Sample records for equivalent-density materials separation

  1. Stress reduction in phase-separated, cross-linked networks: influence of phase structure and kinetics of reaction

    PubMed Central

    Szczepanski, Caroline R.; Stansbury, Jeffrey W.

    2014-01-01

    A mechanism for polymerization shrinkage and stress reduction was developed for heterogeneous networks formed via ambient, photo-initiated polymerization-induced phase separation (PIPS). The material system used consists of a bulk homopolymer matrix of triethylene glycol dimethacrylate (TEGDMA) modified with one of three non-reactive, linear prepolymers (poly-methyl, ethyl and butyl methacrylate). At higher prepolymer loading levels (10–20 wt%) an enhanced reduction in both shrinkage and polymerization stress is observed. The onset of gelation in these materials is delayed to a higher degree of methacrylate conversion (~15–25%), providing more time for phase structure evolution by thermodynamically driven monomer diffusion between immiscible phases prior to network macro-gelation. The resulting phase structure was probed by introducing a fluorescently tagged prepolymer into the matrix. The phase structure evolves from a dispersion of prepolymer at low loading levels to a fully co-continuous heterogeneous network at higher loadings. The bulk modulus in phase separated networks is equivalent or greater than that of poly(TEGDMA), despite a reduced polymerization rate and cross-link density in the prepolymer-rich domains. PMID:25418999

  2. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.

    PubMed

    Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K

    2011-11-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.

  3. Purification of metal-organic framework materials

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2012-12-04

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  4. Purification of metal-organic framework materials

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2015-06-30

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  5. Equivalence of electronic and mechanical stresses in structural phase stabilization: A case study of indium wires on Si(111)

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Woo; Kim, Hyun-Jung; Ming, Fangfei; Jia, Yu; Zeng, Changgan; Cho, Jun-Hyung; Zhang, Zhenyu

    2015-05-01

    It was recently proposed that the stress state of a material can also be altered via electron or hole doping, a concept termed electronic stress (ES), which is different from the traditional mechanical stress (MS) due to lattice contraction or expansion. Here we demonstrate the equivalence of ES and MS in structural stabilization, using In wires on Si(111) as a prototypical example. Our systematic density-functional theory calculations reveal that, first, for the same degrees of carrier doping into the In wires, the ES of the high-temperature metallic 4 ×1 structure is only slightly compressive, while that of the low-temperature insulating 8 ×2 structure is much larger and highly anisotropic. As a consequence, the intrinsic energy difference between the two phases is significantly reduced towards electronically phase-separated ground states. Our calculations further demonstrate quantitatively that such intriguing phase tunabilities can be achieved equivalently via lattice-contraction induced MS in the absence of charge doping. We also validate the equivalence through our detailed scanning tunneling microscopy experiments. The present findings have important implications for understanding the underlying driving forces involved in various phase transitions of simple and complex systems alike.

  6. 50 CFR 679.24 - Gear limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... material that is brightly colored, UV-protected plastic tubing or 3/8 inch polyester line or material of an... tubing or 3/8 inch polyester line or material of an equivalent density. (iv) Snap gear streamer standard...

  7. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  8. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, Richard D.

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  9. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    PubMed Central

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-01

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466

  10. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials.

    PubMed

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; García-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-16

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model's theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  11. Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh

    2015-07-01

    This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found.

  12. Electron Density Calibration for Radiotherapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Martinez, F.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.

    2006-09-08

    Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density ({rho}e) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a largemore » range of {rho}e to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head.« less

  13. Development of a lithium secondary battery separator

    NASA Technical Reports Server (NTRS)

    Moore, J. A.; Willie, R.

    1985-01-01

    A nonporous membrane based on the polymerization of 2,3-dihydrofuran followed by crosslinking in situ was prepared. The material is compatible with rechargeable Li battery components and, when swollen with an appropriate solvent such as tetrahydrofuran, exhibits separator resistance and Li transport equivalent to Celgard.

  14. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less

  15. Design on the wide band absorber with low density based on the particle distribution

    NASA Astrophysics Data System (ADS)

    Zheng, Dianliang; Liu, Ting; Liu, Longbin; Xu, Yonggang

    2018-04-01

    In order to widen the absorbing band, an equivalent gradient structure absorber was designed based on the particle distribution. Firstly, the electromagnetic parameter of the absorbent with uniform dispersion was tested using the vector network analyzer in 8-18 GHz. Three different equivalent materials of the spherical, square and hexagon empty shape were designed. The scattering parameters and the monostatic reflection loss (RL) of the periodic structural materials were simulated in the commercial software. Then the effective permittivity and the permeability was derived by the Nicolson-Ross-Weir algorithm and fitted by Maxwell-Garnett mixing rule. The results showed that the simulated reflectance and transmission parameters of equivalent composites with the different shapes were very close. The derived effective permittivity and permeability of the composite with different absorbent content was also close, and the average deviation was about 0.52 + j0.15 and 0.15 + j0.01 respectively. Finally, the wide band absorbing material was designed using the genetic algorithm. The optimized RL result showed that the absorbing composites with thickness 3 mm had an excellent absorbing property (RL <-10 dB) in 8-18 GHz, the equivalent absorber density could be decreased 30.7% compared with the uniform structure.

  16. Water-equivalent fiber radiation dosimeter with two scintillating materials

    PubMed Central

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-01-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715

  17. Use of maxillofacial laboratory materials to construct a tissue-equivalent head phantom with removable titanium implantable devices for use in verification of the dose of intensity-modulated radiotherapy.

    PubMed

    Morris, K

    2017-06-01

    The dose of radiotherapy is often verified by measuring the dose of radiation at specific points within a phantom. The presence of high-density implant materials such as titanium, however, may cause complications both during calculation and delivery of the dose. Numerous studies have reported photon/electron backscatter and alteration of the dose by high-density implants, but we know of no evidence of a dosimetry phantom that incorporates high density implants or fixtures. The aim of the study was to design and manufacture a tissue-equivalent head phantom for use in verification of the dose in radiotherapy using a combination of traditional laboratory materials and techniques and 3-dimensional technology that can incorporate titanium maxillofacial devices. Digital designs were used together with Mimics® 18.0 (Materialise NV) and FreeForm® software. DICOM data were downloaded and manipulated into the final pieces of the phantom mould. Three-dimensional digital objects were converted into STL files and exported for additional stereolithography. Phantoms were constructed in four stages: material testing and selection, design of a 3-dimensional mould, manufacture of implants, and final fabrication of the phantom using traditional laboratory techniques. Three tissue-equivalent materials were found and used to successfully manufacture a suitable phantom with interchangeable sections that contained three versions of titanium maxillofacial implants. Maxillofacial and other materials can be used to successfully construct a head phantom with interchangeable titanium implant sections for use in verification of doses of radiotherapy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. An efficient method to predict and include Bragg curve degradation due to lung-equivalent materials in Monte Carlo codes by applying a density modulation

    NASA Astrophysics Data System (ADS)

    Baumann, Kilian-Simon; Witt, Matthias; Weber, Uli; Engenhart-Cabillic, Rita; Zink, Klemens

    2017-05-01

    Sub-millimetre-sized heterogeneities such as lung parenchyma cause Bragg peak degradation which can lead to an underdose of the tumor and an overdose of healthy tissue when not accounted for in treatment planning. Since commonly used treatment-planning CTs do not resolve the fine structure of lungs, this degradation can hardly be considered. We present a mathematical model capable of predicting and describing Bragg peak degradation due to a lung-equivalent geometry consisting of sub-millimetre voxels filled with either lung tissue or air. The material characteristic ‘modulation power’ is introduced to quantify the Bragg peak degradation. A strategy was developed to transfer the modulating effects of such fine structures to rougher structures such as 2 mm thick CT voxels, which is the resolution of typically used CTs. This is done by using the modulation power to derive a density distribution applicable to these voxels. By replacing the previously used sub-millimetre voxels by 2 mm thick voxels filled with lung tissue and modulating the lung tissue’s density in each voxel individually, we were able to reproduce the Bragg peak degradation. Hence a solution is found to include Bragg curve degradation due to lung-equivalent materials in Monte Carlo-based treatment-planning systems.

  19. Numerical analysis of wet separation of particles by density differences

    NASA Astrophysics Data System (ADS)

    Markauskas, D.; Kruggel-Emden, H.

    2017-07-01

    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.

  20. Improved density discrimination using agfacontour film

    NASA Technical Reports Server (NTRS)

    Goodding, R. A.

    1973-01-01

    A technique was developed for obtaining tone separations from black and white photographic materials. Agfacontour film and photographic derivatives are utilized to improve the density discrimination and decrease the density range from 0.45 to 0.08 units. This increase in capability extends the usefulness of tone separations to a wider range of subject matter and problem areas.

  1. Radiopacity of different resin-based and conventional luting cements compared to human and bovine teeth.

    PubMed

    Pekkan, Gürel; Ozcan, Mutlu

    2012-02-03

    This study evaluated the radiopacity of different resin-based luting materials and compared the results to human and bovine dental hard tissues. Disc specimens (N=130, n=10 per group) (diameter: 6 mm, thickness: 1 mm) were prepared from 10 resin-based and 3 conventional luting cements. Human canine dentin (n=10), bovine enamel (n=10), bovine dentin (n=10) and Aluminium (Al) step wedge were used as references. The optical density values of each material were measured from radiographic images using a transmission densitometer. Al step wedge thickness and optical density values were plotted and equivalent Al thickness values were determined for radiopacity measurements of each material. The radiopacity values of conventional cements and two resin luting materials (Rely X Unicem and Variolink II), were significantly higher than that of bovine enamel that could be preferred for restorations cemented on enamel. Since all examined resin-based luting materials showed radiopacity values equivalent to or greater than that of human and bovine dentin, they could be considered suitable for the restorations cemented on dentin.

  2. A Langevin dynamics simulation study of the tribology of polymer loop brushes.

    PubMed

    Yin, Fang; Bedrov, Dmitry; Smith, Grant D; Kilbey, S Michael

    2007-08-28

    The tribology of surfaces modified with doubly bound polymer chains (loops) has been investigated in good solvent conditions using Langevin dynamics simulations. The density profiles, brush interpenetration, chain inclination, normal forces, and shear forces for two flat substrates modified by doubly bound bead-necklace polymers and equivalent singly bound polymers (twice as many polymer chains of 12 the molecular weight of the loop chains) were determined and compared as a function of surface separation, grafting density, and shear velocity. The doubly bound polymer layers showed less interpenetration with decreasing separation than the equivalent singly bound layers. Surprisingly, this difference in interpenetration between doubly bound polymer and singly bound polymer did not result in decreased friction at high shear velocity possibly due to the decreased ability of the doubly bound chains to deform in response to the applied shear. However, at lower shear velocity, where deformation of the chains in the flow direction is less pronounced and the difference in interpenetration is greater between the doubly bound and singly bound chains, some reduction in friction was observed.

  3. SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olguin, E; Flampouri, S; Lipnharski, I

    Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMsmore » using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and out-of-field organ doses.« less

  4. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    PubMed Central

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  5. Investigation of the bulk modulus of silica aerogel using molecular dynamics simulations of a coarse-grained model.

    PubMed

    Ferreiro-Rangel, Carlos A; Gelb, Lev D

    2013-06-13

    Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.

  6. Fabrication of thin bulk ceramics for microwave circulator applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ings, J.B.; Simmins, J.J.; May, J.L.

    1995-09-01

    Planer MMIC circulator applications require the production of thin, flat garnet, spinel, and hexagonal ferrite circulator elements. Fabrication of cira 250 {mu}m circulator elements was done by tape casting and roll compaction. For the garnet, tape cast gave equivalent results to roll compaction. For the spinel and hexaferrite materials, which undergo magnetic flocculation, roll compaction was found to be the preferred fabrication method. Roll compacted lithium ferrite resulted in higher densities and lower {triangle}H and tan{delta} than did the tape case material. Roll compacted barium hexaferrite resulted in higher densities and remanent magnetization than did the tape cast material.

  7. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  8. SU-E-T-424: Feasibility of 3D Printed Radiological Equivalent Customizable Tissue Like Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D; Ferreira, C; Ahmad, S

    Purpose: To investigate the feasibility of 3D printing CT# specific radiological equivalent tissue like materials. Methods: A desktop 3D printer was utilized to create a series of 3 cm x 3 cm x 2 cm PLA plastic blocks of varying fill densities. The fill pattern was selected to be hexagonal (Figure 1). A series of blocks was filled with paraffin and compared to a series filled with air. The blocks were evaluated with a “GE Lightspeed” 16 slice CT scanner and average CT# of the centers of the materials was determined. The attenuation properties of the subsequent blocks were alsomore » evaluated through their isocentric irradiation via “TrueBeam” accelerator under six beam energies. Blocks were placed upon plastic-water slabs of 4 cm in thickness assuring electronic equilibrium and data was collected via Sun Nuclear “Edge” diode detector. Relative changes in dose were compared with those predicted by Varian “Eclipse” TPS. Results: The CT# of 3D printed blocks was found to be a controllable variable. The fill material was able to narrow the range of variability in each sample. The attenuation of the block tracked with the density of the total fill structure. Assigned CT values in the TPS were seen to fall within an expected range predicted by the CT scans of the 3D printed blocks. Conclusion: We have demonstrated that it is possible to 3D print materials of varying tissue equivalencies, and that these materials have radiological properties that are customizable and predictable.« less

  9. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Jiang, Changyong; Huang, Lixi

    2018-03-01

    In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.

  10. Density of Plutonium Turnings Generated from Machining Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, John Robert; Vigil, Duane M.; Jachimowski, Thomas A.

    The purpose of this project was to determine the density of plutonium (Pu) turnings generated from the range of machining activities, using both surrogate material and machined Pu turnings. Verify that 500 grams (g) of plutonium will fit in a one quart container using a surrogate equivalent volume and that 100 grams of Pu will fit in a one quart Savy container.

  11. Buoyant densities of phototrophic sulfur bacteria and cyanobacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.

    1985-01-01

    The buoyant densities of bacterial cells are greatly influenced by the accumulation of intracellular reserve material. The buoyant density of phototrophic bacteria that are planktonic is of particular interest, since these organisms must remain in the photic zone of the water column for optimal growth. Separation of cells by their buoyant density may also be of use in separating and identifying organisms from a natural population. The bacteria used were obtained from pure cultures, enrichments, or samples taken directly from the environment.

  12. Mathematical Modelling of Allelopathy: IV. Assessment of Contributions of Competition and Allelopathy to Interference by Barley

    PubMed Central

    Liu, De Li; An, Min; Johnson, I.R.; Lovett, J.V.

    2005-01-01

    One of the main challenges to the research on allelopathy is technically the separation of allelopathic effect from competition, and quantitatively, the assessment of the contribution of each component to overall interference. A simple mathematical model is proposed to calculate the contribution of allelopathy and competition to interference. As an example of applying the quantitative model to interference by barley (Hordeum vulgare cv. Triumph), the approach used was an addition of allelopathic effect, by an equivalent amount, to the environment of the test plant (white mustard, Sinapis alba), rather than elimination of competition. Experiments were conducted in glasshouse to determine the magnitude of the contributions of allelopathy and competition to interference by barley. The leachates of living barley roots significantly reduced the total dry weight of white mustard. The model involved the calculation of adjusted densities to an equivalent basis for modelling the contribution of allelopathy and competition to total interference. The results showed that allelopathy contributed 40%, 37% and 43% to interference by barley at 6, 12 and 18 white mustard pot−1. The consistency in magnitude of the calculated contribution of allelopathic effect by barley across various densities of receiver plant suggested that the adjusted equivalent density is effective and that the model is able to assess the contribution of each component of interference regardless of the density of receiver plant. PMID:19330162

  13. Wave propagation in equivalent continuums representing truss lattice materials

    DOE PAGES

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; ...

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures from lattice materials, but the design of such structures will require accurate, efficient simulation methods. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss in the small deformation regime is complicated by microinertial effects. This study derives a dynamic equivalent continuum model for periodic trussmore » structures suitable for representing long-wavelength wave propagation and verifies it against the full Bloch wave theory and detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long wavelength characteristics of the response such as anisotropic elastic soundspeeds. Finally, the formulation presented here also improves upon previous work by preserving equilibrium at truss joints for simple lattices and by improving numerical stability by eliminating vertices in the effective yield surface.« less

  14. The electrical properties of zero-gravity processed immiscibles

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Otto, G. H.

    1974-01-01

    When dispersed or mixed immiscibles are solidified on earth, a large amount of separation of the constituents takes place due to differences in densities. However, when the immiscibles are dispersed and solidified in zero-gravity, density separation does not occur, and unique composite solids can be formed with many new and promising electrical properties. By measuring the electrical resistivity and superconducting critical temperature, Tc, of zero-g processed Ga-Bi samples, it has been found that the electrical properties of such materials are entirely different from the basic constituents and the ground control samples. Our results indicate that space processed immiscible materials may form an entirely new class of electronic materials.

  15. Recycling of a fine, heavy fluff automobile shredder residue by density and differential fragmentation.

    PubMed

    Gent, M R; Menéndez, M; Muñiz, H; Torno, S

    2015-09-01

    A compilation of the physical properties of materials which might typically occur in automobile shredder residue and an analysis of their suitability for the separation of materials in fine (<15mm) heavy fluff ASR (fhf-ASR) is presented. Differences in density and resistance to crushing of fhf-ASR materials were identified as potentially the most suitable low cost, technologically simple means for the separating this waste into its three principal components - metals, minerals (glass/stones) and organics (plastics). Results presented of laboratory scale tests demonstrate that fhf-ASR can in large part be separated into three principal components. Tests were conducted with 0.63-2.0mm and 2-10mm fractions. Recovery of plastics by density separations were conducted with water only jigs for the 2-10mm fraction and shaker tables for the 0.63-2mm fraction. Comparisons are presented of the separations of glass and stones from metals obtained by linear screening and vibratory screening of roller mill and impact mill crushing products of the high density 2-10mm fraction. Equipment used for these tests are of a laboratory or demonstrative scale. It is reasonable to anticipate that industrial scale processing would produce significantly better results. The 2-15mm fraction was found to constitute 91.6% of the fhf-ASR sampled. The metals content of the 2-10mm portion of this fraction was upgraded from 2.5% to 31% and 76.9% with recoveries varying inversely with grade from 91.9% to 40.1%. From 63.6% to 17.1% with a recovery of 93.5% of the organic materials. A residual product of fine sand of crushed glass/stones of 99.4% purity recovered 71.3% of these. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Microstructure characterization via stereological relations — A shortcut for beginners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabst, Willi, E-mail: pabstw@vscht.cz; Gregorová, Eva; Uhlířová, Tereza

    Stereological relations that can be routinely applied for the quantitative characterization of microstructures of heterogeneous single- and two-phase materials via global microstructural descriptors are reviewed. It is shown that in the case of dense, single-phase polycrystalline materials (e.g., transparent yttrium aluminum garnet ceramics) two quantities have to be determined, the interface density (or, equivalently, the mean chord length of the grains) and the mean curvature integral density (or, equivalently, the Jeffries grain size), while for two-phase materials (e.g., highly porous, cellular alumina ceramics), one additional quantity, the volume fraction (porosity), is required. The Delesse–Rosiwal law is recalled and size measuresmore » are discussed. It is shown that the Jeffries grain size is based on the triple junction line length density, while the mean chord length of grains is based on the interface density (grain boundary area density). In contrast to widespread belief, however, these two size measures are not alternative, but independent (and thus complementary), measures of grain size. Concomitant with this fact, a clear distinction between linear and planar grain size numbers is proposed. Finally, based on our concept of phase-specific quantities, it is shown that under certain conditions it is possible to define a Jeffries size also for two-phase materials and that the ratio of the mean chord length and the Jeffries size has to be considered as an invariant number for a certain type of microstructure, i.e., a characteristic value that is independent of the absolute size of the microstructural features (e.g., grains, inclusions or pores). - Highlights: • Stereology-based image analysis is reviewed, including error considerations. • Recipes are provided for measuring global metric microstructural descriptors. • Size measures are based on interface density and mean curvature integral density. • Phase-specific quantities and a generalized Jeffries size are introduced. • Linear and planar grain size numbers are clearly distinguished and explained.« less

  17. The validation of tomotherapy dose calculations in low-density lung media

    NASA Astrophysics Data System (ADS)

    Chaudhari, Summer R.; Pechenaya, Olga L.; Goddu, S. Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D.; Low, Daniel

    2009-04-01

    The dose-calculation accuracy of the tomotherapy Hi-Art II® (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values <=1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  18. The validation of tomotherapy dose calculations in low-density lung media.

    PubMed

    Chaudhari, Summer R; Pechenaya, Olga L; Goddu, S Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D; Low, Daniel

    2009-04-21

    The dose-calculation accuracy of the tomotherapy Hi-Art II(R) (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values < or =1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  19. Impact of membrane characteristics on the performance and cycling of the Br₂–H₂ redox flow cell

    DOE PAGES

    Tucker, Michael C.; Cho, Kyu Taek; Spingler, Franz B.; ...

    2015-03-04

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br₂/H₂ redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 μm) pretreated by soaking in 70 °C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm⁻², with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane.« less

  20. Analysis of Cantilever-Beam Bending Stress Relaxation Properties of Thin Wood Composites

    Treesearch

    John F. Hunt; Houjiang Zhang; Yan Huang

    2015-01-01

    An equivalent strain method was used to analyze and determine material relaxation properties for specimens from particleboard, high density fiberboard, and medium density fiberboard. Cantilever beams were clamped and then deflected to 11 m and held for either 2 h or 3 h, while the load to maintain that deflection was measured vs. time. Plots of load relaxation for each...

  1. Materials separation by dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Sagar, A. D.; Rose, R. M.

    1988-01-01

    The feasibility of vacuum dielectrophoresis as a method for particulate materials separation in a microgravity environment was investigated. Particle separations were performed in a specially constructed miniature drop-tower with a residence time of about 0.3 sec. Particle motion in such a system is independent of size and based only on density and dielectric constant, for a given electric field. The observed separations and deflections exceeded the theoretical predictions, probably due to multiparticle effects. In any case, this approach should work well in microgravity for many classes of materials, with relatively simple apparatus and low weight and power requirements.

  2. SU-E-T-663: Radiation Properties of a Water-Equivalent Material Formulated Using the Stoichiometric Analysis Method in Heavy Charged Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yohannes, I; Vasiliniuc, S; Hild, S

    2015-06-15

    Purpose: A material has been designed to be employed as water-equivalent in particle therapy using a previously established stoichiometric analysis method (SAM). After manufacturing, experimental verification of the material’s water-equivalent path length (WEPL) and analysis of its total inelastic nuclear interaction cross sections for proton beams were performed. Methods: Using the SAM, we optimized the material composed of three base materials, i.e., polyurethane, calcium carbonate and microspheres. From the elemental composition of the compound, electron density, linear attenuation coefficients, particle stopping powers and inelastic nuclear cross sections for protons using data from ICRU 63 were calculated. The calculations were thenmore » compared to Hounsfield units (HUs) measured with 350 mAs at 80, 100, 120 and 140 kV and the WEPLs measured with three different ions: proton (106.8 MeV/u), helium (107.93 MeV/u) and carbon (200.3 MeV/u). Results: The material’s measured HUs (0.7±3.0 to 2.6±6.2 HU) as well as its calculated relative electron density (1.0001) are in close agreement with water as reference. The WEPLs measured on a 20.00 mm thick target were 20.16±0.12, 20.29±0.12 and 20.38±0.12 mmH2O for proton, helium and carbon ions, respectively. Within measurement uncertainties, these values verified the calculated WEPLs of 20.28 mmH2O (proton), 20.28 mmH2O (helium) and 20.26 mmH2O (carbon). Moreover, the calculated proton inelastic cross sections of the material differed only by 0.89% (100 MeV/u) and 0.01% (200 MeV/u) when compared to water. Conclusion: The SAM is capable of optimizing material with defined properties, e.g., HU, electron density, WEPL and inelastic nuclear interaction cross section for particle therapy. Such material will have a wide range of applications amongst others absolute dosimetry. This work was supported by grant ZIM KF2137107AK4 from the German Federal Ministry for Economic Affairs and Energy.« less

  3. TU-H-CAMPUS-IeP2-05: Breast and Soft Tissue-Equivalent 3D Printed Phantoms for Imaging and Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hintenlang, D; Terracino, B

    Purpose: The study has the goal to demonstrate that breast and soft tissue-equivalent phantoms for dosimetry applications in the diagnostic energy range can be fabricated using common 3D printing methods. Methods: 3D printing provides the opportunity to rapidly prototype uniquely designed objects from a variety of materials. Common 3D printers are usually limited to printing objects based on thermoplastic materials such as PLA, or ABS. The most commonly available plastic is PLA, which has a density significantly greater than soft tissue. We utilized a popular 3D printer to demonstrate that tissue specific phantom materials can be generated through the carefulmore » selection of 3D printing parameters. A series of stepwedges were designed and printed using a Makerbot Replicator2 3D printing system. The print file provides custom adjustment of the infill density, orientation and position of the object on the printer stage, selection of infill patterns, and other control parameters. The x-ray attenuation and uniformity of fabricated phantoms were evaluated and compared to common tissue-equivalent phantom materials, acrylic and BR12. X-ray exposure measurements were made using narrow beam geometry on a clinical mammography unit at 28 kVp on the series of phantoms. The 3D printed phantoms were imaged at 28 kVp to visualize the internal structure and uniformity in different planes of the phantoms. Results: By utilizing specific in-fill density and patterns we are able to produce a phantom closely matching the attenuation characteristics of BR12 at 28 kVp. The in-fill patterns used are heterogeneous, so a judicious selection of fill pattern and the orientation of the fill pattern must be made in order to obtain homogenous attenuation along the intended direction of beam propagation. Conclusions: By careful manipulation of the printing parameters, breast and soft tissue-equivalent phantoms appropriate for use at imaging energies can be fabricated using 3D printing techniques.« less

  4. Electrical Characterization of Semiconductor and Dielectric Materials with a Non-Damaging FastGateTM Probe

    NASA Astrophysics Data System (ADS)

    Robert, Hillard; William, Howland; Bryan, Snyder

    2002-03-01

    Determination of the electrical properties of semiconductor materials and dielectrics is highly desirable since these correlate best to final device performance. The properties of SiO2 and high k dielectrics such as Equivalent Oxide Thickness(EOT), Interface Trap Density(Dit), Oxide Effective Charge(Neff), Flatband Voltage Hysteresis(Delta Vfb), Threshold Voltage(VT) and, bulk properties such as carrier density profile and channel dose are all important parameters that require monitoring during front end processing. Conventional methods for determining these parameters involve the manufacturing of polysilicon or metal gate MOS capacitors and subsequent measurements of capacitance-voltage(CV) and/or current-voltage(IV). These conventional techniques are time consuming and can introduce changes to the materials being monitored. Also, equivalent circuit effects resulting from excessive leakage current, series resistance and stray inductance can introduce large errors in the measured results. In this paper, a new method is discussed that provides rapid determination of these critical parameters and is robust against equivalent circuit errors. This technique uses a small diameter(30 micron), elastically deformed probe to form a gate for MOSCAP CV and IV and can be used to measure either monitor wafers or test areas within scribe lines on product wafers. It allows for measurements of dielectrics thinner than 10 Angstroms. A detailed description and applications such as high k dielectrics, will be presented.

  5. Experimental evaluation of the thermal properties of two tissue equivalent phantom materials.

    PubMed

    Craciunescu, O I; Howle, L E; Clegg, S T

    1999-01-01

    Tissue equivalent radio frequency (RF) phantoms provide a means for measuring the power deposition of various hyperthermia therapy applicators. Temperature measurements made in phantoms are used to verify the accuracy of various numerical approaches for computing the power and/or temperature distributions. For the numerical simulations to be accurate, the electrical and thermal properties of the materials that form the phantom should be accurately characterized. This paper reports on the experimentally measured thermal properties of two commonly used phantom materials, i.e. a rigid material with the electrical properties of human fat, and a low concentration polymer gel with the electrical properties of human muscle. Particularities of the two samples required the design of alternative measuring techniques for the specific heat and thermal conductivity. For the specific heat, a calorimeter method is used. For the thermal diffusivity, a method derived from the standard guarded comparative-longitudinal heat flow technique was used for both materials. For the 'muscle'-like material, the thermal conductivity, density and specific heat at constant pressure were measured as: k = 0.31 +/- 0.001 W(mK)(-1), p = 1026 +/- 7 kgm(-3), and c(p) = 4584 +/- 107 J(kgK)(-1). For the 'fat'-like material, the literature reports on the density and specific heat such that only the thermal conductivity was measured as k = 0.55 W(mK)(-1).

  6. Equivalent Skin Analysis of Wing Structures Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.

    2000-01-01

    An efficient method of modeling trapezoidal built-up wing structures is developed by coupling. in an indirect way, an Equivalent Plate Analysis (EPA) with Neural Networks (NN). Being assumed to behave like a Mindlin-plate, the wing is solved using the Ritz method with Legendre polynomials employed as the trial functions. This analysis method can be made more efficient by avoiding most of the computational effort spent on calculating contributions to the stiffness and mass matrices from each spar and rib. This is accomplished by replacing the wing inner-structure with an "equivalent" material that combines to the skin and whose properties are simulated by neural networks. The constitutive matrix, which relates the stress vector to the strain vector, and the density of the equivalent material are obtained by enforcing mass and stiffness matrix equities with rec,ard to the EPA in a least-square sense. Neural networks for the material properties are trained in terms of the design variables of the wing structure. Examples show that the present method, which can be called an Equivalent Skin Analysis (ESA) of the wing structure, is more efficient than the EPA and still fairly good results can be obtained. The present ESA is very promising to be used at the early stages of wing structure design.

  7. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  8. Criticality Safety Analysis on the Mixed Be, Nat-U, and C (Graphite) Reflectors in 55-Gallon Waste Drums and Their Equivalents for HWM Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, P

    The objective of this analysis is to develop and establish the technical basis on the criticality safety controls for the storage of mixed beryllium (Be), natural uranium (Nat-U), and carbon (C)/graphite reflectors in 55-gallon waste containers and/or their equivalents in Hazardous Waste Management (HWM) facilities. Based on the criticality safety limits and controls outlined in Section 3.0, the operations involving the use of mixed-reflector drums satisfy the double-contingency principle as required by DOE Order 420.1 and are therefore criticality safe. The mixed-reflector mass limit is 120 grams for each 55-gallon drum or its equivalent. a reflector waiver of 50 gramsmore » is allowed for Be, Nat-U, or C/graphite combined. The waived reflectors may be excluded from the reflector mass calculations when determining if a drum is compliant. The mixed-reflector drums are allowed to mix with the typical 55-gallon one-reflector drums with a Pu mass limit of 120 grams. The fissile mass limit for the mixed-reflector container is 65 grams of Pu equivalent each. The corresponding reflector mass limits are 300 grams of Be, and/or 100 kilograms of Nat-U, and/or 110 kilograms of C/graphite for each container. All other unaffected control parameters for the one-reflector containers remain in effect for the mixed-reflector drums. For instance, Superior moderators, such as TrimSol, Superla white mineral oil No. 9, paraffin, and polyethylene, are allowed in unlimited quantities. Hydrogenous materials with a hydrogen density greater than 0.133 gram/cc are not allowed. Also, an isolation separation of no less than 76.2 cm (30-inch) is required between a mixed array and any other array. Waste containers in the action of being transported are exempted from this 76.2-cm (30-inch) separation requirement. All deviations from the CS controls and mass limits listed in Section 3.0 will require individual criticality safety analyses on a case-by-case basis for each of them to confirm their criticality safety prior to their deployment and implementation.« less

  9. SU-E-T-409: Evaluation of Tissue Composition Effect On Dose Distribution in Radiotherapy with 6 MV Photon Beam of a Medical Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani

    Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relativemore » to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.« less

  10. Evaluation of ground calcite/water heavy media cyclone suspensions for production of residual plastic concentrates.

    PubMed

    Gent, Malcolm; Sierra, Héctor Muñiz; Menéndez, Mario; de Cos Juez, Francisco Javier

    2018-01-01

    Viable recycled residual plastic (RP) product(s) must be of sufficient quality to be reusable as a plastic or source of hydrocarbons or fuel. The varied composition and large volumes of such wastes usually requires a low cost, high through-put recycling method(s) to eliminate contaminants. Cyclone separation of plastics by density is proposed as a potential method of achieving separations of specific types of plastics. Three ground calcite separation medias of different grain size distributions were tested in a cylindrical cyclone to evaluate density separations at 1.09, 1.18 and 1.27 g/cm 3 . The differences in separation recoveries obtained with these medias by density offsets produced due to displacement of separation media solid particles within the cyclone caused by centrifugal settling is evaluated. The separation density at which 50% of the material of that density is recovered was found to increase from 0.010 to 0.026 g/cm 3 as the separation media density increased from 1.09 to 1.27 g/cm 3 . All separation medias were found to have significantly low Ep 95 values of 0.012-0.033 g/cm 3 . It is also demonstrated that the presence of an excess content of <10 µm calcite media particles (>75%) resulted in reduced separation efficiencies. It is shown that the optimum separations were achieved when the media density offset was 0.03-0.04 g/cm 3 . It is shown that effective heavy media cyclone separations of RP denser than 1.0 g/cm 3 can produce three sets of mixed plastics containing: PS and ABS/SAN at densities of >1.0-1.09 g/cm 3 ; PC, PMMA at a density of 1.09-1.18 g/cm 3 ; and PVC and PET at a density of >1.27 g/cm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for Cmore » IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Linda E.

    The m/n = 1/1 helical ion density 'snake' located near the q = 1 magnetic surface in a toroidal, magnetically confined plasma arises naturally in resistive MHD, when the plasma density evolves separately from pressure. Nonlinear numerical simulations show that a helical density perturbation applied around q = 1 can form a quasi-steady state over q Greater-Than-Or-Equivalent-To 1 with T(tilde sign) of opposite average sign to n. Two principal outcomes depend on the magnitude of n/n and the underlying stability of the 1/1 internal kink mode. For a small q<1 central region, a moderate helical density drives a new, slowlymore » growing type of nonlinear 1/1 internal kink inside q<1, with small n and {nabla}p(tilde sign) Asymptotically-Equal-To {nabla}(nT(tilde sign)). The hot kink core moves away from, or perpendicular to, the high density region near q Asymptotically-Equal-To 1, preserving the snake density during a sawtooth crash. The mode resembles the early stage of heavy-impurity-ion snakes in ohmic discharges, including recent observations in Alcator C-Mod. For a larger, more unstable q<1 region, the helical density perturbation drives a conventional 1/1 kink where n aligns with T(tilde sign), leading to a rapid sawtooth crash. The crash redistributes the density to a localized helical concentration inside q Less-Than-Or-Equivalent-To 1, similar to experimentally observed snakes that are initiated by a sawtooth crash.« less

  13. Electron density of Rhizophora spp. wood using Compton scattering technique at 15.77, 17.48 and 22.16 keV XRF energies

    NASA Astrophysics Data System (ADS)

    Shakhreet, B. Z.; Bauk, S.; Shukri, A.

    2015-02-01

    Compton (incoherently) scattered photons which are directly proportional to the electron density of the scatterer, have been employed in characterizing Rhizophora spp. as breast tissue equivalent. X-ray fluorescent scattered incoherently from Rhizophora spp. sample was measured using Si-PIN detector and three XRF energy values 15.77, 17.48 and 22.16 keV. This study is aimed at providing electron density information in support of the introduction of new tissue substitute materials for mammography phantoms.

  14. Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems.

    PubMed

    Nomoto, R; Mishima, A; Kobayashi, K; McCabe, J F; Darvell, B W; Watts, D C; Momoi, Y; Hirano, S

    2008-01-01

    To evaluate the equivalence of a digital X-ray system (DenOptix) to conventional X-ray film in terms of the measured radio-opacity of known filled-resin materials and the suitability of attenuation coefficient for radio-opacity determination. Discs of five thicknesses (0.5-2.5mm) and step-wedges of each of three composite materials of nominal aluminum-equivalence of 50%, 200% and 450% were used. X-ray images of a set of discs (or step-wedge), an aluminum step-wedge, and a lead block were taken at 65 kV and 10 mA at a focus-film distance of 400 mm for 0.15s and 1.6s using an X-ray film or imaging plate. Radio-opacity was determined as equivalent aluminum thickness and attenuation coefficient. The logarithm of the individual optical density or gray scale value, corrected for background, was plotted against thickness, and the attenuation coefficient determined from the slope. The method of ISO 4049 was used for equivalent aluminum thickness. The equivalent aluminum thickness method is not suitable for materials of low radio-opacity, while the attenuation coefficient method could be used for all without difficulty. The digital system gave attenuation coefficients of greater precision than did film, but the use of automatic gain control (AGC) distorted the outcome unusably. Attenuation coefficient is a more precise and generally applicable approach to the determination of radio-opacity. The digital system was equivalent to film but with less noise. The use of AGC is inappropriate for such determinations.

  15. [Computer assisted application of mandarin speech test materials].

    PubMed

    Zhang, Hua; Wang, Shuo; Chen, Jing; Deng, Jun-Min; Yang, Xiao-Lin; Guo, Lian-Sheng; Zhao, Xiao-Yan; Shao, Guang-Yu; Han, De-Min

    2008-06-01

    To design an intelligent speech test system with reliability and convenience using the computer software and to evaluate this system. First, the intelligent system was designed by the Delphi program language. Second, the seven monosyllabic word lists recorded on CD were separated by Cool Edit Pro v2.1 software and put into the system as test materials. Finally, the intelligent system was used to evaluate the equivalence of difficulty between seven lists. Fifty-five college students with normal hearing participated in the study. The seven monosyllabic word lists had equivalent difficulty (F = 1.582, P > 0.05) to the subjects between each other and the system was proved as reliability and convenience. The intelligent system has the feasibility in the clinical practice.

  16. Criticality Safety Controls for 55-Gallon Drums with a Mass Limit of 200 grams Pu-239

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, P

    The following 200-gram Pu drum criticality safety controls are applicable to RHWM drum storage operations: (1) Mass (Fissile/Pu) - each 55-gallon drum or its equivalent shall be limited to 200 gram Pu or Pu equivalent; (2) Moderation - Hydrogen materials with a hydrogen density greater than that (0.133 g H/cc) of polyethylene and paraffin are not allowed and hydrogen materials with a hydrogen density no greater than that of polyethylene and paraffin are allowed with unlimited amounts; (3) Interaction - a spacing of 30-inches (76 cm) is required between arrays and 200-gram Pu drums shall be placed in arrays formore » 200-gram Pu drums only (no mingling of 200-gram Pu drums with other drums not meeting the drum controls associated with the 200-gram limit); (4) Reflection - no beryllium and carbon/graphite (other than the 50-gram waiver amount) is allowed, (note that Nat-U exceeding the waiver amount is allowed when its U-235 content is included in the fissile mass limit of 200 grams); and (5) Geometry - drum geometry, only 55-gallon drum or its equivalent shall be used and array geometry, 55-gallon drums are allowed for 2-high stacking. Steel waste boxes may be stacked 3-high if constraint.« less

  17. Free standing Cu2Te, new anode material for sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Sarkar, Ananta; Mallick, Md. Mofasser; Panda, Manas Ranjan; Vitta, Satish; Mitra, Sagar

    2018-05-01

    Sodium-ion battery is the most popular alternative to lithium-ion energy storage system due to its low cost and huge abundant resources throughout the world. Although recent literature showed cathode materials for sodium ion battery performs almost equivalent to lithium-ion counterpart but the anode of this sodium-ion battery is in premature state. Here, we introduced free-standing copper telluride (Cu2Te), a new anode materials for sodium-ion battery. For making the electrode we did not use any conductive carbon or current collector which increase the volumetric density as well as reduce the cost of the cell. This metallic Cu2Te alloy exhibited a high reversible capacity of ˜275 mAh g-1 at 50 mA g-1 current density and ˜200 mAh g-1 at higher current density of 100 mA g-1, operating between 0.1 to 2.0 V.

  18. Impact of membrane characteristics on the performance and cycling of the Br-2-H-2 redox flow cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, MC; Cho, KT; Spingler, FB

    2015-06-15

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br-2/H-2 redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 mu m) pretreated by soaking in 70 degrees C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm(-2), with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane. (C) 2015 Elsevier B.V. All rights reserved.« less

  19. Grout Isolation and Stabilization of Structures and Materials within Nuclear Facilities at the U.S. Department of Energy, Hanford Site, Summary - 12309

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Phillips, M.; Etheridge, D.

    2012-07-01

    Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less

  20. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Hatfield, J. Michael

    1983-01-01

    Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.

  1. A Semantic Differential Evaluation of Attitudinal Outcomes of Introductory Physical Science.

    ERIC Educational Resources Information Center

    Hecht, Alfred Roland

    This study was designed to assess the attitudinal outcomes of Introductory Physical Science (IPS) curriculum materials used in schools. Random samples of 240 students receiving IPS instruction and 240 non-science students were assigned to separate Solomon four-group designs with non-equivalent control groups. Random samples of 60 traditional…

  2. 27 CFR 555.218 - Table of distances for storage of explosive materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... purposes, detonating cord of 50 or 60 grains per foot should be calculated as equivalent to 9 lbs. of high... traffic volume of 3000 or fewer vehicles/day Barricaded Unbarricaded Passenger railways—public highways with traffic volume of more than 3,000 vehicles/day Barricaded Unbarricaded Separation of magazines...

  3. Physical, Chemical, Bibological, and Biotechnological sciences are incomplete without each other

    USDA-ARS?s Scientific Manuscript database

    By coupling of mechanics, optics, and mathematics, Theodor Svedberg invented the ultracentrifuge, which allowed separation of important biological materials by high centrifugal force, resulting in physical chemical separation and characterization of atherogenic low density lipoproteins and other bio...

  4. Size distributions and aerodynamic equivalence of metal chondrules and silicate chondrules in Acfer 059

    NASA Technical Reports Server (NTRS)

    Skinner, William R.; Leenhouts, James M.

    1993-01-01

    The CR2 chondrite Acfer 059 is unusual in that the original droplet shapes of metal chondrules are well preserved. We determined separate size distributions for metal chondrules and silicate chondrules; the two types are well sorted and have similar size distributions about their respective mean diameters of 0.74 mm and 1.44 mm. These mean values are aerodynamically equivalent for the contrasting densities, as shown by calculated terminal settling velocities in a model solar nebula. Aerodynamic equivalence and similarity of size distributions suggest that metal and silicate fractions experienced the same sorting process before they were accreted onto the parent body. These characteristics, together with depletion of iron in Acfer 059 and essentially all other chondrites relative to primitive CI compositions, strongly suggest that sorting in the solar nebula involved a radial aerodynamic component and that sorting and siderophile depletion in chondrites are closely related.

  5. Metal-organic frameworks based on rigid ligands as separator membranes in supercapacitor.

    PubMed

    Meng, Jiang-Ping; Gong, Yun; Lin, Qiang; Zhang, Miao-Miao; Zhang, Pan; Shi, Hui-Fang; Lin, Jian-Hua

    2015-03-28

    Two thermally stable MOFs formulated as CoL(1,4-bdc)·2DMF (L = 3,5-bis(5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)pyridine), 1,4-H2bdc = 1,4-benzenedicarboxylic acid) (1) and CdL(4,4'-bpc)·3DMF (4,4'-H2bpc = 4,4'-biphenyldicarboxylic acid) (2) have been solvothermally synthesized and exhibit a similar uninodal 6-connected 3D architecture with {4(12)·6(3)}-pcu topology. MOF1 shows a non-interpenetrated network with larger channel, whereas MOF 2 exhibits a 3-fold interpenetrating framework with smaller pore size. When the two MOFs are used as separator membranes in a supercapacitor, the equivalent series resistance (Res) is larger than the Res in the blank supercapacitor, and the smaller the current density, the more the Res. After being charged and discharged at the low current density, the supercapacitor with MOF 1 as separator membrane (denoted as 1a) possesses a much larger specific capacitance (SC) than the blank supercapacitor, and the amorphous separator membrane 1a shows a more porous morphology than the original MOF membrane 1.

  6. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    PubMed

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  7. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, M; Margalit, D; Williams, C

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), zirconium dioxide (ZrO{sub 2}), and gold alloy. Small thin squares (2×2×0.15 cm{sup 3}) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantommore » was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO{sub 2}, and 9% for Li{sub 2}Si{sub 2}O{sub 5}. This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.« less

  8. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  9. An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater.

    PubMed

    Christgen, Beate; Scott, Keith; Dolfing, Jan; Head, Ian M; Curtis, Thomas P

    2015-01-01

    The cost of materials is one of the biggest barriers for wastewater driven microbial fuel cells (MFCs). Many studies use expensive materials with idealistic wastes. Realistically the choice of an ion selective membrane or nonspecific separators must be made in the context of the cost and performance of materials available. Fourteen membranes and separators were characterized for durability, oxygen diffusion and ionic resistance to enable informed membrane selection for reactor tests. Subsequently MFCs were operated in a cost efficient reactor design using Nafion, ethylene tetrafluoroethylene (ETFE) or polyvinylidene fluoride (PVDF) membranes, a nonspecific separator (Rhinohide), and a no-membrane design with a carbon-paper internal gas diffusion cathode. Peak power densities during polarisation, from MFCs using no-membrane, Nafion and ETFE, reached 67, 61 and 59 mWm(-2), and coulombic efficiencies of 68±11%, 71±12% and 92±6%, respectively. Under 1000 Ω, Nafion and ETFE achieved an average power density of 29 mWm(-2) compared to 24 mWm(-2) for the membrane-less reactors. Over a hypothetical lifetime of 10 years the generated energy (1 to 2.5 kWhm(-2)) would not be sufficient to offset the costs of any membrane and separator tested.

  10. An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater

    PubMed Central

    Christgen, Beate; Scott, Keith; Dolfing, Jan; Head, Ian M.; Curtis, Thomas P.

    2015-01-01

    The cost of materials is one of the biggest barriers for wastewater driven microbial fuel cells (MFCs). Many studies use expensive materials with idealistic wastes. Realistically the choice of an ion selective membrane or nonspecific separators must be made in the context of the cost and performance of materials available. Fourteen membranes and separators were characterized for durability, oxygen diffusion and ionic resistance to enable informed membrane selection for reactor tests. Subsequently MFCs were operated in a cost efficient reactor design using Nafion, ethylene tetrafluoroethylene (ETFE) or polyvinylidene fluoride (PVDF) membranes, a nonspecific separator (Rhinohide), and a no-membrane design with a carbon-paper internal gas diffusion cathode. Peak power densities during polarisation, from MFCs using no-membrane, Nafion and ETFE, reached 67, 61 and 59 mWm-2, and coulombic efficiencies of 68±11%, 71±12% and 92±6%, respectively. Under 1000Ω, Nafion and ETFE achieved an average power density of 29 mWm-2 compared to 24 mWm-2 for the membrane-less reactors. Over a hypothetical lifetime of 10 years the generated energy (1 to 2.5 kWhm-2) would not be sufficient to offset the costs of any membrane and separator tested. PMID:26305330

  11. Water-equivalence of gel dosimeters for radiology medical imaging.

    PubMed

    Valente, M; Vedelago, J; Chacón, D; Mattea, F; Velásquez, J; Pérez, P

    2018-03-08

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 kVp) were found to be less than 3% in average. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC-MS.

    PubMed

    Chandra, A; Rana, J; Li, Y

    2001-08-01

    A method has been established and validated for identification and quantification of individual, as well as total, anthocyanins by HPLC and LC/ES-MS in botanical raw materials used in the herbal supplement industry. The anthocyanins were separated and identified on the basis of their respective M(+) (cation) using LC/ES-MS. Separated anthocyanins were individually calculated against one commercially available anthocyanin external standard (cyanidin-3-glucoside chloride) and expressed as its equivalents. Amounts of each anthocyanin calculated as external standard equivalent were then multiplied by a molecular-weight correction factor to afford their specific quantities. Experimental procedures and use of a molecular-weight correction factors are substantiated and validated using Balaton tart cherry and elderberry as templates. Cyanidin-3-glucoside chloride has been widely used in the botanical industry to calculate total anthocyanins. In our studies on tart cherry and elderberry, its use as external standard followed by use of molecular-weight correction factors should provide relatively accurate results for total anthocyanins, because of the presence of cyanidin as their major anthocyanidin backbone. The method proposed here is simple and has a direct sample preparation procedure without any solid-phase extraction. It enables selection and use of commercially available anthocyanins as external standards for quantification of specific anthocyanins in the sample matrix irrespective of their commercial availability as analytical standards. It can be used as a template and applied for similar quantification in several anthocyanin-containing raw materials for routine quality control procedures, thus providing consistency in analytical testing of botanical raw materials used for manufacturing efficacious and true-to-the-label nutritional supplements.

  13. 40 CFR 63.5935 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in the CAA, in 40 CFR 63.2, and in this section as follows: Atomized mechanical application means application of resin or gel coat with spray equipment that separates the liquid into a fine mist. This fine... equivalent material) prior to resin application, and the resin is injected into the covered mold are also...

  14. Abnormal gel flotation caused by contrast media during adrenal vein sampling

    PubMed Central

    Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Gelati, Matteo; Bassi, Antonella; Contro, Alberto; Pizzolo, Francesca; Guidi, Gian Cesare

    2016-01-01

    Introduction During adrenal venous sampling (AVS) procedure, radiologists administer a contrast agent via the catheter to visualize the proper catheter position. Materials and methods A patient with primary aldosteronism diagnostic-hypothesis was admitted for AVS. A venogram was performed to
confirm the catheter’s position with 2mL of Iopamidol 300 mg/mL. Samples were collected with syringe connected to a hydrophilic coated catheter by low-pressure aspiration from each of the four collection sites: inferior vena cava in the suprarenal portion, inferior vena cava in the infrarenal portion, left adrenal vein, and right adrenal vein; then immediately transferred from syringe to tubes with gel separator. All tubes were centrifuged at 1200 x g for 10 minutes. Results At the end of centrifugation process, primary blood tubes containing blood from inferior vena cava and left adrenal vein exhibited the standard gel separator barrier, while tubes from right adrenal vein showed abnormal flotation of gel separator. The radiologist confirmed the usage of 2.6 mL instead of 2.0 mL of Iopamidol 300 mg/mL. This iodinated contrast media, with 1.33 g/cm3 of density, was used close to the right adrenal vein due to some difficulty to access it. Conclusion The abnormal flotation of gel separator in samples taken from right adrenal vein can be explained by the usage of the iodinated
contrast media. We suggest using plain-tubes (without gel separator) for AVS in order to avoid preanalytical nonconformities. Moreover, a blood volume equivalent to twice the catheter extension should be discarded to eliminate residual contrast media before collection of samples for laboratory assays. PMID:27812311

  15. SPHERICAL DIE

    DOEpatents

    Livingston, J.P.

    1959-01-27

    A die is presented for pressing powdered materials into a hemispherical shape of uniforin density and wall thickness comprising a fcmale and male die element held in a stationary spaced relation with the space being equivalent to the wall thickness and defining the hemispherical shape, a pressing ring linearly moveable along the male die element, an inlet to fill the space with powdered materials, a guiding system for moving the pressing ring along the male die element so as to press the powdered material and a heating system for heating the male element so that the powdered material is heated while being pressed.

  16. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOEpatents

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  17. MCNP modelling of the wall effects observed in tissue-equivalent proportional counters.

    PubMed

    Hoff, J L; Townsend, L W

    2002-01-01

    Tissue-equivalent proportional counters (TEPCs) utilise tissue-equivalent materials to depict homogeneous microscopic volumes of human tissue. Although both the walls and gas simulate the same medium, they respond to radiation differently. Density differences between the two materials cause distortions, or wall effects, in measurements, with the most dominant effect caused by delta rays. This study uses a Monte Carlo transport code, MCNP, to simulate the transport of secondary electrons within a TEPC. The Rudd model, a singly differential cross section with no dependence on electron direction, is used to describe the energy spectrum obtained by the impact of two iron beams on water. Based on the models used in this study, a wall-less TEPC had a higher lineal energy (keV.micron-1) as a function of impact parameter than a solid-wall TEPC for the iron beams under consideration. An important conclusion of this study is that MCNP has the ability to model the wall effects observed in TEPCs.

  18. Autoradiographic method for quantitation of deposition and distribution of radiocalcium in bone

    PubMed Central

    Lawrence Riggs, B; Bassingthwaighte, James B.; Jowsey, Jenifer; Peter Pequegnat, E

    2010-01-01

    A method is described for quantitating autoradiographs of bone-seeking isotopes in microscopic sections of bone. Autoradiographs of bone sections containing 45Ca and internal calibration standards are automatically scanned with a microdensitometer. The digitized optical density output is stored on magnetic tape and is converted by computer to equivalent activity of 45Ca per gram of bone. The computer determines the total 45Ca uptake in the bone section and, on the basis of optical density and anatomic position, quantitatively divides the uptake into 4 components, each representing a separate physiologic process (bone formation, secondary mineralization, diffuse long-term exchange, and surface short-term exchange). The method is also applicable for quantitative analysis of microradiographs of bone sections for mineral content and density. PMID:5416906

  19. Ni-H2 cell separator matrix engineering

    NASA Technical Reports Server (NTRS)

    Scott, W. E.

    1992-01-01

    This project was initiated to develop alternative separator materials to the previously used asbestos matrices which were removed from the market for health and environmental reasons. The objective of the research was to find a material or combination of materials that had the following characteristics: (1) resistant to the severe conditions encountered in Ni-H2 cells; (2) satisfactory electrical, electrolyte management, and thermal management properties to function properly; (3) environmentally benign; and (4) capable of being manufactured into a separator matrix. During the course of the research it was discovered that separators prepared from wettable polyethylene fibers along and in combination with potassium titanate pigment performed satisfactory in preliminary characterization tests. Further studies lead to the optimization of the separator composition and manufacturing process. Single ply separator sheets were manufactured with 100 percent polyethylene fibers and also with a combination of polyethylene fibers and potassium titanate pigment (PKT) in the ratio of 60 percent PKT and 40 percent fibers. A pilot paper machine was used to produce the experimental separator material by a continuous, wet laid process. Both types of matrices were produced at several different area densities (grams/sq m).

  20. Quantification of breast lesion compositions using low-dose spectral mammography: A feasibility study

    PubMed Central

    Ding, Huanjun; Sennung, David; Cho, Hyo-Min; Molloi, Sabee

    2016-01-01

    Purpose: The positive predictive power for malignancy can potentially be improved, if the chemical compositions of suspicious breast lesions can be reliably measured in screening mammography. The purpose of this study is to investigate the feasibility of quantifying breast lesion composition, in terms of water and lipid contents, with spectral mammography. Methods: Phantom and tissue samples were imaged with a spectral mammography system based on silicon-strip photon-counting detectors. Dual-energy calibration was performed for material decomposition, using plastic water and adipose-equivalent phantoms as the basis materials. The step wedge calibration phantom consisted of 20 calibration configurations, which ranged from 2 to 8 cm in thickness and from 0% to 100% in plastic water density. A nonlinear rational fitting function was used in dual-energy calibration of the imaging system. Breast lesion phantoms, made from various combinations of plastic water and adipose-equivalent disks, were embedded in a breast mammography phantom with a heterogeneous background pattern. Lesion phantoms with water densities ranging from 0% to 100% were placed at different locations of the heterogeneous background phantom. The water density in the lesion phantoms was measured using dual-energy material decomposition. The thickness and density of the background phantom were varied to test the accuracy of the decomposition technique in different configurations. In addition, an in vitro study was also performed using mixtures of lean and fat bovine tissue of 25%, 50%, and 80% lean weight percentages as the background. Lesions were simulated by using breast lesion phantoms, as well as small bovine tissue samples, composed of carefully weighed lean and fat bovine tissues. The water densities in tissue samples were measured using spectral mammography and compared to measurement using chemical decomposition of the tissue. Results: The thickness of measured and known water contents was compared for various lesion configurations. There was a good linear correlation between the measured and the known values. The root-mean-square errors in water thickness measurements were 0.3 and 0.2 mm for the plastic phantom and bovine tissue backgrounds, respectively. Conclusions: The results indicate that spectral mammography can be used to accurately characterize breast lesion composition in terms of their equivalent water and lipid contents. PMID:27782705

  1. Systematic approach for simultaneously correcting the band-gap and p - d separation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    DOE PAGES

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-31

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less

  2. Systematic approach for simultaneously correcting the band-gap and p -d separation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-01

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X =N ,P ,As ,Sb , and II-VI compounds, (Zn or Cd)X , with X =O ,S ,Se ,Te . By correcting (1) the binary band gaps at high-symmetry points Γ , L , X , (2) the separation of p -and d -orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.

  3. High Energy Density Capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  4. Battery materials for ultrafast charging and discharging.

    PubMed

    Kang, Byoungwoo; Ceder, Gerbrand

    2009-03-12

    The storage of electrical energy at high charge and discharge rate is an important technology in today's society, and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy. It is typically believed that in electrochemical systems very high power rates can only be achieved with supercapacitors, which trade high power for low energy density as they only store energy by surface adsorption reactions of charged species on an electrode material. Here we show that batteries which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors. We realize this in LiFePO(4) (ref. 6), a material with high lithium bulk mobility, by creating a fast ion-conducting surface phase through controlled off-stoichiometry. A rate capability equivalent to full battery discharge in 10-20 s can be achieved.

  5. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  6. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Newhauser, Wayne D.

    2009-03-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.

  7. Rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation

    NASA Astrophysics Data System (ADS)

    Milcarek, Ryan J.; Ahn, Jeongmin

    2018-03-01

    Micro-tubular flame-assisted fuel cells (mT-FFC) were recently proposed as a modified version of the direct flame fuel cell (DFFC) operating in a dual chamber configuration. In this work, a rich-burn, quick-mix, lean-burn (RQL) combustor is combined with a micro-tubular solid oxide fuel cell (mT-SOFC) stack to create a rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation system. The system is tested for rapid startup and achieves peak power densities after only 35 min of testing. The mT-FFC power density and voltage are affected by changes in the fuel-lean and fuel-rich combustion equivalence ratio. Optimal mT-FFC performance favors high fuel-rich equivalence ratios and a fuel-lean combustion equivalence ratio around 0.80. The electrical efficiency increases by 150% by using an intermediate temperature cathode material and improving the insulation. The RFQL combustor and power generation system achieves rapid startup, a simplified balance of plant and may have applications for reduced NOx formation and combined heat and power.

  8. Design Study for Ground-Based Atmospheric Lidar System.

    DTIC Science & Technology

    1980-09-29

    Diameter: 36 inches with center hole to pass telescope focus Material: Pyrex, Zerodur or equivalent f/number: f/4 Secondary Mirror : Diameter: 10...Measurement of Atmospheric Molecular Density Transmitter Section (includes Laser, Beam Expander and 45 Mirror ) Receiving Telescope (receives...Alignment .. .. ..... 134 6.4 Fixed Autocollimator:Receiver Alignment .. .. ... ....... 136 6.5 Adjustment and Use of Reference Mirrors

  9. Quantization of liver tissue in dual kVp computed tomography using linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Tkaczyk, J. Eric; Langan, David; Wu, Xiaoye; Xu, Daniel; Benson, Thomas; Pack, Jed D.; Schmitz, Andrea; Hara, Amy; Palicek, William; Licato, Paul; Leverentz, Jaynne

    2009-02-01

    Linear discriminate analysis (LDA) is applied to dual kVp CT and used for tissue characterization. The potential to quantitatively model both malignant and benign, hypo-intense liver lesions is evaluated by analysis of portal-phase, intravenous CT scan data obtained on human patients. Masses with an a priori classification are mapped to a distribution of points in basis material space. The degree of localization of tissue types in the material basis space is related to both quantum noise and real compositional differences. The density maps are analyzed with LDA and studied with system simulations to differentiate these factors. The discriminant analysis is formulated so as to incorporate the known statistical properties of the data. Effective kVp separation and mAs relates to precision of tissue localization. Bias in the material position is related to the degree of X-ray scatter and partial-volume effect. Experimental data and simulations demonstrate that for single energy (HU) imaging or image-based decomposition pixel values of water-like tissues depend on proximity to other iodine-filled bodies. Beam-hardening errors cause a shift in image value on the scale of that difference sought between in cancerous and cystic lessons. In contrast, projection-based decomposition or its equivalent when implemented on a carefully calibrated system can provide accurate data. On such a system, LDA may provide novel quantitative capabilities for tissue characterization in dual energy CT.

  10. Gypsum and organic matter distribution in a mixed construction and demolition waste sorting process and their possible removal from outputs.

    PubMed

    Montero, A; Tojo, Y; Matsuo, T; Matsuto, T; Yamada, M; Asakura, H; Ono, Y

    2010-03-15

    With insufficient source separation, construction and demolition (C&D) waste becomes a mixed material that is difficult to recycle. Treatment of mixed C&D waste generates residue that contains gypsum and organic matter and poses a risk of H(2)S formation in landfills. Therefore, removing gypsum and organic matter from the residue is vital. This study investigated the distribution of gypsum and organic matter in a sorting process. Heavy liquid separation was used to determine the density ranges in which gypsum and organic matter were most concentrated. The fine residue that was separated before shredding accounted for 27.9% of the waste mass and contained the greatest quantity of gypsum; therefore, most of the gypsum (52.4%) was distributed in this fraction. When this fine fraction was subjected to heavy liquid separation, 93% of the gypsum was concentrated in the density range of 1.59-2.28, which contained 24% of the total waste mass. Therefore, removing this density range after segregating fine particles should reduce the amount of gypsum sent to landfills. Organic matter tends to float as density increases; nevertheless, separation at 1.0 density could be more efficient. (c) 2009 Elsevier B.V. All rights reserved.

  11. RUNOFF, SEDIMENT TRANSPORT, AND SURFACE COLLAPSE AT A LOW-LEVEL RADIOACTIVE-WASTE BURIAL SITE NEAR SHEFFIELD, ILLINOIS.

    USGS Publications Warehouse

    Gray, John R.; Peters, Charles A.; ,

    1985-01-01

    Runoff, sediment transport, and precipitation were measured in three gaged basins composing two-thirds of the 20-acre site, and in a 3. 5-acre basin located 0. 3 mile south of the site. Locations and dimensions of surface collapses at the site were recorded by the site contractor. Volumes of collapsed material were calculated and converted to an equivalent weight of earth material by applying a mean value for the bulk density of soils at the site.

  12. Classifying Particles By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Stoneburner, James D.

    1983-01-01

    Separation technique well suited to material processing. Apparatus with rectangular-cross-section chamber used to measure equilibrium positions of low-density spheres in gravitational field. Vertical acoustic forces generated by two opposing compression drivers exciting fundamental plane-wave mode at 1.2 kHz. Additional horizontal drivers centered samples along vertical axis. Applications in fusion-target separation, biological separation, and manufacturing processes in liquid or gas media.

  13. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less

  14. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    DOE PAGES

    Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce; ...

    2016-10-12

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less

  15. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    PubMed Central

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Holden, Patricia A.

    2016-01-01

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstrate separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. The optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation. PMID:27917301

  16. Handling Density Conversion in TPS.

    PubMed

    Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji

    2016-01-01

    Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.

  17. Size-separation of silver nanoparticles using sucrose gradient centrifugation

    DOE PAGES

    Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won; ...

    2015-08-28

    Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less

  18. Size-separation of silver nanoparticles using sucrose gradient centrifugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won

    Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less

  19. Geometric model from microscopic theory for nuclear absorption

    NASA Technical Reports Server (NTRS)

    John, Sarah; Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained.

  20. Geometric model for nuclear absorption from microscopic theory

    NASA Technical Reports Server (NTRS)

    John, S.; Townsend, L. W.; Wilson, J. W.; Tripathi, R. K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results are obtained.

  1. Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Alaina; Scarlata, Claudia; Martin, Crystal L.

    2015-08-10

    We report Hubble Space Telescope/Cosmic Origins Spectrograph observations of the Lyα emission and interstellar absorption lines in a sample of 10 star-forming galaxies at z ∼ 0.2. Selected on the basis of high equivalent width optical emission lines, the sample, dubbed “Green Peas,” make some of the best analogs for young galaxies in an early universe. We detect Lyα emission in all ten galaxies, and 9/10 show double-peaked line profiles suggestive of low H i column density. We measure Lyα/Hα flux ratios of 0.5–5.6, implying that 5%–60% of Lyα photons escape the galaxies. These data confirm previous findings that low-ionizationmore » metal absorption (LIS) lines are weaker when Lyα escape fraction and equivalent width are higher. However, contrary to previously favored interpretations of this trend, increased Lyα output cannot be the result of a varying H i covering: the Lyman absorption lines (Lyβ and higher) show a covering fraction near unity for gas with N{sub H} {sub i} ≳ 10{sup 16} cm{sup −2}. Moreover, we detect no correlation between Lyα escape and the outflow velocity of the LIS lines, suggesting that kinematic effects do not explain the range of Lyα/Hα flux ratios in these galaxies. In contrast, we detect a strong anticorrelation between the Lyα escape fraction and the velocity separation of the Lyα emission peaks, driven primarily by the velocity of the blue peak. As this velocity separation is sensitive to H i column density, we conclude that Lyα escape in these Green Peas is likely regulated by the H i column density rather than outflow velocity or H i covering fraction.« less

  2. A Novel Two-Compartment Model for Calculating Bone Volume Fractions and Bone Mineral Densities From Computed Tomography Images.

    PubMed

    Lin, Hsin-Hon; Peng, Shin-Lei; Wu, Jay; Shih, Tian-Yu; Chuang, Keh-Shih; Shih, Cheng-Ting

    2017-05-01

    Osteoporosis is a disease characterized by a degradation of bone structures. Various methods have been developed to diagnose osteoporosis by measuring bone mineral density (BMD) of patients. However, BMDs from these methods were not equivalent and were incomparable. In addition, partial volume effect introduces errors in estimating bone volume from computed tomography (CT) images using image segmentation. In this study, a two-compartment model (TCM) was proposed to calculate bone volume fraction (BV/TV) and BMD from CT images. The TCM considers bones to be composed of two sub-materials. Various equivalent BV/TV and BMD can be calculated by applying corresponding sub-material pairs in the TCM. In contrast to image segmentation, the TCM prevented the influence of the partial volume effect by calculating the volume percentage of sub-material in each image voxel. Validations of the TCM were performed using bone-equivalent uniform phantoms, a 3D-printed trabecular-structural phantom, a temporal bone flap, and abdominal CT images. By using the TCM, the calculated BV/TVs of the uniform phantoms were within percent errors of ±2%; the percent errors of the structural volumes with various CT slice thickness were below 9%; the volume of the temporal bone flap was close to that from micro-CT images with a percent error of 4.1%. No significant difference (p >0.01) was found between the areal BMD of lumbar vertebrae calculated using the TCM and measured using dual-energy X-ray absorptiometry. In conclusion, the proposed TCM could be applied to diagnose osteoporosis, while providing a basis for comparing various measurement methods.

  3. Polymer amide as an early topology.

    PubMed

    McGeoch, Julie E M; McGeoch, Malcolm W

    2014-01-01

    Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.

  4. Dosimetric verification of the anisotropic analytical algorithm in lung equivalent heterogeneities with and without bone equivalent heterogeneities

    PubMed Central

    Ono, Kaoru; Endo, Satoru; Tanaka, Kenichi; Hoshi, Masaharu; Hirokawa, Yutaka

    2010-01-01

    Purpose: In this study, the authors evaluated the accuracy of dose calculations performed by the convolution∕superposition based anisotropic analytical algorithm (AAA) in lung equivalent heterogeneities with and without bone equivalent heterogeneities. Methods: Calculations of PDDs using the AAA and Monte Carlo simulations (MCNP4C) were compared to ionization chamber measurements with a heterogeneous phantom consisting of lung equivalent and bone equivalent materials. Both 6 and 10 MV photon beams of 4×4 and 10×10 cm2 field sizes were used for the simulations. Furthermore, changes of energy spectrum with depth for the heterogeneous phantom using MCNP were calculated. Results: The ionization chamber measurements and MCNP calculations in a lung equivalent phantom were in good agreement, having an average deviation of only 0.64±0.45%. For both 6 and 10 MV beams, the average deviation was less than 2% for the 4×4 and 10×10 cm2 fields in the water-lung equivalent phantom and the 4×4 cm2 field in the water-lung-bone equivalent phantom. Maximum deviations for the 10×10 cm2 field in the lung equivalent phantom before and after the bone slab were 5.0% and 4.1%, respectively. The Monte Carlo simulation demonstrated an increase of the low-energy photon component in these regions, more for the 10×10 cm2 field compared to the 4×4 cm2 field. Conclusions: The low-energy photon by Monte Carlo simulation component increases sharply in larger fields when there is a significant presence of bone equivalent heterogeneities. This leads to great changes in the build-up and build-down at the interfaces of different density materials. The AAA calculation modeling of the effect is not deemed to be sufficiently accurate. PMID:20879604

  5. Connecting Molecular Dynamics Simulations and Fluids Density Functional Theory of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hall, Lisa

    Increased understanding and precise control over the nanoscale structure and dynamics of microphase separated block copolymers would advance development of mechanically robust but conductive materials for battery electrolytes, among other applications. Both coarse-grained molecular dynamics (MD) simulations and fluids (classical) density functional theory (fDFT) can capture the microphase separation of block copolymers, using similar monomer-based chain models and including local packing effects. Equilibrium free energies of various microphases are readily accessible from fDFT, which allows us to efficiently determine the equilibrium nanostructure over a large parameter space. Meanwhile, MD allows us to visualize specific polymer conformations in 3D over time and to calculate dynamic properties. The fDFT density profiles are used to initialize the MD simulations; this ensures the MD proceeds in the appropriate microphase separated state rather than in a metastable structure (useful especially for nonlamellar structures). The simulations equilibrate more quickly than simulations initialized with a random state, which is significant especially for long chains. We apply these methods to study the interfacial behavior and microphase separated structure of diblock and tapered block copolymers. Tapered copolymers consist of pure A and B monomer blocks on the ends separated by a tapered region that smoothly varies from A to B (or from B to A for an inverse taper). Intuitively, tapering increases the segregation strength required for the material to microphase separate and increases the width of the interfacial region. Increasing normal taper length yields a lower domain spacing and increased polymer mobility, while larger inverse tapers correspond to even lower domain spacing but decreased mobility. Thus the changes in dynamics with tapering cannot be explained by mapping to a diblock system at an adjusted effective segregation strength. This material is based upon work supported by the National Science Foundation under Grant 1454343 and the Department of Energy under Grant DE-SC0014209.

  6. Experimental results of use of triple-energy X-ray beam with K-edge filter in multi-energy imaging

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, S.; Jeon, P.-H.

    2016-04-01

    Multi-energy imaging is useful for contrast enhancement of lesions, quantitative analysis of specific materials and material separation in the human body. Generally, dual-energy methods are applied to discriminating two materials, but this method cannot discriminate more than two materials. Photon-counting detectors provide spectral information from polyenergetic X-rays using multiple energy bins. In this work, we developed triple-energy X-ray beams using a filter with K-edge energy and applied them experimentally. The energy spectra of triple-energy X-ray beams were assessed by using a spectrometer. The designed triple-energy X-ray beams were validated by measuring quantitative evaluations with mean energy ratio (MER), contrast variation ratio (CVR) and exposure efficiency (EE). Then, triple-energy X-ray beams were used to extract density map of three materials, iodine (I), aluminum (Al) and polymethyl methacrylate (PMMA). The results of the thickness density maps obtained with the developed triple-energy X-ray beams were compared to those acquired using the photon-counting method. As a result, it was found experimentally that the proposed triple-energy X-ray beam technique can separate the three materials as well as the photon-counting method.

  7. Stability of lime essential oil microparticles produced with protein-carbohydrate blends.

    PubMed

    Campelo, Pedro Henrique; Sanches, Edgar Aparecido; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Borges, Soraia Vilela

    2018-03-01

    The objective of this work was to analyze the influence of maltodextrin equivalent dextrose on the lime essential oil reconstitution, storage, release and protection properties. Four treatments were evaluated: whey protein concentrate (WPC), and blends of maltodextrin with dextrose equivalents of 5 (WM5), 10 (WM10) and 20 (WM20). The reconstitution and storage properties of the microparticles (solubility, wettability and density), water kinetics adsorption, sorption isotherms, thermogravimetric properties, controlled release and degradation kinetics of encapsulated lime essential oil were studied to measure the quality of the encapsulated materials. The results of the study indicated that the DE degree influences the characteristics of reconstitution, storage, controlled release and degradation characteristics of encapsulated bioactive compounds. The increase in dextrose equivalent improves microparticle solubility, wettability and density, mainly due to the size of the maltodextrin molecules. The adsorption kinetics and sorption isotherm curves confirmed the increase in the hygroscopicity of maltodextrins with higher degrees of polymerization. The size of the maltodextrin chains influenced the release and protection of the encapsulated lime essential oil. Finally, the maltodextrin polymerization degree can be considered a parameter that will influence the physicochemical properties of microencapsulated food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge.

    PubMed

    Sujathan, Surya; Kniggendorf, Ann-Kathrin; Kumar, Arun; Roth, Bernhard; Rosenwinkel, Karl-Heinz; Nogueira, Regina

    2017-11-01

    The extraction of plastic microparticles, so-called microplastics, from sludge is a challenging task due to the complex, highly organic material often interspersed with other benign microparticles. The current procedures for microplastic extraction from sludge are time consuming and require expensive reagents for density separation as well as large volumes of oxidizing agents for organic removal, often resulting in tiny sample sizes and thus a disproportional risk of sample bias. In this work, we present an improved extraction method tested on return activated sludge (RAS). The treatment of 100 ml of RAS requires only 6% hydrogen peroxide (H 2 O 2 ) for bleaching at 70 °C, followed by density separation with sodium nitrate/sodium thiosulfate (SNT) solution, and is completed within 24 h. Extracted particles of all sizes were chemically analyzed with confocal Raman microscopy. An extraction efficiency of 78 ± 8% for plastic particle sizes 20 µm and up was confirmed in a recovery experiment. However, glass shards with a diameter of less than 20 µm remained in the sample despite the density of glass exceeding the density of the separating SNT solution by 1.1 g/cm 3 . This indicates that density separation may be unreliable for particle sizes in the lower micrometer range.

  9. Space radiation shielding studies for astronaut and electronic component risk assessment

    NASA Astrophysics Data System (ADS)

    Fuchs, Jordan; Gersey, Brad; Wilkins, Richard

    The space radiation environment is comprised of a complex and variable mix of high energy charged particles, gamma rays and other exotic species. Elements of this radiation field may also interact with intervening matter (such as a spaceship wall) and create secondary radiation particles such as neutrons. Some of the components of the space radiation environment are highly penetrating and can cause adverse effects in humans and electronic components aboard spacecraft. Developing and testing materials capable of providing effective shielding against the space radiation environment presents special challenges to researchers. Researchers at the Cen-ter for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View AM University (PVAMU) perform accelerator based experiments testing the effectiveness of various materials for use as space radiation shields. These experiments take place at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, the proton synchrotron at Loma Linda University Medical Center, and the Los Alamos Neutron Science Center at Los Alamos National Laboratory where charged particles and neutrons are produced at energies similar to those found in the space radiation environment. The work presented in this paper constitutes the beginning phase of an undergraduate research project created to contribute to this ongoing space radiation shielding project. Specifically, this student project entails devel-oping and maintaining a database of information concerning the historical data from shielding experiments along with a systematic categorization and storage system for the actual shielding materials. The shielding materials referred to here range in composition from standard materi-als such as high density polyethylene and aluminum to exotic multifunctional materials such as spectra-fiber infused composites. The categorization process for each material includes deter-mination of the density thickness of individual samples and a clear labeling and filing method that allows immediate cross referencing with other material samples during the experimental design process. Density thickness measurements will be performed using a precision scale that will allow for the fabrication of sets of standard density thicknesses of selected materials for ready use in shielding experiments. The historical data from previous shielding experiments consists primarily of measurements of absorbed dose, dose equivalent and dose distributions from a Tissue Equivalent Proportional Counter (TEPC) as measured downstream of various thicknesses of the materials while being irradiated in one of the aforementioned particle beams. This data has been digitally stored and linked to the composition of each material and may be easily accessed for shielding effectiveness inter-comparisons. This work was designed to facili-tate and increase the efficiency of ongoing space radiation shielding research performed at the CRESSE as well as serve as a way to educate new generations of space radiation researchers.

  10. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV

    PubMed Central

    Haghi, G.; Hatami, A.; Safaei, A.; Mehran, M.

    2014-01-01

    Chamomile (Matricaria chamomilla L.) is a widely used medicinal plant possessing several pharmacological effects due to presence of active compounds. This study describes a method of using ultra performance liquid chromatography (UPLC) coupled with photodiode array (PDA) detector for the separation of phenolic compounds in M. chamomilla and its crude extracts. Separation was conducted on C18 column (150 mm × 2 mm, 1.8 μm) using a gradient elution with a mobile phase consisting of acetonitrile and 4% aqueous acetic acid at 25°C. The method proposed was validated for determination of free and total apigenin and apigenin 7-glucoside contents as bioactive compounds in the extracts by testing sensitivity, linearity, precision and recovery. In general, UPLC produced significant improvements in method sensitivity, speed and resolution. Extraction was performed with methanol, 70% aqueous ethanol and water solvents. Total phenolic and total flavonoid contents ranged from 1.77 to 50.75 gram (g) of gallic acid equivalent (GAE)/100 g and 0.82 to 36.75 g quercetin equivalent (QE)/100 g in dry material, respectively. There was a considerable difference from 40 to 740 mg/100 g for apigenin and 210 to 1110 mg/100 g for apigenin 7-glucoside in dry material. PMID:25598797

  11. Electrophoretic separator for purifying biologicals

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This technique separates a single narrow zone of sample mixture in an electrolyte medium into many zones containing a single component of the mixture and electrolyte between them. Since the densities of the separated zones generally differ from that of the intervening medium, such systems are gravitationally unstable and stabilization is required. The various techniques for stabilization include using the capillary space provided by thin films, the interstices of solid material such as filter paper and a variety of gel-forming substances.

  12. High-Throughput Density Measurement Using Magnetic Levitation.

    PubMed

    Ge, Shencheng; Wang, Yunzhe; Deshler, Nicolas J; Preston, Daniel J; Whitesides, George M

    2018-06-20

    This work describes the development of an integrated analytical system that enables high-throughput density measurements of diamagnetic particles (including cells) using magnetic levitation (MagLev), 96-well plates, and a flatbed scanner. MagLev is a simple and useful technique with which to carry out density-based analysis and separation of a broad range of diamagnetic materials with different physical forms (e.g., liquids, solids, gels, pastes, gums, etc.); one major limitation, however, is the capacity to perform high-throughput density measurements. This work addresses this limitation by (i) re-engineering the shape of the magnetic fields so that the MagLev system is compatible with 96-well plates, and (ii) integrating a flatbed scanner (and simple optical components) to carry out imaging of the samples that levitate in the system. The resulting system is compatible with both biological samples (human erythrocytes) and nonbiological samples (simple liquids and solids, such as 3-chlorotoluene, cholesterol crystals, glass beads, copper powder, and polymer beads). The high-throughput capacity of this integrated MagLev system will enable new applications in chemistry (e.g., analysis and separation of materials) and biochemistry (e.g., cellular responses under environmental stresses) in a simple and label-free format on the basis of a universal property of all matter, i.e., density.

  13. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Broad Funding Opportunity Announcement Project: Led by MIT professor Donald Sadoway, the Electroville project team is creating a community-scale electricity storage device using new materials and a battery design inspired by the aluminum production process known as smelting. A conventional battery includes a liquid electrolyte and a solid separator between its 2 solid electrodes. MIT’s battery contains liquid metal electrodes and a molten salt electrolyte. Because metals and salt don’t mix, these 3 liquids of different densities naturally separate into layers, eliminating the need for a solid separator. This efficient design significantly reduces packaging materials, which reduces cost and allowsmore » more space for storing energy than conventional batteries offer. MIT’s battery also uses cheap, earth-abundant, domestically available materials and is more scalable. By using all liquids, the design can also easily be resized according to the changing needs of local communities.« less

  15. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOEpatents

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  16. Communication: Effect of density on the physical aging of pressure-densified polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Casalini, R.; Roland, C. M.

    2017-09-01

    The rate of physical aging of glassy polymethylmethacrylate (PMMA), followed from the change in the secondary relaxation with aging, is found to be independent of the density, the latter controlled by the pressure during glass formation. Thus, the aging behavior of the secondary relaxation is the same whether the glass is more compacted or less dense than the corresponding equilibrium liquid. This equivalence in aging of glasses formed under different pressures indicates that local packing is the dominant variable governing the glassy dynamics. The fact that pressure densification yields different glass structures is at odds with a model for non-associated materials having dynamic properties exhibited by PMMA, such as density scaling of the relaxation time and isochronal superposition of the relaxation dispersion.

  17. The concept of quasi-tissue-equivalent nanodosimeter based on the glow peak 5a/5 in LiF:Mg,Ti (TLD-100).

    PubMed

    Oster, L; Horowitz, Y S; Biderman, S; Haddad, J

    2003-12-01

    We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.

  18. Low blow Charpy impact of silicon carbides

    NASA Technical Reports Server (NTRS)

    Abe, H.; Chandan, H. C.; Bradt, R. C.

    1978-01-01

    The room-temperature impact resistance of several commercial silicon carbides was examined using an instrumented pendulum-type machine and Charpy-type specimens. Energy balance compliance methods and fracture toughness approaches, both applicable to other ceramics, were used for analysis. The results illustrate the importance of separating the machine and the specimen energy contributions and confirm the equivalence of KIc and KId. The material's impact energy was simply the specimen's stored elastic strain energy at fracture.

  19. Transcript of proceedings: National Aeronautics and Space Administration, Goddard Space Flight Center, 1972 GSFC Battery Workshop, first day

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of the 1972 NASA/Goddard Battery Workshop are reported. Topics discussed include: separators, materials and processing, test and storage experience, and improved energy density systems.

  20. Assessment of the magnetic field exposure due to the battery current of digital mobile phones.

    PubMed

    Jokela, Kari; Puranen, Lauri; Sihvonen, Ari-Pekka

    2004-01-01

    Hand-held digital mobile phones generate pulsed magnetic fields associated with the battery current. The peak value and the waveform of the battery current were measured for seven different models of digital mobile phones, and the results were applied to compute approximately the magnetic flux density and induced currents in the phone-user's head. A simple circular loop model was used for the magnetic field source and a homogeneous sphere consisting of average brain tissue equivalent material simulated the head. The broadband magnetic flux density and the maximal induced current density were compared with the guidelines of ICNIRP using two various approaches. In the first approach the relative exposure was determined separately at each frequency and the exposure ratios were summed to obtain the total exposure (multiple-frequency rule). In the second approach the waveform was weighted in the time domain with a simple low-pass RC filter and the peak value was divided by a peak limit, both derived from the guidelines (weighted peak approach). With the maximum transmitting power (2 W) the measured peak current varied from 1 to 2.7 A. The ICNIRP exposure ratio based on the current density varied from 0.04 to 0.14 for the weighted peak approach and from 0.08 to 0.27 for the multiple-frequency rule. The latter values are considerably greater than the corresponding exposure ratios 0.005 (min) to 0.013 (max) obtained by applying the evaluation based on frequency components presented by the new IEEE standard. Hence, the exposure does not seem to exceed the guidelines. The computed peak magnetic flux density exceeded substantially the derived peak reference level of ICNIRP, but it should be noted that in a near-field exposure the external field strengths are not valid indicators of exposure. Currently, no biological data exist to give a reason for concern about the health effects of magnetic field pulses from mobile phones.

  1. Documentation of the seawater intrusion (SWI2) package for MODFLOW

    USGS Publications Warehouse

    Bakker, Mark; Schaars, Frans; Hughes, Joseph D.; Langevin, Christian D.; Dausman, Alyssa M.

    2013-01-01

    The SWI2 Package is the latest release of the Seawater Intrusion (SWI) Package for MODFLOW. The SWI2 Package allows three-dimensional vertically integrated variable-density groundwater flow and seawater intrusion in coastal multiaquifer systems to be simulated using MODFLOW-2005. Vertically integrated variable-density groundwater flow is based on the Dupuit approximation in which an aquifer is vertically discretized into zones of differing densities, separated from each other by defined surfaces representing interfaces or density isosurfaces. The numerical approach used in the SWI2 Package does not account for diffusion and dispersion and should not be used where these processes are important. The resulting differential equations are equivalent in form to the groundwater flow equation for uniform-density flow. The approach implemented in the SWI2 Package allows density effects to be incorporated into MODFLOW-2005 through the addition of pseudo-source terms to the groundwater flow equation without the need to solve a separate advective-dispersive transport equation. Vertical and horizontal movement of defined density surfaces is calculated separately using a combination of fluxes calculated through solution of the groundwater flow equation and a simple tip and toe tracking algorithm. Use of the SWI2 Package in MODFLOW-2005 only requires the addition of a single additional input file and modification of boundary heads to freshwater heads referenced to the top of the aquifer. Fluid density within model layers can be represented using zones of constant density (stratified flow) or continuously varying density (piecewise linear in the vertical direction) in the SWI2 Package. The main advantage of using the SWI2 Package instead of variable-density groundwater flow and dispersive solute transport codes, such as SEAWAT and SUTRA, is that fewer model cells are required for simulations using the SWI2 Package because every aquifer can be represented by a single layer of cells. This reduction in number of required model cells and the elimination of the need to solve the advective-dispersive transport equation results in substantial model run-time savings, which can be large for regional aquifers. The accuracy and use of the SWI2 Package is demonstrated through comparison with existing exact solutions and numerical solutions with SEAWAT. Results for an unconfined aquifer are also presented to demonstrate application of the SWI2 Package to a large-scale regional problem.

  2. Vermicomposting of source-separated human faeces by Eisenia fetida: effect of stocking density on feed consumption rate, growth characteristics and vermicompost production.

    PubMed

    Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor

    2011-06-01

    The main objective of the present study was to determine the optimum stocking density for feed consumption rate, biomass growth and reproduction of earthworm Eisenia fetida as well as determining and characterising vermicompost quantity and product, respectively, during vermicomposting of source-separated human faeces. For this, a number of experiments spanning up to 3 months were conducted using soil and vermicompost as support materials. Stocking density in the range of 0.25-5.00 kg/m(2) was employed in different tests. The results showed that 0.40-0.45 kg-feed/kg-worm/day was the maximum feed consumption rate by E. fetida in human faeces. The optimum stocking densities were 3.00 kg/m(2) for bioconversion of human faeces to vermicompost, and 0.50 kg/m(2) for earthworm biomass growth and reproduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  4. Radiological properties of plastics and TLD materials its application in radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Jabaseelan Samuel, E. James; Srinivasan, K.; Poopathi, V.

    2017-05-01

    In the current study, we evaluated the tissue equivalency of nine different commonly used thermoluminescence compounds and six plastic materials over the photon energy range of 15 KeV to 20 MeV. Our result confirmed that the ratio of number of electrons per gram, electron density of the entire TLD compounds and plastic materials to ICRU-44 soft tissue was lesser than unity, except in the case of polypropylene plastics. The effective atomic number ratio of all the plastic materials was also <1 excluding Poly-vinyl-chloride, and for TLD lithium borate material, it was <1 others which showed the deviation with respect to photon energy. Mass attenuation coefficient (µ/ϼ), mass absorption coefficient (µen/ρ) was calculated and the results are discussed in this paper.

  5. Particle Density Substitution Method for Trafficability of Soil in Different Gravity Environments

    NASA Astrophysics Data System (ADS)

    Huang, Chuan; Gao, Feng; Xie, Xiaolin; Jiang, Hui; Zeng, Wen

    2017-12-01

    By selecting metal powders with comparable particle size class, similar shape and material and almost the same void ratio but different particle densities, the influence of different gravity on the trafficability of soil under different states of gravitational fields is found to be equivalent to the change in particle density. This method is named particle density substitution. The shearing and bearing characteristics of simulated soil were studied. An influence of different factors on the experimental results was achieved, and a minimal influence of factors other than particle density on experimental results was obtained. Regression of shearing and bearing characteristics of the simulated soil was designed. The relationship between particle density and mechanical parameters of soil was fitted with curves. The formulation between particle density and maximal static thrust was established. By analyzing these data, the maximal static thrust slowly decreased with increasing particle density, reached the minimum when particle density was 3 g/cm3, and then sharply increased. This trend is consistent with the theoretical result. It can also certify that the particle density substitution method established here is reasonable.

  6. Synchronous separation, seaming, sealing and sterilization (S4) using brazing for sample containerization and planetary protection

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Lindsey, Cameron; Kutzer, Thomas; Salazar, Eduardo

    2018-03-01

    The return of samples back to Earth in future missions would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. This protection would require "breaking the chain of contact (BTC)", where any returned material reaching Earth for further analysis would have to be sealed inside a container with extremely high confidence. Therefore, the acquired samples would need to be contained while destroying any potential biological materials that may contaminate the external surface of the container. A novel process that could be used to contain returning samples has been developed and demonstrated in a quarter scale size. The process consists of brazing using non-contact induction heating that synchronously separates, seams, seals and sterilizes (S4) the container. The use of brazing involves melting at temperatures higher than 500°C and this level of heating assures sterilization of the exposed areas since all carbon bonds (namely, organic materials) are broken at this temperature. The mechanism consists of a double wall container with inner and outer shells having Earth-clean interior surfaces. The process consists of two-steps, Step-1: the double wall container halves are fabricated and brazed (equivalent to production on Earth); and Step-2 is the S4 process and it is the equivalent to the execution on-orbit around Mars. In a potential future mission, the double wall container would be split into two halves and prepared on Earth. The potential on-orbit execution would consist of inserting the orbiting sample (OS) container into one of the halves and then mated to the other half and brazed. The latest results of this effort will be described and discussed in this manuscript.

  7. Excessive centrifugal fields damage high density lipoprotein[S

    PubMed Central

    Munroe, William H.; Phillips, Martin L.; Schumaker, Verne N.

    2015-01-01

    HDL is typically isolated ultracentrifugally at 40,000 rpm or greater, however, such high centrifugal forces are responsible for altering the recovered HDL particle. We demonstrate that this damage to HDL begins at approximately 30,000 rpm and the magnitude of loss increases in a rotor speed-dependent manner. The HDL is affected by elevated ultracentrifugal fields resulting in a lower particle density due to the shedding of associated proteins. To circumvent the alteration of the recovered HDL, we utilize a KBr-containing density gradient and a lowered rotor speed of 15,000 rpm to separate the lipoproteins using a single 96 h centrifugation step. This recovers the HDL at two density ranges; the bulk of the material has a density of about 1.115 g/ml, while lessor amounts of material are recovered at >1.2 g/ml. Thus, demonstrating the isolation of intact HDL is possible utilizing lower centrifuge rotor speeds. PMID:25910941

  8. Passive fire protection in high density village (case study, Bustaman Semarang)

    NASA Astrophysics Data System (ADS)

    Sukawi, Sukawi; Wahyu Firmandhani, Satriya; Hardiman, Gagoek

    2017-12-01

    Fire hazard is the disaster that always has an unpredictable process of coming. When it comes, its level scope and the magnitude of the effects cannot be predicted. Dense settlements especially in big cities, among others Bustaman Kampong Semarang never escape from physical problems such as flooding and wildfire. If both are compared in dense settlements scope, so that, wild fire is the most potentially catastrophic. It is necessary to do a research on passive fire protection in a village of high density city such as Bustaman. Qualitative research was conducted using descriptive method to conduct observations and interviews in the Bustaman. Bustaman as a high density village, with narrow roads and dense rows of houses. The terraced buildings are also encountered, and found many buildings use combustible material. That environmental conditions can facilitate the propagation of flames in case of fire. To improve the established Bustaman's environment, in terms of the application of passive fire protection systems, it is recommended to utilize the road as the dividing buildings. Need to build the separation wall fireproof in every each series in several units of too long buildings and attempted open space procurement that separates rows of buildings that are too long, and also the replacement of combustible material with a material that is more incombustible.

  9. Water and tissue equivalence properties of biological materials for photons, electrons, protons and alpha particles in the energy region 10 keV-1 GeV: a comparative study.

    PubMed

    Kurudirek, Murat

    2016-09-01

    To compare some biological materials in respect to the water and tissue equivalence properties for photon, electron, proton and alpha particle interactions as means of the effective atomic number (Zeff) and electron density (Ne). A Z-wise interpolation procedure has been adopted for calculation of Zeff using the mass attenuation coefficients for photons and the mass stopping powers for charged particles. At relatively low energies (100 keV-3 MeV), Zeff and Ne for photons and electrons were found to be constant while they vary much more for protons and alpha particles. In contrast, Zeff and Ne for protons and alpha particles were found to be constant after 3 MeV whereas for photons and electrons they were found to increase with the increasing energy. Also, muscle eq. liquid (with sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) within low relative differences below 9%. Muscle eq. liquid (without sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) with difference below 10%. The reported data should be useful in determining best water as well as tissue equivalent materials for photon, electron, proton and alpha particle interactions.

  10. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.

    PubMed

    Meisterjahn, Boris; Wagner, Stephan; von der Kammer, Frank; Hennecke, Dieter; Hofmann, Thilo

    2016-04-01

    Flow-Field Flow Fractionation (Flow-FFF), coupled with online detection systems is one of the most promising tools available for the separation and quantification of engineered nanoparticles (ENPs) in complex matrices. To correctly relate the retention of nanoparticles in the Flow-FFF-channel to the particle size, ideal separation conditions must be met. This requires optimization of the parameters that influence the separation behavior. The aim of this study was therefore to systematically investigate and evaluate the influence of parameters such as the carrier liquid, the cross flow, and the membrane material, on the separation behavior of two metallic ENPs. For this purpose the retention, recovery, and separation efficiency of sterically stabilized silver nanoparticles (AgNPs) and electrostatically stabilized gold nanoparticles (AuNPs), which represent two materials widely used in investigations on environmental fate and ecotoxicology, were investigated against a parameter matrix of three different cross-flow densities, four representative carrier solutions, and two membrane materials. The use of a complex mixture of buffers, ionic and non-ionic surfactants (FL-70 solution) together with a medium cross-flow density provided an acceptable compromise in peak quality and recovery for both types of ENPs. However, these separation conditions do not represent a perfect match for both particle types at the same time (maximized recovery at maximized retention). It could be shown that the behavior of particles within Flow-FFF channels cannot be predicted or explained purely in terms of electrostatic interactions. Particles were irreversibly lost under conditions where the measured zeta potentials suggested that there should have been sufficient electrostatic repulsion to ensure stabilization of the particles in the Flow-FFF channel resulting in good recoveries. The wide variations that we observed in ENP behavior under different conditions, together with the different behavior that has been reported in published literature for the same NPs under similar conditions, indicate a need for improvement in the membrane materials used for Flow-FFF analysis of NPs. This research has shown that careful adjustment of separation conditions can result in acceptable, but not ideal, separation conditions for two fundamentally different stabilized materials, and that it may not be possible to separate a set of different particles under ideal conditions for each particle type. This therefore needs to be taking into account in method development and when interpreting FFF results from complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. 42 CFR 137.293 - Are Self-Governance Tribes required to adopt a separate resolution or take equivalent Tribal...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Are Self-Governance Tribes required to adopt a separate resolution or take equivalent Tribal action to assume environmental responsibilities for each...-GOVERNANCE Construction Nepa Process § 137.293 Are Self-Governance Tribes required to adopt a separate...

  12. 3-nitro-1,2,4-triazol-5-one: A less sensitive explosive

    DOEpatents

    Lee, Kien-Yin; Coburn, M.D.

    1987-01-30

    A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro--1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm/sup 3/ and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation. 3 tabs.

  13. 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive

    DOEpatents

    Lee, Kien-Yin; Coburn, Michael D.

    1988-01-01

    A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro-1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm.sup.3 and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation.

  14. Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Liu, Zheng-Hua; Chen, Xiao-Min; Long, Zhi-Li

    2015-05-01

    Investigating the ratcheting behavior of magnesium alloys is significant for the structure's reliable design. The uniaxial ratcheting behavior of AZ31B magnesium alloy is studied by the asymmetric cyclic stress-controlled experiments at room temperature. A modified kinematic hardening model is established to describe the uniaxial ratcheting behavior of the studied alloy. In the modified model, the material parameter m i is improved as an exponential function of the maximum equivalent stress. The modified model can be used to predict the ratcheting strain evolution of the studied alloy under the single-step and multi-step asymmetric stress-controlled cyclic loadings. Additionally, due to the significant effect of twinning on the plastic deformation of magnesium alloy, the relationship between the material parameter m i and the linear density of twins is discussed. It is found that there is a linear relationship between the material parameter m i and the linear density of twins induced by the cyclic loadings.

  15. Wet separation processes as method to separate limestone and oil shale

    NASA Astrophysics Data System (ADS)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  16. Relaxation, Structure and Properties of Semi-coherent Interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian

    2015-11-05

    Materials containing high density of interfaces are promising candidates for future energy technologies, because interfaces acting as sources, sinks, and barriers for defects can improve mechanical and irradiation properties of materials. Semi-coherent interface widely occurring in various materials is composed of a network of misfit dislocations and coherent regions separated by misfit dislocations. Lastly, in this article, we review relaxation mechanisms, structure and properties of (111) semi-coherent interfaces in face centered cubic structures.

  17. 2D Metal-Organic Frameworks Derived Nanocarbon Arrays for Substrate Enhancement in Flexible Supercapacitors.

    PubMed

    Liu, Ximeng; Guan, Cao; Hu, Yating; Zhang, Lei; Elshahawy, Abdelnaby M; Wang, John

    2017-10-27

    Direct assembling of active materials on carbon cloth (CC) is a promising way to achieve flexible electrodes for energy storage. However, the overall surface area and electrical conductivity of such electrodes are usually limited. Herein, 2D metal-organic framework derived nanocarbon nanowall (MOFC) arrays are successfully developed on carbon cloth by a facile solution + carbonization process. Upon growth of the MOFC arrays, the sites for growth of the active materials are greatly increased, and the equivalent series resistance is decreased, which contribute to the enhancement of the bare CC substrate. After decorating ultrathin flakes of MnO 2 and Bi 2 O 3 on the flexible CC/MOFC substrate, the hierarchical electrode materials show an abrupt improvement of areal capacitances by around 50% and 100%, respectively, compared to those of the active materials on pristine carbon cloth. A flexible supercapacitor can be further assembled using two hierarchical electrodes, which demonstrates an energy density of 124.8 µWh cm -2 at the power density of 2.55 mW cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. New Materials Developments for Military High Power Electronics and Capacitors

    DTIC Science & Technology

    2009-04-27

    parameters, permittivity and breakdown field strength, and can be given by equation 1. (1) Where U - energy density (J/ cm3), ε - relative material... permittivity εo - permittivity of free space (8.85418782 × 10-12 m-3 kg-1 s4 A2) Emax (V/µm) - maximum field strength before material breakdown... Permittivity can be described as the ability of the material to polar- ize in response to an electric field through separation of ions, twist- ing permanent

  19. Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains

    NASA Astrophysics Data System (ADS)

    Suvorov, A. P.; Selvadurai, A. P. S.

    2010-10-01

    Macroscopic constitutive equations for thermo-viscoelastic processes in a fully saturated porous medium are re-derived from basic principles of micromechanics applicable to solid multi-phase materials such as composites. Simple derivations of the constitutive relations and the void occupancy relationship are presented. The derivations use the notion of eigenstrain or, equivalently, eigenstress applied to the separate phases of a porous medium. Governing coupled equations for the displacement components and the fluid pressure are also obtained.

  20. Separators - Technology review: Ceramic based separators for secondary batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membranemore » - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.« less

  1. Separators - Technology review: Ceramic based separators for secondary batteries

    NASA Astrophysics Data System (ADS)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.

  2. Analysis of multi-layered films. [determining dye densities by applying a regression analysis to the spectral response of the composite transparency

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Voss, A. W.

    1973-01-01

    Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.

  3. Feasibility of 3D printed air slab diode caps for small field dosimetry.

    PubMed

    Perrett, Benjamin; Charles, Paul; Markwell, Tim; Kairn, Tanya; Crowe, Scott

    2017-09-01

    Commercial diode detectors used for small field dosimetry introduce a field-size-dependent over-response relative to an ideal, water-equivalent dosimeter due to high density components in the body of the detector. An air gap above the detector introduces a field-size-dependent under-response, and can be used to offset the field-size-dependent detector over-response. Other groups have reported experimental validation of caps containing air gaps for use with several types of diodes in small fields. This paper examines two designs for 3D printed diode air caps for the stereotactic field diode (SFD)-a cap containing a sealed air cavity, and a cap with an air cavity at the face of the SFD. Monte Carlo simulations of both designs were performed to determine dimensions for an air cavity to introduce the desired dosimetric correction. Various parameter changes were also simulated to estimate the dosimetric uncertainties introduced by 3D printing. Cap layer dimensions, cap density changes due to 3D printing, and unwanted air gaps were considered. For the sealed design the optimal air gap size for water-equivalent cap material was 0.6 mm, which increased to 1.0 mm when acrylonitrile butadiene styrene in the cap was simulated. The unsealed design had less variation, a 0.4 mm air gap is optimal in both situations. Unwanted air pockets in the bore of the cap and density changes introduced by the 3D printing process can potentially introduce significant dosimetric effects. These effects may be limited by using fine print resolutions and minimising the volume of cap material.

  4. A novel mechanical model for phase-separation in debris flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  5. Effects of oxide additions and temperature on sinterability of milled silicon nitride

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1980-01-01

    Specimens of milled alpha-Si3N4 with 0 to 5.07 equivalent percent of oxide additions were pressureless sintered at 1650 to 1820 C for 4 hours in nitrogen while covered with powdered Si3N4 + SiO2. Densities of less than or equal to 97.5 percent resulted with approximately 2.5 equivalent percent of MgO, CeO2, Y2O3, and three mixtures involving these oxides. Densities of greater than or equal to 94 percent were obtained with approximately 0.62 equivalent percent of the same additives. At most temperatures, best sinterability (density maxima) was obtained with 1.2 to 2.5 equivalent percent additive.

  6. TECHNICAL NOTE: System for monitoring the evolution of the thermal expansion coefficient and autogenous deformation of hardening materials

    NASA Astrophysics Data System (ADS)

    Viviani, M.; Glisic, B.; Smith, I. F. C.

    2006-12-01

    This article presents an experimental system developed to determine the kinetic parameters of hardening materials. Kinetic parameters allow computation of the degree of reaction indices (DRIs). DRIs are used in predictive formulae for strength and are used to decouple the autogenous deformation (AD) and thermal deformation (TD). Although there are several methods to determine values for kinetic reaction parameters, most require extensive testing and large databases. A measurement system has been developed in order to determine kinetic parameters. The measurement system consists of optical fiber sensors embedded in specimens that are cured at varying temperatures and conditions. Sensors are used in pairs inside each specimen, and each pair has two deformation sensors that, aside from their axial stiffness, have the same characteristics. The study of the interaction between sensors and hardening material leads to establishment of a link between the deformations measured and the degree of reaction, by means of the newly developed concept of the equivalency point. The equivalency point is assumed to be an indicator of the degree of reaction and it allows the determination of the apparent activation energy (Ea) which defines the equivalent time. Equivalent time is a degree of reaction index (DRI) and it accounts for the combined effect of time and temperature in concrete. This new methodology has been used to predict the compressive strength and separate the AD and thermal expansion coefficient (TEC) in seven types of concrete. The measurement system allows gathering of data necessary for fast and efficient predictions. Due to its robustness and reduced dimensions it also has potential for in situ application.

  7. Einstein-Podolsky-Rosen-like separability indicators for two-mode Gaussian states

    NASA Astrophysics Data System (ADS)

    Marian, Paulina; Marian, Tudor A.

    2018-02-01

    We investigate the separability of the two-mode Gaussian states (TMGSs) by using the variances of a pair of Einstein-Podolsky-Rosen (EPR)-like observables. Our starting point is inspired by the general necessary condition of separability introduced by Duan et al (2000 Phys. Rev. Lett. 84 2722). We evaluate the minima of the normalized forms of both the product and sum of such variances, as well as that of a regularized sum. Making use of Simon’s separability criterion, which is based on the condition of positivity of the partial transpose (PPT) of the density matrix (Simon 2000 Phys. Rev. Lett. 84 2726), we prove that these minima are separability indicators in their own right. They appear to quantify the greatest amount of EPR-like correlations that can be created in a TMGS by means of local operations. Furthermore, we reconsider the EPR-like approach to the separability of TMGSs which was developed by Duan et al with no reference to the PPT condition. By optimizing the regularized form of their EPR-like uncertainty sum, we derive a separability indicator for any TMGS. We prove that the corresponding EPR-like condition of separability is manifestly equivalent to Simon’s PPT one. The consistency of these two distinct approaches (EPR-like and PPT) affords a better understanding of the examined separability problem, whose explicit solution found long ago by Simon covers all situations of interest.

  8. A formulation of tissue- and water-equivalent materials using the stoichiometric analysis method for CT-number calibration in radiotherapy treatment planning.

    PubMed

    Yohannes, Indra; Kolditz, Daniel; Langner, Oliver; Kalender, Willi A

    2012-03-07

    Tissue- and water-equivalent materials (TEMs) are widely used in quality assurance and calibration procedures, both in radiodiagnostics and radiotherapy. In radiotherapy, particularly, the TEMs are often used for computed tomography (CT) number calibration in treatment planning systems. However, currently available TEMs may not be very accurate in the determination of the calibration curves due to their limitation in mimicking radiation characteristics of the corresponding real tissues in both low- and high-energy ranges. Therefore, we are proposing a new formulation of TEMs using a stoichiometric analysis method to obtain TEMs for the calibration purposes. We combined the stoichiometric calibration and the basic data method to compose base materials to develop TEMs matching standard real tissues from ICRU Report 44 and 46. First, the CT numbers of six materials with known elemental compositions were measured to get constants for the stoichiometric calibration. The results of the stoichiometric calibration were used together with the basic data method to formulate new TEMs. These new TEMs were scanned to validate their CT numbers. The electron density and the stopping power calibration curves were also generated. The absolute differences of the measured CT numbers of the new TEMs were less than 4 HU for the soft tissues and less than 22 HU for the bone compared to the ICRU real tissues. Furthermore, the calculated relative electron density and electron and proton stopping powers of the new TEMs differed by less than 2% from the corresponding ICRU real tissues. The new TEMs which were formulated using the proposed technique increase the simplicity of the calibration process and preserve the accuracy of the stoichiometric calibration simultaneously.

  9. Chemistry and Processing of Nanostructured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, G A; Baumann, T F; Hope-Weeks, L J

    2002-01-18

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation ofmore » these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.« less

  10. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  11. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  12. Basis material decomposition method for material discrimination with a new spectrometric X-ray imaging detector

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Gorecki, A.; Potop, A.; Paulus, C.; Verger, L.

    2017-08-01

    Energy sensitive photon counting X-ray detectors provide energy dependent information which can be exploited for material identification. The attenuation of an X-ray beam as a function of energy depends on the effective atomic number Zeff and the density. However, the measured attenuation is degraded by the imperfections of the detector response such as charge sharing or pile-up. These imperfections lead to non-linearities that limit the benefits of energy resolved imaging. This work aims to implement a basis material decomposition method which overcomes these problems. Basis material decomposition is based on the fact that the attenuation of any material or complex object can be accurately reproduced by a combination of equivalent thicknesses of basis materials. Our method is based on a calibration phase to learn the response of the detector for different combinations of thicknesses of the basis materials. The decomposition algorithm finds the thicknesses of basis material whose spectrum is closest to the measurement, using a maximum likelihood criterion assuming a Poisson law distribution of photon counts for each energy bin. The method was used with a ME100 linear array spectrometric X-ray imager to decompose different plastic materials on a Polyethylene and Polyvinyl Chloride base. The resulting equivalent thicknesses were used to estimate the effective atomic number Zeff. The results are in good agreement with the theoretical Zeff, regardless of the plastic sample thickness. The linear behaviour of the equivalent lengths makes it possible to process overlapped materials. Moreover, the method was tested with a 3 materials base by adding gadolinium, whose K-edge is not taken into account by the other two materials. The proposed method has the advantage that it can be used with any number of energy channels, taking full advantage of the high energy resolution of the ME100 detector. Although in principle two channels are sufficient, experimental measurements show that the use of a high number of channels significantly improves the accuracy of decomposition by reducing noise and systematic bias.

  13. Equivalent peak resolution: characterization of the extent of separation for two components based on their relative peak overlap.

    PubMed

    Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav

    2015-03-01

    Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Simulation-aided constitutive law development - Assessment of low triaxiality void nucleation models via extended finite element method

    NASA Astrophysics Data System (ADS)

    Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob

    2017-05-01

    In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.

  15. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  16. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors.

    PubMed

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-24

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g(-1) at a current density of 2 A g(-1), which is higher than the capacitance of bare G (145 F g(-1)) and bare Ni (3 F g(-1)). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g(-1) at a current density of 5 A g(-1) and a capacitance of 144 F g(-1) at a current density of 10 A g(-1). The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  17. The equivalent depth of burst for impact cratering

    NASA Technical Reports Server (NTRS)

    Holsapple, K. A.

    1980-01-01

    The concept of modeling an impact cratering event with an explosive event with the explosive buried at some equivalent depth of burst (d.o.b.) is discussed. Various and different ways to define this equivalent d.o.b. are identified. Recent experimental results for a dense quartz sand are used to determine the equivalent d.o.b. for various conditions of charge type, event size, and impact conditions. The results show a decrease in equivalent d.o.b. with increasing energy for fixed impact velocity and a decrease in equivalent d.o.b. with increasing velocity for fixed energy. The values for an iron projectile are on the order of 2-3 projectile radii for energy equal to one ton of TNT, decreasing to about 1.5 radii at a megaton of TNT. The dependence on projectile and target mass density matches that included in common jet-penetration formulas for projectile densities greater than target densities and for the higher energies.

  18. Hybrid energy storage systems utilizing redox active organic compounds

    DOEpatents

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  19. [The effect of composition and structure of radiological equivalent materials on radiological equivalent].

    PubMed

    Wang, Y; Lin, D; Fu, T

    1997-03-01

    Morphology of inorganic material powders before and after being treated by ultrafine crush was observed by transformite electron microscope. The length and diameter of granules were measured. Polymers inorganic material powders before and after being treated by ultrafine crush were used for preparing radiological equivalent materials. Blending compatibility of inorganic meterials with polymer materials was observed by scanning electron microscope. CT values of tissue equivalent materials were measured by X-ray CT. Distribution of inorganic materials was examined. The compactness of materials was determined by the water absorbed method. The elastic module of materials was measured by laser speckle interferementry method. The results showed that the inorganic material powders treated by the ultrafine crush blent well with polymer and the distribution of these powders in the polymer was homogeneous. The equivalent errors of linear attenuation coefficients and CT values of equivalent materials were small. Their elastic modules increased one order of magnitude from 6.028 x 10(2) kg/cm2 to 9.753 x 10(3) kg/cm2. In addition, the rod inorganic material powders having rod granule blent easily with polymer. The present study provides a theoretical guidance and experimental basis for the design and synthesis of radiological equivalent materials.

  20. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...

  1. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...

  2. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...

  3. Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification

    NASA Astrophysics Data System (ADS)

    Yu, Linfeng; Zhang, Shengmiao; Zhang, Meng; Chen, Jianding

    2017-12-01

    For the promising material for both oil/water separation and water-soluble contaminants, the Dye@TiO2-TEOS/VTEO hybrid modified polyester fabric is developed by a simple dip-coating process, which combines Dye-sensitised TiO2 with silicon contained superhydrophobic coating to guarantee the long-term stability of Dye-sensitised TiO2 system as well as material's sustainability. The modified fabric possesses selective oil/water seperation properties towards water and oil, besides, mechanical, acid and alkali durability shows this material's appropriate performance on oil/water separation. UV-Vis absorption spectrum reveals the Dye 4-(2H-imidazol-2-ylazo) benzoic acid could sensitize the semiconductor TiO2 for visible light catalytic organic pollutant degradation that is also confirmed by methylene blue degradation experiment. Density Functional calculation (DFT) witnesses that HOMO, HOMO-1 of Dye contributed by oxygen bonding to TiO2 can insert into TiO2 band gap and result in low energy electron excitation. The ability of oil/water separation and water-soluble contaminants purification provides the material opportunity to practical applications in environmental restoration and human life.

  4. Exploring the relationship between population density and maternal health coverage.

    PubMed

    Hanlon, Michael; Burstein, Roy; Masters, Samuel H; Zhang, Raymond

    2012-11-21

    Delivering health services to dense populations is more practical than to dispersed populations, other factors constant. This engenders the hypothesis that population density positively affects coverage rates of health services. This hypothesis has been tested indirectly for some services at a local level, but not at a national level. We use cross-sectional data to conduct cross-country, OLS regressions at the national level to estimate the relationship between population density and maternal health coverage. We separately estimate the effect of two measures of density on three population-level coverage rates (6 tests in total). Our coverage indicators are the fraction of the maternal population completing four antenatal care visits and the utilization rates of both skilled birth attendants and in-facility delivery. The first density metric we use is the percentage of a population living in an urban area. The second metric, which we denote as a density score, is a relative ranking of countries by population density. The score's calculation discounts a nation's uninhabited territory under the assumption those areas are irrelevant to service delivery. We find significantly positive relationships between our maternal health indicators and density measures. On average, a one-unit increase in our density score is equivalent to a 0.2% increase in coverage rates. Countries with dispersed populations face higher burdens to achieve multinational coverage targets such as the United Nations' Millennial Development Goals.

  5. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    NASA Astrophysics Data System (ADS)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  6. High-Sensitivity Measurement of Density by Magnetic Levitation.

    PubMed

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density <10(-4) g/cm(3) for macroscopic objects (>mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  7. Metal-organic framework-based separator for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen

    2016-07-01

    Lithium-sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal-organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium-sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium-sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ip, Hiu Yan; Schmidt, Fabian, E-mail: iphys@mpa-garching.mpg.de, E-mail: fabians@mpa-garching.mpg.de

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the 'separate universe' paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effectsmore » are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.« less

  9. Spectroscopic Observations of a Solar Flare and the Associated Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Murray, S.; Tian, H.; McKillop, S.

    2013-12-01

    We used data from the EUV Imaging Spectrometer (EIS) on board Hinode to examine a coronal mass ejection and a preceding flare observed on 21 November 2012 between 15:00 and 17:00 UT. Images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory were used to align the data from EIS with specific events occurring. We analyzed spectra of a few emission lines at three locations on the flare site and one location in the erupting prominence. On the flare site, we found line profiles showing typical characteristics of chromospheric evaporation: downflows at cooler lines and upflows at hotter lines. At one particular location on the flare site, we clearly identified dominant downflows on the order of 100 km/s in lines through Fe VIII to Fe XVI. To the best of our knowledge, this is the first time that such strong high-speed downflows have been spectroscopically observed in the impulsive phase of solar flares. The profile of the Fe VIII 184.54 line reveals two peaks and we were able to use the double Gaussian fit to separate the rapid downflows of dense material from the nearly stationary coronal background emission. For the erupting prominence, we were able to analyze multiple lines, cooler and warmer, of interest using this double Gaussian fit to separate the background emission from the emission of the ejected material. Our results show that the LOS velocities of the ejected material are about 100 km/s in the lower corona. Additionally, in each region of interest, we used the ratio of the density-sensitive line pair FeXII 195/186 to determine the electron density. Our results clearly show that the coronal densities were greatly enhanced during the flare. The density of the ejected material is also much larger than the typical coronal density. This research was supported by the NSF grant for the Solar Physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241).

  10. Influence of shape and size of the particles on jigging separation of plastics mixture.

    PubMed

    Pita, Fernando; Castilho, Ana

    2016-02-01

    Plastics are popular for numerous applications due to their high versatility and favourable properties such as endurance, lightness and cheapness. Therefore the generation of plastic waste is constantly increasing, becoming one of the larger categories in municipal solid waste. Almost all plastic materials are recyclable, but for the recycling to be possible it is necessary to separate the different types of plastics. The aim of this research was to evaluate the performance of the jig separation of bi-component plastic mixtures. For this study six granulated plastics had been used: Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D). Plastics mixtures were subjected to jigging in a laboratorial Denver mineral jig. The results showed that the quality of the jigging separation varies with the mixture, the density differences and with the size and shape of the particles. In the case of particles with more regular shapes the quality of separation of bi-component plastic mixtures improved with the increase of the particle size. For lamellar particles the influence of particle size was minimal. In general, the beneficiation of plastics with similar densities was not effective, since the separation efficiency was lower than 25%. However, in bi-component plastic mixtures that join a low density plastic (PS) with a high density one (PMMA, PET-S, PET-D, PVC-M and PVC-D), the quality of the jigging separation was greatly improved. The PS grade in the sunk was less than 1% for all the plastic mixtures. Jigging proved to be an effective method for the separation of bi-component plastic mixtures. Jigging separation will be enhanced if the less dense plastic, that overflows, has a lamellar shape and if the denser plastic, that sinks, has a regular one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Buoyancy of gas-filled bladders at great depth

    NASA Astrophysics Data System (ADS)

    Priede, Imants G.

    2018-02-01

    At high hydrostatic pressures exceeding 20 MPa or 200 bar, equivalent to depths exceeding ca.2000 m, the behaviour of gases deviates significantly from the predictions of standard equations such as Boyle's Law, the Ideal Gas Law and Van der Waals equation. The predictions of these equations are compared with experimental data for nitrogen, oxygen and air at 0 °C and 15 °C, at pressures up to 1100 bar (110 MPa) equivalent to full ocean depth of ca. 11000 m. Owing to reduced compressibility of gases at high pressures, gas-filled bladders at full ocean depth have a density of 847 kg m-3 for Oxygen, 622 kg m-3 for Nitrogen and 660 kg m-3 for air providing potentially useful buoyancy comparable with that available from man-made materials. This helps explain why some of the deepest-living fishes at ca. 7000 m depth (700 bar or 70 MPa) have gas-filled swim bladders. A table is provided of the density and buoyancy of oxygen, nitrogen and air at 0 °C and 15 °C from 100 to 1100 bar.

  12. Desorption and Bioavailability of PAHs in Contaminated Soil Subjected to Long-Term In Situ Biostimulation

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    The distribution and potential bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil from a former manufactured-gas plant (MGP) site were examined before and after long-term biostimulation under simulated in situ conditions. Treated soil was collected from the oxygenated zones of two continuous-flow columns, one subjected to biostimulation and the other serving as a control, and separated into low- and high-density fractions. In the original soil, over 50% of the total PAH mass was associated with lower-density particles, which comprised < 2% of the total soil mass. However, desorbable fractions of PAHs were much lower in the low-density material than in the high-density material. After over 500 d of biostimulation, significant removal of total PAHs occurred in both the high- and low-density materials (77% and 53%, respectively), with three- and four-ring PAHs accounting for the majority of the observed mass loss. Total PAHs that desorbed over a 28-d period were substantially lower in treated soil from the biostimulated column than in the original soil for both the high-density material (23 versus 63%) and low-density material (5 versus 20%). The fast-desorbing fractions quantified by a two-site desorption model ranged from 0.1 to 0.5 for most PAHs in the original soil but were essentially zero in the biostimulated soil. The fast-desorbing fractions in the original soil underestimated the extent of PAH biodegradation observed in the biostimulated column, and thus was not a good predictor of PAH bioavailability after long-term, simulated in situ biostimulation. PMID:21932296

  13. Separation of Flame and Nonflame-retardant Plastics Utilizing Magneto-Archimedes Method

    NASA Astrophysics Data System (ADS)

    Misawa, Kohei; Kobayashi, Takayuki; Mori, Tatsuya; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-07-01

    In physical recycling process, the quality of recycled plastics becomes usually poor in case various kinds of plastic materials are mixed. In order to solve the problem, we tried to separate flame and nonflame-retardant plastics used for toner cartridges as one example of mixed plastics by using magneto-Archimedes method. By using this method, we can control levitation and settlement of the particles in the medium by controlling the density and magnetic susceptibility of the medium and the magnetic field. In this study, we introduced the separation system of plastics by the combination of wet type specific gravity separation and magneto-Archimedes separation. In addition, we examined continuous and massive separation by introducing the system which can separate the plastics continuously in the flowing fluid.

  14. Optimized growth and reorientation of anisotropic material based on evolution equations

    NASA Astrophysics Data System (ADS)

    Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus

    2018-07-01

    Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.

  15. New Titan Saltation Threshold Experiments: Investigating Current and Past Climates

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Burr, D. M.; Marshall, J.; Smith, J. K.; Emery, J. P.; Horst, S. M.; Nield, E.; Yu, X.

    2015-12-01

    Titan exhibits aeolian sand dunes that cover ~20% of its surface, attesting to significant sediment transport by the wind. Recent experiments in the Titan Wind Tunnel (TWT) at NASA Ames Research Center [1,2] found that the threshold friction speed needed to detach Titanian "sand" is about 50% higher than previous estimates based on theory alone [3], a result that might be explained by the low ratio of particle to fluid density on the body [1]. Following the successful completion of the initial Titan threshold tests, we are conducting new experiments that expand the pressure range above and below current Titan values. The basic experimental techniques are described in [1], with minor updates to the instrumentation as described in [2]. To reproduce the kinematic viscosity and particle friction Reynolds number equivalent to that expected for Titan's nitrogen atmosphere at 1.4 bars and 94 K requires that TWT be pressurized to 12.5 bars for air at 293K. In addition to running experiments at this pressure to reproduce previous results [1] and investigate low density (high density ratio) materials, TWT pressures of 3 and 8 bars are in the experimental matrix to understand threshold under past Titan conditions when the atmospheric pressure may have been lower [4]. Higher pressures, at 15 and 20 bars in TWT, are also being run to understand the putative effects of low density ratio conditions. Our experimental matrix for this follow-on work uses some of the same materials as previously used, including walnut shells, basalt, quartz, glass spheres, and various low density materials to better simulate the gravity-equivalent weight of Titan sand. For these experiments, the TWT is now equipped with a new high pressure Tavis transducer with sufficient sensitivity to measure freestream speeds of less than 0.5 m s-1 at 12.5 bars. New techniques include video documentation of the experiments. We are also investigating methods of measuring humidity of the wind tunnel environment and electrostatic forces to assess their effect on threshold. [1] Burr, D.M. et al. [2015], Nature, 517, 60-67. [2] Burr, D.M. et al. [2015], Aeolian Res., in press [3] Iversen, J.D. and B.R. White (1982), Sedimentology, 29, 111-119. [4] Charnay, B. et al. [2014], Icarus, 241, 269-279.

  16. Studies on heavy charged particle interaction, water equivalence and Monte Carlo simulation in some gel dosimeters, water, human tissues and water phantoms

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2015-09-01

    Some gel dosimeters, water, human tissues and water phantoms were investigated with respect to their radiological properties in the energy region 10 keV-10 MeV. The effective atomic numbers (Zeff) and electron densities (Ne) for some heavy charged particles such as protons, He ions, B ions and C ions have been calculated for the first time for Fricke, MAGIC, MAGAT, PAGAT, PRESAGE, water, adipose tissue, muscle skeletal (ICRP), muscle striated (ICRU), plastic water, WT1 and RW3 using mass stopping powers from SRIM Monte Carlo software. The ranges and straggling were also calculated for the given materials. Two different set of mass stopping powers were used to calculate Zeff for comparison. The water equivalence of the given materials was also determined based on the results obtained. The Monte Carlo simulation of the charged particle transport was also done using SRIM code. The heavy ion distribution along with its parameters were shown for the given materials for different heavy ions. Also the energy loss and damage events in water when irradiated with 100 keV heavy ions were studied in detail.

  17. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Estimation of effective x-ray tissue attenuation differences for volumetric breast density measurement

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Ruth, Chris; Jing, Zhenxue; Ren, Baorui; Smith, Andrew; Kshirsagar, Ashwini

    2014-03-01

    Breast density has been identified to be a risk factor of developing breast cancer and an indicator of lesion diagnostic obstruction due to masking effect. Volumetric density measurement evaluates fibro-glandular volume, breast volume, and breast volume density measures that have potential advantages over area density measurement in risk assessment. One class of volume density computing methods is based on the finding of the relative fibro-glandular tissue attenuation with regards to the reference fat tissue, and the estimation of the effective x-ray tissue attenuation differences between the fibro-glandular and fat tissue is key to volumetric breast density computing. We have modeled the effective attenuation difference as a function of actual x-ray skin entrance spectrum, breast thickness, fibro-glandular tissue thickness distribution, and detector efficiency. Compared to other approaches, our method has threefold advantages: (1) avoids the system calibration-based creation of effective attenuation differences which may introduce tedious calibrations for each imaging system and may not reflect the spectrum change and scatter induced overestimation or underestimation of breast density; (2) obtains the system specific separate and differential attenuation values of fibroglandular and fat for each mammographic image; and (3) further reduces the impact of breast thickness accuracy to volumetric breast density. A quantitative breast volume phantom with a set of equivalent fibro-glandular thicknesses has been used to evaluate the volume breast density measurement with the proposed method. The experimental results have shown that the method has significantly improved the accuracy of estimating breast density.

  19. Super Dielectric Material Based Capacitors: Punched Membrane/Gel

    NASA Astrophysics Data System (ADS)

    Petty, C. W.; Phillips, J.

    2018-05-01

    Extensive testing showed, as predicted, that punched membranes, filled with a gel containing aqueous salt solutions, behave as superdielectric materials (SDM). Punched membrane superdielectrics employed herein consisted of a commercial cellulose based membrane material, Celgard 16 μ thick, a material frequently used as a separator material in supercapacitors, into which macroscopic holes (ca. 2.5 mm) were punched with a laser cutter, and the holes subsequently filled with a gel-like material composed of fumed silica, NaCl and water. The gross dielectric constants measured, generally > 105, and the energy densities, > 40 J/cm3 during slow discharge, were in the range expected for superdielectric materials. The measured capacitance and energy density tracked the number of holes punched/area filled with the dielectric gel. Also, the observed power law decrease in all parameters including energy, power and capacitance, followed the same trends observed in other classes of SDM. Control studies included testing dielectrics composed of Celgard into which no holes were punched, but the SDM gel spread, also produced values consistent with the SDM model: no measurable capacitance using the standard protocol. Finally, the values measured suggest these materials rival the energy density of some common battery types at low discharge rates, and surpass the best commercial supercapacitors at low discharge rates.

  20. Effective elastic moduli of triangular lattice material with defects

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Liang, Naigang

    2012-10-01

    This paper presents an attempt to extend homogenization analysis for the effective elastic moduli of triangular lattice materials with microstructural defects. The proposed homogenization method adopts a process based on homogeneous strain boundary conditions, the micro-scale constitutive law and the micro-to-macro static operator to establish the relationship between the macroscopic properties of a given lattice material to its micro-discrete behaviors and structures. Further, the idea behind Eshelby's equivalent eigenstrain principle is introduced to replace a defect distribution by an imagining displacement field (eigendisplacement) with the equivalent mechanical effect, and the triangular lattice Green's function technique is developed to solve the eigendisplacement field. The proposed method therefore allows handling of different types of microstructural defects as well as its arbitrary spatial distribution within a general and compact framework. Analytical closed-form estimations are derived, in the case of the dilute limit, for all the effective elastic moduli of stretch-dominated triangular lattices containing fractured cell walls and missing cells, respectively. Comparison with numerical results, the Hashin-Shtrikman upper bounds and uniform strain upper bounds are also presented to illustrate the predictive capability of the proposed method for lattice materials. Based on this work, we propose that not only the effective Young's and shear moduli but also the effective Poisson's ratio of triangular lattice materials depend on the number density of fractured cell walls and their spatial arrangements.

  1. Novel methodology to isolate microplastics from vegetal-rich samples.

    PubMed

    Herrera, Alicia; Garrido-Amador, Paloma; Martínez, Ico; Samper, María Dolores; López-Martínez, Juan; Gómez, May; Packard, Theodore T

    2018-04-01

    Microplastics are small plastic particles, globally distributed throughout the oceans. To properly study them, all the methodologies for their sampling, extraction, and measurement should be standardized. For heterogeneous samples containing sediments, animal tissues and zooplankton, several procedures have been described. However, definitive methodologies for samples, rich in algae and plant material, have not yet been developed. The aim of this study was to find the best extraction protocol for vegetal-rich samples by comparing the efficacies of five previously described digestion methods, and a novel density separation method. A protocol using 96% ethanol for density separation was better than the five digestion methods tested, even better than using H 2 O 2 digestion. As it was the most efficient, simple, safe and inexpensive method for isolating microplastics from vegetal rich samples, we recommend it as a standard separation method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Energy deposition in ultrathin extreme ultraviolet resist films: extreme ultraviolet photons and keV electrons

    NASA Astrophysics Data System (ADS)

    Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.

    2016-07-01

    The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.

  3. A review of recent developments in rechargeable lithium-sulfur batteries.

    PubMed

    Kang, Weimin; Deng, Nanping; Ju, Jingge; Li, Quanxiang; Wu, Dayong; Ma, Xiaomin; Li, Lei; Naebe, Minoo; Cheng, Bowen

    2016-09-22

    The research and development of advanced energy-storage systems must meet a large number of requirements, including high energy density, natural abundance of the raw material, low cost and environmental friendliness, and particularly reasonable safety. As the demands of high-performance batteries are continuously increasing, with large-scale energy storage systems and electric mobility equipment, lithium-sulfur batteries have become an attractive candidate for the new generation of high-performance batteries due to their high theoretical capacity (1675 mA h g -1 ) and energy density (2600 Wh kg -1 ). However, rapid capacity attenuation with poor cycle and rate performances make the batteries far from ideal with respect to real commercial applications. Outstanding breakthroughs and achievements have been made to alleviate these problems in the past ten years. This paper presents an overview of recent advances in lithium-sulfur battery research. We cover the research and development to date on various components of lithium-sulfur batteries, including cathodes, binders, separators, electrolytes, anodes, collectors, and some novel cell configurations. The current trends in materials selection for batteries are reviewed and various choices of cathode, binder, electrolyte, separator, anode, and collector materials are discussed. The current challenges associated with the use of batteries and their materials selection are listed and future perspectives for this class of battery are also discussed.

  4. Study on Separation of Structural Isomer with Magneto-Archimedes method

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Mori, T.; Akiyama, Y.; Mishima, F.; Nishijima, S.

    2017-09-01

    Organic compounds are refined by separating their structural isomers, however each separation method has some problems. For example, distillation consumes large energy. In order to solve these problems, new separation method is needed. Considering organic compounds are diamagnetic, we focused on magneto-Archimedes method. With this method, particle mixture dispersed in a paramagnetic medium can be separated in a magnetic field due to the difference of the density and magnetic susceptibility of the particles. In this study, we succeeded in separating isomers of phthalic acid as an example of structural isomer using MnCl2 solution as the paramagnetic medium. In order to use magneto-Archimedes method for separating materials for food or medicine, we proposed harmless medium using oxygen and fluorocarbon instead of MnCl2 aqueous solution. As a result, the possibility of separating every structural isomer was shown.

  5. Material Identification and Quantification in Spectral X-ray Micro-CT

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas Wesley

    The identification and quantification of all the voxels within a reconstructed microCT image was possible through making comparisons of the attenuation profile from an unknown voxel with precalculated signatures of known materials. This was accomplished through simulations with the MCNP6 general-purpose radiation-transport package that modeled a CdTe detector array consisting of 200 elements which were able to differentiate between 100 separate energy bins over the entire range of the emitted 110 kVp tungsten x-ray spectra. The information from each of the separate energy bins was then used to create a single reconstructed image that was then grouped back together to produce a final image where each voxel had a corresponding attenuation pro le. A library of known attenuation profiles was created for each of the materials expected to be within an object with otherwise unknown parameters. A least squares analysis was performed, and comparisons were then made for each voxel's attenuation profile in the unknown object and combinations of each possible library combination of attenuation profiles. Based on predetermined thresholds that the results must meet, some of the combinations were then removed. Of the remaining combinations, a voting system based on statistical evaluations of the fits was designed to select the most appropriate material combination to the input unknown voxel. This was performed over all of the voxels in the reconstructed image and a final resulting material map was produced. These material locations were then quantified by creating an equation of the response from several different densities of the same material and recording the response of the base library. This entire process was called the All Combinations Library Least Squares (ACLLS)analysis and was used to test several Different models. These models investigated a range of densities for the x-ray contrast agents of gold and gadolinium that can be used in many medical applications, as well as a range of densities of bone to test the ACLLS ability to be used with bone density estimation. A final test used a model with five different materials present within the object and consisted of two separate features with mixtures of three materials as gold, iodine and water, and another feature with gadolinium, iodine and water. The remaining four features were all mixtures of water with bone, gold, gadolinium, and iodine. All of the various material mixtures were successfully identified and quantified using the ACLLS analysis package within an acceptable statistical range. The ACLLS method has proven itself as a viable analysis tool for determining both the physical locations and the amount of all the materials present within a given object. This tool could be implemented in the future so as to further assist a team of medical practitioners in diagnosing a subject through reducing ambiguities in an image and providing a quantifiable solution to all of the voxels.

  6. Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.

    PubMed

    Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun

    2016-04-15

    Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed.

    PubMed

    Krüger, B; Mrotzek, A; Wirtz, S

    2014-02-01

    In firing systems of cement production plants and coal-fired power plants, regular fossil fuels are increasingly substituted by alternative fuels. Rising energy prices and ambitious CO2-reduction goals promote the use of alternative fuels as a significant contribution to efficient energy recovery. One possibility to protect energy resources are refuse-derived fuels (RDF), which are produced during the treatment of municipal solid, commercial and industrial waste. The waste fractions suitable for RDF have a high calorific value and are often not suitable for material recycling. With current treatment processes, RDF still contains components which impede the utilization in firing systems or limit the degree of substitution. The content of these undesired components may amount to 4 wt%. These, in most cases incombustible particles which consist of mineral, ceramic and metallic materials can cause damages in the conveying systems (e. g. rotary feeder) or result in contaminations of the products (e. g. cement, chalk). Up-to-date separation processes (sieve machine, magnet separator or air classifier) have individual weaknesses that could hamper a secure separation of these particles. This article describes a new technology for the separation of impurities from refuse derived fuels based on a rotating fluidized bed. In this concept a rotating motion of the particle bed is obtained by the tangential injection of the fluidization gas in a static geometry. The RDF-particles experience a centrifugal force which fluidized the bed radially. The technical principle allows tearing up of particle clusters to single particles. Radially inwards the vertical velocity is much lower thus particles of every description can fall down there. For the subsequent separation of the particles by form and density an additionally cone shaped plate was installed in the centre. Impurities have a higher density and a compact form compared to combustible particles and can be separated with a high efficiency. The new technology was experimentally investigated and proven using model-RDF, actual-RDF and impurities of different densities. In addition, numerical simulations were also done. The fluidization chamber was operated in batch mode. The article describes experiences and difficulties in using rotating fluidized bed systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2014-05-13

    This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the equivalent of 1/5th the mass of our sun. Scientists think neutron star mergers like this produce short gamma-ray bursts (GRBs). Short GRBs last less than two seconds yet unleash as much energy as all the stars in our galaxy produce over one year. The rapidly fading afterglow of these explosions presents a challenge to astronomers. A key element in understanding GRBs is getting instruments on large ground-based telescopes to capture afterglows as soon as possible after the burst. The rapid notification and accurate positions provided by NASA's Swift mission creates a vibrant synergy with ground-based observatories that has led to dramatically improved understanding of GRBs, especially for short bursts. This video is public domain and can be downloaded at: : svs.gsfc.nasa.gov/goto?11530

  9. Separability studies of construction and demolition waste recycled sand.

    PubMed

    Ulsen, Carina; Kahn, Henrique; Hawlitschek, Gustav; Masini, Eldon A; Angulo, Sérgio C

    2013-03-01

    The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases, and specifically to the patches of cement that remain attached to the surface of natural aggregates. This phase increases water absorption and compromises the consistency and strength of concrete made from recycled aggregates. Mineral processing has been applied to CDW recycling to remove the patches of adhered cement paste on coarse recycled aggregates. The recycled fine fraction is usually disregarded due to its high content of porous phases despite representing around 50% of the total waste. This paper focus on laboratory mineral separability studies for removing particles with a high content of cement paste from natural fine aggregate particles (quartz/feldspars). The procedure achieved processing of CDW by tertiary impact crushing to produce sand, followed by sieving and density and magnetic separability studies. The attained results confirmed that both methods were effective in reducing cement paste content and producing significant mass recovery (80% for density concentration and 60% for magnetic separation). The production of recycled sand contributes to the sustainability of the construction environment by reducing both the consumption of raw materials and disposal of CDW, particularly in large Brazilian centers with a low quantity of sand and increasing costs of this material due to long transportation distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Novel shielding materials for space and air travel.

    PubMed

    Vana, N; Hajek, M; Berger, T; Fugger, M; Hofmann, P

    2006-01-01

    The reduction of dose onboard spacecraft and aircraft by appropriate shielding measures plays an essential role in the future development of space exploration and air travel. The design of novel shielding strategies and materials may involve hydrogenous composites, as it is well known that liquid hydrogen is most effective in attenuating charged particle radiation. As precursor for a later flight experiment, the shielding properties of newly developed hydrogen-rich polymers and rare earth-doped high-density rubber were tested in various ground-based neutron and heavy ion fields and compared with aluminium and polyethylene as reference materials. Absorbed dose, average linear energy transfer and gamma-equivalent neutron absorbed dose were determined by means of LiF:Mg,Ti thermoluminescence dosemeters and CR-39 plastic nuclear track detectors. First results for samples of equal aerial density indicate that selected hydrogen-rich plastics and rare-earth-doped rubber may be more effective in attenuating cosmic rays by up to 10% compared with conventional aluminium shielding. The appropriate adaptation of shielding thicknesses may thus allow reducing the biologically relevant dose. Owing to the lower density of the plastic composites, mass savings shall result in a significant reduction of launch costs. The experiment was flown as part of the European Space Agency's Biopan-5 mission in May 2005.

  11. RADIOPACITY OF RESTORATIVE MATERIALS USING DIGITAL IMAGES

    PubMed Central

    Salzedas, Leda Maria Pescinini; Louzada, Mário Jefferson Quirino; de Oliveira, Antonio Braz

    2006-01-01

    The radiopacity of esthetic restorative materials has been established as an important requirement, improving the radiographic diagnosis. The aim of this study was to evaluate the radiopacity of six restorative materials using a direct digital image system, comparing them to the dental tissues (enamel-dentin), expressed as equivalent thickness of aluminum (millimeters of aluminum). Five specimens of each material were made. Three 2-mm thick longitudinal sections were cut from an intact extracted permanent molar tooth (including enamel and dentin). An aluminum step wedge with 9 steps was used. The samples of different materials were placed on a phosphor plate together with a tooth section, aluminum step wedge and metal code letter, and were exposed using a dental x-ray unit. Five measurements of radiographic density were obtained from each image of each item assessed (restorative material, enamel, dentin, each step of the aluminum step wedge) and the mean of these values was calculated. Radiopacity values were subsequently calculated as equivalents of aluminum thickness. Analysis of variance (ANOVA) indicated significant differences in radiopacity values among the materials (P<0.0001). The radiopacity values of the restorative materials evaluated were, in decreasing order: TPH, F2000, Synergy, Prisma Flow, Degufill, Luxat. Only Luxat had significantly lower radiopacity values than dentin. One material (Degufill) had similar radiopacity values to enamel and four (TPH, F2000, Synergy and Prisma Flow) had significantly higher radiopacity values than enamel. In conclusion, to assess the adequacy of posterior composite restorations it is important that the restorative material to be used has enough radiopacity, in order to be easily distinguished from the tooth structure in the radiographic image. Knowledge on the radiopacity of different materials helps professionals to select the most suitable material, along with other properties such as biocompatibility, adhesion and esthetic. PMID:19089047

  12. Pulsed Neurton Elemental On-Line Material Analyzer

    DOEpatents

    Vourvopoulos, George

    2002-08-20

    An on-line material analyzer which utilizes pulsed neutron generation in order to determine the composition of material flowing through the apparatus. The on-line elemental material analyzer is based on a pulsed neutron generator. The elements in the material interact with the fast and thermal neutrons produced from the pulsed generator. Spectra of gamma-rays produced from fast neutrons interacting with elements of the material are analyzed and stored separately from spectra produced from thermal neutron reactions. Measurements of neutron activation takes place separately from the above reactions and at a distance from the neutron generator. A primary passageway allows the material to flow through at a constant rate of speed and operators to provide data corresponding to fast and thermal neutron reactions. A secondary passageway meters the material to allow for neutron activation analysis. The apparatus also has the capability to determine the density of the flowed material. Finally, the apparatus continually utilizes a neutron detector in order to normalize the yield of the gamma ray detectors and thereby automatically calibrates and adjusts the spectra data for fluctuations in neutron generation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Michael C.; Phillips, Adam; Weber, Adam Z.

    We proposed and developed an all-iron redox flow battery for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. Our design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe 2 (SO 4 ) 3 activemore » material and 1.2 m NaCl supporting electrolyte. Furthermore, with these materials, an average power density around 20 mW cm -2 and a maximum energy density of 11.5 Wh L -1 are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh -1 , or only US$0.034 per mobile phone charge.« less

  14. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, T.; Sugura, K.; Enokida, Y.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less

  15. Initial glenoid fixation using two different reverse shoulder designs with an equivalent center of rotation in a low-density and high-density bone substitute.

    PubMed

    Stroud, Nicholas J; DiPaola, Matthew J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Roche, Christopher P

    2013-11-01

    Numerous glenoid implant designs have been introduced into the global marketplace in recent years; however, little comparative biomechanical data exist to substantiate one design consideration over another. This study dynamically evaluated reverse shoulder glenoid baseplate fixation and compared the initial fixation associated with 2 reverse shoulder designs having an equivalent center of rotation in low-density and high-density bone substitute substrates. Significant differences in fixation were observed between implant designs, where the circular-porous reverse shoulder was associated with approximately twice the micromotion per equivalent test than the oblong-grit-blasted design. Additionally, 6 of the 7 circular-porous reverse shoulders failed catastrophically in the low-density bone model at an average of 2603 ± 981 cycles. None of the oblong-grit-blasted designs failed in the low-or high-density bone models and none of the circular-porous designs failed in the high-density bone models after 10,000 cycles of loading. These results demonstrate that significant differences in initial fixation exist between reverse shoulder implants having an equivalent center of rotation and suggest that design parameters, other than the position of the center of rotation, significantly affect fixation in low-density and high-density polyurethane bone substitutes. Subtle changes in glenoid baseplate design can dramatically affect fixation, particularly in low-density bone substitutes that are intended to simulate the bone quality of the recipient population for reverse shoulders. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  16. Study of iron-borate materials systems processed in space

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.

    1978-01-01

    It was calculated that an FeBO3B2O3 glass-ceramic containing only 1 mole% FeBO3 would be equivalent for magnetooptic application to a YIG crystal of equal thickness. An Fe2O3B2O3 composition containing 2 mole% FeBO3 equivalent (98B) could be converted largely to a dense green, though opaque, FeBO3 glass-ceramic through suitable heat treatments. However, phase separation (and segregation) and Fe+3 reduction could not be entirely avoided with the various procedures that were employed. From light scattering calculations, it was estimated that about 100 A to allow 90% light transmission through a 1 cm thick sample. However, the actual FeBO3 crystallite sizes obtained in 98B were of the order of 1 micron or greater.

  17. Cylindrical effects on Richtmyer-Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W. H.; He, X. T.; LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088

    2012-07-15

    When an incident shock collides with a corrugated interface separating two fluids of different densities, the interface is prone to Richtmyer-Meshkov instability (RMI). Based on the formal perturbation expansion method as well as the potential flow theory, we present a simple method to investigate the cylindrical effects in weakly nonlinear RMI with the transmitted and reflected cylindrical shocks by considering the nonlinear corrections up to fourth order. The cylindrical results associated with the material interface show that the interface expression consists of two parts: the result in the planar system and that from the cylindrical effects. In the limit ofmore » the cylindrical radius tending to infinity, the cylindrical results can be reduced to those in the planar system. Our explicit results show that the cylindrical effects exert an inward velocity on the whole perturbed interface, regardless of bubbles or spikes of the interface. On the one hand, outgoing bubbles are constrained and ingoing spikes are accelerated for different Atwood numbers (A) and mode numbers k'. On the other hand, for ingoing bubbles, when |A|k'{sup 3/2} Less-Than-Or-Equivalent-To 1, bubbles are considerably accelerated especially at the small |A| and k'; otherwise, bubbles are decelerated. For outgoing spikes, when |A|k' Greater-Than-Or-Equivalent-To 1, spikes are dramatically accelerated especially at large |A| and k'; otherwise, spikes are decelerated. Furthermore, the cylindrical effects have a significant influence on the amplitudes of the ingoing spike and bubble for large k'. Thus, it should be included in applications where the cylindrical effects play a role, such as inertial confinement fusion ignition target design.« less

  18. Tilted Magnetic Levitation Enables Measurement of the Complete Range of Densities of Materials with Low Magnetic Permeability.

    PubMed

    Nemiroski, Alex; Soh, Siowling; Kwok, Sen Wai; Yu, Hai-Dong; Whitesides, George M

    2016-02-03

    Magnetic levitation (MagLev) of diamagnetic or weakly paramagnetic materials suspended in a paramagnetic solution in a magnetic field gradient provides a simple method to measure the density of small samples of solids or liquids. One major limitation of this method, thus far, has been an inability to measure or manipulate materials outside of a narrow range of densities (0.8 g/cm(3) < ρ < 2.3 g/cm(3)) that are close in density to the suspending, aqueous medium. This paper explores a simple method-"tilted MagLev"-to increase the range of densities that can be levitated magnetically. Tilting the MagLev device relative to the gravitational vector enables the magnetic force to be decreased (relative to the magnetic force) along the axis of measurement. This approach enables many practical measurements over the entire range of densities observed in matter at ambient conditions-from air bubbles (ρ ≈ 0) to osmium and iridium (ρ ≈ 23 g/cm(3)). The ability to levitate, simultaneously, objects with a broad range of different densities provides an operationally simple method that may find application to forensic science (e.g., for identifying the composition of miscellaneous objects or powders), industrial manufacturing (e.g., for quality control of parts), or resource-limited settings (e.g., for identifying and separating small particles of metals and alloys).

  19. Short-range test of the universality of gravitational constant G at the millimeter scale using a digital image sensor

    NASA Astrophysics Data System (ADS)

    Ninomiya, K.; Akiyama, T.; Hata, M.; Hatori, M.; Iguri, T.; Ikeda, Y.; Inaba, S.; Kawamura, H.; Kishi, R.; Murakami, H.; Nakaya, Y.; Nishio, H.; Ogawa, N.; Onishi, J.; Saiba, S.; Sakuta, T.; Tanaka, S.; Tanuma, R.; Totsuka, Y.; Tsutsui, R.; Watanabe, K.; Murata, J.

    2017-09-01

    The composition dependence of gravitational constant G is measured at the millimeter scale to test the weak equivalence principle, which may be violated at short range through new Yukawa interactions such as the dilaton exchange force. A torsion balance on a turning table with two identical tungsten targets surrounded by two different attractor materials (copper and aluminum) is used to measure gravitational torque by means of digital measurements of a position sensor. Values of the ratios \\tilde{G}_Al-W/\\tilde{G}_Cu-W -1 and \\tilde{G}_Cu-W/GN -1 were (0.9 +/- 1.1sta +/- 4.8sys) × 10-2 and (0.2 +/- 0.9sta +/- 2.1sys) × 10-2 , respectively; these were obtained at a center to center separation of 1.7 cm and surface to surface separation of 4.5 mm between target and attractor, which is consistent with the universality of G. A weak equivalence principle (WEP) violation parameter of η_Al-Cu(r∼ 1 cm)=(0.9 +/- 1.1sta +/- 4.9sys) × 10-2 at the shortest range of around 1 cm was also obtained.

  20. Toughened uni-piece fibrous insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B (Inventor); Smith, Marnell (Inventor); Churchward, Rex A. (Inventor); Katvala, Victor W. (Inventor)

    1992-01-01

    A porous body of fibrous, low density silica-based insulation material is at least in part impregnated with a reactive boron oxide containing borosilicate glass frit, a silicon tetraboride fluxing agent and a molybdenum silicide emittance agent. The glass frit, fluxing agent and emittance agent are separately milled to reduce their particle size, then mixed together to produce a slurry in ethanol. The slurry is then applied to the insulation material and sintered to produce the porous body.

  1. Exploring the relationship between population density and maternal health coverage

    PubMed Central

    2012-01-01

    Background Delivering health services to dense populations is more practical than to dispersed populations, other factors constant. This engenders the hypothesis that population density positively affects coverage rates of health services. This hypothesis has been tested indirectly for some services at a local level, but not at a national level. Methods We use cross-sectional data to conduct cross-country, OLS regressions at the national level to estimate the relationship between population density and maternal health coverage. We separately estimate the effect of two measures of density on three population-level coverage rates (6 tests in total). Our coverage indicators are the fraction of the maternal population completing four antenatal care visits and the utilization rates of both skilled birth attendants and in-facility delivery. The first density metric we use is the percentage of a population living in an urban area. The second metric, which we denote as a density score, is a relative ranking of countries by population density. The score’s calculation discounts a nation’s uninhabited territory under the assumption those areas are irrelevant to service delivery. Results We find significantly positive relationships between our maternal health indicators and density measures. On average, a one-unit increase in our density score is equivalent to a 0.2% increase in coverage rates. Conclusions Countries with dispersed populations face higher burdens to achieve multinational coverage targets such as the United Nations’ Millennial Development Goals. PMID:23170895

  2. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    PubMed Central

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-01-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g−1 at a current density of 2 A g−1, which is higher than the capacitance of bare G (145 F g−1) and bare Ni (3 F g−1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g−1 at a current density of 5 A g−1 and a capacitance of 144 F g−1 at a current density of 10 A g−1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor. PMID:27553290

  3. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in Earth orbit. The near Earth environment is thus parameterized by debris density percentages within subsections of that environment. This model version is used in the upgraded NASA Orbital Debris Engineering Model (ORDEM).

  4. ORDEM 3.0 and the Risk of High-Density Debris

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Anz-Meador, Philip

    2014-01-01

    NASA’s Orbital Debris Engineering Model was designed to calculate orbital debris fluxes on spacecraft in order to assess collision risk. The newest of these models, ORDEM 3.0, has a number of features not present in previous models. One of the most important is that the populations and fluxes are now broken out into material density groups. Previous models concentrated on debris size alone, but a particle’s mass and density also determine the amount of damage it can cause. ORDEM 3.0 includes a high-density component, primarily consisting of iron/steel particles that drive much of the risk to spacecraft. This paper will outline the methods that were used to separate and identify the different densities of debris, and how these new densities affect the overall debris flux and risk.

  5. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    PubMed Central

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  6. Thin film separators with ion transport properties for energy applications

    NASA Astrophysics Data System (ADS)

    Li, Zhongyuan

    2017-09-01

    Recent years, along with the increasing need of energy, energy storage also becomes a challenging problem which we need to deal with. The batterieshave a good developing prospect among energy storage system in storing energy such as wind, solar and geothermal energy. One hurdle between the lab-scale experiment and industry-scale application of the advanced batteries is the urgent need for limiting charging capacity degradation and improving cycling stability, known as the shuttle effect in lithium-sulfur batteries or electroosmotic drag coefficient in fuel-cell batteries. The microporous separator between the cathode and anode could be molecular engineered to possessesion selective permeation properties, which can greatly improves the energy efficiency and extends application range of the battery. The present review offers the fundamental fabrication methods of separator film with different material. The review also contains the chemical or physical structure of different materials which are used in making separator film. A table offers the reader a summary of properties such as ionic conductivity, ionic exchange capacity and current density etc.

  7. Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption.

    PubMed

    Pires, João; Pinto, Moisés L; Saini, Vipin K

    2014-08-13

    The separation of ethylene from ethane is one of the most energy-intensive single distillations practiced. This separation could be alternatively made by an adsorption process if the adsorbent would preferentially adsorb ethane over ethylene. Materials that exhibit this feature are scarce. Here, we report the case of a metal-organic framework, the IRMOF-8, for which the adsorption isotherms of ethane and ethylene were measured at 298 and 318 K up to pressures of 1000 kPa. Separation of ethane/ethylene mixtures was achieved in flow experiments using a IRMOF-8 filled column. The interaction of gas molecules with the surface of IRMOF-8 was explored using density functional theory (DFT) methods. We show both experimentally and computationally that, as a result of the difference in the interaction energies of ethane and ethylene in IRMOF-8, this material presents the preferential adsorption of ethane over ethylene. The results obtained in this study suggest that MOFs with ligands exhibiting high aromaticity character are prone to adsorb ethane preferably over ethylene.

  8. Electrochemical studies on niobium triselenide cathode material for lithium rechargeable cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratnakumar, B.V.; Ni, C.L.; DiStefano, S.

    1989-01-01

    Niobium triselenide offers promise as a high energy density cathode material for ambient temperature lithium rechargeable cells. The electrochemical behavior of NbSe/sub 3/ in the battery electrolyte, i.e., 1.5m LiAsF/sub 6//2 Me-THF is reported here. A detailed study has been carried out using various ac and dc electrochemical techniques to establish the mechanism of intercalation of three equivalents of Li with NbSe/sub 3/ as well as the rate governing processes in the reduction of NbSe/sub 3/. Based on the experimental data, an equivalent circuit has been formulated to represent the NbSe/sub 3/-solution interface. The kinetic parameters for the reduction ofmore » NbSe/sub 3/ were evaluated from the ac and dc measurements. Finally, the structural change in NbSe/sub 3/ on lithiation during initial discharge which results in higher cell voltages and different electrochemical response as compared to virgin NbSe/sub 3/ was identified to be a loss of crystallographic order, i.e., amorphous by x-ray diffraction.« less

  9. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  10. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  11. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  12. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.).

    PubMed

    Yıldız, Gökçen; İzli, Nazmi; Ünal, Halil; Uylaşer, Vildan

    2015-04-01

    Some physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.) were investigated. These characteristics are necessary for the design of equipments for harvesting, processing, transportation, sorting, separating and packing. The fruit length, diameter, geometric and arithmetic mean diameters, sphericity, surface area, projected areas (vertical-horizontal) and aspect ratio of goldenberries were determined as 17.52 mm, 17.31 mm, 17.33 mm, 17.38 mm, 98.9 %, 0.949 cm(2), 388.67-387.85 mm(2) and 0.988, respectively. The mass of fruit, bulk density, fruit density, porosity and fruit hardness were 3.091 g, 997.3 kg/m(3), 462.3 kg/m(3), 53.61 % and 8.01 N, respectively. The highest static coefficient of friction was observed on rubber surface, followed by stainless steel sheet, aluminum sheet, and plywood materials. The dry matter, water soluble dry matter, ash, protein, oil, carbohydrate, titratable acidity, pH, total sugar, reducing sugar, antioxidant capacity were 18.67 %, 14.17 %, 2.98 %, 1.66 %, 0.18 %, 13.86 %, 1.26 %, 6.07, 63.90 g/kg, 31.99 g/kg and 57.67 %, respectively. The fresh fruits have 145.22 mg gallic acid equivalent (GAE)/100 g total phenol content and skin colour data represented as L*, a*, b*, Chroma (C) and Hue angle (α) were 49.92, 25.11, 50.23, 56.12 and 63.48, respectively.

  13. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  14. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    PubMed

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    PubMed

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-06

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.

  16. Prospects and Limits of Energy Storage in Batteries.

    PubMed

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  17. Facile preparation of high density polyethylene superhydrophobic/superoleophilic coatings on glass, copper and polyurethane sponge for self-cleaning, corrosion resistance and efficient oil/water separation.

    PubMed

    Cheng, Yuanyuan; Wu, Bei; Ma, Xiaofan; Lu, Shixiang; Xu, Wenguo; Szunerits, Sabine; Boukherroub, Rabah

    2018-04-18

    Inspired by the lotus effect and water-repellent properties of water striders' legs, superhydrophobic surfaces have been intensively investigated from both fundamental and applied perspectives for daily and industrial applications. Various techniques are available for the fabrication of artificial superoleophilic/superhydrophobic (SS). However, most of these techniques are tedious and often require hazardous or expensive equipment, which hampers their implementation for practical applications. In the present work, we used a versatile and straightforward technique based on polymer drop-casting for the preparation SS materials that can be implemented on any substrate. High density polyethylene (HDPE) SS coatings were prepared on different substrates (glass, copper mesh and polyurethane (PU) sponge) by drop casting the parent polymer xylene-ethanol solution at room temperature. All the substrates exhibited a superhydrophobic behavior with a water contact angle (WCA) greater than 150°. Furthermore, the corrosion resistance, stability, self-cleaning property, and water/oil separation of the developed materials were also assessed. While copper mesh and PU sponge exhibited good ability for oil and organic solvents separation from water, the HDPE-functionalized PU sponge displayed good adsorption capacity, 32-90 times the weight of adsorbed substance vs. the weight of adsorbent. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Separation of solids by varying the bulk density of a fluid separating medium

    DOEpatents

    Peterson, Palmer L.; Duffy, James B.; Tokarz, Richard D.

    1978-01-01

    A method and apparatus for separating objects having a density greater than a selected density value from objects having a density less than said selected density value. The method typically comprises: (a) providing a separation vessel having an upper and lower portion, said vessel containing a liquid having a density exceeding said selected density value; (b) reducing the apparent density of the liquid to said selected density value by introducing solid, bubble-like bodies having a density less than that of the liquid into the lower portion of the vessel and permitting them to rise therethrough; (c) introducing the objects to be separated into the separation vessel and permitting the objects having a density greater than the apparent density of the liquid to sink to the lower portion of the vessel, while the objects having a density less than said selected density value float in the upper portion of the vessel; and (d) separately removing the higher density objects in the lower portion and the lower density objects in the upper portion from the separation vessel. The apparatus typically comprises: (a) a vessel containing a liquid having a density such that at least part of said objects having a density exceeding said selected density value will float therein; (b) means to place said objects into said vessel; (c) means to reduce the effective density of at least a portion of said liquid to said selected density value, whereby said objects having a density exceeding said selected density value sink into said liquid and said objects having a density less than said selected density value remain afloat, said means to adjust the effective density comprising solid, bubble-like bodies having a density less than said selected density value and means for introducing said bodies into said liquid; and (d) means for separately removing said objects having a density exceeding said selected density value and said objects having a density less than said selected density value from said vessel.

  19. Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect

    NASA Astrophysics Data System (ADS)

    Seidl, Michael; Perdew, John P.; Brajczewska, Marta; Fiolhais, Carlos

    1997-05-01

    The ionization energy of a large spherical metal cluster of radius R is I(R)=W+(+c)/R, where W is the bulk work function and c~-0.1 is a material-dependent quantum correction to the electrostatic size effect. We present 'Koopmans' and 'displaced-profile change-in-self-consistent-field' expressions for W and c within the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the 'displaced-profile' expressions are the more accurate ones. This profile insensitivity is important, because it is not practical to extract c from solutions of the Kohn-Sham equations for small metal clusters.

  20. Characterization of fine-grain piezoceramic stack actuators

    NASA Astrophysics Data System (ADS)

    Davis, Christopher L.; Morris, Donald G.; Calkins, Frederick T.

    2001-07-01

    Samples of fine grain piezoelectric ceramics (less than or equal to 1 micrometers ) exhibit increased mechanical strength and improved machinability over conventional materials, which should result in actuators which have increased reliability with fewer rejected parts. The focus of the work presented here is to compare the properties of several fine grain and conventional actuators provided by TRS Ceramics. Specimens are constructed of TRS200 (a PZT-5A or DOD Type II equivalent material) and TRS600 (a PZT-5H or DOD Type VI equivalent material). All of the actuators consist of ceramic wafers bonded together with electrodes between them to form a stack. Several actuator overall dimensions and two wafer thicknesses (250 micrometers and 500 micrometers ) are investigated as well as material which has been subjected to hot isopress. The two main figures of merit in the stack actuator comparisons are free strain and blocked stress. Strain and stress loops are measured under a variety of field levels, including negative fields up to the coercive limit (full butterfly loops were not performed). Also compared are values of energy density and hysteresis in the strain, stress and electric displacement vs. field loops. Stack longevity is addressed through duration tests in which stacks are used to drive representative mechanical impedance for an extended period. Results show that fine grain stacks completed 109 continuous actuation cycles with no sign of performance degradation.

  1. Compositional layering within the large low shear-wave velocity provinces in the lower mantle

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim D.; Schumacher, Lina; Lekic, Vedran; Thomas, Christine; Ito, Garrett

    2016-12-01

    The large low shear-wave velocity provinces (LLSVP) are thermochemical anomalies in the deep Earth's mantle, thousands of km wide and ˜1800 km high. This study explores the hypothesis that the LLSVPs are compositionally subdivided into two domains: a primordial bottom domain near the core-mantle boundary and a basaltic shallow domain that extends from 1100 to 2300 km depth. This hypothesis reconciles published observations in that it predicts that the two domains have different physical properties (bulk-sound versus shear-wave speed versus density anomalies), the transition in seismic velocities separating them is abrupt, and both domains remain seismically distinct from the ambient mantle. We here report underside reflections from the top of the LLSVP shallow domain, supporting a compositional origin. By exploring a suite of two-dimensional geodynamic models, we constrain the conditions under which well-separated "double-layered" piles with realistic geometry can persist for billions of years. Results show that long-term separation requires density differences of ˜100 kg/m3 between LLSVP materials, providing a constraint for origin and composition. The models further predict short-lived "secondary" plumelets to rise from LLSVP roofs and to entrain basaltic material that has evolved in the lower mantle. Long-lived, vigorous "primary" plumes instead rise from LLSVP margins and entrain a mix of materials, including small fractions of primordial material. These predictions are consistent with the locations of hot spots relative to LLSVPs, and address the geochemical and geochronological record of (oceanic) hot spot volcanism. The study of large-scale heterogeneity within LLSVPs has important implications for our understanding of the evolution and composition of the mantle.

  2. The Equivalence of Regression Models Using Difference Scores and Models Using Separate Scores for Each Informant: Implications for the Study of Informant Discrepancies

    ERIC Educational Resources Information Center

    Laird, Robert D.; Weems, Carl F.

    2011-01-01

    Research on informant discrepancies has increasingly utilized difference scores. This article demonstrates the statistical equivalence of regression models using difference scores (raw or standardized) and regression models using separate scores for each informant to show that interpretations should be consistent with both models. First,…

  3. 42 CFR 137.293 - Are Self-Governance Tribes required to adopt a separate resolution or take equivalent Tribal...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Are Self-Governance Tribes required to adopt a...-GOVERNANCE Construction Nepa Process § 137.293 Are Self-Governance Tribes required to adopt a separate... project agreement? No, the Self-Governance Tribe may adopt a single resolution or take equivalent Tribal...

  4. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  5. All-nanotube stretchable supercapacitor with low equivalent series resistance.

    PubMed

    Gilshteyn, Evgenia P; Amanbayev, Daler; Anisimov, Anton S; Kallio, Tanja; Nasibulin, Albert G

    2017-12-12

    We report high-performance, stable, low equivalent series resistance all-nanotube stretchable supercapacitor based on single-walled carbon nanotube film electrodes and a boron nitride nanotube separator. A layer of boron nitride nanotubes, fabricated by airbrushing from isopropanol dispersion, allows avoiding problem of high internal resistance and short-circuiting of supercapacitors. The device, fabricated in a two-electrode test cell configuration, demonstrates electrochemical double layer capacitance mechanism and retains 96% of its initial capacitance after 20 000 electrochemical charging/discharging cycles with the specific capacitance value of 82 F g -1 and low equivalent series resistance of 4.6 Ω. The stretchable supercapacitor prototype withstands at least 1000 cycles of 50% strain with a slight increase in the volumetric capacitance from 0.4 to 0.5 mF cm -3 and volumetric power density from 32 mW cm -3 to 40 mW cm -3 after stretching, which is higher than reported before. Moreover, a low resistance of 250 Ω for the as-fabricated stretchable prototype was obtained, which slightly decreased with the strain applied up to 200 Ω. Simple fabrication process of such devices can be easily extended making the all-nanotube stretchable supercapacitors, presented here, promising elements in future wearable devices.

  6. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers.

    PubMed

    Rahmanzadeh, Mahdi; Rajabalipanah, Hamid; Abdolali, Ali

    2018-02-01

    In this study, by using an equivalent circuit method, a polarization-insensitive terahertz (THz) absorber based on multilayer graphene-based metasurfaces (MGBMs) is systematically designed, providing an extremely broad absorption bandwidth (BW). The proposed absorber is a compact, three-layer structure, comprising square-, cross-, and circular-shaped graphene metasurfaces embedded between three separator dielectrics. The equivalent-conductivity method serves as a parameter retrieval technique to characterize the graphene metasurfaces as the components of the proposed circuit model. Good agreement is observed between the full-wave simulations and the equivalent-circuit predictions. The optimum MGBM absorber exhibits >90% absorbance in an extremely broad frequency band of 0.55-3.12 THz (BW=140%). The results indicate a significant BW enhancement compared with both the previous metal- and graphene-based THz absorbers, highlighting the capability of the designed MGBM absorber. To clarify the physical mechanism of absorption, the surface current and the electric-field distributions, as well as the power loss density of each graphene metasurface, are monitored and discussed. The MGBM functionality is evaluated under a wide range of incident wave angles to prove that the proposed absorber is omnidirectional and polarization-insensitive. These superior performances guarantee the applicability of the MGBM structure as an ultra-broadband absorber for various THz applications.

  7. Faraday rotation measure variations in the Cygnus region and the spectrum of interstellar plasma turbulence

    NASA Technical Reports Server (NTRS)

    Lazio, T. Joseph; Spangler, Steven R.; Cordes, James M.

    1990-01-01

    Linear polarization observations were made of eight double-lobed radio galaxies viewed through the galactic plane in the Cygnus region. These observations have been used to determine intra- and intersource rotation measure differences; in some cases, unambiguous rotation measures have been extracted. The rotation measures are dominated by foreground magnetoionic material. The differences in rotation measure between pairs of sources correlate with angular separation for separations from 10 arcsec to 1.5 deg. These rotation measure fluctuations are consistent with a model in which the electron density varies on roughly 0.1-200 pc scales. The amplitudes of these variations are, in turn, consistent with those electron density variations that cause diffractive interstellar scattering on scales less than 10 to the 11th cm.

  8. Salt-hydrate thermal-energy-storage system for space heating and air conditioning

    NASA Astrophysics Data System (ADS)

    MacCracken, C. D.; Armstrong, J. M.; MacCracken, M. M.; Silvetti, B. M.

    1980-07-01

    Latent heat storage equipment using three different salts was developed. The salts are: sodium sulfate pentahydrate which melts at 460 C, magnesium chloride hexahydrate which melts at 1150 C, and a eutectic combination of seven different materials which melts at 70 C. Stirring pumps, tanks, and tubing materials, and field filling of the salts into their tanks are developed. good performance for the tank/heat exchangers with all three salts is reported. Both the 1150 C and 460 C salts are almost equivalent in volume storage to water/ice. The 79.0 C salt, however, begins at about 56% of the BTU's per cubic foot of water/ice and declines due to separation to 40% after repeated cycling.

  9. Wireless Power Transfer for Space Applications

    NASA Technical Reports Server (NTRS)

    Ramos, Gabriel Vazquez; Yuan, Jiann-Shiun

    2011-01-01

    This paper introduces an implementation for magnetic resonance wireless power transfer for space applications. The analysis includes an equivalent impedance study, loop material characterization, source/load resonance coupling technique, and system response behavior due to loads variability. System characterization is accomplished by executing circuit design from analytical equations and simulations using Matlab and SPICE. The theory was validated by a combination of different experiments that includes loop material consideration, resonance coupling circuits considerations, electric loads considerations and a small scale proof-of-concept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The prototype provided about 4.5 W of power to the load at a separation of -5 cm from the source using a power amplifier rated for 7 W.

  10. TU-H-BRC-08: Use and Validation of Flexible 3D Printed Tissue Compensators for Post-Mastectomy Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, D; Kry, S; Salehpour, M

    Purpose: Patient-specific tissue equivalent compensators can be used for post-mastectomy radiation therapy (PMRT) to achieve homogenous dose distributions with single-field treatments. However, current fabrication methods are time consuming and expensive. 3D-printing technology could overcome these limitations. The purposes of this study were to [1] evaluate materials for 3D-printed compensators [2] design and print a compensator to achieve a uniform thickness to a clinical target volume (CTV), and [3] demonstrate that a single-field electron compensator plan is a clinically feasible treatment option for PMRT. Methods: Blocks were printed with three materials; print accuracy, density, Hounsfield units (HU), and percent depth dosesmore » (PDD) were evaluated. For a CT scan of an anthropomorphic phantom, we used a ray-tracing method to design a compensator that achieved uniform thickness from compensator surface to CTV. The compensator was printed with flexible tissue equivalent material whose physical and radiological properties were most similar to soft tissue. A single-field electron compensator plan was designed and compared with two standard-of-care techniques. The compensator plan was validated with thermoluminescent dosimeter (TLD) measurements. Results: We identified an appropriate material for 3D-printed compensators that had high print accuracy (99.6%) and was similar to soft tissue; density was 1.04, HU was - 45 ± 43, and PDD curves agreed with clinical curves within 3 mm. We designed and printed a compensator that conformed well to the phantom surface and created a uniform thickness to the CTV. In-house fabrication was simple and inexpensive (<$75). Compared with the two standard plans, the compensator plan resulted in overall more homogeneous dose distributions and performed similarly in terms of lung/heart doses and 90% isodose coverage of the CTV. TLD measurements agreed well with planned doses (within 5 %). Conclusions: We have demonstrated that 3D-printed compensators make single-field electron therapy a clinically feasible treatment option for PMRT.« less

  11. Nanowire modified carbon fibers for enhanced electrical energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  12. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    NASA Astrophysics Data System (ADS)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under write/read cycles for a practical silicon-based device. NanoThermoMechanical rectification is achieved experimentally--for the first time--with measurements at a high temperature of 600 K, demonstrating the feasibility of NanoThermoMechanical to operate in harsh environments. The proof-of-concept device has shown a maximum rectification of 10.9%. This dissertation proposes using meshed photonic crystal structures to enhance NFTR between surfaces. Numerical results show thermal rectification as high as 2500%. Incorporating these structures in thermal memory and rectification devices will significantly enhance their functionality and performance.

  13. JLTV - Briefings to Industry, Ground Vehicle Power and Mobility (GVPM)

    DTIC Science & Technology

    2009-05-27

    lithium ion battery cathodes, separators, and electrolytes. This effort shall also access the...manufacturability of the improved designs using the new materials. PAYOFF: Improved lithium ion battery power density Improved lithium ion battery energy...negative electrodes in lithium-ion batteries. PAYOFF: Better understanding of lithium - ion battery charging limitations Improved safety for

  14. Radioimmunoassay for etorphine in horses with a /sup 125/I analog of etorphine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, C.L.; Wang, C.; Weckman, T.J.

    1988-05-01

    To improve the sensitivity and specificity of screening for etorphine in horses, an /sup 125/I-labeled etorphine analog was synthesized and an antibody to etorphine was raised in rabbits. A radioimmunoassay (RIA) for etorphine was developed, using these reagents. Bound and free /sup 125/I-labeled etorphine was separated by a double-antibody method that reduced interference from materials associated with equine urine. The /sup 125/I-labeled etorphine binding was rarely greater than 250 pg of background etorphine equivalents/ml in raw urine and was 100 pg/ml in hydrolyzed urine. The /sup 125/I-RIA was capable of detecting etorphine equivalents in urine above these background values. Etorphinemore » equivalents were detected in equine urine samples for about 7 days after 4 mares were dosed with 0.22 microgram of etorphine/kg of body weight, IV. The stability of etorphine in urine from these mares was evaluated. Urine from these dosed mares was held in constant -20 C storage, and aliquots were repeatedly frozen and thawed. When analyzed for etorphine equivalents using an /sup 125/I-RIA, etorphine and its metabolites in urine samples were stable for less than or equal to 38 days if continuously frozen and also were resistant to repeated freezing and thawing.« less

  15. Equivalent circuit model of Ge/Si separate absorption charge multiplication avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Chen, Ting; Yan, Linshu; Bao, Xiaoyuan; Xu, Yuanyuan; Wang, Guang; Wang, Guanyu; Yuan, Jun; Li, Junfeng

    2018-03-01

    The equivalent circuit model of Ge/Si Separate Absorption Charge Multiplication Avalanche Photodiode (SACM-APD) is proposed. Starting from the carrier rate equations in different regions of device and considering the influences of non-uniform electric field, noise, parasitic effect and some other factors, the equivalent circuit model of SACM-APD device is established, in which the steady-state and transient current voltage characteristics can be described exactly. In addition, the proposed Ge/Si SACM APD equivalent circuit model is embedded in PSpice simulator. The important characteristics of Ge/Si SACM APD such as dark current, frequency response, shot noise are simulated, the simulation results show that the simulation with the proposed model are in good agreement with the experimental results.

  16. Flight Deck-Based Delegated Separation: Evaluation of an On-Board Interval Management System with Synthetic and Enhanced Vision Technology

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.

    2011-01-01

    An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.

  17. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.

    2008-02-01

    IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).

  18. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsuo; Utsunomiya, Hiroshi; Takahashi, Yasuo

    2014-08-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle.

  19. Ab-initio simulations on adhesion and material transfer between contacting Al and TiN surfaces

    NASA Astrophysics Data System (ADS)

    Feldbauer, Gregor; Wolloch, Michael; Mohn, Peter; Redinger, Josef; Vernes, Andras

    2014-03-01

    Contacts of surfaces at the atomic scale are crucial in many modern applications from analytical techniques like indentation or AFM experiments to technologies such as nano- and micro-electro-mechanical-systems (N-/M-EMS). Furthermore, detailed insights into such contacts are fundamental for a better understanding of tribological processes like wear. A series of simulations is performed within the framework of Density Functional Theory (DFT) to investigate the approaching, contact and subsequent separation of two atomically flat surfaces consisting of different materials. Aluminum (Al) and titanium-nitride (TiN) slabs have been chosen as a model system representing the interaction between a soft and a hard material. The approaching and separation is simulated by moving one slab in discrete steps and allowing for electronic and ionic relaxations after each one. The simulations reveal the influences of different surface orientations ((001), (011), (111)) and alignments of the surfaces with respect to each other on the adhesion, equilibrium distance, charge distribution and material transfer between the surfaces. Material transfer is observed for configurations where the interface is stronger than the softer material.

  20. RADIATION SHIELDING COMPOSITION

    DOEpatents

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  1. User Instructions for the EPIC-2 Code.

    DTIC Science & Technology

    1986-09-01

    10 1 TAM IIFAILIDARAC EFAIL 5 MATERIAL CARDS FOR SOLIDS INPUT DATA L45,5X, FSO, A48. R(8FDO.OJ, MATL I WAR I iAIL "EFAILMAtEA :SCRIPT ION DENSITY SPH...failure of the elements must be achieved by the eroding interface algorithm, it is important that EFAIL (a mate- rial property) be much greater than ERODE...If left blank (DFRAC z 0) factor will be set to DFRAC = 1.0 EFAIL = Equivalent plastic strain (true) which, if exceeded, will totally fail the element

  2. Tunable rotating-mode density measurement using magnetic levitation

    NASA Astrophysics Data System (ADS)

    Gao, Qiu-Hua; Zhang, Wen-Ming; Zou, Hong-Xiang; Liu, Feng-Rui; Li, Wen-Bo; Peng, Zhi-Ke; Meng, Guang

    2018-04-01

    In this letter, a density measurement method by magnetic levitation using the rotation mechanism is presented. By rotating the entire magnetic levitation device that consists of four identical magnets, the horizontal centrifugal force and gravity can be balanced by the magnetic forces in the x-direction and the z-direction, respectively. The controllable magnified centripetal acceleration is investigated as a means to improve the measurement sensitivity without destabilization. Theoretical and experimental results show that the density measurement method can be flexible in characterizing small differences in density by tuning the eccentric distance or rotating speed. The rotating-mode density measurement method using magnetic levitation has prospects of providing an operationally simple way in separations and quality control of objects with arbitrary shapes in materials science and industrial fields.

  3. Reversible Electrochemical Lithium-Ion Insertion into the Rhenium Cluster Chalcogenide-Halide Re6Se8Cl2.

    PubMed

    Bruck, Andrea M; Yin, Jiefu; Tong, Xiao; Takeuchi, Esther S; Takeuchi, Kenneth J; Szczepura, Lisa F; Marschilok, Amy C

    2018-05-07

    The cluster-based material Re 6 Se 8 Cl 2 is a two-dimensional ternary material with cluster-cluster bonding across the a and b axes capable of multiple electron transfer accompanied by ion insertion across the c axis. The Li/Re 6 Se 8 Cl 2 system showed reversible electron transfer from 1 to 3 electron equivalents (ee) at high current densities (88 mA/g). Upon cycling to 4 ee, there was evidence of capacity degradation over 50 cycles associated with the formation of an organic solid-electrolyte interface (between 1.45 and 1 V vs Li/Li + ). This investigation highlights the ability of cluster-based materials with two-dimensional cluster bonding to be used in applications such as energy storage, showing structural stability and high rate capability.

  4. Inverse grading and hydraulic equivalence in grain-flow deposits

    USGS Publications Warehouse

    Sallenger, A. H.

    1979-01-01

    Inversely graded grain-flow deposits are characterized by a hydraulic equivalence that differs from that based on settling velocities or entrainment. Dispersive equivalence, derived from the dispersive pressure hypothesis on how inverse grading develops, was found to agree reasonably well with observed relationships between grain sizes and densities in grain-flow deposits. Furthermore, observed relationships in deposits formed in subaerial and subaqueous environments were found to be independent of fluid density as is required by dispersive equivalence. The results suggest that dispersive pressure controls the development of the inverse grading common to beach foreshore laminations, slip-face foreset strata, the basal parts of some coarse-grained turbidites, and other diverse deposits.

  5. Fluids density functional theory and initializing molecular dynamics simulations of block copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.

    2016-03-01

    Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.

  6. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  7. All-Iron Redox Flow Battery Tailored for Off-Grid Portable Applications.

    PubMed

    Tucker, Michael C; Phillips, Adam; Weber, Adam Z

    2015-12-07

    An all-iron redox flow battery is proposed and developed for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. The design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe2 (SO4 )3 active material and 1.2 m NaCl supporting electrolyte. With these materials, an average power density around 20 mW cm(-2) and a maximum energy density of 11.5 Wh L(-1) are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh(-1) , or only US$0.034 per mobile phone charge. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. All-Iron Redox Flow Battery Tailored for Off-Grid Portable Applications

    DOE PAGES

    Tucker, Michael C.; Phillips, Adam; Weber, Adam Z.

    2015-11-20

    We proposed and developed an all-iron redox flow battery for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. Our design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe 2 (SO 4 ) 3 activemore » material and 1.2 m NaCl supporting electrolyte. Furthermore, with these materials, an average power density around 20 mW cm -2 and a maximum energy density of 11.5 Wh L -1 are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh -1 , or only US$0.034 per mobile phone charge.« less

  9. Analysis of the Effect of Module Thickness Reduction on Thermoelectric Generator Output

    NASA Astrophysics Data System (ADS)

    Brito, F. P.; Figueiredo, L.; Rocha, L. A.; Cruz, A. P.; Goncalves, L. M.; Martins, J.; Hall, M. J.

    2016-03-01

    Conventional thermoelectric generators (TEGs) used in applications such as exhaust heat recovery are typically limited in terms of power density due to their low efficiency. Additionally, they are generally costly due to the bulk use of rare-earth elements such as tellurium. If less material could be used for the same output, then the power density and the overall cost per kilowatt (kW) of electricity produced could drop significantly, making TEGs a more attractive solution for energy harvesting of waste heat. The present work assesses the effect of reducing the amount of thermoelectric (TE) material used (namely by reducing the module thickness) on the electrical output of conventional bismuth telluride TEGs. Commercial simulation packages (ANSYS CFX and thermal-electric) and bespoke models were used to simulate the TEGs at various degrees of detail. Effects such as variation of the thermal and electrical contact resistance and the component thickness and the effect of using an element supporting matrix (e.g., eggcrate) instead of having air conduction in void areas have been assessed. It was found that indeed it is possible to reduce the use of bulk TE material while retaining power output levels equivalent to thicker modules. However, effects such as thermal contact resistance were found to become increasingly important as the active TE material thickness was decreased.

  10. Accelerated sintering in phase-separating nanostructured alloys

    PubMed Central

    Park, Mansoo; Schuh, Christopher A.

    2015-01-01

    Sintering of powders is a common means of producing bulk materials when melt casting is impossible or does not achieve a desired microstructure, and has long been pursued for nanocrystalline materials in particular. Acceleration of sintering is desirable to lower processing temperatures and times, and thus to limit undesirable microstructure evolution. Here we show that markedly enhanced sintering is possible in some nanocrystalline alloys. In a nanostructured W–Cr alloy, sintering sets on at a very low temperature that is commensurate with phase separation to form a Cr-rich phase with a nanoscale arrangement that supports rapid diffusional transport. The method permits bulk full density specimens with nanoscale grains, produced during a sintering cycle involving no applied stress. We further show that such accelerated sintering can be evoked by design in other nanocrystalline alloys, opening the door to a variety of nanostructured bulk materials processed in arbitrary shapes from powder inputs. PMID:25901420

  11. Determination of shielding requirements for mammography.

    PubMed

    Okunade, Akintunde Akangbe; Ademoroti, Olalekan Albert

    2004-05-01

    Shielding requirements for mammography when considerations are to be given to attenuation by compression paddle, breast tissue, grid and image receptor (intervening materials) has been investigated. By matching of the attenuation and hardening properties, comparisons are made between shielding afforded by breast tissue materials (water, Lucite and 50%-50% adipose-glandular tissue) and some materials considered for shielding diagnostic x-ray beams, namely lead, steel and gypsum wallboard. Results show that significant differences exist between the thickness required to produce equal attenuation and that required to produce equal hardening of a given incident beam. While attenuation equivalent thickness produces equal exposure, it does not produce equal hardening. For shielding purposes, equivalence in exposure reduction without equivalence in penetrating power of an emerging beam does not amount to equivalence in shielding affordable by two different materials. Presented are models and results of sample calculations of additional shielding requirements apart from that provided by intervening materials. The shielding requirements for the integrated beam emerging from intervening materials are different from those for the integrated beam emerging from materials (lead/steel/gypsum wallboard) with attenuation equivalent thicknesses of these intervening materials.

  12. Rupture testing for the quality control of electrodeposited copper interconnections in high-speed, high-density circuits

    NASA Technical Reports Server (NTRS)

    Zakraysek, Louis

    1987-01-01

    Printed Wiring Multilayer Board (PWMLB) structures for high speed, high density circuits are prone to failure due to the microcracking of electrolytic copper interconnections. The failure can occur in the foil that makes up the inner layer traces or in the plated through holes (PTH) deposit that forms the layer to layer interconnections. It is shown that there are some distinctive differences in the quality of Type E copper and that these differences can be detected before its use in a PWMLB. It is suggested that the strength of some Type E copper can be very low when the material is hot and that it is the use of this poor quality material in a PWMLB that results in PTH and inner layer microcracking. Since the PWMLB failure in question are induced by a thermal stress, and since the poorer grades of Type E materials used in these structures are susceptible to premature failure under thermal stress, the use of elevated temperature rupture and creep rupture testing is proposed as a means for screening copper foil, or its PTH equivalent, in order to eliminate the problem of Type E copper microcracking in advanced PWMLBs.

  13. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

    DOE PAGES

    Remo, J. L.; Lawrence, R. J.; Jacobsen, S. B.; ...

    2016-09-27

    Here, we applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients C M=(Pa s)/(J/m 2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (C M) max of 50×10 –5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth bymore » a sufficient amount (~1 cm/s) to avert collision ~a year in advance. Comet model calculations indicate for C M = 5 × 10 –4 s/m the deflection of a 2 km comet with a density 600 kg/m 3 by 1 cm/s requires an applied energy on the target surface of 5 × 10 13 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.« less

  14. High-Temperature Proton-Conducting Ceramics Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  15. Density gradient centrifugation: Application to the separation of macerals of type I, II, and III sedimentary organic matter

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Crelling, J.C.; Salmon, G.L.

    1994-01-01

    Samples of organic matter from nine well-known geological units (Green River Fm., Tasmanian Tasmanite, Lower Toarcian Sh. of the Paris Basin, Duwi Fm., New Albany Sh., Monterey Fm., Herrin No. 6 coal, Eocene coal, and Miocene lignite from Kalimantan) were processed by density gradient centrifugation (DGC) to isolate the constituent macerals. Optimal separation, as well as the liberation of microcrystalline pyrite from the organic matter, was obtained by particle size minimization prior to DGC by treatment with liquid N2 and micronization in a fluid energy mill. The resulting small particle size limits the use of optical microscopy, thus microfluorimetry and analytical pyrolysis were also employed to assess the quality and purity of the fractions. Each of the samples exhibits one dominant DGC peak (corresponding to alginite in the Green River Fm., amorphinite in the Lower Toarcian Sh., vitrinite in the Herrin No. 6, etc.) which shifts from 1.05 g mL-1 for the Type I kerogens to between 1.18 and 1.23 g mL-1 for Type II and II-S. The characteristic densities for Type III organic matter are greater still, being 1.27 g mL-1 for the hydrogen-rich Eocene coal, 1.29 g mL-1 for the Carboniferous coal and 1.43 g mL-1 for the oxygen-rich Miocene lignite. Among Type II kerogens, the DGC profile represents a compositional continuum from undegraded alginite through (bacterial) degraded amorphinite; therefore chemical and optical properties change gradually with increasing density. The separation of useful quantities of macerals that occur in only minor amounts is difficult. Such separations require large amounts of starting material and require multiple processing steps. Complete maceral separation for some samples using present methods seems remote. Samples containing macerals with significant density differences due to heteroatom diversity (e.g., preferential sulfur or oxygen concentration in the one maceral), on the other hand, may be successfully separated (e.g., coals and Monterey kerogen). ?? 1994 American Chemical Society.

  16. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    PubMed Central

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-01-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition. PMID:23698018

  17. The relationship between the force and separation of miniature magnets used in dentistry.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2018-06-01

    Miniature magnets are used in dentistry, principally for the retention of prosthetic devices. The relationship between force and separation of a magnet and its keeper, or, equivalently, two such magnets, has been neither defined theoretically nor described practically in any detail suitable for these applications. The present paper addresses this lacuna. A magnet is considered as a conglomeration of magnetic poles distributed over a surface or a solid in three-dimensional space, with the interaction of poles governed by the Coulomb law. This leads to a suite of mathematical models. These models are analysed for their description of the relationship between the force and the separation of two magnets. It is shown that at a large distance of separation, an inverse power law must apply. The power is necessarily integer and at least two. All possibilities are exhausted. Complementarily, under reasonable assumptions, it is shown that at a small distance of separation, the force remains finite. The outcome is in accordance with practical experience, and at odds with the use of simple conceptual models. Consequences relevant to the usage of magnets in dentistry are discussed. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  18. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.

    PubMed

    Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y

    2015-02-24

    Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

  19. Multi-epoch monitoring of the AA Tauri-like star V 354 Mon. Indications for a low gas-to-dust ratio in the inner disk warp

    NASA Astrophysics Data System (ADS)

    Schneider, P. C.; Manara, C. F.; Facchini, S.; Günther, H. M.; Herczeg, G. J.; Fedele, D.; Teixeira, P. S.

    2018-06-01

    Disk warps around classical T Tauri stars (CTTSs) can periodically obscure the central star for some viewing geometries. For these so- called AA Tau-like variables, the obscuring material is located in the inner disk and absorption spectroscopy allows one to characterize its dust and gas content. Since the observed emission from CTTSs consists of several components (photospheric, accretion, jet, and disk emission), which can all vary with time, it is generally challenging to disentangling disk features from emission variability. Multi- epoch, flux-calibrated, broadband spectra provide us with the necessary information to cleanly separate absorption from emission variability. We applied this method to three epochs of VLT/X-shooter spectra of the CTTS V 354 Mon (CSI Mon-660) located in NGC 2264 and find that: (a) the accretion emission remains virtually unchanged between the three epochs; (b) the broadband flux evolution is best described by disk material obscuring part of the star, and (c) the Na and K gas absorption lines show only a minor increase in equivalent width during phases of high dust extinction. The limits on the absorbing gas column densities indicate a low gas-to-dust ratio in the inner disk, less than a tenth of the ISM value. We speculate that the evolutionary state of V 354 Mon, rather old with a low accretion rate, is responsible for the dust excess through an evolution toward a dust dominated disk or through the fragmentation of larger bodies that drifted inward from larger radii in a still gas dominated disk.

  20. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  1. A general approach to DNA-programmable atom equivalents.

    PubMed

    Zhang, Chuan; Macfarlane, Robert J; Young, Kaylie L; Choi, Chung Hang J; Hao, Liangliang; Auyeung, Evelyn; Liu, Guoliang; Zhou, Xiaozhu; Mirkin, Chad A

    2013-08-01

    Nanoparticles can be combined with nucleic acids to programme the formation of three-dimensional colloidal crystals where the particles' size, shape, composition and position can be independently controlled. However, the diversity of the types of material that can be used is limited by the lack of a general method for preparing the basic DNA-functionalized building blocks needed to bond nanoparticles of different chemical compositions into lattices in a controllable manner. Here we show that by coating nanoparticles protected with aliphatic ligands with an azide-bearing amphiphilic polymer, followed by the coupling of DNA to the polymer using strain-promoted azide-alkyne cycloaddition (also known as copper-free azide-alkyne click chemistry), nanoparticles bearing a high-density shell of nucleic acids can be created regardless of nanoparticle composition. This method provides a route to a virtually endless class of programmable atom equivalents for DNA-based colloidal crystallization.

  2. Computational Design of Non-natural Sugar Alcohols to Increase Thermal Storage Density: Beyond Existing Organic Phase Change Materials.

    PubMed

    Inagaki, Taichi; Ishida, Toyokazu

    2016-09-14

    Thermal storage, a technology that enables us to control thermal energy, makes it possible to reuse a huge amount of waste heat, and materials with the ability to treat larger thermal energy are in high demand for energy-saving societies. Sugar alcohols are now one promising candidate for phase change materials (PCMs) because of their large thermal storage density. In this study, we computationally design experimentally unknown non-natural sugar alcohols and predict their thermal storage density as a basic step toward the development of new high performance PCMs. The non-natural sugar alcohol molecules are constructed in silico in accordance with the previously suggested molecular design guidelines: linear elongation of a carbon backbone, separated distribution of OH groups, and even numbers of carbon atoms. Their crystal structures are then predicted using the random search method and first-principles calculations. Our molecular simulation results clearly demonstrate that the non-natural sugar alcohols have potential ability to have thermal storage density up to ∼450-500 kJ/kg, which is significantly larger than the maximum thermal storage density of the present known organic PCMs (∼350 kJ/kg). This computational study suggests that, even in the case of H-bonded molecular crystals where the electrostatic energy contributes mainly to thermal storage density, the molecular distortion and van der Waals energies are also important factors to increase thermal storage density. In addition, the comparison between the three eight-carbon non-natural sugar alcohol isomers indicates that the selection of preferable isomers is also essential for large thermal storage density.

  3. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  4. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  5. Exploratory Studies on the Design of Acoustic Splitters for Wind Tunnels.

    DTIC Science & Technology

    1980-01-02

    materials. Material Flow resistance Density (rayls/m) (kg/m3) Polyether foam (Type A) 0.5 x 104 35 (Type B) 1.2 x 104 42 Mineral wool (Type A) 4.4 x 104...mks rayls/m for the main splitters in the 5ft tunnel would be well matched by using mineral wool (Type B) as the absorbent material. On the other hand...walls of the duct. Predic- ted values of noise attenuation for mineral - wool splitters separated by air gaps of 38 m, 70 mm and 165 mm are shown in Fig 12

  6. The challenges of achieving good electrical and mechanical properties when making structural supercapacitors

    NASA Astrophysics Data System (ADS)

    Ciocanel, C.; Browder, C.; Simpson, C.; Colburn, R.

    2013-04-01

    The paper presents results associated with the electro-mechanical characterization of a composite material with power storage capability, identified throughout the paper as a structural supercapacitor. The structural supercapacitor uses electrodes made of carbon fiber weave, a separator made of Celgard 3501, and a solid PEG-based polymer blend electrolyte. To be a viable structural supercapacitor, the material has to have good mechanical and power storage/electrical properties. The literature in this area is inconsistent on which electrical properties are evaluated, and how those properties are assessed. In general, measurements of capacitance or specific capacitance (i.e. capacitance per unit area or per unit volume) are made, without considering other properties such as leakage resistance and equivalent series resistance of the supercapacitor. This paper highlights the significance of these additional electrical properties, discusses the fluctuation of capacitance over time, and proposes methods to improve the stability of the material's electric properties over time.

  7. WE-F-16A-04: Micro-Irradiator Treatment Verification with High-Resolution 3D-Printed Rodent-Morphic Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, S; Belley, M; Benning, R

    2014-06-15

    Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioningmore » was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R{sup 2} = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density PRESAGE material (tissue equivalent and bone equivalent). This method enables precise treatment verification of micro-radiation therapies, and enhances the robustness of tumor radio-response studies. This work was supported by NIH R01CA100835.« less

  8. Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO2 spheres as ``spacers'' for high-performance application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Li, Na; Liu, Jiawei; Cai, Kai; Foda, Mohamed F.; Lei, Xiaomin; Han, Heyou

    2014-12-01

    In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors.In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05473c

  9. Dust near luminous ultraviolet stars

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1992-01-01

    More than 700 luminous stars in the infrared astronomical satellite (IRAS) Skyflux plates were examined for the presence of dust heated by a nearby star. This dust may be distinguished from the ubiquitous cool cirrus by its higher temperature and thus enhanced 60 micron emission. More than 120 dust clouds were found around only 106 of the stars with a volume filling factor of 0.006 and an intercloud separation of 46 pc. A region of dust smoothly distributed through the volume of space heated by the star could not be found and hence an upper limit of 0.05 cm(exp -3) is placed on the equivalent gas density in the intercloud regions. The clouds have an average density of 0.22 cm(exp -3) and a radius of 1.9 pc, albeit with wide variations in their properties. Two different scale heights of 140 and 540 pc were found. This was interpreted as evidence for different distributions of dust in and out of the galactic disk.

  10. Snake states and their symmetries in graphene

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Tiwari, Rakesh P.; Brada, Matej; Bruder, C.; Kusmartsev, F. V.; Mele, E. J.

    2015-12-01

    Snake states are open trajectories for charged particles propagating in two dimensions under the influence of a spatially varying perpendicular magnetic field. In the quantum limit they are protected edge modes that separate topologically inequivalent ground states and can also occur when the particle density rather than the field is made nonuniform. We examine the correspondence of snake trajectories in single-layer graphene in the quantum limit for two families of domain walls: (a) a uniform doped carrier density in an antisymmetric field profile and (b) antisymmetric carrier distribution in a uniform field. These families support different internal symmetries but the same pattern of boundary and interface currents. We demonstrate that these physically different situations are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems. Using gauge transformations in particle-hole space to connect these problems, we map the protected interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p -wave paired state. A variational model is introduced to interpret the interfacial solutions of both domain wall problems.

  11. Phase diagram as a function of temperature and magnetic field for magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    González, I.; Castro, J.; Baldomir, D.

    2002-10-01

    Using an extension of the Nagaev model of phase separation [E. L. Nagaev and A. I. Podel'shchikov, Sov. Phys. JETP, 71, 1108 (1990)] we calculate the phase diagram for degenerate antiferromagnetic semiconductors in the T-H plane for different current carrier densities. Both wide-band semiconductors and double-exchange materials are investigated.

  12. Properties of kenaf from various cultivars, growth and pulping conditions

    Treesearch

    James S. Han; Ernest S. Miyashita; Sara J. Spielvogel

    1999-01-01

    The physical properties of kenaf offer potential as an alternative raw material for the manufacture of paper. Investigations to date have not determined whether core and fiber should be pulped together or separately. Kenaf bast and core fibers of different cultivars were pulped under various kraft pulping conditions and physical properties: density, Canadian Standard...

  13. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device.

    PubMed

    Saha, Sanjit; Jana, Milan; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas

    2015-07-08

    Nanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of ∼824 F g(-1) is achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of ∼4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications.

  14. The analysis of various size, visually selected and density and magnetically separated fractions of Luna 16 and 20 samples

    NASA Technical Reports Server (NTRS)

    Eglinton, G.; Gowar, A. P.; Jull, A. J. T.; Pillinger, C. T.; Agrell, S. O.; Agrell, J. E.; Long, J. V. P.; Bowie, S. H. U.; Simpson, P. R.; Beckinsale, R. D.

    1977-01-01

    Samples of Luna 16 and 20 have been separated according to size, visual appearance, density, and magnetic susceptibility. Selected aliquots were examined in eight British laboratories. The studies included mineralogy and petrology, selenochronology, magnetic characteristics, Mossbauer spectroscopy, oxygen isotope ratio determinations, cosmic ray track and thermoluminescence investigations, and carbon chemistry measurements. Luna 16 and 20 are typically mare and highland soils, comparing well with their Apollo counterparts, Apollo 11 and 16, respectively. Both soils are very mature (high free iron, carbide, and methane and cosmogenic Ar), while Luna 16, but not Luna 20, is characterized by a high content of glassy materials. An aliquot of anorthosite fragments, handpicked from Luna 20, had a gas retention age of about 4.3 plus or minus 0.1 Gy.

  15. A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells.

    PubMed

    Rago, Laura; Zecchin, Sarah; Marzorati, Stefania; Goglio, Andrea; Cavalca, Lucia; Cristiani, Pierangela; Schievano, Andrea

    2018-04-01

    Recently, terracotta has attracted interest as low-cost and biocompatible material to build separators in microbial fuel cells (MFCs). However, the influence of a non-conductive material like terracotta on electroactive microbiological communities remains substantially unexplored. This study aims at describing the microbial pools developed from two different seed inocula (bovine and swine sewage) in terracotta-based air-breathing MFC. A statistical approach on microbiological data confirmed different community enrichment in the MFCs, depending mainly on the inoculum. Terracotta separators impeded the growth of electroactive communities in contact with cathodes (biocathodes), while a thick biofilm was observed on the surface (anolyte-side) of the terracotta separator. Terracotta-free MFCs, set as control experiments, showed a well-developed biocathode, Biocathode-MFCs resulted in 4 to 6-fold higher power densities. All biofilms were analyzed by high-throughput Illumina sequencing applied to 16S rRNA gene. The results showed more abundant (3- to 5-fold) electroactive genera (mainly Geobacter, Pseudomonas, Desulfuromonas and Clostridia MBA03) in terracotta-free biocathodes. Nevertheless, terracotta separators induced only slight changes in anodic microbial communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Water oxidation by size selected Co 27 clusters supported on Fe 2O 3

    DOE PAGES

    Pellin, Michael J.; Riha, Shannon C.; Tyo, Eric C.; ...

    2016-09-22

    The complexity of the water oxidation reaction makes understanding the role of individual catalytic sites critical to improving the process. Here, size-selected 27-atom cobalt clusters (Co 27) deposited on hematite (Fe 2O 3) anodes were tested for water oxidation activity. The uniformity of these anodes allows measurement of the activity of catalytic sites of well-defined nuclearity and known density. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) characterization of the anodes before and after electrochemical cycling demonstrates that these Co 27 clusters are stable to dissolution even in the harsh water oxidation electrochemical environment. They are also stable under illumination atmore » the equivalent of 0.4suns irradiation. The clusters show turnover rates for water oxidation that are comparable or higher than those reported for Pd- and Co-based materials or for hematite. The support for the Co 27 clusters is Fe 2O 3 grown by atomic layer deposition on a Si chip. We have chosen to deposit a Fe2O3 layer that is only a few unit cells thick (2nm), to remove complications related to exciton diffusion. We find that the electrocatalytic and the photoelectrocatalytic activity of the Co 27/Fe 2O 3 material is significantly improved when the samples are annealed (with the clusters already deposited). Lastly, given that the support is thin and that the cluster deposition density is equivalent to approximately 5% of an atomic monolayer, we suggest that annealing may significantly improve the exciton diffusion from the support to the catalytic moiety.« less

  17. Clinical Evaluation of Protective Garments with Respect to Garment Characteristics and Manufacturer Label Information.

    PubMed

    Lichliter, Andrew; Weir, Victor; Heithaus, Robert Evans; Gipson, Sean; Syed, Almas; West, James; Rees, Chet

    2017-01-01

    To test operator exposures inside radiation protection garments in a simulated clinical setup, examining trends related to multiple characteristics. Sixteen garment models containing lead or nonlead materials and a suspended device (Zero-Gravity) were tested for operator exposure from X rays scattered from an acrylic patient phantom. Weight and surface area were determined. The operator phantom was a wooden frame containing a dosimeter in its cavity. Garments were draped over the frame, and the setup was placed in a typical working position. There was substantial variability in exposures for all garments, ranging from 0.52 to 13.8 µSv/h (mean, 5.39 µSv/h ± 3.82), with a 12-fold difference for garments labeled 0.5 mm Pb equivalent. Most of the especially poor protectors were nonlead, even when not lightweight. Nonlead models were not more protective per weight overall. For closed-back garments labeled 0.5 mm Pb equivalent, mean exposures were lower for lead than for nonlead materials (mean, 1.48 µSv/h ± 0.434 vs 6.26 µSv/h ± 5.13, respectively). Density per exposure -1 was lower for lead than nonlead materials in the 0.5-mm Pb equivalent group, counter to advertised claims. Open-back configurations were lighter than closed (3.3 kg vs 6.0 kg, respectively), with similar mean exposures (5.30 µSv/h vs 5.39 µSv/h, respectively). The lowest exposure was 0.52 µSv/h (9.8% of the mean of all garments) for the suspended device. Operator exposure in a realistic interventional setup is highly variable for similarly labeled protective garments, highlighting the necessity of internal validation when considering nonlead and lightweight models. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  18. Theoretical modelling of AFM for bimetallic tip-substrate interactions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Recently, a new technique for calculating the defect energetics of alloys based on Equivalent Crystal Theory was developed. This new technique successfully predicts the bulk properties for binary alloys as well as segregation energies in the dilute limit. The authors apply this limit for the calculation of energy and force as a function of separation of an atomic force microscope (AFM) tip and substrate. The study was done for different combinations of tip and sample materials. The validity of the universality discovered for the same metal interfaces is examined for the case of different metal interactions.

  19. VizieR Online Data Catalog: 12um ISOCAM survey of the ESO-Sculptor field (Seymour+, 2007)

    NASA Astrophysics Data System (ADS)

    Seymour, N.; Rocca-Volmerange, B.; de Lapparent, V.

    2007-11-01

    We present a detailed reduction of a mid-infrared 12um (LW10 filter) ISOCAM open time observation performed on the ESO-Sculptor Survey field (Arnouts et al., 1997A&AS..124..163A). A complete catalogue of 142 sources (120 galaxies and 22 stars), detected with high significance (equivalent to 5{sigma}), is presented above an integrated flux density of 0.31mJy. Star/galaxy separation is performed by a detailed study of colour-colour diagrams. The catalogue is complete to 1mJy and, below this flux density, the incompleteness is corrected using two independent methods. The first method uses stars and the second uses optical counterparts of the ISOCAM galaxies; these methods yield consistent results. We also apply an empirical flux density calibration using stars in the field. For each star, the 12um flux density is derived by fitting optical colours from a multi-band {chi}2 to stellar templates (BaSel-2.0) and using empirical optical-IR colour-colour relations. This article is a companion analysis to our 2007 paper (Rocca-Volmerange et al. 2007A&A...475..801R) where the 12um faint galaxy counts are presented and analysed per galaxy type with the evolutionary code PEGASE.3. (1 data file).

  20. Local unitary equivalence of quantum states and simultaneous orthogonal equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Naihuan, E-mail: jing@ncsu.edu; Yang, Min; Zhao, Hui, E-mail: zhaohui@bjut.edu.cn

    2016-06-15

    The correspondence between local unitary equivalence of bipartite quantum states and simultaneous orthogonal equivalence is thoroughly investigated and strengthened. It is proved that local unitary equivalence can be studied through simultaneous similarity under projective orthogonal transformations, and four parametrization independent algorithms are proposed to judge when two density matrices on ℂ{sup d{sub 1}} ⊗ ℂ{sup d{sub 2}} are locally unitary equivalent in connection with trace identities, Kronecker pencils, Albert determinants and Smith normal forms.

  1. High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized nucleation of GaN seeds

    NASA Astrophysics Data System (ADS)

    Bi, Zhaoxia; Gustafsson, Anders; Lenrick, Filip; Lindgren, David; Hultin, Olof; Wallenberg, L. Reine; Ohlsson, B. Jonas; Monemar, Bo; Samuelson, Lars

    2018-01-01

    Uniform arrays of submicron hexagonal InGaN pyramids with high morphological and material homogeneity, reaching an indium composition of 20%, are presented in this work. The pyramids were grown by selective area metal-organic vapor phase epitaxy and nucleated from small openings in a SiN mask. The growth selectivity was accurately controlled with diffusion lengths of the gallium and indium species, more than 1 μm on the SiN surface. High material homogeneity of the pyramids was achieved by inserting a precisely formed GaN pyramidal seed prior to InGaN growth, leading to the growth of well-shaped InGaN pyramids delimited by six equivalent {" separators="| 10 1 ¯ 1 } facets. Further analysis reveals a variation in the indium composition to be mediated by competing InGaN growth on two types of crystal planes, {" separators="| 10 1 ¯ 1 } and (0001). Typically, the InGaN growth on {" separators="| 10 1 ¯ 1 } planes is much slower than on the (0001) plane. The formation of the (0001) plane and the growth of InGaN on it were found to be dependent on the morphology of the GaN seeds. We propose growth of InGaN pyramids seeded by {" separators="| 10 1 ¯ 1 }-faceted GaN pyramids as a mean to avoid InGaN material grown on the otherwise formed (0001) plane, leading to a significant reduction of variations in the indium composition in the InGaN pyramids. The InGaN pyramids in this work can be used as a high-quality template for optoelectronic devices having indium-rich active layers, with a potential of reaching green, yellow, and red emissions for LEDs.

  2. ac impedance analysis of a Ni-Nb-Zr-H glassy alloy with femtofarad capacitance tunnels

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Seto, M.; Inoue, A.

    2010-01-01

    A Nyquist diagram of a (Ni0.36Nb0.24Zr0.40)90H10 glassy alloy shows a semitrue circle, indicating that it is a conducting material with a total capacitance of 17.8 μF. The Bode plots showing the dependencies of its real and imaginary impedances, and phase on frequency suggest a simpler equivalent circuit having a resistor in parallel with a capacitor. Dividing the total capacitance (17.8 μF) by the capacitance of a single tunnel (0.9 fF), we deduced that this material has a high number of dielectric tunnels, which can be regarded as regular prisms separated from the electric-conducting distorted icosahedral Zr5Ni5Nb3 clusters by an average of 0.225 nm.

  3. Simulation of exposure and alignment for nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Deng, Yunfei; Neureuther, Andrew R.

    2002-07-01

    Rigorous electromagnetic simulation with TEMPEST is used to examine the exposure and alignment processes for nano-imprint lithography with attenuating thin-film molds. Parameters in the design of topographical features of the nano-imprint system and material choices of the components are analyzed. The small feature size limits light transmission through the feature. While little can be done with auxiliary structures to attract light into small holes, the use of an absorbing material with a low real part of the refractive index such as silver helps mitigates the problem. Results on complementary alignment marks shows that the small transmission through the metal layer and the vertical separation of two alignment marks create the leakage equivalent to 1 nm misalignment but satisfactory alignment can be obtained by measuring alignment signals over a +/- 30 nm range.

  4. The hairpin resonator: A plasma density measuring technique revisited

    NASA Astrophysics Data System (ADS)

    Piejak, R. B.; Godyak, V. A.; Garner, R.; Alexandrovich, B. M.; Sternberg, N.

    2004-04-01

    A microwave resonator probe is a resonant structure from which the relative permittivity of the surrounding medium can be determined. Two types of microwave resonator probes (referred to here as hairpin probes) have been designed and built to determine the electron density in a low-pressure gas discharge. One type, a transmission probe, is a functional equivalent of the original microwave resonator probe introduced by R. L. Stenzel [Rev. Sci. Instrum. 47, 603 (1976)], modified to increase coupling to the hairpin structure and to minimize plasma perturbation. The second type, a reflection probe, differs from the transmission probe in that it requires only one coaxial feeder cable. A sheath correction, based on the fluid equations for collisionless ions in a cylindrical electron-free sheath, is presented here to account for the sheath that naturally forms about the hairpin structure immersed in plasma. The sheath correction extends the range of electron density that can be accurately measured with a particular wire separation of the hairpin structure. Experimental measurements using the hairpin probe appear to be highly reproducible. Comparisons with Langmuir probes show that the Langmuir probe determines an electron density that is 20-30% lower than the hairpin. Further comparisons, with both an interferometer and a Langmuir probe, show hairpin measurements to be in good agreement with the interferometer while Langmuir probe measurements again result in a lower electron density.

  5. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications

    PubMed Central

    Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi

    2017-01-01

    Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al2O3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and VB. PMID:28218234

  6. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications.

    PubMed

    Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi

    2017-02-20

    Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al 2 O 3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and V B .

  7. Characterization of shredded television scrap and implications for materials recovery.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2007-01-01

    Characterization of TV scrap was carried out by using a variety of methods, such as chemical analysis, particle size and shape analysis, liberation degree analysis, thermogravimetric analysis, sink-float test, and IR spectrometry. A comparison of TV scrap, personal computer scrap, and printed circuit board scrap shows that the content of non-ferrous metals and precious metals in TV scrap is much lower than that in personal computer scrap or printed circuit board scrap. It is expected that recycling of TV scrap will not be cost-effective by utilizing conventional manual disassembly. The result of particle shape analysis indicates that the non-ferrous metal particles in TV scrap formed as a variety of shapes; it is much more heterogeneous than that of plastics and printed circuit boards. Furthermore, the separability of TV scrap using density-based techniques was evaluated by the sink-float test. The result demonstrates that a high recovery of copper could be obtained by using an effective gravity separation process. Identification of plastics shows that the major plastic in TV scrap is high impact polystyrene. Gravity separation of plastics may encounter some challenges in separation of plastics from TV scrap because of specific density variations.

  8. Zwitterionic materials for antifouling membrane surface construction.

    PubMed

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Coded Modulation in C and MATLAB

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Andrews, Kenneth S.

    2011-01-01

    This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.

  10. Final report on CCQM-K80: Comparison of value-assigned CRMs and PT materials: Creatinine in human serum

    NASA Astrophysics Data System (ADS)

    Camara, Johanna E.; Duewer, David L.; Gasca Aragon, Hugo; Lippa, Katrice A.; Toman, Blaza

    2013-01-01

    The 2009 CCQM-K80 'Comparison of value-assigned CRMs and PT materials: creatinine in human serum' is the first in a series of key comparisons directly testing the chemical measurement services provided to customers by National Metrology Institutes (NMIs) and Designated Institutes. CCQM-K80 compared the assigned serum creatinine values of certified reference materials (CRMs) using measurements made on these materials under repeatability conditions. Six NMIs submitted 17 CRM materials for evaluation, all intended for sale to customers. These materials represent nearly all of the higher-order CRMs then available for this clinically important measurand. The certified creatinine mass fraction in the materials ranged from 3 mg/kg to 57 mg/kg. All materials were stored and prepared according the specifications provided by each NMI. Samples were processed and analyzed under repeatability conditions by one analyst using isotope dilution liquid chromatography-mass spectrometry. The instrumental repeatability imprecision, expressed as a percent relative standard deviation, was 1.2%. Given the number of materials and the time required for each analysis, the measurements were made in two measurement campaigns ('runs'). In both campaigns, replicate analyses (two injections of one preparation separated in time) were made on each of two or three independently prepared aliquots from one randomly selected unit of each of the 17 materials. The mean value, between-campaign, between-aliquot and between-replicate variance components, standard uncertainty of the mean value, and the number of degrees of freedom associated with the standard uncertainty were estimated using a linear mixed model. Since several of the uncertainties estimated using this traditional frequentist approach were associated with a single degree of freedom, Markov Chain Monte Carlo Bayesian analysis was used to estimate 95% level-of-confidence coverage intervals, U95. Uncertainty-weighted generalized distance regression was used to establish the key comparison reference function (KCRF) relating the assigned values to the repeatability measurements. Parametric bootstrap Monte Carlo was used to estimate 95% level-of-confidence coverage intervals for the degrees of equivalence of materials, d +/- U95(d), and of the participating NMIs, D +/- U95(D). Because of the wide range of creatinine mass fraction in the materials, these degrees of equivalence are expressed in percent relative form: %d +/- U95(%d) and %D +/- U95(%D). On the basis of leave-one-out cross-validation, the assigned values for 16 of the 17 materials were deemed equivalent at the 95% level of confidence. These materials were used to define the KCRF. The excluded material was identified as having a marginally underestimated assigned uncertainty, giving it large and potentially anomalous influence on the KCRF. However, this material's %d of 1.4 +/- 1.5 indicates that it is equivalent with the other materials at the 95% level of confidence. The median |%d| for all 17 of the materials is 0.3 with a median U95(%d) of 1.9. All of these higher-order CRMs for creatinine in human serum are equivalent within their assigned uncertainties. The median |%D| for the participating NMIs is 0.3 with a median U95(%D) of 2.1. These results demonstrate that all participating NMIs have the ability to correctly value-assign CRMs and proficiency test materials for creatinine in human serum and similar measurands. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. Gravity evidence for a shallow intrusion under Medicine Lake volcano, California.

    USGS Publications Warehouse

    Finn, C.; Williams, D.L.

    1982-01-01

    A positive gravity anomaly is associated with Medicine Lake volcano, California. Trials with different Bouguer reduction densities indicate that this positive anomaly cannot be explained by an inappropriate choice of Bouguer reduction density but must be caused by a subvolcanic body. After separating the Medicine Lake gravity high from the regional field, we were able to fit the 27mgal positive residual anomaly with a large, shallow body of high density contrast (+0.41g/cm3) and a thickness of 2.5km. We interpret this body to be an intrusion of dense material emplaced within the several-kilometres-thick older volcanic layer that probably underlies Medicine Lake volcano.-Authors

  12. Effect of the medium's density on the hydrocyclonic separation of waste plastics with different densities.

    PubMed

    Fu, Shuangcheng; Fang, Yong; Yuan, Huixin; Tan, Wanjiang; Dong, Yiwen

    2017-09-01

    Hydrocyclones can be applied to recycle waste plastics with different densities through separating plastics based on their differences in densities. In the process, the medium density is one of key parameters and the value of the medium's density is not just the average of the density of two kinds of plastics separated. Based on the force analysis and establishing the equation of motion of particles in the hydrocyclone, a formula to calculate the optimum separation medium density has been deduced. This value of the medium's density is a function of various parameters including the diameter, density, radial position and tangential velocity of particles, and viscosity of the medium. Tests on the separation performance of the hydrocyclone has been conducted with PET and PVC particles. The theoretical result appeared to be in good agreement with experimental results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    PubMed

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Liquid chromatography fractionation with gas chromatography/mass spectrometry and preparative gas chromatography-nuclear magnetic resonance analysis of selected nonylphenol polyethoxylates.

    PubMed

    Wu, Ze-ying; Rühle, Christian P G; Marriott, Philip J

    2011-07-01

    Commercial nonylphenol polyethoxylates, designated as NPnEOs, where n is the number of ethoxy groups, comprise a range of ethoxylate groups. According to the starting material nonylphenol, they may also be composed of a complex mix of isomeric nonyl substituents. In order to study more fully the heterogeneity arising from both the ethoxylate and nonyl groups, a mixture of NPnEOs is first fractionated by normal phase liquid chromatography (NPLC) into separate fractions comprising individual ethoxymers, n. Preparative collection of each early elution ethoxymer fraction allows further separation of different isomeric nonyl group components by using analytical gas chromatography/mass spectrometry (GC/MS). The nonyl isomers are not resolved in the NPLC method. The distribution of the isomeric nonyl side chain of different ethoxymers bears close resemblance with each other, and also with the original nonylphenol starting material, although separation efficiency of the nonyl isomers for each ethoxymer decreases with increasing ethoxymer number. Mass spectrometry of the separated isomers display close similarity for presumed equivalent isomers in each fraction, based on elution order of the nonyl isomers. This suggests that each corresponding peak has the same isomer structure. Mass spectra are interpreted based on branching within the nonyl side chain. Preparative GC coupled with MS and nuclear magnetic resonance spectroscopy elucidated the molecular structure of one of the resolved isomers as 4-(1,3-dimethyl-1-propyl-butyl)-phenol diethoxylate. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Electrical behavior of natural manganese dioxide (NMD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgulho, H.F.; Fernandes, R.Z.D.; Pernaut, J.M.

    NMD samples from Brazil have been submitted to magnetic and particle size separations and characterized by X-ray diffraction and fluorescence and thermogravimetric analyses. Results showed that simple physical treatments can lead to more than 60% enriched MnO{sub 2} materials which could satisfy some electrochemical applications. The electrical properties of the samples conditioned as pressed pellets have been investigated by four-points direct current probe and impedance spectroscopy, varying the conditions of preparation and measurement. It is proposed that the higher frequency impedance is equivalent to the intrinsic electronic resistance of the MnO{sub 2} phases while at lower frequencies occurs an interphasemore » charge separation coupled with a possible ionic transport. The corresponding contact resistance depends on the particle size distribution of the material, the compactation pressure of pellets and the iron content of the materials. The interphase dielectric relaxation does not behave ideally; the depression of the impedance semicircles as shown in the Nyquist plane is assumed to be related to the roughness of the bulk interfaces. Recent developments have shown the possibility of using manganese oxides as reversible electrodes for battery or supercapacitor applications for electrical vehicle. In these perspectives it is important to study the electrical and electrochemical properties of NMD in order to estimate its suitability for this kind of applications.« less

  16. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  17. Material matters: Analysis of density uncertainty in 3D printing and its consequences for radiation oncology.

    PubMed

    Craft, Daniel F; Kry, Stephen F; Balter, Peter; Salehpour, Mohammad; Woodward, Wendy; Howell, Rebecca M

    2018-04-01

    Using 3D printing to fabricate patient-specific devices such as tissue compensators, boluses, and phantoms is inexpensive and relatively simple. However, most 3D printing materials have not been well characterized, including their radiologic tissue equivalence. The purposes of this study were to (a) determine the variance in Hounsfield Units (HU) for printed objects, (b) determine if HU varies over time, and (c) calculate the clinical dose uncertainty caused by these material variations. For a sample of 10 printed blocks each of PLA, NinjaFlex, ABS, and Cheetah, the average HU and physical density were tracked at initial printing and over the course of 5 weeks, a typical timeframe for a standard course of radiotherapy. After initial printing, half the blocks were stored in open boxes, the other half in sealed bags with desiccant. Variances in HU and density over time were evaluated for the four materials. Various clinical photon and electron beams were used to evaluate potential errors in clinical depth dose as a function of assumptions made during treatment planning. The clinical depth error was defined as the distance between the correctly calculated 90% isodose line and the 90% isodose line calculated using clinically reasonable, but simplified, assumptions. The average HU measurements of individual blocks of PLA, ABS, NinjaFlex, and Cheetah varied by as much as 121, 30, 178, and 30 HU, respectively. The HU variation over 5 weeks was much smaller for all materials. The magnitude of clinical depth errors depended strongly on the material, energy, and assumptions, but some were as large as 9.0 mm. If proper quality assurance steps are taken, 3D printed objects can be used accurately and effectively in radiation therapy. It is critically important, however, that the properties of any material being used in patient care be well understood and accounted for. © 2018 American Association of Physicists in Medicine.

  18. Vertically Aligned Niobium Nanowire Arrays for Fast-Charging Micro-Supercapacitors.

    PubMed

    Mirvakili, Seyed M; Hunter, Ian W

    2017-07-01

    Planar micro-supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide-based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro-supercapacitors is introduced. Specific capacitance of up to 1 kF m -2 (100 mF cm -2 ) with peak energy and power density of 2 kJ m -2 (6.2 MJ m -3 or 1.7 mWh cm -3 ) and 150 kW m -2 (480 MW m -3 or 480 W cm -3 ), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m 2 or 24.9 mΩ cm 2 ) and large specific capacitance, is among the highest for planar micro-supercapacitors electrodes made of nanomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. SU-E-T-608: Perturbation Corrections for Alanine Dosimeters in Different Phantom Materials in High-Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigts-Rhetz, P von; Czarnecki, D; Anton, M

    Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from {sup 60}Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k{sub env} for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted withmore » BEAMnrc to a {sup 60}Co unit and an Elekta (E{sub nom}=6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n{sub e}/n{sub e,w}) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k{sub env}=0.9991+0.0049 *((n{sub e}/n{sub e,w})−0.7659){sup 3} Conclusion: A perturbation correction factor k{sub env} accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n{sub e}/n{sub e,w}) between 1 and 1.4. For denser materials such as bone or much less dense surroundings such as lung, a small correction would be appropriate.« less

  20. Master Lovas-Andai and equivalent formulas verifying the 8/33 two-qubit Hilbert-Schmidt separability probability and companion rational-valued conjectures

    NASA Astrophysics Data System (ADS)

    Slater, Paul B.

    2018-04-01

    We begin by investigating relationships between two forms of Hilbert-Schmidt two-rebit and two-qubit "separability functions"—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas-Andai framework, the independent variable ɛ \\in [0,1] is the ratio σ (V) of the singular values of the 2 × 2 matrix V=D_2^{1/2} D_1^{-1/2} formed from the two 2 × 2 diagonal blocks (D_1, D_2) of a 4 × 4 density matrix D= ||ρ _{ij}||. In the Slater setting, the independent variable μ is the diagonal-entry ratio √{ρ _{11} ρ _ {44}/ρ _ {22 ρ _ {33}}}—with, of central importance, μ =ɛ or μ =1/ɛ when both D_1 and D_2 are themselves diagonal. Lovas and Andai established that their two-rebit "separability function" \\tilde{χ }_1 (ɛ ) (≈ ɛ ) yields the previously conjectured Hilbert-Schmidt separability probability of 29/64. We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and "two-octo[nionic]-bit" counterparts, \\tilde{χ _2}(ɛ ) =1/3 ɛ ^2 ( 4-ɛ ^2) , \\tilde{χ _4}(ɛ ) =1/35 ɛ ^4 ( 15 ɛ ^4-64 ɛ ^2+84) and \\tilde{χ _8} (ɛ )= 1/1287ɛ ^8 ( 1155 ɛ ^8-7680 ɛ ^6+20160 ɛ ^4-25088 ɛ ^2+12740) . These immediately lead to predictions of Hilbert-Schmidt separability/PPT-probabilities of 8/33, 26/323 and 44482/4091349, in full agreement with those of the "concise formula" (Slater in J Phys A 46:445302, 2013), and, additionally, of a "specialized induced measure" formula. Then, we find a Lovas-Andai "master formula," \\tilde{χ _d}(ɛ )= ɛ ^d Γ (d+1)^3 _3\\tilde{F}_2( -{d/2,d/2,d;d/2+1,3 d/2+1;ɛ ^2) }/{Γ ( d/2+1) ^2}, encompassing both even and odd values of d. Remarkably, we are able to obtain the \\tilde{χ _d}(ɛ ) formulas, d=1,2,4, applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal D_1 and D_2, but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of 1-256/27 π ^2 is obtained based on the operator monotone function √{x}, with the use of \\tilde{χ _2}(ɛ ).

  1. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leavingmore » behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.« less

  2. Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

    PubMed Central

    Fujisaki, Keisuke; Ikeda, Tomoyuki

    2013-01-01

    To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395

  3. Glasses and Liquids Low on the Energy Landscape Prepared by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Dalal, Shakeel; Fakhraai, Zahra; Ediger, Mark

    2014-03-01

    The lower portions of the potential energy landscape for glass-forming materials such as polymers and small molecules were historically inaccessible by experiments. Physical vapor deposition is uniquely able to prepare materials in this portion of the energy landscape, with the properties of the deposited material primarily modulated by the substrate temperature. Here we report on high-throughput experiments which utilize a temperature gradient stage to enable rapid screening of vapor-deposited organic glasses. Using ellipsometry, we characterize a 100 K range of substrate temperatures in a single experiment, allowing us to rapidly determine the density, kinetic stability, fictive temperature and molecular orientation of these glasses. Their properties fall into three temperature regimes. At substrate temperatures as low as 0.97Tg, we prepare materials which are equivalent to the supercooled liquid produced by cooling the melt. Below 0.9Tg (1.16TK) the properties of materials are kinetically controlled and highly tunable. At intermediate substrate temperatures we are able to produce materials whose bulk properties match those expected for the equilibrium supercooled liquid, down to 1.16TK, but are structurally anisotropic.

  4. Modifying Current Collectors to Produce High Volumetric Energy Density and Power Density Storage Devices.

    PubMed

    Khani, Hadi; Dowell, Timothy J; Wipf, David O

    2018-06-27

    We develop zirconium-templated NiO/NiOOH nanosheets on nickel foam and polypyrrole-embedded in exfoliated carbon fiber cloth as complementary electrodes for an asymmetric battery-type supercapacitor device. We achieve high volumetric energy and power density by the modification of commercially available current collectors (CCs). The modified CCs provide the source of active material, actively participate in the charge storage process, provide a larger surface area for active material loading, need no additional binders or conductive additives, and retain the ability to act as the CC. Nickel foam (NF) CCs are modified by use of a soft-templating/solvothermal treatment to generate NiO/NiOOH nanosheets, where the NF is the source of Ni for the synthesis. Carbon-fiber cloth (CFC) CCs are modified by an electrochemical oxidation/reduction process to generate exfoliated core-shell structures (ECFC). Electropolymerization of pyrrole into the shell structure produces polypyrrole embedded in exfoliated core-shell material (PPy@rECFC). Battery-type supercapacitor devices are produced with NiO/NiOOH@NF and PPy@rECFC as positive and negative electrodes, respectively, to demonstrate the utility of this approach. Volumetric energy densities for the full-cell device are in the range of 2.60-4.12 mWh cm -3 with corresponding power densities in the range of 9.17-425.58 mW cm -3 . This is comparable to thin-film lithium-ion batteries (0.3-10 mWh cm -3 ) and better than some commercial supercapacitors (<1 mWh cm -3 ). 1 The energy and power density is impressive considering that it was calculated using the entire cell volume (active materials, separator, and both CCs). The full-cell device is highly stable, retaining 96% and 88% of capacity after 2000 and 5000 cycles, respectively. These results demonstrate the utility of directly modifying the CCs and suggest a new method to produce high volumetric energy density and power density storage devices.

  5. A Jamming Phase Diagram for Pressing Polymers

    NASA Astrophysics Data System (ADS)

    Teng, Chao; Zhang, Zexin; Wang, Xiaoliang; Xue, Gi; Nanjing University Team; Soochow University Collaboration

    2011-03-01

    Molecular glasses begin to flow when they are heated. Other glassy systems, such as dense foams, emulsions, colloidal suspensions and granular materials, begin to flow when subjected to sufficiently large stresses. The equivalence of these two routes to flow is a basic tenet of jamming, a conceptual means of unifying glassy behavior in a swath of disordered, dynamical arrested systems. However, a full understanding of jamming transition for polymers remains elusive. By controlling the packing densities of polymer glasses, we found that polymer glasses could once flow under cold-pressing at temperatures well below its calorimetric glass transition temperature (Tg). The thermomechanical analysis (TMA) results confirmed that Tg changed with density as well as the applied stress, which is exactly what to be expected within the jamming picture. We propose a jamming phase diagram for polymers based on our laboratory experiments.

  6. The influence of joint technologies on ELV recyclability.

    PubMed

    Soo, Vi Kie; Compston, Paul; Doolan, Matthew

    2017-10-01

    Stricter vehicle emission legislation has led to the increasing use of lightweight materials and multi-material concepts to reduce the vehicle mass. To account for the complexity of multi-material vehicle designs, the choice of joining techniques used is becoming more diverse. Moreover, the different material combinations, and their respective joining methods play an important role in determining the potential of full material separation in a closed-loop system. This paper evaluates the types of joining technologies used in the automotive industry, and identifies those that hinder the sorting of ELV materials. The study is based on an industrial shredding trial of car doors. Observations from the case study showed that steel screws and bolts are increasingly used to combine different material types and are less likely to be perfectly liberated during the shredding process. The characteristics of joints that lead to impurities and valuable material losses, such as joint strength, material type, size, diameter, location, and protrusion level, can influence the material liberation in the current sorting practices and thus, lead to ELV waste minimisation. Additionally, the liberation of joints is also affected by the density and thickness of materials being joined. Correlation analyses are carried out to further support the influence of mechanical screws and bolts on material separation efficiencies. The observations are representative of the initial phases of current global ELV sorting practices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE PAGES

    Niklasson, Anders M. N.; Cawkwell, Marc J.

    2014-10-29

    Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

  8. Characterization of heat transfer in nutrient materials, part 2

    NASA Technical Reports Server (NTRS)

    Cox, J. E.; Bannerot, R. B.; Chen, C. K.; Witte, L. C.

    1973-01-01

    A thermal model is analyzed that takes into account phase changes in the nutrient material. The behavior of fluids in low gravity environments is discussed along with low gravity heat transfer. Thermal contact resistance in the Skylab food heater is analyzed. The original model is modified to include: equivalent conductance due to radiation, radial equivalent conductance, wall equivalent conductance, and equivalent heat capacity. A constant wall-temperature model is presented.

  9. Polyimide Prepregs With Improved Tack

    NASA Technical Reports Server (NTRS)

    Vanucci, R.

    1987-01-01

    Drape and tack improved without loss of strength. Composites made with PMR-15 (or equivalent) polyimides have gained acceptance as viable engineering materials for high-use-temperature applications. Acceptance due to both thermo-oxidative stability of PMR-15 (or equivalent) and ease which PMR-15 (or equivalent) prepreg materials processed into composite structures.

  10. Energy density and rate limitations in structural composite supercapacitors

    NASA Astrophysics Data System (ADS)

    Snyder, J. F.; Gienger, E.; Wetzel, E. D.; Xu, K.

    2012-06-01

    The weight and volume of conventional energy storage technologies greatly limits their performance in mobile platforms. Traditional research efforts target improvements in energy density to reduce device size and mass. Enabling a device to perform additional functions, such as bearing mechanical load, is an alternative approach as long as the total mass efficiency exceeds that of the individual materials it replaces. Our research focuses on structural composites that function as batteries and supercapacitors. These multifunctional devices could be used to replace conventional structural components, such as vehicle frame elements, to provide significant system-level weight reductions and extend mission times. Our approach is to design structural properties directly into the electrolyte and electrode materials. Solid polymer electrolyte materials bind the system and transfer load to the fibers while conducting ions between the electrodes. Carbon fiber electrodes provide a route towards optimizing both energy storage and load-bearing capabilities, and may also obviate the need for a separate current collector. The components are being integrated using scalable, cost-effective composite processing techniques that are amenable to complex part shapes. Practical considerations of energy density and rate behavior are described here as they relate to materials used. Our results highlight the viability as well as the challenges of this multifunctional approach towards energy storage.

  11. An innovative recycling process to obtain pure polyethylene and polypropylene from household waste.

    PubMed

    Serranti, Silvia; Luciani, Valentina; Bonifazi, Giuseppe; Hu, Bin; Rem, Peter C

    2015-01-01

    An innovative recycling process, based on magnetic density separation (MDS) and hyperspectral imaging (HSI), to obtain high quality polypropylene and polyethylene as secondary raw materials, is presented. More in details, MDS was applied to two different polyolefin mixtures coming from household waste. The quality of the two separated PP and PE streams, in terms of purity, was evaluated by a classification procedure based on HSI working in the near infrared range (1000-1700 nm). The classification model was built using known PE and PP samples as training set. The results obtained by HSI were compared with those obtained by classical density analysis carried in laboratory on the same polymers. The results obtained by MDS and the quality assessment of the plastic products by HSI showed that the combined action of these two technologies is a valid solution that can be implemented at industrial level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; ...

    2015-10-20

    The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  13. Thiophilic paramagnetic particles as a batch separation medium for the purification of antibodies from various source materials.

    PubMed

    Dawes, Clive C; Jewess, Philip J; Murray, Deborah A

    2005-03-15

    A preparation of thiophilic agarose-based paramagnetic particles (T-Gel) has been developed with physical characteristics (particle size and particle density) that facilitate its use as a batch separation medium suitable for the large-scale purification and isolation of immunoglobulins. The medium was used to extract immunoglobulins from a wide range of starting materials, including sera, ascites fluid, tissue culture medium, and whole blood. None of these starting materials required pretreatment such as clarification by centrifugation or filtration prior to antibody extraction. The antibody purity obtained using T-Gel compared well with that obtained using protein A agarose column chromatography. Yields were approximately 30 mg of immunoglobulins per milliliter of T-Gel, and little was required in the way of specialist equipment. The method is uncomplicated and involves a roll mix extraction overnight, followed by magnetic separation to facilitate supernatant removal and subsequent washing of the particles. Elution of bound antibodies was carried out at neutral pH to yield a concentration of immunoglobulins that was approximately 7 mg/ml. The method was found to be applicable to antibody purification from the blood serum of seven different mammalian species and for all immunoglobulin classes.

  14. Quantum non-Abelian hydrodynamics: Anyonic or spin-orbital entangled liquids, nonunitarity of scattering matrix and charge fractionalization

    NASA Astrophysics Data System (ADS)

    Pareek, Tribhuvan Prasad

    2015-09-01

    In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.

  15. MaRIE first experiments summaries version: May 9, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrao, John L

    2010-01-01

    A predictive understanding of microstructure-based heterogeneity and its consequences for materials damage & failure and phase transformation initiation is presently lacking. Most metallic materials used in applications are polycrystalline aggregates - individual single crystals separated by grain boundaries. Most of these materials are either metallic alloys or contain impurities. In either case, there is spatial variability in their chemical composition. These materials also contain dislocations which will be distributed in some way throughout the individual grains and increase in density with deformation and typically form dislocation sub-cell arrangements - producing spatial distribution in dislocation density. Many materials also produce twinmore » or slip band structures with deformation which produce further heterogeneity within individual crystals. The objective of this first experiment is to probe the physics of dynamic solid-solid phase transformation and damage at length scales approaching those at which they nucleate in order to gain a detailed understanding of this process and the influence real material microstructure has on these events. These experiments would simultaneously be simulated by the appropriate modeling tools to further develop these predictive tools and to assist in our interpretation of experimental results.« less

  16. Qualitative identification of rigid gas permeable contact lens materials by densitometry.

    PubMed

    Arce, C G; Schuman, P D; Schuman, W P

    1999-10-01

    We describe a practical method to qualitatively identify polymethylmethacrylate (PMMA) and rigid gas permeable (RGP) contact lens materials. By progressive dilution of a saturated saline solution made with distilled or tap water and sodium chloride, we recorded comparative densitometry of rigid contact lens materials using a small hydrometer or by liquid displacement. The method was sensitive enough to separate the polymethylmethacrylate, all silicon-methacrylates, and all but two fluorine-containing silicon-methacrylates. The hydrometer had a precision of three decimals rounded to the nearest 0.005. There was only one RGP product that could have been confused with the PMMA material. Most silicon-methacrylates had lower densities than fluorine containing silicon-methacrylates. Only four of 25 products under 1.117 gm/cm3 contained fluorine. Densitometry with a hydrometer is an effective non-destructive method to identify RGP materials and to verify their quality. The method is easier when lens blanks are tested, but in spite of differences in shape, size, and weight, densitometry may also be used with new or used contact lenses. Its simplicity and low cost makes densitometry feasible for any contact lens laboratory or clinic to use on a routine basis. Only silicon-methacrylates had an inverse relationship between density and oxygen permeability. As the silicon content of the contact lens increases, the Dk increases and the density decreases.

  17. Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1.

    PubMed

    Zorn, Reiner; Yin, Huajie; Lohstroh, Wiebke; Harrison, Wayne; Budd, Peter M; Pauw, Brian R; Böhning, Martin; Schönhals, Andreas

    2018-01-17

    Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering.

  18. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.

    PubMed

    Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo

    2015-09-01

    Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results. © The Author(s) 2015.

  19. Technical note: Headspace analysis of explosive compounds using a novel sampling chamber.

    PubMed

    DeGreeff, Lauryn; Rogers, Duane A; Katilie, Christopher; Johnson, Kevin; Rose-Pehrsson, Susan

    2015-03-01

    The development of instruments and methods for explosive vapor detection is a continually evolving field of interest. A thorough understanding of the characteristic vapor signatures of explosive material is imperative for the development and testing of new and current detectors. In this research a headspace sampling chamber was designed to contain explosive materials for the controlled, reproducible sampling and characterization of vapors associated with these materials. In a detonation test, the chamber was shown to contain an explosion equivalent to three grams of trinitrotoluene (TNT) without damage to the chamber. The efficacy of the chamber in controlled headspace sampling was evaluated in laboratory tests with bulk explosive materials. Small quantities of TNT, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were separately placed in the sampling chamber, and the headspace of each material was analyzed by gas chromatography/mass spectrometry (GC/MS) with online cryogenic trapping to yield characteristic vapor signatures for each explosive compound. Chamber sampling conditions, temperature and sampling time, were varied to demonstrate suitability for precise headspace analysis. Published by Elsevier Ireland Ltd.

  20. Development of SnS2/RGO nanosheet composite for cost-effective aqueous hybrid supercapacitors.

    PubMed

    Chauhan, Himani; Singh, Manoj K; Kumar, Praveen; Hashmi, Safir Ahmad; Deka, Sasanka

    2017-01-13

    The development of low cost supercapacitor cells with unique capacitive properties is essential for many domestic and industrial purposes. Here we report the first ever application of SnS 2 -reduced graphene oxide (SnS 2 /RGO) layered nanocomposite as a superior electrode material for symmetric aqueous hybrid supercapacitors. We synthesized SnS 2 /RGO nanocomposite comprised of nanosheets of SnS 2 and graphene oxide via a one-pot hydrothermal approach. in situ as-synthesized SnS 2 /RGO is devised for the first time to give high specific capacitance 500 Fg -1 , energy density 16.67 Wh kg -1 and power density 488 W kg -1 . The cell retains 95% charge/discharge cycle stability up to 1000 cycles. In-short, the SnS 2 /RGO nanosheet composite presented is a novel and advanced material for application in high stability moderate value hybrid supercapacitors. All the currently available surveys in literature state the potential applicability of SnS 2 as the anode material for reversible lithium/sodium ion batteries (LIBs/NIBs) but there is a lack of equivalent studies on electrochemical capacitors. We filled up this knowledge gap by the use of the same material in a cost-effective, highly active hybrid supercapacitor application by utilizing its pseudocapacitance property combined with the layered capacitance property of graphene sheets.

  1. Design issues for optimum solar cell configuration

    NASA Astrophysics Data System (ADS)

    Kumar, Atul; Thakur, Ajay D.

    2018-05-01

    A computer based simulation of solar cell structure is performed to study the optimization of pn junction configuration for photovoltaic action. The fundamental aspects of photovoltaic action viz, absorption, separation collection, and their dependence on material properties and deatails of device structures is discussed. Using SCAPS 1D we have simulated the ideal pn junction and shown the effect of band offset and carrier densities on solar cell performance. The optimum configuration can be achieved by optimizing transport of carriers in pn junction under effect of field dependent recombination (tunneling) and density dependent recombination (SRH, Auger) mechanisms.

  2. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    PubMed

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  3. Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: An unexplored inorganic-organic nanohybrid with novel photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Rajbanshi, Biplab; Kar, Moumita; Sarkar, Pallavi; Sarkar, Pranab

    2017-10-01

    Using the self-consistent charge density-functional based tight-binding (SCC-DFTB) method, coupled with time-dependent density functional theory (TDDFT) calculations, for the first time we explore the possibility of use of phosphorene quantum dots in solar energy harvesting devices. The phosphorene quantum dots-fullerene (PQDs-PCBA) nanocomposites show type-II band alignment indicating spatial separation of charge carriers. The TDDFT calculations also show that the PQD-fullerene nanocomposites seem to be exciting material for future generation solar energy harvester, with extremely fast charge transfer and very poor recombination rate.

  4. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory.

    PubMed

    Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth

    2015-02-10

    Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.

  5. Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Shibata, M.; Owada, H.; Kaneko, M.; Kuno, Y.; Asano, H.

    A multibarrier system consisting of cement-based backfill, structures and support materials, and a bentonite-based buffer material has been studied for the TRU waste disposal concept being developed in Japan, the aim being to restrict the migration of radionuclides. Concern regarding bentonite-based materials in this disposal environment relates to long-term alteration under hyper-alkaline conditions due to the presence of cementitious materials. In tests simulating the interaction between bentonite and cement, formation of secondary minerals due to alteration reactions under the conditions expected for geological disposal of TRU waste (equilibrated water with cement at low liquid/solid ratio) has not been observed, although alteration was observed under extremely hyper-alkaline conditions with high temperatures. This was considered to be due to the fact that analysis of C-S-H gel formed at the interface as a secondary mineral was difficult using XRD, because of its low crystallinity and low content. This paper describes an analytical technique for the characterization of C-S-H gel using a heavy liquid separation method which separates C-S-H gel from Kunigel V1 bentonite (bentonite produced in Japan) based on the difference in specific gravity between the crystalline minerals constituting Kunigel V1 and the secondary C-S-H gel. For development of C-S-H gel separation methods, simulated alteration samples were prepared by mixing 990 mg of unaltered Kunigel V1 and 10 mg of C-S-H gel synthesized using pure chemicals at a ratio of Ca/Si = 1.2. The simulated alteration samples were dispersed in bromoform-methanol mixtures with specific gravities ranging from 2.00 to 2.57 g/cm 3 and subjected to centrifuge separation to recover the light density fraction. Subsequent XRD analysis to identify the minerals was complemented by dissolution in 0.6 N hydrochloric acid to measure the Ca and Si contents. The primary peak (2 θ = 29.4°, Cu Kα) and secondary peaks (2 θ = 32.1° and 50.1°, Cu Kα) of the C-S-H gel, which could not be distinguished before the heavy liquid separation, were clearly identified by XRD after separation. The result of the analyses of the light density fraction indicates highest recovery of C-S-H gel and least inclusion of bentonite for separation using heavy liquid with a specific gravity of 2.10 g/cm 3. The traces of bentonite minerals included in the suspension were identified to be montmorillonite, quartz, clinoptilolite, and calcite. The separation technique was also tested for Ca-bentonite prepared by passing a calcium hydroxide solution through a bentonite (Kunigel V1)-silica sand mixture. The results indicated that the technique would also be applicable to separation of C-S-H gel from Ca-bentonite.

  6. SU-E-T-102: Determination of Dose Distributions and Water-Equivalence of MAGIC-F Polymer Gel for 60Co and 192Ir Brachytherapy Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quevedo, A; Nicolucci, P

    2014-06-01

    Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with themore » source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.« less

  7. STS-42 Phase Partitioning Experiment (PPE) closeup taken onboard OV-103

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Phase Partitioning Experiment (PPE), an International Microgravity Laboratory 1 (IML-1) experiment, is documented in a closeup taken onboard Discovery, Orbiter Vehicle (OV) 103. Phase partitioning is a very effective technique used by biochemists and cell biologists to obtain fairly pure cells. Cells are separated and collected in a mixture of two immiscible liquids (fluids that tend not to mix) by their surface characteristics. In the PPE, investigators feel they will be able to separate closely related cells because cell density and convection flows are not factors in the phase partitioning process in space. They also hope to study other factors that influence the process. Phase partitioning is used to separate biological materials such as bone marrow cells for cancer treatment.

  8. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  9. Development of Fly Ash-Based Sorbent to Capture CO2 from Flue Gas

    NASA Astrophysics Data System (ADS)

    Majchrzak-Kucęba, I.; Nowak, W.

    In the present work the thermogravimetric characterization of the sorption of carbon dioxide on polymer-modifiedmesoporous materials (MCM-41) from fly ashes is described. In order to obtain MCM-41 materials from three different types fly ashes,(including CFB fly ash) hydrothermal processesusing the supernatantsof coal fly ashes and surfactantsas the structure-directing agents,have been carried out. The obtained mesoporous materials were subjected to polyethylenimine (PEI) modification by their impregnation to obtain samples with PEl contents of 30, 50 and 70%, respectively. CO2 sorption/desorption tests on loaded PEl samples were carried out in a flow of a mixture of gasses (CO2-1O%, O2-10%, N2-80%) at different temperatures: 25 and 75°C. The highest CO2 sorption value was obtained for the sample that contained the best-quality MCM-41 and was impregnatedwith PEI in the amount of 50%. This sample at a temperatureof 75°C can take CO2 in an amount equivalent to 111.7 mgCO2/g sample weight. Under the same conditions, but without PEI impregnation, this sample can take CO2 in an amount equivalent to 3.2 mgCO2/g sample weight, thus 35 times less. The research of CO2 adsorption on polymer-modified mesoporous materials from fly ashes carried out within this work has shown that these materials are characterized by high CO2 adsorption capacity under conditions typical of coal combustionboiler flue gas and have the chance of becoming an efficient adsorbent for application to post-combustion CO2 separation. For PEI impregnated samples, a different behaviour of adsorption/desorption profiles has also been observed (both sorption and desorptionprogressesvery rapidly).

  10. Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents.

    PubMed

    Xu, Zhaoyang; Jiang, Xiangdong; Tan, Sicong; Wu, Weibing; Shi, Jiangtao; Zhou, Huan; Chen, Peng

    2018-06-01

    In recent years, carbon aerogels have attracted much attention in basic research and as potential applications in many fields. Herein, the authors report a novel approach using bamboo powder as raw material to fabricate cellulose nanofibers (CNFs)/multi-walled carbon nanotubes (MWCNTs) carbon aerogels by a simple dipping and carbonisation process. The developed material exhibits many exciting properties including low density (0.056 g cm -3 ), high porosity (95%), efficient capability for separation of oily droplets from water, and high adsorption capacity for a variety of oils and organic solvents by up to 110 times its own weight. Furthermore, the CNF/MWCNT carbon aerogels (CMCA) can be recycled many times by distillation and combustion, satisfying the requirements of practical oil-water separation. Taken together with its economical, environmentally benign manufacturing process, sustainability of the precursor and versatility of material, the CMCA developed in this study will be a promising candidate for addressing the problems arising from the spills of oily compounds.

  11. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Bearing plates used directly against the mine roof shall be at least 6 inches square or the equivalent... or the equivalent may be used. (3) Bearing plates used with wood or metal materials shall be at least 4 inches square or the equivalent. (4) Wooden materials that are used between a bearing plate and...

  12. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Bearing plates used directly against the mine roof shall be at least 6 inches square or the equivalent... or the equivalent may be used. (3) Bearing plates used with wood or metal materials shall be at least 4 inches square or the equivalent. (4) Wooden materials that are used between a bearing plate and...

  13. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Bearing plates used directly against the mine roof shall be at least 6 inches square or the equivalent... or the equivalent may be used. (3) Bearing plates used with wood or metal materials shall be at least 4 inches square or the equivalent. (4) Wooden materials that are used between a bearing plate and...

  14. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Bearing plates used directly against the mine roof shall be at least 6 inches square or the equivalent... or the equivalent may be used. (3) Bearing plates used with wood or metal materials shall be at least 4 inches square or the equivalent. (4) Wooden materials that are used between a bearing plate and...

  15. An Ionic Liquid Reaction and Separation Process for Production of Hydroxymethylfurfural from Sugars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Zheng, Feng; Li, Joanne

    2014-01-01

    There has been world-wide interest to making plastics out of renewable biomass feedstock for recent years. Hydroxymethylfurfural (HMF) is viewed as an attractive alternate to terephthalic acid (TPA) for production of polyesters (PET) and polyamides. Conversion of sugars into HMF has been studied in numerous publications. In this work, a complete ionic liquid reaction and separation process is presented for nearly stoichiometric conversion of fructose into HMF. Different adsorbent materials are evaluated and silicalite material is demonstrated effective for isolation of 99% pure HMF from actual ionic liquid reaction mixtures and for recovery of the un-converted sugars and reaction intermediatemore » along with the ionic liquid. Membrane-coated silicalite particles are prepared and studied for a practical adsorption process operated at low pressure drops but with separation performances comparable or better than the powder material. Complete conversion of fresh fructose feed into HMF in the recycled ionic liquid is shown under suitable reaction conditions. Stability of HMF product is characterized. A simplified process flow diagram is proposed based on these research results, and the key equipment such as reactor and adsorbent bed is sized for a plant of 200,000 ton/year of fructose processing capacity. The proposed HMF production process is much simpler than the current paraxylene (PX) manufacturing process from petroleum oil, which suggests substantial reduction to the capital cost and energy consumption be possible. At the equivalent value to PX on the molar basis, there can be a large gross margin for HMF production from fructose and/or sugars.« less

  16. Quadrupole magnetic field-flow fractionation: A novel technique for the characterization of magnetic particles

    NASA Astrophysics Data System (ADS)

    Carpino, Francesca

    In the last few decades, the development and use of nanotechnology has become of increasing importance. Magnetic nanoparticles, because of their unique properties, have been employed in many different areas of application. They are generally made of a core of magnetic material coated with some other material to stabilize them and to help disperse them in suspension. The unique feature of magnetic nanoparticles is their response to a magnetic field. They are generally superparamagnetic, in which case they become magnetized only in a magnetic field and lose their magnetization when the field is removed. It is this feature that makes them so useful for drug targeting, hyperthermia and bioseparation. For many of these applications, the synthesis of uniformly sized magnetic nanoparticles is of key importance because their magnetic properties depend strongly on their dimensions. Because of the difficulty of synthesizing monodisperse particulate materials, a technique capable of characterizing the magnetic properties of polydisperse samples is of great importance. Quadrupole magnetic field-flow fractionation (MgFFF) is a technique capable of fractionating magnetic particles based on their content of magnetite or other magnetic material. In MgFFF, the interplay of hydrodynamic and magnetic forces separates the particles as they are carried along a separation channel. Since the magnetic field and the gradient in magnetic field acting on the particles during their migration are known, it is possible to calculate the quantity of magnetic material in the particles according to their time of emergence at the channel outlet. Knowing the magnetic properties of the core material, MgFFF can be used to determine both the size distribution and the mean size of the magnetic cores of polydisperse samples. When magnetic material is distributed throughout the volume of the particles, the derived data corresponds to a distribution in equivalent spherical diameters of magnetic material in the particles. MgFFF is unique in its ability to characterize the distribution in magnetic properties of a particulate sample. This knowledge is not only of importance to the optimization and quality control of particle preparation. It is also of great importance in modeling magnetic cell separation, drug targeting, hyperthermia, and other areas of application.

  17. Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method ofmore » liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.« less

  18. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassouf, Amine, E-mail: amine.kassouf@agroparistech.fr; INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy; AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris

    2014-11-15

    Highlights: • An innovative technique, MIR-ICA, was applied to plastic packaging separation. • This study was carried out on PE, PP, PS, PET and PLA plastic packaging materials. • ICA was applied to discriminate plastics and 100% separation rates were obtained. • Analyses performed on two spectrometers proved the reproducibility of the method. • MIR-ICA is a simple and fast technique allowing plastic identification/classification. - Abstract: Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energymore » recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions.« less

  19. Development of plasma chemical vaporization machining

    NASA Astrophysics Data System (ADS)

    Mori, Yuzo; Yamauchi, Kazuto; Yamamura, Kazuya; Sano, Yasuhisa

    2000-12-01

    Conventional machining processes, such as turning, grinding, or lapping are still applied for many materials including functional ones. But those processes are accompanied with the formation of a deformed layer, so that machined surfaces cannot perform their original functions. In order to avoid such points, plasma chemical vaporization machining (CVM) has been developed. Plasma CVM is a chemical machining method using neutral radicals, which are generated by the atmospheric pressure plasma. By using a rotary electrode for generation of plasma, a high density of neutral radicals was formed, and we succeeded in obtaining high removal rate of several microns to several hundred microns per minute for various functional materials such as fused silica, single crystal silicon, molybdenum, tungsten, silicon carbide, and diamond. Especially, a high removal rate equal to lapping in the mechanical machining of fused silica and silicon was realized. 1.4 nm (p-v) was obtained as a surface roughness in the case of machining a silicon wafer. The defect density of a silicon wafer surface polished by various machining method was evaluated by the surface photo voltage spectroscopy. As a result, the defect density of the surface machined by plasma CVM was under 1/100 in comparison with the surface machined by mechanical polishing and argon ion sputtering, and very low defect density which was equivalent to the chemical etched surface was realized. A numerically controlled CVM machine for x-ray mirror fabrication is detailed in the accompanying article in this issue.

  20. Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.

    PubMed

    Wang, Zhen; Wang, Dong; Qian, Zhenchao; Guo, Jing; Dong, Haixia; Zhao, Ning; Xu, Jian

    2015-01-28

    Aerogels are a family of highly porous materials whose applications are commonly restricted by poor mechanical properties. Herein, thiol-ene chemistry is employed to synthesize a series of novel bridged silsesquioxane (BSQ) precursors with various alkoxy groups. On the basis of the different hydrolyzing rates of the methoxy and ethoxy groups, robust superhydrophobic BSQ aerogels with tailorable morphology and mechanical performances have been prepared. The flexible thioether bridge contributes to the robustness of the as-formed aerogels, and the property can be tuned on the basis of the distinct combinations of alkoxy groups with the density of the aerogels almost unchanged. To the best of our knowledge, the lowest density among the ambient pressure dried aerogels is obtained. Further, potential application of the aerogels for oil/water separation and acoustic materials has also been presented.

  1. Late Laramide thrust-related and evaporite-domed anticlines in the southern Piceance Basin, northeastern Colorado Plateau

    USGS Publications Warehouse

    Grout, M.A.; Abrams, G.A.; Tang, R.L.; Hainsworth, T.J.; Verbeek, E.R.

    1991-01-01

    New seismic and gravity data across the hydrocarbon-producing Divide Creek and Wolf Creek anticlines in the southern Piceance basin reveal contrasting styles of deformation within two widely separated time frames. Seismic data indicate that prebasin Paleozoic deformation resulted in block faulting of the Precambrian crystalline basement rocks and overlying Cambrian through Middle Pennsylvanian strata. Movement along these block faults throughout much of Pennsylvanian time, during northeast-southwest crustal extension, likely influenced distribution of the Middle Pennsylvanian (Desmoinesian) evaporite-rich facies. Younger rocks, including the thick succession of Cenozoic basin strata, then buried the Paleozoic structures. Gravity data confirm that excess material of relatively low density exists beneath the Wolf Creek structure, whereas material of relatively higher density (overthickened shale) is found beneath the Divide Creek Anticline. -from Authors

  2. Innovative fabrication processing of advanced composite materials concepts for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Kassapoglou, Christos; Dinicola, Al J.; Chou, Jack C.

    1992-01-01

    The autoclave based THERM-X(sub R) process was evaluated by cocuring complex curved panels with frames and stiffeners. The process was shown to result in composite parts of high quality with good compaction at sharp radius regions and corners of intersecting parts. The structural properties of the postbuckled panels fabricated were found to be equivalent to those of conventionally tooled hand laid-up parts. Significant savings in bagging time over conventional tooling were documented. Structural details such as cocured shear ties and embedded stiffener flanges in the skin were found to suppress failure modes such as failure at corners of intersecting members and skin stiffeners separation.

  3. Planar Poincare chart - A planar graphic representation of the state of light polarization

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.; Ocheltree, Stewart L.

    1989-01-01

    The planar Poincare chart, which represents the complete planar equivalence of the Poincare sphere, is proposed. The four sets of basic lines are drawn on two separate charts for the generalization and convenience of reading the scale. The chart indicates the rotation of the principal axes of linear birefringent material. The relationships between parameters of the two charts are given as 2xi-2phi (orientation angle of the major axis-ellipticity angle) pair and 2alpha-delta (angle of amplitude ratio-phase difference angle) pair. The results are useful for designing and analyzing polarization properties of optical components with birefringent properties.

  4. Optical properties of two-dimensional charge density wave materials

    NASA Astrophysics Data System (ADS)

    Sayers, Charles; Karbassi, Sara; Friedemann, Sven; da Como, Enrico

    Titanium diselenide (TiSe2) is a member of the layered transition metal dichalcogenide (TMD) materials. It exhibits unusual chiral charge ordering below 190 K after undergoing an initial phase transition to a commensurate (2 x 2 x 2) charge density wave (CDW) at 200 K which is enhanced further in the monolayer. Recently, the first evidence of chirality in a CDW system was discovered in this material by scanning tunneling microscopy and time-resolved reflectivity experiments, where separate left and right handed charge-ordered domains were found to exist within a single sample. We have prepared single crystals of 1T-TiSe2 using iodine vapour transport, and confirmed their quality by x-ray analysis and charge transport measurements. Using a combination of polarised optical spectroscopy techniques in the mid to far infrared (4 to 700 meV photon energy), we have measured an anisotropy relating to the CDW gap. We discuss the results on the basis of chiral domains with different handedness and the nature of the CDW transition.

  5. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes.

    PubMed

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C

    2014-12-01

    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  6. Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification

    NASA Astrophysics Data System (ADS)

    Wei, Shuxian; Zhou, Sainan; Wu, Zhonghua; Wang, Maohuai; Wang, Zhaojie; Guo, Wenyue; Lu, Xiaoqing

    2018-05-01

    Porous graphene (PG) and nitrogen-substituted PG monolayers of 3N-PG and 6N-PG were designed as effective membranes for the separation of He and H2 over Ne, Ar, N2, CO, and CH4 by using density functional theory. Results showed that PG and 3N-PG exhibited suitable pore sizes and relatively high stabilities for He and H2 separation. PG and 3N-PG membranes also presented excellent He and H2 selectivities over Ne, Ar, N2, CO and CH4 at a wide temperature range. 6N-PG membrane exerted unexceptionable permeances of the studied gases, especially He and H2, which could remarkably improve the separation efficiency of He and H2. Analyses on the most stable adsorption configurations and maximum adsorption energies indicated weak Van der Waals interactions between the gases and the three PG-based membranes. Microscopic permeation process analyses based on the minimum energy pathway, energy profiles, and electron density isosurfaces elucidated the remarkable selectivities of He over Ne/CO/N2/Ar/CH4 and H2 over CO/N2/CH4 and the high permeances of He and H2 passing through the three PG-based membranes. This work not only highlighted the potential use of the three PG-based membranes for He separation and H2 purification but also provided a superior alternative strategy to design and screen membrane materials for gas separation.

  7. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    PubMed

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  8. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions.

    PubMed

    Ortega, Ryan A; Carter, Erin S; Ortega, Albert E

    2016-01-01

    Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric.

  9. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions

    PubMed Central

    Carter, Erin S.; Ortega, Albert E.

    2016-01-01

    Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric. PMID:27411088

  10. Spontaneous time reversal symmetry breaking in atomically confined two-dimensional impurity bands in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam

    Three-dimensional bulk-doped semiconductors, in particular phosphorus (P)-doped silicon (Si) and germanium (Ge), are among the best studied systems for many fundamental concepts in solid state physics, ranging from the Anderson metal-insulator transition to the many-body Coulomb interaction effects on quantum transport. Recent advances in material engineering have led to vertically confined doping of phosphorus (P) atoms inside bulk crystalline silicon and germanium, where the electron transport occurs through one or very few atomic layers, constituting a new and unique platform to investigate many of these phenomena at reduced dimensions. In this talk I shall present results of extensive quantum transport experiments in delta-doped silicon and germanium epilayers, over a wide range of doping density that allow independent tuning of the on-site Coulomb interaction and hopping energy scales. We find that low-frequency flicker noise, or the 1 / f noise, in the electrical conductance of these systems is exceptionally low, and in fact among the lowest when compared with other low-dimensional materials. This is attributed to the physical separation of the conduction electrons, embedded inside the crystalline semiconductor matrix, from the charged fluctuators at the surface. Most importantly, we find a remarkable suppression of weak localization effects, including the quantum correction to conductivity and universal conductance fluctuations, with decreasing doping density or, equivalently, increasing effective on-site Coulomb interaction. In-plane magneto-transport measurements indicate the presence of intrinsic local spin fluctuations at low doping although no signatures of long range magnetic order could be identified. We argue that these results indicate a spontaneous breakdown of time reversal symmetry, which is one of the most fundamental and robust symmetries of nonmagnetic quantum systems. While the microscopic origin of this spontaneous time reversal symmetry breaking remains unknown, we believe this indicates a new many-body electronic phase in two-dimensionally doped silicon and germanium with a half-filled impurity band. We acknowledge financial support from Department of Science and Technology, Government of India, and Australia-India Strategic Research Fund (AISRF).

  11. Simulated Aging of Spacecraft External Materials on Orbit

    NASA Astrophysics Data System (ADS)

    Khatipov, S.

    Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.

  12. PET and PVC separation with hyperspectral imagery.

    PubMed

    Moroni, Monica; Mei, Alessandro; Leonardi, Alessandra; Lupo, Emanuela; Marca, Floriana La

    2015-01-20

    Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density). Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers--polyethylene terephthalate (PET) and polyvinyl chloride (PVC)--in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials) to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900-1700 nm) reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry.

  13. PET and PVC Separation with Hyperspectral Imagery

    PubMed Central

    Moroni, Monica; Mei, Alessandro; Leonardi, Alessandra; Lupo, Emanuela; La Marca, Floriana

    2015-01-01

    Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density). Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers—polyethylene terephthalate (PET) and polyvinyl chloride (PVC)—in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials) to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900–1700 nm) reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry. PMID:25609050

  14. Species separation and modification of neutron diagnostics in inertial-confinement fusion

    NASA Astrophysics Data System (ADS)

    Inglebert, A.; Canaud, B.; Larroche, O.

    2014-09-01

    The different behaviours of deuterium (D) and tritium (T) in the hot spot of marginally igniting cryogenic DT inertial-confinement fusion (ICF) targets are investigated with an ion Fokker-Planck model. With respect to an equivalent single-species model, a higher density and a higher temperature are found for T in the stagnation phase of the target implosion. In addition, the stagnating hot spot is found to be less dense but hotter than in the single-species case. As a result, the fusion reaction yield in the hot spot is significantly increased. Fusion neutron diagnostics of the implosion find a larger ion temperature as deduced from DT reactions than from DD reactions, in good agreement with NIF experimental results. ICF target designs should thus definitely take ion-kinetic effects into account.

  15. 49 CFR 178.507 - Standards for plywood drums.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Non... effectiveness of the drum for the purpose intended. A material other than plywood, of at least equivalent..., lids must be lined with kraft paper or some other equivalent material which must be securely fastened...

  16. Ammonium nitrate-polymer glasses: a new concept for phase and thermal stabilization of ammonium nitrate.

    PubMed

    Lang, Anthony J; Vyazovkin, Sergey

    2008-09-11

    Dissolving of ammonium nitrate in highly polar polymers such as poly(vinylpyrrolidone) and/or poly(acrylamide) can result in the formation of single-phase glassy solid materials, in which NH 4 (+) and NO 3 (-) are separated through an ion-dipole interaction with the polymer matrix. Below the glass transition temperature of the polymer matrix the resulting materials remain phase and thermally stable as demonstrated through the absence of decomposition as well as the solid-solid transitions and melting of ammonium nitrate. The structure of the materials is explored by Fourier transform infrared spectroscopy and density functional calculations. Differential scanning calorimetry, thermogravimetry, and isoconversional kinetic analysis are applied to characterize the thermal behavior of the materials.

  17. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.

    PubMed

    Huhn, Carolin; Pyell, Ute

    2008-07-11

    It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.

  18. Separation Process of Fine Coals by Ultrasonic Vibration Gas-Solid Fluidized Bed

    PubMed Central

    Wei, Hua; Xie, Weining

    2017-01-01

    Ultrasonic vibration gas-solid fluidized bed was proposed and introduced to separate fine coals (0.5–0.125 mm fraction). Several technological methods such as XRF, XRD, XPS, and EPMA were used to study the composition of heavy products to evaluate the separation effect. Results show that the ultrasonic vibration force field strengthens the particle separation process based on density when the vibration frequency is 35 kHz and the fluidization number is 1.8. The ash difference between the light and heavy products and the recovery of combustible material obtain the maximum values of 47.30% and 89.59%, respectively. The sulfur content of the heavy product reaches the maximum value of 6.78%. Chemical state analysis of sulfur shows that organic sulfur (-C-S-), sulfate-sulfur (-SO4), and pyrite-sulfur (-S2) are confirmed in the original coal and heavy product. Organic sulfur (-C-S-) is mainly concentrated in the light product, and pyrite-sulfur (-S2) is significantly enriched in the heavy product. The element composition, phase composition, backscatter imagery, and surface distribution of elements for heavy product show concentration of high-density minerals including pyrite, quartz, and kaolinite. Some harmful elements such as F, Pb, and As are also concentrated in the heavy product. PMID:28845160

  19. Computational micromechanics of woven composites

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Saigal, Sunil; Zeng, Xiaogang

    1991-01-01

    The bounds on the equivalent elastic material properties of a composite are presently addressed by a unified energy approach which is valid for both unidirectional and 2D and 3D woven composites. The unit cell considered is assumed to consist, first, of the actual composite arrangement of the fibers and matrix material, and then, of an equivalent pseudohomogeneous material. Equating the strain energies due to the two arrangements yields an estimate of the upper bound for the material equivalent properties; successive increases in the order of displacement field that is assumed in the composite arrangement will successively produce improved upper bound estimates.

  20. Preparation and evaluation of magnetic carbonaceous materials for pesticide and metal removal.

    PubMed

    Ohno, Masaki; Hayashi, Hiroki; Suzuki, Kazuyuki; Kose, Tomohiro; Asada, Takashi; Kawata, Kuniaki

    2011-07-15

    Magnetic carbonaceous materials were produced by carbonization of a cation exchange resin loaded with ferrous or ferric iron and activation using sieved oyster shell as the activation agent. The magnetic carbonaceous material with the maximum magnetic flux density on every axis (ESS-1) was obtained from the ferric-loaded resin by carbonization at 700°C, followed by activation with the oyster shell at 900°C, and magnetization. A separate step of carbonization and activation appears to cause more of a reduction reaction of Fe to form γ-Fe(2)O(3). The Fe compound in the magnetic carbonaceous material was identified from the XRD pattern as mainly γ-Fe(2)O(3). The magnetic flux density on every axis increased linearly as the amount of the oyster shell increased. Moreover, the adsorption ability of the products was evaluated for pesticides and metal ions. Both ESS-1 and a carbonaceous material obtained from the resin without ferric ion (RC) appear to have the highest adsorption ability for lead. Furthermore, the adsorption ability of ESS-1 might decrease by blockages of the pores with the loaded Fe compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Quality control in the recycling stream of PVC cable waste by hyperspectral imaging analysis

    NASA Astrophysics Data System (ADS)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Rem, Peter

    2005-05-01

    In recent years recycling is gaining a key role in the manufacturing industry. The use of recycled materials in the production of new goods has the double advantage of saving energy and natural resources, moreover from an economic point of view, recycled materials are in general cheaper than the virgin ones. Despite of these environmental and economic strengths, the use of recycled sources is still low compared to the raw materials consumption, indeed in Europe only 10% of the market is covered by recycled products. One of the reasons of this reticence in the use of secondary sources is the lack of an accurate quality certification system. The inputs of a recycled process are not always the same, which means that also the output of a particular process can vary depending on the initial composition of the treated material. Usually if a continuous quality control system is not present at the end of the process the quality of the output material is assessed on the minimum certified characteristics. Solving this issue is crucial to expand the possible applications of recycled materials and to assign a price based on the real characteristic of the material. The possibility of applying a quality control system based on a hyperspectral imaging (HSI) technology working in the near infrared (NIR) range to the output of a separation process of PVC cable wastes is explored in this paper. The analysed material was a residue fraction of a traditional separation process further treated by magnetic density separation. Results show as PVC, PE, rubber and copper particles can be identified and classified adopting the NIR-HSI approach.

  2. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  3. Recent accumulation rates of an Alpine glacier derived from repeated airborne GPR and firn cores

    NASA Astrophysics Data System (ADS)

    Sold, Leo; Huss, Matthias; Eichler, Anja; Schwikowski, Margit; Hoelzle, Martin

    2014-05-01

    The topmost areas of glaciers contain a valuable record of their past accumulation rates. The water equivalent of annual firn layers can be used to initiate or extend existing time series of local mass balance and, ultimately, to consolidate the knowledge on the response of glaciers to changing climatic conditions. Measurements of the thickness and density of firn layers typically involve drilling in remote areas and core analysis and are thus expensive in terms of time and effort. Here, we discuss measurements from 2012 on Findelengletscher, Switzerland, a large Alpine valley glacier, using two in-situ firn cores and airborne Ground-Penetrating Radar (GPR). The firn cores were analysed regarding their density, major ions and deuterium concentration. The ammonium (NH4+) concentration is known to show seasonality due to a higher source activity and pronounced vertical transportation in the atmosphere in summer. The deuterium concentration serves as a proxy for air temperature during precipitation formation. Together, they provide depth and dating of annual summer surfaces. GPR has previously been used for a non-destructive assessment of internal layers in snow, firn and ice. Signal reflections indicate changes in the dielectric properties of the material, e.g. density changes at former summer surfaces. Airborne surveys allow measurements to be taken in remote and inaccessible areas. However, to transfer information from the GPR pulse travel time to the depth domain, the dielectric permittivity of the material is required, that changes with density of the firn. We observed a good agreement of the GPR signal with pronounced changes in the density profile, ice layers and peak contents of major ions. This underlines the high potential of GPR for detecting firn layers. However, not all peak-densities and thick ice layers represent a former glacier summer surface but can also be due to melting and refreezing during winter. We show that up to four years of annual accumulation on Findelengletscher can be reconstructed from repeated GPR measurements alone. A simple transient spatial model for firn compaction is calibrated based on a comparison with GPR data of 2013 at positions were profiles intersect. Density and water equivalent of firn layers can then be extracted along the measured GPR profiles. However, if no in-situ information from firn cores is available, the dating of reflectors as former annual summer surfaces must be verified by external information such as modelled mass balance to avoid misinterpretations. We show that helicopter-borne GPR is an effective method to derive several years of past accumulation rates of mountain glaciers. It benefits but does not depend exclusively on the time-matched availability of firn cores when overlapping profiles are mapped in subsequent years.

  4. GEOSTEP: A gravitation experiment in Earth-orbiting satellite to test the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Bonneville, R.

    2003-10-01

    Testing the Equivalence Principle has been recognized by the scientific community as a short-term prime objective for fundamental physics in space. In 1994, a Phase 0/A study of the GEOSTEP mission has been initiated by CNES in order to design a space experiment to test the Equivalence Principle to an accuracy of 10 -17, with the constraint to be compatible with the small versatile platform PROTEUS under study. The GEOSTEP payload comprises a set of four differential accelerometers placed at cryogenic temperature on board a drag-free, 3-axis stabilized satellite in low-Earth orbit. Each accelerometer contains a pair of test masses A-A, A-B, A-C, B-C (inner mass - outer mass) made of three different materials A, B, C with decreasing densities. The accelerometer concept is the fully electrostatic levitation and read-out device proposed by ONERA, called SAGE (Space Accelerometer for Gravitation Experiment). The drag-free and attitude control system (DFACS) is monitored by the common-mode data of the accelerometers along their three axes, while the possible violation signal is detected by the differential-mode data along the longitudinal sensitive axis. The cryostat is a single chamber supercritical Helium dewar designed by CEA. Helium boiling off from the dewar feeds a set of proportional gas thrusters performing the DFACS. Error analysis and data processing preparation is managed by OCA/CERGA. The satellite will be on a 6 am - 6 pm near-polar, near-circular, Sun-synchronous orbit, at an altitude of 600 to 900 km, depending on the atmospheric density at the time of launch. GEOSTEP could be launched in 2002; the nominal mission duration is at least four months.

  5. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Glenn Charles

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, andmore » separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10 -7, 10 -5, and 10 -5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10 -5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.« less

  6. Validation of pharmaceutical potency determinations by quantitative nuclear magnetic resonance spectrometry.

    PubMed

    Webster, Gregory K; Marsden, Ian; Pommerening, Cynthia A; Tyrakowski, Christina M

    2010-05-01

    With the changing development paradigms in the pharmaceutical industry, laboratories are challenged to release materials for clinical studies with rapid turnaround times. To minimize cost demands, many businesses are looking to develop ways of using early Good Manufacturing Practice (GMP) materials of active pharmaceutical ingredients (API) for Good Laboratory Practice (GLP) toxicology studies. To make this happen, the analytical laboratory releases the material by one of three scenarios: (1) holding the GLP release until full GMP testing is ready, (2) issuing a separate lot number for a portion of the GMP material and releasing the material for GLP use, or (3) releasing the lot of material for GLP using alternate (equivalent) method(s) not specified for GMP release testing. Many companies are finding the third scenario to be advantageous in terms of cost and efficiency through the use of quantitative nuclear magnetic resonance (q-NMR). The use of q-NMR has proved to be a single-point replacement for routine early development testing that previously combined elements of identity testing, chromatographic assay, moisture analysis, residual solvent analysis, and elemental analysis. This study highlights that q-NMR can be validated to meet current regulatory analytical method guidelines for routine pharmaceutical analysis.

  7. The Isolation and Enrichment of Large Numbers of Highly Purified Mouse Spleen Dendritic Cell Populations and Their In Vitro Equivalents.

    PubMed

    Vremec, David

    2016-01-01

    Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.

  8. Experiment Analysis and Modelling of Compaction Behaviour of Ag60Cu30Sn10 Mixed Metal Powders

    NASA Astrophysics Data System (ADS)

    Zhou, Mengcheng; Huang, Shangyu; Liu, Wei; Lei, Yu; Yan, Shiwei

    2018-03-01

    A novel process method combines powder compaction and sintering was employed to fabricate thin sheets of cadmium-free silver based filler metals, the compaction densification behaviour of Ag60Cu30Sn10 mixed metal powders was investigated experimentally. Based on the equivalent density method, the density-dependent Drucker-Prager Cap (DPC) model was introduced to model the powder compaction behaviour. Various experiment procedures were completed to determine the model parameters. The friction coefficients in lubricated and unlubricated die were experimentally determined. The determined material parameters were validated by experiments and numerical simulation of powder compaction process using a user subroutine (USDFLD) in ABAQUS/Standard. The good agreement between the simulated and experimental results indicates that the determined model parameters are able to describe the compaction behaviour of the multicomponent mixed metal powders, which can be further used for process optimization simulations.

  9. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  10. Edge effects in vertically-oriented graphene based electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Zhang, Shuo; Yan, Jianhua; Cen, Kefa

    2016-08-01

    Vertically-oriented graphenes (VGs) have been demonstrated as a promising active material for electric double-layer capacitors (EDLCs), partially due to their edge-enriched structure. In this work, the 'edge effects', i.e., edges as the promoters of high capacitance, in VG based EDLCs are investigated with experimental research and numerical simulations. VGs with diverse heights (i.e., edge-to-basal ratios) and edge densities are prepared with varying the plasma-enabled growth time and employing different plasma sources. Electrochemical measurements show that the edges play a predominant role on the charge storage behavior of VGs. A simulation is further conducted to unveil the roles of the edges on the separation and adsorption of ions within VG channels. The initial charge distribution of a VG plane is obtained with density functional theory (DFT) calculations, which is subsequently applied to a molecular dynamics (MD) simulation system to gain the insights into the microscope EDLC structures. Compared with the basal planes, the edges present higher initial charge density (by 4.2 times), higher ion packing density (by 2.6 times), closer ion packing location (by 0.8 Å), and larger ion separation degree (by 14%). The as-obtained findings will be instructive in designing the morphology and structure of VGs for enhanced capacitive performances.

  11. Cometary and meteorite swarm impact on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1982-01-01

    The impact-induced deformation from hypothetical cometary objects having initial densities in the 0.01 to 1 g/cu cm range and heats of vaporization in the approximately 2 kJ/g (corresponding to water) to approximately 10 to the 7th J/g range is examined for impacts in the 5 to 45 km/s range. Even though the direct effect of an atmosphere is neglected, the atmosphere may in fact cause a cometary object to break up into a shower or equivalent very porous impactor. Besides examining the partitioning of impact energy into internal energy of the impacted planet and impacting cometary material, calculations are made of the relative efficiency of shock-induced melting and vaporization by comets on planetary surface materials and the mass loss from a given planet for various escape velocities.

  12. Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator.

    PubMed

    Kircheva, Nina; Outin, Jonathan; Perrier, Gérard; Ramousse, Julien; Merlin, Gérard; Lyautey, Emilie

    2015-12-01

    The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (RhinoHide®) were compared with Nafion®-117 as a cationic exchange membrane. A non-parametric test (Mann-Whitney) done on the different sets of coulombic or energy efficiency data showed no significant difference between the two types of tested membrane (p<0.05). Volumetric power densities were ranging from 30 to 90 W·m(-3) of RVC foam for both membranes. Similar amounts of biomass were observed on both sides of the polyethylene membrane illustrating bacterial permeability of this type of separator. A monospecific denitrifying population on cathodic side of RhinoHide® membrane has been identified. Electrochemical impedance spectroscopy (EIS) was used at OCV conditions to characterize electrochemical behavior of MFCs by equivalent electrical circuit fitted on both Nyquist and Bode plots. Resistances and pseudo-capacitances from EIS analyses do not differ in such a way that the nature of the membrane could be considered as responsible. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Enhancement of high-speed flywheel energy storage via carbon-fiber composite reinforcement

    NASA Astrophysics Data System (ADS)

    Conteh, Michael Abu

    This study on the enhancement of high-speed flywheel energy storage is to investigate composite materials that are suitable for high-speed, high-energy density for energy storage and/or energy recovery. The main motivation of the study is to explore the application of the flywheel in the aviation industry for recovering some of the energy that is currently being lost at the wheel brakes of an aircraft due to the high temperature developed in the brake stack as a result of landing, frequent brake applications during taxiing in or out of heavy traffic airports and rejected take-off. Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Design and optimum stress analysis were used to determine the shape factor, maximum stress and energy density for a flywheel with a constant stress disk and a constant thickness rim. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that the use of hybrid composite material with higher strength (based on first ply failure strength) and lower density and lower elastic moduli for the disk than the rim material will yield high-speed and high-energy density. The materials designed based on the results from this study show outperformance compared to previous published results of standard flywheel material combinations. The safe rotational velocity and energy density were found to be 166,000 RPM and 2.73 MJ/kg respectively. Therefore, results from this study will contribute to aiding further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology. Further study on flywheel energy recovery from aircraft brakes revealed that more than half of the energy dissipated at the wheel brake as heat could be recovered and converted to some useful form. In this way, the operating life of the brakes can be prolonged. The total additional weight to the aircraft was found to be less than 0.2% of the maximum take-off weight. This additional weight can be offset by reducing the design payload while ensuring that the structural efficiency of the aircraft is not altered. It was also found that, applying this method of flywheel energy recovery to active commercial Boeing-777 aircraft will result in savings equivalent to the annual carbon emission of a 6 MW fossil fuel power plant. This will also contribute to the aviation industry climate change mitigation.

  14. Evaluating the trade-off between mechanical and electrochemical performance of separators for lithium-ion batteries: Methodology and application

    NASA Astrophysics Data System (ADS)

    Plaimer, Martin; Breitfuß, Christoph; Sinz, Wolfgang; Heindl, Simon F.; Ellersdorfer, Christian; Steffan, Hermann; Wilkening, Martin; Hennige, Volker; Tatschl, Reinhard; Geier, Alexander; Schramm, Christian; Freunberger, Stefan A.

    2016-02-01

    Lithium-ion batteries are in widespread use in electric vehicles and hybrid vehicles. Besides features like energy density, cost, lifetime, and recyclability the safety of a battery system is of prime importance. The separator material impacts all these properties and requires therefore an informed selection. The interplay between the mechanical and electrochemical properties as key selection criteria is investigated. Mechanical properties were investigated using tensile and puncture penetration tests at abuse relevant conditions. To investigate the electrochemical performance in terms of effective conductivity a method based on impedance spectroscopy was introduced. This methodology is applied to evaluate ten commercial separators which allows for a trade-off analysis of mechanical versus electrochemical performance. Based on the results, and in combination with other factors, this offers an effective approach to select suitable separators for automotive applications.

  15. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Liu, Xiaoteng; Christensen, Paul A.; Kelly, Stephen M.; Rocher, Vincent; Scott, Keith

    2013-01-01

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved. PMID:24957065

  16. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  17. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  18. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T; Eldib, A; Hossain, M

    Purpose: Patient in-vivo measurements report lower readings than those predicted from TMR-based treatment planning on TBI patient knees and ankles where rice was placed to fill the gap between patient’s legs. This study is to understand and correct the under dosage of Total Body Irradiation(TBI) with rice tissue equivalent bolus placement at TBI treatment patient setup. Methods: Bilateral TBI scheme was investigated with rice bags bolus placing between patient’s two legs acting as missing tissue. In-house TMR based treatment planning system was commissioned with measurements under TBI condition at 10MV, i.e. source-to-reference distance 383.4cm with 40×40cm field size with 1cmmore » thickness Lucite. Predictions of patient specific dose points are reported at different sites with 200cGy prescription at patient umbilicus point. Solid water and rice bag phantoms are used at TBI conditions for the attenuation factor verification and CT scanned to verify the CT number and electron density. Results: We found that the rice bag bolus overall density is 11% lower than the water; however, the attenuation factor of rice bags could become 15% lower than that of water at TBI condition. This overestimate of rice bag electron density could cause the lack of lateral scatter and the lack of backscatter. This could Result in an overestimate of dose at in-vivo dosimeter measurement points with TMR-based treatment planning systems. Observations of patient specific optically stimulated luminescent dosimeters(OSLDs) were used to confirm this overestimation. Measurements of setups with increasing the rice bag filled patient leg separation were performed to demonstrate eliminating the overdose issue. Conclusion: Rice bolus has a lower electron density than water does(11%) but results in 15% lower in attenuation factor at TBI condition. This effect was observed in patient delivery with OSLD measurements and can be corrected by increasing the filling rice bolus thickness with 15% longer of separation.« less

  20. Gaussian entanglement revisited

    NASA Astrophysics Data System (ADS)

    Lami, Ludovico; Serafini, Alessio; Adesso, Gerardo

    2018-02-01

    We present a novel approach to the separability problem for Gaussian quantum states of bosonic continuous variable systems. We derive a simplified necessary and sufficient separability criterion for arbitrary Gaussian states of m versus n modes, which relies on convex optimisation over marginal covariance matrices on one subsystem only. We further revisit the currently known results stating the equivalence between separability and positive partial transposition (PPT) for specific classes of Gaussian states. Using techniques based on matrix analysis, such as Schur complements and matrix means, we then provide a unified treatment and compact proofs of all these results. In particular, we recover the PPT-separability equivalence for: (i) Gaussian states of 1 versus n modes; and (ii) isotropic Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between separability of a Gaussian state and and its complete Gaussian extendability. Our techniques are then applied to progress beyond the state of the art. We prove that: (iv) Gaussian states that are invariant under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient for separability for Gaussian states of m versus n modes that are symmetric under the exchange of any two modes belonging to one of the parties; and (vi) Gaussian states which remain PPT under passive optical operations can not be entangled by them either. This is not a foregone conclusion per se (since Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the existing literature on the subject. This paper, enjoyable by both the quantum optics and the matrix analysis communities, overall delivers technical and conceptual advances which are likely to be useful for further applications in continuous variable quantum information theory, beyond the separability problem.

  1. Physical Properties of Granulates Used in Analogue Experiments of Caprock Failure and Sediment Remobilisation

    NASA Astrophysics Data System (ADS)

    Kukowski, N.; Warsitzka, M.; May, F.

    2014-12-01

    Geological systems consisting of a porous reservoir and a low-permeable caprock are prone to hydraulic fracturing, if pore pressure rises to the effective stress. Under certain conditions, hydraulic fracturing is associated with sediment remobilisation, e.g. sand injections or pipes, leading to reduced seal capacity of the caprock. In dynamically scaled analogue experiments using granular materials and air pressure, we intent to investigate strain patterns and deformation mechanisms during caprock failure and fluidisation of shallow over-pressured reservoirs. The aim of this study is to improve the understanding of leakage potential of a sealing formation and the fluidisation potential of a reservoir formation depending on rock properties and effective stress. For reliable interpretation of analogue experiments, physical properties of analogue materials, e.g. frictional strength, cohesion, density, permeability etc., have to be correctly scaled according to those of their natural equivalents. The simulation of caprock requires that the analogue material possess a low permeability and is capable to shear failure and tensional failure. In contrast, materials representing the reservoir have to possess high porosity and low shear strength. In order to find suitable analogue materials, we measured the stress-strain behaviour and the permeability of over 25 different types of natural and artificial granular materials, e.g. glass powder, siliceous microspheres, diatomite powder, loess, or plastic granulate. Here, we present data of frictional parameters, compressibility and permeability of these granular materials characterized as a function of sphericity, grain size, and density. The repertoire of different types of granulates facilitates the adjustment of accurate mechanical properties in the analogue experiments. Furthermore, conditions during seal failure and fluidisation can be examined depending on the wide range of varying physical properties.

  2. Nanocomposite polymeric materials for high density optical storage

    NASA Astrophysics Data System (ADS)

    Criante, L.; Castagna, R.; Vita, F.; Lucchetta, D. E.; Simoni, F.

    2009-02-01

    We report the results of an extended investigation performed on composite polymeric materials with the aim of obtaining compounds suitable for holographic recording. In order to investigate the material properties a characterization of holographic reflection gratings at different writing wavelength (514.5, 457 and 405 nm) has been performed. The volume grating presents high diffraction efficiency (>60%), high sensitivity (>103 cm J-1) and refractive index modulation Δn≈0.01 even for writing wavelength in the blue range. We show that following a strategy of two basic components leading to phase separation during the photopolymerization process, most of the requirements for holographic data storage are achieved. The one that needs further improvement concerns long term mechanical stability.

  3. A nonlocal species concentration theory for diffusion and phase changes in electrode particles of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Kamlah, Marc

    2018-01-01

    A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics^{circledR } for a spherically symmetric boundary value problem of lithium insertion into a Li_xMn_2O_4 cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for Li_xMn_2O_4 , and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.

  4. High cycle life secondary lithium battery

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Shen, David H. (Inventor); Carter, Boyd J. (Inventor); Somoano, Robert B. (Inventor)

    1985-01-01

    A secondary battery (10) of high energy density and long cycle is achieved by coating the separator (18) with a film (21) of cationic polymer such as polyvinyl-imidazoline. The binder of the positive electrode (14) such as an ethylene-propylene elastomer binder (26) containing particles (28) of TiS.sub.2 chalcogenide can also be modified to contain sulfone functional groups by incorporating liquid or solid sulfone materials such as 0.1 to 5 percent by weight of sulfolane into the binder. The negative lithium electrode (14), separator (18) and positive electrode (16) are preferably spirally wound and disposed within a sealed casing (17) containing terminals (32, 34). The modified separator and positive electrode are more wettable by the electrolytes in which a salt is dissolved in a polar solvent such as sulfolane.

  5. Semi-physical parameter identification for an iron-loss formula allowing loss-separation

    NASA Astrophysics Data System (ADS)

    Steentjes, S.; Leßmann, M.; Hameyer, K.

    2013-05-01

    This paper presents a semi-physical parameter identification for a recently proposed enhanced iron-loss formula, the IEM-Formula. Measurements are performed on a standardized Epstein frame by the conventional field-metric method under sinusoidal magnetic flux densities up to high magnitudes and frequencies. Quasi-static losses are identified on the one hand by point-by-point dc-measurements using a flux-meter and on the other hand by extrapolating higher frequency measurements to dc magnetization using the statistical loss-separation theory (Jacobs et al., "Magnetic material optimization for hybrid vehicle PMSM drives," in Inductica Conference, CD-Rom, Chicago/USA, 2009). Utilizing this material information, possibilities to identify the parameter of the IEM-Formula are analyzed. Along with this, the importance of excess losses in present-day non-grain oriented Fe-Si laminations is investigated. In conclusion, the calculated losses are compared to the measured losses.

  6. Enhanced photoelectrochemical water splitting of BiVO4 photonic crystal photoanode by decorating with MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Nan, Feng; Cai, Tianyi; Ju, Sheng; Fang, Liang

    2018-04-01

    Bismuth vanadate (BiVO4) has been considered as one of the promising Photoelectrochemical (PEC) photoanode materials. However, the performances remain poorly rated due to inefficient carrier separation, short carrier diffusion length, and sluggish water oxidation kinetics. Herein, a photoanode consisting of MoS2 nanosheet coating on the three-dimensional ordered BiVO4 inverse opal is fabricated by a facile combination of nanosphere lithography and hydrothermal methods. By taking advantage of the photonic crystal and two-dimensional material, the optimized MoS2/BiVO4 inverse opal photoanode exhibits a 560% improvement of the photocurrent density and threefold enhancement of the incident photon-to-current efficiency than that of the pristine BiVO4 film photoanode. Systematic studies reveal that the excellent PEC activity should be attributed to enhanced light harvesting and charge separation efficiency.

  7. ZrB 2-HfB 2 solid solutions as electrode materials for hydrogen reaction in acidic and basic solutions

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-11-09

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  8. 31 CFR 25.404 - Non-separability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Non-separability. 25.404 Section 25....404 Non-separability. (a) The Guaranty shall cease to be effective with respect to any Guaranteed Loan Amount or any Guaranteed Loan Portion Amount or any Guaranteed-Amount Equivalent to the extent that: (1...

  9. 31 CFR 25.404 - Non-separability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Non-separability. 25.404 Section 25....404 Non-separability. (a) The Guaranty shall cease to be effective with respect to any Guaranteed Loan Amount or any Guaranteed Loan Portion Amount or any Guaranteed-Amount Equivalent to the extent that: (1...

  10. 31 CFR 25.404 - Non-separability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Non-separability. 25.404 Section 25....404 Non-separability. (a) The Guaranty shall cease to be effective with respect to any Guaranteed Loan Amount or any Guaranteed Loan Portion Amount or any Guaranteed-Amount Equivalent to the extent that: (1...

  11. 31 CFR 25.404 - Non-separability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Non-separability. 25.404 Section 25....404 Non-separability. (a) The Guaranty shall cease to be effective with respect to any Guaranteed Loan Amount or any Guaranteed Loan Portion Amount or any Guaranteed-Amount Equivalent to the extent that: (1...

  12. Quantitative Analysis of Bone Microstructure Using Tomosynthesis

    DTIC Science & Technology

    2013-10-01

    resolution of separation, thickness, distances, in-plane and out-of-plane geometric distortion, and density linearity. 5 To assess the minimum spacing... geometric accuracy phantom was created using four 1 mm beads, placed in four corners at 35 mm apart (Figure 1f). An embedded human vertebra was also...included in the phantom as a realistic reference material (Figure 1g). Figure 1: Tray of phantoms to assess DTS resolution, geometric distortion

  13. Quantitative Analysis of Bone Microstructure Using Tomosynthesis

    DTIC Science & Technology

    2012-10-01

    resolution of separation, thickness, distances, in-plane and out-of-plane geometric distortion, and density linearity. To assess the minimum spacing...volume, a geometric accuracy phantom was created using four 1 mm beads, placed in four corners at 35 mm apart (Figure 1f). An embedded human vertebra...was also included in the phantom as a realistic reference material (Figure 1g). Figure 1: Tray of phantoms to assess DTS resolution, geometric

  14. Fluids Density Functional Theory of Salt-Doped Block Copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Hall, Lisa M.

    Block copolymers have attracted a great deal of recent interest as potential non-flammable, solid-state, electrolyte materials for batteries or other charge carrying applications. The microphase separation in block copolymers combines the properties of a conductive (though mechanically soft) polymer with a mechanically robust (though non-conductive) polymer. We use fluids density functional theory (fDFT) to study the phase behavior of salt-doped block copolymers. Because the salt prefers to preferentially solvate into the conductive phase, salt doping effectively enhances the segregation strength between the two polymer types. We consider the effects of this preferential solvation and of charge correlations by separately modeling the ion-rich phase, without bonding, using the Ornstein-Zernike equation and the hypernetted-chain closure. We use the correlations from this subsystem in the inhomogeneous fDFT calculations. Initial addition of salt increases the domain spacing and sharpens the interfacial region, but for high salt loadings the interface can broaden. Addition of salt can also drive a system with a low copolymer segregation strength to order by first passing through a two phase regime with a salt-rich ordered phase and a salt-poor disordered phase. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0014209.

  15. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality.

    PubMed

    Si, Yang; Yu, Jianyong; Tang, Xiaomin; Ge, Jianlong; Ding, Bin

    2014-12-16

    Three-dimensional nanofibrous aerogels (NFAs) that are both highly compressible and resilient would have broad technological implications for areas ranging from electrical devices and bioengineering to damping materials; however, creating such NFAs has proven extremely challenging. Here we report a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique. Our approach causes the intrinsically lamellar deposited electrospun nanofibres to assemble into elastic bulk aerogels with tunable densities and desirable shapes on a large scale. The resulting FIBER NFAs exhibit densities of >0.12 mg cm(-3), rapid recovery from deformation, efficient energy absorption and multifunctionality in terms of the combination of thermal insulation, sound absorption, emulsion separation and elasticity-responsive electric conduction. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional NFAs for various applications.

  16. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    PubMed

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  17. A simple index of stand density for Douglas-fir.

    Treesearch

    R.O. Curtis

    1982-01-01

    The expression RD = G/(Dg½), where G is basal area and Dg is quadratic mean stand diameter, provides a simple and convenient scale of relative stand density for Douglas-fir, equivalent to other generally accepted diameter-based stand density measures.

  18. Mechanical Behavior of Free-Standing Fuel Cell Electrodes on Water Surface.

    PubMed

    Kim, Sanwi; Kim, Jae-Han; Oh, Jong-Gil; Jang, Kyung-Lim; Jeong, Byeong-Heon; Hong, Bo Ki; Kim, Taek-Soo

    2016-06-22

    Fundamental understanding of the mechanical behavior of polymer electrolyte fuel cell electrodes as free-standing materials is essential to develop mechanically robust fuel cells. However, this has been a significant challenge due to critical difficulties, such as separating the pristine electrode from the substrate without damage and precisely measuring the mechanical properties of the very fragile and thin electrodes. We report the mechanical behavior of free-standing fuel cell electrodes on the water surface through adopting an innovative ice-assisted separation method to separate the electrode from decal transfer film. It is found that doubling the ionomer content in electrodes increases not only the tensile stress at the break and the Young's modulus (E) of the electrodes by approximately 2.1-3.5 and 1.7-2.4 times, respectively, but also the elongation at the break by approximately 1.5-1.7 times, which indicates that stronger, stiffer, and tougher electrodes are attained with increasing ionomer content, which have been of significant interest in materials research fields. The scaling law relationship between Young's modulus and density (ρ) has been unveiled as E ∼ ρ(1.6), and it is compared with other materials. These findings can be used to develop mechanically robust electrodes for fuel cell applications.

  19. In-plane structuring of proton exchange membrane fuel cell cathodes: Effect of ionomer equivalent weight structuring on performance and current density distribution

    NASA Astrophysics Data System (ADS)

    Herden, Susanne; Riewald, Felix; Hirschfeld, Julian A.; Perchthaler, Markus

    2017-07-01

    Within the active area of a fuel cell inhomogeneous operating conditions occur, however, state of the art electrodes are homogenous over the complete active area. This study uses current density distribution measurements to analyze which ionomer equivalent weight (EW) shows locally the highest current densities. With this information a segmented cathode electrode is manufactured by decal transfer. The segmented electrode shows better performance especially at high current densities compared to homogenous electrodes. Furthermore this segmented catalyst coated membrane (CCM) performs optimal in wet as well as dry conditions, both operating conditions arise in automotive fuel cell applications. Thus, cathode electrodes with an optimized ionomer EW distribution might have a significant impact on future automotive fuel cell development.

  20. Time-dependent polar distribution of outgassing from a spacecraft

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1974-01-01

    A technique has been developed to obtain a characterization of the self-generated environment of a spacecraft and its variation with time, angular position, and distance. The density, pressure, outgassing flux, total weight loss, and other important parameters were obtained from data provided by two mass measuring crystal microbalances, mounted back to back, at distance of 1 m from the spacecraft equivalent surface. A major outgassing source existed at an angular position of 300 deg to 340 deg, near the rocket motor, while the weakest source was at the antennas. The strongest source appeared to be caused by a material diffusion process which produced a directional density at 1 m distance of about 1.6 x 10 to the 11th power molecules/cu cm after 1 hr in vacuum and decayed to 1.6 x 10 to the 9th power molecules/cu cm after 200 hr. The total average outgassing flux at the same distance and during the same time span changed from 1.2 x 10 to the minus 7th power to 1.4 x to the minus 10th power g/sq cm/s. These values are three times as large at the spacecraft surface. Total weight loss was 537 g after 10 hr and about 833 g after 200 hr. Self-contamination of the spacecraft was equivalent to that in orbit at about 300-km altitude.

  1. Turbulent flow separation control through passive techniques

    NASA Technical Reports Server (NTRS)

    Lin, J. C.; Howard, F. G.; Selby, G. V.

    1989-01-01

    Several passive separation control techniques for controlling moderate two-dimensional turbulent flow separation over a backward-facing ramp are studied. Small transverse and swept grooves, passive porous surfaces, large longitudinal grooves, and vortex generators were among the techniques used. It was found that, unlike the transverse and longitudinal grooves of an equivalent size, the 45-deg swept-groove configurations tested tended to enhance separation.

  2. Wafer-scale, massively parallel carbon nanotube arrays for realizing field effect transistors with current density exceeding silicon and gallium arsenide

    NASA Astrophysics Data System (ADS)

    Arnold, Michael

    Calculations have indicated that aligned arrays of semiconducting carbon nanotubes (CNTs) promise to outperform conventional semiconducting materials in short-channel, aggressively scaled field effect transistors (FETs) like those used in semiconductor logic and high frequency amplifier technologies. These calculations have been based on extrapolation of measurements of FETs based on one CNT, in which ballistic transport approaching the quantum conductance limit of 2Go = 4e2/h has been achieved. However, constraints in CNT sorting, processing, alignment, and contacts give rise to non-idealities when CNTs are implemented in densely-packed parallel arrays, which has resulted in a conductance per CNT far from 2Go. The consequence has been that it has been very difficult to create high performance CNT array FETs, and CNT array FETs have not outperformed but rather underperformed channel materials such as Si by 6 x or more. Here, we report nearly ballistic CNT array FETs at a density of 50 CNTs um-1, created via CNT sorting, wafer-scale alignment and assembly, and treatment. The on-state conductance in the arrays is as high as 0.46 Go per CNT, and the conductance of the arrays reaches 1.7 mS um-1, which is 7 x higher than previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density reaches 900 uA um-1 and is similar to or exceeds that of Si FETs when compared at equivalent gate oxide thickness, off-state current density, and channel length. The on-state current density exceeds that of GaAs FETs, as well. This leap in CNT FET array performance is a significant advance towards the exploitation of CNTs in high-performance semiconductor electronics technologies.

  3. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.

    PubMed

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D; Schubert, Ulrich S

    2015-11-05

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  4. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials

    NASA Astrophysics Data System (ADS)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.

    2015-11-01

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  5. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    DOEpatents

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  6. Computer simulations and models for the performance characteristics of spectrally equivalent X-ray beams in medical diagnostic radiology

    PubMed Central

    Okunade, Akintunde A.

    2007-01-01

    In order to achieve uniformity in radiological imaging, it is recommended that the concept of equivalence in shape (quality) and size (quantity) of clinical Xray beams should be used for carrying out the comparative evaluation of image and patient dose. When used under the same irradiation geometry, X-ray beams that are strictly or relatively equivalent in terms of shape and size will produce identical or relatively identical image quality and patient dose. Simple mathematical models and software program EQSPECT.FOR were developed for the comparative evaluation of the performance characteristics in terms of contrast (C), contrast to noise ratio (CNR) and figure-of-merit (FOM = CNR2/DOSE) for spectrally equivalent beams transmitted through filter materials referred to as conventional and k-edged. At the same value of operating potential (kVp), results show that spectrally equivalent beam transmitted through conventional filter with higher atomic number (Z-value) in comparison with that transmitted through conventional filter with lower Z-value resulted in the same value of C and FOM. However, in comparison with the spectrally equivalent beam transmitted through filter of lower Z-value, the beam through filter of higher Z-value produced higher value of CNR and DOSE at equal tube loading (mAs) and kVp. Under the condition of equivalence of spectrum, at scaled (or reduced) tube loading and same kVp, filter materials of higher Z-value can produce the same values of C, CNR, DOSE and FOM as filter materials of lower Z-value. Unlike the case of comparison of spectrally equivalent beam transmitted through one conventional filter and that through another conventional filter, it is not possible to derive simple mathematical formulations for the relative performance of spectrally equivalent beam transmitted through a given conventional filter material and that through kedge filter material. PMID:21224928

  7. Nonaqueous Electrical Storage Device

    DOEpatents

    McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.

    1999-10-26

    An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

  8. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    DOE PAGES

    Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...

    2015-11-24

    Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less

  9. Equivalent Quantum Equations in a System Inspired by Bouncing Droplets Experiments

    NASA Astrophysics Data System (ADS)

    Borghesi, Christian

    2017-07-01

    In this paper we study a classical and theoretical system which consists of an elastic medium carrying transverse waves and one point-like high elastic medium density, called concretion. We compute the equation of motion for the concretion as well as the wave equation of this system. Afterwards we always consider the case where the concretion is not the wave source any longer. Then the concretion obeys a general and covariant guidance formula, which leads in low-velocity approximation to an equivalent de Broglie-Bohm guidance formula. The concretion moves then as if exists an equivalent quantum potential. A strictly equivalent free Schrödinger equation is retrieved, as well as the quantum stationary states in a linear or spherical cavity. We compute the energy (and momentum) of the concretion, naturally defined from the energy (and momentum) density of the vibrating elastic medium. Provided one condition about the amplitude of oscillation is fulfilled, it strikingly appears that the energy and momentum of the concretion not only are written in the same form as in quantum mechanics, but also encapsulate equivalent relativistic formulas.

  10. MoS2/Ni3S4 composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities

    NASA Astrophysics Data System (ADS)

    Qin, Shengchun; Yao, Tinghui; Guo, Xin; Chen, Qiang; Liu, Dequan; Liu, Qiming; Li, Yali; Li, Junshuai; He, Deyan

    2018-05-01

    In this paper, we report an electrode architecture of molybdenum disulfide (MoS2)/nickel sulfide (Ni3S4) composite nanosheets anchored on interconnected carbon (C) shells (C@MoS2/Ni3S4). Electrochemical measurements indicate that the C@MoS2/Ni3S4 structure possesses excellent supercapacitive properties especially for long term cycling at high current densities. A specific capacitance as high as ∼640.7 F g-1 can still be delivered even after 10,000 cycles at a high current density of 20 A g-1. From comparison of microstructures and electrochemical properties of the related materials/structures, the improved performance of C@MoS2/Ni3S4 can be attributed to the relatively dispersedly distributed nanosheet-shaped MoS2/Ni3S4 that provides efficient contact with electrolyte and effectively buffers the volume change during charge/discharge processes, enhanced cycling stability by MoS2, and reduced equivalent series resistance by the interconnected C shells.

  11. Multifunctional composites for energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  12. Gauge invariance of excitonic linear and nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Alireza; Pedersen, T. G.

    2018-05-01

    We study the equivalence of four different approaches to calculate the excitonic linear and nonlinear optical response of multiband semiconductors. These four methods derive from two choices of gauge, i.e., length and velocity gauges, and two ways of computing the current density, i.e., direct evaluation and evaluation via the time-derivative of the polarization density. The linear and quadratic response functions are obtained for all methods by employing a perturbative density-matrix approach within the mean-field approximation. The equivalence of all four methods is shown rigorously, when a correct interaction Hamiltonian is employed for the velocity gauge approaches. The correct interaction is written as a series of commutators containing the unperturbed Hamiltonian and position operators, which becomes equivalent to the conventional velocity gauge interaction in the limit of infinite Coulomb screening and infinitely many bands. As a case study, the theory is applied to hexagonal boron nitride monolayers, and the linear and nonlinear optical response found in different approaches are compared.

  13. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

    PubMed

    Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao

    2015-04-22

    Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.

  14. The role of cell size in density gradient electrophoretic separation of mouse leukemia cells according to position in the cell cycle

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Cultured mouse leukemia cells line L5178Y were subjected to upward electrophoresis in a density gradient and the slower migrating cell populations were enriched in G2 cells. It is indicated that this cell line does not change electrophoretic mobility through the cell cycle. The possibility that increased sedimentation downward on the part of the larger G2 cells caused this separation was explored. Two different cell populations were investigated. The log phase population was found to migrate upward faster than the G2 population, and a similar difference between their velocities and calculated on the basis of a 1 um diameter difference between the two cell populations. The G2 and G1 enriched populations were isolated by Ficoll density gradient sedimentation. The bottom fraction was enriched in G2 cells and the top fraction was enriched with G1 cells, especially when compared with starting materials. The electrophoretic mobilities of these two cell populations did not differ significantly from one another. Cell diameter dependent migration curves were calculated and were found to be different. Families of migration curves that differ when cell size is considered as a parameter are predicted.

  15. Abnormal gel flotation caused by contrast media during adrenal vein sampling.

    PubMed

    Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Gelati, Matteo; Bassi, Antonella; Contro, Alberto; Pizzolo, Francesca; Guidi, Gian Cesare

    2016-10-15

    During adrenal venous sampling (AVS) procedure, radiologists administer a contrast agent via the catheter to visualize the proper catheter position. A patient with primary aldosteronism diagnostic-hypothesis was admitted for AVS. A venogram was performed to
confirm the catheter's position with 2mL of Iopamidol 300 mg/mL. Samples were collected with syringe connected to a hydrophilic coated catheter by low-pressure aspiration from each of the four collection sites: inferior vena cava in the suprarenal portion, inferior vena cava in the infrarenal portion, left adrenal vein, and right adrenal vein; then immediately transferred from syringe to tubes with gel separator. All tubes were centrifuged at 1200 x g for 10 minutes. At the end of centrifugation process, primary blood tubes containing blood from inferior vena cava and left adrenal vein exhibited the standard gel separator barrier, while tubes from right adrenal vein showed abnormal flotation of gel separator. The radiologist confirmed the usage of 2.6 mL instead of 2.0 mL of Iopamidol 300 mg/mL. This iodinated contrast media, with 1.33 g/cm 3 of density, was used close to the right adrenal vein due to some difficulty to access it. The abnormal flotation of gel separator in samples taken from right adrenal vein can be explained by the usage of the iodinated
contrast media. We suggest using plain-tubes (without gel separator) for AVS in order to avoid preanalytical nonconformities. Moreover, a blood volume equivalent to twice the catheter extension should be discarded to eliminate residual contrast media before collection of samples for laboratory assays.

  16. FOREX-A Fiber Optics Diagnostic System For Study Of Materials At High Temperatures And Pressures

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Roeske, F.

    1983-03-01

    We have successfully fielded a Fiber Optics Radiation EXperiment system (FOREX) designed for measuring material properties at high temperatures and pressures on an underground nuclear test. The system collects light from radiating materials and transmits it through several hundred meters of optical fibers to a recording station consisting of a streak camera with film readout. The use of fiber optics provides a faster time response than can presently be obtained with equalized coaxial cables over comparable distances. Fibers also have significant cost and physical size advantages over coax cables. The streak camera achieves a much higher information density than an equivalent oscilloscope system, and it also serves as the light detector. The result is a wide bandwidth high capacity system that can be fielded at a relatively low cost in manpower, space, and materials. For this experiment, the streak camera had a 120 ns time window with a 1.2 ns time resolution. Dynamic range for the system was about 1000. Beam current statistical limitations were approximately 8% for a 0.3 ns wide data point at one decade above the threshold recording intensity.

  17. Determining the Critical Dose Threshold of Electron-Induced Electron Yield for Minimally Charged Highly Insulating Materials

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan

    2006-03-01

    When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.

  18. Recycle technology for recovering resources and products from waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Guo, Jie; Xu, Zhenming; Zhou, Yaohe

    2007-03-15

    The printed circuit board (PCB) contains nearly 28% metals that are abundant non-ferrous metals such as Cu, Al, Sn, etc. The purity of precious metals in PCBs is more than 10 times higher than that of rich-content minerals. Therefore, recycling of PCBs is an important subject not only from the treatment of waste but also from the recovery of valuable materials. Chemical and mechanical methods are two traditional recycling processes for waste PCBs. However, the prospect of chemical methods will be limited since the emission of toxic liquid or gas brings secondary pollution to the environment during the process. Mechanical processes, such as shape separation, jigging, density-based separation, and electrostatic separation have been widely utilized in the recycling industry. But, recycling of waste PCBs is only beginning. In this study, a total of 400 kg of waste PCBs was processed by a recycle technology without negative impact to the environment. The technology contained mechanical two-step crushing, corona electrostatic separating, and recovery. The results indicated that (i) two-step crushing was an effect process to strip metals from base plates completely; (ii) the size of particles between 0.6 and 1.2 mm was suitable for corona electrostatic separating during industrial application; and (iii) the nonmetal of waste PCBs attained 80% weight of a kind of nonmetallic plate that expanded the applying prospect of waste nonmetallic materials.

  19. 5 CFR 330.602 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... equivalent) or below who: (i) Received a reduction in force (RIF) separation notice under part 351 of this... positions; and (ii) Received a RIF separation notice under part 351 of this chapter or a notice of proposed...); or (ii) Received a RIF notice of separation under part 351 of this chapter or a notice of proposed...

  20. 5 CFR 330.602 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... equivalent) or below who: (i) Received a reduction in force (RIF) separation notice under part 351 of this... positions; and (ii) Received a RIF separation notice under part 351 of this chapter or a notice of proposed...); or (ii) Received a RIF notice of separation under part 351 of this chapter or a notice of proposed...

  1. 5 CFR 330.602 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equivalent) or below who: (i) Received a reduction in force (RIF) separation notice under part 351 of this... positions; and (ii) Received a RIF separation notice under part 351 of this chapter or a notice of proposed...); or (ii) Received a RIF notice of separation under part 351 of this chapter or a notice of proposed...

  2. Performance investigation on DCSFCL considering different magnetic materials

    NASA Astrophysics Data System (ADS)

    Yuan, Jiaxin; Zhou, Hang; Zhong, Yongheng; Gan, Pengcheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    In order to protect high voltage direct current (HVDC) system from destructive consequences caused by fault current, a novel concept of HVDC system fault current limiter (DCSFCL) was proposed previously. Since DCSFCL is based on saturable core reactor theory, iron core becomes the key to the final performance of it. Therefore, three typical kinds of soft magnetic materials were chosen to find out their impact on performances of DCSFCL. Different characteristics of materials were compared and their theoretical deductions were carried out, too. In the meanwhile, 3D models applying those three materials were built separately and finite element analysis simulations were performed to compare these results and further verify the assumptions. It turns out that materials with large saturation flux density value Bs like silicon steel and short demagnetization time like ferrite might be the best choice for DCSFCL, which can be a future research direction of magnetic materials.

  3. Dislocation density evolution of AA 7020-T6 investigated by in-situ synchrotron diffraction under tensile load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.Y., E-mail: zhengye.zhong@hzg.de; Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht; Brokmeier, H.-G.

    2015-10-15

    The dislocation density evolution along the loading axis of a textured AA 7020-T6 aluminum alloy during uniaxial tension was investigated by in-situ synchrotron diffraction. The highly parallel synchrotron beam at the High Energy Materials Science beamline P07 in PETRA III, DESY, offers excellent conditions to separate different influences for line broadening from which micro-strains are obtained using the modified Williamson–Hall method which is also for defect density investigations. During tensile loading the dislocation density evolution was documented from the as-received material (initial micro-strain state) to the relaxation of the strains during elastic deformation. After yield, the increasing rate of dislocationmore » density growth was relatively fast till half-way between yield and UTS. After that, the rate started to decrease and the dislocation density fluctuated as the elongation increased due to the generation and annihilation of dislocations. When dislocation generation is dominant, the correlation between the flow stress and dislocation density satisfies the Taylor equation. Besides, a method to correct the thickness effect on peak broadening is developed in the present study. - Highlights: • In-situ synchrotron diffraction was applied to characterize peak broadening. • Dislocation evolution along the loading axis during uniaxial tension was investigated. • A method to correct the sample thickness effect on peak broadening was developed. • Dislocation density and flow stress satisfy the Taylor equation at a certain range. • The texture before load and after sample fracture was analyzed.« less

  4. Results from the Water Flow Test of the Tank 37 Backflush Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowley, M.D.

    2002-11-01

    A flow test was conducted in the Thermal Fluids Lab with the Tank 37 Backflush Valve to determine the pressure drop of water flow through the material transfer port. The flow rate was varied from 0 to 100 gpm. The pressure drop through the Backflush Valve for flow rates of 20 and 70 gpm was determined to be 0.18 and 1.77 feet of H2O, respectively. An equivalent length of the Backflush Valve was derived from the flow test data. The equivalent length was used in a head loss calculation for the Tank 37 Gravity Drain Line. The calculation estimated themore » flow rate that would fill the line up to the Separator Tank, and the additional flow rate that would fill the Separator Tank. The viscosity of the fluid used in the calculation was 12 centipoise. Two specific gravities were investigated, 1.4 and 1.8. The Gravity Drain Line was assumed to be clean, unobstructed stainless steel pipe. The flow rate that would fill the line up to the Separator Tank was 73 and 75 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. The flow rate that would fill the Separator Tank was 96 and 100 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. These results indicate that concentrate will not back up into the Separator Tank during evaporator normal operation, 15-25 gpm, or pot liftout, 70 gpm. A noteworthy observation during the flow test was water pouring from the holes in the catheterization tube. Water poured from the holes at 25 gpm and above. Data from the water flow test indicates that at 25 gpm the pressure drop through the Backflush Valve is 0.26 ft of H2O. A concentrate with a specific gravity of 1.8 and a viscosity of 12 cp will produce the same pressure drop at 20 gpm. This implies that concentrate from the evaporator may spill out into the BFV riser during a transfer.« less

  5. Aerogel-Based Multilayer Insulation with Micrometeoroid Protection

    NASA Technical Reports Server (NTRS)

    Begag, Redouane; White, Shannon

    2013-01-01

    Ultra-low-density, highly hydrophobic, fiber-reinforced aerogel material integrated with MLI (aluminized Mylar reflectors and B4A Dacron separators) offers a highly effective insulation package by providing unsurpassed thermal performance and significant robustness, delivering substantial MMOD protection via the addition of a novel, durable, external aerogel layer. The hydrophobic nature of the aerogel is an important property for maintaining thermal performance if the material is exposed to the environment (i.e. rain, snow, etc.) during ground installations. The hybrid aerogel/MLI/MMOD solution affords an attractive alternative because it will perform thermally in the same range as MLI at all vacuum levels (including high vacuum), and offers significant protection from micrometeoroid damage. During this effort, the required low-density and resilient aerogel materials have been developed that are needed to optimize the thermal performance for space (high vacuum) cryotank applications. The proposed insulation/MMOD package is composed of two sections: a stack of interleaved aerogel layers and MLI intended for cryotank thermal insulation, and a 1.5- to 1-in. (.2.5- to 3.8- cm) thick aerogel layer (on top of the insulation portion) for MMOD protection. Learning that low-density aerogel cannot withstand the hypervelocity impact test conditions, the innovators decided during the course of the program to fabricate a high-density and strong material based on a cross-linked aerogel (X-aerogel; developed elsewhere by the innovators) for MMOD protection. This system has shown a very high compressive strength that is capable of withstanding high-impact tests if a proper configuration of the MMOD aerogel layer is used. It was learned that by stacking two X-aerogel layers [1.5-in. (.3.8-cm) thick] separated by an air gap, the system would be able to hold the threat at a speed of 5 km/s and gpass h the test. The first aerogel panel stopped the projectile from damaging the second aerogel panel. The impacted X-aerogel (the back specimen from the successful test) was further tested in comparison to another similar sample (not impacted) at Kennedy Space Center for thermal conductivity evaluation at cryogenic conditions. The specimens were tested under high vacuum and cryogenic temperatures, using Cryostat 500. The results show that the specimen did not lose a significant amount of thermal performance due to the impact test, especially at high vacuum.

  6. What is the size of a floating sheath? An answer

    NASA Astrophysics Data System (ADS)

    Voigt, Farina; Naggary, Schabnam; Brinkmann, Ralf Peter

    2016-09-01

    The formation of a non-neutral boundary sheath in front of material surfaces is universal plasma phenomenon. Despite several decades of research, however, not all related issues are fully clarified. In a recent paper, Chabert pointed out that this lack of clarity applies even to the seemingly innocuous question ``What the size of a floating sheath?'' This contribution attempts to provide an answer that is not arbitrary: The size of a floating sheath is defined as the plate separation of an equivalent parallel plate capacitor. The consequences of the definition are explored with the help of a self-consistent sheath model, and a comparison is made with other sheath size definitions. Deutsche Forschungsgemeinschaft within SFB TR 87.

  7. Modeling of sorption processes on solid-phase ion-exchangers

    NASA Astrophysics Data System (ADS)

    Dorofeeva, Ludmila; Kuan, Nguyen Anh

    2018-03-01

    Research of alkaline elements separation on solid-phase ion-exchangers is carried out to define the selectivity coefficients and height of an equivalent theoretical stage for both continuous and stepwise filling of column by ionite. On inorganic selective sorbents the increase in isotope enrichment factor up to 0.0127 is received. Also, parametrical models that are adequately describing dependence of the pressure difference and the magnitude expansion in the ion-exchange layer from the flow rate and temperature have been obtained. The concentration rate value under the optimum realization conditions of process and depending on type of a selective material changes in a range 1.021÷1.092. Calculated results show agreement with experimental data.

  8. Modulation power of porous materials and usage as ripple filter in particle therapy.

    PubMed

    Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli

    2017-04-07

    Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called 'modulation power' is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.

  9. Structural evaluation of asphalt pavements with full-depth reclaimed base.

    DOT National Transportation Integrated Search

    2012-12-01

    Currently, MnDOT pavement design recommends granular equivalency, GE = 1.0 for non-stabilized full-depth : reclamation (FDR) material, which is equivalent to class 5 material. For stabilized full-depth reclamation (SFDR), : there was no guideline for...

  10. Research Essay for the Goldwater Scholarship Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, Jacob August

    Oxygen is found in many natural and human-made structures and materials, including water, concrete, or any oxide. The severe lack of data on the cross section of 16O(n,α), a reaction that can be found in any material containing oxygen, is detrimental to a complete understanding of the natural or induced behavior of these materials [HYL16]. Additionally, study of this particular reaction and other neutron-induced reactions involving oxygen are useful in the design of naval light water reactors and applications in radio-biology [HYL16]. A detailed understanding of the 16O(n,α) reaction is vital to the safe and efficient study, design, and developmentmore » of applications such as these. My consequent work at the Los Alamos National Laboratory (LANL), under the supervision of my mentor, Dr. Hye Young Lee, concerned an experiment to measure the reaction rate of 16O(n,α) with unprecedented precision, using a method of experimentation known as the ”forward propagating approach.” What separates this method from traditional experimentation is in the use of computer simulations; in essence, this method entails the development of a computer-simulated experimental environment that behaves similarly to a corresponding physical experimental environment (the word ”similar” is used here to convey an equivalence in properties of materials, like geometry or density, and characteristics of certain nuclear processes between the simulated and physical environments). The simulated environment receives inputs, like detector resolution and efficiency, beam resolution, or theoretical calculations of cross sections, that are determined from physically measured results, and then output data that – provided the simulation was prepared and executed properly – closely resemble the results expected from physical execution of the experiment. By comparing data from the simulated experiment and the physical experiment, the relevant results can be constrained to achieve a high precision measurement. The goal of my mentor’s experiment–the experiment that I helped build and simulate–was to achieve a high precision measurement of the cross section of 16O(n,α) using the forward propagating approach technique.« less

  11. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservativemore » assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.« less

  12. Ion Outflow Observations

    NASA Technical Reports Server (NTRS)

    Mellot, Mary (Technical Monitor)

    2002-01-01

    The characteristics of out-flowing ions have been investigated under various circumstances. In particular the upwelling of ions from the cleft region has been studied to attempt to look at source characteristics (e.g., temperature, altitude). High altitude (6-8 Re) data tend to show ions species that have the same velocity and are adiabatically cooled. Such ions, while representative of their source, can not provide an accurate picture. Ion observations from the TIDE detector on the Polar spacecraft show an energy (or equivalently a velocity) spectrum of ions as they undo the geomagnetic mass spectrometer effect due to convection-gravity separation of the different species. Consolidation of this type of data into a complete representation of the source spectrum can be attempted by building a set of maximum-phase-space- density-velocity pairs and attributing the total to the source.

  13. A Hierarchy of Homodesmotic Reactions for Thermochemistry

    PubMed Central

    Schleyer, Paul v. R.

    2009-01-01

    Chemical equations that balance bond types and atom hybridization to different degrees are often used in computational thermochemistry, for example, to increase accuracy when lower levels of theory are employed. We expose the widespread confusion over such classes of equations and demonstrate that the two most widely used definitions of “homodesmotic” reactions are not equivalent. New definitions are introduced and a consistent hierarchy of reaction classes (RC1 – RC5) for hydrocarbons is constructed: isogyric (RC1) ⊇ isodesmic (RC2) ⊇ hypohomodesmotic (RC3) ⊇ homodesmotic (RC4) ⊇ hyperhomodesmotic (RC5). Each of these successively conserves larger molecular fragments. The concept of isodesmic bond separation reactions is generalized to all classes in this hierarchy, providing a unique sectioning of a given molecule for each reaction type. Several ab initio and density functional methods are applied to the bond separation reactions of 38 hydrocarbons containing five or six carbon atoms. RC4 and RC5 reactions provide bond separation enthalpies with errors consistently less than 0.4 kcal mol−1 across a wide range of theoretical levels, performing significantly better than the other reaction types and far superior to atomization routes. Our recommended bond separation reactions were demonstrated by determining the enthalpies of formation (at 298 K) of 1,3,5-hexatriyne (163.7 ± 0.4 kcal mol−1), 1,3,5,7-octatetrayne (217.6 ± 0.6 kcal mol−1), the larger polyynes C10H2 through C26H2, and an infinite acetylenic carbon chain. PMID:19182999

  14. Understanding Inhomogeneous Reactions in Li‐Ion Batteries: Operando Synchrotron X‐Ray Diffraction on Two‐Layer Electrodes

    PubMed Central

    Villevieille, Claire; Takeuchi, Yoji

    2015-01-01

    To understand inhomogeneous reactions perpendicular to the current collector in an electrode for batteries, a method combining operando synchrotron X‐ray diffraction and two‐layer electrodes with different porosities is developed. The two layers are built using two different active materials (LiNi0.80Co0.15Al0.05O2 and LiMn2O4), therefore, tracing each diffraction pattern reveals which active material is reacting during the electrochemical measurement in transmission mode. The results demonstrate that the active material close to the separator is obviously more active than that one close to the current collector in the case of low porosity electrodes. This inhomogeneity should be due to the rate‐limitation and especially to low average ionic conductivity of the electrolyte in the porous electrode because the current flows first mainly into the electrode regions close to the separator. The inhomogeneity is found to be mitigated by the adjustment of the electrode density and thus porosity. Hence, the novel operando method reveals a clear inhomogeneous reaction perpendicular to the current collector. PMID:27708998

  15. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  16. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  17. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers.

    PubMed

    Teymurazyan, A; Pang, G

    2012-03-01

    Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector response, and water-equivalence of dose response have been investigated. It has been found that the zero frequency DQE of the proposed detector can be up to 37% at 6 MV. The detector, also, is water-equivalent with a relatively uniform response to different energy x-rays as compared to current EPIDs. The results of our simulations show that, using plastic scintillating fibers, it is possible to construct a water-equivalent EPID that has a better energy response and a higher detection efficiency than current flat panel based EPIDs.

  18. Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Wang, Xiaohong; Xing, Hexin; Shen, Caiwei

    2013-11-01

    This paper presents three-dimensional (3D) micro supercapacitors with thick interdigital electrodes supported and separated by SU-8. Nanoporous carbon materials including graphene and activated carbon (AC) are used as active materials in self-supporting composites to build the electrodes. The SU-8 separators provide mechanical support for thick electrodes and allow a considerable amount of material to be loaded in a limited footprint area. The prototypes have been accomplished by a simple microelectromechanical systems (MEMS) fabrication process and sealed by polydimethylsiloxane (PDMS) caps with ionic liquid electrolytes injected into the electrode area. Electrochemical tests demonstrate that the graphene-based prototype with 100 µm thick electrodes shows good power performance and provides a considerable specific capacitance of about 60 mF cm-2. Two AC-based prototypes show larger capacitance of 160 mF cm-2 and 311 mF cm-2 with 100 µm and 200 µm thick electrodes respectively, because of higher volume density of the material. The results demonstrate that both thick 3D electrode structure and volume capacitance of the electrode material are key factors for high-performance micro supercapacitors, which can be potentially used in specific applications such as power suppliers and storage components for harvesters.

  19. A pilot study examining density of suppression measurement in strabismus.

    PubMed

    Piano, Marianne; Newsham, David

    2015-01-01

    Establish whether the Sbisa bar, Bagolini filter (BF) bar, and neutral density filter (NDF) bar, used to measure density of suppression, are equivalent and possess test-retest reliability. Determine whether density of suppression is altered when measurement equipment/testing conditions are changed. Our pilot study had 10 subjects aged ≥18 years with childhood-onset strabismus, no ocular pathologies, and no binocular vision when manifest. Density of suppression upon repeated testing, with clinic lights on/off, and using a full/reduced intensity light source, was investigated. Results were analysed for test-retest reliability, equivalence, and changes with alteration of testing conditions. Test-retest reliability issues were present for the BF bar (median 6 filter change from first to final test, p = 0.021) and NDF bar (median 5 filter change from first to final test, p = 0.002). Density of suppression was unaffected by environmental illumination or fixation light intensity variations. Density of suppression measurements were higher when measured with the NDF bar (e.g. NDF bar = 1.5, medium suppression, vs BF bar = 6.5, light suppression). Test-retest reliability issues may be present for the two filter bars currently still under manufacture. Changes in testing conditions do not significantly affect test results, provided the same filter bar is used consistently for testing. Further studies in children with strabismus having active amblyopia treatment would be of benefit. Despite extensive use of these tests in the UK, this is to our knowledge the first study evaluating filter bar equivalence/reliability.

  20. Method for solvent extraction with near-equal density solutions

    DOEpatents

    Birdwell, Joseph F.; Randolph, John D.; Singh, S. Paul

    2001-01-01

    Disclosed is a modified centrifugal contactor for separating solutions of near equal density. The modified contactor has a pressure differential establishing means that allows the application of a pressure differential across fluid in the rotor of the contactor. The pressure differential is such that it causes the boundary between solutions of near-equal density to shift, thereby facilitating separation of the phases. Also disclosed is a method of separating solutions of near-equal density.

  1. Method to manufacture bit patterned magnetic recording media

    DOEpatents

    Raeymaekers, Bart; Sinha, Dipen N

    2014-05-13

    A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic "cross-talk" between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.

  2. Fast, epithermal and thermal photoneutron dosimetry in air and in tissue equivalent phantom for a high-energy X-ray medical accelerator.

    PubMed

    Sohrabi, Mehdi; Hakimi, Amir

    2018-02-01

    Photoneutron (PN) dosimetry in fast, epithermal and thermal energy ranges originated from the beam and albedo neutrons in high-energy X-ray medical accelerators is highly important from scientific, technical, radiation protection and medical physics points of view. Detailed dose equivalents in the fast, epithermal and thermal PN energy ranges in air up to 2m as well as at 35 positions from the central axis of 12 cross sections of the phantom at different depths were determined in 18MV X-ray beams of a Siemens ONCOR accelerator. A novel dosimetry method based on polycarbonate track dosimeters (PCTD)/ 10 B (with/without cadmium cover) was used to determine and separate different PN dose equivalents in air and in a multilayer polyethylene phantom. Dose equivalent distributions of PNs, as originated from the main beam and/or albedo PNs, on cross-plane, in-plane and diagonal axes in 10cm×10cm fields are reported. PN dose equivalent distributions on the 3 axes have their maxima at the isocenter. Epithermal and thermal PN depth dose equivalent distributions in the phantom for different positions studied peak at ∼3cm depth. The neutron dosimeters used for the first time in such studies are highly effective for separating dose equivalents of PNs in the studied energy ranges (beam and/or albedo). The PN dose equivalent data matrix made available in this paper is highly essential for detailed patient dosimetry in general and for estimating secondary cancer risks in particular. Copyright © 2017. Published by Elsevier GmbH.

  3. 14 CFR 67.103 - Eye.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 20/20 vision, the person may be eligible only on the condition that corrective lenses are worn while exercising the privileges of an airman certificate. (b) Near vision of 20/40 or better, Snellen equivalent... vision of 20/40 or better, Snellen equivalent, at both 16 inches and 32 inches in each eye separately...

  4. 14 CFR 67.103 - Eye.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 20/20 vision, the person may be eligible only on the condition that corrective lenses are worn while exercising the privileges of an airman certificate. (b) Near vision of 20/40 or better, Snellen equivalent... vision of 20/40 or better, Snellen equivalent, at both 16 inches and 32 inches in each eye separately...

  5. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.

    PubMed

    Cai, C; Rodet, T; Legoupil, S; Mohammad-Djafari, A

    2013-11-01

    Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images. This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed. The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions. The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.

  6. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima

    We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.

  7. The abundance of interstellar sulphur and zinc in high density sight-lines

    NASA Technical Reports Server (NTRS)

    Harris, A. W.; Mashesse, J. M.

    1986-01-01

    On the basis of early absorption line studies of individual lines of sight with the Copernicus satellite, chlorine, sulphur and zinc were classed together as elements which showed little or no depletion, relative to hydrogen, in the interstellar medium. The abundances of other less volatile elements, such as Fe and Mg were found to vary widely from one sight-line to another with gas-phase abundances in some cases being orders of magnitude below their solar counterparts. Detailed studies are reported of the depletion/density behavior of two other volatile elements which were previously considered to be virtually undepleted, S and Zn, using equivalent width data from both Copernicus and IUE observations. The results provide further evidence that the established dependence of depletion on n bar (H) extends to volatile elements and show that their use as tracers of metallicity, or for estimating hydrogen column densities, may lead to large errors in sight-lines through dense regions. It now appears that such elements may take part in the surface chemistry of grains and be important constituents of grain mantle material, although they probably do not contribute significantly to the bulk mass of grains. Due to the very similar atomic masses and ionization potentials of sulphur and phosphorous, the thermal velocity distributions of the singly ionized species of these elements in interstellar clouds should be very similar. However, a comparison of Doppler widths (b-values) derived for SIT and PIT in the same sight-lines from the Bohlin et al Copernicus equivalent width measurements has revealed an unexpected systematic discrepancy of a factor of approx. 1.7. This Discrepancy indicates that the normally adopted oscillators strengths of the PII lambda lambda 1153 and 1302 A lines may require revision.

  8. Dynamical multiferroicity

    NASA Astrophysics Data System (ADS)

    Juraschek, Dominik M.; Fechner, Michael; Balatsky, Alexander V.; Spaldin, Nicola A.

    2017-06-01

    An appealing mechanism for inducing multiferroicity in materials is the generation of electric polarization by a spatially varying magnetization that is coupled to the lattice through the spin-orbit interaction. Here we describe the reciprocal effect, in which a time-dependent electric polarization induces magnetization even in materials with no existing spin structure. We develop a formalism for this dynamical multiferroic effect in the case for which the polarization derives from optical phonons, and compute the strength of the phonon Zeeman effect, which is the solid-state equivalent of the well-established vibrational Zeeman effect in molecules, using density functional theory. We further show that a recently observed behavior—the resonant excitation of a magnon by optically driven phonons—is described by the formalism. Finally, we discuss examples of scenarios that are not driven by lattice dynamics and interpret the excitation of Dzyaloshinskii-Moriya-type electromagnons and the inverse Faraday effect from the viewpoint of dynamical multiferroicity.

  9. Identification of structural motifs as tunneling two-level systems in amorphous alumina at low temperatures

    NASA Astrophysics Data System (ADS)

    Paz, Alejandro Pérez; Lebedeva, Irina V.; Tokatly, Ilya V.; Rubio, Angel

    2014-12-01

    One of the most accepted models that describe the anomalous thermal behavior of amorphous materials at temperatures below 1 K relies on the quantum mechanical tunneling of atoms between two nearly equivalent potential energy wells forming a two-level system (TLS). Indirect evidence for TLSs is widely available. However, the atomistic structure of these TLSs remains an unsolved topic in the physics of amorphous materials. Here, using classical molecular dynamics, we found several hitherto unknown bistable structural motifs that may be key to understanding the anomalous thermal properties of amorphous alumina at low temperatures. We show through free energy profiles that the complex potential energy surface can be reduced to canonical TLSs. The tunnel splitting predicted from instanton theory, the number density, dipole moment, and coupling to external strain of the discovered motifs are consistent with experiments.

  10. Stripe-like nanoscale structural phase separation in superconducting BaPb 1-xBi xO 3

    DOE PAGES

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...

    2015-09-16

    The phase diagram of BaPb 1-xBi xO 3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum T c occurs when the superconducting coherence length matches the width of the partiallymore » disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.« less

  11. Theoretical prediction on corrugated sandwich panels under bending loads

    NASA Astrophysics Data System (ADS)

    Shu, Chengfu; Hou, Shujuan

    2018-05-01

    In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.

  12. Ionic Liquid Directed Mesoporous Carbon Nanoflakes as an Effiencient Electrode material

    NASA Astrophysics Data System (ADS)

    Kong, Lirong; Chen, Wei

    2015-12-01

    Supercapacitors are considered to be the most promising approach to meet the pressing requirements for energy storage devices. The electrode materials for supercapacitors have close relationship with their electrochemical properties and thus become the key point to improve their energy storage efficiency. Herein, by using poly (vinylidene fluoride-co-hexafluoropropylene) and ionic liquid as the dual templates, polyacrylonitrile as the carbon precursor, a flake-like carbon material was prepared by a direct carbonization method. In this method, poly (vinylidene fluoride-co-hexafluoropropylene) worked as the separator for the formation of isolated carbon flakes while aggregated ionic liquid worked as the pore template. The obtained carbon flakes exhibited a specific capacitance of 170 F/g at 0.1 A/g, a high energy density of 12.2 Wh/kg and a high power density of 5 kW/kg at the current of 10 A/g. It also maintained a high capacitance retention capability with almost no declination after 500 charge-discharge cycles. The ionic liquid directed method developed here also provided a new idea for the preparation of hierarchically porous carbon nanomaterials.

  13. Reineke’s stand density index: a quantitative and non-unitless measure of stand density

    Treesearch

    Curtis L. VanderSchaaf

    2013-01-01

    When used as a measure of relative density, Reineke’s stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reineke’s SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...

  14. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

    NASA Astrophysics Data System (ADS)

    Pablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n -type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n -type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.

  15. Hybrid anodes for redox flow batteries

    DOEpatents

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  16. The equivalent magnetizing method applied to the design of gradient coils for MRI.

    PubMed

    Lopez, Hector Sanchez; Liu, Feng; Crozier, Stuart

    2008-01-01

    This paper presents a new method for the design of gradient coils for Magnetic Resonance Imaging systems. The method is based on the equivalence between a magnetized volume surrounded by a conducting surface and its equivalent representation in surface current/charge density. We demonstrate that the curl of the vertical magnetization induces a surface current density whose stream line defines the coil current pattern. This method can be applied for coils wounds on arbitrary surface shapes. A single layer unshielded transverse gradient coil is designed and compared, with the designs obtained using two conventional methods. Through the presented example we demonstrate that the generated unconventional current patterns obtained using the magnetizing current method produces a superior gradient coil performance than coils designed by applying conventional methods.

  17. Cardinal Equivalence of Small Number in Young Children.

    ERIC Educational Resources Information Center

    Kingma, J.; Roelinga, U.

    1982-01-01

    Children completed three types of equivalent cardination tasks which assessed the influence of different stimulus configurations (linear, linear-nonlinear, and nonlinear), and density of object spacing. Prior results reported by Siegel, Brainerd, and Gelman and Gallistel were not replicated. Implications for understanding cardination concept…

  18. Computing Q-D Relationships for Storage of Rocket Fuels

    NASA Technical Reports Server (NTRS)

    Jester, Keith

    2005-01-01

    The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.

  19. A statistical estimation of Snow Water Equivalent coupling ground data and MODIS images

    NASA Astrophysics Data System (ADS)

    Bavera, D.; Bocchiola, D.; de Michele, C.

    2007-12-01

    The Snow Water Equivalent (SWE) is an important component of the hydrologic balance of mountain basins and snow fed areas in general. The total cumulated snow water equivalent at the end of the accumulation season represents the water availability at melt. Here, a statistical methodology to estimate the Snow Water Equivalent, at April 1st, is developed coupling ground data (snow depth and snow density measurements) and MODIS images. The methodology is applied to the Mallero river basin (about 320 km²) located in the Central Alps, northern Italy, where are available 11 snow gauges and a lot of sparse snow density measurements. The application covers 7 years from 2001 to 2007. The analysis has identified some problems in the MODIS information due to the cloud cover and misclassification for orographic shadow. The study is performed in the framework of AWARE (A tool for monitoring and forecasting Available WAter REsource in mountain environment) EU-project, a STREP Project in the VI F.P., GMES Initiative.

  20. Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater

    DOE PAGES

    Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.; ...

    2016-05-01

    Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8±0.06 A/m 2 and an ACE of 39%±4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m 2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stablemore » achieving an ACE of 30% ± 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7±0.1 A/m 2 and an ACE of 57% ± 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. Finally, the results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.« less

  1. Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.

    Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8±0.06 A/m 2 and an ACE of 39%±4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m 2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stablemore » achieving an ACE of 30% ± 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7±0.1 A/m 2 and an ACE of 57% ± 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. Finally, the results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.« less

  2. Observations of subsonic and supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.

    2009-11-01

    Shear layers containing strong velocity gradients appear in many high-energy-density (HED) systems and play important roles in mixing and the transition to turbulence. Yet few laboratory experiments have been carried out to study their detailed evolution in this extreme environment where plasmas are compressible, actively ionizing, often involve strong shock waves and have complex material properties. Many shear flows produce the Kelvin-Helmholtz (KH) instability, which initiates the mixing at a fluid interface. We present results from two dedicated shear flow experiments that produced overall subsonic and supersonic flows using novel target designs. In the subsonic case, the Omega laser was used to drive a blast wave along a rippled interface between plastic and foam, shocking both the materials to produce two fluids separated by a sharp shear layer. The interface subsequently rolled-upped into large KH vortices that were accompanied by bubble-like structures of unknown origin. This was the first time the evolution of a well-resolved KH instability was observed in a HED plasma in the laboratory. We have analyzed the properties and dynamics of the plasma based on the data and fundamental models, without resorting to simulated values. In the second, supersonic experiment the Nike laser was used to drive a supersonic flow of Al plasma along a rippled, low-density foam surface. Here again the flowing plasma drove a shock into the second material, so that two fluids were separated by a shear layer. In contrast to the subsonic case, the flow developed shocks around the ripples in response to the supersonic flow of Al. Collaborators: R.P. Drake, O.A. Hurricane, J.F. Hansen, Y. Aglitskiy, T. Plewa, B.A. Remington, H.F. Robey, J.L. Weaver, A.L. Velikovich, R.S. Gillespie, M.J. Bono, M.J. Grosskopf, C.C. Kuranz, A. Visco.

  3. BioProgrammable One, Two, and Three Dimensional Materials

    DTIC Science & Technology

    2017-01-18

    or three- dimensional architectures. The Mirkin group has used DNA-functionalized nanoparticles as “programmable atom equivalents (PAEs)” as material...with electron beam lithography to simultaneously control material structure at the nano- and macroscopic length scales. The Nguyen group has...synthesized and assembled small molecule-DNA hybrids (SMDHs) as part of programmable atom equivalents . The Rosi group identified design rules for using

  4. Radiopacity of conventional, resin-modified glass ionomer, and resin-based luting materials.

    PubMed

    Tsuge, Takuma

    2009-06-01

    The purpose of the present study was to evaluate the radiopacity of currently available dental luting materials. Five conventional cements, six resin-modified glass ionomers (RMGIs), two methyl methacrylate (MMA)-based acrylic resins (eight shades), and nine composite luting materials were evaluated. Radiographs of the specimens were taken together with tooth slices and aluminum step wedges. The density of the specimens was determined with a densitometer and was expressed in terms of the equivalent thickness of aluminum per 2.0-mm unit thickness of specimen. The radiopacity values for human enamel and dentin were 4.3 and 2.3 mm Al/2.0 mm specimen, respectively. The values for materials ranged from 5.1 to 12.9 for conventional luting materials, from 3.4 to 6.3 for RMGIs, from less than 0.5 to 7.3 for MMA resins, and from 2.3 to 9.9 for the composite luting materials. A zinc phosphate cement showed the highest value (12.9), whereas five shades of MMA resin resulted in the lowest value (less than 0.5). Two RMGIs and three composite luting materials exhibited radiopacity values between those of enamel (4.3) and dentin (2.3). It can be concluded that the radiopacity value of luting materials varies considerably, and that care must be taken when selecting luting materials, considering the material composition of restorations.

  5. Removal of polycyclic aromatic hydrocarbons from soil using a composite material containing iron and activated carbon in the freeze-dried calcium alginate matrix: Novel soil cleanup technique.

    PubMed

    Funada, Mako; Nakano, Takeshi; Moriwaki, Hiroshi

    2018-06-05

    A novel clean-up technology to remove polycyclic aromatic hydrocarbons (PAHs) from solid samples by magnetic separation using a composite containing iron powder as a magnetic material and activated carbon as an adsorbent in the freeze-dried calcium alginate matrix (Fe-AC-alg) has been developed. The Fe-AC-alg powder (50 mg), mixed with 1.0 g of glass beads having 12 kinds of adsorbed PAHs, was shaken without adding solvents at 300 rpm. After shaking, the Fe-AC-alg powder was separated using a permanent magnet. The quantity of the PAHs extracted from the glass beads treated by this method was determined. The removal (%) of the PAHs was over 96%. A roadside soil sample (10 g) was mixed with the Fe-AC-alg (1.0 g) for 2 weeks. The removal (%) of benzo[a]pyrene from the sample by the presented technique was 78%. The toxic equivalent concentration (Σ BaP eq ) for the sample decreased from 0.27 to 0.10 mg kg -1 by this method. The presented method is very simple, economical, and environment-friendly. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Evaluation of results of cell electrophoresis experiments on space shuttle STS-3 including pre-flight and post-flight laboratory experiments

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    The objectives of the red blood cell experiments were to provide a visual check on the electrophoretic process and especially electroosmotic flow in space as well as to provide test separations of non-degradable standard particles for comparison with the separations of the three viable cell types studied on the Apollo-Soyuz Test Project. Determination of the maximum concentrations of cells that can be separated in column electrophore was a significant goal. Two of the eight columns were available for red cell experiments, so two concentrations of human and rabbit RBC mixtures were used. The objectives of another experiment were to evaluate the reproducibility of microgravity electrophoretic separation of living kidney cells, to separate cells with highly viability despite two freeze-thaw cycles, and to optimize the physical conditions of cell separation. Owing to the uncertain heterogeneity of the starting material, the experimental design does not assess resolution in microgravity, but improved separability was sought in comparison to density-gradient electrophoresis or continuous-flow electrophoresis. Efforts were made to increase cell yield and cell viability and to assess reproducibility directly.

  7. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.

    PubMed

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; Brennan, Michael C; Morozov, Yurii V; Manser, Joseph S; Kamat, Prashant V; Schneider, William F; Kuno, Masaru

    2017-08-04

    Mixed halide hybrid perovskites, CH 3 NH 3 Pb(I 1-x Br x ) 3 , represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.

  8. Effect of Various Material Properties on the Adhesive Stage of Fretting

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    Various properties of metals and alloys were studied with respect to their effect on the initial stage of the fretting process, namely adhesion. Crystallographic orientation, crystal structure, interfacial binding energies of dissimiliar metal, segregation of alloy constituents and the nature and structure of surface films were found to influence adhesion. High atomic density, low surface energy grain orientations exhibited lower adhesion than other orientations. Knowledge of interfacial surface binding energies assists in predicting adhesive transfer and wear. Selective surface segregation of alloy constituents accomplishes both a reduction in adhesion and improved surface oxidation characteristics. Equivalent surface coverages of various adsorbed species indicate that some are markedly more effective in inhibiting adhesion than others.

  9. PVDF-based copolymers, terpolymers and their multi-component material systems for capacitor applications

    NASA Astrophysics Data System (ADS)

    Chu, Baojin

    Miniature of power electronics, scaling-down of microelectronics and other electrical and electronic systems, and development of many technologies (such as hybrid vehicles or implantable heart defibrillators) require capacitors with high energy density to improve the weight and volume efficiency of the whole system. Various capacitor technologies are investigated to meet the requirements of developing future technologies. Among these technologies, polymer film capacitor technology is one of the most promising. Besides high energy density, polymer-based capacitors possess the merits of high power density, low loss, high reliability (self-healing), easy processing, and feasibility (in size, shape and energy level). Due to the ferroelectricity of polyvinylidene fluoride (PVDF)-based polymers, they exhibit much higher polarization response under an electric field, in comparison with other linear dielectric polymers for capacitor applications. The maximum polarization level of PVDF-based polymers can be as high as 0.1 C/m2 and the breakdown field can be higher than 600 MV/m. An estimated energy density of around 30 J/cm3 can be expected in this class of materials. However, this value is much higher than the energy density that can be achieved in the PVDF homopolymer and the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymers due to the polarization hysteresis in these polymers. Therefore, in this thesis, PVDF-based polymer materials were investigated and developed to approach this expected energy density by various strategies. An energy density of higher than 24 J/cm 3, which is close to the predicted value, was found in PVDF-based copolymers. Recently, the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer was developed in Prof. Qiming Zhang's group. Previous works have shown that incorporation of CTE into P(VDF-TrFE) copolymers, in which bulky CFE acts as a defect, could convert the copolymer into relaxor ferroelectrics. P(VDF-TrFE-CFE) terpolymers possess a high dielectric constant (larger than 50 at 1 kHz) at room temperature and excellent electromechanical properties. Here, the P(VDF-TrFE-CFE) terpolymers were studied as dielectric materials for capacitor applications. The electrical, thermal and microstructure characterizations were performed on the terpolymers. The terpolymers exhibit a high breakdown field (higher than 400 MV/m) and energy density (larger than 9 J/cm 3). The energy discharge characteristics of the terpolymer were studied by directly discharging the stored energy in the terpolymers to a load resistor. Due to the highly field-dependent nonlinear and frequency dependent dielectric response of the terpolymers, the discharge energy density and equivalent series resistance strongly depend on the load resistor and discharge speed. This study found that for high energy density dielectric materials, a very high dielectric constant might not be an advantage. In the case of terpolymers, this leads to early polarization saturation, i.e., polarization response saturates under an electric field much lower than the breakdown field and causes lower than expected energy density. Due to the dielectric nonlinearity and early saturation of polarization, the energy density of the terpolymers increases linearly with the applied electric fields. It was also found that the polymer-metal interface played an important role for conduction and the breakdown field in the terpolymers, which was related to the charge injection from the metal to the polymer. Due to highly nonlinear dielectric behavior and early polarization saturation in the terpolymers, it was proposed that a high dielectric constant might not be desirable to obtain high energy density. Poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDFCTFE), 10, 15 and 20 wt% CTFE) and Poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP), 10 and 12 wt% HFP) copolymers, which possess a much lower dielectric constant (about 12 at 1 kHz at room temperature), were further investigated for dielectric materials of high energy density. Due to the lower dielectric constant, the early polarization saturation was avoided and these polymers showed a very high breakdown field and energy density. For the P(VDF-CTFE) copolymer with 15 wt% CTFE, an energy density of higher than 24 J/cm 3 at an electric field higher than 650 MV/m could be obtained. Based on thermal and microstructure studies, the high energy density was found to be caused by the structural modification of PVDF by bulky CTFE or HFP, which also act as defects, similar to the terpolymers. The discharge behavior of the copolymers mainly relies on the load resistors, suggesting that the copolymers have lower equivalent series resistance. Multi-component material system based on current available materials was found to be a useful strategy to tailor and improve the performance of dielectric materials. Nanocomposites composed of the P(VDF-TrFE-CFE) terpolymers and ZrO2 or TiO2 nanoparticles were found to greatly enhance the polarization response and energy density of terpolymers (from 9 J/cm3 to 10.5 J/cm3). Based on comprehensive thermal, dielectric and microstructure studies, the enhancement was believed to be related to the large amount of interfaces in the nanocomposites. In the interfaces, the chain mobility is increased and the energy barrier between the polar and nonpolar phases is reduced, resulting in higher polarization response and energy density at a reduced electric field. The P(VDF-TrFE-CFE) terpolymer/P(VDF-CTFE) copolymer and the P(VDFTrFE-CFE) terpolymer/PMMA blends were also studied. It was found that the P(VDFTrFE-CFE) terpolymers could not be completely miscible with the P(VDF-CTFE) copolymer. In the P(VDF-TrFE-CFE) terpolymer/P(VDF-CTFE) copolymer blends, with a small amount of the copolymer (5 and 10 wt%) in the terpolymer, enhancement of the polarization response similar to that observed in the terpolymer/ZrO 2 nanocomposites was observed. This enhancement was also thought to be mainly caused by the interface effect. The breakdown field of blends was also greatly improved, which resulted in a significant improvement in energy density (from 9 J/cm3 to 11.5 J/cm3). The P(VDF-TrFE-CFE) terpolymers are miscible with PMMA. Addition of PMMA was found to reduce the dielectric response of blends, but also to improve the breakdown field due to the improvement of mechanical properties. The optimum composition of the blends is around 2.5 wt% PMMA. With this composition, the breakdown field of the blends can be improved without reduction of energy density.

  10. Generalization of Equivalent Crystal Theory to Include Angular Dependence

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Zypman, Fredy R.

    2004-01-01

    In the original Equivalent Crystal Theory, each atomic site in the real crystal is assigned an equivalent lattice constant, in general different from the ground state one. This parameter corresponds to a local compression or expansion of the lattice. The basic method considers these volumetric transformations and, in addition, introduces the possibility that the reference lattice is anisotropically distorted. These distortions however, were introduced ad-hoc. In this work, we generalize the original Equivalent Crystal Theory by systematically introducing site-dependent directional distortions of the lattice, whose corresponding distortions account for the dependence of the energy on anisotropic local density variations. This is done in the spirit of the original framework, but including a gradient term in the density. This approach is introduced to correct a deficiency in the original Equivalent Crystal Theory and other semiempirical methods in quantitatively obtaining the correct ratios of the surface energies of low index planes of cubic metals (100), (110), and (111). We develop here the basic framework, and apply it to the calculation of Fe (110) and Fe (111) surface energy formation. The results, compared with first principles calculations, show an improvement over previous semiempirical approaches.

  11. Characterization of a viscoelastic heterogeneous object with an effective model by nonlinear full waveform inversion

    NASA Astrophysics Data System (ADS)

    Mesgouez, A.

    2018-05-01

    The determination of equivalent viscoelastic properties of heterogeneous objects remains challenging in various scientific fields such as (geo)mechanics, geophysics or biomechanics. The present investigation addresses the issue of the identification of effective constitutive properties of a binary object by using a nonlinear and full waveform inversion scheme. The inversion process, without any regularization technique or a priori information, aims at minimizing directly the discrepancy between the full waveform responses of a bi-material viscoelastic cylindrical object and its corresponding effective homogeneous object. It involves the retrieval of five constitutive equivalent parameters. Numerical simulations are performed in a laboratory-scale two-dimensional configuration: a transient acoustic plane wave impacts the object and the diffracted fluid pressure, solid stress or velocity component fields are determined using a semi-analytical approach. Results show that the retrieval of the density and of the real parts of both the compressional and the shear wave velocities have been carried out successfully regarding the number and location of sensors, the type of sensors, the size of the searching space, the frequency range of the incident plane pressure wave, and the change in the geometric or mechanical constitution of the bi-material object. The retrieval of the imaginary parts of the wave velocities can reveal in some cases the limitations of the proposed approach.

  12. 40 CFR 312.10 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... property but for a street, road, or other public thoroughfare separating the properties. Data gap means: a..., tribe, or U.S. territory (or the Commonwealth of Puerto Rico) and have the equivalent of three (3) years... defined in § 312.21 and have the equivalent of three (3) years of full-time relevant experience; or (iii...

  13. Final report on EURAMET.QM-K12: EURAMET key comparison on the determination of the mass fraction of creatinine in serum

    NASA Astrophysics Data System (ADS)

    Bell, David; Hopley, Chris; Ellison, Stephen L. R.; O'Connor, Gavin

    2013-01-01

    Creatinine is a well-known marker for the evaluation of kidney function. Its routine measurement is undertaken by many clinical laboratories and comparable results over distance and time are required for effective diagnosis. To address this need many National Measurement Institutes (or designated institutes) provide services in this area via the provision of higher order standards or reference measurements. The organic analysis working group of the consultative committee for amount of substance have conducted two previous key comparisons to assess the equivalence of institutes who provide such services. The purpose of this study was to enable institutes who missed the previous studies to demonstrate their capability for characterizing serum materials containing 1 µg/g to 100 µg/g of creatinine. The study material consisted of two lyophilized serum samples which were used in an external quality control proficiency testing scheme. No target values were available for these materials and all participants reported results within the one month timeframe given for analysis. Five institutes participated in the key study and a single institute submitted results for the parallel pilot study. All participants in the key study used isotope dilution with either gas or liquid chromatography coupled with mass spectrometry. The pilot study laboratory used a novel isotope dilution surface-enhanced Raman spectroscopy method. The comparison reference value for each material was set as the mean of all results submitted by those participating in the key study. The choice of the reference value estimator was constrained as it was deemed more appropriate to treat the data in a similar manner to CCQM-K12 if the relative degrees of equivalence were to be compared. This resulted in reference values of (54.27 ± 0.72) µg/g and (38.01 ± 0.42) µg/g for the two separate materials. The relative degrees of equivalence were calculated and these were compared with the relative degrees of equivalence of participants in CCQM-K12. The range of participants' results in EURAMET.QM-K12 for both levels (2% and 3% respectively for materials A and B) was greater than the 1% achieved in CCQM-K12. However, it was concluded that this study was suitable to support CMCs for creatinine in serum for 1 µg/g to 100 µg/g with uncertainties at the 1% to 1.5% level. This was found to be fit for purpose and consistent with the majority of CMCs currently approved. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. The equivalence between dislocation pile-ups and cracks

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Gao, Q.

    1990-01-01

    Cracks and dislocation pile-ups are equivalent to each other. In this paper, the physical equivalence between cracks and pile-ups is delineated, and the relationshps between crack-extension force, force on the leading dislocation, stress-intensity factor, and dislocation density are reviewed and summarized. These relations make it possible to extend quantitatively the recent advances in the concepts and practices of fracture mechanics to the studies of microfractures and microplastic deformations.

  15. Cross-cutting High Surface Area Graphene-based Frameworks with Controlled Pore Structure/Dopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, J.

    The goal of this project is to enhance the performance of graphene-based materials by manufacturing specific 3D architectures. The materials have global applications regarding fuel cell catalysts, gas adsorbents, supercapacitor/battery electrodes, ion (e.g., actinide) capture, gas separation, oil adsorption, and catalysis. This research focuses on hydrogen storage for hydrogen fuel cell vehicles with a potential transformational impact on hydrogen adsorbents that exhibit high gravimetric and volumetric density, a clean energy application sought by the Department of Energy. The development of an adsorbent material would enable broad commercial opportunities in hydrogen-fueled vehicles, promote new advanced nanomanufacturing scale-up, and open other opportunitiesmore » at Savannah River National Laboratory to utilize a high surface area material that is robust, chemically stable, and radiation resistant.« less

  16. Case study: Is the 'catch-all-plastics bin' useful in unlocking the hidden resource potential in the residual waste collection system?

    PubMed

    Kranzinger, Lukas; Schopf, Kerstin; Pomberger, Roland; Punesch, Elisabeth

    2017-02-01

    Austria's performance in the collection of separated waste is adequate. However, the residual waste still contains substantial amounts of recyclable materials - for example, plastics, paper and board, glass and composite packaging. Plastics (lightweight packaging and similar non-packaging materials) are detected at an average mass content of 13% in residual waste. Despite this huge potential, only 3% of the total amount of residual waste (1,687,000 t y -1 ) is recycled. This implies that most of the recyclable materials contained in the residual waste are destined for thermal recovery and are lost for recycling. This pilot project, commissioned by the Land of Lower Austria, applied a holistic approach, unique in Europe, to the Lower Austrian waste management system. It aims to transfer excess quantities of plastic packaging and non-packaging recyclables from the residual waste system to the separately collected waste system by introducing a so-called 'catch-all-plastics bin'. A quantity flow model was constructed and the results showed a realistic increase in the amount of plastics collected of 33.9 wt%. This equals a calculated excess quantity of 19,638 t y -1 . The increased plastics collection resulted in a positive impact on the climate footprint (CO 2 equivalent) in line with the targets of EU Directive 94/62/EG (Circular Economy Package) and its Amendments. The new collection system involves only moderate additional costs.

  17. Dimensional isotropy of 6H and 3C SiC under neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance L.; Katoh, Yutai; Koyanagi, Takaaki

    2016-01-16

    This investigation experimentally determines the as-irradiated crystal axes dimensional change of the common polytypes of SiC considered for nuclear application. Single crystal α-SiC (6H), β-SiC (3C), CVD β-SiC, and single crystal Si have been neutron irradiated near 60 °C from 2 × 10 23 to 2 × 10 26 n/m 2 (E > 0.1 MeV), or about 0.02–20 dpa, in order to study the effect of irradiation on bulk swelling and strain along independent crystalline axes. Single crystal, powder diffractometry and density measurement have been carried out. For all neutron doses where the samples remained crystalline all SiC materials demonstratedmore » equivalent swelling behavior. Moreover the 6H–SiC expanded isotropically. The magnitude of the swelling followed a ~0.77 power law against dose consistent with a microstructure evolution driven by single interstitial (carbon) mobility. Extraordinarily large ~7.8% volume expansion in SiC was observed prior to amorphization. Above ~0.9 × 10 25 n/m 2 (E > 0.1 MeV) all SiC materials became amorphous with an identical swelling: a 11.7% volume expansion, lowering the density to 2.84 g/cm 3. As a result, the as-amorphized density was the same at the 2 × 10 25 and 2 × 10 26 n/m 2 (E > 0.1 MeV) dose levels.« less

  18. Separation, Characterization and Initial Reaction Studies of Magnetite Particles from Hanford Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Grosz, Andrew E.; Ilton, Eugene S.

    2010-04-24

    Magnetic and density separation methods have been applied to composite sediment sample from the Hanford formation from sediment recovered during drilling of an uncontaminated borehole located near the 200 West Area of the Hanford Site in southeastern Washington State. This paper describes the results of using those separation methods and from the characterization and initial reactivity measurements on a highly magnetic fraction isolated from that sediment. X-ray diffraction (XRD) analysis of the highly magnetic sediment fraction indicates that this material contains predominantly magnetite (Fe3O4). Particle morphology observed by scanning electron microscopy (SEM) and compositions determined energy dispersive spectroscopy (EDS) aremore » consistent with this identification. Analyses by X-ray photoelectron spectroscopy (XPS) indicates that there is a thin coating on the particles that are likely a type of aluminosilicate. This highly magnetic fraction of material is not reactive with indigo carmine, an organic redox probe molecule that was shown to readily react with synthetic magnetite. Because of the limited amounts of material readily available, initial tests have been conducted that demonstrate the ability to complete U(VI) sorption on individual particles (nominally ~100 µm in size) of the isolated sediment and to remove and mount these individual particles for analysis of the concentration and chemical state of the sorbed U species using small area XPS.« less

  19. Separation, Characterization and Initial Reaction Studies of Magnetite Particles from Hanford Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Grosz, Andrew E.; Ilton, Eugene S.

    2010-08-01

    Magnetic and density separation methods have been applied to composite sediment sample from the Hanford formation from sediment recovered during drilling of an uncontaminated borehole located near the 200 West Area of the Hanford Site in southeastern Washington State. This paper describes the results of using those separation methods and from the characterization and initial reactivity measurements on a highly magnetic fraction isolated from that sediment. X-ray diffraction (XRD) analysis of the highly magnetic sediment fraction indicates that this material contains predominantly magnetite (Fe3O4). Particle morphology observed by scanning electron microscopy (SEM) and compositions determined energy dispersive spectroscopy (EDS) aremore » consistent with this identification. Analyses by X-ray photoelectron spectroscopy (XPS) indicates that there is a thin coating on the particles that are likely a type of aluminosilicate. This highly magnetic fraction of material is not reactive with indigo carmine, an organic redox probe molecule that was shown to readily react with synthetic magnetite. Because of the limited amounts of material readily available, initial tests have been conducted that demonstrate the ability to complete U(VI) sorption on individual particles (nominally ~100 µm in size) of the isolated sediment and to remove and mount these individual particles for analysis of the concentration and chemical state of the sorbed U species using small area XPS.« less

  20. Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting.

    PubMed

    Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro

    2005-01-01

    The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.

  1. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA).

    PubMed

    Kassouf, Amine; Maalouly, Jacqueline; Rutledge, Douglas N; Chebib, Hanna; Ducruet, Violette

    2014-11-01

    Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Landfill Mining - Wet mechanical treatment of fine MSW with a wet jigger.

    PubMed

    Wanka, Sebastian; Münnich, Kai; Fricke, Klaus

    2017-01-01

    The motives for landfill mining are various. In the last couple of years Enhanced Landfill Mining (ELFM) has become increasingly important in academic discourse and practical implementation. The main goal of ELFM is to recover as much material as possible from deposited municipal solid waste (MSW). In most of the projects carried out so far, the main focus has been set on coarse materials such as plastics, woods, papers and metals. These fractions can be separated easily by sieving in combination with magnetic separation. In these projects most of the fine materials, which might represent as much as 60-70% of the total mass of the landfill body, had to be deposited again. A further treatment aiming at reducing the masses of these fine materials, which are still a conglomerate of soil, calorific fractions, metals, minerals and residues, usually did not take place. One topic in the framework of the landfill mining project TÖNSLM, in addition to the separation of the calorific fraction and metals has been the treatment of fine materials with the goal to re-use these e.g. for construction purposes. This paper shows the results obtained after the wet mechanical treatment of fine MSW 10-60mm with a wet jigger. The physical principle of this process is the separation of the mass flux due to the different densities of the waste constituents. As a result, three main waste fluxes are obtained: Dense inert and dense fine fraction with a high content of minerals and a lightweight fraction with a high calorific value between 16 and 20MJ/kg. An additional positive effect of wet mechanical treatment is the removal of the finest particles from the surface of the waste material, thus increasing the quality of the generated waste fluxes. The mass fluxes of the different fractions and their qualities as well as possible recovery paths are described below. An economical and ecological consideration of the treatment of the fine materials does not take place within the framework of this feasibility study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The electrochemical fluorination of polymeric materials for high energy density aqueous and non-aqueous battery and fuel cell separators

    NASA Technical Reports Server (NTRS)

    Liu, C. C.

    1983-01-01

    A computerized system was established and the electrochemical fluorination of trichloroethylene, polyacrylic acid and polyvinyl alcohol in anhydrous hydrogen fluoride was attempted. Both solid substrates as well as membranes were used. Some difficulties were found in handling and analyzing the solid substrates and membranes. Further studies are needed in this area. A microprocessor aided electrochemical fluorination system capable of obtaining highly reproducible experimental results was established.

  4. Plasma processes in the preparation of lithium-ion battery electrodes and separators

    NASA Astrophysics Data System (ADS)

    Nava-Avendaño, J.; Veilleux, J.

    2017-04-01

    Lithium-ion batteries (LIBs) are the energy storage devices that dominate the portable electronic market. They are now also considered and used for electric vehicles and are foreseen to enable the smart grid. Preparing batteries with high energy and power densities, elevated cycleability and improved safety could be achieved by controlling the microstructure of the electrode materials and the interaction they have with the electrolyte over the working potential window. Selecting appropriate precursors, reducing the preparation steps and selecting more efficient synthesis methods could also significantly reduce the costs of LIB components. Implementing plasma technologies can represent a high capital investment, but the versatility of the technologies allows the preparation of powdered nanoparticles with different morphologies, as well as with carbon and metal oxide coatings. Plasma technologies can also enable the preparation of binder-free thin films and coatings for LIB electrodes, and the treatment of polymeric membranes to be used as separators. This review paper aims at highlighting the different thermal and non-thermal plasma technologies recently used to synthesize coated and non-coated active materials for LIB cathodes and anodes, and to modify the surface of separators.

  5. Extra-metabolic energy use and the rise in human hyper-density

    NASA Astrophysics Data System (ADS)

    Burger, Joseph R.; Weinberger, Vanessa P.; Marquet, Pablo A.

    2017-03-01

    Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth’s ’energetic equivalence rule’ supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.

  6. Extra-metabolic energy use and the rise in human hyper-density.

    PubMed

    Burger, Joseph R; Weinberger, Vanessa P; Marquet, Pablo A

    2017-03-02

    Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth's 'energetic equivalence rule' supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.

  7. Measurements of the cesium flow from a surface-plasma H/sup -/ ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.V.; Allison, P.W.

    1979-01-01

    A surface ionization gauge (SIG) was constructed and used to measure the Cs/sup 0/ flow rate through the emission slit of a surface-plasma source (SPS) of H/sup -/ ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 7 x 10/sup 12/ cm/sup -3/ (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 2 x 10/sup 13/ cm/sup -3/more » (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation.« less

  8. Modification of linear prepolymers to tailor heterogeneous network formation through photo-initiated Polymerization-Induced Phase Separation

    PubMed Central

    Szczepanski, Caroline R.; Stansbury, Jeffrey W.

    2015-01-01

    Polymerization-induced phase separation (PIPS) was studied in ambient photopolymerizations of triethylene glycol dimethacrylate (TEGDMA) modified by poly(methyl methacrylate) (PMMA). The molecular weight of PMMA and the rate of network formation (through incident UV-irradiation) were varied to influence both the promotion of phase separation through increases in overall free energy, as well as the extent to which phase development occurs during polymerization through diffusion prior to network gelation. The overall free energy of the polymerizing system increases with PMMA molecular weight, such that PIPS is promoted thermodynamically at low loading levels (5 wt%) of a higher molecular weight PMMA (120 kDa), while a higher loading level (20 wt%) is needed to induce PIPS with lower PMMA molecular weight (11 kDa), and phase separation was not promoted at any loading level tested of the lowest molecular weight PMMA (1 kDa). Due to these differences in overall free energy, systems modified by PMMA (11 kDa) underwent phase separation via Nucleation and Growth, and systems modified by PMMA (120 kDa), followed the Spinodal Decomposition mechanism. Despite differences in phase structure, all materials form a continuous phase rich in TEGDMA homopolymer. At high irradiation intensity (Io=20mW/cm2), the rate of network formation prohibited significant phase separation, even when thermodynamically preferred. A staged curing approach, which utilizes low intensity irradiation (Io=300µW/cm2) for the first ~50% of reaction to allow phase separation via diffusion, followed by a high intensity flood-cure to achieve a high degree of conversion, was employed to form phase-separated networks with reduced polymerization stress yet equivalent final conversion and modulus. PMID:26190865

  9. Effective compounds in the fruit of Muntingia calabura Linn. cultivated in Taiwan evaluated with scavenging free radicals and suppressing LDL oxidation.

    PubMed

    Lin, Jau-Tien; Chen, Yi-Chen; Chang, Yan-Zin; Chen, Ting-Yu; Yang, Deng-Jye

    2017-04-19

    Scavenging effect of 2,2-diphenyl -2-picrylhydrazyl hydrate (DPPH) radicals, inhibitory effect of low-density lipoprotein (LDL) oxidation, Trolox equivalent antioxidant capacity (TEAC), and phenolic contents were used for the activity-guided separation to identify the effective compounds of Muntingia calabura Linn. fruit. Its ethanol extract with higher phenolic content and antioxidant activities was subjected to silica gel column chromatographic separation, which was sequentially eluted with n-hexane, 10-90% ethyl acetate (EA) in n-hexane, EA, EA/acetone (50/50, v/v), acetone, acetone/methanol (MeOH) (50/50, v/v), and MeOH; fifteen fractions (Fr. 1-15) were obtained. Fractions 13 and 14 with better antioxidant effects were mixed followed by purification of the effective compounds using HPLC. Two major compounds were isolated and identified as gallic acid and 1,2-benzenedicarboxylic acid diisooctyl ester through high performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) measurements. Their amounts in the fruit were 3.76 and 4.62 mg g -1 . This study is the first report to clarify the effective antioxidant compounds of M. calabura Linn. fruit.

  10. Interface formation in monolayer graphene-boron nitride heterostructures.

    PubMed

    Sutter, P; Cortes, R; Lahiri, J; Sutter, E

    2012-09-12

    The ability to control the formation of interfaces between different materials has become one of the foundations of modern materials science. With the advent of two-dimensional (2D) crystals, low-dimensional equivalents of conventional interfaces can be envisioned: line boundaries separating different materials integrated in a single 2D sheet. Graphene and hexagonal boron nitride offer an attractive system from which to build such 2D heterostructures. They are isostructural, nearly lattice-matched, and isoelectronic, yet their different band structures promise interesting functional properties arising from their integration. Here, we use a combination of in situ microscopy techniques to study the growth and interface formation of monolayer graphene-boron nitride heterostructures on ruthenium. In a sequential chemical vapor deposition process, boron nitride grows preferentially at the edges of existing monolayer graphene domains, which can be exploited for synthesizing continuous 2D membranes of graphene embedded in boron nitride. High-temperature growth leads to intermixing near the interface, similar to interfacial alloying in conventional heterostructures. Using real-time microscopy, we identify processes that eliminate this intermixing and thus pave the way to graphene-boron nitride heterostructures with atomically sharp interfaces.

  11. Solar fuels via artificial photosynthesis.

    PubMed

    Gust, Devens; Moore, Thomas A; Moore, Ana L

    2009-12-21

    Because sunlight is diffuse and intermittent, substantial use of solar energy to meet humanity's needs will probably require energy storage in dense, transportable media via chemical bonds. Practical, cost effective technologies for conversion of sunlight directly into useful fuels do not currently exist, and will require new basic science. Photosynthesis provides a blueprint for solar energy storage in fuels. Indeed, all of the fossil-fuel-based energy consumed today derives from sunlight harvested by photosynthetic organisms. Artificial photosynthesis research applies the fundamental scientific principles of the natural process to the design of solar energy conversion systems. These constructs use different materials, and researchers tune them to produce energy efficiently and in forms useful to humans. Fuel production via natural or artificial photosynthesis requires three main components. First, antenna/reaction center complexes absorb sunlight and convert the excitation energy to electrochemical energy (redox equivalents). Then, a water oxidation complex uses this redox potential to catalyze conversion of water to hydrogen ions, electrons stored as reducing equivalents, and oxygen. A second catalytic system uses the reducing equivalents to make fuels such as carbohydrates, lipids, or hydrogen gas. In this Account, we review a few general approaches to artificial photosynthetic fuel production that may be useful for eventually overcoming the energy problem. A variety of research groups have prepared artificial reaction center molecules. These systems contain a chromophore, such as a porphyrin, covalently linked to one or more electron acceptors, such as fullerenes or quinones, and secondary electron donors. Following the excitation of the chromophore, photoinduced electron transfer generates a primary charge-separated state. Electron transfer chains spatially separate the redox equivalents and reduce electronic coupling, slowing recombination of the charge-separated state to the point that catalysts can use the stored energy for fuel production. Antenna systems, employing a variety of chromophores that absorb light throughout the visible spectrum, have been coupled to artificial reaction centers and have incorporated control and photoprotective processes borrowed from photosynthesis. Thus far, researchers have not discovered practical solar-driven catalysts for water oxidation and fuel production that are robust and use earth-abundant elements, but they have developed artificial systems that use sunlight to produce fuel in the laboratory. For example, artificial reaction centers, where electrons are injected from a dye molecule into the conduction band of nanoparticulate titanium dioxide on a transparent electrode, coupled to catalysts, such as platinum or hydrogenase enzymes, can produce hydrogen gas. Oxidizing equivalents from such reaction centers can be coupled to iridium oxide nanoparticles, which can oxidize water. This system uses sunlight to split water to oxygen and hydrogen fuel, but efficiencies are low and an external electrical potential is required. Although attempts at artificial photosynthesis fall short of the efficiencies necessary for practical application, they illustrate that solar fuel production inspired by natural photosynthesis is achievable in the laboratory. More research will be needed to identify the most promising artificial photosynthetic systems and realize their potential.

  12. Effects of selected materials and geometries on the beta dose equivalent rate in a tissue equivalent phantom immersed in infinite clouds of 133Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piltingsrud, H.V.; Gels, G.L.

    1986-06-01

    Most calculations of dose equivalent (D.E.) rates at 70-micron tissue depths in tissue equivalent (T.E.) phantoms from infinite clouds (radius exceeds maximum beta range in air) of /sup 133/Xe do not consider the possible effects of clothing overlays. Consequently, a series of measurements were made using a 1-mm-thick plastic scintillation detector assembly mounted in a tissue equivalent (T.E.) phantom with an overlay of 70 micron of T.E. material. This assembly was placed in an infinite cloud containing a known concentration of /sup 133/Xe. Material samples were placed at selected distances from the detector phantom, both individually and in various combinations.more » Pulse-height spectra resulting from beta radiations were converted to relative D.E. rates at a 70-micron tissue depth. The relative D.E. rates were reduced from values with no clothing cover by as little as 45% when placing a single thin nylon cloth 1 cm from the phantom, to 94% for a T-shirt material plus wool material plus denim placed 1/2, 1 and 3 cm, respectively, from the phantom. The results indicate that even loosely fitting clothing can have an important effect on reducing the D.E. rate. Close-fitting clothing appears to provide better protection.« less

  13. Production and certification of NIST Standard Reference Material 2372 Human DNA Quantitation Standard.

    PubMed

    Kline, Margaret C; Duewer, David L; Travis, John C; Smith, Melody V; Redman, Janette W; Vallone, Peter M; Decker, Amy E; Butler, John M

    2009-06-01

    Modern highly multiplexed short tandem repeat (STR) assays used by the forensic human-identity community require tight control of the initial amount of sample DNA amplified in the polymerase chain reaction (PCR) process. This, in turn, requires the ability to reproducibly measure the concentration of human DNA, [DNA], in a sample extract. Quantitative PCR (qPCR) techniques can determine the number of intact stretches of DNA of specified nucleotide sequence in an extremely small sample; however, these assays must be calibrated with DNA extracts of well-characterized and stable composition. By 2004, studies coordinated by or reported to the National Institute of Standards and Technology (NIST) indicated that a well-characterized, stable human DNA quantitation certified reference material (CRM) could help the forensic community reduce within- and among-laboratory quantitation variability. To ensure that the stability of such a quantitation standard can be monitored and that, if and when required, equivalent replacement materials can be prepared, a measurement of some stable quantity directly related to [DNA] is required. Using a long-established conventional relationship linking optical density (properly designated as decadic attenuance) at 260 nm with [DNA] in aqueous solution, NIST Standard Reference Material (SRM) 2372 Human DNA Quantitation Standard was issued in October 2007. This SRM consists of three quite different DNA extracts: a single-source male, a multiple-source female, and a mixture of male and female sources. All three SRM components have very similar optical densities, and thus very similar conventional [DNA]. The materials perform very similarly in several widely used gender-neutral assays, demonstrating that the combination of appropriate preparation methods and metrologically sound spectrophotometric measurements enables the preparation and certification of quantitation [DNA] standards that are both maintainable and of practical utility.

  14. Characterization of the phantom material virtual water in high-energy photon and electron beams.

    PubMed

    McEwen, M R; Niven, D

    2006-04-01

    The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (<0.2%) between water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.

  15. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2014-05-13

    Simulation frames from this NASA Goddard neutron star merger animation: bit.ly/1jolBYY Credit: NASA's Goddard Space Flight Center This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the equivalent of 1/5th the mass of our sun. Scientists think neutron star mergers like this produce short gamma-ray bursts (GRBs). Short GRBs last less than two seconds yet unleash as much energy as all the stars in our galaxy produce over one year. The rapidly fading afterglow of these explosions presents a challenge to astronomers. A key element in understanding GRBs is getting instruments on large ground-based telescopes to capture afterglows as soon as possible after the burst. The rapid notification and accurate positions provided by NASA's Swift mission creates a vibrant synergy with ground-based observatories that has led to dramatically improved understanding of GRBs, especially for short bursts. This video is public domain and can be downloaded at: svs.gsfc.nasa.gov/vis/a010000/a011500/a011530/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2017-12-08

    Simulation frames from this NASA Goddard neutron star merger animation: bit.ly/1jolBYY Credit: NASA's Goddard Space Flight Center This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the equivalent of 1/5th the mass of our sun. Scientists think neutron star mergers like this produce short gamma-ray bursts (GRBs). Short GRBs last less than two seconds yet unleash as much energy as all the stars in our galaxy produce over one year. The rapidly fading afterglow of these explosions presents a challenge to astronomers. A key element in understanding GRBs is getting instruments on large ground-based telescopes to capture afterglows as soon as possible after the burst. The rapid notification and accurate positions provided by NASA's Swift mission creates a vibrant synergy with ground-based observatories that has led to dramatically improved understanding of GRBs, especially for short bursts. This video is public domain and can be downloaded at: svs.gsfc.nasa.gov/vis/a010000/a011500/a011530/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Environment and Materials Stewardship | NREL

    Science.gov Websites

    dioxide equivalent of natural gas in heating facilities and experiments; 105metric tons of carbon dioxide equivalent in fleet and equipment; 15 metric tons of carbon dioxide equivalent in fluorinated gases and refrigerants; and 10 metric tons of carbon dioxide equivalent in dry ice use in laboratories. Scope 2 accounts

  18. The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays.

    PubMed

    Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny

    2017-07-19

    Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

  19. Probing the nanostructure of polymers via cryogenic Positron Annihilation Lifetime Spectroscopy (PALS)

    NASA Astrophysics Data System (ADS)

    Bolan, B. A.; Soles, C. L.; Hristov, H. A.; Gidley, D. W.; Yee, A. F.

    1996-03-01

    A new method is proposed for the evaluation of the hole volume in amorphous polymers based upon PALS data measured over a temperature of 110 to 480 K. Extrapolation of the "open hole" volume to 0 K allows its separation into that attributed to the segmental motions of the polymer chains (dynamic) and that due to inefficient packing (static). The dynamic hole volume is correlated to thermodynamic volume/density fluctuations and its temperature dependencies are in good agreement with SAXS data. Several thermosetting epoxy materials are also studied over a similar temperature range with the "open hole" volume being separated into its dynamic and static components. How these two components affect diffusional properties of these systems is examined in detail. It is also shown that the o-Ps can localize in a nearly 100material (PET), we therefore conclude that PALS measures more than the "free volume" necessary for segmental motion. Work supported by the Air Force Office of Scientific Research (AFOSR) grant # F49620-95-1-0037.

  20. Robocast Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} Ceramic Monoliths and Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TUTTLE,BRUCE A.; SMAY,JAMES E.; CESARANO III,JOSEPH

    2000-07-18

    Robocasting, a computer controlled slurry deposition technique, was used to fabricate ceramic monoliths and composites of chemically prepared Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} (PZT 95/5) ceramics. Densities and electrical properties of the robocast samples were equivalent to those obtained for cold isostatically pressed (CIP) parts formed at 200 MPa. Robocast composites consisting of alternate layers of the following sintered densities: (93.9%--96.1%--93.9%), were fabricated using different levels of organic pore former additions. Modification from a single to a multiple material deposition robocaster was essential to the fabrication of composites that could withstand repeated cycles of saturated polarization switching under 30 kV/cm fields.more » Further, these composites withstood 500 MPa hydrostatic pressure induced poled ferroelectric (FE) to antiferroelectric (AFE) phase transformation during which strain differences on the order of 0.8% occurred between composite elements.« less

Top