE at all site where the SAR amplitude information is available. The physical principle used by SAR interferometry is that of phase delay due to propagation in a non-dispersive medium. This implies that the snow is supposed to be dry in order to allow the propagation of the SAR signal. Sentinel-2 images have been used to get land-use maps and identify areas covered by vegetation. Finland has been chosen as a study region with in-situ measurements acquired thanks to the availability of rich database of in-situ measurements of SWE. Sentinel data used in this work have been acquired starting from November 2015. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins
Carleton, Glen B.
2010-01-01
Groundwater mounding occurs beneath stormwater management structures designed to infiltrate stormwater runoff. Concentrating recharge in a small area can cause groundwater mounding that affects the basements of nearby homes and other structures. Methods for quantitatively predicting the height and extent of groundwater mounding beneath and near stormwater Finite-difference groundwater-flow simulations of infiltration from hypothetical stormwater infiltration structures (which are typically constructed as basins or dry wells) were done for 10-acre and 1-acre developments. Aquifer and stormwater-runoff characteristics in the model were changed to determine which factors are most likely to have the greatest effect on simulating the maximum height and maximum extent of groundwater mounding. Aquifer characteristics that were changed include soil permeability, aquifer thickness, and specific yield. Stormwater-runoff variables that were changed include magnitude of design storm, percentage of impervious area, infiltration-structure depth (maximum depth of standing water), and infiltration-basin shape. Values used for all variables are representative of typical physical conditions and stormwater management designs in New Jersey but do not include all possible values. Results are considered to be a representative, but not all-inclusive, subset of likely results. Maximum heights of simulated groundwater mounds beneath stormwater infiltration structures are the most sensitive to (show the greatest change with changes to) soil permeability. The maximum height of the groundwater mound is higher when values of soil permeability, aquifer thickness, or specific yield are decreased or when basin depth is increased or the basin shape is square (and values of other variables are held constant). Changing soil permeability, aquifer thickness, specific yield, infiltration-structure depth, or infiltration-structure shape does not change the volume of water infiltrated, it changes the shape or height of the groundwater mound resulting from the infiltration. An aquifer with a greater soil permeability or aquifer thickness has an increased ability to transmit water away from the source of infiltration than aquifers with lower soil permeability; therefore, the maximum height of the groundwater mound will be lower, and the areal extent of mounding will be larger. The maximum height of groundwater mounding is higher when values of design storm magnitude or percentage of impervious cover (from which runoff is captured) are increased (and other variables are held constant) because the total volume of water to be infiltrated is larger. The larger the volume of infiltrated water the higher the head required to move that water away from the source of recharge if the physical characteristics of the aquifer are unchanged. The areal extent of groundwater mounding increases when soil permeability, aquifer thickness, design-storm magnitude, or percentage of impervious cover are increased (and values of other variables are held constant). For 10-acre sites, the maximum heights of the simulated groundwater mound range from 0.1 to 18.5 feet (ft). The median of the maximum-height distribution from 576 simulations is 1.8 ft. The maximum areal extent (measured from the edge of the infiltration basins) of groundwater mounding of 0.25-ft ranges from 0 to 300 ft with a median of 51 ft for 576 simulations. Stormwater infiltration at a 1-acre development was simulated, incorporating the assumption that the hypothetical infiltration structure would be a pre-cast concrete dry well having side openings and an open bottom. The maximum heights of the simulated groundwater-mounds range from 0.01 to 14.0 ft. The median of the maximum-height distribution from 432 simulations is 1.0 ft. The maximum areal extent of groundwater mounding of 0.25-ft ranges from 0 to 100 ft with a median of 10 ft for 432 simulations. Simulated height and extent of groundwater mounding associ
CHRIS: Hazard Assessment Handbook
1977-12-12
3.10 Vectorial Addition of Sea and Wind Currents 50 B1 Flame Length for Gases Venting Through Holes 177 B2 Equivalent...determined are: • Flame length (flame height), • Safe distance for people (away from the flame) • Safe distance for people in fire-protective clothing (away...pencil so it can be erased) Determine the flame length from Figure B1, using the venting hole diameter and the curve corresponding to the specific
Glendon W. Smalley; James M. Hollingsworth
1997-01-01
Growth and yield of a direct-seeded eastern white pine (Pinus strobus L.) plantation established in 1959 on a broad undulating sandstone upland (Landtype 1) are summarized. Average heights of dominant and codominant pines were 35,56,65, and 76 ft at ages 15,25,30, and 34 years, respectively. Equivalent site indices (base age 25 years from seed)...
Inhibiting effect of ponderosa pine seed trees on seedling growth
Philip M. McDonald
1976-01-01
Ponderosa pine seed trees, numbering 4, 8, and 12 per acre, were left standing for 9 years after harvest cutting on the Challenge Experimental Forest, Calif. Seedling heights were measured at ages 5, 9, and 14, and for all ages were poorest if within 20 feet of a seed tree. Seedlings 20 feet or less from a seed tree at the ages given lost the equivalent in years of...
30 CFR 75.1101-12 - Equivalent dry-pipe system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-12 Equivalent dry-pipe system. Where water sprinkler systems are installed to protect main and secondary belt... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Equivalent dry-pipe system. 75.1101-12 Section...
30 CFR 75.1101-12 - Equivalent dry-pipe system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-12 Equivalent dry-pipe system. Where water sprinkler systems are installed to protect main and secondary belt... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Equivalent dry-pipe system. 75.1101-12 Section...
30 CFR 75.1101-12 - Equivalent dry-pipe system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-12 Equivalent dry-pipe system. Where water sprinkler systems are installed to protect main and secondary belt... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Equivalent dry-pipe system. 75.1101-12 Section...
30 CFR 75.1101-12 - Equivalent dry-pipe system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-12 Equivalent dry-pipe system. Where water sprinkler systems are installed to protect main and secondary belt... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Equivalent dry-pipe system. 75.1101-12 Section...
30 CFR 75.1101-12 - Equivalent dry-pipe system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-12 Equivalent dry-pipe system. Where water sprinkler systems are installed to protect main and secondary belt... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Equivalent dry-pipe system. 75.1101-12 Section...
A Technique of Teaching the Principle of Equivalence at Ground Level
ERIC Educational Resources Information Center
Lubrica, Joel V.
2016-01-01
This paper presents one way of demonstrating the Principle of Equivalence in the classroom. Teaching the Principle of Equivalence involves someone experiencing acceleration through empty space, juxtaposed with the daily encounter with gravity. This classroom activity is demonstrated with a water-filled bottle containing glass marbles and…
NASA Astrophysics Data System (ADS)
Gray, Laurence; Burgess, David; Copland, Luke; Dunse, Thorben; Langley, Kirsty; Moholdt, Geir
2017-05-01
We compare geocoded heights derived from the interferometric mode (SARIn) of CryoSat to surface heights from calibration-validation sites on Devon Ice Cap and western Greenland. Comparisons are included for both the heights derived from the first return (the point-of-closest-approach
or POCA) and heights derived from delayed waveform returns (swath
processing). While swath-processed heights are normally less precise than edited POCA heights, e.g. standard deviations of ˜ 3 and ˜ 1.5 m respectively for the western Greenland site, the increased coverage possible with swath data complements the POCA data and provides useful information for both system calibration and improving digital elevation models (DEMs). We show that the pre-launch interferometric baseline coupled with an additional roll correction ( ˜ 0.0075° ± 0.0025°), or equivalent phase correction ( ˜ 0.0435 ± 0.0145 radians), provides an improved calibration of the interferometric SARIn mode. We extend the potential use of SARIn data by showing the influence of surface conditions, especially melt, on the return waveforms and that it is possible to detect and measure the height of summer supraglacial lakes in western Greenland. A supraglacial lake can provide a strong radar target in the waveform, stronger than the initial POCA return, if viewed at near-normal incidence. This provides an ideal situation for swath processing and we demonstrate a height precision of ˜ 0.5 m for two lake sites, one in the accumulation zone and one in the ablation zone, which were measured every year from 2010 or 2011 to 2016. Each year the lake in the ablation zone was viewed in June by ascending passes and then 5.5 days later by descending passes, which allows an approximate estimate of the filling rate. The results suggest that CryoSat waveform data and measurements of supraglacial lake height change could complement the use of optical satellite imagery and be helpful as proxy indicators for surface melt around Greenland.
Huang, Jen-Ching; Chen, Chung-Ming
2012-01-01
This study used atomic force microscopy (AFM), metallic probes with a nanoscale tip, and high-voltage generators to investigate the feasibility of high-voltage nano-oxidation processing in deionized water (DI water) and atmospheric environments. Researchers used a combination of wire-cutting and electrochemical etching to transform a 20-μm-thick stainless steel sheet into a conductive metallic AFM probe with a tip radius of 60 nm, capable of withstanding high voltages. The combination of AFM, high-voltage generators, and nanoscale metallic probes enabled nano-oxidation processing at 200 V in DI water environments, producing oxides up to 66.6 nm in height and 467.03 nm in width. Oxides produced through high-voltage nano-oxidation in atmospheric environments were 117.29 nm in height and 551.28 nm in width, considerably exceeding the dimensions of those produced in DI water. An increase in the applied bias voltage led to an apparent logarithmic increase in the height of the oxide dots in the range of 200-400 V. The performance of the proposed high-voltage nano-oxidation technique was relatively high with seamless integration between the AFM machine and the metallic probe fabricated in this study. © Wiley Periodicals, Inc.
Separating Mass and Height Contributions in Gravity Variations at Medicina, Italy
NASA Astrophysics Data System (ADS)
Zerbini, S.; Bruni, S.; Errico, M.; Santi, E.; Wziontek, H.
2016-12-01
During 1996, at the Medicina station, a GPS and a superconducting gravimeter (SG) were installed in the framework of an experiment focused on the comparison between height and gravity variations. Absolute gravity observations are also performed twice a year and environmental parameters, among others water table levels, are recorded continuously. The station is also equipped with a second GPS system, the two antennas are very close to each other, and both are located in close proximity to the VLBI dish. Two decades of continuous height and gravity observations are now available which allow investigating both long and short period signals and the relevant correlations between the two measured quantities. Long period signatures are observed, a principal component is due to subsidence which is well known to occur in the area; however, also non-linear long-period behaviors are observed. Seasonal effects are also clearly recognizable in the time series and are mainly associated with the water table seasonal behavior. The station is characterized by clayey soil which is subject to consolidation effects when the water table lowers during the summer period. This effect is particularly recognizable in the SG data since the instrument is installed on a shallow foundation pillar which may suffer for height decreases in the order of 2,5-3 cm for water table lowering of 2 m.
[Analysis of the influence factors of school-age children's refractive status].
Chen, Z G; Chen, M C; Zhang, J Y; Cai, D Q; Wang, Q; Lin, S S; Chen, J W; Zhong, H L
2016-11-11
Objective: To analyze the influence of the eye biological parameters, height, and weight on the school-age children's refractive status. Methods: Cross-sectional study. A total of 1 656 children (1 656 eyes), aged from 7 to 14 years, were selected from 8 schools in Wenzhou during June 2012 and June 2013. The height and weight of each child were measured, and the body mass index (BMI) was calculated. The eye biological parameters, including axial length (AL), corneal power (C=1/CR), anterior chamber depth (ACD), and white to white (WTW), were measured by IOLMaster (version 5.0, Carl Zeiss, Germany), and the AL/CR was calculated. Refraction was measured by fast cycloplegic retinoscopy, and the spherical equivalent (SE) was calculated. Only right eyes were included in the analysis. SPSS16.0 was used to analyze the data. The correlations of the equivalent spherical power, the eye biological parameters, height, weight, and BMI were evaluated. Linear regression analysis was used for the SE, AL, and AL/CR. Results: The prevalence of myopia in 7- to 14-year-old school-age children was 50.2% on the average, 48.4% in boys, and 51.7% in girls. The average SE was (-1.07±1.74) D. With adjustment of the age, gender, urban and rural areas, there was an association between the SE and AL, AL/CR, ACD, height and weight. The correlation coefficient was -0.663, -0.730, -0.416, -0.365, and -0.281, respectively ( P< 0.05). There was no significant correlation between the SE and WTW, corneal power and BMI. Regarding the different refractive statuses, there was a stronger correlation between the SE and AL, AL/CR in children with hyperopia, moderate myopia or high myopia than those with emmetropia or mild myopia ( P< 0.01). In the older children, the correlation between the SE and AL, AL/CR was stronger. Linear regression analysis showed SE= 26.55-9.11·AL/CR and 23.0-1.02·AL. Conclusions: There was an association between the SE and AL, AL/CR, ACD, height and weight in school-age children. In children with hyperopia, moderate myopia, high myopia or at an older age, the correlation was more significant between the SE and AL, AL/CR. (Chin J Ophthalmol, 2016, 52:831-835) .
Dynamic Behaviour and Seismic Response of Ground Supported Cylindrical Water Tanks
NASA Astrophysics Data System (ADS)
Asha, Joseph; Glory, Joseph
2018-05-01
Liquid storage tank such as in water distribution systems, petroleum plants etc., constitute a vital component of life line systems. Reducing earthquake effects on liquid storage tanks, to minimize the environmental and economic impact of these effects, have always been an important engineering concern. In this paper, the dynamic behavior of cylindrical ground supported concrete water tanks with different aspect ratios is investigated using finite element software ANSYS. The natural frequencies and modal responses are obtained for impulsive and convective modes of vibration. The natural frequency of vibration of the tank is observed to be the lowest at maximum water depth. The fundamental impulsive frequency increases as water level reduces and for water level less than 1/3 of tank height, there is significantly no change in impulsive frequency. The effect of wall flexibility on dynamic behavior of the tank is investigated by performing the modal analysis of flexible and rigid tanks. For a partially filled tank, the results of the present study are of significant relevance. The response of the tank to the transient loading as horizontal ground motion of El Centro earthquake is studied for various water heights. As the height of water on the tank increases, the ultimate maximum seismic response parameters are also observed to be increased. The location of maximum hoop stress varies in accordance with the variations in input ground motion and water fill condition whereas shear and bending moment are maximum at the base.
Ribes-Iñesta, E; Torres, C
2000-01-01
Two studies evaluated the effects of response-independent water deliveries on the location (on the floor of the experimental chamber) and position (height) of rats' behavior. In both experiments, fixed-time schedules delivered water in two dispensers that were located at opposite ends of the chamber. In Experiment 1, the two schedules provided complementary frequencies of water deliveries while the overall number of deliveries stayed constant. In Experiment 2, one of the schedules delivered water twice as frequently as the other; this proportion was kept constant while the overall density of water deliveries changed systematically. In both experiments, a single position (height) of behavior was dominant. Also, the percentage of time allocated to each dispenser was roughly proportional to the percentage of water deliveries associated with the dispensers. These data and additional considerations support the importance of examining the spatial properties and patterning of behavior. PMID:10784009
Water level effects on breaking wave setup for Pacific Island fringing reefs
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Ford, M.
2014-02-01
The effects of water level variations on breaking wave setup over fringing reefs are assessed using field measurements obtained at three study sites in the Republic of the Marshall Islands and the Mariana Islands in the western tropical Pacific Ocean. At each site, reef flat setup varies over the tidal range with weaker setup at high tide and stronger setup at low tide for a given incident wave height. The observed water level dependence is interpreted in the context of radiation stress gradients specified by an idealized point break model generalized for nonnormally incident waves. The tidally varying setup is due in part to depth-limited wave heights on the reef flat, as anticipated from previous reef studies, but also to tidally dependent breaking on the reef face. The tidal dependence of the breaking is interpreted in the context of the point break model in terms of a tidally varying wave height to water depth ratio at breaking. Implications for predictions of wave-driven setup at reef-fringed island shorelines are discussed.
NASA Technical Reports Server (NTRS)
Rao, P. Anil; Velden, Christopher S.; Braun, Scott A.; Einaudi, Franco (Technical Monitor)
2001-01-01
Errors in the height assignment of some satellite-derived winds exist because the satellites sense radiation emitted from a finite layer of the atmosphere rather than a specific level. Potential problems in data assimilation may arise because the motion of a measured layer is often represented by a single-level value. In this research, cloud and water vapor motion winds that are derived from the Geostationary Operational Environmental Satellites (GOES winds) are compared to collocated rawinsonde observations (RAOBs). An important aspect of this work is that in addition to comparisons at each assigned height, the GOES winds are compared to the entire profile of the collocated RAOB data to determine the vertical error characteristics of the GOES winds. The impact of these results on numerical weather prediction is then investigated. The comparisons at individual vector height assignments indicate that the error of the GOES winds range from approx. 3 to 10 m/s and generally increase with height. However, if taken as a percentage of the total wind speed, accuracy is better at upper levels. As expected, comparisons with the entire profile of the collocated RAOBs indicate that clear-air water vapor winds represent deeper layers than do either infrared or water vapor cloud-tracked winds. This is because in cloud-free regions the signal from water vapor features may result from emittance over a thicker layer. To further investigate characteristics of the clear-air water vapor winds, they are stratified into two categories that are dependent on the depth of the layer represented by the vector. It is found that if the vertical gradient of moisture is smooth and uniform from near the height assignment upwards, the clear-air water vapor wind tends to represent a relatively deep layer. The information from the comparisons is then used in numerical model simulations of two separate events to determine the forecast impacts. Four simulations are performed for each case: 1) A control simulation that assimilates no satellite wind data, 2) assimilation of all GOES winds according to their assigned single level height, 3) assimilation of all GOES winds spread over multiple levels, and 4) assimilation of all GOES winds spread over multiple levels, but with variations in the vertical influence of clear-air water vapor winds based on the moisture profile in the model. In the first case, a strong mid-latitude cyclone is present and the use of the satellite data results in improved storm tracks during the initial approx. 36 h forecast period. This is because the satellite data improves the analysis of the environment into which the storm progresses. Statistics for mean wind vector and height differences show that, with the exception of the height field at later times in the first case, the use of GOES winds improves the simulation with time. The simulation results suggest that it is beneficial to spread the GOES wind information over multiple levels, particularly when the moisture profile is used to define the vertical influence.
Performance tests of a large volume cerium tribromide (CeBr3) scintillation detector.
Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Isab, A A
2016-08-01
The response of a large cylindrical 76mm×76mm (height×diameter) cerium tribromide (CeBr3) detector was measured for prompt gamma rays. The total intrinsic activity of the CeBr3 detector, which was measured over 0.33-3.33MeV range, was found to be 0.022±0.001 counts/s/cm(3). The partial intrinsic activity ( due to (227)Ac contamination), was measured over a energy range of 1.22-2.20MeV energy, was found to be 0.007±0.001 counts/s/cm(3). Compared to intrinsic activities of LaBr3:Ce and LaCl3:Ce detectors of equivalent volume, the CeBr3 detector has 7-8 times less total intrinsic activity. The detector response for low energy prompt gamma rays was measured over 0.3-0.6MeVgamma energy range using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. The experimental yield of boron, cadmium and mercury prompt gamma-rays was measured from water samples contaminated with 0.75-2.5wt% mercury, 0.31-2.50wt% boron, and 0.0625-0.500wt% cadmium, respectively. An excellent agreement has been observed between the calculated and experimental yields of the gamma rays. Also minimum detection limit (MDC) of the CeBr3 detector was measured for boron, cadmium and mercury samples. The CeBr3 detector has 23% smaller value of MDCB and 18% larger value of MDCCd than those of a LaBr3:Ce detector of equivalent size. This study has shown that CeBr3 detector has an excellent response for the low energy prompt gamma-rays with almost an order of magnitude low intrinsic activity as compared to LaCl3:Ce and LaBr3:Ce detectors of equivalent volume. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rachel Riemann; Jarlath O' Neil-Dunne; Greg C. Liknes
2012-01-01
Tree canopy cover and canopy height information are essential for estimating volume, biomass, and carbon; defining forest cover; and characterizing wildlife habitat. The amount of tree canopy cover also influences water quality and quantity in both rural and urban settings. Tree canopy cover and canopy height are currently collected at FIA plots either in the field or...
GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science
NASA Astrophysics Data System (ADS)
Caron, L.; Ivins, E. R.; Larour, E.; Adhikari, S.; Nilsson, J.; Blewitt, G.
2018-03-01
We provide a new analysis of glacial isostatic adjustment (GIA) with the goal of assembling the model uncertainty statistics required for rigorously extracting trends in surface mass from the Gravity Recovery and Climate Experiment (GRACE) mission. Such statistics are essential for deciphering sea level, ocean mass, and hydrological changes because the latter signals can be relatively small (≤2 mm/yr water height equivalent) over very large regions, such as major ocean basins and watersheds. With abundant new >7 year continuous measurements of vertical land motion (VLM) reported by Global Positioning System stations on bedrock and new relative sea level records, our new statistical evaluation of GIA uncertainties incorporates Bayesian methodologies. A unique aspect of the method is that both the ice history and 1-D Earth structure vary through a total of 128,000 forward models. We find that best fit models poorly capture the statistical inferences needed to correctly invert for lower mantle viscosity and that GIA uncertainty exceeds the uncertainty ascribed to trends from 14 years of GRACE data in polar regions.
EPANET is a computer program that performs extended period simulation of hydraulic and water quality behavior within drinking water distribution systems. It tracks the flow of water in each pipe, the pressure at each pipe junction, the height of water in each storage tank, and th...
Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya
2016-01-01
Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H3O+ through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O2 bound to heme a3. To block backward proton movement, the water channel remains closed after O2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu198, which bridges the Mg2+ and CuA (the initial electron acceptor from cytochrome c) sites, suggest that the CuA-Glu198-Mg2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg2+-containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO. PMID:27605664
Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya
2016-11-11
Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H 3 O + through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O 2 bound to heme a 3 To block backward proton movement, the water channel remains closed after O 2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O 2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg 2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu 198 , which bridges the Mg 2+ and Cu A (the initial electron acceptor from cytochrome c) sites, suggest that the Cu A -Glu 198 -Mg 2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg 2+ -containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Hu, Xinxin; Shi, Wei; Zhang, Fengxian; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia
2013-02-01
The thyroid hormone disrupting activities of drinking water sources from the lower reaches of Yangtze River were examined using a reporter gene assay based on African green monkey kidney fibroblast (CV-1) cells. None of the eleven tested samples showed thyroid receptor (TR) agonist activity. Nine water samples exhibited TR antagonist activities with the equivalents referring to Di-n-butyl phthalate (DNBP) (TR antagonist activity equivalents, ATR-EQ(50)s) ranging from 6.92 × 10(1) to 2.85 × 10(2) μg DNBP/L. The ATR-EQ(50)s and TR antagonist equivalent ranges (ATR-EQ(30-80) ranges) for TR antagonist activities indicated that the water sample from site WX-8 posed the greatest health risks. The ATR-EQ(80)s of the water samples ranging from 1.56 × 10(3) to 6.14 × 10(3) μg DNBP/L were higher than the NOEC of DNBP. The results from instrumental analysis showed that DNBP might be responsible for the TR antagonist activities in these water samples. Water sources along Yangtze River had thyroid hormone disrupting potential. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive
2010-11-01
A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.
Lavender, Tina; Furber, Christine; Campbell, Malcolm; Victor, Suresh; Roberts, Ian; Bedwell, Carol; Cork, Michael J
2012-06-01
Some national guidelines recommend the use of water alone for napkin cleansing. Yet, there is a readiness, amongst many parents, to use baby wipes. Evidence from randomised controlled trials, of the effect of baby wipes on newborn skin integrity is lacking. We conducted a study to examine the hypothesis that the use of a specifically formulated cleansing wipe on the napkin area of newborn infants (<1 month) has an equivalent effect on skin hydration when compared with using cotton wool and water (usual care). A prospective, assessor-blinded, randomised controlled equivalence trial was conducted during 2010. Healthy, term babies (n=280), recruited within 48 hours of birth, were randomly assigned to have their napkin area cleansed with an alcohol-free baby wipe (140 babies) or cotton wool and water (140 babies). Primary outcome was change in hydration from within 48 hours of birth to 4 weeks post-birth. Secondary outcomes comprised changes in trans-epidermal water loss, skin surface pH and erythema, presence of microbial skin contaminants/irritants at 4 weeks and napkin dermatitis reported by midwife at 4 weeks and mother during the 4 weeks. Complete hydration data were obtained for 254 (90.7 %) babies. Wipes were shown to be equivalent to water and cotton wool in terms of skin hydration (intention-to-treat analysis: wipes 65.4 (SD 12.4) vs. water 63.5 (14.2), p=0.47, 95% CI -2.5 to 4.2; per protocol analysis: wipes 64.6 (12.4) vs. water 63.6 (14.3), p=0.53, 95% CI -2.4 to 4.2). No significant differences were found in the secondary outcomes, except for maternal-reported napkin dermatitis, which was higher in the water group (p=0.025 for complete responses). Baby wipes had an equivalent effect on skin hydration when compared with cotton wool and water. We found no evidence of any adverse effects of using these wipes. These findings offer reassurance to parents who choose to use baby wipes and to health professionals who support their use. Current Controlled Trials ISRCTN86207019.
NASA Astrophysics Data System (ADS)
Chen, Jiaxuan; Chen, Wenyang; Xie, Yajing; Wang, Zhiguo; Qin, Jianbo
2017-02-01
Molecular dynamics (MD) is applied to research the wettability behaviors of different scale of water clusters absorbed on organic-polluted fused quartz (FQ) surface and different surface structures. The wettability of water clusters is studied under the effect of organic pollutant. With the combined influence of pillar height and interval, the stair-step Wenzel-Cassie transition critical line is obtained by analyzing stable state of water clusters on different surface structures. The results also show that when interval of pillars and the height of pillars keep constant respectively, the changing rules are exactly the opposite and these are termed as the "waterfall" rules. The substrate models of water clusters at Cassie-Baxter state which are at the vicinity of critical line are chosen to analyze the relationship of HI (refers to the pillar height/interval) ratio and scale of water cluster. The study has found that there is a critical changing threshold in the wettability changing process. When the HI ratio keeps constant, the wettability decreases first and then increase as the size of cluster increases; on the contrary, when the size of cluster keeps constant, the wettability decreases and then increase with the decrease of HI ratio, but when the size of water cluster is close to the threshold the HI ratio has little effect on the wettability.
Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models
NASA Astrophysics Data System (ADS)
Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello
2017-07-01
The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow-climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow processes - near-surface air temperature and precipitation - against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around the ensemble mean. We find that GCMs at spatial resolutions equal to or finer than 1.25° longitude are in closer agreement with the ensemble mean of satellite and reanalysis products in terms of root mean square error and standard deviation than lower-resolution GCMs. The set of regional climate models from the EURO-CORDEX ensemble provides estimates of snow water equivalent at 0.11° resolution that are locally much larger than those indicated by the gridded data sets, and only in a few cases are these differences smoothed out when snow water equivalent is spatially averaged over the entire Alpine domain. ERA-Interim-driven RCM simulations show an annual snow cycle that is comparable in amplitude to those provided by the reference data sets, while GCM-driven RCMs present a large positive bias. RCMs and higher-resolution GCM simulations are used to provide an estimate of the snow reduction expected by the mid-21st century (RCP 8.5 scenario) compared to the historical climatology, with the main purpose of highlighting the limits of our current knowledge and the need for developing more reliable snow simulations.
Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam
NASA Technical Reports Server (NTRS)
Cox, Bradley
2009-01-01
The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.
Madec, Simon; Baret, Fred; de Solan, Benoît; Thomas, Samuel; Dutartre, Dan; Jezequel, Stéphane; Hemmerlé, Matthieu; Colombeau, Gallian; Comar, Alexis
2017-01-01
The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z -value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values ( H 2 > 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable ( H 2 > 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed.
Madec, Simon; Baret, Fred; de Solan, Benoît; Thomas, Samuel; Dutartre, Dan; Jezequel, Stéphane; Hemmerlé, Matthieu; Colombeau, Gallian; Comar, Alexis
2017-01-01
The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z-value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values (H2> 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable (H2> 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed. PMID:29230229
Turbulence measurements using tethered balloon instrumentation during FIRE 1987
NASA Technical Reports Server (NTRS)
Hignett, Phillip
1990-01-01
As part of the surface-based observations conducted on San Nicolas Island, the U.K. Meteorological Office operated a set of turbulence probes attached to a balloon tether cable. Typically six probes were used, each capable of measuring momentum, heat, and humidity fluxes. Two probes were fitted with net radiometers, one positioned above cloud and the other below; a third probe carried a Lyman-alpha hygrometer fitted with a pre-heater for the measurement of total water content. Some preliminary results are presented from the 14th July describing the variation in structure of the cloudy boundary layer during the daytime. This day was characterized by a complete cloud cover, an inversion height of approximately 600 m. and north-westerly winds of approximately 6 m.s(-1). As an illustration the equivalent potential temperature derived from a profile ascent made between approximately 0830 and 0930 (PDT) is shown. The data has been smoothed to a height resolution of about 4 metres. At this time the cloud base was approximately 200 m. and very light drizzle was reaching the surface. The vertical velocity variance and potential temperature flux for two periods are shown; the first (shown by full lines) immediately follows the profile and the second (shown by dashed lines) is central around 1400 (PDT). The data have been normalized by their maximum values in the first period. Cloud base has now risen to approximately 300 m. There is a marked variation during the morning, particularly in sigma w. The net radiative flux above cloud top has by now reached its maximum value.
Merritts, Dorothy; Walter, Robert; Rahnis, Michael; Hartranft, Jeff; Cox, Scott; Gellis, Allen; Potter, Noel; Hilgartner, William; Langland, Michael; Manion, Lauren; Lippincott, Caitlin; Siddiqui, Sauleh; Rehman, Zain; Scheid, Chris; Kratz, Laura; Shilling, Andrea; Jenschke, Matthew; Datin, Katherine; Cranmer, Elizabeth; Reed, Austin; Matuszewski, Derek; Voli, Mark; Ohlson, Erik; Neugebauer, Ali; Ahamed, Aakash; Neal, Conor; Winter, Allison; Becker, Steven
2011-01-01
Recently, widespread valley-bottom damming for water power was identified as a primary control on valley sedimentation in the mid-Atlantic US during the late seventeenth to early twentieth century. The timing of damming coincided with that of accelerated upland erosion during post-European settlement land-use change. In this paper, we examine the impact of local drops in base level on incision into historic reservoir sediment as thousands of ageing dams breach. Analysis of lidar and field data indicates that historic milldam building led to local base-level rises of 2-5 m (typical milldam height) and reduced valley slopes by half. Subsequent base-level fall with dam breaching led to an approximate doubling in slope, a significant base-level forcing. Case studies in forested, rural as well as agricultural and urban areas demonstrate that a breached dam can lead to stream incision, bank erosion and increased loads of suspended sediment, even with no change in land use. After dam breaching, key predictors of stream bank erosion include number of years since dam breach, proximity to a dam and dam height. One implication of this work is that conceptual models linking channel condition and sediment yield exclusively with modern upland land use are incomplete for valleys impacted by milldams. With no equivalent in the Holocene or late Pleistocene sedimentary record, modern incised stream-channel forms in the mid-Atlantic region represent a transient response to both base-level forcing and major changes in land use beginning centuries ago. Similar channel forms might also exist in other locales where historic milling was prevalent.
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse
2010-01-01
Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.
Borie, Eduardo; Leal, Eduardo; Orsi, Iara Augusta; Salamanca, Carlos; Dias, Fernando José; Weber, Benjamin
2018-01-01
The aim of this study was to analyze the influence of three different transmucosal heights of the abutments in single and multiple implant-supported prostheses through the finite element method. External hexagon implants, MicroUnit, and EsthetiCone abutments were scanned and placed in an edentulous maxillary model obtained from a tomography database. The simulations were divided into two groups: (1) one implant with 3.75 × 10 mm placed in the upper central incisor, simulating a single implant-supported fixed prosthesis with an EsthetiCone abutment; and (2) two implants with 3.75 × 10 mm placed in the upper lateral incisors with MicroUnit abutments, simulating a multiple implant-supported prosthesis. Subsequently, each group was subdivided into three models according to the transmucosal height (1, 2, and 3 mm). A static oblique load at an angle of 45 degrees to the long axis of the implant in palatal-buccal direction of 150 and 75 N was applied for multiple and single implant-supported prosthesis, respectively. The implants and abutments were assessed according to the equivalent Von Mises stress analyses while the bone and ceramics were analyzed through maximum and minimum principal stresses. The total deformation values increased in all models, while the transmucosal height was augmented. The transmucosal height of the abutments influences the stress values at the bone, ceramics, implants, and abutments of both the single and multiple implant-supported prostheses, with the transmucosal height of 1 mm showing the lowest stress values.
Volcanic plume height measured by seismic waves based on a mechanical model
Prejean, Stephanie G.; Brodsky, Emily E.
2011-01-01
In August 2008 an unmonitored, largely unstudied Aleutian volcano, Kasatochi, erupted catastrophically. Here we use seismic data to infer the height of large eruptive columns such as those of Kasatochi based on a combination of existing fluid and solid mechanical models. In so doing, we propose a connection between a common, observable, short-period seismic wave amplitude to the physics of an eruptive column. To construct a combined model, we estimate the mass ejection rate of material from the vent on the basis of the plume height, assuming that the height is controlled by thermal buoyancy for a continuous plume. Using the estimated mass ejection rate, we then derive the equivalent vertical force on the Earth through a momentum balance. Finally, we calculate the far-field surface waves resulting from the vertical force. The model performs well for recent eruptions of Kasatochi and Augustine volcanoes if v, the velocity of material exiting the vent, is 120-230 m s-1. The consistency between the seismically inferred and measured plume heights indicates that in these cases the far-field ~1 s seismic energy radiated by fluctuating flow in the volcanic jet during the eruption is a useful indicator of overall mass ejection rates. Thus, use of the model holds promise for characterizing eruptions and evaluating ash hazards to aircraft in real time on the basis of far-field short-period seismic data. This study emphasizes the need for better measurements of eruptive plume heights and a more detailed understanding of the full spectrum of seismic energy radiated coeruptively.
The effect of growth hormone treatment on height in children with idiopathic short stature.
Jeong, Hwal Rim; Shim, Young Seok; Lee, Hae Sang; Hwang, Jin Soon
2014-07-01
Idiopathic short stature (ISS) is short stature of unknown cause. In 2003, the Food and Drug Administration (FDA) approved the use of growth hormone (GH) for ISS. Several studies have evaluated the effect of GH in children with ISS, in whom improved growth velocities and height standard deviation scores (SDS) have been reported. However, clinical variables influence the height improvement. This study aimed to evaluate the effects of GH treatment on ISS and to analyze clinical factors associated with growth velocity. This study was conducted retrospectively. Subjects diagnosed with ISS at Ajou University Hospital were divided into two groups, an ISS with GH-treatment group (n=34) and an ISS control group (n=36). All children were prepubertal, and aged <10 years. We reviewed their auxological data, laboratory findings, and bone age. Growth velocity of the GH-treatment group exceeded that of controls by 3.37 cm/year (95% CI, 2.78-3.95). At baseline, the mean SDS for height in the treatment and control groups were equivalent (-2.25 ± 0.29 and -2.22 ± 0.31, respectively). However, after 1 year, the height of the GH-treated group exceeded that of the control group by 0.73 SDS (95% CI, 0.57-0.88). A negative correlation was found between age and growth velocity in the GH-treatment group. GH treatment increased short-term growth velocity and height SDS of Korean children with ISS. Age was identified as the single most important factor correlated with growth velocity in GH treatment.
TOPEX/El Niño Watch - Warm Water Pool is Increasing, Nov. 10, 1997
1997-11-20
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Nov. 10, 1997.
Physical mechanisms of the summer precipitation variations in the Taklimakan and Gobi Desert
NASA Astrophysics Data System (ADS)
Huang, W.; Feng, S.; Chen, J.; Chen, F.
2013-12-01
The Taklimakan and the adjacent Gobi Desert (TD in short) in northwestern China is one of the most arid regions in the middle latitudes, where water is scarce year round. Using observational precipitation and the reanalysis data, this study investigated the variations of summer precipitation in TD and their association with water vapor flux and atmospheric circulation. Though the long-term mean water vapor is mostly comes from the west, the variations of summer precipitation in TD is dominated by the water vapor flux from the south, originated from the Arabian Sea. The anomalous water vapor flux is closely associated with the meridional teleconnection pattern around 50-80°E and the zonal teleconection pattern along the Asian westerly jet in summer. The meridional teleconnection connecting the Central Asia and the tropical Indian Ocean, and the zonal pattern resembles the ';Silk Road pattern'. The two wave trains connected in Central Asia. The anomalous pressure gradient force between negative height anomalies in Central Asia and the positive height anomalies in Arabian Sea/India and North Central China lead to anomalous ascending motion in TD and bring more water vapor from the Arabian Sea to pass over the Tibetan Plateau to fuel the precipitation development in the study region. These mechanisms lead to out-of-phase relationship between TD precipitation and Indian summer monsoon in the instrumental period and the past 2000 years. The vertically integrated summer water vapor flux (arrows) and 300hPa geopotential height (contour) regressed against the summer precipitation in TD during 1960-2010. Shadings (blue arrows) indicate the correlations between the geopotential height (water vapor flux) and the TD precipitation are significant at the 95% confidence level. The Guliya ice core is marked as star and the proxy monsoon records in Arabian Sea (box cores 723A and RC2730) are marked as triangles. Summer climatological water vapor budget and the correaltion between the water vapor budget and TD precipitaiton during 1960-2010. For climatological water vapor budget, the results shown are the total water vapor across the boundaries. Positive (negative) numbers indicate northward/eastward (southward/westward) water vapor flows. '*' and '**' indicate the correaltions between TD precipitation and water budget are significant at 95% and 99% confidence levels, respectively.
Dinwoodie, Thomas L [Piedmont, CA
2008-02-12
A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. Water resistant junctions may be formed between the bases of adjacent shingle assemblies of an array of shingle assemblies. The base may include an insulation layer underlying a water barrier. The base may also include a waterproofing element; the width and height of the barrier may be shorter than the width and height of the waterproofing element.
Lintsi, Mart; Kaarma, Helje
2003-12-01
An anthropometric study of 552 Tartu city and Tartu county recruits aged 17 years was carried out. Height and weight, 33 anthropometric measurements and 12 skinfolds were measured. Body fat percentage was assessed by Omron BF 300 hand-held segmental body fat analyzer. From anthropometric measurements bone mass was derived by the Drink-water et al. (1986) equation, and total skeletal muscle mass by the Lee et al. (2000) equation. The data were systematized into five height-weight SD-classes. There were 3 classes with harmony between height and weight class: 1--small (small height and small weight), 2--medium (medium height and medium weight), 3--large (large height and large weight), 4--weight class dominating (pyknomorphic) and 5--height class dominating (leptomorphic). It was revealed that in classes 1, 2 and 3 the height and weight increase corresponded to the increase in all heights, breadths and depths, circumferences, skinfolds, body fat, muscle and bone mass. In class 4 circumferences, skinfolds, body fat and muscle mass were bigger. In class 5 all heights and the relative bone mass were bigger. The present investigation confirms the hypothesis that the five height-weight class system is applicable to seventeen-year-old recruits.
Water, ice, and meteorological measurements at South Cascade glacier, Washington, balance year 2003
Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.
2005-01-01
Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance year 2003. The 2003 glacier-average maximum winter snow balance was 2.66 meters water equivalent, which was about equal to the average of such balances for the glacier since balance year 1959. The 2003 glacier summer balance (-4.76 meters water equivalent) was the most negative reported for the glacier, and the 2003 net balance (-2.10 meters water equivalent), was the second-most negative reported. The glacier 2003 annual (water year) balance was -1.89 meters water equivalent. The area of the glacier near the end of the balance year was 1.89 square kilometers, a decrease of 0.03 square kilometer from the previous year. The equilibrium-line altitude was higher than any part of the glacier; however, because snow remained along part of one side of the upper glacier, the accumulation-area ratio was 0.07. During September 13, 2002-September 13, 2003, the glacier terminus retreated at a rate of about 15 meters per year. Average speed of surface ice, computed using a series of vertical aerial photographs dating back to 2001, ranged from 2.2 to 21.8 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin was gaged during part of water year 2003. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed, and incoming solar radiation were measured at selected locations on and near the glacier. Summer 2003 at the glacier was among the warmest for which data are available.
1994-07-01
REPORT DOCUMENTATION PAGE Form Ap~ovd -qmp Pu~~~~~~~~~~hc~~~~~ omef.A Nu0001U~ 0Itg O Mcq ~n, ’tmoa1a q 0 0 fft *cuqIO~ ’Wi.q~ii os .ete .7qO0t.Aqea...water level heights. Using OTF technology it should be possible to obtain a time series of water surface heights to an accuracy of 1 to 2 ymfa...receiver location. 14. SUBJECT TERMS 15. NUMBER OF PAGES On-the-Fly, study of water levels , datum, Bay of Fundy 10 16. PRICE CODE 17. SECURITY
NASA Astrophysics Data System (ADS)
Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.
2017-12-01
1. Introduction It is possible to reveal the past climate and environmental change from the ice core drilled in polar ice sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow core drillings up to 30 m depth in the inland and coastal areas of the East Antarctic ice sheet. Ice core sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland ice core Ice cores were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest ice core. 3. Coastal ice core An ice core was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from ice core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the water isotope. Na+ is maximal immediately after the local maximum of the water isotope. The deepest age was estimated to be around 1940 AD. 4. Example of results In the inland area, the annual average surface mass balance decreased from 1450 to 1850 AD, but it has increased since 1850 AD. The annual mass balance of coastal H15 is consistent with the result of snow stake measurement.
Mullin, Lucy P; Sillett, Stephen C; Koch, George W; Tu, Kevin P; Antoine, Marie E
2009-08-01
This study examined relationships between foliar morphology and gas exchange characteristics as they vary with height within and among crowns of Sequoia sempervirens D. Don trees ranging from 29 to 113 m in height. Shoot mass:area (SMA) ratio increased with height and was less responsive to changes in light availability as height increased, suggesting a transition from light to water relations as the primary determinant of morphology with increasing height. Mass-based rates of maximum photosynthesis (A(max,m)), standardized photosynthesis (A(std,m)) and internal CO(2) conductance (g(i,m)) decreased with height and SMA, while the light compensation point, light saturation point, and mass and area-based rates of dark respiration (R(m)) increased with height and SMA. Among foliage from different heights, much of the variation in standardized photosynthesis was explained by variation in g(i,) consistent with increasing limitation of photosynthesis by internal conductance in foliage with higher SMA. The syndrome of lower internal and stomatal conductance to CO(2) and higher respiration may contribute to reductions in upper crown growth efficiency with increasing height in S. sempervirens trees.
Infrared Data for Storm Analysis
NASA Technical Reports Server (NTRS)
Adler, R.
1982-01-01
The papers in this section include: 1) 'Thunderstorm Top Structure Observed by Aircraft Overflights with an Infrared Radiometer'; 2) 'Thunderstorm Intensity as Determined from Satellite Data'; 3) 'Relation of Satellite-Based Thunderstorm Intensity to Radar-Estimated Rainfall'; 4) 'A Simple Physical Basis for Relating Geosynchronous Satellite Infrared Observations to Thunderstorm Rainfall'; 5) 'Satellite-Observed Cloud-Top Height Changes in Tornadic Thunderstorms'; 6) 'Predicting Tropical Cyclone Intensity Using Satellite-Measured Equivalent Blackbody Temperatures of Cloud Tops'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piltingsrud, H.V.; Gels, G.L.
1986-06-01
Most calculations of dose equivalent (D.E.) rates at 70-micron tissue depths in tissue equivalent (T.E.) phantoms from infinite clouds (radius exceeds maximum beta range in air) of /sup 133/Xe do not consider the possible effects of clothing overlays. Consequently, a series of measurements were made using a 1-mm-thick plastic scintillation detector assembly mounted in a tissue equivalent (T.E.) phantom with an overlay of 70 micron of T.E. material. This assembly was placed in an infinite cloud containing a known concentration of /sup 133/Xe. Material samples were placed at selected distances from the detector phantom, both individually and in various combinations.more » Pulse-height spectra resulting from beta radiations were converted to relative D.E. rates at a 70-micron tissue depth. The relative D.E. rates were reduced from values with no clothing cover by as little as 45% when placing a single thin nylon cloth 1 cm from the phantom, to 94% for a T-shirt material plus wool material plus denim placed 1/2, 1 and 3 cm, respectively, from the phantom. The results indicate that even loosely fitting clothing can have an important effect on reducing the D.E. rate. Close-fitting clothing appears to provide better protection.« less
Monte Carlo calculation of the radiation field at aircraft altitudes.
Roesler, S; Heinrich, W; Schraube, H
2002-01-01
Energy spectra of secondary cosmic rays are calculated for aircraft altitudes and a discrete set of solar modulation parameters and rigidity cut-off values covering all possible conditions. The calculations are based on the Monte Carlo code FLUKA and on the most recent information on the interstellar cosmic ray flux including a detailed model of solar modulation. Results are compared to a large variety of experimental data obtained on the ground and aboard aircraft and balloons, such as neutron, proton, and muon spectra and yields of charged particles. Furthermore, particle fluence is converted into ambient dose equivalent and effective dose and the dependence of these quantities on height above sea level, solar modulation, and geographical location is studied. Finally, calculated dose equivalent is compared to results of comprehensive measurements performed aboard aircraft.
NASA Astrophysics Data System (ADS)
Durand, Michael; Neal, Jeff; Rodriguez, Ernesto
2013-09-01
The Surface Water and Ocean Topography (SWOT) satellite is a swath-mapping radar interferometer that will provide water elevations over inland water bodies and over the ocean. Here we present a Bayesian algorithm that calculates a best estimate of river bathymetry, roughness coefficient, and discharge based on measurements of river height and slope. On the River Severn, UK, we use gage estimates of height and slope during an in-bank flow event to illustrate algorithm functionality. We validate our estimates of river bathymetry and discharge using in situ measurements. We first assumed that the lateral inflows from smaller tributaries were known. In this case, an accurate inverse to bathymetry and roughness was obtained giving a discharge RMSE of 10 %. We then allowed the lateral inflows to be unknown; accuracy in the bathymetry estimates dropped in this case, giving a discharge RMSE of 36 %. Finally, we explored the case where bathymetry in one reach was known; in this case, discharge RMSE was 15.6 %.
Seagrass blade motion under waves and its impact on wave decay
NASA Astrophysics Data System (ADS)
Luhar, M.; Infantes, E.; Nepf, H.
2017-05-01
The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).
THE EPANET WATER DISTRIBUTION SYSTEM MODEL
EPANET is a Windows program that performs extended period simulation of hydraulic and water-quality behavior within pressurized pipe networks. It tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank, and the concentration of a chemica...
Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.
2007-01-01
Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2004 and 2005. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier.
Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX
NASA Technical Reports Server (NTRS)
Wu, Dong L.
2012-01-01
How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.
Height is more important than light in determining leaf morphology in a tropical forest.
Cavaleri, Molly A; Oberbauer, Steven F; Clark, David B; Clark, Deborah A; Ryan, Michael G
2010-06-01
Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have provided evidence that water limitation in the upper canopy can constrain foliar morphological adaptations to higher light levels. We measured height, light, and LMA of all species encountered along 45 vertical canopy transects across a Costa Rican tropical rain forest. LMA was correlated with light levels in the lower canopy until approximately 18 m sample height and 22% diffuse transmittance. Height showed a remarkably linear relationship with LMA throughout the entire vertical canopy profile for all species pooled and for each functional group individually (except epiphytes), possibly through the influence of gravity on leaf water potential and turgor pressure. Models of forest function may be greatly simplified by estimating LMA-correlated leaf physiological parameters solely from foliage height profiles, which in turn can be assessed with satellite- and aircraft-based remote sensing.
TOPEX/El Nino Watch - El Nino Warm Water Pool Decreasing, Jan, 08, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Jan. 8, 1998, and sea surface height is an indicator of the heat content of the ocean. The volume of the warm water pool related to the El Nino has decreased by about 40 percent since its maximum in early November, but the area of the warm water pool is still about one and a half times the size of the continental United States. The volume measurements are computed as the sum of all the sea surface height changes as compared to normal ocean conditions. In addition, the maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal. Until these high temperatures diminish, the El Nino warm water pool still has great potential to disrupt global weather because the high water temperatures directly influence the atmosphere. Oceanographers believe the recent decrease in the size of the warm water pool is a normal part of El Nino's natural rhythm. TOPEX/Poseidon has been tracking these fluctuations of the El Nino warm pool since it began in early 1997. These sea surface height measurements have provided scientists with their first detailed view of how El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.
The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmosphere system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration, (NOAA), has issued an advisory indicating the presence of a strong El Nino condition throughout the winter.For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govWater equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT
NASA Astrophysics Data System (ADS)
Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive
2013-10-01
Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the isopropanol gel dosimeter over the same energy range. For x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For megavoltage electron beams, the dose differences with water reach 7% and 14% for the co-solvent free gel dosimeter and the isopropanol gel dosimeter, respectively. Our results demonstrate that for x-ray beam dosimetry with photon energies higher than 100 keV and megavoltage electron beams, correction factors are needed for both NIPAM gels to be used as water equivalent dosimeters.
Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data
NASA Astrophysics Data System (ADS)
Ye, Shirong; Xia, Pengfei; Cai, Changsheng
2016-09-01
The near-real-time high spatial resolution of atmospheric water vapor distribution is vital in numerical weather prediction. GPS tomography technique has been proved effectively for three-dimensional water vapor reconstruction. In this study, the tomography processing is optimized in a few aspects by the aid of radiosonde and COSMIC historical data. Firstly, regional tropospheric zenith hydrostatic delay (ZHD) models are improved and thus the zenith wet delay (ZWD) can be obtained at a higher accuracy. Secondly, the regional conversion factor of converting the ZWD to the precipitable water vapor (PWV) is refined. Next, we develop a new method for dividing the tomography grid with an uneven voxel height and a varied water vapor layer top. Finally, we propose a Gaussian exponential vertical interpolation method which can better reflect the vertical variation characteristic of water vapor. GPS datasets collected in Hong Kong in February 2014 are employed to evaluate the optimized tomographic method by contrast with the conventional method. The radiosonde-derived and COSMIC-derived water vapor densities are utilized as references to evaluate the tomographic results. Using radiosonde products as references, the test results obtained from our optimized method indicate that the water vapor density accuracy is improved by 15 and 12 % compared to those derived from the conventional method below the height of 3.75 km and above the height of 3.75 km, respectively. Using the COSMIC products as references, the results indicate that the water vapor density accuracy is improved by 15 and 19 % below 3.75 km and above 3.75 km, respectively.
Excess growing-season water limits lowland black spruce productivity
NASA Astrophysics Data System (ADS)
Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.
2015-12-01
The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.
Challenges in Defining Tsunami Wave Height
NASA Astrophysics Data System (ADS)
Stroker, K. J.; Dunbar, P. K.; Mungov, G.; Sweeney, A.; Arcos, N. P.
2017-12-01
The NOAA National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 Mw earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were <20 cm. For this event, the maximum tsunami wave heights determined by either definition (maximum peak or amplitude) would have validated the forecasts issued by the NOAA Tsunami Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height, NCEI will consider adding an additional field for the maximum peak measurement.
Challenges in Defining Tsunami Wave Heights
NASA Astrophysics Data System (ADS)
Dunbar, Paula; Mungov, George; Sweeney, Aaron; Stroker, Kelly; Arcos, Nicolas
2017-08-01
The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 M w earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 coastal tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were <20 cm. For this event, the maximum tsunami wave heights determined by either definition (maximum peak or amplitude) would have validated the forecasts issued by the NOAA Tsunami Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height for each tide gauge and deep-ocean buoy, NCEI will consider adding an additional field for the maximum peak measurement.
Gravity and Height Variations at Medicina, Italy
NASA Astrophysics Data System (ADS)
Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio; Wziontek, Hartmut
2017-04-01
Since 1996, at the Medicina station, height and gravity variations are monitored continuously by means of GPS, VLBI and superconducting gravimeter (SG) data. Additionally, absolute gravity observations are performed twice a year and environmental parameters, among others water table levels, are regularly acquired. Levelling between the different monuments at the site area is also carried out repeatedly to constrain local ties in the vertical position. Two GPS systems are located very close to each other, and both are in close proximity to the VLBI antenna. Twenty years of data are now available, which allow investigating both long- and short-period height and gravity signals together with their relevant correlations. Natural land subsidence, which is well known to occur in the area, is a major component of the observed long-term behavior; however, non-linear long-period signatures are also present in the time series. On a shorter time scale, fingerprints of the water table seasonal oscillations can be recognized in the data. The Medicina site is characterized by clayey soil subjected to consolidation effects when the water table lowers during summer periods. The pillar on which the SG is installed is especially affected because of its shallow foundation, causing height decreases in the order of 2.5-3 cm for water table lowering of 2 m. This study presents a comparative analysis of the different data sets with the aim of separating mass and deformation contributions in the SG gravity record.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Nwadike, E. V.; Sinha, S. E.
1982-01-01
The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.
An instrument for monitoring stump oedema and shrinkage in amputees.
Fernie, G R; Holliday, P J; Lobb, R J
1978-08-01
A new system for measuring the cross-sectional area profiles of amputation stumps and whole limbs has been designed at the Amputee Research Centre. The instrument consists of a cylindrical tank supported on an elevator. The tank is raised to the height of the amputation stump and filled with water. A graph of the cross-sectional area profile of the amputation stump is generated by a mini-computer as the elevator descends. The cross-sectional area (A) is calculated from the expression: formula: (see text) where Hw = height of water in the tank He = height of the elevator Ac = a constant, related to the size of the measuring tank. This paper describes the instrument, which may find application in many other areas where there is a need to study shape.
Vertical divergence of fogwater fluxes above a spruce forest
NASA Astrophysics Data System (ADS)
Burkard, R.; Eugster, W.; Wrzesinsky, T.; Klemm, O.
Two almost identical eddy covariance measurement setups were used to measure the fogwater fluxes to a forest ecosystem in the "Fichtelgebirge" mountains (Waldstein research site, 786 m a.s.l.) in Germany. During the first experiment, an intercomparison was carried out with both setups running simultaneously at the same measuring height on a meteorological tower, 12.5 m above the forest canopy. The results confirmed a close agreement of the turbulent fluxes between the two setups, and allowed to intercalibrate liquid water content (LWC) and gravitational fluxes. During the second experiment, the setups were mounted at a height of 12.5 and 3 m above the canopy, respectively. For the 22 fog events, a persistent negative flux divergence was observed with a greater downward flux at the upper level. To extrapolate the turbulent liquid water fluxes measured at height z to the canopy of height hc, a conversion factor 1/[1+0.116( z- hc)] was determined. For the fluxes of nonvolatile ions, no such correction is necessary since the net evaporation of the fog droplets appears to be the primary cause of the vertical flux divergence. Although the net evaporation reduces the liquid water flux reaching the canopy, it is not expected to change the absolute amount of ions dissolved in fogwater.
Impact of Nasser Lake on gravity reduction and geoidal heights for Egypt
NASA Astrophysics Data System (ADS)
Abd-Elmotaal, Hussein A.; Makhloof, Atef; Hassan, Ayman; Ashry, Mostafa
2018-06-01
In the course of the IAG African Geoid Project, it is needed to study the impact of the lakes on the gravity reduction and geoidal heights. The aim of this paper is to study the impact of the water in Nasser Lake on gravity reduction and geoidal heights for Egypt. The determination of the gravimetric geoid is based on the well-known remove-restore technique. The problem of the lakes occurs because the popular programs widely used in practice (e.g., TC-program (Forsberg, 1984)) assume that all positive elevations are filled with rock topography, and all negative elevations are filled with ocean water. This is, however, not true for the case of Nasser Lake, which lies completely above sea level, at about 180 m elevation, with a water depth of about 20 m. The paper presents an approach on estimating the impact of Nasser Lake on gravity reduction and geoidal heights using TC-program with some tricky cases. The results show that the impact of Nasser Lake on both gravity anomalies and geoid undulation is limited to the area of the lake. The impact of Nasser Lake on the gravity anomalies is in the order of sub mgal, while the impact of Nasser lake on the geoid undulation is significant and reaches few centimeters.
Inventory of File sref_em.t03z.pgrb221.p1.f06.grib2
surface WEASD 6 hour fcst Water Equivalent of Accumulated Snow Depth [kg/m^2] 016 surface APCP 0-6 hour surface WEASD 0-6 hour acc Water Equivalent of Accumulated Snow Depth [kg/m^2] 019 surface CSNOW 6 hour hour fcst Specific Humidity [kg/kg] 401 surface NCPCP 0-6 hour acc Large-Scale Precipitation (non
Inventory of File nam.t00z.awip2000.tm00.grib2
analysis Pressure Reduced to MSL [Pa] 002 1 hybrid level RIME analysis Rime Factor [non-dim] 003 surface Temperature [K] 014 surface WEASD analysis Water Equivalent of Accumulated Snow Depth [kg/m^2] 015 2 m above ^2] 021 surface WEASD 0-0 day acc f Water Equivalent of Accumulated Snow Depth [kg/m^2] 022 surface
Inventory of File sref_nmm.t03z.pgrb221.p1.f00.grib2
ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated day acc f Convective Precipitation [kg/m^2] 018 surface WEASD 0-0 day acc f Water Equivalent of Potential Temperature [K] 403 surface NCPCP 0-0 day acc f Large-Scale Precipitation (non-convective) [kg/m^2
Inventory of File sref_nmb.t03z.pgrb221.p1.f00.grib2
ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated day acc f Convective Precipitation [kg/m^2] 018 surface WEASD 0-0 day acc f Water Equivalent of Potential Temperature [K] 403 surface NCPCP 0-0 day acc f Large-Scale Precipitation (non-convective) [kg/m^2
Inventory of File nam.t00z.awip2006.tm00.grib2
Pressure Reduced to MSL [Pa] 002 1 hybrid level RIME 6 hour fcst Rime Factor [non-dim] 003 surface VIS 6 ] 013 surface TMP 6 hour fcst Temperature [K] 014 surface WEASD 6 hour fcst Water Equivalent of ACPCP 0-6 hour acc Convective Precipitation [kg/m^2] 021 surface WEASD 0-6 hour acc Water Equivalent of
Peter F. Ffolliott; Gerald J. Gottfried
2010-01-01
Field measurements and computer-based predictions suggest that the magnitudes of seasonal peak snowpack water equivalents are becoming less and the timing of these peaks is occurring earlier in the snowmelt-runoff season of the western United States. These changes in peak snowpack conditions have often been attributed to a warming of the regional climate. To determine...
Daniel Barandiaran; S.-Y. Simon Wang; R. Justin DeRose
2017-01-01
Snowpack observations in the Intermountain West are sparse and short, making them difficult for use in depicting past variability and extremes. This study presents a reconstruction of April 1 snow water equivalent (SWE) for the period of 1850â1989 using increment cores collected by the U.S. Forest Service, Interior West Forest Inventory and Analysis program (FIA). In...
Kolok, Alan; Huckins, James N.; Petty, Jimmie D.; Oris, James T.
1996-01-01
The objective of this study was to determine whether sediment ingestion or water ventilation was the primary route of uptake for benzo[a]pyrene (BaP) in the gizzard shad (Dorosoma cepedianum), a detritivorous fish. Two experiments were conducted in which fish were exposed to sediments spiked with 1 μg/g BaP. In the first experiment, fish were prevented from feeding by esophagus ligation. In the second experiment, 20 nonligated fish and 30 ligated fish were added to the aquarium. The nonligated fish roiled the water as they fed. Fish were collected 4, 8, 15, and 22 d after the experiments began. Gizzard shad metabolize BaP; therefore, the concentrations of BaP equivalents (parent BaP plus metabolite) were determined. Concentrations of BaP equivalents were significantly greater in the ligated fish in experiment 2 relative to those in experiment 1. In contrast, the concentration of BaP equivalents in the ligated fish in experiment 2 was not significantly different than that in the nonligated fish. Our results suggest that ventilation of turbid water may be a significant source of BaP for gizzard shad. Sediment ingestion, however, does not appear to significantly influence the total body concentration of BaP equivalents in gizzard shad.
Mining and drought in the tropical Andes: a case study of lake Poopó
NASA Astrophysics Data System (ADS)
Zogheib, C.
2017-12-01
The respective impacts of mining water withdrawals and El Niño-related droughts on water availability in the Altiplano region of the tropical Andes were investigated. The naturally semi-arid to arid climate of the region is highly vulnerable to the effects of the El Niño Southern Oscillation (ENSO) as well as changes to the Bolivian High upper troposphere circulation. The 2015-2016 El Niño event displayed a maximal Oceanic Niño Index (ONI) of up to 2.2 °C, comparable with the 1998-1999 event, considered as the most severe of the 20th century with a maximal ONI of 2.5 °C. This has severely impacted the Altiplano region. Whereas mining has been found to affect observed water quality in the region, its influence on water availability has not been extensively examined. In light of these observations, the case of Lake Poopó, a water body at the intersection of both these climatic and anthropogenic influences, was further analyzed. The lake was officially declared dry in January 2016 by the Bolivian government. Therefore, a water balance model was implemented for the Lake Titicaca - Río Desaguadero - Lake Poopó - Salar de Coipasa (TDPS) catchment, simulating several possible climatic scenarios. Mines were identified and associated water withdrawals were extrapolated using available processing water consumption data. Long-term climatic trends, as averaged between 1970 and 2010 were used to assess the recovery prospects of the lake. Mining was found to have a very limited impact on water quantity in Lake Poopó, with total mining water withdrawals accounting for 0.2% to 0.4% of the total amount of water flowing into the lake from the Desaguadero River, reduced by only 1%. However, 1998 El Niño-induced drought conditions were found to cause a net yearly reduction in storage of 0.76 m. Under such climatic constraints, it was obtained that 32 months were needed for the lake to dry out from its height of 1.972 m as observed on the 10th of April 2013 and 38 months from its spill height of 2.37 m. A recovery time of 52 months was estimated necessary for the lake to regain its April 2013 water height of 1.972 m and 74 months for its spill height of 2.37 m.
Hember, Robbie A; Kurz, Werner A; Coops, Nicholas C
2017-04-01
Accounting for water stress-induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species-specific relationships between probability of mortality (P m ) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (W s,z ) and reference evapotranspiration (ET r,z ) at each field plot. The models additionally tested for interactions between the water-balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross-validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water-balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole-plant, leaf-specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr -1 in 1951 to 2.0% yr -1 in 2014 (a net change of 0.9 ± 0.3% yr -1 ). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak-to-moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This 'learn-as-we-go' approach - defined by sampling rare drought events as they continue to intensify - will help to constrain the hydraulic limits of dominant tree species and the viability of boreal and temperate forest biomes under continued climate change. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Goncalves Neto, A.; Johnson, R. J.; Bates, N. R.
2016-02-01
Rising sea level is one of the main concerns for human life in a scenario with global atmosphere and ocean warming, which is of particular concern for oceanic islands. Bermuda, located in the center of the Sargasso Sea, provides an ideal location to investigate sea level rise since it has a long term tide gauge (1933-present) and is in close proximity to deep ocean time-series sites, namely, Hydrostation `S' (1954-present) and the Bermuda Atlantic Time-Series Study site (1988-present). In this study, we use the monthly CTD deep casts at BATS to compute the contribution of steric height (SH) to the local sea surface height (SSH) for the past 24 years. To determine the relative contribution from the various water masses we first define 8 layers (Surface Layer, Upper Thermocline, Subtropical Mode-Water, Lower Thermocline, Antarctic Intermediate Water, Labrador Sea Water, Iceland-Scotland Overflow Water, Denmark Strait Overflow Water) based on neutral density criteria for which SH is computed. Additionally, we calculate the thermosteric and halosteric components for each of the defined neutral density layers. Surprisingly, the results show that, despite a 3.3mm/yr sea level rise observed at the Bermuda tide gauge, the steric contribution to the SSH at BATS has decreased at a rate of -1.1mm/yr during the same period. The thermal component is found to account for the negative trend in the steric height (-4.4mm/yr), whereas the halosteric component (3.3mm/yr) partially compensates the thermal signal and can be explained by an overall cooling and freshening at the BATS site. Although the surface layer and the upper thermocline waters are warming, all the subtropical and polar water masses, which represent most of the local water column, are cooling and therefore drive the overall SH contribution to the local SSH. Hence, it suggests that the mass contribution to the local SSH plays an important role in the sea level rise, for which we investigate with GRACE data.
Harris, Michael; Alzua, Maria Laura; Osbert, Nicolas; Pickering, Amy
2017-06-20
Sanitation access can provide positive externalities; for example, safe disposal of feces by one household prevents disease transmission to households nearby. However, little empirical evidence exists to characterize the potential health benefits from sanitation externalities. This study investigated the effect of community sanitation coverage versus individual household sanitation access on child health and drinking water quality. Using a census of 121 villages in rural Mali, we analyzed the association of community latrine coverage (defined by a 200 m radius surrounding a household) and individual household latrine ownership with child growth and household stored water quality. Child height-for-age had a significant and positive linear relationship with community latrine coverage, while child weight-for-age and household water quality had nonlinear relationships that leveled off above 60% coverage (p < 0.01; generalized additive models). Child growth and water quality were not associated with individual household latrine ownership. The relationship between community latrine coverage and child height was strongest among households without a latrine; for these households, each 10% increase in latrine coverage was associated with a 0.031 (p-value = 0.040) increase in height-for-age z-score. In this study, the level of sanitation access of surrounding households was more important than private latrine access for protecting water quality and child health.
An evolutionary attractor model for sapwood cross section in relation to leaf area.
Westoby, Mark; Cornwell, William K; Falster, Daniel S
2012-06-21
Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.
2017-01-01
Sanitation access can provide positive externalities; for example, safe disposal of feces by one household prevents disease transmission to households nearby. However, little empirical evidence exists to characterize the potential health benefits from sanitation externalities. This study investigated the effect of community sanitation coverage versus individual household sanitation access on child health and drinking water quality. Using a census of 121 villages in rural Mali, we analyzed the association of community latrine coverage (defined by a 200 m radius surrounding a household) and individual household latrine ownership with child growth and household stored water quality. Child height-for-age had a significant and positive linear relationship with community latrine coverage, while child weight-for-age and household water quality had nonlinear relationships that leveled off above 60% coverage (p < 0.01; generalized additive models). Child growth and water quality were not associated with individual household latrine ownership. The relationship between community latrine coverage and child height was strongest among households without a latrine; for these households, each 10% increase in latrine coverage was associated with a 0.031 (p-value = 0.040) increase in height-for-age z-score. In this study, the level of sanitation access of surrounding households was more important than private latrine access for protecting water quality and child health. PMID:28514143
DOT National Transportation Integrated Search
2009-11-01
To ensure proficient network management and safe usage of navigable waterways especially in waters that are : subject to tides, it is essential that the height of the water at various tidal phases be known. This knowledge is also : essential for prop...
NASA Astrophysics Data System (ADS)
Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu
2017-04-01
Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and underestimation of the combined effect of sea level variations and wind waves, and to help coastal infrastructure planning and support smooth and safe operation of coastal cities in a changing climate.
Takács, Péter; Barta, András; Pye, David; Horváth, Gábor
2017-10-20
When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.
Raman lidar/AERI PBL Height Product
Ferrare, Richard
2012-12-14
Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.
Enhance the accuracy of radar snowfall estimation with Multi new Z-S relationships in MRMS system
NASA Astrophysics Data System (ADS)
Qi, Y.
2017-12-01
Snow may have negative affects on roadways and human lives, but the result of the melted snow/ice is good for farm, humans, and animals. For example, in the Southwest and West mountainous area of United States, water shortage is a very big concern. However, snowfall in the winter can provide humans, animals and crops an almost unlimited water supply. So, using radar to accurately estimate the snowfall is very important for human life and economic development in the water lacking area. The current study plans to analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be evaluated with independent CoCoRaHS (Community Collaborative Rain, Hail & Snow Network) gauge observations and eventually implemented in the Multi-Radar Multi-Sensor system for improved quantitative precipitation estimation for snow. This study will analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be used to reduce the error of snowfall estimation in Multi Radar and Multi Sensors (MRMS) system, and tested in MRMS system and evaluated with the COCORaHS observations. Finally, it will be ingested in MRMS sytem, and running in NWS/NCAR operationally
NASA Astrophysics Data System (ADS)
Storlazzi, C. D.; Griffioen, D.; Cheriton, O. M.
2016-12-01
Coral reefs have been shown to significantly attenuate incident wave energy and thus provide protection for 100s of millions of people globally. To better constrain wave dynamics and wave-driven water levels over fringing coral reefs, a 4-month deployment of wave and tide gauges was conducted across two shore-normal transects on Roi-Namur Island and two transects on Kwajalein Island in the Republic of the Marshall Islands. At all locations, although incident wave (periods <25 s) heights were an order of magnitude greater than infragravity wave (periods > 250 s) heights on the outer reef flat just inshore of the zone of wave breaking, the infragravity wave heights generally equaled the incident wave heights by the middle of the reef flat and exceeded the incident wave heights on the inner reef flat by the shoreline. The infragravity waves generally were asymmetric, positively skewed, bore-like forms with incident-band waves riding the infragravity wave crest at the head of the bore; these wave packets have similar structure to high-frequency internal waves on an internal wave bore. Bore height was shown to scale with water depth, offshore wave height, and offshore wave period. For a given tidal elevation, with increasing offshore wave heights, such bores occurred more frequently on the middle reef flat, whereas they occurred less frequently on the inner reef flat. Skewed, asymmetric waves are known to drive large gradients in velocity and shear stress that can transport material onshore. Thus, a better understanding of these low-frequency, energetic bores on reef flats is critical to forecasting how coral reef-lined coasts may respond to sea-level rise and climate change.
Stoichiometry of Reducing Equivalents and Splitting of Water in the Citric Acid Cycle.
ERIC Educational Resources Information Center
Madeira, Vitor M. C.
1988-01-01
Presents a solution to the problem of finding the source of extra reducing equivalents, and accomplishing the stoichiometry of glucose oxidation reactions. Discusses the citric acid cycle and glycolysis. (CW)
Stelinski, L L; McGhee, P; Haas, M; Il'ichev, A L; Gut, L J
2007-08-01
Several application parameters of microencapsulated (MEC) sex pheromone formulations were manipulated to determine their impact on efficacy of disruption for codling moth, Cydia pomonella (L.); oriental fruit moth, Grapholita molesta (Busck); obliquebanded leafroller, Choristoneura rosaceana (Harris); and redbanded leafroller, Argyrotaenia velutinana (Walker). Depending on the experiment, the formulations evaluated were those formerly manufactured by 3M Canada (London, ON, Canada) or those that are currently available from Suterra LLC (Bend, OR). The efficacy of MEC formulations applied by air-blast sprayer evenly throughout the entire canopy of 2-3-m-tall apple (Malus spp.) trees was equivalent to treatments in which targeted applications of MECs were made to the lower or upper 1.5 m of the canopy (at equivalent overall rates) for oriental fruit moth and both leafroller species. The realized distribution of deposited microcapsules within the tree canopy corresponded well with the intended heights of application within the canopy. The additional coapplication of the pine resin sticker Nu-Film 17 increased efficacy but not longevity of MEC formulations for oriental fruit moth; this adjuvant had no added effects for codling moth or leafroller formulations. Increasing the rate of active ingredient (AI) per hectare by 20-30-fold (range 2.5-75.0 g/ha) did not improve the disruption efficacy of MECs for codling moth or either leafroller species when both low and high rates were applied at equivalent frequencies per season. A low-rate, high-frequency (nine applications per season) application protocol was compared with a standard protocol in which two to three applications were made per season, once before each moth generation for each species. The low-rate, high-frequency protocol resulted in equivalent or better disruption efficacy for each moth species, despite using two-fold less total AI per hectare per season with the former treatment. The low-rate, frequent-application protocol should make the use of MEC formulations of synthetic pheromone more economical and perhaps more effective.
Zimmermann, D; Westhoff, M; Zimmermann, G; Gessner, P; Gessner, A; Wegner, L H; Rokitta, M; Ache, P; Schneider, H; Vásquez, J A; Kruck, W; Shirley, S; Jakob, P; Hedrich, R; Bentrup, F-W; Bamberg, E; Zimmermann, U
2007-01-01
The water supply to leaves of 25 to 60 m tall trees (including high-salinity-tolerant ones) was studied. The filling status of the xylem vessels was determined by xylem sap extraction (using jet-discharge, gravity-discharge, and centrifugation) and by (1)H nuclear magnetic resonance imaging of wood pieces. Simultaneously, pressure bomb experiments were performed along the entire trunk of the trees up to a height of 57 m. Clear-cut evidence was found that the balancing pressure (P(b)) values of leafy twigs were dictated by the ambient relative humidity rather than by height. Refilling of xylem vessels of apical leaves (branches) obviously mainly occurred via moisture uptake from the atmosphere. These findings could be traced back to the hydration and rehydration of mucilage layers on the leaf surfaces and/or of epistomatal mucilage plugs. Xylem vessels also contained mucilage. Mucilage formation was apparently enforced by water stress. The observed mucilage-based foliar water uptake and humidity dependency of the P(b) values are at variance with the cohesion-tension theory and with the hypothesis that P(b) measurements yield information about the relationships between xylem pressure gradients and height.
Brady, Amie M.G.; Plona, Meg B.
2009-01-01
During the recreational season of 2008 (May through August), a regression model relating turbidity to concentrations of Escherichia coli (E. coli) was used to predict recreational water quality in the Cuyahoga River at the historical community of Jaite, within the present city of Brecksville, Ohio, a site centrally located within Cuyahoga Valley National Park. Samples were collected three days per week at Jaite and at three other sites on the river. Concentrations of E. coli were determined and compared to environmental and water-quality measures and to concentrations predicted with a regression model. Linear relations between E. coli concentrations and turbidity, gage height, and rainfall were statistically significant for Jaite. Relations between E. coli concentrations and turbidity were statistically significant for the three additional sites, and relations between E. coli concentrations and gage height were significant at the two sites where gage-height data were available. The turbidity model correctly predicted concentrations of E. coli above or below Ohio's single-sample standard for primary-contact recreation for 77 percent of samples collected at Jaite.
Water infiltration in prewetted porous media: dynamic capillary pressure and Green-Ampt modeling
NASA Astrophysics Data System (ADS)
Hsu, S.; Hilpert, M.
2013-12-01
Recently, an experimental study has shown that the modified Green-Ampt (GA) model, which accounts for a velocity-dependent capillary pressure, can describe water infiltration in dry sand columns better than the classical GA model. Studies have also shown that the initial water content of prewetted porous media affects the dynamic capillary pressure during infiltration. In this study, we performed a series of downward water infiltration experiments in prewetted sand columns for four different initial water contents: 0%, 3.3%, 6.5%, and 13.8%. We also used three different ponding heights: 10 cm, 20 cm, and 40 cm. As expected, an increase in ponding height resulted in a monotonic increase in cumulative infiltration. However, we found anomalous behavior, in that the cumulative infiltration did not monotonically decrease as the initial water content increased. When modeling the experiments with the modified GA approach, we linked this anomalous behavior to the reduction factor in the model for dynamic capillary pressure that is a function of initial water content.
Yang, Wen-Bin; Yuan, Chung-Shin; Tong, Chuan; Yang, Pin; Yang, Lei; Huang, Bang-Qin
2017-06-15
Wetlands play a crucial role in modulating atmospheric concentrations of greenhouse gases (GHGs) such as carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). The key factors controlling GHG emission from subtropical estuarine wetlands were investigated in this study, which continuously monitored the uptake/emission of GHGs (CO 2 , CH 4 , and N 2 O) by/from a subtropical estuarine wetland located in the Minjiang estuary in the coastal region of southeastern China. A self-designed floating chamber was used to collect air samples on-site at three environmental habitats (Phragmites australis marsh, mudflats, and river water). The CO 2 , CH 4 , and N 2 O concentrations were then measured using an automated nondispersive infrared analyzer. The magnitudes of the CO 2 and N 2 O emission fluxes at the three habitats were ordered as river water>P. australis>mudflats. P. australis emitted GHGs through photosynthesis and respiration processes. Emissions of CH 4 from P. australis and the mudflats were revealed to be slightly higher than those from the river water. The total GHG emission fluxes at the three environmental habitats were quite similar (4.68-4.78gm -2 h -1 ). However, when the total carbon dioxide equivalent fluxes (CO 2 -e) were considered, the river water was discovered to emit the most CO 2 -e compared with P. australis and the mudflats. Based on its potential to increase global warming, N 2 O was the main contributor to the total GHG emission, with that emitted from the river water being the most considerable. Tidal water carried onto the marsh had its own GHG content and thus has acted as a source or sink of GHGs. However, water quality had a large effect on GHG emissions from the river water whereas the tidal water height did not. Both high salinity and large amounts of sulfates in the wetlands explicitly inhibited the activity of CH 4 -producing bacteria, particularly at nighttime. Copyright © 2017 Elsevier Ltd. All rights reserved.
14 CFR 23.237 - Operation on water.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Operation on water. 23.237 Section 23.237... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Ground and Water Handling Characteristics § 23.237 Operation on water. A wave height, demonstrated to be safe for operation, and any...
14 CFR 23.237 - Operation on water.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Operation on water. 23.237 Section 23.237... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Ground and Water Handling Characteristics § 23.237 Operation on water. A wave height, demonstrated to be safe for operation, and any...
14 CFR 23.237 - Operation on water.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Operation on water. 23.237 Section 23.237... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Ground and Water Handling Characteristics § 23.237 Operation on water. A wave height, demonstrated to be safe for operation, and any...
14 CFR 23.237 - Operation on water.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Operation on water. 23.237 Section 23.237... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Ground and Water Handling Characteristics § 23.237 Operation on water. A wave height, demonstrated to be safe for operation, and any...
Real, Macarena; Molina-Molina, José-Manuel; Jiménez-Díaz, Inmaculada; Arrebola, Juan Pedro; Sáenz, José-María; Fernández, Mariana F; Olea, Nicolás
2015-01-01
Bottled water consumption is a putative source of human exposure to endocrine-disrupting chemicals (EDCs). Research has been conducted on the presence of chemicals with estrogen-like activity in bottled waters and on their estrogenicity, but few data are available on the presence of hormonal activities associated with other nuclear receptors (NRs). The aim of this study was to determine the presence of endocrine activities dependent on the activation of human estrogen receptor alpha (hERa) and/or androgen receptor (hAR) in water in glass or plastic bottles sold to consumers in Southern Spain. Hormone-like activities were evaluated in 29 bottled waters using receptor-specific bioassays based on reporter gene expression in PALM cells [(anti-)androgenicity] and cell proliferation assessment in MCF-7 cells [(anti-)estrogenicity] after optimized solid phase extraction (SPE). All of the water samples analyzed showed hormonal activity. This was estrogenic in 79.3% and anti-estrogenic in 37.9% of samples and was androgenic in 27.5% and anti-androgenic in 41.3%, with mean concentrations per liter of 0.113pM 17β-estradiol (E2) equivalent units (E2Eq), 11.01pM anti-estrogen (ICI 182780) equivalent units (ICI 182780Eq), 0.33pM methyltrienolone (R1881) equivalent units (R1881Eq), and 0.18nM procymidone equivalent units (ProcEq). Bottled water consumption contributes to EDC exposure. Hormone-like activities observed in waters from both plastic and glass bottles suggest that plastic packaging is not the sole source of contamination and that the source of the water and bottling process may play a role, among other factors. Further research is warranted on the cumulative effects of long-term exposure to low doses of EDCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Photodegradation of clothianidin under simulated California rice field conditions.
Mulligan, Rebecca A; Redman, Zachary C; Keener, Megan R; Ball, David B; Tjeerdema, Ronald S
2016-07-01
Photodegradation can be a major route of dissipation for pesticides applied to shallow rice field water, leading to diminished persistence and reducing the risk of offsite transport. The objective of this study was to characterize the aqueous-phase photodegradation of clothianidin under simulated California rice field conditions. Photodegradation of clothianidin was characterized in deionized, Sacramento River and rice field water samples. Pseudo-first-order rate constants and DT50 values in rice field water (mean k = 0.0158 min(-1) ; mean DT50 = 18.0 equivalent days) were significantly slower than in deionized water (k = 0.0167 min(-1) ; DT50 = 14.7 equivalent days) and river water (k = 0.0146 min(-1) ; DT50 = 16.6 equivalent days) samples. Quantum yield ϕc values demonstrate that approximately 1 and 0.5% of the light energy absorbed results in photochemical transformation in pure and field water respectively. Concentrations of the photodegradation product thiazolymethylurea in aqueous photolysis samples were determined using liquid chromatography-tandem mass spectrometry and accounted for ≤17% in deionized water and ≤8% in natural water. Photodegradation rates of clothianidin in flooded rice fields will be controlled by turbidity and light attenuation. Aqueous-phase photodegradation may reduce the risk of offsite transport of clothianidin from flooded rice fields (via drainage) and mitigate exposure to non-target organisms. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Inventory of File sref_em.t03z.pgrb212.p1.f06.grib2
surface WEASD 6 hour fcst Water Equivalent of Accumulated Snow Depth [kg/m^2] 016 surface APCP 0-6 hour surface WEASD 0-6 hour acc Water Equivalent of Accumulated Snow Depth [kg/m^2] 019 surface CSNOW 6 hour -6 hour acc Large-Scale Precipitation (non-convective) [kg/m^2] 415 surface SNOM 0-6 hour acc Snow
Inventory of File sref_nmb.t03z.pgrb221.p1.f06.grib2
surface WEASD 6 hour fcst Water Equivalent of Accumulated Snow Depth [kg/m^2] 016 surface APCP 3-6 hour surface WEASD 3-6 hour acc Water Equivalent of Accumulated Snow Depth [kg/m^2] 019 surface CSNOW 6 hour surface NCPCP 3-6 hour acc Large-Scale Precipitation (non-convective) [kg/m^2] 404 surface SNOM 3-6 hour
Inventory of File sref_nmm.t03z.pgrb221.p1.f06.grib2
surface WEASD 6 hour fcst Water Equivalent of Accumulated Snow Depth [kg/m^2] 016 surface APCP 3-6 hour surface WEASD 3-6 hour acc Water Equivalent of Accumulated Snow Depth [kg/m^2] 019 surface CSNOW 6 hour surface NCPCP 3-6 hour acc Large-Scale Precipitation (non-convective) [kg/m^2] 404 surface SNOM 3-6 hour
Thomas, Jonathan V.; Stanton, Gregory P.; Lambert, Rebecca B.
2012-01-01
Although analyses of daily mean equivalent freshwater heads for the East Uvalde transect indicated that the gradient across the freshwater/saline-water interface varied between into and out of the freshwater zone, the data indicate that there was a slightly longer period during which the gradient was out of the freshwater zone. Analyses of all daily mean equivalent freshwater heads for the Tri-County transect indicated that the lateral-head gradients across the freshwater/saline-water interface were typically mixed (not indicative of flow into or out of freshwater zone). Assessment of the daily mean equivalent freshwater heads indicated that, although the lateral-head gradient at the Kyle transect varied between into and out of the freshwater zone, the lateral-head gradient was typically from the transition zone into the freshwater zone.
Guide to Louisiana's ground-water resources
Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.
1994-01-01
Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.
NASA Astrophysics Data System (ADS)
Van, Vinh; Stahl, Wolfgang; Nguyen, Ha Vinh Lam
2016-06-01
The microwave spectrum of 2,5-dimethylthiophene, a sulfur-containing five-membered heterocyclic molecule with two conjugated double bonds, was recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range from 2 to 40 GHz. Highly accurate molecular parameters were determined. The rotational constants obtained by geometry optimizations at different levels of theory are in good agreement with the experimental values. A C2v equilibrium structure was calculated, where one hydrogen atom of each methyl group is antiperiplanar to the sulfur atom, and the two methyl groups are thus equivalent. Transition states were optimized at different levels of theory using the Berny algorithm to calculate the barrier height of the two equivalent methyl rotors. The fitted experimental torsional barrier of 247.95594(30) wn is in reasonable agreement with the calculated barriers. Similar barriers to internal rotation were found for the monomethyl derivatives 2-methylthiophene (194.1 wn) and 3-methylthiophene (258.8 wn). A labeling scheme for the group G36 written as the semi-direct product (C3I x C3I) (x C2v was introduced.
Height in healthy children in low- and middle-income countries: an assessment.
Karra, Mahesh; Subramanian, S V; Fink, Günther
2017-01-01
Despite rapid economic development and reductions in child mortality worldwide, continued high rates of early childhood stunting have put the global applicability of international child-height standards into question. We used population-based survey data to identify children growing up in healthy environments in low- and middle-income countries and compared the height distribution of these children to the height distribution of the reference sample established by the WHO. Height data were extracted from 169 Demographic and Health Surveys (DHSs) that were collected across 63 countries between 1990 and 2014. Children were classified as having grown up in ideal environments if they 1) had access to safe water and sanitation; 2) lived in households with finished floors, a television, and a car; 3) were born to highly educated mothers; 4) were single births; and 5) were delivered in hospitals. We compared the heights of children in ideal environments with those in the WHO reference sample. A total of 878,249 height records were extracted, and 1006 children (0.1%) were classified as having been raised in an ideal home environment. The mean height-for-age z score (HAZ) in this sample was not statistically different from zero (95% CI: -0.039, 0.125). The HAZ SD for the sample was estimated to be 1.3, and 5.3% of children in the sample were classified as being stunted (HAZ <-2). Similar means, SDs, and stunting rates were found when less restrictive definitions of ideal environments were used. The large current gaps in children's heights relative to those of the reference sample likely are not due to innate or genetic differences between children but, rather, reflect children's continued exposure to poverty, a lack of maternal education, and a lack of access to safe water and sanitation across populations. © 2017 American Society for Nutrition.
Atmospheric transmission loss in mirror-to-tower slant ranges due to water vapor
NASA Astrophysics Data System (ADS)
Gueymard, Christian A.; López, Gabriel; Rapp-Arrarás, Igor
2017-06-01
Considering CSP systems of the central tower-receiver type, this study investigates the specific effect of water vapor absorption on the total atmospheric transmission losses that impact direct irradiance along the slant path between a distant mirror and the receiver on the tower. Spectral and broadband calculations of total atmospheric attenuation are made for various water vapor conditions (from dry to humid) with both the rigorous MODTRAN code and the simpler and faster SMARTS code. The use of the latter is made indirectly possible through the "fictitious sun" concept. The MODTRAN and SMARTS results compare reasonably well under the present conditions, which closely echo the conditions used in previous studies, thus allowing instructive comparisons that will be reported later. To study the vertical profile of water vapor between surface and a height of 300 m, the columnar precipitable water at ≈5 m resolution has been derived from special high-resolution radiosonde soundings carried out twice daily at two arid sites. This analysis shows that the desired precipitable water at the receiver level can be simply extrapolated from that at the mirror level if the water vapor scale height is known. The latter is shown to significantly vary on a daily basis at the two sounding sites, with a median of 2.74 km. The exact value of this scale height conditions the transmission loss due to water vapor, but in any case this loss is found relatively small in comparison with other sources of attenuation, even when considering long slant paths under humid conditions. This unexpected finding is explained by the saturation effect that characterizes water vapor absorption.
Estimating the relative water content of leaves in a cotton canopy.
USDA-ARS?s Scientific Manuscript database
Remotely sensing plant canopy water status remains a long term goal of remote sensing research. Established approaches to estimating canopy water status — the Crop Water Stress Index, the Water Deficit Index, the Equivalent Water Thickness and the many other indices — involve measurements in the the...
NASA Astrophysics Data System (ADS)
Van, Vinh; Bruckhuisen, Jonas; Stahl, Wolfgang; Ilyushin, Vadim; Nguyen, Ha Vinh Lam
2018-01-01
The microwave spectrum of 2,5-dimethylfuran was recorded using two pulsed molecular jet Fourier transform microwave spectrometers which cover the frequency range from 2 to 40 GHz. The internal rotations of two equivalent methyl tops with a barrier height of approximately 439.15 cm-1 introduce torsional splittings of all rotational transitions in the spectrum. For the spectral analysis, two different computer programs were applied and compared, the PAM-C2v-2tops code based on the principal axis method which treats several torsional states simultaneously, and the XIAM code based on the combined axis method, yielding accurate molecular parameters. The experimental work was supplemented by quantum chemical calculations. Two-dimensional potential energy surfaces depending on the torsional angles of both methyl groups were calculated and parametrized.
Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois
Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.
2012-01-01
Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Pfautsch, Sebastian; Aspinwall, Michael J; Drake, John E; Chacon-Doria, Larissa; Langelaan, Rob J A; Tissue, David T; Tjoelker, Mark G; Lens, Frederic
2018-01-25
Sapwood traits like vessel diameter and intervessel pit characteristics play key roles in maintaining hydraulic integrity of trees. Surprisingly little is known about how sapwood traits covary with tree height and how such trait-based variation could affect the efficiency of water transport in tall trees. This study presents a detailed analysis of structural and functional traits along the vertical axes of tall Eucalyptus grandis trees. To assess a wide range of anatomical and physiological traits, light and electron microscopy was used, as well as field measurements of tree architecture, water use, stem water potential and leaf area distribution. Strong apical dominance of water transport resulted in increased volumetric water supply per unit leaf area with tree height. This was realized by continued narrowing (from 250 to 20 µm) and an exponential increase in frequency (from 600 to 13 000 cm-2) of vessels towards the apex. The widest vessels were detected at least 4 m above the stem base, where they were associated with the thickest intervessel pit membranes. In addition, this study established the lower limit of pit membrane thickness in tall E. grandis at ~375 nm. This minimum thickness was maintained over a large distance in the upper stem, where vessel diameters continued to narrow. The analyses of xylem ultrastructure revealed complex, synchronized trait covariation and trade-offs with increasing height in E. grandis. Anatomical traits related to xylem vessels and those related to architecture of pit membranes were found to increase efficiency and apical dominance of water transport. This study underlines the importance of studying tree hydraulic functioning at organismal scale. Results presented here will improve understanding height-dependent structure-function patterns in tall trees. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Energy and air emission effects of water supply.
Stokes, Jennifer R; Horvath, Arpad
2009-04-15
Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.
Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.
2015-01-01
In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.
NASA Astrophysics Data System (ADS)
Slobbe, D. C.; Klees, R.; Verlaan, M.; Zijl, F.; Alberts, B.; Farahani, H. H.
2018-03-01
We present an efficient and flexible alternative method to connect islands and offshore tide gauges with the height system on land. The method uses a regional, high-resolution hydrodynamic model that provides total water levels. From the model, we obtain the differences in mean water level (MWL) between tide gauges at the mainland and at the islands or offshore platforms. Adding them to the MWL relative to the national height system at the mainland's tide gauges realizes a connection of the island and offshore platforms with the height system on the mainland. Numerical results are presented for the connection of the Dutch Wadden islands with the national height system (Normaal Amsterdams Peil, NAP). Several choices of the period over which the MWLs are computed are tested and validated. The best results were obtained when we computed the MWL only over the summer months of our 19-year simulation period. Based on this strategy, the percentage of connections for which the absolute differences between the observation- and model-derived MWL differences are ≤ 1 cm is about 34% (46 out of 135 possible leveling connections). In this case, for each Wadden island we can find several connections that allow the transfer of NAP with (sub-)centimeter accuracy.
Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods.
Ambrose, Anthony R; Sillett, Stephen C; Dawson, Todd E
2009-07-01
We examined changes in branch hydraulic, leaf structure and gas exchange properties in coast redwood (Sequoia sempervirens) and giant sequoia (Sequoiadendron giganteum) trees of different sizes. Leaf-specific hydraulic conductivity (k(L)) increased with height in S. sempervirens but not in S. giganteum, while xylem cavitation resistance increased with height in both species. Despite hydraulic adjustments, leaf mass per unit area (LMA) and leaf carbon isotope ratios (delta(13)C) increased, and maximum mass-based stomatal conductance (g(mass)) and photosynthesis (A(mass)) decreased with height in both species. As a result, both A(mass) and g(mass) were negatively correlated with branch hydraulic properties in S. sempervirens and uncorrelated in S. giganteum. In addition, A(mass) and g(mass) were negatively correlated with LMA in both species, which we attributed to the effects of decreasing leaf internal CO(2) conductance (g(i)). Species-level differences in wood density, LMA and area-based gas exchange capacity constrained other structural and physiological properties, with S. sempervirens exhibiting increased branch water transport efficiency and S. giganteum exhibiting increased leaf-level water-use efficiency with increasing height. Our results reveal different adaptive strategies for the two redwoods that help them compensate for constraints associated with growing taller, and reflect contrasting environmental conditions each species faces in its native habitat.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., below a height of 4 inches measured from the lowest point in the boat where liquid can collect when the boat is in its static floating position, except engine rooms. Connected means allowing a flow of water... the engine room or a connected compartment below a height of 12 inches measured from the lowest point...
USDA-ARS?s Scientific Manuscript database
The response of container-breeding mosquitoes to ovitraps containing water, oak or oak-pine infusion was evaluated in four suburban and four sylvatic habitats in north central Florida to ascertain species specific oviposition height preferences. A total of 48 ovitraps were suspended at 1 and 6 meter...
Redler, Lauren H.; Byram, Ian R.; Luchetti, Timothy J.; Tsui, Ying Lai; Moen, Todd C.; Gardner, Thomas R.; Ahmad, Christopher S.
2014-01-01
Background: Redundancies in the rotator cuff tissue, commonly referred to as “dog ear” deformities, are frequently encountered during rotator cuff repair. Knowledge of how these deformities are created and their impact on rotator cuff footprint restoration is limited. Purpose: The goals of this study were to assess the impact of tear size and repair method on the creation and management of dog ear deformities in a human cadaveric model. Study Design: Controlled laboratory study. Methods: Crescent-shaped tears were systematically created in the supraspinatus tendon of 7 cadaveric shoulders with increasing medial to lateral widths (0.5, 1.0, and 1.5 cm). Repair of the 1.5-cm tear was performed on each shoulder with 3 methods in a randomized order: suture bridge, double-row repair with 2-mm fiber tape, and fiber tape with peripheral No. 2 nonabsorbable looped sutures. Resulting dog ear deformities were injected with an acrylic resin mixture, digitized 3-dimensionally (3D), and photographed perpendicular to the footprint with calibration. The volume, height, and width of the rotator cuff tissue not in contact with the greater tuberosity footprint were calculated using the volume injected, 3D reconstructions, and calibrated photographs. Comparisons were made between tear size, dog ear measurement technique, and repair method utilizing 2-way analysis of variance and Student-Newman-Keuls multiple-comparison tests. Results: Utilizing 3D digitized and injection-derived volumes and dimensions, anterior dog ear volume, height, and width were significantly smaller for rotator cuff repair with peripheral looped sutures compared with a suture bridge (P < .05) or double-row repair with 2-mm fiber tape alone (P < .05). Similarly, posterior height and width were significantly smaller for repair with looped peripheral sutures compared with a suture bridge (P < .05). Dog ear volumes and heights trended larger for the 1.5-cm tear, but this was not statistically significant. Conclusion: When combined with a standard transosseous-equivalent repair technique, peripheral No. 2 nonabsorbable looped sutures significantly decreased the volume, height, and width of dog ear deformities, better restoring the anatomic footprint of the rotator cuff. Clinical Relevance: Dog ear deformities are commonly encountered during rotator cuff repair. Knowledge of a repair technique that reliably decreases their size, and thus increases contact at the anatomic footprint of the rotator cuff, will aid sports medicine surgeons in the management of these deformities. PMID:26535317
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
USDA-ARS?s Scientific Manuscript database
Estimation of vegetation water content (VWC) by shortwave infrared remote sensing improves soil moisture retrievals. The largest unknown for predicting VWC is stem water content; for woodlands, stem water content is expected to be proportional to stem height. Airborne imagery were acquired and photo...
A Laboratory Study of a Water Surface in Response to Rainfall
NASA Astrophysics Data System (ADS)
Liu, Ren; Liu, Xinan; Duncan, James
2016-11-01
The shape of a water surface in response to the impact of raindrops is studied experimentally in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. Simulated raindrops are generated by an array of 22-gauge hypodermic needles that are attached to the bottom of an open-surface water tank. The tank is connected to a 2D translation stage to provide a small-radius horizontal circular or oval motion to the needles, thus avoiding repeated drop impacts at the same location under each needle. The drop diameter is about 2.6 mm and the height of the water tank above the water surface of the pool is varied from 1 m to 4.8 m to provide different impact velocities. The water surface features including stalks, crowns and ring waves are measured with a cinematic laser-induced- fluorescence (LIF) technique. It is found that the average stalk height is strongly correlated to the impact velocities of raindrops and the phase speeds of ring waves inside the rain field are different from that measured outside the rain field.
Inventory of File sref_nmb.t03z.pgrb212.p1.f06.grib2
surface WEASD 6 hour fcst Water Equivalent of Accumulated Snow Depth [kg/m^2] 016 surface APCP 3-6 hour surface WEASD 3-6 hour acc Water Equivalent of Accumulated Snow Depth [kg/m^2] 019 surface CSNOW 6 hour (non-convective) [kg/m^2] 417 surface SNOM 3-6 hour acc Snow Melt [kg/m^2] 418 surface LHTFL 3-6 hour
Inventory of File sref_nmm.t03z.pgrb212.p1.f06.grib2
surface WEASD 6 hour fcst Water Equivalent of Accumulated Snow Depth [kg/m^2] 016 surface APCP 3-6 hour surface WEASD 3-6 hour acc Water Equivalent of Accumulated Snow Depth [kg/m^2] 019 surface CSNOW 6 hour (non-convective) [kg/m^2] 417 surface SNOM 3-6 hour acc Snow Melt [kg/m^2] 418 surface LHTFL 0-6 hour
The Refurbishment and Upgrade of the Atmospheric Radiation Measurement Raman Lidar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D.D.; Goldsmith, J.E.M.
The Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) Raman lidar (CARL) is an autonomous, turn-key system that profiles water vapor, aerosols, and clouds throughout the diurnal cycle for days without attention (Goldsmith et al. 1998). CARL was first deployed to the Southern Great Plains CRF during the summer of 1996 and participated in the 1996 and 1997 water vapor intensive operational periods (IOPs). Since February 1998, the system has collected over 38,000 hrs of data (equivalent of almost 4.4 years), with an average monthly uptime of 62% during this time period. This unprecedented performance by CARL makes itmore » the premier operational Raman lidar in the world. Unfortunately, CARL began degrading in early 2002. This loss of sensitivity, which affected all observed variables, was very gradual and thus was not identified until the autumn of 2003. Analysis of the data suggested the problem was not associated with the laser or transmit portion of the system, but rather in the detection subsystem, as both the background values and the peak signals showed a marked decreases over this time period. The loss of sensitivity of a factor of 2-4, depending on the channel, resulted in higher random error in the retrieved products, such as the aerosol backscatter coefficient and water vapor mixing ratio. Figure 1 shows the random error at 2 km for aerosol backscatter coefficient (top) and water vapor mixing ratio (middle), in terms of percent of the signal for both average daytime (red) and nighttime (blue) data from 1998 to 2005. The seasonal variation of water vapor is easily seen in the random error in the water vapor mixing ratio data. The loss of sensitivity also affected the maximum range of the usable data, as illustrated by the dramatic decrease in the maximum height seen in the water vapor mixing ratio data (bottom). This degradation, which results in much larger random errors, greatly hinders the analysis of data sets such as the Aerosol IOP (March 2003) and the AIRS Water Vapor Experiment (December 2003). The degradation and its impact on the Aerosol IOP analysis are reported in Ferrare et al. 2005.« less
Wind wave prediction in shallow water: Theory and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavaleri, L.; Rizzoli, P.M.
1981-11-20
A wind wave forecasting model is described, based upon the ray technique, which is specifically designed for shallow water areas. The model explicitly includes wave generation, refraction, and shoaling, while nonlinear dissipative processes (breaking and bottom fricton) are introduced through a suitable parametrization. The forecast is provided at a specified time and target position, in terms of a directional spectrum, from which the one-dimensional spectrum and the significant wave height are derived. The model has been used to hindcast storms both in shallow water (Northern Adriatic Sea) and in deep water conditions (Tyrrhenian Sea). The results have been compared withmore » local measurements, and the rms error for the significant wave height is between 10 and 20%. A major problems has been found in the correct evaluation of the wind field.« less
Cheung, Yin Bun
2014-01-01
"A Body Shape Index" (ABSI) is a recently proposed index that standardizes waist circumference for body mass index (BMI) and height. This study aims to: (a) examine if the ABSI scaling exponents for standardizing waist circumference for BMI and height are valid in middle-aged and older Indonesian population, and (b) compare the association between incident hypertension and ABSI and other anthropometric measures. The Indonesian Family Life Survey Wave 3 measured anthropometric variables and blood pressure of 8255 adults aged between 40 to 85 years in 2000. The relationship between two anthropometric quantities, e.g. weight (w) and height (h), can be expressed as the power law-equivalent [Formula: see text], where p = 2 is the scaling exponent in the derivation of the BMI and can be estimated by linear regression analysis. This was extended to the regression analysis of the log-transformed waist circumference, weight and height to establish the scaling exponents in the ABSI. The values for men were similar to those developed by the previous American study, which were 2/3 (BMI) and 1/2 (height). Those for women were somewhat smaller, at 3/5 (BMI) and 1/5 (height). The original (American) ABSI leads to mild negative correlation with BMI (-0.14) and height (-0.12) in the female population. Analysis of the development of hypertension between Waves 3 and 4 (average interval 7.5 years) in relation to ABSI measured at Wave 3 showed stronger association if the locally derived (Indonesian) scaling exponents were used. However, both versions of the ABSI were less associated with incident hypertension than waist circumference and BMI. The values for the scaling exponents for ABSI are roughly similar between the American population and the middle-aged and older Indonesian population, although larger discrepancy was found in women. The ABSI is less associated with incident hypertension than waist circumference and BMI.
NASA Astrophysics Data System (ADS)
Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.
2016-12-01
Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data at Japan, is also reported. Compatibility tests to CYGNSS data and refurbishment of the ground station were completed.
Decker, Celeste; Yu, Zi-Fan; Giugliani, Roberto; Schwartz, Ida Vanessa D.; Guffon, Nathalie; Teles, Elisa Leão; Miranda, M. Clara Sá; Wraith, J. Edmond; Beck, Michael; Arash, Laila; Scarpa, Maurizio; Ketteridge, David; Hopwood, John J.; Plecko, Barbara; Steiner, Robert; Whitley, Chester B.; Kaplan, Paige; Swiedler, Stuart J.; Conrad, Susan; Harmatz, Paul
2010-01-01
Background and Methods Growth failure is characteristic of untreated mucopolysaccharidosis type VI (MPS VI: Maroteaux-Lamy syndrome). Growth was studied in fifty-six MPS VI patients (5 to 29 years old) prior to and for up to 240 weeks of weekly infusions of recombinant human arylsulfatase B (rhASB) at 1 mg/kg during Phase 1/2, Phase 2, Phase 3 or Phase 3 Extension clinical trials. Height, weight, and Tanner stage data were collected. Pooled data were analyzed to determine mean height increase by treatment week, growth impacts of pubertal status, baseline urinary GAG, and age at treatment initiation. Growth rate for approximately 2 years prior to and following treatment initiation was analyzed using longitudinal modeling. Results Mean height increased by 2.9 cm after 48 weeks and 4.3 cm after 96 weeks on enzyme replacement therapy (ERT). Growth on ERT was not correlated with baseline urinary GAG. Patients under 16 years of age showed greatest increases in height on treatment. Model results based on pooled data showed significant improvement in growth rate during 96 weeks of ERT when compared to the equivalent pretreatment time period. Delayed pubertal onset or progression was noted in 10 patients entering the clinical trials; all of whom showed progression of at least one Tanner stage during 2 years on ERT, and 6 of whom (60%) completed puberty. Conclusion Analysis of mean height by treatment week and longitudinal modeling demonstrate significant increase in height and growth rate in MPS VI patients receiving long-term ERT. This impact was greatest in patients aged below 16 years. Height increase may result from bone growth and/or reduction in joint contractures. Bone growth and resolution of delayed puberty may be related to improvements in general health, bone cell health, nutrition, endocrine gland function and reduced inflammation. PMID:20634905
TOPEX/El Nino Watch - Satellite shows El Nino-related Sea Surface Height, Mar, 14, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
Evaluation of an assimilation scheme to estimate snow water equivalent in the High Atlas of Morocco.
NASA Astrophysics Data System (ADS)
Baba, W. M.; Baldo, E.; Gascoin, S.; Margulis, S. A.; Cortés, G.; Hanich, L.
2017-12-01
The snow melt from the Atlas mountains represents a crucial water resource for crop irrigation in Morocco. Due to the paucity of in situ measurements, and the high spatial variability of the snow cover in this semi-arid region, assimilation of snow cover area (SCA) from high resolution optical remote sensing into a snowpack energy-balance model is considered as a promising method to estimate the snow water equivalent (SWE) and snow melt at catchment scales. Here we present a preliminary evaluation of an uncalibrated particle batch smoother data assimilation scheme (Margulis et al., 2015, J. Hydrometeor., 16, 1752-1772) in the High-Atlas Rheraya pilot catchment (225 km2) over a snow season. This approach does not require in situ data since it is based on MERRA-2 reanalyses data and satellite fractional snow cover area data. We compared the output of this prior/posterior ensemble data assimilation system to output from the distributed snowpack evolution model SnowModel (Liston and Elder, 2006, J. Hydrometeor. 7, 1259-1276). SnowModel was forced with in situ meteorological data from five automatic weather stations (AWS) and some key parameters (precipitation correction factor and rain-snow phase transition parameters) were calibrated using a time series of 8-m resolution SCA maps from Formosat-2. The SnowModel simulation was validated using a continuous snow height record at one high elevation AWS. The results indicate that the open loop simulation was reasonably accurate (compared to SnowModel results) in spite of the coarse resolution of the MERRA-2 forcing. The assimilation of Formosat-2 SCA further improved the simulation in terms of the peak SWE and SWE evolution over the melt season. During the accumulation season, the differences between the modeled and estimated (posterior) SWE were more substantial. The differences appear to be due to some observed precipitation events not being captured in MERRA-2. Further investigation will determine whether additional improvement in the posterior estimates result from a calibration of uncertainty input parameters based on the in situ meteorological data. The positive preliminary results pave the way for a SWE reanalysis at the scale of the Atlas mountains using data from wide swath sensors such as Landsat and Sentinel-2.
Hydrological and sedimentary controls over fluvial thermal erosion, the Lena River, central Yakutia
NASA Astrophysics Data System (ADS)
Tananaev, Nikita I.
2016-01-01
Water regime and sedimentary features of the middle Lena River reach near Yakutsk, central Yakutia, were studied to assess their control over fluvial thermal erosion. The Lena River floodplain in the studied reach has complex structure and embodies multiple levels varying in height and origin. Two key sites, corresponding to high and medium floodplain levels, were surveyed in 2008 to describe major sedimentary units and properties of bank material. Three units are present in both profiles, corresponding to topsoil, overbank (cohesive), and channel fill (noncohesive) deposits. Thermoerosional activity is mostly confined to a basal layer of frozen channel fill deposits and in general occurs within a certain water level interval. Magnitude-frequency analysis of water level data from Tabaga gauging station shows that a single interval can be deemed responsible for the initiation of thermal action and development of thermoerosional notches. This interval corresponds to the discharges between 21,000 and 31,000 m3 s- 1, observed normally during spring meltwater peak and summer floods. Competence of fluvial thermal erosion depends on the height of floodplain level being eroded, as it acts preferentially in high floodplain banks. In medium floodplain banks, thermal erosion during spring flood is constrained by insufficient bank height, and erosion is essentially mechanical during summer flood season. Bank retreat rate is argued to be positively linked with bank height under periglacial conditions.
Effects of stubble and mulching on soil erosion by wind in semi-arid China.
Cong, Peifei; Yin, Guanghua; Gu, Jian
2016-07-18
Soil erosion is a growing challenge for agricultural production in Northern China. To explore the effect of variation in stubble height and mulching biomass on soil erosion caused by wind, we conducted a field experiment using a quadratic rotation combination design. Results showed that the quantity of straw mulch was the dominant factor affecting soil erosion, and stubble height was of secondary importance. The soil water content in stubble and straw mulching treatments was higher than in a control treatment at 0-20 cm soil, and the tendency in the amount of soil water content was opposite to the amount of wind erosion (r = -0.882, n = 10, p < 0.01). The change in soil water content observed in the stubble and mulch treatments at the 15-20 cm depth was higher than the change from 0-5 cm to 5-10 cm. Combined, the influence of a stubble height of 34 cm and mulch quantity of 4260 kg·ha(-1) lowered the amount of erosion to 0.42 t·ha(-1), and increased the corn yield to 11900 kg·ha(-1). We determined that those were the most appropriate levels of stubble height and straw mulch for crop fields in the semi-arid regions of Northern China.
Acoustics and hydrodynamics of a drop impact on a water surface
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.; Prokhorov, V. E.
2017-01-01
Hydrodynamic and acoustic processes associated with a drop impact on a water surface were studied experimentally. Acoustic signals were detected underwater (with a hydrophone) and in air (with a microphone), the flow pattern was recorded with a high-speed camera, and the surface perturbation was monitored with a laser detector. The dimensionless parameters of flows (Reynolds, Froude, and Weber numbers) induced by the impact varied with fall height within the ranges of 5000 < Re < 20000, 20 < Fr < 350, and 70 < We < 1000. The sequence of acoustic signals incorporated an impact pulse at the moment of contact between a drop and the surface and a series of acoustic packets attributable to the resonance emission of gas cavities. The top of the impact pulse, which was detected clearly in the entire fall height range, had a complex structure with short high-frequency and longer low-frequency oscillations. The total number and the parameters of emitted acoustic packets depended to a considerable extent on the fall height. The cases of lacking, one-time, and repeated emission of packets were noted in a series of experiments performed at a constant fall height. The analysis of video data showed that the signal variability was induced by considerable differences in the scenarios of water entry of a drop, which assumed an ovoid shape at the end trajectory segment, in the mentioned experiments.
NASA Astrophysics Data System (ADS)
Kim, Jungchul; Kim, Ho-Young
2013-11-01
It is well known that a sheet of paper, a hydrophilic porous medium, imbibes water via capillary action. The wicking on two-dimensional sheets has no preferred direction, in general. However, when water is spilled on a book, a number of pieces of paper fastened together on one side, we notice that corners are wet first compared to the rest of the area. This is because the wicking along the sharp corner experiences weaker resistance than that into pores within paper. We study a simple model of this wicking dynamics in the context of the surface-tension-driven vertical rise of a liquid along a corner of folded paper. We find that the liquid height at the corner follows a power law different from that at the corner formed by impermeable walls (A. Ponomarenko, D. Quere, and C. Clanet, J. Fluid Mech. 666, 146-154, 2011). The difference is caused by the fact that the Laplace pressure that drives the vertical rise is independent of the liquid height on permeable walls (paper) while it increases with height at the corner of impermeable walls. The experiments are shown to be consistent with our theory.
Flood inundation mapping in the Logone floodplain from multi temporal Landsat ETM+ imagery
NASA Astrophysics Data System (ADS)
Jung, H.; Alsdorf, D. E.; Moritz, M.; Lee, H.; Vassolo, S.
2011-12-01
Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to ~5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.
Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery
NASA Technical Reports Server (NTRS)
Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara
2011-01-01
Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.
NASA Astrophysics Data System (ADS)
Aubry, Thomas J.; Jellinek, A. Mark
2018-05-01
The turbulent entrainment of atmosphere and the condensation of water vapor govern the heights of explosive volcanic plumes. These processes thus determine the delivery and the lifetime of volcanic ash and aerosols into the atmosphere. Predictions of plume heights using one-dimensional "integral" models of volcanic plumes, however, suffer from very large uncertainties, related to parameterizations for entrainment and condensation. In particular, the wind entrainment coefficient β, which governs the contribution of crosswinds to turbulent entrainment, is subject to uncertainties of one order of magnitude, leading to relative uncertainties of the order of 50% on plume height. In this study, we use a database of 94 eruptive phases with independent estimates of mass eruption rate and plume height to constrain and evaluate four popular 1D models. We employ re-sampling methods to account for observational uncertainties. We show that plume height predictions are significantly improved when: i) the contribution of water vapor condensation to the plume buoyancy flux is excluded; and ii) the wind entrainment coefficient β is held constant between 0.1 and 0.4. We explore implications of these results for predicting the climate impacts of explosive eruptions and the likelihood that eruptions will form stable umbrella clouds or devastating pyroclastic flows. Last, we discuss the sensitivity of our results to the definition of plume height in the model in light of a recent set of laboratory experiments and draw conclusions for improving future databases of eruption parameters.
NASA Astrophysics Data System (ADS)
Pantelis, E.; Karlis, A. K.; Kozicki, M.; Papagiannis, P.; Sakelliou, L.; Rosiak, J. M.
2004-08-01
The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.
Pantelis, E; Karlis, A K; Kozicki, M; Papagiannis, P; Sakelliou, L; Rosiak, J M
2004-08-07
The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.
NASA Astrophysics Data System (ADS)
Cornwell, E.; Molotch, N. P.; McPhee, J.
2016-01-01
Seasonal snow cover is the primary water source for human use and ecosystems along the extratropical Andes Cordillera. Despite its importance, relatively little research has been devoted to understanding the properties, distribution and variability of this natural resource. This research provides high-resolution (500 m), daily distributed estimates of end-of-winter and spring snow water equivalent over a 152 000 km2 domain that includes the mountainous reaches of central Chile and Argentina. Remotely sensed fractional snow-covered area and other relevant forcings are combined with extrapolated data from meteorological stations and a simplified physically based energy balance model in order to obtain melt-season melt fluxes that are then aggregated to estimate the end-of-winter (or peak) snow water equivalent (SWE). Peak SWE estimates show an overall coefficient of determination R2 of 0.68 and RMSE of 274 mm compared to observations at 12 automatic snow water equivalent sensors distributed across the model domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE accumulation show differential patterns strongly modulated by elevation, latitude and position relative to the continental divide. The spatial distribution of peak SWE shows that the 4000-5000 m a.s.l. elevation band is significant for snow accumulation, despite having a smaller surface area than the 3000-4000 m a.s.l. band. On average, maximum snow accumulation is observed in early September in the western Andes, and in early October on the eastern side of the continental divide. The results presented here have the potential of informing applications such as seasonal forecast model assessment and improvement, regional climate model validation, as well as evaluation of observational networks and water resource infrastructure development.
Quantitative PCR and Digital PCR for Detection of Ascaris lumbricoides Eggs in Reclaimed Water
Santísima-Trinidad, Ana Belén; Bornay-Llinares, Fernando Jorge; Martín González, Marcos; Pascual Valero, José Antonio; Ros Muñoz, Margarita
2017-01-01
The reuse of reclaimed water from wastewater depuration is a widespread and necessary practice in many areas around the world and must be accompanied by adequate and continuous quality control. Ascaris lumbricoides is one of the soil-transmitted helminths (STH) with risk for humans due to its high infectivity and an important determinant of transmission is the inadequacy of water supplies and sanitation. The World Health Organization (WHO) recommends a limit equal to or lower than one parasitic helminth egg per liter, to reuse reclaimed water for unrestricted irrigation. We present two new protocols of DNA extraction from large volumes of reclaimed water. Quantitative PCR (qPCR) and digital PCR (dPCR) were able to detect low amounts of A. lumbricoides eggs. By using the first extraction protocol, which processes 500 mL of reclaimed water, qPCR can detect DNA concentrations as low as one A. lumbricoides egg equivalent, while dPCR can detect DNA concentrations as low as five A. lumbricoides egg equivalents. By using the second protocol, which processes 10 L of reclaimed water, qPCR was able to detect DNA concentrations equivalent to 20 A. lumbricoides eggs. This fact indicated the importance of developing new methodologies to detect helminth eggs with higher sensitivity and precision avoiding possible human infection risks. PMID:28377928
Variation in species-level plant functional traits over wetland indicator status categories
McCoy-Sulentic, Miles E.; Kolb, Thomas E.; Merritt, David M.; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.
2017-01-01
Wetland indicator status (WIS) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species-level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species-level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA), stem specific gravity (SSG), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species-level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG, seed mass, % leaf carbon and height, and for woody species occurred for height, SSG, and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low-density stem tissue. Adaptations to drier habitats in the riparian zone include short, high-density cavitation-resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.
Sekiyama, Makiko; Roosita, Katrin; Ohtsuka, Ryutaro
2018-03-01
This study aimed to assess changes in physical growth and diets of school children in rural West Java, Indonesia, between 2001 and 2015, a period of rapid socioeconomic change. In 2001 and 2015, anthropometric measurements (height, weight, mid-upper arm circumference, skin-fold thickness), food consumption surveys, and questionnaires on socioeconomic status were completed by fourth-grade school children in a rural village in West Java. Height increments of 5.9 cm for boys and 4.7 cm for girls during this 14-year period were calculated as 4.21 cm per decade for boys and 3.36 cm per decade for girls, which is equivalent to height increments observed during rapid economic development periods in other countries. Weights also increased by 3.8 kg for boys and 2.0 kg for girls during this period. Variations in weight status significantly increased in 2015; while 98% of the children were within the 'normal' range in 2001, the prevalence of overweight increased from 2.4% in 2001 to 13.7% in 2015 and that of thinness was 4.3% in 2015. Energy, protein, and fat intakes significantly increased in 2015. In 2015, a significant correlation between nutritional intake and weight status was observed, especially among boys. Socioeconomic changes between 2001 and 2015 caused increased heights and weights and greater variation in weight status, especially among boys. © 2017 Wiley Periodicals, Inc.
Definition and Proposed Realization of the International Height Reference System (IHRS)
NASA Astrophysics Data System (ADS)
Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael
2017-05-01
Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.
Compact Polarimetry Potentials
NASA Technical Reports Server (NTRS)
Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric
2011-01-01
The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.
Daylight time-resolved photographs of lightning.
Qrville, R E; Lala, G G; Idone, V P
1978-07-07
Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.
NASA Astrophysics Data System (ADS)
Cable, J. M.; Ogle, K.; Cable, B.; Welker, J. M.
2010-12-01
The interior Alaskan boreal forest ecosystem is underlain by permafrost and thus has complex soil moisture and soil thermal properties, and this complexity is further amplified by its dry climate with low snow in winter and minimal summer rain. This combination of climate, cryosphere, and hydrology characteristics impact vegetation ecophysiological and ecohydrological processes, such as the distribution of plant-available water sources and the temporal dynamics of evapotranspiration (ET). As a major component of ET, plant transpiration is typically sustained throughout a variety of climatic conditions. The water sources (rain, thawing ground ice, etc) supporting plant transpiration are relatively unquantified, particularly on a seasonal time scale. In this study, we ask: what are the seasonal dynamics of plant water use in the boreal forest, and how are the trends at the plant scale translated into ecosystem-level water fluxes? Thus, the objective of this study was to characterize the spatial and temporal dynamics of boreal plant water use and water flux throughout the growing season. To do this, we measured the stable isotope (δ18O and δD) composition of water from precipitation, ground ice, soils, plants, and vapor from 5 heights in the ecosystem during the growing season in a boreal system near Fairbanks, Alaska underlain by permafrost. We analyzed the plant water, soil water, and vapor isotope data in a Bayesian framework to quantify the plant water uptake profiles and to explore the implications of shifting water sources for ecosystem ET. The vapor isotope data (across all heights) ranged from -216 to -190 ‰ (δD) and -27 to -21 ‰ (δ18O) in late July to slightly more depleted in late August, with values ranging from -232 to -203 ‰ (δD) and -29 to -20 ‰ (δ18O). Diurnal trends are such that the isotope composition of vapor became more enriched over the day as ET rates increased, and vapor at the 0.25 m height was generally more enriched relative to the 6 m height. Plant and soil isotope sampling from prior years shows that dwarf birch (B. nana, the dominant shrub in the ecosystem sampled by the vapor analyzer) gets about 50% of its water from surface, rain-fed soil layers and 50% of its water from deeper soil layers (fed by thawing ground ice). This is one of the first studies to show the patterns of boreal ecosystem water isotopes at diurnal (vapor) and seasonal (plant) scales. Understanding the isotopic composition of water vapor from northern ecosystems is paramount to advancing estimates of biosphere-atmosphere interactions and the nature of ecohydrologic feedbacks to the changing state of the North.
Lu, Zijie; Lanagan, Michael; Manias, Evangelos; Macdonald, Digby D
2009-10-15
Performance improvements of perfluorosulfonic acid membranes, such as Nafion and Flemion, underline a need for dielectric characterization of these materials toward a quantitative understanding of the dynamics of water molecules and protons within the membranes. In this Article, a two-port transmission line technique for measuring the complex permittivity spectra of polymeric electrolytes in the microwave region is described, and the algorithms for permittivity determination are presented. The technique is experimentally validated with liquid water and polytertrafluoroethylene film, whose dielectric properties are well-known. Further, the permittivity spectra of dry and hydrated Flemion SH150 membranes are measured and compared to those of Nafion 117. Two water relaxation modes are observed in the microwave region (0.045-26 GHz) at 25 degrees C. The higher-frequency process observed is identified as the cooperative relaxation of bulk-like water, whose amount was found to increase linearly with water content in the polymer. The lower-frequency process, characterized by longer relaxation times in the range of 20-70 ps, is attributed to water molecules that are loosely bound to sulfonate groups. The loosely bound water amount was found to increase with hydration level at low water content and levels off at higher water contents. Flemion SH150, which has an equivalent weight of 909 g/equiv, displays higher dielectric strengths for both of these water modes as compared to Nafion 117 (equivalent weight of 1100 g/equiv), which probably reflects the effect of equivalent weight on the polymers' hydrated structure, and in particular its effect on the extended ionic cluster domains.
Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald
2017-11-01
Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Coordination of leaf structure and gas exchange along a height gradient in a tall conifer.
Woodruff, D R; Meinzer, F C; Lachenbruch, B; Johnson, D M
2009-02-01
The gravitational component of water potential and frictional resistance during transpiration lead to substantial reductions in leaf water potential (Psi(l)) near the tops of tall trees, which can influence both leaf growth and physiology. We examined the relationships between morphological features and gas exchange in foliage collected near the tops of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees of different height classes ranging from 5 to 55 m. This sampling allowed us to investigate the effects of tree height on leaf structural characteristics in the absence of potentially confounding factors such as irradiance, temperature, relative humidity and branch length. The use of cut foliage for measurement of intrinsic gas-exchange characteristics allowed identification of height-related trends without the immediate influences of path length and gravity. Stomatal density, needle length, needle width and needle area declined with increasing tree height by 0.70 mm(-2) m(-1), 0.20 mm m(-1), 5.9 x 10(-3) mm m(-1) and 0.012 mm(2) m(-1), respectively. Needle thickness and mesophyll thickness increased with tree height by 4.8 x 10(-2) mm m(-1) and 0.74 microm m(-1), respectively. Mesophyll conductance (g(m)) and CO(2) assimilation in ambient [CO(2)] (A(amb)) decreased by 1.1 mmol m(-2) s(-1) per m and 0.082 micromol m(-2) s(-1) per m increase in height, respectively. Mean reductions in g(m) and A(amb) of foliage from 5 to 55 m were 47% and 42%, respectively. The observed trend in A(amb) was associated with g(m) and several leaf anatomic characteristics that are likely to be determined by the prevailing vertical tension gradient during foliar development. A linear increase in foliar delta(13)C values with height (0.042 per thousand m(-1)) implied that relative stomatal and mesophyll limitations of photosynthesis in intact shoots increased with height. These data suggest that increasing height leads to both fixed structural constraints on leaf gas exchange and dynamic constraints related to prevailing stomatal behavior.
Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)
NASA Astrophysics Data System (ADS)
Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.
2018-04-01
The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.
Wang, Xianli; Kang, Haiyan; Wu, Junfeng
2016-05-01
Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peters, John C; Beck, Jimikaye; Cardel, Michelle; Wyatt, Holly R; Foster, Gary D; Pan, Zhaoxing; Wojtanowski, Alexis C; Vander Veur, Stephanie S; Herring, Sharon J; Brill, Carrie; Hill, James O
2016-02-01
To evaluate the effects of water versus beverages sweetened with non-nutritive sweeteners (NNS) on body weight in subjects enrolled in a year-long behavioral weight loss treatment program. The study used a randomized equivalence design with NNS or water beverages as the main factor in a trial among 303 weight-stable people with overweight and obesity. All participants participated in a weight loss program plus assignment to consume 24 ounces (710 ml) of water or NNS beverages daily for 1 year. NNS and water treatments were non-equivalent, with NNS treatment showing greater weight loss at the end of 1 year. At 1 year subjects receiving water had maintained a 2.45 ± 5.59 kg weight loss while those receiving NNS beverages maintained a loss of 6.21 ± 7.65 kg (P < 0.001 for difference). Water and NNS beverages were not equivalent for weight loss and maintenance during a 1-year behavioral treatment program. NNS beverages were superior for weight loss and weight maintenance in a population consisting of regular users of NNS beverages who either maintained or discontinued consumption of these beverages and consumed water during a structured weight loss program. These results suggest that NNS beverages can be an effective tool for weight loss and maintenance within the context of a weight management program. © 2015 The Authors, Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).
NASA Technical Reports Server (NTRS)
Goodykoontz, J.; Vonglahn, U.
1980-01-01
An inverted velocity profile coaxial nozzle for use with supersonic cruise aircraft produces less jet noise than an equivalent conical nozzle. Furthermore, decreasing the annulus height (increasing radius ratio with constant flow) results in further noise reduction benefits. The annulus shape (height) was varied by an eccentric mounting of the annular nozzle with respect to a conical core nozzle. Acoustic measurements were made in the flyover plane below the narrowest portion of the annulus and at 90 deg and 180 deg from this point. The model-scale spectra are scaled up to engine size (1.07 m diameter) and the perceived noise levels for the eccentric and baseline concentric inverted velocity profile coaxial nozzles are compared over a range of operating conditions. The implications of the acoustic benefits derived with the eccentric nozzle to practical applications are discussed.
An intermittency model for predicting roughness induced transition
NASA Astrophysics Data System (ADS)
Ge, Xuan; Durbin, Paul
2014-11-01
An extended model for roughness-induced transition is proposed based on an intermittency transport equation for RANS modeling formulated in local variables. To predict roughness effects in the fully turbulent boundary layer, published boundary conditions for k and ω are used, which depend on the equivalent sand grain roughness height, and account for the effective displacement of wall distance origin. Similarly in our approach, wall distance in the transition model for smooth surfaces is modified by an effective origin, which depends on roughness. Flat plate test cases are computed to show that the proposed model is able to predict the transition onset in agreement with a data correlation of transition location versus roughness height, Reynolds number, and inlet turbulence intensity. Experimental data for a turbine cascade are compared with the predicted results to validate the applicability of the proposed model. Supported by NSF Award Number 1228195.
Boiling and condensation in microfin tubes
NASA Astrophysics Data System (ADS)
Schlager, Lynn M.
A general overview of microfin tubes and their applications is presented. Manufacturing processes, commercial availability, experimental heat transfer, and pressure drop data for various refrigerants (including alternative refrigerants and refrigerant-oil mixtures), physical mechanisms of enhancement, and the incorporation of microfin tubes in common heat exchanger configurations are discussed. Microfin tubes, also known by various trade names, are characterized by numerous small fins which typically spiral down the inside wall of tubes at angles ranging from 10 to 30 degrees. The number of fins ranges from 48 to 70 with typical fin heights of 0.12 to 0.30 mm (fin height generally less than 3 percent of the inside diameter of the tube). Fin shapes may vary and the inside surface area of microfin tubes is 10 to 70 percent greater than the area of equivalent smooth tubes. Heat transfer can be enhanced by up to a factor of three with microfin tubes.
Voth-Gaeddert, Lee E; Stoker, Matthew; Cornell, Devin; Oerther, Daniel B
2018-04-01
Guatemala has the sixth worst stunting rate with 48% of children under five years of age classified as stunted according to World Health Organization standards. This study utilizes two different yet complimentary system-analysis approaches to analyze correlations among environmental and demographic variables, environmental enteric dysfunction (EED), and child height-for-age (stunting metric) in Guatemala. Two descriptive models constructed around applicable environmental and demographic factors on child height-for-age and EED were analyzed using Network Analysis (NA) and Structural Equation Modeling (SEM). Data from two populations of children between the age of three months and five years were used. The first population (n = 2103) was drawn from the Food for Peace Baseline Survey conducted by the US Agency for International Development (USAID) in 2012, and the second population (n = 372) was drawn from an independent survey conducted by the San Vicente Health Center in 2016. The results from the NA of the height-for-age model confirmed pathogen exposure, nutrition, and prenatal health as important, and the results from the NA of the EED model confirmed water source, water treatment, and type of sanitation as important. The results from the SEM of the height-for-age model confirmed a statistically significant correlation among child height-for-age and child-mother interaction (-0.092, p = 0.076) while the SEM of the EED model confirmed the statistically significant correlation among EED and type of water treatment (-0.115, p = 0.013). Our approach supports important efforts to understand the complex set of factors associated with child stunting among communities sharing similarities with San Vicente. Copyright © 2018 Elsevier GmbH. All rights reserved.
Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.
Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki
2015-01-01
Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.
Sabadin, P K; Malosetti, M; Boer, M P; Tardin, F D; Santos, F G; Guimarães, C T; Gomide, R L; Andrade, C L T; Albuquerque, P E P; Caniato, F F; Mollinari, M; Margarido, G R A; Oliveira, B F; Schaffert, R E; Garcia, A A F; van Eeuwijk, F A; Magalhaes, J V
2012-05-01
Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.
Burgess, Stephen S O; Pittermann, Jarmila; Dawson, Todd E
2006-02-01
The hydraulic limitation hypothesis of Ryan & Yoder (1997, Bioscience 47, 235-242) suggests that water supply to leaves becomes increasingly difficult with increasing tree height. Within the bounds of this hypothesis, we conjectured that the vertical hydrostatic gradient which gravity generates on the water column in tall trees would cause a progressive increase in xylem 'safety' (increased resistance to embolism and implosion) and a concomitant decrease in xylem 'efficiency' (decreased hydraulic conductivity). We based this idea on the historically recognized concept of a safety-efficiency trade-off in xylem function, and tested it by measuring xylem conductivity and vulnerability to embolism of Sequoia sempervirens branches collected at a range of heights. Measurements of resistance of branch xylem to embolism did indeed show an increase in 'safety' with height. However, the expected decrease in xylem 'efficiency' was not observed. Instead, sapwood-specific hydraulic conductivities (Ks) of branches increased slightly, while leaf-specific hydraulic conductivities increased dramatically, with height. The latter could be largely explained by strong vertical gradients in specific leaf area. The increase in Ks with height corresponded to a decrease in xylem wall fraction (a measure of wall thickness), an increase in percentage of earlywood and slight increases in conduit diameter. These changes are probably adaptive responses to the increased transport requirements of leaves growing in the upper canopy where evaporative demand is greater. The lack of a safety-efficiency tradeoff may be explained by opposing height trends in the pit aperture and conduit diameter of tracheids and the major and semi-independent roles these play in determining xylem safety and efficiency, respectively.
NASA Astrophysics Data System (ADS)
Ganeshan, M.; Wu, D. L.
2014-12-01
Due to recent changes in the Arctic environment, it is important to monitor the atmospheric boundary layer (ABL) properties over the Arctic Ocean, especially to explore the variability in ABL clouds (such as sensitivity and feedback to sea ice loss). For example, radiosonde and satellite observations of the Arctic ABL height (and low-cloud cover) have recently suggested a positive response to sea ice loss during October that may not occur during the melt season (June-September). Owing to its high vertical and spatiotemporal resolution, an independent ABL height detection algorithm using GPS Radio Occultation (GPS-RO) refractivity in the Arctic is explored. Similar GPS-RO algorithms developed previously typically define the level of the most negative moisture gradient as the ABL height. This definition is favorable for subtropical oceans where a stratocumulus-topped ABL is often capped by a layer of sharp moisture lapse rate (coincident with the temperature inversion). The Arctic Ocean is also characterized by stratocumulus cloud cover, however, the specific humidity does not frequently decrease in the ABL capping inversion. The use of GPS-RO refractivity for ABL height retrieval therefore becomes more complex. During winter months (December-February), when the total precipitable water in the troposphere is a minimum, a fairly straightforward algorithm for ABL height retrieval is developed. The applicability and limitations of this method for other seasons (Spring, Summer, Fall) is determined. The seasonal, interannual and spatial variability in the GPS-derived ABL height over the Arctic Ocean, as well as its relation to the underlying surface (ice vs. water), is investigated. The GPS-RO profiles are also explored for the evidence of low-level moisture transport in the cold Arctic environment.
NASA Astrophysics Data System (ADS)
Eweys, Omar Ali; Elwan, Abeer A.; Borham, Taha I.
2017-12-01
This manuscript proposes an approach for estimating soil moisture content over corn fields using C-band SAR data acquired by RADARSAT-2 satellite. An image based approach is employed to remove the vegetation contribution to the satellite signals. In particular, the absolute difference between like and cross polarized signals (ADLC) is employed for segmenting the canopy growth cycle into tiny stages. Each stage is represented by a Cumulative Distribution Function (CDF) of the like polarized signals. For periods of bare soils and vegetation cover, CDFs are compared and the vegetation contribution is quantified. The portion which represent the soil contributions (σHHsoil°) to the satellite signals; are employed for inversely running Oh model and the water cloud model for estimating soil moisture, canopy water content and canopy height respectively. The proposed approach shows satisfactory performance where high correlation of determination (R2) is detected between the field observations and the corresponding retrieved soil moisture, canopy water content and canopy height (R2 = 0.64, 0.97 and 0.98 respectively). Soil moisture retrieval is associated with root mean square error (RMSE) of 0.03 m3 m-3 while estimating canopy water content and canopy height have RMSE of 0.38 kg m-2 and 0.166 m respectively.
Flood-Inundation Maps for a 1.6-Mile Reach of Salt Creek, Wood Dale, Illinois
Soong, David T.; Murphy, Elizabeth A.; Sharpe, Jennifer B.
2012-01-01
Digital flood-inundation maps for a 1.6-mile reach of Salt Creek from upstream of the Chicago, Milwaukee, St. Paul & Pacific Railroad to Elizabeth Drive, Wood Dale, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the DuPage County Stormwater Management Division. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage on Salt Creek at Wood Dale, Illinois (station number 05531175). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05531175. In this study, flood profiles were computed for the stream reach by means of a one-dimensional unsteady flow Full EQuations (FEQ) model. The unsteady flow model was verified by comparing the rating curve output for a September 2008 flood event to discharge measurements collected at the Salt Creek at Wood Dale gage. The hydraulic model was then used to determine 14 water-surface profiles for gage heights at 0.5-ft intervals referenced to the streamgage datum and ranging from less than bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The areal extent of the inundation was verified with high-water marks from a flood in July 2010 with a peak gage height of 14.08 ft recorded at the Salt Creek at Wood Dale gage. The availability of these maps along with Internet information regarding current gage height from USGS streamgages provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.
Water retained in tall Cryptomeria japonica leaves as studied by infrared micro-spectroscopy.
Azuma, Wakana; Nakashima, Satoru; Yamakita, Eri; Ishii, H Roaki; Kuroda, Keiko
2017-10-01
Recent studies in the tallest tree species suggest that physiological and anatomical traits of tree-top leaves are adapted to water-limited conditions. In order to examine water retention mechanism of leaves in a tall tree, infrared (IR) micro-spectroscopy was conducted on mature leaf cross-sections of tall Cryptomeria japonica D. Don from four different heights (51, 43, 31 and 19 m). We measured IR transmission spectra and mainly analyzed OH (3700-3000 cm-1) and C-O (1190-845 cm-1) absorption bands, indicating water molecules and sugar groups, respectively. The changes in IR spectra of leaf sections from different heights were compared with bulk-leaf hydraulics. Both average OH band area of the leaf sections and leaf water content were larger in the upper-crown, while osmotic potential at saturation did not vary with height, suggesting higher dissolved sugar contents of upper-crown leaves. As cell-wall is the main cellular structure of leaves, we inferred that larger average C-O band area of upper-crown leaves reflected higher content of structural polysaccharides such as cellulose, hemicellulose and pectin. Infrared micro-spectroscopic imaging showed that the OH and C-O band areas are large in the vascular bundle, transfusion tissue and epidermis. Infrared spectra of individual tissue showed that much more water is retained in vascular bundle and transfusion tissue than mesophyll. These results demonstrate that IR micro-spectroscopy is a powerful tool for visualizing detailed, quantitative information on the spatial distribution of chemical substances within plant tissues, which cannot be done using conventional methods like histochemical staining. The OH band could be well reproduced by four Gaussian OH components around 3530 (free water: long H bond), 3410 (pectin-like OH species), 3310 (cellulose-like OH species) and 3210 (bound water: short H bond) cm-1, and all of these OH components were higher in the upper crown while their relative proportions did not vary with height. Based on the spectral analyses, we inferred that polysaccharides play a key role in biomolecular retention of water in leaves of tall C. japonica. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Benavente-Fernández, Isabel; Rodríguez-Zafra, Enrique; León-Martínez, Jesús; Jiménez-Gómez, Gema; Ruiz-González, Estefanía; Fernández-Colina, Rosalía Campuzano; Lechuga-Sancho, Alfonso M; Lubián-López, Simón P
2018-04-03
Purpose To establish cross-sectional and longitudinal reference values for cerebellar size in preterm infants with normal neuroimaging findings and normal 2-year neurodevelopmental outcome by using cranial ultrasonography (US). Materials and Methods This prospective study consecutively enrolled preterm infants admitted to a neonatal intensive care unit from June 2011 to June 2014 with a birth weight of less than or equal to 1500 g and/or gestational age (GA) of less than or equal to 32 weeks. They underwent weekly cranial US from birth to term-equivalent age and magnetic resonance (MR) imaging at term-equivalent age. The infants underwent neurodevelopmental assessments at age 2 years with Bayley Scales of Infant and Toddler Development, 3rd edition (BSID-III). Patients with adverse outcomes (death or abnormal neuroimaging findings and/or BSID-III score of <85) were excluded. The following measurements were performed: vermis height, craniocaudal diameter, superior width, inferior width, vermis area, and transcerebellar diameter. Statistical analyses were conducted by using multilevel analyses. Results A total of 137 infants with a mean GA at birth of 29.4 weeks (range, 25-32 weeks) were included. Transcerebellar diameter increased by 1.04 mm per week on average; vermis height and craniocaudal diameter increased by 0.55 mm and 0.59 mm, respectively. Superior vermian width increased by an average of 0.45 mm, whereas inferior vermian width increased by an average of 0.51 mm per week. Vermis area was found to increase by 0.22 cm 2 per week on average. The sex effect was significant (female lower than male) for vermis height (P < .05), craniocaudal diameter (P < .05), inferior vermian width (P <. 05), and vermis area (P <. 05). Conclusion Cross-sectional and longitudinal reference values were established for cerebellar growth in preterm infants, which may be included in routine cranial US. © RSNA, 2018 Online supplemental material is available for this article.
NASA Astrophysics Data System (ADS)
Vavrus, S. J.; Wang, F.; Martin, J. E.; Francis, J. A.
2015-12-01
Recent research has suggested a relationship between mid-latitude weather and Arctic amplification (AA) of global climate change via a slower and wavier extratropical circulation inducing more extreme events. To test this hypothesis and to quantify the waviness of the extratropical flow, we apply a novel application of the geomorphological concept of sinuosity (SIN) over greater North America. SIN is defined as the ratio of the curvilinear length of a geopotential height contour to the perimeter of its equivalent latitude, where the contour and the equivalent latitude enclose the same area. We use 500 hPa daily heights from reanalysis and model simulations to calculate past and future SIN. The circulation exhibits a distinct annual cycle of maximum SIN (waviness) in summer and a minimum in winter, inversely related to the annual cycle of zonal wind speed. Positive trends in SIN have emerged in recent decades during winter and summer at several latitude bands, generally collocated with negative trends in zonal wind speeds. High values of SIN coincide with many prominent extreme-weather events, including Superstorm Sandy. RCP8.5 simulations (2006-2100) project a dipole pattern of zonal wind changes that varies seasonally. In winter, AA causes inflated heights over the Arctic relative to mid-latitudes and an associated weakening (strengthening) of the westerlies north (south) of 40N. The AA signal in summer is strongest over upper-latitude land, promoting localized atmospheric ridging aloft with lighter westerlies to the south and stronger zonal winds to the north. The changes in wind speeds in both seasons are inversely correlated with SIN, indicating a wavier circulation where the flow weakens. In summer the lighter winds over much of the U. S. resemble circulation anomalies observed during extreme summer heat and drought. Such changes may be linked to enhanced heating of upper-latitude land surfaces caused by earlier snow melt during spring-summer.
Novel Strip Test for Circulating Hormones
1996-10-01
estrone- 3 -glucuronide was combined with 1 equivalent of 4-amino-benzo-15-crown-5 and 1.2 equivalents of 1 -ethyl- 3 -( 3 - dimethylaminopropyl )carbodiimide...solution containing 5 mg/ml of El-g and 10 mg/ml of 1 -ethyl- 3 -( 3 -dimethylamino-propyl)carbodiimide (EDC) in water at pH 4.2. Fibers are then rinsed with... hydrochloride in water at pH 4.0. The mixture was stirred at room temperature for 48 hours and the resulting estrone- 3 -glucuronide-4-amino-benzo-15-crown
Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir.
D.R. Woodruff; K.A. McCulloh; J.M. Warren; F.C. Meinzer; B.L. Gartner
2007-01-01
We investigated the mechanisms involved in the regulation of stomatal closure in Douglas-fir and evaluated the potential compensatory adjustments in response to increasing tree height. Stomatal closure was initiated at values of leaf water potential corresponding to nearly complete loss of leaf hydraulic conductance. Cryogenic scanning electron microscopic images...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... unique features of the Murray Morgan Bridge is its height above the waterway providing 60 feet of clearance at mean high water (MHW) in the closed position. Because of this vertical clearance the... bridge openings are for locally moored and operated recreational sailboats with mast heights over 60 feet...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of process waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx
NASA Astrophysics Data System (ADS)
Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.
2017-12-01
SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.
NASA Astrophysics Data System (ADS)
Tang, Jingshi; Cheng, Haowen; Liu, Lin
2012-11-01
The Gravity Recovery And Climate Experiment (GRACE) mission has been providing high quality observations since its launch in 2002. Over the years, fruitful achievements have been obtained and the temporal gravity field has revealed the ongoing geophysical, hydrological and other processes. These discoveries help the scientists better understand various aspects of the Earth. However, errors exist in high degree and order spherical harmonics, which need to be processed before use. Filtering is one of the most commonly used techniques to smooth errors, yet it attenuates signals and also causes leakage of gravity signal into surrounding areas. This paper reports a new method to estimate the true mass change on the grid (expressed in equivalent water height or surface density). The mass change over the grid can be integrated to estimate regional or global mass change. This method assumes the GRACE-observed apparent mass change is only caused by the mass change on land. By comparing the computed and observed apparent mass change, the true mass change can be iteratively adjusted and estimated. The problem is solved with nonlinear programming (NLP) and yields solutions which are in good agreement with other GRACE-based estimates.
Ono, Kaoru; Endo, Satoru; Tanaka, Kenichi; Hoshi, Masaharu; Hirokawa, Yutaka
2010-01-01
Purpose: In this study, the authors evaluated the accuracy of dose calculations performed by the convolution∕superposition based anisotropic analytical algorithm (AAA) in lung equivalent heterogeneities with and without bone equivalent heterogeneities. Methods: Calculations of PDDs using the AAA and Monte Carlo simulations (MCNP4C) were compared to ionization chamber measurements with a heterogeneous phantom consisting of lung equivalent and bone equivalent materials. Both 6 and 10 MV photon beams of 4×4 and 10×10 cm2 field sizes were used for the simulations. Furthermore, changes of energy spectrum with depth for the heterogeneous phantom using MCNP were calculated. Results: The ionization chamber measurements and MCNP calculations in a lung equivalent phantom were in good agreement, having an average deviation of only 0.64±0.45%. For both 6 and 10 MV beams, the average deviation was less than 2% for the 4×4 and 10×10 cm2 fields in the water-lung equivalent phantom and the 4×4 cm2 field in the water-lung-bone equivalent phantom. Maximum deviations for the 10×10 cm2 field in the lung equivalent phantom before and after the bone slab were 5.0% and 4.1%, respectively. The Monte Carlo simulation demonstrated an increase of the low-energy photon component in these regions, more for the 10×10 cm2 field compared to the 4×4 cm2 field. Conclusions: The low-energy photon by Monte Carlo simulation component increases sharply in larger fields when there is a significant presence of bone equivalent heterogeneities. This leads to great changes in the build-up and build-down at the interfaces of different density materials. The AAA calculation modeling of the effect is not deemed to be sufficiently accurate. PMID:20879604
46 CFR 56.50-85 - Tank-vent piping.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this requirement. (4) Tank vents must extend above the weather deck, except vents from fresh water tanks, bilge oily-water holding tanks, bilge slop tanks, and tanks containing Grade E combustible... barges in inland service and for Great Lakes vessels, the height from the deck to any point where water...
46 CFR 56.50-85 - Tank-vent piping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this requirement. (4) Tank vents must extend above the weather deck, except vents from fresh water tanks, bilge oily-water holding tanks, bilge slop tanks, and tanks containing Grade E combustible... barges in inland service and for Great Lakes vessels, the height from the deck to any point where water...
46 CFR 56.50-85 - Tank-vent piping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this requirement. (4) Tank vents must extend above the weather deck, except vents from fresh water tanks, bilge oily-water holding tanks, bilge slop tanks, and tanks containing Grade E combustible... barges in inland service and for Great Lakes vessels, the height from the deck to any point where water...
Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow
NASA Astrophysics Data System (ADS)
Kelleners, T.
2015-12-01
A numerical model is developed to calculate coupled water flow and heat transport in seasonally frozen soil and snow. Both liquid water flow and water vapor flow are included. The effect of dissolved ions on soil water freezing point depression is included by combining an expression for osmotic head with the Clapeyron equation and the van Genuchten soil water retention function. The coupled water flow and heat transport equations are solved using the Thomas algorithm and Picard iteration. Ice pressure is always assumed zero and frost heave is neglected. The new model is tested using data from a high-elevation rangeland soil that is subject to significant soil freezing and a mountainous forest soil that is snow-covered for about 8 months of the year. Soil hydraulic parameters are mostly based on measurements and only vegetation parameters are fine-tuned to match measured and calculated soil water content, soil & snow temperature, and snow height. Modeling statistics for both systems show good performance for temperature, intermediate performance for snow height, and relatively low performance for soil water content, in accordance with earlier results with an older version of the model.
de Cerqueira, Denise T Rezende; Schafer, Ariane C; Fast, Brandon J; Herman, Rod A
2017-07-03
Agronomic characteristics of genetically modified (GM) MON 89034 × TC1507 × NK603 × DAS-40278-9 (PowerCore™ Enlist™), MON 89034 × TC1507 × NK603 (PowerCore™), and DAS-40278-9 (Enlist™) corn, a non-GM near-isogenic hybrid, and 2 commercial non-GM hybrids were assessed in a field study to determine if the agronomic performance of the GM corn hybrids is equivalent to that of non-transgenic hybrid corn. The MON 89034 × TC1507 × NK603 × DAS-40278-9 hybrid corn was developed through stacking of 4 individual transgenic events, MON 89034, TC1507, NK603, and DAS-40278-9 by traditional breeding and contains the cry1A.105 and cry2Ab2 (MON 89034), cry1F and pat (TC1507), cp4 epsps (NK603) and aad-1 (DAS-40278-9) transgenes. These transgenes encode the proteins Cry1A.105, Cry2Ab2, and Cry1F, which confer insect resistance, PAT, CP4 EPSPS, and AAD-1, which confer herbicide tolerance. The following agronomic characteristics were assessed in the study: initial and final stand count, seedling vigor, time to silk, time to pollen shed, pollen viability, plant height, ear height, stalk lodging, root lodging, days to maturity, stay green, disease incidence, insect damage, herbicide injury, and yield. The agronomic assessment was conducted in 2 regions of Brazil (Indianopolis-MG; Cravinhos-SP). The agronomic attributes for all GM entries were statistically indistinguishable from the non-GM near-isogenic hybrid. In addition, most of the agronomic assessments fell within the range of the commercial varieties included in the study. Taken together, MON 89034 × TC1507 × NK603 × DAS-40278, MON 89034 × TC1507 × NK603, and DAS-40278-9 were found to be agronomically equivalent to non-GM corn.
Utilization of alum sludge as chromium removal
NASA Astrophysics Data System (ADS)
Zahari, Nazirul Mubin; Sidek, Lariyah Mohd; Zulkifli, Muhammad Azmeer Asyraf; Hua, Chua Kok; Jalil, Nurulhidayah Abdul
2017-09-01
The amount of alum sludge produced at water treatment plant has become a problem where it is highly costly in order to dispose them. Various research was conducted to find the most suitable and economic alternative to recycle and reused of alum sludge. In this study, alum sludge was retrieved from Waterworks where it was dewatered, dried, grounded and sieved to obtain smallest particle sizes of alum sludge. The synthetic water was prepared at the laboratory in as it was used to imitate the properties of real water contaminated with chromium. This study was conducted to determine the percentage reduction of chromium concentration in synthetic water by using alum sludge as absorbent. The percentage reduction of chromium was observed under the effect of initial concentration of chromium and the height of alum sludge. The result indicates that chromium concentration reduction was the highest at the lowest initial concentration and at the highest height of alum sludge and vice versa.
NASA Technical Reports Server (NTRS)
2003-01-01
December 17, 2003This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.Petroleomics: Chemistry of the underworld
Marshall, Alan G.; Rodgers, Ryan P.
2008-01-01
Each different molecular elemental composition—e.g., CcHhNnOoSs—has a different exact mass. With sufficiently high mass resolving power (m/Δm50% ≈ 400,000, in which m is molecular mass and Δm50% is the mass spectral peak width at half-maximum peak height) and mass accuracy (<300 ppb) up to ≈800 Da, now routinely available from high-field (≥9.4 T) Fourier transform ion cyclotron resonance mass spectrometry, it is possible to resolve and identify uniquely and simultaneously each of the thousands of elemental compositions from the most complex natural organic mixtures, including petroleum crude oil. It is thus possible to separate and sort petroleum components according to their heteroatom class (NnOoSs), double bond equivalents (DBE = number of rings plus double bonds involving carbon, because each ring or double bond results in a loss of two hydrogen atoms), and carbon number. “Petroleomics” is the characterization of petroleum at the molecular level. From sufficiently complete characterization of the organic composition of petroleum and its products, it should be possible to correlate (and ultimately predict) their properties and behavior. Examples include molecular mass distribution, distillation profile, characterization of specific fractions without prior extraction or wet chemical separation from the original bulk material, biodegradation, maturity, water solubility (and oil:water emulsion behavior), deposits in oil wells and refineries, efficiency and specificity of catalytic hydroprocessing, “heavy ends” (asphaltenes) analysis, corrosion, etc. PMID:18836082
Petroleomics: chemistry of the underworld.
Marshall, Alan G; Rodgers, Ryan P
2008-11-25
Each different molecular elemental composition-e.g., C(c)H(h)N(n)O(o)S(s)-has a different exact mass. With sufficiently high mass resolving power (m/Deltam(50%) approximately 400,000, in which m is molecular mass and Deltam(50%) is the mass spectral peak width at half-maximum peak height) and mass accuracy (<300 ppb) up to approximately 800 Da, now routinely available from high-field (>/=9.4 T) Fourier transform ion cyclotron resonance mass spectrometry, it is possible to resolve and identify uniquely and simultaneously each of the thousands of elemental compositions from the most complex natural organic mixtures, including petroleum crude oil. It is thus possible to separate and sort petroleum components according to their heteroatom class (N(n)O(o)S(s)), double bond equivalents (DBE = number of rings plus double bonds involving carbon, because each ring or double bond results in a loss of two hydrogen atoms), and carbon number. "Petroleomics" is the characterization of petroleum at the molecular level. From sufficiently complete characterization of the organic composition of petroleum and its products, it should be possible to correlate (and ultimately predict) their properties and behavior. Examples include molecular mass distribution, distillation profile, characterization of specific fractions without prior extraction or wet chemical separation from the original bulk material, biodegradation, maturity, water solubility (and oil:water emulsion behavior), deposits in oil wells and refineries, efficiency and specificity of catalytic hydroprocessing, "heavy ends" (asphaltenes) analysis, corrosion, etc.
Physiological Responses to Prolonged Drought Differ Among Three Oak (Quercus) Species
NASA Astrophysics Data System (ADS)
Cooper, C. E.; Moore, G. W.; Vogel, J. G.; Muir, J. P.
2015-12-01
The physiological response of plants to water stress provides insights into which species may survive in exceptional drought conditions. This study conducted on a remnant post oak savanna site in College Station, Texas, examined how drought affected the physiology of three native oak species. In June 2014, after a period of equal watering, we subjected three year old Quercus shumardii (Shumard oak; SO), Q. virginiana (live oak; LO), and Q. macrocarpa (bur oak; BO) saplings to one of two watering treatments: 1) watered, receiving the equivalent of theaverage precipitation rate and 2) droughted, receiving a 100% reduction in precipitation. We measured predawn (ΨPD) and midday (ΨMD) leaf water potential; midday gas exchange (MGE) parameters including photosynthesis (Al), transpiration (T), stomatal conductance (gsw); and leaf soluble (SS) and non-soluble sugar (NSS) concentrations monthly between June and October 2014. Drought stress responses were evident after only one month of induced drought. Droughted saplings showed reduced ΨPD, ΨMD, and MGE (P ≤ 0.05) in comparison to watered saplings of the same species. LO saplings exhibited greater MGE (P ≤ 0.05) while maintaining similar LWP to their respective watered and droughted BO and SO counterparts. Droughted LO exhibited MGE rates similar to those of watered BO and SO (P ≤ 0.05), while watered LO adjusted its MGE rates to changes in water availability better than BO and LO during short-term drought. Compared to water saplings, droughted saplings had greater leaf SS (P = 0.08) and lower NSS concentrations (P = 0.10), possibly due to the conversion of NSS to SS and other simple compounds and reduced consumption of SS for growth by the droughted saplings. Although SO and BO exhibited similar photosynthesis rates, leaf total sugar (SS+NSS) concentration was greater in SO (P ≤ 0.05). By displaying the greatest average photosynthesis rate (P ≤ 0.05), LO should have accumulated the greatest amount of carbon, but had a low total leaf sugar concentration. LO saplings did however have greater relative height and diameter growth (P ≤ 0.05) than SO and BO, suggesting these species may differ in carbon allocation strategies. Results suggest LO is more likely to withstand drought mortality than BO or SO and may be an ideal species for forest restoration in environments that suffer from drought.
Heaney, Christopher D; Exum, Natalie G; Dufour, Alfred P; Brenner, Kristen P; Haugland, Richard A; Chern, Eunice; Schwab, Kellogg J; Love, David C; Serre, Marc L; Noble, Rachel; Wade, Timothy J
2014-11-01
Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches - Fairhope Beach, AL and Goddard Beach, RI - with nearby publicly-owned treatment works (POTWs) outfalls. F(+) coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand-water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Copyright © 2014 Elsevier B.V. All rights reserved.