Sample records for er excitation function

  1. STIM1 signaling controls store operated calcium entry required for development and contractile function in skeletal muscle

    PubMed Central

    Stiber, Jonathan; Hawkins, April; Zhang, Zhu-Shan; Wang, Sunny; Burch, Jarrett; Graham, Victoria; Ward, Cary C.; Seth, Malini; Finch, Elizabeth; Malouf, Nadia; Williams, R. Sanders; Eu, Jerry P.; Rosenberg, Paul

    2009-01-01

    It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum (ER) stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. Yet little is known about STIM1 in excitable cells such as striated muscle where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to exhibit SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide novel insight to the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells. PMID:18488020

  2. Endoplasmic Reticulum Ca2+ Handling in Excitable Cells in Health and Disease

    PubMed Central

    Mattson, Mark P.

    2011-01-01

    The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle capable of integrating multiple extracellular and internal signals and generating adaptive cellular responses. It plays fundamental roles in protein synthesis and folding and in cellular responses to metabolic and proteotoxic stress. In addition, the ER stores and releases Ca2+ in sophisticated scenarios that regulate a range of processes in excitable cells throughout the body, including muscle contraction and relaxation, endocrine regulation of metabolism, learning and memory, and cell death. One or more Ca2+ ATPases and two types of ER membrane Ca2+ channels (inositol trisphosphate and ryanodine receptors) are the major proteins involved in ER Ca2+ uptake and release, respectively. There are also direct and indirect interactions of ER Ca2+ stores with plasma membrane and mitochondrial Ca2+-regulating systems. Pharmacological agents that selectively modify ER Ca2+ release or uptake have enabled studies that revealed many different physiological roles for ER Ca2+ signaling. Several inherited diseases are caused by mutations in ER Ca2+-regulating proteins, and perturbed ER Ca2+ homeostasis is implicated in a range of acquired disorders. Preclinical investigations suggest a therapeutic potential for use of agents that target ER Ca2+ handling systems of excitable cells in disorders ranging from cardiac arrhythmias and skeletal muscle myopathies to Alzheimer disease. PMID:21737534

  3. Excitation and De-Excitation Mechanisms of Er-Doped GaAs and A1GaAs.

    DTIC Science & Technology

    1992-12-01

    AD-A258 814 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs DISSERTATION David W. Elsaesser, Captain, USAF DTICY. ft £ICTE’’ )AN...0 8 1993U -o Wo- .%Approved for public release; Distribution unlimited 93 1 04 022 AFIT/DS/ENP/92-5 EXCITATION AND DE -EXCITATION MECHANISMS OF Er...public release; Distribution unlimited AFIT/DS/ENP/92D-005 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs 4 toFlor -- David W

  4. Er 3+ concentration induced change in electroluminescence excitation mechanism in (Zn,Cd) S phosphors

    NASA Astrophysics Data System (ADS)

    Patil, P. K.; Nandgave, J. K.; Lawangar-Pawar, R. D.

    1990-11-01

    (Zn 0.4Cd 0.6)S phosphors doped with varying concentrations of Er 3+ have been prepared under the inert atmosphere of argon and the dependence of their EL brightness on voltage is investigated. The EL brightness has been found to be an increasing function of applied a.c.voltage obeying the power law relation B = AVn upto a certain concentration of Er 3+ and the Alfrey-Taylor relation B = B0exp(- b/√ V) beyond that. The change in EL excitation mechanism with Er 3+ concentration has been explained on the basis of change in the number and effectiveness of Mott-Schottky type exhaustion barriers in the phosphors. An attempt has been made to correlate the result with microstructure and electrical characteristics of the phosphors.

  5. Excitation mechanisms of Er optical centers in GaN epilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, D. K.; Hawkins, M. D.; McLaren, M.

    2015-10-26

    We report direct evidence of two mechanisms responsible for the excitation of optically active Er{sup 3+} ions in GaN epilayers grown by metal-organic chemical vapor deposition. These mechanisms, resonant excitation via the higher-lying inner 4f shell transitions and band-to-band excitation of the semiconductor host, lead to narrow emission lines from isolated and the defect-related Er optical centers. However, these centers have different photoluminescence spectra, local defect environments, decay dynamics, and excitation cross sections. The photoluminescence at 1.54 μm from the isolated Er optical center which can be excited by either mechanism has the same decay dynamics, but possesses a much highermore » excitation cross-section under band-to-band excitation. In contrast, the photoluminescence at 1.54 μm from the defect-related Er optical center can only be observed through band-to-band excitation but has the largest excitation cross-section. These results explain the difficulty in achieving gain in Er doped GaN and indicate approaches for realization of optical amplification, and possibly lasing, at room temperature.« less

  6. Spin excitations in the deformed nuclei 154Sm, 158Gd and 168Er

    NASA Astrophysics Data System (ADS)

    Frekers, D.; Wörtche, H. J.; Richter, A.; Abegg, R.; Azuma, R. E.; Celler, A.; Chan, C.; Drake, T. E.; Helmer, R.; Jackson, K. P.; King, J. D.; Miller, C. A.; Schubank, R.; Vetterli, M. C.; Yen, S.

    1990-07-01

    An intermediate energy proton scattering experiment has been performed to probe spin excitation in the deformed rare earth nuclei 154Sm, 158Gd and 168Er for energies up to 12 MeV. A concentration of spin M1 strength is observed between 6 and 10MeV with a total strength of about 11 μN2 independent of the nucleus. The strength function shows two distinct structures separated by about 2.5 MeV and each having a width of about 2 MeV.

  7. ER-plasma membrane junctions: Why and how do we study them?

    PubMed

    Chang, Chi-Lun; Chen, Yu-Ju; Liou, Jen

    2017-09-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are membrane microdomains important for communication between the ER and the PM. ER-PM junctions were first reported in muscle cells in 1957, but mostly ignored in non-excitable cells due to their scarcity and lack of functional significance. In 2005, the discovery of stromal interaction molecule 1 (STIM1) mediating a universal Ca 2+ feedback mechanism at ER-PM junctions in mammalian cells led to a resurgence of research interests toward ER-PM junctions. In the past decade, several major advancements have been made in this emerging topic in cell biology, including the generation of tools for labeling ER-PM junctions and the unraveling of mechanisms underlying regulation and functions of ER-PM junctions. This review summarizes early studies, recently developed tools, and current advances in the characterization and understanding of ER-PM junctions. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Designed Er(3+)-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging.

    PubMed

    Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang

    2016-06-01

    Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.

  9. Luminescence studies and infrared emission of erbium-doped calcium zirconate phosphor.

    PubMed

    Tiwari, Neha; Dubey, Vikas

    2016-05-01

    The near-infrared-to-visible upconversion luminescence behaviour of Er(3+)-doped CaZrO3 phosphor is discussed in this manuscript. The phosphor was prepared by a combustion synthesis technique that is suitable for less-time-taking techniques for nanophosphors. The starting materials used for sample preparation were Ca(NO3)2.4H2O, Zr(NO3)4 and Er(NO3)2, and urea was used as a fuel. The prepared sample was characterized by X-ray diffraction (XRD). The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM). The functional group analysis was determined by Fourier transform infrared (FTIR) spectroscopy. All prepared phosphors with variable Er(3+) concentrations (0.5-2.5 mol%) were studied by photoluminescence analysis. It was found that the excitation spectra of the prepared phosphor showed a sharp excitation peak centred at 980 nm. The emission spectra with variable Er(3+) concentrations showed strong peaks in the 555 nm and 567 nm range, with a dominant peak at 555 nm due to the ((2)H(11/2),(4)S(3/2)) transition and a weaker transition at 567 nm associated with 527 nm. Spectrophotometric determination of the peak was evaluated by the Commission Internationale de I'Eclairage (CIE) method These upconverted emissions were attributed to a two-photon process. The excitation wavelength dependence of the upconverted luminescence, together with its time evolution after infrared pulsed excitation, suggested that energy transfer upconversion processes were responsible for the upconversion luminescence. The upconversion mechanisms were studied in detail through laser power dependence. Excited state absorption and energy transfer processes were discussed as possible upconversion mechanisms. The cross-relaxation process in Er(3+) was also investigated. Copyright © 2015 John Wiley & Sons, Ltd.

  10. The Measurement of the Evaporation Residues Excitation Functions in the Fusion Reactions 144Sm (40Ar,xn) and 166Er(40Ar,xn)

    NASA Astrophysics Data System (ADS)

    Chernysheva, E. V.; Rodin, A. M.; Belozerov, A. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Novoselov, A. S.; Oganessian, Yu. Ts.; Salamatin, V. S.; Stepantsov, S. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Krupa, L.; Kliman, J.; Motycak, S.; Sivacek, I.

    2015-06-01

    The evaporation residues excitation functions for the reactions 40Ar+144Sm→184Hg and 40Ar+166Er→206Rn were measured at the energies below and above the Coulomb barrier (Elab=142-207 MeV) using a mass-separator MASHA. The experimental data were compared with theoretical calculations using a Channel Coupling Model. The influence of experimental beam energy spread on the excitation functions was taking into account. It was found that structure of xn-cross sections correlate strongly with the nuclear structure of colliding nuclei.

  11. Dynamical analysis of relaxation luminescence in ZnS:Er3+ thin film devices

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Jiang; Wu, Chen-Xu; Chen, Mou-Zhi; Huang, Mei-Chun

    2003-06-01

    The relaxation luminescence of ZnS:Er3+ thin film devices fabricated by thermal evaporation with two boats is studied. The dynamical processes of the luminescence of Er3+ in ZnS are described in terms of a resonant energy transfer model, assuming that the probability of collision excitation of injected electrons with luminescence centers is expressed as a Gaussian function. It is found that the frequency distribution depends on the Lorentzian function by considering the emission from excited states as a damped oscillator. Taking into consideration the energy storing effect of traps, an expression is obtained to describe a profile that contains multiple relaxation luminescence peaks using the convolution theorem. Fitting of experimental results shows that the relaxation characteristics of the electroluminescence are related to the carriers captured by bulk traps as well as by interface states. The numerical calculation carried out agrees well with the dynamical characteristics of relaxation luminescence obtained by experiments.

  12. Time delay and excitation mode induced tunable red/near-infrared to green emission ratio of Er doped BiOCl

    NASA Astrophysics Data System (ADS)

    Avram, Daniel; Florea, Mihaela; Tiseanu, Ion; Tiseanu, Carmen

    2015-09-01

    Herein, we report on the emission color tunability of Er doped BiOCl measured under up—conversion as well as x-ray excitation modes. The dependence of red (670 nm) to green emission (543 nm) ratio on Er concentration (1 and 5%), excitation wavelength into different (656.4, 802 and 976 nm) or across single Er absorption levels (965 ÷ 990 nm) and delay after the laser pulse (0.001 ÷ 1 ms) is discussed in terms of ground state absorption/excited state absorption and energy transfer up-conversion mechanisms. A first example of extended Er x-ray emission measured in the range of 500 to 1700 nm shows comparable emission intensities corresponding to 543 nm and 1500 nm based transitions. The present results together with our earlier report on the upconversion emission of Er doped BiOCl excited at 1500 nm, suggest that Er doped BiOCl may be considered an attractive system for optical and x-ray imaging applications.

  13. Enhancement of fusion at near-barrier energies for neutron-rich light nuclei: 19O +12 C

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Kuvin, S. A.; Tripathi, Vandana; Wiedenhover, I.; Umar, A. S.

    2017-01-01

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a sensitive test of a microscopic description of fusion. To investigate the theoretically predicted fusion enhancement for neutron-rich light nuclei, an experiment was performed to measure the fusion excitation functions for 19 O +12 C and 18 O +12 C . Using the 18O(d,p) reaction and the RESOLUT mass spectrometer at Florida State University, a beam of 19O was produced with an intensity of 2-4 x 103 p/s. This beam bombarded a 100 μg/cm2 carbon target. Using an approach optimized for the measurement of fusion with a low-intensity beam, evaporation residues (ERs) resulting from the de-excitation of the fusion product were measured. The ERs were identified by measuring their energy and time-of-flight. At near-barrier energies, an enhancement of fusion by a factor of three has been observed for 19 O +12 C in comparison to 18 O +12 C . Comparison of the experimental results with the predictions of a density constrained time-dependent Hartree-Fock (DC-TDHF) model provide evidence for the importance of pairing in the fusion process. Supported by the US DOE under Grant No. DEFG02-88ER-40404.

  14. Enhanced upconversion emission in colloidal (NaYF4:Er(3+))/NaYF4 core/shell nanoparticles excited at 1523 nm.

    PubMed

    Shao, Wei; Chen, Guanying; Damasco, Jossana; Wang, Xianliang; Kachynski, Aliaksandr; Ohulchanskyy, Tymish Y; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2014-03-15

    In this work, we report on efficient visible and near-IR upconversion emissions in colloidal hexagonal-phase core/shell NaYF4:Er(3+)/NaYF4 nanoparticles (∼38  nm) under IR laser excitation at 1523 nm. Varying amounts of Er(3+) dopants were introduced into the core NaYF4:Er(3+) nanoparticles, revealing an optimized Er(3+) concentration of 10% for the highest luminescent efficiency. An inert epitaxial shell layer of NaYF4 grown onto the core of the NaYF4:Er(3+) 10% nanoparticle increased its upconversion emission intensity fivefold due to suppression of surface-related quenching mechanisms, yielding the absolute upconversion efficiency to be as high as ∼3.9±0.3% under an excitation density of 18  W/cm(2). The dependence of the intensity of upconversion emission peaks on laser excitation density in the core/shell nanoparticle displayed "saturation effects" at low excitation density in the range of 1.5-18  W/cm(2), which again demonstrates high upconversion efficiency.

  15. YAG:Er3+, CaF2:Er3+, and Er2O3 Emission Spectra Under Laser and Laser Thermal Excitation

    NASA Astrophysics Data System (ADS)

    Marchenko, V. M.

    2018-05-01

    Experimental luminescence and selective-emission (SE) spectra of YAG:Er3+ (10 at.%) and CaF2:Er3+ (1 at.%) single crystals and Er2O3 polycrystal under laser and laser thermal excitation of the Er3+-ion multiplets are compared. Luminescence spectra under resonant excitation are determined by multiplet population relaxation with the corresponding radiative and nonradiative probabilities. The form of the SE spectra is determined by the thermal population of the multiplets and the probabilities of only radiative transitions. The SE band at 800 nm (4I9/2 → 4I15/2) is an indicator of high-temperature thermal emission of Er3+ ions. The absence of this band in luminescence spectra is explained by the short lifetime of the τ(4I9/2) level of 53 ns at T = 300 K.

  16. Upconversion luminescence in Er3+ doped and Er3+/Yb3+ codoped zirconia and hafnia nanocrystals excited at 980 nm

    NASA Astrophysics Data System (ADS)

    Gómez, Luis A.; Menezes, Leonardo de S.; de Araújo, Cid B.; Gonçalves, Rogeria R.; Ribeiro, Sidney J. L.; Messaddeq, Younes

    2010-06-01

    Frequency upconversion (UC) luminescence in nanocrystalline zirconia (ZrO2) and hafnia (HfO2) doped with Er3+ and Yb3+ was studied under continuous-wave excitation at 980 nm. Samples of ZrO2:Er3+, ZrO2:Er3+/Yb3+, and HfO2:Er3+/Yb3+ were prepared by the sol-gel technique and characterized using x-ray diffraction and electron microscopy. A study of the infrared-to-green and infrared-to-red UC processes was performed including the analysis of the spectral and the temporal behavior. The mechanisms contributing to the UC luminescence were identified as excited state absorption and energy transfer among rare-earth ions.

  17. IRE1: ER stress sensor and cell fate executor

    PubMed Central

    Chen, Yani; Brandizzi, Federica

    2013-01-01

    Cells operate a signaling network termed unfolded protein response (UPR) to monitor protein-folding capacity in the endoplasmic reticulum (ER). IRE1 is an ER transmembrane sensor that activates UPR to maintain ER and cellular function. While mammalian IRE1 promotes cell survive, it can initiate apoptosis via decay of anti-apoptotic microRNAs. Convergent and divergent IRE1 characteristics between plants and animals underscore its significance in cellular homeostasis. This review provides an updated scenario of IRE1 signaling model, discusses emerging IRE1 sensing mechanisms, compares IRE1 features among species, and outlines exciting future directions in UPR research. PMID:23880584

  18. Thermometry properties of Er, Yb-Gd2O2S microparticles: dependence on the excitation mode (cw versus pulsed excitation) and excitation wavelength (980 nm versus 1500 nm)

    NASA Astrophysics Data System (ADS)

    Avram, Daniel; Tiseanu, Carmen

    2018-04-01

    Herein, we present a first report on the luminescence thermometry properties of Er, Yb doped Gd2O2S microparticles under near infrared up-conversion excitation at 980 and 1500 nm measured in the 280-800 K interval. The thermometry properties are assessed using both cw and ns pulsed excitation as well as tuning the excitation wavelength across Yb and Er absorption profiles. For low cw (300 mW cm-1) and pulsed ns (400 ÷ 550 mW cm-1) excitation modes, no thermal load is observed. At room-temperature (280 K), the maximum relative sensitivity values are comparable under pulsed excitation at 980 and 1500 nm, around ˜0.01 and ˜0.008% K-1, respectively. In addition, a relative intense up-conversion emission at 980 nm under excitation at 1500 nm is measured. Our findings evidence attractive up-conversion and thermometry properties Er, Yb doped Gd2O2S under near-infrared excitation and highlight the need to explore further these properties in the nanoparticulate regime.

  19. RIC-3 phosphorylation enables dual regulation of excitation and inhibition of Caenorhabditis elegans muscle

    PubMed Central

    Safdie, Gracia; Liewald, Jana F.; Kagan, Sarah; Battat, Emil; Gottschalk, Alexander; Treinin, Millet

    2016-01-01

    Brain function depends on a delicate balance between excitation and inhibition. Similarly, Caenorhabditis elegans motor system function depends on a precise balance between excitation and inhibition, as C. elegans muscles receive both inhibitory, GABAergic and excitatory, cholinergic inputs from motor neurons. Here we show that phosphorylation of the ER-resident chaperone of nicotinic acetylcholine receptors, RIC-3, leads to increased muscle excitability. RIC-3 phosphorylation at Ser-164 depends on opposing functions of the phosphatase calcineurin (TAX-6), and of the casein kinase II homologue KIN-10. Effects of calcineurin down-regulation and of phosphorylated RIC-3 on muscle excitability are mediated by GABAA receptor inhibition. Thus RIC-3 phosphorylation enables effects of this chaperone on GABAA receptors in addition to nAChRs. This dual effect provides coordinated regulation of excitation and inhibition and enables fine-tuning of the excitation–inhibition balance. Moreover, regulation of inhibitory GABAA signaling by calcineurin, a calcium- and calmodulin-dependent phosphatase, enables homeostatic balancing of excitation and inhibition. PMID:27489343

  20. IRE1: ER stress sensor and cell fate executor.

    PubMed

    Chen, Yani; Brandizzi, Federica

    2013-11-01

    Cells operate a signaling network termed the unfolded protein response (UPR) to monitor protein-folding capacity in the endoplasmic reticulum (ER). Inositol-requiring enzyme 1 (IRE1) is an ER transmembrane sensor that activates the UPR to maintain the ER and cellular function. Although mammalian IRE1 promotes cell survival, it can initiate apoptosis via decay of antiapoptotic miRNAs. Convergent and divergent IRE1 characteristics between plants and animals underscore its significance in cellular homeostasis. This review provides an updated scenario of the IRE1 signaling model, discusses emerging IRE1 sensing mechanisms, compares IRE1 features among species, and outlines exciting future directions in UPR research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Inter- and intraconfigurational luminescence of Er3+ ions in BaY2F8 under VUV excitation

    NASA Astrophysics Data System (ADS)

    Kirm, M.; Lichtenberg, H.; Makhov, V. N.; Negodin, E.; Ouvarova, T. V.; Suljoti, E.; True, M.; Zimmerer, G.

    Using energy- and time-resolved spectroscopy the luminescence properties of Er3+ doped BaY2F8 crystals were investigated at 10 K under VUV synchrotron radiation excitation. Radiative intraconfigurational f - f and interconfigurational d - f transitions in Er3+ ions were observed under f - d excitation. Whereas the onset of S-4(3/2) population via f - d excitation starts at 59 900 cm(-1) , efficient excitation of emissions arising from the P-2(3/2) state begins only above 67 000 cm(-1) in VUV region. Such behaviour can be explained by a cross-relaxation process of the type (F-2(2)(5/2) , I-4(15/2))-->(P-2(3/2) , P-2(3/2)) taking place within f -states of Er3+ ions finally populating the emitting P-2(3/2) state.

  2. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    PubMed Central

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-01-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu3+-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er3+/Yb3+-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from 2H11/2 → 2I15/2 and 4S3/2 → 4I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K−1, which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers. PMID:24572638

  3. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    NASA Astrophysics Data System (ADS)

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-02-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu3+-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er3+/Yb3+-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from 2H11/2 --> 2I15/2 and 4S3/2 --> 4I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K-1, which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.

  4. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method.

    PubMed

    Gavrilović, Tamara V; Jovanović, Dragana J; Lojpur, Vesna; Dramićanin, Miroslav D

    2014-02-27

    Synthesis of Eu(3+)- and Er(3+)/Yb(3+)-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu(3+)-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er(3+)/Yb(3+)-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from (2)H11/2 → (2)I15/2 and (4)S3/2 → (4)I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K(-1), which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.

  5. The effects of energy transfer on the Er3+ 1.54 μm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants

    NASA Astrophysics Data System (ADS)

    Hoang, J.; Schwartz, Robert N.; Wang, Kang L.; Chang, J. P.

    2012-09-01

    We report the effects of heterogeneous Yb3+ and Er3+ codoping in Y2O3 thin films on the 1535 nm luminescence. Yb3+:Er3+:Y2O3 thin films were deposited using sequential radical enhanced atomic layer deposition. The Yb3+ energy transfer was investigated for indirect and direct excitation of the Yb 2F7/2 state using 488 nm and 976 nm sources, respectively, and the trends were described in terms of Forster and Dexter's resonant energy transfer theory and a macroscopic rate equation formalism. The addition of 11 at. % Yb resulted in an increase in the effective Er3+ photoluminescence (PL) yield at 1535 nm by a factor of 14 and 42 under 488 nm and 976 nm excitations, respectively. As the Er2O3 local thickness was increased to greater than 1.1 Å, PL quenching occurred due to strong local Er3+ ↔ Er3+ excitation migration leading to impurity quenching centers. In contrast, an increase in the local Yb2O3 thickness generally resulted in an increase in the effective Er3+ PL yield, except when the Er2O3 and Yb2O3 layers were separated by more than 2.3 Å or were adjacent, where weak Yb3+ ↔ Er3+ coupling or strong Yb3+ ↔ Yb3+ interlayer migration occurred, respectively. Finally, it is suggested that enhanced luminescence at steady state was observed under 488 nm excitation as a result of Er3+ → Yb3+ energy back transfer coupled with strong Yb3+ ↔ Yb3+ energy migration.

  6. Up-conversion luminescence of Er3+ ions in lead-free germanate glasses under 800 nm and 980 nm cw diode laser excitation

    NASA Astrophysics Data System (ADS)

    Janek, J.; Lisiecki, R.; Ryba-Romanowski, W.; Pisarska, J.; Pisarski, W. A.

    2017-12-01

    Up-conversion luminescence spectra of Er3+ ions in multicomponent oxyfluoride glasses GeO2 - BaO - BaF2 - Ga2O3 - Er2O3 were examined. It was found that the up-conversion luminescence spectra of Er3+ are dependent on pumping wavelengths. The spectra recorded upon the excitation at 800 nm contained an intense green up-conversion luminescence corresponding to the 2H11/2,4S3/2 → 4I15/2 transitions and a very weak red luminescence related to the 4F9/2 - 4I15/2 transition. In spectra recorded upon 980 nm excitation the contribution of the red luminescence was markedly higher. The interaction mechanisms involved in up-conversion processes are proposed and observed dependence of intensity of up-converted luminescence on excitation power is discussed. The experimental results suggest that Er3+ singly doped lead-free oxyfluoride germanate glass is useful for up-conversion luminescence applications.

  7. Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarangella, Adriana; Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania; Reitano, Riccardo

    2015-07-27

    The process of energy transfer (ET) between optically active ions has been widely studied to improve the optical efficiency of a system for different applications, from lighting and photovoltaics to silicon microphotonics. In this work, we report the influence of Bi on the Er optical emission in erbium-yttrium oxide thin films synthesized by magnetron co-sputtering. We demonstrate that this host permits to well dissolve Er and Bi ions, avoiding their clustering, and thus to stabilize the optically active Er{sup 3+} and Bi{sup 3+} valence states. In addition, we establish the ET occurrence from Bi{sup 3+} to Er{sup 3+} by themore » observed Bi{sup 3+} PL emission decrease and the simultaneous Er{sup 3+} photoluminescence (PL) emission increase. This was further confirmed by the coincidence of the Er{sup 3+} and Bi{sup 3+} excitation bands, analyzed by PL excitation spectroscopy. By increasing the Bi content of two orders of magnitude inside the host, though the occurrence of Bi-Bi interactions becomes deleterious for Bi{sup 3+} optical efficiency, the ET process between Bi{sup 3+} and Er{sup 3+} is still prevalent. We estimate ET efficiency of 70% for the optimized Bi:Er ratio equal to 1:3. Moreover, we have demonstrated to enhance the Er{sup 3+} effective excitation cross section by more than three orders of magnitude with respect to the direct one, estimating a value of 5.3 × 10{sup −18} cm{sup 2}, similar to the expected Bi{sup 3+} excitation cross section. This value is one of the highest obtained for Er in Si compatible hosts. These results make this material very promising as an efficient emitter for Si-compatible photonics devices.« less

  8. Highly spatially resolved structural and optical investigation of Bi nanoparticles in Y-Er disilicate thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarangella, A.; Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania; Amiard, G.

    2016-08-08

    Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O{sub 2} or N{sub 2} environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discernedmore » in the Si and O rich environments by means of scanning transmission electron microscopy–energy dispersive X-ray and scanning transmission electron microscopy–electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N{sub 2} environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O{sub 2}, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.« less

  9. Origin of near to middle infrared luminescence and energy transfer process of Er(3+)/Yb(3+)co-doped fluorotellurite glasses under different excitations.

    PubMed

    Huang, Feifei; Liu, Xueqiang; Ma, Yaoyao; Kang, Shuai; Hu, Lili; Chen, Danping

    2015-02-04

    We report the near to middle infrared luminescence and energy transfer process of Er(3+)/Yb(3+) co-doped fluorotellurite glasses under 980, 1550 and 800 nm excitations, respectively. Using a 980 nm laser diode pump, enhanced 1.5 and 2.7 μm emissions from Er(3+):I13/2→(4)I15/2 and I11/2→(4)I13/2 transitions are observed, in which Yb(3+) ions can increase pumping efficiency and be used as energy transfer donors. Meanwhile, Yb(3+) can also be used as an acceptor and intensive upconversion luminescence of around 1000 nm is achieved from Er(3+):I11/2→(4)I15/2 and Yb(3+): F5/2→(4)F7/2 transitions using 1550 nm excitation. In addition, the luminescence properties and variation trendency by 800 nm excitation is similar to that using 1550 nm excitation. The optimum Er(3+) and Yb(3+) ion ratio is 1:1.5 and excess Yb(3+) ions decrease energy transfer efficiency under the two pumpings. These results indicate that Er(3+)/Yb(3+) co-doped fluorotellurite glasses are potential middle- infrared laser materials and may be used to increase the efficiency of the silicon solar cells.

  10. Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations

    PubMed Central

    Huang, Feifei; Liu, Xueqiang; Ma, Yaoyao; Kang, Shuai; Hu, Lili; Chen, Danping

    2015-01-01

    We report the near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under 980, 1550 and 800 nm excitations, respectively. Using a 980 nm laser diode pump, enhanced 1.5 and 2.7 μm emissions from Er3+:I13/2→4I15/2 and I11/2→4I13/2 transitions are observed, in which Yb3+ ions can increase pumping efficiency and be used as energy transfer donors. Meanwhile, Yb3+ can also be used as an acceptor and intensive upconversion luminescence of around 1000 nm is achieved from Er3+:I11/2→4I15/2 and Yb3+: F5/2→4F7/2 transitions using 1550 nm excitation. In addition, the luminescence properties and variation trendency by 800 nm excitation is similar to that using 1550 nm excitation. The optimum Er3+ and Yb3+ ion ratio is 1:1.5 and excess Yb3+ ions decrease energy transfer efficiency under the two pumpings. These results indicate that Er3+/Yb3+ co-doped fluorotellurite glasses are potential middle- infrared laser materials and may be used to increase the efficiency of the silicon solar cells. PMID:25648651

  11. Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film

    NASA Astrophysics Data System (ADS)

    Fu, Qianyu; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-05-01

    In this paper, we report on the luminescence-center (LC)-mediated excitation of Er3+ as a function of annealing temperature in Er-doped Si-rich SiO2 (SRO) films fabricated by electron beam evaporation. It is found that the annealing temperature has significant effects on the emission of Er3+ and the specific optical-active point-defects called LCs within Er-doped SRO films. Different luminescence centers generated by the evolution of microstructures during annealing process act as efficient sensitizers for Er3+ in the films when the annealing temperature is below 1100 °C. Moreover, the temperature dependence of the energy coupling between LCs and Er3+ demonstrates the effective phonon-mediated energy transfer process. In addition, when the annealing temperature reaches 1100 °C, the decreased density of activable erbium ions induced by the aggregation of Er will bring detrimental effects on the emission of Er3+. It is demonstrated that an appropriate annealing process can be designed to achieve efficiently enhanced emissions from Er3+ ions by optimizing the density of LCs and the coupling between Er3+ and LCs.

  12. Investigation of excited 0+ states in 160Er populated via the (p, t) two-neutron transfer reaction

    NASA Astrophysics Data System (ADS)

    Burbadge, C.; Garrett, P. E.; Ball, G. C.; Bildstein, V.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Faesternann, T.; Hertenberger, R.; Jamieson, D. S.; Kisliuk, D.; Leach, K. G.; Loranger, J.; MacLean, A. D.; Radich, A. J.; Rand, E. T.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.

    2018-05-01

    Many efforts have been made in nuclear structure physics to interpret the nature of low-lying excited 0+ states in well-deformed rare-earth nuclei. However, one of the difficulties in resolving the nature of these states is that there is a paucity of data. In this work, excited 0+ states in the N = 92 nucleus 160Er were studied via the 162Er(p, t)160Er two-neutron transfer reaction, which is ideal for probing 0+ → 0+ transitions, at the Maier-Leibnitz-Laboratorium in Garching, Germany. Reaction products were momentum-analyzed with a Quadrupole-3-Dipole magnetic spectrograph. The 0+2 state was observed to be strongly populated with 18% of the ground state strength.

  13. Optical study of Erbium-doped-porous silicon based planar waveguides

    NASA Astrophysics Data System (ADS)

    Najar, A.; Ajlani, H.; Charrier, J.; Lorrain, N.; Haesaert, S.; Oueslati, M.; Haji, L.

    2007-06-01

    Planar waveguides were formed from porous silicon layers obtained on P + substrates. These waveguides were then doped by erbium using an electrochemical method. Erbium concentration in the range 2.2-2.5 at% was determined by energy dispersive X-ray (EDX) analysis performed on SEM cross sections. The refractive index of layers was studied before and after doping and thermal treatments. The photoluminescence of Er 3+ ions in the IR range and the decay curve of the 1.53 μm emission peak were studied as a function of the excitation power. The value of excited Er density was equal to 0.07%. Optical loss contributions were analyzed on these waveguides and the losses were equal to 1.1 dB/cm at 1.55 μm after doping.

  14. Selective emission and luminescence of Er{sub 2}O{sub 3} under intense laser excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchenko, V M; Studenikin, M I; Iskhakova, L D

    2013-09-30

    The microstructure of Er{sub 2}O{sub 3} polycrystals synthesised by laser heating is studied. The synthesis of erbium silicate (Er{sub 2}SiO{sub 5}) layers was observed upon interaction of Er{sub 2}O{sub 3} and SiO{sub 2} melts. The dependences of the selective emission (SE) and luminescence spectra of Er{sub 2}O{sub 3} polycrystals in the range 200 – 1700 nm on the intensity of laser-thermal (at the wavelength λ = 10.6 μm) and resonant laser (λ ≈ 975 nm) excitation are investigated. The emission of heated Er{sub 2}O{sub 3} polycrystals arises as a result of multiphonon relaxation of absorbed energy and is a superpositionmore » of the SE at the electronic-vibrational transitions of Er{sup 3+} ions and the thermal radiation of the crystal lattice. The shape of the SE spectra of Er{sub 2}O{sub 3} polycrystals in the range 400 – 1700 nm almost does not change upon laser-thermal heating from 300 to 1500 K and subsequent cooling and corresponds to the absorption spectra of Er{sup 3+} ions. With increasing temperature, the thermal radiation intensity increases faster than the SE intensity, and the shape of the Er{sub 2}O{sub 3} spectrum becomes closer to the calculated spectrum of a blackbody. The anti-Stokes luminescence spectra of Er{sup 3+} ions formed under intense laser excitation of the {sup 4}I{sub 11/2} level are explained by additional SE caused by heating of the crystal matrix due to the Stokes losses. A difference between the SE and luminescence spectra is observed at low intensities of resonant laser excitation and low temperatures, when only the Stokes luminescence occurs. The temperature dependences of the SE and luminescence spectra of Er{sub 2}O{sub 3} upon laser excitation testify to the fundamental role played by the interaction of the electronic f-shell of Er{sup 3+} ions with crystal lattice vibrations in the processes of multiphonon radiative and nonradiative relaxation. The laser-thermal synthesis is promising for inprocess variation of the chemical composition of rare-earth samples. (interaction of laser radiation with matter)« less

  15. The Upconversion Luminescence of Er3+/Yb3+/Nd3+ Triply-Doped β-NaYF4 Nanocrystals under 808-nm Excitation

    PubMed Central

    Tian, Lijiao; Xu, Zheng; Zhao, Suling; Cui, Yue; Liang, Zhiqin; Zhang, Junjie; Xu, Xurong

    2014-01-01

    In this paper, Nd3+–Yb3+–Er3+-doped β-NaYF4 nanocrystals with different Nd3+ concentrations are synthesized, and the luminescence properties of the upconversion nanoparticles (UCNPs) have been studied under 808-nm excitation for sensitive biological applications. The upconversion luminescence spectra of NaYF4 nanoparticles with different dopants under 808-nm excitation proves that the Nd3+ ion can absorb the photons effectively, and the Yb3+ ion can play the role of an energy-transfer bridging ion between the Nd3+ ion and Er3+ ion. To investigate the effect of the Nd3+ ion, the decay curves of the 4S3/2 → 4I15/2 transition at 540 nm are measured and analyzed. The NaYF4: 20% Yb3+, 2% Er3+, 0.5% Nd3+ nanocrystals have the highest emission intensity among all samples under 808-nm excitation. The UC (upconversion) mechanism under 808-nm excitation is discussed in terms of the experimental results. PMID:28788246

  16. Energy conversion of X-ray, ultraviolet and infrared radiation in Gd2O3 crystals doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Trofimova, E. S.; Pustovarov, V. A.; Kuznetsova, Yu. A.; Zatsepin, A. F.

    2017-09-01

    Spectra of photoluminescence (PL) and X-ray excited luminescence (XRL) in region of 1.5-5.0 eV, PL excitation spectra (2.8-5.8 eV), PL decay kinetics were measured in Gd2O3 crystals doped both with Er3+ and Zn2+ ions. Synchrotron radiation (VEPP-3 storage ring, Novosibirsk, Russia) were used for XRL measurements. PL spectra were studied at room temperature and T= 88 K under excitation with energy Eexc: a) in fundamental absorption region (Eexc≥Eg); b) in intracenter excitation region (Eexc

  17. Er3+ -doped anatase TiO2 nanocrystals: crystal-field levels, excited-state dynamics, upconversion, and defect luminescence.

    PubMed

    Luo, Wenqin; Fu, Chengyu; Li, Renfu; Liu, Yongsheng; Zhu, Haomiao; Chen, Xueyuan

    2011-11-04

    A comprehensive survey of electronic structure and optical properties of rare-earth ions embedded in semiconductor nanocrystals (NCs) is of vital importance for their potential applications in areas as diverse as luminescent bioprobes, lighting, and displays. Er3+ -doped anatase TiO2 NCs, synthesized via a facile sol-gel solvothermal method, exhibit intense and well-resolved intra-4f emissions of Er3+ . Crystal-field (CF) spectra of Er3+ in TiO2 NCs are systematically studied by means of high-resolution emission and excitation spectra at 10-300 K. The CF analysis of Er3+ assuming a site symmetry of C(2v) yields a small root-mean-square deviation of 25.1 cm(-1) and reveals the relatively large CF strength (549 cm(-1) ) of Er3+, thus verifying the rationality of the C(2v) symmetry assignment of Er3+ in anatase TiO2 NCs. Based on a simplified thermalization model for the temperature-dependent photoluminescence (PL) dynamics from (4) S(3/2) , the intrinsic radiative luminescence lifetimes of (4) S(3/2) and (2) H(11/2) are experimentally determined to be 3.70 and 1.73 μs, respectively. Green and red upconversion (UC) luminescence of Er3+ can be achieved upon laser excitation at 974.5 nm. The UC intensity of Er3+ in Yb/Er-codoped NCs is found to be about five times higher than that of Er-singly-doped counterparts as a result of efficient Yb3+ sensitization and energy transfer upconversion (ETU) evidenced by its distinct UC luminescence dynamics. Furthermore, the origin of defect luminescence is revealed based on the temperature-dependent PL spectra upon excitation above the TiO2 bandgap at 325 nm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Raman Spectrum of Er-Y-codoped ZrO2 and Fluorescence Properties of Er3+

    NASA Astrophysics Data System (ADS)

    He, Jun; Luo, Meng-fei; Jin, Ling-yun; He, Mai; Fang, Ping; Xie, Yun-long

    2007-02-01

    Er-Y-codoped ZrO2 mixed oxides with monoclinic, tetragonal and cubic structures were prepared by a sol-gel method. The crystal structure of ZrO2 matrix and the effect of the ZrO2 phases on the fluorescence properties of Er3+ were studied using Raman spectroscopy. The results indicated that the fluorescence properties of Er3+ depend on its local ZrO2 crystal structures. As ZrO2 matrix transferred from monoclinic to tetragonal and cubic phase, the Raman and fluorescence bands of Er3+ decreased in intensities and tended to form a single peak. With 632.8 nm excitation, the bands between 640 and 680 nm were attributed to the fluorescence of Er3+ in the ZrO2 environment. However, only the fluorescence was observed and no Raman spectra were seen under 514.5 nm excitation, while only Raman spectra were observed under 325 nm excitation. UV Raman spectroscopy was found to be more sensitive in the surface region while the information provided by XRD mainly came from the bulk. The phase with lower symmetry forms more easily on the surface than in the bulk.

  19. Sensitizing properties of luminescence centers on the emission of Er{sup 3+} in Si-rich SiO{sub 2} film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Qianyu; Gao, Yuhan; Li, Dongsheng, E-mail: mselds@zju.edu.cn

    2016-05-28

    In this paper, we report on the luminescence-center (LC)-mediated excitation of Er{sup 3+} as a function of annealing temperature in Er-doped Si-rich SiO{sub 2} (SRO) films fabricated by electron beam evaporation. It is found that the annealing temperature has significant effects on the emission of Er{sup 3+} and the specific optical-active point-defects called LCs within Er-doped SRO films. Different luminescence centers generated by the evolution of microstructures during annealing process act as efficient sensitizers for Er{sup 3+} in the films when the annealing temperature is below 1100 °C. Moreover, the temperature dependence of the energy coupling between LCs and Er{sup 3+}more » demonstrates the effective phonon-mediated energy transfer process. In addition, when the annealing temperature reaches 1100 °C, the decreased density of activable erbium ions induced by the aggregation of Er will bring detrimental effects on the emission of Er{sup 3+}. It is demonstrated that an appropriate annealing process can be designed to achieve efficiently enhanced emissions from Er{sup 3+} ions by optimizing the density of LCs and the coupling between Er{sup 3+} and LCs.« less

  20. The effects of energy transfer on the Er{sup 3+} 1.54 {mu}m luminescence in nanostructured Y{sub 2}O{sub 3} thin films with heterogeneously distributed Yb{sup 3+} and Er{sup 3+} codopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, J.; Chang, J. P.; Schwartz, Robert N.

    2012-09-15

    We report the effects of heterogeneous Yb{sup 3+} and Er{sup 3+} codoping in Y{sub 2}O{sub 3} thin films on the 1535 nm luminescence. Yb{sup 3+}:Er{sup 3+}:Y{sub 2}O{sub 3} thin films were deposited using sequential radical enhanced atomic layer deposition. The Yb{sup 3+} energy transfer was investigated for indirect and direct excitation of the Yb {sup 2}F{sub 7/2} state using 488 nm and 976 nm sources, respectively, and the trends were described in terms of Forster and Dexter's resonant energy transfer theory and a macroscopic rate equation formalism. The addition of 11 at. % Yb resulted in an increase in themore » effective Er{sup 3+} photoluminescence (PL) yield at 1535 nm by a factor of 14 and 42 under 488 nm and 976 nm excitations, respectively. As the Er{sub 2}O{sub 3} local thickness was increased to greater than 1.1 A, PL quenching occurred due to strong local Er{sup 3+}{r_reversible} Er{sup 3+} excitation migration leading to impurity quenching centers. In contrast, an increase in the local Yb{sub 2}O{sub 3} thickness generally resulted in an increase in the effective Er{sup 3+} PL yield, except when the Er{sub 2}O{sub 3} and Yb{sub 2}O{sub 3} layers were separated by more than 2.3 A or were adjacent, where weak Yb{sup 3+}{r_reversible} Er{sup 3+} coupling or strong Yb{sup 3+}{r_reversible} Yb{sup 3+} interlayer migration occurred, respectively. Finally, it is suggested that enhanced luminescence at steady state was observed under 488 nm excitation as a result of Er{sup 3+}{yields} Yb{sup 3+} energy back transfer coupled with strong Yb{sup 3+}{r_reversible} Yb{sup 3+} energy migration.« less

  1. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd{sub 2}O{sub 3}:Er{sup 3},Yb{sup 3+} nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei Yanqiang; Song Hongwei; Yang Linmei

    2005-11-01

    In this paper, the upconversion luminescent properties of Gd{sub 2}O{sub 3}:Er{sup 3+},Yb{sup 3+} nanowires as a function of Yb concentration and excitation power were studied under 978-nm excitation. The results indicated that the relative intensity of the red emission ({sup 4}F{sub 9/2}-{sup 4}I{sub 15/2}) increased with increasing the Yb{sup 3+} concentration, while that of the green emission ({sup 4}S{sub 3/2}/{sup 2}H{sub 11/2}-{sup 4}I{sub 15/2}) decreased. As a function of excitation power in ln-ln plot, the green emission of {sup 4}S{sub 3/2}-{sup 4}I{sub 15/2} yielded a slope of {approx}2, while the red emission of {sup 4}F{sub 9/2}-{sup 4}I{sub 15/2} yielded amore » slope of {approx}1. Moreover, the slope decreased with increasing the Yb{sup 3+} concentration. This was well explained by the expanded theory of competition between linear decay and upconversion processes for the depletion of the intermediate excited states. As the excitation power density was high enough, the emission intensity of upconversion decreased due to thermal quenching. The thermal effect caused by the exposure of the 978-nm laser was studied according to the intensity ratio of {sup 2}H{sub 11/2}-{sup 4}I{sub 15/2} to {sup 4}S{sub 3/2}-{sup 4}I{sub 15/2}. The practical sample temperature at the exposed spot as a function of excitation power and Yb{sup 3+} concentration was deduced. The result indicated that at the irradiated spot (0.5x0.5 mm{sup 2}) the practical temperature considerably increased.« less

  2. Near Infrared Quantum Cutting Luminescence of Er3+/Tm3+ Ion Pairs in a Telluride Glass.

    PubMed

    Chen, Xiaobo; Li, Song; Hu, Lili; Wang, Kezhi; Zhao, Guoying; He, Lizhu; Liu, Jinying; Yu, Chunlei; Tao, Jingfu; Lin, Wei; Yang, Guojian; Salamo, Gregory J

    2017-05-16

    The multiphoton near-infrared, quantum cutting luminescence in Er 3+ /Tm 3+ co-doped telluride glass was studied. We found that the near-infrared 1800-nm luminescence intensity of (A) Er 3+ (8%)Tm 3+ (0.5%):telluride glass was approximately 4.4 to 19.5 times larger than that of (B) Tm 3+ (0.5%):telluride glass, and approximately 5.0 times larger than that of (C) Er 3+ (0.5%):telluride glass. Additionally, the infrared excitation spectra of the 1800 nm luminescence, as well as the visible excitation spectra of the 522 nm and 652 nm luminescence, of (A) Er 3+ (8%)Tm 3+ (0.5%):telluride glass are very similar to those of Er 3+ ions in (C) Er 3+ (0.5%):telluride glass, with respect to the shapes of their excitation spectral waveforms and peak wavelengths. Moreover, we found that there is a strong spectral overlap and energy transfer between the infrared luminescence of Er 3+ donor ions and the infrared absorption of Tm 3+ acceptor ions. The efficiency of this energy transfer { 4 I 13/2 (Er 3+ ) →  4 I 15/2 (Er 3+ ), 3 H 6 (Tm 3+ ) →  3 F 4 (Tm 3+ )} between the Er 3+ and Tm 3+ ions is approximately 69.8%. Therefore, we can conclude that the observed behaviour is an interesting multiphoton, near-infrared, quantum cutting luminescence phenomenon that occurs in novel Er 3+ -Tm 3+ ion pairs. These findings are significant for the development of next-generation environmentally friendly germanium solar cells, and near-to-mid infrared (1.8-2.0 μm) lasers pumped by GaN light emitting diodes.

  3. Intense green and red upconversion emission of Er3+,Yb3+ co-doped CaZrO3 obtained by a solution combustion reaction

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Kumar Rai, Vineet; Haase, Markus

    2012-09-01

    CaZrO3 phosphors co-doped with Er3+ and Yb3+ ions have been prepared by the urea combustion route. The formation of the orthorhombic phase of CaZrO3 was confirmed by powder x-ray diffraction. The absorption in the 280-1800 nm region and excitation spectrum corresponding to the emission at 545 nm for CaZrO3:Er3+/CaZrO3:Er3+,Yb3+ phosphors have been recorded. Upon excitation at 978 nm, the material displays strong energy transfer upconversion emission in the green and red spectral regions. The upconversion emission of the CaZrO3:Er3+,Yb3+ co-doped material shows an increased red-to-green ratio, indicating cross relaxation between Er3+ ions.

  4. Concentration effect of Er{sup 3+} ions on structural and spectroscopic properties of CdNb{sub 2}O{sub 6} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafouri, Sanaz Aian; Erdem, Murat, E-mail: merdem@marmara.edu.tr; Ekmekçi, M. Kaan

    2014-12-15

    Excitation and emission spectra of a visible room-temperature Er{sup 3+} ions luminescence from powders. - Highlights: • This is the first report on spectroscopic properties of CdNb{sub 2}O{sub 6}:Er{sup 3+}. • The crystalline sizes are affected as the concentration of Er{sup 3+} ions increased. • Quenching of the luminescence was observed to be above 1.0 mol% Er{sup 3+}. - Abstract: This study is focused on the synthesis and characterization of CdNb{sub 2}O{sub 6} compounds doped with of Er{sup 3+} ions. Powders were synthesized by using the molten salt method and annealed at 900 °C for 4 h. The synthesized particlesmore » were structurally characterized by using X-ray diffraction, scanning electron microscopy. A single phase of the CdNb{sub 2}O{sub 6} was determined and the size of the particles was found to be affected by the presence and the concentration of Er{sup 3+} ions. Luminescence properties of each sample were investigated by measuring accurately the emission and excitation spectra at room temperature in the wavelength range of 200–1700 nm by exciting the Er{sup 3+} ions at 379 nm and 805 nm. Quenching of the luminescence in both visible and near infrared spectral regions was observed to be above 1.0 mol% Er{sup 3+} concentration.« less

  5. Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass.

    PubMed

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Gao, Yuan

    2005-10-01

    Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.

  6. Emission intensity of the λ = 1.54 μm line in ZnO films grown by magnetron sputtering, diffusion doped with Ce, Yb, Er

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezdrogina, M. M., E-mail: margeret.m@mail.ioffe.ru; Eremenko, M. V.; Smirnov, A. N.

    2015-08-15

    The effect of the Er{sup 3+}-ion excitation type on the photoluminescence spectra of crystalline ZnO(ZnO〈Ce, Yb, Er〉) films is determined in the cases of resonant (λ = 532 nm, Er{sup 3+}-ion transition from {sup 4}S{sub 3/2}, {sup 2}H{sub 11/2} levels to {sup 4}I{sub 15/2}) and non-resonant (λ = 325 nm, in the region near the ZnO band-edge emission) excitation. It is shown that resonant excitation gives rise to lines with various emission intensities, characteristic of the Er{sup 3+}-ion intracenter 4f transition with λ = 1535 nm when doping crystalline ZnO films with three rare-earth ions (REIs, Ce, Yb, Er) ormore » with two impurities (Ce, Er) or (Er, Yb), independently of the measurement temperature (T = 83 and 300 K). The doping of crystalline ZnO films with rare-earth impurities (Ce, Yb, Er) leads to the efficient transfer of energy to REIs, a consequence of which is the intense emission of an Er{sup 3+} ion in the IR spectral region at λ{sub max} = 1535 nm. The kick-out diffusion mechanism is used upon the sequential introduction of impurities into semiconductor matrices and during the postgrowth annealing of the ZnO films under study. The crystalline ZnO films doped with Ce, Yb, Er also exhibit intense emission in the visible spectral region at room temperature, which makes them promising materials for optoelectronics.« less

  7. Energy dissipation channels affecting photoluminescence from resonantly excited Er{sup 3+} ions doped in epitaxial ZnO host films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Shinojima, Hiroyuki

    2015-04-21

    We identified prerequisite conditions to obtain intense photoluminescence at 1.54 μm from Er{sup 3+} ions doped in ZnO host crystals. The epitaxial ZnO:Er films were grown on sapphire C-plane substrates by sputtering, and Er{sup 3+} ions were resonantly excited at a wavelength of 532 nm between energy levels of {sup 4}I{sub 15/2} and {sup 2}H{sub 11/2}. There is a threshold deposition temperature between 500 and 550 °C, above which epitaxial ZnO films become free of miss-oriented domains. In this case, Er{sup 3+} ions are outside ZnO crystallites, having the same c-axis lattice parameters as those of undoped ZnO crystals. The improved crystallinity wasmore » correlated with enhanced emissions peaking at 1538 nm. Further elevating the deposition temperature up to 650 °C generated cracks in ZnO crystals to relax the lattice mismatch strains, and the emission intensities from cracked regions were three times as large as those from smooth regions. These results can be consistently explained if we assume that emission-active Er{sup 3+} ions are those existing at grain boundaries and bonded to single-crystalline ZnO crystallites. In contrast, ZnO:Er films deposited on a ZnO buffer layer exhibited very weak emissions because of their degraded crystallinity when most Er{sup 3+} ions were accommodated into ZnO crystals. Optimizing the degree of oxidization of ZnO crystals is another important factor because reduced films suffer from non-radiative decay of excited states. The optimum Er content to obtain intense emissions was between 2 and 4 at. %. When 4 at. % was exceeded, the emission intensity was severely attenuated because of concentration quenching as well as the degradation in crystallinity. Precipitation of Er{sub 2}O{sub 3} crystals was clearly observed at 22 at. % for films deposited above 650 °C. Minimizing the number of defects and impurities in ZnO crystals prevents energy dissipation, thus exclusively utilizing the excitation energy to emissions from Er{sup 3+} ions.« less

  8. Labeling of HeLa cells using ZrO2:Yb3+-Er3+ nanoparticles with upconversion emission

    NASA Astrophysics Data System (ADS)

    Ceja-Fdez, Andrea; López-Luke, Tzarara; Oliva, Jorge; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana Lilia; Rojas, Ruben A. Rodriguez; Martínez-Pérez, Andrea; de la Rosa, Elder

    2015-04-01

    This work reports the synthesis, structural characterization, and optical properties of ZrO2:Yb3+-Er3+ (2-1 mol%) nanocrystals. The nanoparticles were coated with 3-aminopropyl triethoxysilane (APTES) and further modified with biomolecules, such as Biotin-Anti-rabbit (mouse IgG) and rabbit antibody-AntiKi-67, through a conjugation method. The conjugation was successfully confirmed by Fourier transform infrared, zeta potential, and dynamic light scattering. The internalization of the conjugated nanoparticles in human cervical cancer (HeLa) cells was followed by two-photon confocal microscopy. The ZrO2:Yb3+-Er3+ nanocrystals exhibited strong red emission under 970-nm excitation. Moreover, the luminescence change due to the addition of APTES molecules and biomolecules on the nanocrystals was also studied. These results demonstrate that ZrO2:Yb3+-Er3+ nanocrystals can be successfully functionalized with biomolecules to develop platforms for biolabeling and bioimaging.

  9. The electroluminescence mechanism of Er³⁺ in different silicon oxide and silicon nitride environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebohle, L., E-mail: l.rebohle@hzdr.de; Wutzler, R.; Braun, M.

    Rare earth doped metal-oxide-semiconductor (MOS) structures are of great interest for Si-based light emission. However, several physical limitations make it difficult to achieve the performance of light emitters based on compound semiconductors. To address this point, in this work the electroluminescence (EL) excitation and quenching mechanism of Er-implanted MOS structures with different designs of the dielectric stack are investigated. The devices usually consist of an injection layer made of SiO₂ and an Er-implanted layer made of SiO₂, Si-rich SiO₂, silicon nitride, or Si-rich silicon nitride. All structures implanted with Er show intense EL around 1540 nm with EL power efficienciesmore » in the order of 2 × 10⁻³ (for SiO₂:Er) or 2 × 10⁻⁴(all other matrices) for lower current densities. The EL is excited by the impact of hot electrons with an excitation cross section in the range of 0.5–1.5 × 10⁻¹⁵cm⁻². Whereas the fraction of potentially excitable Er ions in SiO₂ can reach values up to 50%, five times lower values were observed for other matrices. The decrease of the EL decay time for devices with Si-rich SiO₂ or Si nitride compared to SiO₂ as host matrix implies an increase of the number of defects adding additional non-radiative de-excitation paths for Er³⁺. For all investigated devices, EL quenching cross sections in the 10⁻²⁰ cm² range and charge-to-breakdown values in the range of 1–10 C cm⁻² were measured. For the present design with a SiO₂ acceleration layer, thickness reduction and the use of different host matrices did not improve the EL power efficiency or the operation lifetime, but strongly lowered the operation voltage needed to achieve intense EL.« less

  10. Study of 162Er via the (p , t) and (p ,p') reactions

    NASA Astrophysics Data System (ADS)

    Kisliuk, D.; Garrett, P. E.; Finlay, A.; Bianco, L.; Bildstein, V.; Burbadge, C.; Chagnon-Lessard, S.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Jamieson, D.; Jigmeddorj, B.; Maclean, A. D.; Michetti-Wilson, J.; Leach, K. G.; Radich, A. J.; Rand, E.; Svensson, C. E.; Wong, J.; Ball, G. C.; Triambak, S.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.

    2015-10-01

    The nature of excited states in well-deformed nuclei pose a challenge in nuclear structure. In light of this, the study of 162Er via the 164Er (p , t) and 162Er (p ,p') reactions has been initiated to shed light on the structure of these excited states. The experiments were performed at the Maier-Leibnitz Laboratory using a 22 MeV proton beam on highly-enriched targets of 162,164Er and the reaction was analyzed with the Q3D spectrograph. Strong population in the (p , t) reaction of the 02+ state, far greater than other 0+ states, has been observed. Transition matrix elements for population of low-lying states in the (p ,p') reaction have also been extracted. Initial results from these experiments will be presented.

  11. Simultaneous observation of up/down conversion photoluminescence and colossal permittivity properties in (Er+Nb) co-doped TiO2 materials

    NASA Astrophysics Data System (ADS)

    Tse, Mei-Yan; Tsang, Ming-Kiu; Wong, Yuen-Ting; Chan, Yi-Lok; Hao, Jianhua

    2016-07-01

    We have investigated the optical and dielectric properties of rutile TiO2 doped with Nb and Er, i.e., (Er0.5Nb0.5)xTi1-xO2. The up/downconversion photoluminescence was observed in the visible and near-infrared region from the materials under 980 nm laser diode excitation. The upconversion emissions are attributed to the energy transfer between Er ions in the excited states. Moreover, the dielectric measurements indicate that the fabricated materials simultaneously present colossal permittivity properties with relatively low dielectric loss. Our work demonstrates the coexistence of both interesting luminescence and attractive dielectric characteristics in (Er+Nb) co-doped TiO2, showing the potential for multifunctional applications.

  12. Photoluminescence of Er-doped silicon-rich oxide thin films with high Al concentrations

    NASA Astrophysics Data System (ADS)

    Rozo, Carlos; Fonseca, Luis F.; Jaque, Daniel; García Solé, José

    Er-doped silicon-rich oxide (SRO) thin films co-doped with Al in high concentrations were prepared by sputtering. Some films were deposited using a substrate heater (150 °C

  13. Energy transfer dynamics of Er3+/Nd3+ embedded SiO2-Al2O3-Na2CO3-SrF2-CaF2 glasses for optical communications

    NASA Astrophysics Data System (ADS)

    Gelija, Devarajulu; Kadathala, Linganna; Borelli, Deva Prasad Raju

    2018-04-01

    The fluorescence and upconversion studies of Er3+ doped and Er3+/Nd3+ co-doped silicate based oxyfluoride glasses have been systematically analyzed. The broad band NIR emissions (830-1700 nm), includes optical bands like O, E, S, C and L were observed in the Er3+-Nd3+ co-doped glasses. The NIR emission intensity peaks centered at 876, 1057, 1329 and 1534 nm were observed for the Er3+-Nd3+ co-doped glasses. In the co-doped samples the strongest emission intensity at 1534 nm increased up to 0.5 mol % and then decreased to 3.0 mol % of Nd3+ ions under the excitation of 980 nm. The upconversion studies of the co-doped samples were recorded under the excitation of 980 and 808 nm and found the upconversion emission peaks centered at 524, 530, 547, 590 and 656 nm. The energy transfer processes between the relevant excitation levels of Er3+ and Nd3+ ions and energy transfer efficiency were discussed. The obtained results indicate that Nd3+ can be an efficient sensitizer for Er3+ to enhance upconversion emission at green laser transition for sensors and NIR emission at 1534 nm for optical communication applications.

  14. Recent results of measurements of evaporation residue excitation functions for 19F+194,196,198Pt and 16,18O+198Pt systems with HYRA spectrometer at IUAC

    NASA Astrophysics Data System (ADS)

    Behera, B. R.

    2015-01-01

    In this talk results of the evaporation residue (ER) cross sections for the 19F+194,196,198Pt (forming compound nuclei 213,215,217Fr) and 16,18O+198Pt (forming compound nuclei 214,216Rn) systems measured at Hybrid Recoil mass Analyzer (HYRA) spectrometer installed at the Pelletron+LINAC accelerator facility of the Inter University Accelerator Center (IUAC), New Delhi are reported. The survival probabilities of 215Fr and 217Fr with neutron numbers N = 126 are found to be lower than the survival probabilities of 215Fr and 217Fr with neutron numbers N = 128 and 130 respectively. Statistical model analysis of the ER cross sections show that an excitation energy dependent scaling factor of the finite-range rotating liquid drop model fission barrier is necessary to fit the experimental data. For the case of 214,216Rn, the experimental ER cross sections are compared with the predictions from the statistical model calculations of compound nuclear decay where Kramer's fission width is used. The strength of nuclear dissipation is treated as a free parameter in the calculations to fit the experimental data.

  15. Fluorescence properties of Yb3+-Er3+ co-doped phosphate glasses containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Martínez Gámez, Ma A.; Vallejo H, Miguel A.; Kiryanov, A. V.; Licea-Jiménez, L.; Lucio M, J. L.; Pérez-García, S. A.

    2018-04-01

    Er3+-Yb3+ co-doped phosphate glasses containing silver nitrate (SN), were fabricated. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analyses were used to evidence the nucleation and presence of silver nanoparticles (SNP). The basic parameters of the glasses were inspected by means of absorption and fluorescence spectra, and fluorescence lifetimes under excitation at 916 nm (in-band of Yb3+), and at 406 nm (in-band of surface plasmon resonance given by the presence of SNP). The spectra as well as estimates for the basic parameters defining the lasing/amplifying potential of the glasses were studied as a function of SN concentration. The experimental results indicate that by increasing the SN content an enhancement of Er3+/Yb3+ fluorescence takes place.

  16. Modeling of Yb3+/Er3+-codoped microring resonators

    NASA Astrophysics Data System (ADS)

    Vallés, Juan A.; Gălătuş, Ramona

    2015-03-01

    The performance of a highly Yb3+/Er3+-codoped phosphate glass add-drop microring resonator is numerically analyzed. The model assumes resonant behaviour of both pump and signal powers and the dependences of pump intensity build-up inside the microring resonator and of the signal transfer functions to the device through and drop ports are evaluated. Detailed equations for the evolution of the rare-earth ions levels population densities and the propagation of the optical powers inside the microring resonator are included in the model. Moreover, due to the high dopant concentrations considered, the microscopic statistical formalism based on the statistical average of the excitation probability of the Er3+ ion in a microscopic level has been used to describe energy-transfer inter-atomic mechanisms. Realistic parameters and working conditions are used for the calculations. Requirements to achieve amplification and laser oscillation within these devices are obtainable as a function of rare earth ions concentration and coupling losses.

  17. Laser-excited fluorescence of rare earth elements in fluorite: Initial observations with a laser Raman microprobe

    USGS Publications Warehouse

    Burruss, R.C.; Ging, T.G.; Eppinger, R.G.; Samson, a.M.

    1992-01-01

    Fluorescence emission spectra of three samples of fluorite containing 226-867 ppm total rare earth elements (REE) were excited by visible and ultraviolet wavelength lines of an argon ion laser and recorded with a Raman microprobe spectrometer system. Narrow emission lines ( 0.9 for Eu2+ and 0.99 for Er3+. Detection limits for three micrometer spots are about 0.01 ppm Eu2+ and 0.07 ppm Er3+. These limits are less than chondrite abundance for Eu and Er, demonstrating the potential microprobe analytical applications of laser-excited fluorescence of REE in fluorite. However, application of this technique to common rock-forming minerals may be hampered by competition between fluorescence emission and radiationless energy transfer processes involving lattice phonons. ?? 1992.

  18. Structural and optical studies of Er3+-doped alkali/alkaline oxide containing zinc boro-aluminosilicate glasses for 1.5 μm optical amplifier applications

    NASA Astrophysics Data System (ADS)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Lira, A.; Caldiño, U.; Meza-Rocha, A. N.; Falcony, C.; Kityk, I. V.; Taufiq-Yap, Y. H.; Halimah, M. K.; Mahdi, M. A.

    2017-07-01

    In the present work, we report on the optical spectral properties of Er3+-doped zinc boro-aluminosilicate glasses with an addition of 10 mol % alkali/alkaline modifier regarding the fabrication of new optical materials for optical amplifiers. A total of 10 glasses were prepared using melt-quenching technique with the compositions (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10Li2O - xEr2O3 and (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10MgO - xEr2O3 (x = 0.1, 0.25, 0.5, 1.0, and 2.0 mol %). We confirm the amorphous-like structure for all the prepared glasses using X-ray diffraction (XRD). To study the functional groups of the glass composition after the melt-quenching process, Raman spectroscopy was used, and various structural units such as triangular and tetrahedral-borates (BO3 and BO4) have been identified. All the samples were characterized using optical absorption for UV, visible and NIR regions. Judd-Ofelt (JO) intensity parameters (Ωλ, λ = 2, 4 and 6) were calculated from the optical absorption spectra of two glasses LiEr 2.0 and MgEr 2.0 (doped with 2 mol % of Er3+). JO parameters for LiEr 2.0 and MgEr 2.0 glasses follow the trend as Ω6>Ω2>Ω4. Using Judd-Ofelt intensity parameters, we obtained radiative probability A (S-1), branching ratios (β), radiative decay lifetimes τrad (μs) of emissions from excited Er+3 ions in LiEr 2.0 and MgEr 2.0 to all lower levels. Quantum efficiency (η) of 4I13/2 and 4S3/2 levels for LiEr 2.0 and MgEr 2.0 with and without 4D7/2 level was calculated using the radiative decay lifetimes τrad. (μs) and measured lifetimes τexp. (μs). We measured the visible photoluminescence under 377 nm excitation for both LiEr and MgEr glass series within the region 390-580 nm. Three bands were observed in the visible region at 407 nm, 530 nm, and 554 nm, as a result of 2H9/2 → 4I15/2, 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions, respectively. Decay lifetimes for emissions at 407 nm, 530 nm, and 554 nm were measured and they show single exponential behavior for all the LiEr and MgEr glass series. From the photoluminescence and radiative decay lifetimes (τrad), we calculated the full-width at half-maximum (FWHM), emission cross-section (σPE) and bandwidth gain (FWHM × σPE) parameters. Near-infrared photoluminescence under 980 nm excitation was measured for all the LiEr and MgEr glass series in the region 1420-1620 nm. NIR emissions show a broadband centered at ∼1530 nm due to the transition of Er3+: 4I13/2 → 4I15/2. Decay lifetimes for NIR emission at ∼1530 nm were measured and they show a quite exponential nature for all the LiEr and MgEr glass series. From the NIR emission spectra and decay lifetimes, we calculated the full-width at half-maximum (FWHM), the emission cross-section (σPE) and the bandwidth gain (FWHM × σPE) for the NIR emission and it shows FWHM of 50-70 nm for prepared glasses, emission cross-section of (∼3.5) × 10-20 cm2, while bandwidth gain was (∼25) × 10-26 cm3.

  19. Double NIR laser stimulation and enhancing the thermal sensitivity of Er3+/Tm3+/Nd3+ doped multilayer core-shell nanoparticles.

    PubMed

    Ba, Zhaojing; Hu, Min; Zhao, Yiming; Wang, Yiqing; Wang, Jing; Zhang, Zhenxi

    2018-08-31

    Non-contact thermal sensors are important devices to study cellular processes and monitor temperature in vivo. Herein, a novel highly sensitive nanothermometer based on NaYF 4 :Yb,Er@ NaYF 4 @NaYF 4 :Yb,Tm@ NaYF 4 :Nd (denoted as Er@Y@Tm@Nd) was prepared by a facile solvothermal method. When excited by the near-infrared (NIR) light of 808 and 980 nm, the as-prepared Er@Y@Tm@Nd nanoparticles could emit both blue and green light, respectively, since the lanthanide cations responsible for these emissions are gathered inside this nanostructure. The green and blue light intensity ratio exhibits obvious temperature dependence in the range of the physiological temperature. Additionally, the fluorescence intensity of Er 3+ and Tm 3+ are also greatly enhanced due to the multilayer structure that implies avoiding the Er 3+ and Tm 3+ energy cross-relaxation by introduction of a NaYF 4 wall between them. The as-prepared core-shell-shell-shell structure with Er 3+ and Tm 3+ in different layers improves dozens of times of the thermal sensitivity based on the non-thermal coupling levels of the probe: the maximum values for the sensitivity are 2.95% K -1 (I Er-521 /I Tm-450 ) and 6.30% K -1 (I Tm-474 /I Er-541 ) when excited by 980 and 808 nm laser sources, respectively. These values are well above those previously reported (<0.7% K -1 ), indicating that the prepared nanostructures are temperature sensors with excellent thermal sensitivity and sensitive to NIR wavelength excitation that makes them highly preferred for thermal detection.

  20. Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications

    NASA Astrophysics Data System (ADS)

    Tian, Ying; Xu, Rongrong; Hu, Lili; Zhang, Junjie

    2012-04-01

    The fluorescence properties of 2.7 μm emission as well as near infrared emissions in Er3+/Nd3+ doped fluorophosphate glasses are investigated under 800 and 980 nm excitation. The fluorescence dynamics and energy transfer processes between Er and Nd ions in different pumping schemes are reported. Three Judd-Ofelt intensity parameters, energy transfer microparameters, and efficiency have been determined using the Judd-Ofelt and Förster-Dexter theories. The calculated energy transfer efficiency of the Er3+:4I13/2 level to the Nd3+:4I15/2 level is as high as 83.91%. The results indicate that Nd3+ may be an efficient sensitizer for Er3+ to obtain mid-infrared emission and the more suitable pumping scheme of 2.7 μm laser applications for Er3+/Nd3+ doped fluorophosphate glass is 980 nm excitation.

  1. SrMoO4:Er3+-Yb3+ upconverting phosphor for photonic and forensic applications

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2016-08-01

    The Er3+-Yb3+ codoped strontium molybdate (SrMoO4) phosphors have been synthesized via chemical co-precipitation method by adding ammonium hydroxide as a base reagent. The phase, crystal structure and formation of spindle-like particles present in the prepared phosphors have been recognized by using the X-ray powder diffraction (XRPD) and Field emission scanning electron microscopy (FE-SEM) techniques. The Fourier transform infrared (FTIR) spectroscopy of the developed phosphors has been analyzed to mark the different functional groups present in synthesized phosphors. The multicolour upconversion emissions observed upon excitation with 980 nm and 808 nm laser diode have been explained on the basis of dopants ions concentration, pump power dependence, energy level structure and decay curve analysis. The colour co-ordinate study confirmed that the codoped phosphor emits non-tunable green colour when excited with the 980 nm laser diode, whereas it shows the colour tunability from yellow to green region upon excitation with the 808 nm laser diode. The applicability of non-tunable green colour emission has been demonstrated in the security ink and latent finger print detection. This shows the utility of the developed phosphors in the photonic and forensic applications.

  2. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+,Er3+ phosphors.

    PubMed

    Cho, Youngho; Song, Si Won; Lim, Soo Yeong; Kim, Jae Hun; Park, Chan Ryang; Kim, Hyung Min

    2017-03-08

    Although upconversion phosphors have been widely used in nanomedicine, laser engineering, bioimaging, and solar cell technology, the upconversion luminescence mechanism of the phosphors has been fiercely debated. A comprehensive understanding of upconversion photophysics has been significantly impeded because the number of photons incorporated in the process in different competitive pathways could not be resolved. Few convincing results to estimate the contribution of each of the two-, three-, and four-photon channels of near-infrared (NIR) energy have been reported in yielding upconverted visible luminescence. In this study, we present the energy upconversion process occurring in NaYF 4 :Yb 3+ ,Er 3+ phosphors as a function of excitation frequency and power density. We investigated the upconversion mechanism of lanthanide phosphors by comparing UV/VIS one-photon excitation spectra and NIR multi-photon spectra. A detailed analysis of minor transitions in one-photon spectra and luminescence decay enables us to assign electronic origins of individual bands in multi-photon upconversion luminescence and provides characteristic transitions representing the corresponding upconversion channel. Furthermore, we estimated the quantitative contribution of multiple channels with respect to irradiation power and excitation energy.

  3. Positive influence of Tm3+ on effective Er3+: 3 μm emission in fluoride glass under 980 nm excitation

    NASA Astrophysics Data System (ADS)

    Huang, Feifei; Wang, Tao; Guo, Yanyan; Lei, Ruoshan; Xu, Shiqing

    2017-05-01

    Er3+ and Tm3+ singly doped and codoped new fluoride glasses were prepared by traditional melt-quenching method. Efficient 3 μm emission was obtained under 980 nm laser excitation. It is worthy to notice that one of the two ions can be the sensitizer to the other one by depressing the Er3+: 1.5 μm emission through the energy transfer process from Er3+:4I13/2 level to Tm3+:3F4 level. On the basis of measured absorption spectra, the Judd-Ofelt intensity parameters and radiation emission probability were calculated to evaluate the spectroscopic properties. Additionally, the micro-parameters together with the phonon assistance of Er3+:4I13/2 → Tm3+:3F4 and Er3+:4I11/2 → Tm3+:3H5 processes were quantitatively analyzed by using Dexter model. The theoretical micro-parameters results meet well with the experiments which indicates that Er3+/Tm3+ codoped fluoride glass is a potential kind laser glass for 3 μm laser.

  4. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kshetri, Yuwaraj K.; Regmi, Chhabilal; Kim, Hak-Soo; Wohn Lee, Soo; Kim, Tae-Ho

    2018-05-01

    Yb3+ and Er3+ doped YVO4 (Yb3+/Er3+:YVO4) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb3+/Er3+:YVO4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2H11/2, 4S3/2 to 4I15/2 and 4F9/2 to 4I15/2 transitions of Er3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb3+. The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  5. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles.

    PubMed

    Kshetri, Yuwaraj K; Regmi, Chhabilal; Kim, Hak-Soo; Lee, Soo Wohn; Kim, Tae-Ho

    2018-05-18

    Yb 3+ and Er 3+ doped YVO 4 (Yb 3+ /Er 3+ :YVO 4 ) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb 3+ /Er 3+ :YVO 4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2 H 11/2 , 4 S 3/2 to 4 I 15/2 and 4 F 9/2 to 4 I 15/2 transitions of Er 3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb 3+ . The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  6. The structure of the 168Er nucleus and the 166Er(t,p) 168 Er reaction in terms of the sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Akiyama, Y.; Heyde, K.; Arima, A.; Yoshinaga, N.

    1986-05-01

    Extending the interacting boson model by incorporating besides s and d, also the g-boson, we can describe the population of positive parity states of 168Er in the 166Er(t,P) 168Er reaction rather well. In particular, the excitation of I,Kπi = 4,3 +1; 2,2 +2; 0,0 +3 and 0,0 +4 states is much improved over the sd-IBM approach.

  7. Excited-state absorption in Er: BaY2F8 and Cs3Er2Br9 and comparison with Er: LiYF4

    NASA Astrophysics Data System (ADS)

    Pollnau, M.; Lüthy, W.; Weber, H. P.; Krämer, K.; Güdel, H. U.; McFarlane, R. A.

    1996-04-01

    The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4 I 1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2 H 9/2. A significant population of the4 I 11/2 level and ESA at 970 nm are not present under 800 nm pumping.

  8. US Army Research Laboratory Directed Energy Internship Program 2014

    DTIC Science & Technology

    2015-11-01

    7 1400–1800 nm. However, when making EDFs, the solubility of Er in traditional silica ( SiO2 )-based glass is low and the ions that successfully...Thus, either half or all of the energy in a pair of excited ions could be wasted. In traditional SiO2 -based Er-doped glass (Er-SD), Er is co-doped...upconversion, Er-doped SiO2 NPs (Er-NP) are doped into the glass core of a fiber. This process is thought to create a cage of Al and O ions around each Er

  9. Controlled spontaneous emission in erbium-doped microphotonic materials

    NASA Astrophysics Data System (ADS)

    Kalkman, Jeroen

    2005-03-01

    Erbium is a rare-earth metal that, when incorporated in a solid, can emit light at a wavelength of 1.5 μm. It plays a key role in current day telecommunication technology as the principle ingredient of optical fiber amplifiers. In this thesis the control of the Er spontaneous emission in three different types of microphotonic materials is described. Part I of this thesis focuses on the effect of a metallo-dielectric interface on the spontaneous emission of optical emitters in silica glass. It is shown that Er ions near a Ag interface can couple to surface plasmons (SPs) via a near-field interaction. By coupling SPs out into the far field, large changes in the Er photoluminescence emission distribution, spectra, and polarization can be observed. The excitation of SPs also results in an increase of the Er photoluminescence decay rate. The observed decay rates are in good agreement with calculations based on a classical dipole oscillator model. From the change in photoluminescence decay rate of Si nanocrystals near a Ag interface it is shown that Si nanocrystals can efficiently excite SPs and have an internal quantum efficiency of 77 %. Part II focuses on the effect of a microcavity on the spontaneous emission of Er and describes how ion implantation can be used to dope dielectric microresonators with optically active Er ions. The fabrication and characterization of an Er ion-implanted silica microsphere resonator is described that shows lasing at 1.5 μm when pumped above its lasing threshold. Ion implantation is also used to dope toroidal microcavities on a Si chip with Er. The microtoroids are doped by either pre-implantation into the SiO2 base material, or by post-implantation in a fully fabricated microtoroid. The optical activation of Er ions in the microtoroid is investigated and Er lasing at 1.5 μm is observed for both types of microcavities with the lowest threshold (4.5 μW) for the pre-implanted microtoroids. Part III describes the fabrication of an Er-doped Si-inverse opal photonic crystal. These photonic crystals can potentially have a photonic bandgap that can fully inhibit the spontaneous emission of on optical emitter. Fabrication criteria are derived for such a photonic crystal, based on the lattice parameter, filling fraction, and Si refractive index. In the opal photonic crystal composed of both Si and SiO2 we show that Er ions can be selectively excited in both the Si and SiO2 part of the photonic crystal by changing the excitation wavelength and/or the measurement temperature.

  10. On the origin of emission and thermal quenching of SRSO:Er3+ films grown by ECR-PECVD

    PubMed Central

    2013-01-01

    Silicon nanocrystals embedded in a silicon-rich silicon oxide matrix doped with Er3+ ions have been fabricated by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Indirect excitation of erbium photoluminescence via silicon nanocrystals has been investigated. Temperature quenching of the photoluminescence originating from the silicon nanocrystals and the erbium ions has been observed. Activation energies of the thermally activated quenching process were estimated for different excitation wavelengths. The temperature quenching mechanism of the emission is discussed. Also, the origin of visible emission and kinetic properties of Er-related emission have been discussed in details. PMID:23433189

  11. High-spin terminating states in the N = 88 Ho 155 and Er 156 isotones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, J. M.; Paul, E. S.; Simpson, J.

    2015-05-01

    The Sn-124(Cl-37, 6n gamma) fusion-evaporation reaction at a bombarding energy of 180 MeV has been used to significantly extend the excitation level scheme of Ho-155(67)88. The collective rotational behavior of this nucleus breaks down above spin I similar to 30 and a fully aligned noncollective (band terminating) state has been identified at I-pi = 79/2(-). Comparison with cranked Nilsson-Strutinsky calculations also provides evidence for core-excited noncollective states at I-pi = 87/2(-) and (89/2(+)) involving particle-hole excitations across the Z = 64 shell gap. A similar core-excited state in Er-156(68)88 at I-pi = (46(+)) is also presented.

  12. Physical and optical properties of calcium sulfate ultra-phosphate glass-doped Er2O3

    NASA Astrophysics Data System (ADS)

    Aliyu, Aliyu Mohammed; Hussin, R.; Deraman, Karim; Ahmad, N. E.; Danmadami, Amina M.; Yamusa, Y. A.

    2018-03-01

    The influence of erbium on physical and optical properties of calcium sulfate ultra-phosphate glass was investigated using conventional melt quench process. Selected samples of composition 20CaSO4 (80 - x) P2O5- xEr2O3 with 0.1 ≤x ≤ 0.9 mol.% were prepared and assessed. X-ray diffraction (XRD) techniques were used to confirm the amorphous nature of the said samples. The structural units of phosphate-based glass were assessed from Raman spectra as ultra-(Q3), meta-(Q2), pyro-(Q1) and orthophosphate (Q0) units. Depolymerization process of the glasses was testified for higher calcium oxide content and UV-visible for optical measurement. Thermal analysis have been investigated by means of thermogravimetric analysis. The results show the decomposition of materials in the temperature range of 25∘C-1000∘C. Er3+ absorption spectra were measured in the range of 400-1800nm. PL measurement was carried out in order to obtain the excitation and emission spectra of the samples. The emission spectra excited at 779nm comprises of 518nm, 550nm and 649nm of transition 4F9/2, 4S3/2 and 2H11/2 excited states to 4I15/2 ground state. In physical properties, the density calculated using Archimedes method is inversely proportional to molar volume with increase in Er3+ ions. Optical bandgap (Eg) were determined using Tauc’s plots for direct transitions where Eg (direct) decreases with increase in erbium content. The refractive index increases with decreasing molar volume; this may have a tendency for larger optical bandgap. The result obtained from the glass matrix indicates that erbium oxide-doped calcium sulfate ultra-phosphate may give important information for wider development of functional glasses.

  13. The impact of photon flight path on S1 pulse shape analysis in liquid xenon two-phase detectors

    NASA Astrophysics Data System (ADS)

    Moongweluwan, M.

    2016-02-01

    The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors increases, the variation in the S1 photon flight path can become comparable to these decay constants, reducing the utility of pulse-shape analysis to separate NR from ER. The effect of path length variations in the LUX detector has been studied using the results of simulations and the impact on the S1 pulse shape analysis is discussed.

  14. Electroluminescent Yb2O3:Er and Yb2Si2O7:Er nanolaminate films fabricated by atomic layer deposition on silicon

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhongtao; Yang, Yang; Sun, Jiaming

    2018-06-01

    Atomic layer doped Yb2O3:Er and Yb2Si2O7:Er nanolaminate films are fabricated on silicon by atomic layer deposition, and ∼1530 nm electroluminescence (EL) is obtained from the metal-oxide-semiconductor light-emitting devices (MOSLEDs) based on these films. The Yb2O3 films transfer to Yb2Si2O7 phase after annealing above 1000 °C. Intense photoluminescence from Yb2Si2O7 film confirms high efficiency and energy transfer under optical excitation, but the limited electron conduction restricts the EL performance. EL from the Yb2O3:Er MOSLED outperforms, presenting an external quantum efficiency up to 8.5% and the power efficiency of 1 × 10-3. The EL is derived to result from the impact excitation of Er3+ ions by hot electrons, which stem from Fowler-Nordheim tunneling mechanism under sufficient bias voltage. The critical distance for the cross relaxation of doped Er3+ ions in nanolaminate Yb2O3 matrix is experimentally determined to be ∼3 nm. Such devices manifest the technological potential of Er-doped Yb-oxides for applications in silicon-based optoelectronics.

  15. Development of infrared sensors using energy transfer/energy upconversion processes: Study of laser excited fluorescence in rare Earth ion doped crystals

    NASA Technical Reports Server (NTRS)

    Nash-Stevenson, S. K.; Reddy, B. R.; Venkateswarlu, P.

    1994-01-01

    A summary is presented of the spectroscopic study of three systems: LaF3:Ho(3+), LaF3:Er(3+) and CaF2:Nd(3+). When the D levels of Ho(3+) in LaF3 were resonantly excited with a laser beam of 640 nm, upconverted emissions were detected from J (416 nm), F (485 nm), and E (546 nm) levels. Energy upconverted emissions were also observed from F and E levels of Ho(3+) when the material was excited with an 800 nm near infrared laser. When the D levels of Er(3+) in LaF3 were resonantly excited with a laser beam of 637 nm, upconverted emissions were detected from the E (540 nm) and P (320, 400, and 468 nm) levels. Energy upconverted emissions were also observed from F, E, and D levels of Er(3+) when the material was resonantly excited with an 804 nm near infrared laser. When the D levels of Nd(3+) in CaF2 were resonantly excited with a laser beam of 577 nm, upconverted emissions were detected from the L (360 and 382 nm), K (418 nm), and I (432 nm) levels. Very weak upconverted emissions were detected when this system was irradiated with a near infrared laser. The numbers in parentheses are the wavelengths of the emissions.

  16. Multifunctional hydroxyapatite/Na(Y/Gd)F4:Yb3+,Er3+ composite fibers for drug delivery and dual modal imaging.

    PubMed

    Liu, Min; Liu, Hui; Sun, Shufen; Li, Xuejiao; Zhou, Yanmin; Hou, Zhiyao; Lin, Jun

    2014-02-04

    Porous hydroxyapatite (HAp) composite fibers functionalized with up-conversion (UC) luminescent and magnetic Na(Y/Gd)F4:Yb(3+),Er(3+) nanocrystals (NCs) have been fabricated via electrospinning. After transferring hydrophobic oleic acid-capped Na(Y/Gd)F4:Yb(3+),Er(3+) NCs into aqueous solution, these water-dispersible NCs were dispersed into precursor electrospun solution containing CTAB. Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers were fabricated by the high temperature treatment of the electrospun Na(Y/Gd)F4:Yb(3+),Er(3+) NCs decorated precursor fibers. The biocompatibility test on MC 3T3-E1 cells using MTT assay shows that the HAp composite fibers have negligible cytotoxity, which reveals the HAp composite fibers could be a drug carrier for drug delivery. Because the contrast brightening is enhanced at increased concentrations of Gd(3+), the HAp composite fibers can serve as T1 magnetic resonance imaging contrast agents. In addition, the composites uptaken by MC 3T3-E1 cells present the UC luminescent emission of Er(3+) under the excitation of a 980 nm near-infrared laser. The above findings reveal Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers have potential applications in drug storage/release and magnetic resonance/UC luminescence imaging.

  17. Impact of firing temperature on multi-wavelength selective Stokes and anti-Stokes luminescent behavior by Gd2O2S:Er,Yb phosphor and its application in solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Kataria, V.; Mehta, D. S.

    2018-04-01

    Erbium (Er3+)-ytterbium (Yb3+) doped gadolinium oxysulphide (Gd2O2S) phosphor has been developed via a facile method of solid-state flux fusion, and offers two-fold spectrum modification with highly intense Stokes and anti-Stokes shift. The effect of the firing cycle on the photoluminescent response and morphology of Gd2O2S:Er,Yb is scrutinized, wherein the firing temperature was varied (1000 °C-1250 °C), keeping firing time and all other parameters constant. Interestingly, the nanostructures fired below 1150 °C showed nanorods of diameter ~200 nm and length ~1-2 µm, whereas firing at 1150 °C and above rendered nanospheres with small diameter, ~350 nm. Highly bright upconversion (UC) emission was achieved even under an extremely low excitation power density of 800 µW cm-2 from a 980 nm laser, and was comfortably visible to the naked eye. The incident power dependent studies disclosed increase in UC-emission intensity with increasing excitation power and a quasi-linear dependence on excitation power density. Intense characteristic UC-emission of Er3+ excited states at 525 nm, 556 nm and 668 nm were observed, and the green emission band was found to be dominant over the red band in intensity. Concurrently, downconversion (DC) emission at 556 nm and 669 nm was also exhibited under ultraviolet excitation (285 nm and 380 nm), with the red band being more powerful than the green, unlike UC-emission. Firing temperature dependent studies divulged the dependence of luminescence intensity on the firing cycle of the luminophore and formation of the respective luminescent phase. The UC-emission intensity was found to be maximum for samples fired at 1150 °C, whereas samples fired at 1000 °C showed the highest DC-emission intensity. The excitation and emission profile of single Gd2O2S:Er,Yb phosphor lying in the desired spectral region and as a dual spectral converter marks its possible application for enhanced harvesting of sunlight.

  18. Nd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm

    NASA Astrophysics Data System (ADS)

    Li, Xiaomin; Wang, Rui; Zhang, Fan; Zhou, Lei; Shen, Dengke; Yao, Chi; Zhao, Dongyuan

    2013-12-01

    Core/shell1/shell2/shell3 structured NaGdF4:Nd/NaYF4/NaGdF4:Nd,Yb,Er/NaYF4 nanocrystals were well designed and synthesized, each of the parts assume respective role and work together to achieve dual-mode upconverting (UC) and downconverting (DC) luminescence upon the low heat effect 800-nm excitation. Nd3+, Yb3+, Er3+ tri-doped NaGdF4:Nd,Yb,Er UC layer [NIR (800 nm)-to-Visible (540 nm)] with a constitutional efficient 800 nm excitable property were achieved for the in-vitro bioimaging with low auto-fluorescence and photo-damage effects. Moreover, typical NIR (800 nm)-to-NIR (860-895 nm) DC luminescence of Nd3+ has also been realized with this designed nanostructure. Due to the low heat effect, high penetration depth of the excitation and the high efficiency of the DC luminescence, the in-vivo high contrast DC imaging of a whole body nude mouse was achieved. We believe that such dual-mode luminescence NCs will open the door to engineering the excitation and emission wavelengths of NCs and will provide a new tool for a wide variety of applications in the fields of bioanalysis and biomedical.

  19. Frequency upconversion in Er3+ doped tungsten tellurite glass containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahajan, S. K.; Parashar, J.

    2018-05-01

    The frequency upconversion emission in Er3+ doped TeO2-WO3-Li2O containing Ag nanoparticle (TWLEOAG) glasses at 980nm excitation is reported. The absorption spectra reveal not only the peaks due to Er3+ ions, but also the surface plasmon resonance band of silver NPs located around 525nm and 650 nm. The spherical AgNPs with average size ˜38 nm in the glassy matrix is evidenced from the TEM measurement. Under 980nm laser excitation upconversion emission spectra show two major emission at 550nm and 638nm originating from 4S3/2 and 4F9/2 energy levels of the Er3+ ions, respectively was observed. Upconversion emission enhancement factor 7 fold has been measured for sample heat treated during 40h. However for 18h heat treated TWLEOAG sample under 980 nm flash lamp excitation produced Intense green compare to red emission. Since the 980nm frequency is far from the AgNPs surface plasmon resonance frequency, visible emission ehancement is attributed to local field increase in proximity of the Ag NPs and not energy tranfer from NPs to emitters. Possible energy transfer upconversion mechanism has been also discussed.

  20. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers

    PubMed Central

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-01-01

    A series of Er3+/Tm3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er3+/Tm3+ co-doped fibers mainly yield 1390–1470, 1850–1980, and 2625–2750 nm emissions when excited at 793 nm, and 1480–1580, 1800–1980, and 2625–2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410–1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er3+/Tm3+ co-doped fiber amplifier working in the S + C communication band. PMID:28772846

  1. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers.

    PubMed

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-05-03

    A series of Er 3+ /Tm 3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er 3+ /Tm 3+ co-doped fibers mainly yield 1390-1470, 1850-1980, and 2625-2750 nm emissions when excited at 793 nm, and 1480-1580, 1800-1980, and 2625-2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410-1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er 3+ /Tm 3+ co-doped fiber amplifier working in the S + C communication band.

  2. Synthetic and spectroscopic studies of vanadate glaserites I: Upconversion studies of doubly co-doped (Er, Tm, or Ho):Yb:K{sub 3}Y(VO{sub 4}){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimani, Martin M., E-mail: kimani@g.clemson.edu; Chen, Hongyu, E-mail: hongyuc@g.clemson.edu; McMillen, Colin D., E-mail: cmcmill@g.clemson.edu

    2015-03-15

    The synthesis and upconversion properties of trigonal glaserite-type K{sub 3}Y(VO{sub 4}){sub 2} co-doped with Er{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+}, or Tm{sup 3+}/Yb{sup 3+} were studied. Powder samples were synthesized by solid state reactions at 1000 °C for 48 h, while well-formed hexagonal single crystals of the same were grown hydrothermally using 10 M K{sub 2}CO{sub 3} at 560–650 °C. Infrared-to-visible upconversion by Er{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+}, or Tm{sup 3+}/Yb{sup 3+} codoped-K{sub 3}Y(VO{sub 4}){sub 2} glaserite powder and single crystals was observed, and the upconversion spectral properties were studied as a function of different Er{sup 3+}, Tm{sup 3+},more » Ho{sup 3+}, and Yb{sup 3+} ion concentrations. The process is observed under 980 nm laser diode excitation and leads to strong green (552 nm) and red (659 nm) emission for Er{sup 3+}/Yb{sup 3+}, green (549 nm) and red (664 nm) emission for Ho{sup 3+}/Yb{sup 3+}, and blue (475 nm) and red (647 nm) emission for Tm{sup 3+}/Yb{sup 3+}. The main mechanism that allows for up-conversion is attributed the energy transfer among Yb{sup 3+} and the various Er{sup 3+}/Ho{sup 3+}/Tm{sup 3+} ions in excited states. These results illustrate the large potential of co-doped alkali double vanadates for photonic applications involving optoelectronics devices. - Graphical abstract: Synthesis and upconversion in vanadate glaserites. - Highlights: • K{sub 3}Y(VO{sub 4}){sub 2} codoped with Er, Tm, or Ho:Yb were synthesized via solid-state and hydrothermal routes. • Upconversion properties are investigated. • The codoped compounds revealed efficient infrared-to-visible upconversion. • The presented compounds are potential host for solid state lighting.« less

  3. Theoretical analysis of photon statistics on excited number of modes and dopant concentration in Er3+:Ti:LiNbO, waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Ducariu, A.; Constantin, G. C.; Puscas, N. N.

    2005-08-01

    In the small gain approximation and the unsaturated regime in this paper we report some original results concerning the evaluation of the Fano factor, statistical fluctuation and spontaneous emission factor which characterize the photon statistics on the number of excited modes, dopant concentration and power pumping in the single and double pass Er3+ - doped LiNbO, straight waveguide amplifiers pumped near 1484 nm using erfc, Gaussian and constant profile of the Er3+ ions in LiNbO, crystal. We demonstrated that for 50 mW input pump power the Poisson photon statistics are maintained in the above mentioned amplifiers for concentrations of the Er ions smaller than l026 m-3 and also high gains and low noise figures are achievable. The obtained results can be used for the design of optoelectronic integrated circuits.

  4. Optical Temperature Sensor Based on Infrared Excited Green Upconversion Emission in Hexagonal Phase NaLuF4:Yb3+/Er3+ Nanorods.

    PubMed

    Li, Dongyu; Tian, Linlin; Huang, Zhen; Shao, Lexi; Quan, Jun; Wang, Yuxiao

    2016-04-01

    Hexagonal phase NaLuF4:Yb3+/Er3+ nanorods were synthesized hydrothermally. An analysis of the intense green upconversion emissions at 525 nm and 550 nm in hexagonal phase NaLuF4:Yb3/+Er3+ nanorods under excitation power density of 4.2 W/cm2 available from a diode laser emitting at 976 nm, have been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive green upconversion emissions at 525 nm and 550 nm in this material was recorded in the physiological range from 295 to 343 K. The maximum sensitivity derived from the FIR technique of the green upconversion emissions is approximately 0.0044 K-1. Experimental results implied that hexagonal phase NaLuF4:Yb3/+Er3+ nanorods was a potential candidate for optical temperature sensor.

  5. Spectroscopy and visible frequency upconversion in Er3+-Yb3+: TeO2-ZnO glass.

    PubMed

    Mohanty, Deepak Kumar; Rai, Vineet Kumar

    2014-01-01

    The UV-Vis-NIR absorption studies of the Er(3+)/Er(3+)-Yb(3+) doped/codoped TeO2-ZnO (TZO) glasses fabricated by the melting and quenching method has been performed. The spectroscopic radiative parameters viz. radiative transition probabilities, branching ratios and lifetimes have been determined from the absorption spectrum by using Judd-Ofelt theory. The near infrared (NIR) to visible frequency upconversion (UC) have been monitored by using an excitation of 976 nm wavelength radiation from a CW diode laser. The effect of codoping with Yb(3+) ions on the intensity of the UC emission bands from the Er(3+) ions throughout visible region has been studied. The mechanism responsible for the observed upconversion emissions in the prepared samples have been explained on the basis of excited state absorption and efficient energy transfer processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Illuminating cellular structure and function in the early secretory pathway by multispectral 3D imaging in living cells

    NASA Astrophysics Data System (ADS)

    Rietdorf, Jens; Stephens, David J.; Squire, Anthony; Simpson, Jeremy; Shima, David T.; Paccaud, Jean-Pierre; Bastiaens, Philippe I.; Pepperkok, Rainer

    2000-04-01

    Membrane traffic between the endoplasmic reticulum (ER) and the Golgi complex is regulated by two vesicular coat complexes, COPII and COPI. COPII has been implicated in selective packaging of anterograde cargo into coated transport vesicles budding from the ER. COPI-coated vesicles are proposed to mediate recycling of proteins from the Golgi complex to the ER. We have used multi spectral 3D imaging to visualize COPI and COPII behavior simultaneously with various GFP-tagged secretory markers in living cells. This shows that COPII and COPI act sequentially whereby COPI association with anterograde transport complexes is involved in microtubule-based transport and the en route segregation of ER recycling molecules from secretory cargo within TCS in transit to the Golgi complex. We have also investigated the possibility to discriminate spectrally GFP fusion proteins by fluorescence lifetime imaging. This shows that at least two, and possibly up to three GFP fusion proteins can be discriminated and localized in living cells using a single excitation wavelength and a single broad band emission filter.

  7. Search for isobar-analog states of superheavy hydrogen isotopes5-7He

    NASA Astrophysics Data System (ADS)

    Chernyshev, B. A.; Gurov, Yu B.; Korotkova, L. Yu; Kuznetsov, D. S.; Lapushkin, S. V.; Tel'kushev, M. V.; Schurenkova, T. D.

    2016-02-01

    Search for isobar-analog states (IAS) of superheavy hydrogen isotopes 5-7H was performed among the high-excited states of helium isotopes 5-7He. The excited spectra were measured in stopped pion absorption by light nuclei. The experiment was performed at low energy pion channel of LANL with two-arm multilayer semiconductor spectrometer. Excited states of 5-7He were observed in three-body reaction channels on 10,11B nuclei. Several excited levels were observed for the first time. 6He excited state with Ex = 27.0(8) MeV observed in 10B(π-,pt)X channel is an IAS candidate for 6H with Er ∼ 5.5 MeV. 7He excited state with Ex = 24.8(4) MeV observed in 10B(π-,pd)X, nB(π-,pt)X and nB(π-,dd)X channels is an IAS candidate for 7H with Er ∼ 3 MeV.

  8. Optical properties of Er 3+/Yb 3+-codoped transparent PLZT ceramic

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiqiang; Li, Xiaoyan; Liu, Jing; Feng, Zhuohong; Li, Baozeng; Yang, Jiwen; Li, Kewen; Jiang, Hua; Chen, Xuesheng; Xie, Jianping; Ming, Hai

    2008-01-01

    Optical absorption and emission spectra of Er 3+/Yb 3+ ions in PLZT (Pb 1-xLa xZr yTi 1-yO 3) ceramic have been studied. Based on the Judd-Ofelt (J-O) theory, the J-O intensity parameters were calculated to be Ω2=2.021×10 -20 cm 2, Ω4=0.423×10 -20 cm 2, Ω6=0.051×10 -20 cm 2 from the absorption spectrum of Er 3+/Yb 3+-codoped PLZT. The J-O intensity parameters have been used to calculate the radiative lifetimes and the branching ratios for some excited 4I 13/2, 4I 11/2, 4I 9/24F 9/2, and 4S 3/2 levels of Er 3+ ion. The stimulated emission cross-section (8.24×10 -21 cm 2) was evaluated for the 4I 13/2→ 4I 15/2 transition of Er 3+. The upconversion emissions at 538, 564, and 666 nm have been observed in Er 3+/Yb 3+-codoped PLZT by exciting at 980 nm, and their origins were identified and analyzed.

  9. White light upconversion emission in Yb3+/ Er3+/ Tm3+ codoped oxy-fluoride lithium tungsten tellurite glass ceramics

    NASA Astrophysics Data System (ADS)

    Ansari, Ghizal F.; Mahajan, S. K.

    2012-02-01

    The bright white upconversion emission ( tri-colour UC) is generated in Er/Tm/Yb tri -doped oxy-fluoride lithium tungsten tellurite (TWLOF)glass ceramics containing crystalline phase LiYbF4 under the excitation of 980nm laser diode. The most appropriate combination of rare-earth ions (2mol% YbF3 1mol% ErF3 and 1mol%TmF3 )of glass ceramic sample has been determined to tune the primary colour (RGB and generate white light emission. By varying the pump power, intense and weak blue (487nm, 437nm), green (525nm and 545nm) and red (662nm) emission are simultaneously observed at room temperature. The dependence of upconversion emission intensity suggest that a theephoton process is responsible for the blue emission of Tm3+ ions and red emission due to both Tm3+ and Er3+ ions , while green emission originated from two photon processes in Er3+ ions. Also tri colour upconvesion and energy transfer in this glass ceramics sample were studied under 808nm laser diode excitation. The Upconversion mechanisms and Tm3+ ions plays role of both emitter and activator (transfer energy to Er) were discussed.

  10. Up-conversion white light of Tm 3+/Er 3+/Yb 3+ tri-doped CaF 2 phosphors

    NASA Astrophysics Data System (ADS)

    Cao, Chunyan; Qin, Weiping; Zhang, Jisen; Wang, Yan; Wang, Guofeng; Wei, Guodong; Zhu, Peifen; Wang, Lili; Jin, Longzhen

    2008-03-01

    Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors were synthesized using a hydrothermal method. The phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and up-conversion (UC) emission spectra. After annealing, the phosphors emitted white light under a 980 nm continuous wave diode laser (CW LD 2 W) excitation. As the excitation power density changed in the range of 20-260 W/cm2, the chromaticity coordinates of the UC light of the phosphor Ca0.885Tm0.005Er0.01Yb0.1F2 fell well in the white region of the 1931 CIE diagram. For the proportion of red, green and blue (RGB) in white light is strict, key factors for achieving UC white light, such as host materials, rare earth ions doping concentrations, annealing temperatures, as well as the excitation power densities, were investigated and discussed.

  11. Infrared Luminescence at 1010 nm and 1500 nm in LiNbO3:Er3+ Excitted by Short Pulse Radiation at 980 nm

    NASA Astrophysics Data System (ADS)

    Kokanyan, E. P.; Demirkhanyan, G. G.; Steveler, E.; Rinnert, H.; Aillerie, M.

    Luminescence of LiNbO3:Er3+ crystal at a wavelength of 1010 nm and 1500 nm under pulsed excitation of different power at a wavelength of 980 nm are experimentally and theoretically studied. It is revealed, that the main part of the absorbed energy gives rise to the luminescence at 1500 nm. Considered concentrations of Er3+ impurity ions allow to exclude cooperative processes in the impurity subsystem. The experimental results are interpreted in the framework of a three electronic levels system, assuming that the population of the higher lasing level 4I13/2 in the crystal under study is caused by relaxation processes from the excited level. It is shown that for obtaining of a laser radiation at about 1500 nm one can effectively use a pulse-pumping at 980 nm with a power density in a range of 50 ÷ 60 MW/cm2.

  12. Spectroscopic characterisation of Er-doped LuVO4 single crystals

    NASA Astrophysics Data System (ADS)

    Lisiecki, R.; Dominiak-Dzik, G.; Solarz, P.; Strzęp, A.; Ryba-Romanowski, W.; Łukasiewicz, T.

    2010-12-01

    The LuVO4:Er single crystals were grown by the Czochralski technique. The crystal-field split energy levels of Er3+ ion were derived experimentally employing absorption and emission spectra measured at T=10 K. The Judd-Ofelt phenomenological method was used to estimate intensity parameters, radiative lifetimes and branching ratios of luminescence. The excited state dynamics of the LuVO4:Er systems was investigated and experimental lifetimes of emitting levels were measured. The emission cross section of the 4I13/2→4I15/2 transition in the infrared was calculated by the Füchtbauer-Ladenburg method. The gain cross section, estimated for several inverse-population parameters, allowed us to evaluate a potential laser activity of the LuVO4:Er system at 1.6 μm. Also, the potential range of the optical pumping was assessed based on absorption spectra achieved at the room temperature. The optical losses related to the green up-converted emission, encountered under the 978 nm excitation between 300 and 670 K were indicated and discussed. Spectroscopic peculiarities of the Er3+-doped LuVO4 crystal were discussed in relation to optical properties of the YVO4:Er and GdVO4:Er crystals. Taking into account the high quantum efficiency of the 4I13/2 level, and satisfactory absorption and emission features, the LuVO4:Er crystal can be considered as a promising active material for laser operation near 1.6 μm.

  13. Nd³⁺-Yb³⁺ doped powder for near-infrared optical temperature sensing.

    PubMed

    Rakov, Nikifor; Maciel, Glauco S

    2014-07-01

    Er³⁺ doped powders are generally used for fluorescence-based temperature sensing application when near-infrared lasers are the excitation sources of choice. The fluorescence of Er³⁺ is produced by nonlinear (upconversion) processes, which generate strong internal heat. Lowering the excitation power causes drastic reduction of the fluorescence signal, and as a consequence the sensor applicability of Er³⁺ doped powders becomes compromised. Here we propose the use of the downconverted fluorescence of Yb³⁺ produced by efficient energy transfer from Nd³⁺ as an alternative temperature sensing system. Our results are presented for yttrium silicate powders prepared by combustion synthesis.

  14. Room temperature synthesis of β-NaGdF 4 : RE 3+ (RE= Eu, Er) nanocrystallites and their luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessitore, Gabriella; Mudring, Anja-Verena; Kr?mer, Karl W.

    In this study, a room temperature synthesis was developed for phase pure β-NaGdF 4 nanocrystallites as well as 5, 10, and 20% Eu 3+ or 5% Er 3+ doped material. Rare earth acetates and NaCl react in a 1:2 M ratio with a variable excess of NH 4F in ethylene glycol within 24 hours. Since the thermodynamic stability of the hexagonal phase decreases along the lanthanide series, a larger excess of NH 4F was required for the synthesis of luminescent samples doped with the smaller Er 3+ ions than for Eu 3+ doped or pure β-NaGdF 4. The materials weremore » characterized by powder X-ray diffraction, electron microscopy, and luminescence spectroscopy. The Eu 3+-doped samples show 5D 0→ 7F J and 5D 1→ 7F J luminescence after Eu 3+ excitation at 394 nm or Gd 3+ excitation at 273 nm and 308 nm. The ratio of 5D 1 vs. 5D 0 luminescence is influenced by the excitation wavelength and the Eu 3+ concentration. Lastly, the Er 3+-doped samples show green and red upconversion luminescence, respectively, from the 2H 11/2+ 4S 3/2→ 4I 15/2 and 4F 9/2→ 4I 15/2 transitions after 970 nm excitation.« less

  15. Room temperature synthesis of β-NaGdF 4 : RE 3+ (RE= Eu, Er) nanocrystallites and their luminescence

    DOE PAGES

    Tessitore, Gabriella; Mudring, Anja-Verena; Kr?mer, Karl W.

    2017-09-01

    In this study, a room temperature synthesis was developed for phase pure β-NaGdF 4 nanocrystallites as well as 5, 10, and 20% Eu 3+ or 5% Er 3+ doped material. Rare earth acetates and NaCl react in a 1:2 M ratio with a variable excess of NH 4F in ethylene glycol within 24 hours. Since the thermodynamic stability of the hexagonal phase decreases along the lanthanide series, a larger excess of NH 4F was required for the synthesis of luminescent samples doped with the smaller Er 3+ ions than for Eu 3+ doped or pure β-NaGdF 4. The materials weremore » characterized by powder X-ray diffraction, electron microscopy, and luminescence spectroscopy. The Eu 3+-doped samples show 5D 0→ 7F J and 5D 1→ 7F J luminescence after Eu 3+ excitation at 394 nm or Gd 3+ excitation at 273 nm and 308 nm. The ratio of 5D 1 vs. 5D 0 luminescence is influenced by the excitation wavelength and the Eu 3+ concentration. Lastly, the Er 3+-doped samples show green and red upconversion luminescence, respectively, from the 2H 11/2+ 4S 3/2→ 4I 15/2 and 4F 9/2→ 4I 15/2 transitions after 970 nm excitation.« less

  16. Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm.

    PubMed

    Yang, Jun; Zhang, Cuimiao; Peng, Chong; Li, Chunxia; Wang, Lili; Chai, Ruitao; Lin, Jun

    2009-01-01

    Light fantastic! Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals with controllable red, green, blue (RGB) and bright white upconversion luminescence by a single laser excitation of 980 nm have been successfully synthesized (see picture). Due to abundant UC PL colors, it can potentially be used as fluorophores in the field of color displays, back light, UC lasers, photonics, and biomedicine.Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu(2)O(3):Yb(3+), Tm(3+) nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-->(3)H(6) transition of Tm(3+). The bright green UC emissions of Lu(2)O(3):Er(3+) nanocrystals appeared near 540 and 565 nm were observed and assigned to the (2)H(11/2)-->(4)I(15/2) and (4)S(3/2)-->(4)I(15/2) transitions, respectively, of Er(3+). The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb(3+) in Lu(2)O(3):Er(3+) nanocrystals. In sufficient quantities of Yb(3+) with resprct to Er(3+), the bright red UC emission of Lu(2)O(3):Yb(3+)/Er(3+) centered at 662 nm was predominant, due to the (4)F(9/2)-->(4)I(15/2) transition of Er(3+). Based on the generation of red, green, and blue emissions in the different doped Lu(2)O(3):RE(3+) nanocrystals, it is possible to produce the luminescence with a wide spectrum of colors, including white, by the appropriate doping of Yb(3+), Tm(3+), and Er(3+) in the present Lu(2)O(3) nanocrystals. Namely, Lu(2)O(3):3 %Yb(3+)/0.2 %Tm(3+)/0.4 %Er(3+) nanocrystals show suitable intensities of blue, green, and red (RGB) emission, resulting in the production of perfect and bright white light with CIE-x=0.3456 and CIE-y=0.3179, which is very close to the standard equal energy white light illuminate (x=0.33, y=0.33). Because of abundant luminescent colors from RGB to white in Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals under 980 nm laser diode (LD) excitation, they can potentially be used as fluorophores in the field of color displays, back light, UC lasers, photonics, and biomedicine.

  17. Upconversion emission study of Er{sup 3+} doped CaMoO{sub 4} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Shriya, E-mail: Shriya.sinha6@gmail.com; Mahata, Manoj Kumar; Kumar, Kaushal

    2016-05-06

    The infrared to visible upconversion emission in Er{sup 3+} doped CaMoO{sub 4} phosphor has been investigated upon 980 nm diode laser excitation. The X-ray diffraction analysis reveals well crystalline nature and tetragonal phase structure of the prepared phosphor annealed at 800 °C. The Er{sup 3+} doped CaMoO{sub 4} phosphor has shown intense green upconversion emission upon 980 nm didode laser excitation. The green emission bands at 530 nm and 552 nm corresponds to the {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} electronic transitions, respectively of Er{sup 3+} ion. The very weak red emission band around 656more » nm is assigned to the {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transition of Er{sup 3+} ion. The CIE color coordinate exhibits the emission color in intense green region, indicating the use of present phosphor in display device applications.« less

  18. Down- and up-conversion emissions in Er-doped transparent fluorotellurite glass-ceramics

    NASA Astrophysics Data System (ADS)

    Miguel, A.; Morea, R.; Gonzalo, J.; Fernandez, J.; Balda, R.

    2015-03-01

    In this work, we report the near infrared and upconversion emissions of Er3+-doped transparent fluorotellurite glassceramics obtained by heat treatment of the precursor Er-doped TeO2-ZnO-ZnF2 glass. Structural analysis shows that ErF3 nanocrystals nucleated in the glass-ceramic sample are homogeneously distributed in the glass matrix with a typical size of 45±10 nm. The comparison of the fluorescence properties of Er3+-doped precursor glass and glass-ceramic confirms the successful incorporation of the rare-earth into the nanocrystals. An enhancement of the red upconversion emission due to 4F9/2→4I15/2 transition together with weak emission bands due to transitions from 2H9/2, 4F3/2,5/2, and 4F7/2 levels to the ground state are observed under excitation at 801 nm in the glass-ceramic sample. The temporal evolution of the red emission together with the excitation upconversion spectrum suggest that energy transfer processes are responsible for the enhancement of the red emission.

  19. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Lim, Herianto; Stavrias, Nikolas; Johnson, Brett C.; Marvel, Robert E.; Haglund, Richard F.; McCallum, Jeffrey C.

    2014-03-01

    Vanadium dioxide (VO2) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator-to-metal transition, the phase transition in VO2 can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO2 with erbium ions (Er3+) and observe their combined properties. The first excited-state luminescence of Er3+ lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er3+ into VO2 could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO2 thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO2 by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ˜800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO2 thin films. We conclude that Er-implanted VO2 can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO2.

  20. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping

    PubMed Central

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D.P.; Jha, Animesh; Jose, Gin

    2015-01-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 s.cm−3. Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease. PMID:26370060

  1. Nd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm

    PubMed Central

    Li, Xiaomin; Wang, Rui; Zhang, Fan; Zhou, Lei; Shen, Dengke; Yao, Chi; Zhao, Dongyuan

    2013-01-01

    Core/shell1/shell2/shell3 structured NaGdF4:Nd/NaYF4/NaGdF4:Nd,Yb,Er/NaYF4 nanocrystals were well designed and synthesized, each of the parts assume respective role and work together to achieve dual-mode upconverting (UC) and downconverting (DC) luminescence upon the low heat effect 800-nm excitation. Nd3+, Yb3+, Er3+ tri-doped NaGdF4:Nd,Yb,Er UC layer [NIR (800 nm)-to-Visible (540 nm)] with a constitutional efficient 800 nm excitable property were achieved for the in-vitro bioimaging with low auto-fluorescence and photo-damage effects. Moreover, typical NIR (800 nm)-to-NIR (860–895 nm) DC luminescence of Nd3+ has also been realized with this designed nanostructure. Due to the low heat effect, high penetration depth of the excitation and the high efficiency of the DC luminescence, the in-vivo high contrast DC imaging of a whole body nude mouse was achieved. We believe that such dual-mode luminescence NCs will open the door to engineering the excitation and emission wavelengths of NCs and will provide a new tool for a wide variety of applications in the fields of bioanalysis and biomedical. PMID:24346622

  2. Co-operative energy transfer in Yb3+-Er3+ co-doped SrGdxOy upconverting phosphor

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Pathak, Trilok K.; Dhoble, S. J.; . Terblans, J. J.; Swart, H. C.

    2018-04-01

    Upconversion nanoparticles (UCNPs) have shown considerable interest in many fields; however, low upconversion efficiency of UCNPs is still the most severe limitation of their applications. Yb3+ and Er3+ co-doped SrGd4O7/Gd2O3(SGO) upconversion (UC) phosphors were synthesized by a modified co-precipitation process. The UC properties were investigated by direct excitation with a 980 nm laser. It was observed that the as prepared materials showed relatively strong green emission, while upon the incorporation of the Er3+ ion, there was an increase in the upconversion luminescence intensity for the red component. The effect of different doping concentration of Er3+on the emission spectra and X-ray diffraction patterns of the UC materials have also been studied. The luminescence lifetimes and Commission Internationale de L'Eclairage coordinates for these as prepared samples were determined to understand the energy transfer (ET) mechanisms occurring between Yb3+ and Er3+ in the SGO host matrix. The UC luminescence intensity as a function of laser pump power was monitored and it was confirmed that the UC process in SGO:Yb3+/Er3+is a two-photon absorption process. The findings reported here are expected to provide a better approach for understanding of the ET mechanisms in the oxide based Yb3+/Er3+ co-doped UC phosphors. This study might be helpful in precisely defined applications where optical transitions are essential criterion and this can be easily achieved by smart tuning of the emission properties of Yb3+/Er3+ co-doped UC phosphors.

  3. Excited-state absorption and fluorescence dynamics of Er3+:KY3F10

    NASA Astrophysics Data System (ADS)

    Labbé, C.; Doualan, J. L.; Moncorgé, R.; Braud, A.; Camy, P.

    2018-05-01

    We report here on a complete investigation of the excited-state absorption and fluorescence dynamics of Er3+ doped KY3F10 single crystals versus dopant concentrations and optical excitation conditions. Radiative and effective (including non-radiative relaxations) emission lifetimes and branching ratios are determined from a Judd-Ofelt analysis of the absorption spectra and via specific fluorescence experiments using wavelength selective laser excitations. Excited-state absorption and emission spectra are registered within seven spectral domains, i.e. 560 nm, 650 nm, 710 nm, 810 nm, 970 nm, 1550 nm and 2750 nm. A maximum gain cross-section of 0.93 × 10-21 cm2 is determined at the potential laser wavelength of 2.801 μm for a population ratio of 0.48. Saturation of fluorescence intensities and variations of population ratios versus pumping rates are registered and confronted with a rate equation model to derive the rates of the most important up-conversion and cross-relaxation energy transfers occurring at high dopant concentrations.

  4. Observation of energy transfer phenomenon via up and down conversion in Eu3+ ions for BaMoO4:Er3+-Eu3+ nanophosphor

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Ningthoujam, Raghumani Singh

    2018-04-01

    The Er3+-Eu3+ codoped BaMoO4 nanophosphor has been synthesized by using urea hydrolysis in ethylene glycol medium. The tetragonal phase formation of the codoped nanophosphor has been confirmed by the X-ray diffraction analysis. The up and down conversion emission spectra have been recorded via 980 and 270 nm excitation, respectively. The Eu3+ emission arising in the prepared Er3+-Eu3+ codoped BaMoO4 nanophosphor is basically due to the efficient energy transfer process. The energy level diagram has been sketched to show the energy transfer phenomenon in the Eu3+ ion from charge transfer band (host lattice absorption) and excited level of the Er3+ ion (multiphoton absorption). The values of colour co-ordinates suggest that materials can produce the red to yellow. The developed nanophosphor could be useful as an effective up and down converting optical material and lighting device applications.

  5. Enhanced light emission near 2.7 μm from Er-Nd co-doped germanate glass

    NASA Astrophysics Data System (ADS)

    Bai, Gongxun; Tao, Lili; Li, Kefeng; Hu, Lili; Tsang, Yuen Hong

    2013-04-01

    Laser glass gain medium that can convert low cost 808 nm diode laser into 2.7 μm has attracted considerable interest due to its potential application for medical surgery fiber laser system. In this study, enhanced 2.7 μm emission has been achieved in Er3+:germanate glass by co-doping with Nd3+ ions under the excitation of an 808 nm diode laser. In the co-doped sample, the experimental results show that the harmful visible emissions via up-conversion were effectively restricted. The reduction of 1.5 μm emission was also detected in the co-doped sample, which indicates significant de-excitation of 4I13/2 Er3+ ion through energy transfer and non-radiative decay in Nd3+ ions. In conclusion, the 2.7 μm emission enhancement achieved was due to the increased optical absorption of 808 nm, efficient energy transfer (ET) with efficiency of 81.73% between Er3+ and Nd3+ ions, and shortening the lifetime of the lower lasing level 4I13/2 Er3+ in the co-doped sample. Therefore, Er3+/Nd3+ co-doped germanate glass could be used to fabricate fiber optical gain media for 2.7 μm laser generation.

  6. Photoluminescence of rare-earth ion (Eu3+, Tm3+, and Er3+)-doped and co-doped ZnNb2O6 for solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Sen-Pei; Qian, Yan-Nan; Wang, Biao

    2015-08-01

    Visible converted emissions produced at an excitation of 286 nm in ZnNb2O6 ceramics doped with rare-earth ions (RE = Eu3+, Tm3+, Er3+ or a combination of these ions) were investigated with the aim of increasing the photovoltaic efficiency of solar cells. The structure of RE:ZnNb2O6 ceramics was confirmed by x-ray diffraction patterns. The undoped ZnNb2O6 could emit a blue emission under 286-nm excitation, which is attributed to the self-trapped excitons’ recombination of the efficient luminescence centers of edge-shared NbO6 groups. Upon 286-nm excitation, Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 ceramics showed blue, green, and red emissions, which correspond to the transitions of 5D0 → 7FJ (J = 1-4) (Eu3+), 1G4 → 3H6 (Tm3+), and 2H11/2/4S3/2 → 4I15/2 (Er3+), respectively. The calculated CIE chromaticity coordinates of Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 are (0.50, 0.31), (0.14, 0.19), and (0.29, 0.56), respectively. RE ion-co-doped ZnNb2O6 showed a combination of characteristic emissions. The chromaticity coordinates of Eu/Tm:ZnNb2O6, Eu/Er:ZnNb2O6, and Tm/Er:ZnNb2O6 were calculated to be (0.29, 0.24), (0.45, 0.37), and (0.17, 0.25). Project supported by the National Natural Science Foundation of China (Grant Nos. 10572155 and 10732100) and the Research Fund for the Doctoral Program of Ministry of Education, China (Grant No. 20130171130003).

  7. Study of Linear and Nonlinear Wave Excitation

    NASA Astrophysics Data System (ADS)

    Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick

    2013-10-01

    We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.

  8. Design, Synthesis, and Structure-Property Relationships of Er3+-Doped TiO2 Luminescent Particles Synthesized by Sol-Gel

    PubMed Central

    Lopez-Iscoa, Pablo; Baldi, Giovanni

    2018-01-01

    Titania particles doped with various concentrations of Erbium were synthesized by the sol-gel method followed by different heat treatments. The shape and the grain growth of the particles were noticeably affected by the concentration of Erbium and the heat treatment conditions. An infrared emission at 1530 nm, as well as green and red up-conversion emissions at 550 and 670 nm, were observed under excitation at 976 nm from all of the synthesized particles. The emission spectra and lifetime values appeared to be strongly influenced by the presence of the different crystalline phases. This work presents important guidelines for the synthesis of functional Er3+-doped titania particles with controlled and tailored spectroscopic properties for photonic applications. PMID:29301282

  9. Luminescence studies on Er3+ -doped zincfluorophosphate glasses for 1.53 μm laser applications

    NASA Astrophysics Data System (ADS)

    Sreedhar, V. B.; Vijaya, N.; Ramachari, D.; Jayasankar, C. K.

    2017-02-01

    The Er3+-doped zincfluorophosphate glasses have been prepared by conventional melt-quenching technique and characterized through X-ray diffraction, differential thermal analysis, Raman, visible and near-infrared (NIR) emission spectra and decay time measurements. Judd-Ofelt intensity parameters (Ωλ, λ = 2, 4 and 6) have been derived from the absorption spectrum and inturn used to calculate the radiative properties for the fluorescent levels of Er3+ ions. The studied glasses exhibit intense green and weak red emissions under 378 nm excitation and an intense NIR emission at 1.53 μm under 980 nm laser diode excitation. The wavelength dependence of gain cross-section for different values of population inversion (γ) has been derived from the McCumber theory. Lifetime for the 4I13/2 level of Er3+ ion is found to decrease from 7.17 to 1.42 ms whereas the gain bandwidth increases from 143.5 to 263.9 × 10-28 cm3 with increase of Er3+ concentration from 0.001 to 2.0 mol %. The results indicate that the glasses may be suitable for the development of optical amplifier in the 1.53 μm optical region.

  10. Bright up-conversion white light emission from Er3+ doped lithium fluoro zinc borate glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Rao, K. Srinivasa; Hwang, Pyung

    2018-03-01

    Various concentrations of Er3+ (0.3, 0.5, 1.0 and 1.5 mol %) doped lithium fluoro zinc borate glasses were synthesized by a traditional melt quenching method. XRD, FTIR and FESEM have been employed to analyze the structural, compositional and morphological analysis respectively. Judd-Ofelt theory has been employed to analyze the intensity parameters (Ωλ, λ = 2, 4 and 6) which can be used to estimate the radiative properties of fluorescent levels of Er3+. We have been observed a strong NIR emission peak at 1.53 μm (4I13/2 → 4I15/2) under the excitation of 980 nm from Er3+: LBZ glasses. Nevertheless, the NIR emission is remarkably enhanced by increasing the Er3+ ions concentration until the optimized concentration of 0.5 mol%. The lifetime of the excited level of 4I13/2 in the NIR emission transition is evaluated and it is found to be1.22 ms from the decay analysis of 0.5 mol% Er3+: LBZ glass. Apart from the NIR emission, a bright up-conversion green emission is observed at 544 nm (4S3/2 → 4I15/2) along with an intense red emission at 659 nm (4F9/2 → 4I15/2) and a weak blue emission (2H9/2 → 4I15/2) under the excitation of 980 nm. Up-conversion emission features were significantly enhanced with increasing the Er3+ concentration up to 1.0 mol%. The combination of the obtained up-conversion emission colors of green, red and blue could generate white light emission. The cool white-light emission from the optimized glass sample has been confirmed from the Commission International de I'Echairage (CIE) 1931 chromaticity diagram analysis and their correlated color temperature (CCT) values. Based on the NIR and up-conversion emission features, Er3+: LBZ glasses could be suggested as promising candidates for optical amplifiers, optical telecommunication windows and white light photonic applications.

  11. The role of estrogen receptor {beta} (ER{beta}) in malignant diseases-A new potential target for antiproliferative drugs in prevention and treatment of cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Margaret; Center for Nuclear Receptors and Cell Signaling, Department of Biochemistry and Cell Biology, University of Houston, Houston, TX; Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@mednut.ki.se

    2010-05-21

    The discovery of ER{beta} in the middle of the 1990s represents a paradigm shift in our understanding of estrogen signaling. It has turned out that estrogen action is not mediated by one receptor, ER{alpha}, but by two balancing factors, ER{alpha} and ER{beta}, which are often antagonistic to one another. Excitingly, ER{beta} has been shown to be widespread in the body and to be involved in a multitude of physiological and pathophysiological events. This has led to a strong interest of the pharmaceutical industry to target ER{beta} by drugs against various diseases. In this review, focus is on the role ofmore » ER{beta} in malignant diseases where the anti proliferative activity of ER{beta} gives hope of new therapeutic approaches.« less

  12. Deuteron Coulomb Excitation in Peripheral Collisions with a Heavy Ion

    NASA Astrophysics Data System (ADS)

    Du, Weijie; Yin, Peng; Li, Yang; Chen, Guangyao; Zuo, Wei; Zhao, Xingbo; Vary, James P.

    2017-09-01

    We develop an ab initio time-dependent Basis Function (tBF) method to solve non-perturbative and time-dependent problems in non-relativistic quantum mechanics. As a test problem, we apply this method to the Coulomb excitation of a deuteron by an impinging heavy ion. We employ wave functions for the bound and excited states of the deuterium system based on a realistic nucleon-nucleon interaction and study the evolution of the transition probability, the r.m.s. radius and the r.m.s. momentum of the system during the scattering process. The dependencies of these quantities on the external field strength and the bombarding energy are also analyzed and compared to corresponding results obtained from first-order perturbation theory. The time evolution of both the charge and the momentum distributions is shown. This work was supported in part by the U. S. Department of Energy (DOE) under Grants No. DESC0008485 (SciDAC/NUCLEI) and DE-FG02-87ER40371. W. Zuo and P. Yin are supported by the National Natural Science Foundation of China (11435014).

  13. Luminescence of Er 3+-doped nanostructured SiO 2-LaF 3 glass-ceramics prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Rodríguez, V. D.; Del Castillo, J.; Yanes, A. C.; Méndez-Ramos, J.; Torres, M.; Peraza, J.

    2007-07-01

    Transparent glass ceramics with composition of 95SiO2-5LaF3 doped with 0.1 mol% of Er3+ were synthesized by thermal treatment of precursor sol-gel glasses. Segregated LaF3 nanocrystals in the glass were confirmed from a structural analysis performed by X-ray diffraction. Blue, green and red efficient up-conversion emissions were observed under 980 nm excitation at room temperature. Under this excitation near infrared down-conversion at 1.55 μm is also observed. These results could be attributed to the precipitation of LaF3 nanocrystals and the incorporation of most Er3+ ions in these nanocrystals. The mechanisms involved in the up-conversion emissions could be ascribed to two and three photon processes.

  14. Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions

    NASA Astrophysics Data System (ADS)

    Manna, S.; Aluguri, R.; Bar, R.; Das, S.; Prtljaga, N.; Pavesi, L.; Ray, S. K.

    2015-01-01

    Photo-physical processes in Er-doped silica glass matrix containing Ge nanocrystals prepared by the sol-gel method are presented in this article. Strong photoluminescence at 1.54 μm, important for fiber optics telecommunication systems, is observed from the different sol-gel derived glasses at room temperature. We demonstrate that Ge nanocrystals act as strong sensitizers for Er3+ ions emission and the effective Er excitation cross section increases by almost four orders of magnitude with respect to the one without Ge nanocrystals. Rate equations are considered to demonstrate the sensitization of erbium luminescence by Ge nanocrystals. Analyzing the erbium effective excitation cross section, extracted from the flux dependent rise and decay times, a Dexter type of short range energy transfer from a Ge nanocrystal to erbium ion is established.

  15. Study of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses.

    PubMed

    Balda, R; Fernández, J; Fernández-Navarro, J M

    2009-05-25

    In this work, we report the near-infrared emission properties of Tm(3+)-Er(3+) codoped tellurite TeO(2)-WO(3)-PbO glasses under 794 nm excitation. A broad emission from 1350 to 1750 nm corresponding to the Tm(3+) and Er(3+) emissions is observed. The full width at half-maximum of this broadband increases with increasing [Tm]/[Er] concentration ratio up to a value of ~ 160 nm. The energy transfer between Tm(3+) and Er(3+) ions is evidenced by both the temporal behavior of the near-infrared luminescence and the effect of Tm3+ codoping on the visible upconversion of Er(3+) ions.

  16. Formation Mechanism, Structural, and Upconversion Properties of Alkaline Rare-Earth Fluoride Nanocrystals Doped With Yb3+/Er3+ Ions.

    PubMed

    Grzyb, Tomasz; Przybylska, Dominika

    2018-06-04

    Ultrasmall (9-30 nm) Yb 3+ /Er 3+ -doped, upconverting alkaline rare-earth fluorides that are promising for future applications were synthesized by the microwave-assisted hydrothermal method. The formation mechanism was proposed, indicating the influence of the stability of metal ions complexes with ethylenediaminetetraacetic acid on the composition of the product and tendency to form M 2 REF 7 (M 0.67 RE 0.33 F 2.33 ) cubic compounds in the M-RE-F systems. Their physicochemical properties (structure, morphology, and spectroscopic properties) are compared and discussed. The obtained nanoparticles exhibited emission of light in the visible spectra under excitation by 976 nm laser radiation. Excitation and emission spectra, luminescence decays, laser energy dependencies, and upconversion quantum yields were measured to determine the spectroscopic properties of prepared materials. The Yb 3+ /Er 3+ pair of ions used as dopants was responsible for an intense yellowish-green emission. The upconversion quantum yields determined for the first time for M 2 REF 7 -based materials were 0.0192 ± 0.001% and 0.0176 ± 0.001% for Sr 2 LuF 7 :Yb 3+ ,Er 3+ and Ba 2 LuF 7 :Yb 3+ ,Er 3+ respectively, the two best emitting samples. These results indicated the prepared materials are good and promising alternatives for the most studied NaYF 4 :Yb 3+ ,Er 3+ nanoparticles.

  17. Anharmonic rattling vibrations effects in the ESR of Er 3+ doped SmB 6 Kondo insulator

    DOE PAGES

    Lesseux, G. G.; Rosa, P. F. S.; Fisk, Z.; ...

    2017-01-23

    We report X-band Electron Spin Resonance (ESR) experiments on ≈ 0.2% and ≈ 0.7 % Er 3+ doped SmB 6 at low temperature (4 K - 40 K). The crystal field ground state of Er 3+ in SmB 6 is a Γ 8 quartet with a nearby Γ 6 excited doublet. The angular dependence of the resonances is not consistent with transitions between pure cubic crystal field states. The data were interpreted in terms of a dynamic Jahn-Teller (JT) effect by a coupling to Γ 3 vibrational modes, which we propose to originate from the rattling of the small Ermore » 3+ ions in the large SmB6 cage. Our data show an anisotropic pair of E and E’ resonances at g ≈ 4.4 and two nearly isotropic signals at g ≈ 5.8, one intense and narrow (A vibrational mode) and the other broad and faint, which we attribute to Er 3+ ions at lattice sites which are strongly affected by strain, defects and/or extrinsic Al impurities that inhibits the JT effects. Our results are in general consistent with those previously reported by Sturm et al. In addition to the angular dependence of the lines, we discuss the intensities, g-values and the linewidths of the Er 3+ transitions as a function of temperature.« less

  18. Energy transfer upconversion in Er3+-Tm3+ codoped sodium silicate glass

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Pandey, Anurag; Ntwaeaborwa, O. M.; Swart, H. C.

    2018-04-01

    Er3+/Tm3+ doped and codoped Na2O-SiO2-ZnO (NSZO) glasses were prepared by the conventional melt-quenching method. The amorphous nature of the prepared glasses was confirmed by the X-ray diffraction analysis. The optical absorption spectrum displayed several peaks, which correspond to Er3+ and Tm3+ dopant ions embedded into the NSZO glass. Both dopants experienced upconversion emission under 980 nm excitation. Efficient energy transfer from Er3+ to Tm3+ was observed in the co-doped samples to enhance the near infrared emission of the Tm3+ ions.

  19. Optical absorption and photoluminescence properties of Er3+ doped mixed alkali borate glasses.

    PubMed

    Ratnakaram, Y C; Kumar, A Vijaya; Naidu, D Tirupathi; Rao, J L

    2005-07-01

    An investigations of the optical absorption and fluorescence spectra of 0.2 mol% Er2O3 in mixed alkali borate glasses of the type 67.8B2O3 x xLi2O(32-x)Na2O, 67.8B2O3 x xLi2O(32-x)K2O and 67.8B2O3 x xNa2O(32-x)K2O (where x = 8, 12, 16, 20 and 24) are presented. The glasses were obtained by quenching melts consisting of H3BO3, Li2CO3, Na2CO3, K2CO3 and Er2O3 (950-1100 degrees C, 1.5-2 h) between two brass plates. Spectroscopic parameters like Racah (E1, E2 and E3), spin-orbit (xi(4f)) and configuration interaction (alpha) parameters are deduced as function of x. Using Judd-Ofelt theory, Judd-Ofelt intensity parameters (omega2, omega4 and omega6) are obtained. Radiative and non-radiative transition rates (A(T) and W(MPR)), radiative lifetimes (tauR), branching ratios (beta) and integrated absorption cross-sections (sigma) have been computed for certain excited states of Er3+ in these mixed alkali borate glasses. Emission spectra have been studied for all the three Er3+ doped mixed alkali borate glasses. The present paper throws light on the trends observed in the intensity parameters, radiative lifetimes, branching ratios and emission cross-sections as a function of x in these borate glasses, keeping in view the effect of mixed alkalies in borate glasses.

  20. Anisotropic magnetic susceptibility of erbium and ytterbium in zircon, ZrSiO4

    USGS Publications Warehouse

    Thorpe, A.N.; Briggs, Charles; Tsang, T.; Senftle, F.; Alexander, Corrine

    1977-01-01

    Magnetic susceptibility measurements have been made for both Er- and Yb-doped (1̃03ppm) zircon single crystals with the magnetic field perpendicular and parallel to the [001] axis. Large susceptibility anisotropies were found in both cases. Our observed anisotropies of ZrSiO4: Yb indicate small populations (1̃9%) of Yb ions at the axial (tetragonal) sites, as the susceptibility of ZrSiO4: Yb would be nearly isotropic if the Yb ions only occupied the orthorhombic sites. For Er3+ in orthorhombic sites of zircon, our data indicate that the first excited state is paramagnetic with gx = 9 and gy 5̃ at 20 cm-1 above the ground state (gx 0̃, gy 1̃5). The first excited state is quite similar to the ground states observed for Er3+ in many host lattices. ?? 1977.

  1. 1.54 micron Emission from Erbium implanted GaN for Photonic Applications

    NASA Technical Reports Server (NTRS)

    Thaik, Myo; Hommerich, U.; Schwartz, R. N.; Wilson, R. G.; Zavada, J. M.

    1998-01-01

    The development of efficient and compact light sources operating at 1.54 micron is of enormous importance for the advancement of new optical communication systems. Erbium (1%) doped fiber amplifiers (EDFA's) or semiconductor lasers are currently being employed as near infrared light sources. Both devices, however, have inherent limitations due to their mode of operation. EDFA's employ an elaborate optical pumping scheme, whereas diode lasers have a strongly temperature dependent lasing wavelength. Novel light emitters based on erbium doped III-V semiconductors could overcome these limitations. Er doped semiconductors combine the convenience of electrical excitation with the excellent luminescence properties of Er(3+) ions. Electrically pumped, compact, and temperature stable optoelectronic devices are envisioned from this new class of luminescent materials. In this paper we discuss the potential of Er doped GaN for optoelectronic applications based on temperature dependent photoluminescence excitation studies.

  2. Enhancement of luminescence emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor by Li{sup +} co-doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilović, Tamara V.; Jovanović, Dragana J., E-mail: draganaj@vinca.rs; Lojpur, Vesna M.

    2014-09-15

    This paper demonstrates the effects of Li{sup +} co-doping on the structure, morphology, and luminescence properties of GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor prepared using a high-temperature solid-state chemistry method. The GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} powders synthesized with the Li{sup +} co-dopant (in concentrations of 0, 5, 10, and 15 mol%) are characterized by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectroscopy. Structural analysis showed that powders co-doped with Li{sup +} have larger crystallite sizes and slightly smaller crystal lattice parameters than powders prepared without Li{sup +} ions. Photoluminescence down-conversion (345-nm excitation) and up-conversion (980-nm excitation) spectra show characteristic Er{supmore » 3+} emissions, with the most intense bands peaking at 525 nm ({sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} transition) and 552 nm ({sup 4}S{sub 3/2}→{sup 4}I{sub 15/2}). The intensity of up-conversion emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} is enhanced (by a factor of four) by co-doping with 5 mol% of Li{sup +} ions. The mechanisms responsible for this emission enhancement are discussed. - Graphical abstract: UC emission spectra for GdVO{sub 4}:1.5-mol% Er{sup 3+}/20-mol% Yb{sup 3+} powders co-doped with different concentrations of Li{sup +} ions, recorded under 980-nm excitation. - Highlights: • 5-mol% Li{sup +} co-doped powders have 400% enhanced up-conversion emission intensity. • 15-mol% Li{sup +} co-doping produces 40% higher emission in down-conversion. • Li{sup +} co-doped powders have larger crystallite size and smaller lattice parameters.« less

  3. An estrogen receptor targeted ruthenium complex as a two-photon photodynamic therapy agent for breast cancer cells.

    PubMed

    Zhao, Xueze; Li, Mingle; Sun, Wen; Fan, Jiangli; Du, Jianjun; Peng, Xiaojun

    2018-06-21

    In this study, we reported a tamoxifen modified Ru(ii) polypyridyl complex (Ru-tmxf) as an estrogen receptor (ER) targeted photosensitizer. Ru-tmxf displays enhanced cellular uptake and PDT efficiency toward breast cancer cells with high ER expression due to the specific targeting of tamoxifen to ER and finally localizes in lysosomes. Moreover, Ru-tmxf can be activated by two-photon excitation, generating 1O2 to damage lysosomes and result in cell death.

  4. Studies on up/down-conversion emission of Yb3+ sensitized Er3+ doped MLa2(MoO4)4 (M = Ba, Sr and Ca) phosphors for thermometry and optical heating

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Kumar, Kaushal

    2018-01-01

    The photoluminescence properties of Yb3+ sensitized Er3+ doped BaLa2(MoO4)4, SrLa2(MoO4)4 and CaLa2(MoO4)4 phosphors synthesized via hydrothermal method are investigated upon 980 nm and 380 nm light excitations. The phase, purity, and morphology of the samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy and Field emission scanning electron microscope. Among these three phosphors, the strongest emission intensity is seen in BaLa2(MoO4)4: Er3+/Yb3+ through both the 980 nm and 380 nm light excitations and is explained by the lifetime measurement of 4S3/2 level of Er3+ ion. Temperature sensing measurements were performed by using the fluorescence intensity ratio (FIR) of green emission bands originated from the two thermally coupled 2H11/2 → 4I15/2 and 4S3//2 → 4I15/2 transitions of Er3+ and maximum temperature sensitivity of 1.05% K-1 at 305 K is found for BLa2(MoO4)4: Er3+/Yb3+ sample. Moreover, the laser induced heating is measured in the samples and the maximum temperature of the sample particles is calculated as 422 K at 76 W/cm2 in BaLa2(MoO4)4: Er3+/Yb3+, pointing out large amount of heat generation in such phosphors. The BaLa2(MoO4)4: Er3+/Yb3+ also exhibits higher photothermal conversion efficiency of 46.7%.

  5. Energy transfer and optical gain properties of P{sub 2}O{sub 5}-ZnO-LiF: (Yb{sup 3+}, Er{sup 3+}) glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, C. Parthasaradhi, E-mail: cgparthasaradhi@gmail.com, E-mail: ktrkreddy@gmail.com; Naresh, V.; Reddy, K. T. Ramakrishna, E-mail: cgparthasaradhi@gmail.com, E-mail: ktrkreddy@gmail.com

    2015-06-24

    The present paper reports on the results pertaining to the emission properties of 0.5 mol% Er{sup 3+} and together (0.5 Yb{sup 3+} /0.5 Er{sup 3+}) doped PZL (P{sub 2}O{sub 5}-ZnO-LiF) glasses prepared by a melt quenching method. From the optical absorption data, absorption and stimulated emission cross-sections have been evaluated using McCumber’s theory and further cross-sectional gain has also been computed for Yb{sup 3+}/Er{sup 3+} doped glass. On exciting the single (Er{sup 3+}) and dual rare earth ions (Yb{sup 3+}/Er{sup 3+}) doped glass sample at λ{sub exci} = 379 nm, three emission bands in the visible region {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}more » (526 nm), {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (549 nm) and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (664 nm) are observed and while at λ{sub exci} = 980 nm (Laser Diode) excitation a broad emission at 1530 nm attributed to {sup 4}H{sub 13/2}→{sup 4}I{sub 15/2} is observed in the NIR region. The enhancement in visible and NIR emission intensities with the addition of Yb{sup 3+} to Er{sup 3+} due to an energy transfer process from Yb{sup 3+} to Er{sup 3+} has been explained in terms of an energy level diagram.« less

  6. Phase Competition in the Palmer-Chalker X Y Pyrochlore Er2Pt2O7

    NASA Astrophysics Data System (ADS)

    Hallas, A. M.; Gaudet, J.; Butch, N. P.; Xu, Guangyong; Tachibana, M.; Wiebe, C. R.; Luke, G. M.; Gaulin, B. D.

    2017-11-01

    We report neutron scattering measurements on Er2Pt2O7 , a new addition to the X Y family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er2Pt2O7 orders into the k =0 , Γ7 magnetic structure (the Palmer-Chalker state), at TN=0.38 K . This contrasts with its sister X Y pyrochlore antiferromagnets Er2Ti2O7 and Er2Ge2O7 , both of which order into Γ5 magnetic structures at much higher temperatures, TN=1.2 and 1.4 K, respectively. In this temperature range, the magnetic heat capacity of Er2Pt2O7 contains a broad anomaly centered at T*=1.5 K . Our inelastic neutron scattering measurements reveal that this broad heat capacity anomaly sets the temperature scale for strong short-range spin fluctuations. Below TN=0.38 K , Er2Pt2O7 displays a gapped spin-wave spectrum with an intense, flat band of excitations at lower energy and a weak, diffusive band of excitations at higher energy. The flat band is well described by classical spin-wave calculations, but these calculations also predict sharp dispersive branches at higher energy, a striking discrepancy with the experimental data. This, in concert with the strong suppression of TN, is attributable to enhanced quantum fluctuations due to phase competition between the Γ7 and Γ5 states that border each other within a classically predicted phase diagram.

  7. Structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor, synthesized using the solid-state reaction method, and its luminescence behavior.

    PubMed

    Tamrakar, Raunak Kumar; Bisen, D P; Brahme, Nameeta

    2016-02-01

    We report the synthesis and structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor. The sample was prepared using the conventional solid-state reaction method, which is the most suitable method for large-scale production. The prepared phosphor sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er(3+) and Yb(3+) were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light-emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er(3+) and Yb(3+) -doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.

  8. Effects of Er3+ and Pr3+ Substitution on Structural, Dielectric, Ferroelectric and Photoluminescence Properties of the BaTi0.9Zr0.1O3 Ceramic

    NASA Astrophysics Data System (ADS)

    Zouari, I.; Sassi, Z.; Seveyrat, L.; Perrin, V.; Zghal, S.; Abdelmoula, N.; Lebrun, L.; Khemakhem, H.

    2017-07-01

    BaTi0.9Zr0.1O3 (BZT), Ba1- x Ln2 x/3□ x/3Ti0.9Zr0.1O3 (with x = 0.5% mol and Ln = Er3+) (BZT-Er) and Ba1- x Ln2 x/3□ x/3Ti0.9Zr0.1O3 (with x = 0.5% mol and Ln = Pr3+) (BZT-Pr) were prepared via the conventional solid-state reaction method. X-ray diffraction showed that all these ceramics were in the single perovskite phase at room temperature (RT). The temperature dependence of dielectric behavior was investigated in the temperature range 25-225°C and exhibited a classical ferroelectric behavior. A slight decrease of the Curie temperature ( T C) with Pr3+ and Er3+ substitution was observed in addition to an increase in the maximum dielectric permittivity ( \\varepsilon_{r {max} }^' }} ) of about 40% for the BZT-Er. At RT, the ferroelectric and piezoelectric coefficients were decreased for BZT-Pr, but were maintained for BZT-Er with a piezoelectric coefficient ( d 33) of 185 pC/N, a planar electromechanical coupling factor of 30%, and a remanent polarization of 11.6 μC/cm2. The Raman bands as a function of temperature confirmed the paraelectric-ferroelectric phase transition of all those ceramics. The photoluminescence spectra showed that strong red (615 nm and 645 nm) and bright green (523 nm and 545 nm) emission bands were obtained, under excitation by laser at 488 nm at RT, for BZT-Pr and BZT-Er, respectively. These multifunctional materials showed a significant technological promise in coupling device applications.

  9. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging

    NASA Astrophysics Data System (ADS)

    Hemmer, Eva; Venkatachalam, Nallusamy; Hyodo, Hiroshi; Hattori, Akito; Ebina, Yoshie; Kishimoto, Hidehiro; Soga, Kohei

    2013-11-01

    In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln3+), nanoscopic host materials doped with Ln3+, e.g. Y2O3:Er3+,Yb3+, are promising candidates for NIR-NIR bioimaging. Ln3+-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er3+,Yb3+, have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln3+), nanoscopic host materials doped with Ln3+, e.g. Y2O3:Er3+,Yb3+, are promising candidates for NIR-NIR bioimaging. Ln3+-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er3+,Yb3+, have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review. Electronic supplementary information (ESI) available: Table 1: sample overview. Movie 1: time-resolved in vivo biodistribution of Gd2O3:Er3+,Yb3+ nanorods in a mouse 5 min post-injection. Fig. 1: preliminary long-term cytotoxicity study of Y2O3:Er3+ injected into mice. See DOI: 10.1039/c3nr02286b

  10. Rydberg series in the lanthanides and actinides observed by stepwise laser excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worden, E.F.; Solarz, R.W.; Paisner, J.A.

    1977-05-18

    The techniques of stepwise laser excitation were applied to obtain Ryberg series in the lanthanides and in uranium. The methods employed circumvent many of the experimental difficulties inherent in conventional absorption spectrosopy of these heavy atoms with very complex spectra. The Rydberg series observed have allowed the determination of accurate ionization limits. The values in eV are: Ce, 5.5387(4);Nd, 5.5250(6); Sm, 5.6437(10); Eu, 5.6704(3); Gd, 6.1502(6); Tb, 5.8639(6); Dy, 5.9390(6); Ho, 6.0216(6); Er 6.1077(6); U, 6.1941(5). A comparison of the f/sup n/s/sup 2/-f/sup n/s ionization limits as a function of n with theoretical calculations is made.

  11. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    PubMed

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Tunable green/red luminescence by infrared upconversion in biocompatible forsterite nanoparticles with high erbium doping uptake

    NASA Astrophysics Data System (ADS)

    Zampiva, Rúbia Young Sun; Acauan, Luiz Henrique; Venturini, Janio; Garcia, Jose Augusto Martins; da Silva, Diego Silverio; Han, Zhaohong; Kassab, Luciana Reyes Pires; Wetter, Niklaus Ursus; Agarwal, Anuradha; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2018-02-01

    Nanoparticles represent a promising platform for diagnostics and therapy of human diseases. For biomedical applications, these nanoparticles are usually coated with photosensitizers regularly activated in a spectral window of 530-700 nm. The emissions at 530 nm (green) and 660 nm (red) are of particular interest for imaging and photodynamic therapy, respectively. This work presents the Mg2SiO4:Er3+ system, produced by reverse strike co-precipitation, with up to 10% dopant and no secondary phase formation. These nanoparticles when excited at 985 nm show upconversion emission with peaks around 530 and 660 nm, although excitation at 808 nm leads to only a single emission peak at around 530 nm. The direct upconversion of this biomaterial without a co-dopant, and its tunability by the excitation source, renders Mg2SiO4:Er3+ nanoparticles a promising system for biomedical applications.

  13. A temperature sensor based on the enhanced upconversion luminescence of Li+ doped NaLuF4:Yb3+,Tm3+/Er3+ nano/microcrystals.

    PubMed

    Qiang, Qinping; Du, Shanshan; Ma, Xinlong; Chen, Wenbo; Zhang, Gangyi; Wang, Yuhua

    2018-05-09

    In this paper, fluorescent and optical temperature sensing bi-functional Li+-doping NaLuF4:Ln (Ln = Yb3+, Tm3+/Er3+) nanocrystals were synthesized via a simple hydrothermal method using oleic acid as a capping ligand. The crystal phase, size, upconversion (UC) properties, and optical temperature sensing characteristics of the crystals can be easily modified by Li+ doping. The results reveal that additional Li+ can promote the transformation from the hexagonal phase to the cubic phase and reduce the size of the nanocrystals. In addition, NaLuF4:Ln (Ln = Yb3+, Tm3+, Li+) nanocrystals present efficient near infrared (NIR) emission, which is beneficial for in vivo biomedical applications due to the increased penetration depth and low radiation damage of NIR light in bio-tissues. More importantly, under 980 nm excitation, the temperature dependent UCL from the 2H11/2 and 4S3/2 levels of Er3+ ions in NaLuF4:Yb3+,Er3+,Li+ microcrystals was investigated systematically. The fluorescence intensity ratios (FIR) of the pairs of thermally coupled levels were studied as a function of temperature in the range of 298-523 K. The maximum sensor sensitivities were found to be about 0.0039 K-1 (523 K) by exploiting the UC emissions from the 2H11/2 and 4S3/2 levels. This suggests that the Li+-doped upconversion luminescence (UCL) materials are promising prototypes for application as multi-mode probes for use in bio-separation and optical thermometers.

  14. Y{sub 2}O{sub 3}:Yb/Er nanotubes: Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Weishi; Shen, Jianfeng; Wan, Lei

    2012-11-15

    Graphical abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer assembly on carbon nanotubes templates followed by a subsequent heat treatment process. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm. Display Omitted Highlights: ► Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized. ► CNTs were used as templates for Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► LBL assembly and calcination were used for preparation of Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► The as-preparedmore » Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission. -- Abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer (LBL) assembly on carbon nanotubes (CNTs) templates followed by a subsequent heat treatment process. The crystal structure, element analysis, morphology and upconversion luminescence properties were characterized. XRD results demonstrate that the diffraction peaks of the samples calcinated at 800 °C or above can be indexed to the pure cubic phase of Y{sub 2}O{sub 3}. SEM images indicate that a large quantity of uniform and rough nanotubes with diameters of about 30–60 nm can be observed. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm, which have potential applications in such fields as nanoscale devices, molecular catalysts, nanobiotechnology, photonics and optoelectronics.« less

  15. Effect of the CTAB concentration on the upconversion emission of ZrO 2:Er 3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    López-Luke, T.; De la Rosa, E.; Sólis, D.; Salas, P.; Angeles-Chavez, C.; Montoya, A.; Díaz-Torres, L. A.; Bribiesca, S.

    2006-10-01

    Upconversion emission of ZrO 2:Er 3+ (0.2 mol%) nanophosphor were studied as function of surfactant concentration after excitation at 968 nm. The strong green emission was produced by the transition 2H 11/2 + 4S 3/2 → 4I 15/2 and was explained in terms of cooperative energy transfer between neighboring ions. The upconverted signal was enhanced but the fluorescence decay time was reduced as either the surfactant concentration increases or the annealing time reduces. Experimental results show that surfactant concentration controls the particle size and morphology while annealing time control the phase composition and crystallite size. The highest intensity was obtained for a sample composed of a mixture of tetragonal (33 wt.%) and monoclinic (67 wt.%) phase with crystallite size of 31 and 59 nm, respectively. This result suggests that tetragonal crystalline structure and small crystallite size are more favorable for the upconversion emission.

  16. Tuning upconversion luminescence of LiYF4:Yb3+,Er3+/Tm3+/Ho3+ microcrystals synthesized through a molten salt process.

    PubMed

    Niu, Na; He, Fei; Wang, Liuzhen; Wang, Lin; Wang, Yan; Gai, Shili; Yang, Piaoping

    2014-05-01

    In this paper, well-defined tetragonal-phase LiYF4:Yb3+,Er3+/Tm3+/Ho3+ micro-crystals with octahedral morphology were successfully prepared through a surfactant-free molten salt process for the first time. By gradually increasing the LiF content in the NaNO3-KNO3 reaction medium, the crystal phase transforms from a mixture of YF3 and LiYF4 to pure tetragonal-phase LiYF4. The possible formation process for the phase and morphology evolution is also presented. Moreover, upon 980 nm laser diode (LD) excitation, the lanthanide ions (Yb3+, Er3+/Tm3+/Ho3+) doped LiYF4 crystals exhibit intense upconversion emission lights. By tuning the sensitizer concentrations of Yb3+ ions in LiYF4:Yb3+,Er3+, the relative intensities of green and red emissions can be precisely adjusted under single wavelength excitation. Consequently, multicolor upconversion emissions can be obtained. On the other hand, UC mechanisms were also given based on the emission spectra and the plot of luminescence intensity to pump power.

  17. Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for ˜2 μm emission

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Xueqiang; Guo, Yanyan; Hu, Lili; Zhang, Junjie

    2013-12-01

    A Er3+/Tm3+/Ho3+ tri-doped silicate glass with good thermal stability is prepared by melt-quenching method. Efficient ˜2 μm emission is observed under 808 nm laser excitation. It is found that the 2.0 μm emission of Ho3+ can be enhanced under the excitation at 808 nm by incorporating Er3+ and Tm3+. Based on the measurement of absorption spectra, the Judd-Ofelt intensity parameters, radiation emission probability, and branching ratio are calculated to evaluate the spectroscopic properties simultaneously. The maximum value of emission cross section of Ho3+ is 3.54 × 10-21 cm2 at 2008 nm. Additionally, the phonon assistance and the micro-parameters in the energy transfer process are quantitatively analyzed by using Dexter model. The energy transfer coefficient from Tm3+ to Ho3+ can reach as high as 21.44 × 10-40 cm6/s, respectively. The emission property together with good thermal property indicates that Er3+/Tm3+/Ho3+ tri-doped silicate glass is a potential kind of laser glass for efficient 2 μm laser.

  18. Geometric phase effects in ultracold hydrogen exchange reactions

    NASA Astrophysics Data System (ADS)

    Naduvalath, Balakrishnan; Croft, James F. E.; Hazra, Jisha; Kendrick, Brian K.

    2017-04-01

    Electronically non-adiabatic effects play an important role in many chemical reactions. The geometric phase, also known as the Berry's phase, arises from the adiabatic transport of the electronic wave function around a conical intersection between two electronic potential energy surfaces. It is shown that in ultracold collisions of H and D atoms with vibrationally excited HD, inclusion of the geometric phase leads to constructive and destructive interferences between non-reactive and exchange components of the wave function. This results in strong enhancement or suppression of reactivity depending on the final rovibrational levels of the scattered HD molecules. The effect is illustrated for non-rotating and rotationally excited HD molecules in the v = 4 vibrational level for which the H+HD and D+HD reactions occur through a barrierless path. This work was supported in part by NSF Grant PHY-1505557 (N.B.), ARO MURI Grant No. W911NF-12-1-0476 (N.B.), and DOE LDRD Grant No. 20170221ER (B.K.).

  19. New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoqian; Dong, Liang; Sun, Lining; Song, Zhengmei; Wei, Ruoyan; Shi, Liyi; Chen, Haige

    2015-04-01

    A new and facile method was used to transfer upconversion luminescent nanoparticles from hydrophobic to hydrophilic using polyhedral oligomeric silsesquioxane (POSS) linking on the surface of upconversion nanoparticles. In comparison with the unmodified upconversion nanoparticles, the POSS modified upconversion nanoplatforms [POSS-UCNPs(Er), POSS-UCNPs(Tm)] displayed good monodispersion in water and exhibited good water-solubility, while their particle size did not change substantially. Due to the low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay and histology and hematology analysis, the POSS modified upconversion nanoplatforms were successfully applied to upconversion luminescence imaging of living cells in vitro and nude mouse in vivo (upon excitation at 980 nm). In addition, the doped Gd3+ ion endows the POSS-UCNPs with effective T1 signal enhancement and the POSS-UCNPs were successfully applied to in vivo magnetic resonance imaging (MRI) for a Kunming mouse, which makes them potential MRI positive-contrast agents. More importantly, the corner organic groups of POSS can be easily modified, resulting in kinds of POSS-UCNPs with many potential applications. Therefore, the method and results may provide more exciting opportunities for multimodal bioimaging and multifunctional applications.A new and facile method was used to transfer upconversion luminescent nanoparticles from hydrophobic to hydrophilic using polyhedral oligomeric silsesquioxane (POSS) linking on the surface of upconversion nanoparticles. In comparison with the unmodified upconversion nanoparticles, the POSS modified upconversion nanoplatforms [POSS-UCNPs(Er), POSS-UCNPs(Tm)] displayed good monodispersion in water and exhibited good water-solubility, while their particle size did not change substantially. Due to the low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay and histology and hematology analysis, the POSS modified upconversion nanoplatforms were successfully applied to upconversion luminescence imaging of living cells in vitro and nude mouse in vivo (upon excitation at 980 nm). In addition, the doped Gd3+ ion endows the POSS-UCNPs with effective T1 signal enhancement and the POSS-UCNPs were successfully applied to in vivo magnetic resonance imaging (MRI) for a Kunming mouse, which makes them potential MRI positive-contrast agents. More importantly, the corner organic groups of POSS can be easily modified, resulting in kinds of POSS-UCNPs with many potential applications. Therefore, the method and results may provide more exciting opportunities for multimodal bioimaging and multifunctional applications. Electronic supplementary information (ESI) available: Schematic illustration of the formation of POSS-UCNPs. TEM images of NaYF4:Yb,Tm and NaYF4:Yb,Tm@NaGdF4 nanoparticles in cyclohexane; the TEM image of POSS-UCNPs(Tm) in water. DLS of POSS-UCNPs(Tm) in water. The energy dispersive X-ray (EDX) spectrum of POSS-UCNPs(Er). XPS of POSS-UCNPs(Er); XPS of Si element. UCL spectra of POSS-UCNPs(Er) in physiology saline as a function of time. UCL spectra of NaYF4:Yb,Tm@NaGdF4 [UCNPs(Tm)] and POSS-UCNPs(Tm), excited with a 980 nm laser (100 mW cm-2). In vivo UCL imaging of Kunming mice after intravenous injection with POSS-UCNPs(Tm) at different time points. See DOI: 10.1039/c5nr00950b

  20. Biocompatible Er, Yb co-doped fluoroapatite upconversion nanoparticles for imaging applications

    NASA Astrophysics Data System (ADS)

    Anjana, R.; K. M., Kurias; M. K., Jayaraj

    2017-08-01

    Upconversion luminescence, visible emission on infra red (IR) excitation was achieved in a biocompatible material, fluoroapatite. Fluoroapatite crystals are well known biomaterials, which is a component of tooth enamel. Also it can be considered as an excellent host material for lanthanide doping since the ionic radii of lanthanide is similar to that of calcium ion(Ca2+) hence successful incorporation of dopants within the lattice is possible. Erbium (Er), Ytterbium (Yb) co-doped fluorapatite (FAp) nanoparticles were prepared by precipitation method. The particles show intense visible emission when excited with 980 nm laser. Since upconversion luminescence is a multiphoton process the excitation power dependence on emission will give number of photons involved in the emission of single photon. Excitation power dependence studies show that two photons are involved in the emission of single photons. The value of slope was different for different emission peak because of the difference in intermediate energy level involved. The crystal structure and morphology of the particle were determined using X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM). These particles with surface functionalisation can be used for live cell imaging.

  1. Exciting transition metal doped dilute magnetic thin films: MgO:Er and ZnO:Er

    NASA Astrophysics Data System (ADS)

    Ćakıcı, T.; Sarıtaş, S.; Muǧlu, G. Merhan; Yıldırım, M.

    2017-02-01

    Erbium doped MgO and doped ZnO thin films have reasonably important properties applications in spintronic devices. These films were synthesized on glass substrates by Chemical Spray Pyrolysis (CSP) method. In the literature there has been almost no report on preparation of MgO:Er dilute magnetic thin films by means of CSP. Because doped thin films show different magnetic behaviors, depending upon the type of magnetic material ions, concentration of them, synthesis route and experimental conditions, synthesized MgO:Er and ZnO:Er films were compared to thin film properties. Optical analyses of the synthesized thin films were examined spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Structural analysis of the thin films was examined by using XRD, Raman Analysis, FE-SEM, EDX and AFM techniques. Also, magnetic properties of the MgO:Er and ZnO:Er films were investigated by vibrating sample magnetometer (VSM) which show that diamagnetic behavior of the MgO:Er thin film and ferromagnetic (FM) behavior of the ZnO:Er film were is formed.

  2. Clean synthesis of YOF:Er3+, Yb3+ upconversion colloidal nanoparticles in water through liquid phase pulsed laser ablation for imaging applications

    NASA Astrophysics Data System (ADS)

    Anjana, R.; Kurias, K. M.; Jayaraj, M. K.

    2017-10-01

    Upconversion luminescent nanomaterials have great outlook towards imaging applications. These materials have high chemical and thermal stability, low auto fluorescence, high photo stability and IR excitation does not cause photo damage to living cells and penetrate deeply into tissue. Most of the reported nanoparticles are synthesized through chemical methods in which surface modification is needed for dispersing nanoparticles in water. In this paper we report clean and simple synthesis of upconversion luminescent yttrium oxyfluoride (YOF) nanoparticles through laser ablation in deionized water. YOF:Er3+, Yb3+ pellets were used for ablation. Er3+ is the emission centre Yb3+ is the sensitizer. Obtained colloidal solution is transparent to day light and showing red emission on exciting with 980 nm IR laser. By controlling ablation parameters particles of size less than 10 nm dispersed uniformly in water can be obtained through this surfactant free method. The synthesized nanoparticles can be used for cell imaging.

  3. Investigation of High-Spin States in ^203Rn

    NASA Astrophysics Data System (ADS)

    Beausang, C. W.; Novak, J. R.; Caprio, M.; Casten, R. F.; Cederkall, J.; Cooper, J. R.; Krücken, R.; Wang, Z.; Zamfir, N. V.; Barton, C. J.

    1999-10-01

    High-spin states in ^203Rn were populated following the reaction ^34S + ^174Yb + 5n at beam energies ranging from 160 to 170 MeV. Gamma-rays were detected using the multi-Ge detector array YRAST Ball located at the Wright Nuclear Structure Laboratory. In addition the SCARY array, an array of 28 solar cell detectors, each 1 cm by 1 cm, was arranged around the target at backward angles. These were used to detect fission fragments and hence discriminate against the very large fission background encountered in this reaction. Following our excitation function measurement several transitions can be assigned to ^203Rn, where previously no information was available on excited states. Data analysis is continuing and preliminary results will be presented. This work is supported by the US-DOE under grant number DE-FG02-91ER-40609.

  4. ∼2 μm fluorescence radiative dynamics and energy transfer between Er{sup 3+} and Tm{sup 3+} ions in silicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ming; Liu, Xueqiang; Graduate School of Chinese Academy of Sciences, Beijing 100039

    2014-03-01

    Graphical abstract: - Highlights: • A Er{sup 3+}/Tm{sup 3+} co-doped silicate glass with good thermal stability (k{sub gl} = 0.402 for STE glass) is prepared. • Efficient ∼2 μm emission is observed under 808 nm and 980 nm laser excitation. • The glass structure and spectroscopic properties are confirmed by optical absorption, IR transmission, Raman and fluorescence studies. • The content of OH groups deceases efficiently after fluorine ions are introduced. • The energy transfer coefficient from Er{sup 3+} to Tm{sup 3+} in STFE glass is 13.39 × 10{sup −40} cm{sup 6}/s. - Abstract: A Er{sup 3+}/Tm{sup 3+} co-doped silicatemore » glass with good thermal stability is prepared by melt-quenching method. An efficient emission of ∼2 μm is observed under different selective laser excitations. The optical absorption and transmission spectra, Raman spectra, and emission spectra are tested to characterize ∼2 μm emission properties of Er{sup 3+}/Tm{sup 3+} co-doped silicate glasses and a reasonable energy transfer mechanism of ∼2 μm emission between Er{sup 3+} and Tm{sup 3+} ions is proposed. Based on the optical absorption spectra, the Judd–Ofelt parameters and radiative properties were calculated. Intense ∼2 μm emission is obtained from Er{sup 3+}/Tm{sup 3+} co-doped silicate glasses due to the efficient energy transfer from Er{sup 3+} to Tm{sup 3+} ions. The energy transfer coefficient from Er{sup 3+} to Tm{sup 3+} ions can reach as high as 13.39 × 10{sup −40} cm{sup 6}/s. In addition, the population of the OH groups is decreased and the ∼2 μm emission is effectively enhanced with fluoride introduction. The emission property, together with good thermal property, indicates that Er{sup 3+}/Tm{sup 3+} co-doped silicate glass is a potential kind of laser glass for efficient ∼2 μm laser.« less

  5. Electrochemical immobilization of Fluorescent labelled probe molecules on a FTO surface for affinity detection based on photo-excited current

    NASA Astrophysics Data System (ADS)

    Haruyama, Tetsuya; Wakabayashi, Ryo; Cho, Takeshi; Matsuyama, Sho-taro

    2011-10-01

    Photo-excited current can be generated at a molecular interface between a photo-excited molecules and a semi-conductive material in appropriate condition. The system has been recognized for promoting photo-energy devices such as an organic dye sensitized solar-cell. The photo-current generated reactions are totally dependent on the interfacial energy reactions, which are in a highly fluctuated interfacial environment. The authors investigated the photo-excited current reaction to develop a smart affinity detection method. However, in order to perform both an affinity reaction and a photo-excited current reaction at a molecular interface, ordered fabrications of the functional (affinity, photo-excitation, etc.) molecules layer on a semi-conductive surface is required. In the present research, we would like to present the fabrication and functional performance of photo-excited current-based affinity assay device and its application for detection of endocrine disrupting chemicals. On the FTO surface, fluorescent pigment labelled affinity peptide was immobilized through the EC tag (electrochemical-tag) method. The modified FTO produced a current when it was irradiated with diode laser light. However, the photo current decreased drastically when estrogen (ES) coexisted in the reaction solution. In this case, immobilized affinity probe molecules formed a complex with ES and estrogen receptor (ER). The result strongly suggests that the photo-excited current transduction between probe molecule-labelled cyanine pigment and the FTO surface was partly inhibited by a complex that formed at the affinity oligo-peptide region in a probe molecule on the FTO electrode. The bound bulky complex may act as an impediment to perform smooth transduction of photo-excited current in the molecular interface. The present system is new type of photo-reaction-based analysis. This system can be used to perform simple high-sensitive homogeneous assays.

  6. Dual functional NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ core-shell nanoparticles for cell temperature sensing and imaging

    NASA Astrophysics Data System (ADS)

    Shi, Zengliang; Duan, Yue; Zhu, Xingjun; Wang, Qiwei; Li, DongDong; Hu, Ke; Feng, Wei; Li, Fuyou; Xu, Chunxiang

    2018-03-01

    Lanthanide-doped up-conversion nanoparticles (UCNPs) provide a remote temperature sensing approach to monitoring biological microenvironments. In this research, the UCNPs of NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ with hexagonal (β)-phase were synthesized and applied in cell temperature sensing as well as imaging after surface modification with meso-2, 3-dimercaptosuccinic acid. In the core-shell UCNPs, Yb3+ ions were introduced as energy transfer media between sensitizers of Nd3+ and activators of Er3+ to improve Er3+emission and prevent their quenching behavior due to multiple energy levels of Nd3+. Under the excitations of 808 nm and 980 nm lasers, the NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ nanoparticles exhibited an efficient green band with two emission peaks at 525 nm and 545 nm, respectively, which originated from the transitions of 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 for Er3+ ions. We demonstrate that an occurrence of good logarithmic linearity exists between the intensity ratio of these two emission peaks and the reciprocal of the inside or outside temperature of NIH-3T3 cells. A better thermal stability is proved through temperature-dependent spectra with a heating-cooling cycle. The obtained viability of NIH-3T3 cells is greater than 90% after incubations of about 12 and 24 (h), and they possess a lower cytotoxicity of UCNPs. This work provides a method for monitoring the cell temperature and its living state from multiple dimensions including temperature response, cell images and visual up-conversion fluorescent color.

  7. Conductivity versus Dielectric Mechanisms for Electrorheology

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    1997-03-01

    Electrorheological (ER) fluids are continuously and rapidly controllable by an electric field. Controllability of these materials permits the construction of novel intelligent systems such as semiactively controlled shock absorbers and vibration dampers, tunable composite beams and panels, and even reconfigurable Braille arrays. The eventual success of these applications depends in part on developing improved ER fluids, which requires a fundamental understanding of the physics and chemistry of these materials. ER fluids generally consist of highly polarizable colloidal particles suspended in an insulating oil. Particles are typically 1-10 microns in diameter and can be of a wide variety of materials including zeolites, barium titanate, conducting polymers, and oxide-coated metals. Electric fields of magnitude 1-5 kV/mm induce particle chaining and concomitant shear stresses of order 1 kPa. Recent experiments (J. M. Ginder and S. L. Ceccio, J. Rheol. 39, 211 (1995)) using square-wave electric-field excitation have helped to elucidate the mechanisms of ER activity. Immediately after a step-function increase of electric field, chaining occurs due to particle-particle forces arising from dielectric polarization (dipoles and higher multipoles), i.e., it is controlled by the dielectric mismatch between particles and fluid. On a longer time scale, currents flow in the fluid and in the particles so that the forces are eventually dominated by the conductivity mismatch. Characteristic times for the transition between the two regimes are 10-50 ms. Likewise, in the frequency domain, conductivity mismatch dominates the dc response of ER fluids whereas dielectric effects dominate for high frequencies. A theory of ER fluids is given including a model for non-linear effects at high electric fields.

  8. White phosphor using Yb3+-sensitized Er3+-and Tm3+-doped sol-gel derived lead-fluorosilicate transparent glass ceramic excited at 980 nm

    NASA Astrophysics Data System (ADS)

    Tavares, M. C. P.; da Costa, E. B.; Bueno, L. A.; Gouveia-Neto, A. S.

    2018-01-01

    Generation of primary colors and white light through frequency upconversion using sol-gel derived 80SiO2:20PbF2 vitroceramic phosphors doped with Er3+, Er3+/Yb3+, Tm3+/Yb3+, and Er3+/Tm3+/Yb3+ excited at 980 nm is demonstrated. For Er3+ and Er3+/Yb3+ doped samples emissions were obtained in the blue (410 nm), green (530, and 550 nm) and red (670 nm) regions, corresponding to the 2H9/2 → 4I15/2,2H11/2 → 4I15/2, 4S3/2 → 4I152 and 4F9/2 → 4I15/2 transitions of Er3+, respectively. The codoping with Yb3+ ions altered the spectral profile of most of the emissions compared to the single doped samples, resulting in changes in the emitted color, in addition to a significant increase in the emission intensity. In Tm3+/Yb3+ co-doped samples visible emissions in the blue (480 nm), and red (650 nm), corresponding to transitions 1G4 → 3H6 and 1G4 → 3F4 of Tm3+, respectively, were obtained. The emission intensity around 480 nm overcome the red emission, and luminescence showed a predominantly blue tone. White light with CIE-1931 coordinates (0.36; 0.34) was produced by homogeneously mixing up powders of heat treated at 400 °C co-doped samples 5.0Er3+/5.0Yb3+ and 0.5Tm3+/2.5Yb3+ in the mass ratio of 13%, and 87%, respectively. The measured emission spectrum for a sample resulting from the mixture showed a profile with very good agreement with the spectrum found from the superimposition of the spectra of the co-doped samples.

  9. One-step synthesis of NaLu80-xGdxF4:Yb183+/Er23+(Tm3+) upconversion nanoparticles for in vitro cell imaging.

    PubMed

    Gerelkhuu, Zayakhuu; Huy, Bui The; Sharipov, Mirkomil; Jung, Dasom; Phan, The-Long; Conte, Eric D; Lee, Yong-Ill

    2018-05-01

    Upconversion nanoparticles (UCNPs) possess a unique type of photoluminescence (PL) in which lower-energy excitation is converted into higher-energy emission via multi-photon absorption processes. In this work, we have used a facile one-step hydrothermal method promoted water solubility to synthesis NaLuGdF 4 :Yb 3+ /Er 3+ (Tm 3+ ) UCNPs coated with malonic acid (MA). Scanning electron microscopy images and X-ray diffraction patterns reveal sphere-shaped UCNPs with an average size of ~80nm crystallized in the cubic NaLuF 4 structure. The characteristic vibrations of cubic UCNPs have been taken into account by using Fourier-transform infrared spectroscopy. Based on PL studies, we have determined an optimal concentration of Gd 3+ doping. The dependence of upconversion PL intensity on Gd 3+ concentration is discussed via the results of magnetization measurements, which is related to the coupling/uncoupling of Gd 3+ ions. Particularly, our study reveals that carboxyl-functionalized NaLuGdF 4 :Yb 3+ /Er 3+ (Tm 3+ ) UCNPs have a relatively high cell viability with HeLa cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Study of upconversion fluorescence property of novel Er3+/Yb3+ co-doped tellurite glasses.

    PubMed

    Xu, Tie-Feng; Li, Guang-Po; Nie, Qiu-Hua; Shen, Xiang

    2006-06-01

    Er3+/Yb3+ co-doped TeO2-B2O3-Nb2O5-ZnO (TBN) glasses were prepared. The absorption spectra and upconversion luminescence spectra of TBN glasses were measured and analyzed. The upconversion emission bands centered at 530, 546 and 658 nm were observed under the excitation at 975 nm, corresponding to the transitions of 2H11/2-->4I15/2, 4S3/2-->4I15/2 and 4F9/2-->4I15/2 respectively. The ratio of red emission to green emission increases with an increasing of Yb3+ ions concentration. According to the quadratic dependence on excitation power, the possible upconversion mechanisms and processes were discussed.

  11. Photonic band edge assisted spontaneous emission enhancement from all Er3+ 1-D photonic band gap structure

    NASA Astrophysics Data System (ADS)

    Chiasera, A.; Meroni, C.; Varas, S.; Valligatla, S.; Scotognella, F.; Boucher, Y. G.; Lukowiak, A.; Zur, L.; Righini, G. C.; Ferrari, M.

    2018-06-01

    All Er3+ doped dielectric 1-D Photonic Band Gap Structure was fabricated by rf-sputtering technique. The structure was constituted by of twenty pairs of SiO2/TiO2 alternated layers doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements put in evidence the stop band in the range 1500 nm-1950 nm. The photoluminescence measurements were obtained by optically exciting the sample and detecting the emitted light in the 1.5 μm region at different detection angles. Luminescence spectra and luminescence decay curves put in evidence that the presence of the stop band modify the emission features of the Er3+ ions.

  12. Optical thermometry through infrared excited green upconversion in monoclinic phase Gd2(MoO4)3:Yb3+/Er3+ phosphor

    NASA Astrophysics Data System (ADS)

    Xu, Weijiang; Li, Dongyu; Hao, Haoyue; Song, Yinglin; Wang, Yuxiao; Zhang, Xueru

    2018-04-01

    Monoclinic phase Gd2(MoO4)3: Yb3+/Er3+ phosphor is synthesized via a simple sol-gel method. The XRD result reveals that the phosphor possesses monoclinic structure with space group C2/c(15). Under the excitation of a 980 nm laser, its emission spectra shows remarkably intense green and negligible red emissions, which are all two-photon process. By investigating effect of temperature on green emission of the sample, the competition between the thermal agitation and non-radiative relaxation of 2H11/2 level can be found, which is verified by the measurement of lifetime. In addition, the sensitivity of optical thermometry is studied based on the fluorescence intensity ratio technique through infrared excited green upconversion. The maximum sensitivity is found to be about 0.02574 K-1 at 510.2 K, suggesting that the phosphor can be used as an excellent material for optical temperature sensing.

  13. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    NASA Astrophysics Data System (ADS)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale. Electronic supplementary information (ESI) available: Characterization, structural and morphological characterization of nanocrystals, the measurement setup. See DOI: 10.1039/c5nr08223d

  14. Form follows function: the importance of endoplasmic reticulum shape.

    PubMed

    Westrate, L M; Lee, J E; Prinz, W A; Voeltz, G K

    2015-01-01

    The endoplasmic reticulum (ER) has a remarkably complex structure, composed of a single bilayer that forms the nuclear envelope, along with a network of sheets and dynamic tubules. Our understanding of the biological significance of the complex architecture of the ER has improved dramatically in the last few years. The identification of proteins and forces required for maintaining ER shape, as well as more advanced imaging techniques, has allowed the relationship between ER shape and function to come into focus. These studies have also revealed unexpected new functions of the ER and novel ER domains regulating alterations in ER dynamics. The importance of ER structure has become evident as recent research has identified diseases linked to mutations in ER-shaping proteins. In this review, we discuss what is known about the maintenance of ER architecture, the relationship between ER structure and function, and diseases associated with defects in ER structure.

  15. Highly Efficient LiYF4:Yb(3+), Er(3+) Upconversion Single Crystal under Solar Cell Spectrum Excitation and Photovoltaic Application.

    PubMed

    Chen, Xu; Xu, Wen; Song, Hongwei; Chen, Cong; Xia, Haiping; Zhu, Yongsheng; Zhou, Donglei; Cui, Shaobo; Dai, Qilin; Zhang, Jiazhong

    2016-04-13

    Luminescent upconversion is a promising way to harvest near-infrared (NIR) sunlight and transforms it into visible light that can be directly absorbed by active materials of solar cells and improve their power conversion efficiency (PCE). However, it is still a great challenge to effectively improve the PCE of solar cells with the assistance of upconversion. In this work, we demonstrate the application of the transparent LiYF4:Yb(3+), Er(3+) single crystal as an independent luminescent upconverter to improve the PCE of perovskite solar cells. The LiYF4:Yb(3+), Er(3+) single crystal is prepared by an improved Bridgman method, and its internal quantum efficiency approached to 5.72% under 6.2 W cm(-2) 980 nm excitation. The power-dependent upconversion luminescence indicated that under the excitation of simulated sunlight the (4)F(9/2)-(4)I(15/2) red emission originally results from the cooperation of a 1540 nm photon and a 980 nm photon. Furthermore, when the single crystal is placed in front of the perovskite solar cells, the PCE is enhanced by 7.9% under the irradiation of simulated sunlight by 7-8 solar constants. This work implies the upconverter not only can serve as proof of principle for improving PCE of solar cells but also is helpful to practical application.

  16. Upconversion luminescence from Er-N codoped of ZnO nanowires prepared by ion implantation method

    NASA Astrophysics Data System (ADS)

    Zhong, Kun; Xu, Jie; Su, Jing; Chen, Yu lin

    2011-02-01

    Nitrogen and erbium co-doped of ZnO nanowires (NWs) are fabricated by ion implantation and subsequent annealing in air. The incorporation of Er3+ and N+ ions is verified by energy dispersive X-ray spectroscopy (EDS) and Raman spectra. The samples exhibit upconversion photoluminescence around ∼550 nm and ∼660 nm under an excitation at 980 nm. It is discovered that the N-doped can drastically increase the upconversion photoluminescence intensity by modifying the local structure around Er3+ in ZnO matrix. The enhancement of the PL intensity by the N-doped is caused by the formation of ErO6-xNx octahedron complexes. With the increase of the annealing temperature (Ta), the Er3+ ions diffuse towards the surface of the NWs, which benefits the red emission and evokes the variation of intensity ratio owing to the existence of some organic groups.

  17. Phase transformation pathways of ultrafast-laser-irradiated Ln2O3 (Ln =Er -Lu )

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; Solomon, Jonathan M.; Asta, Mark; Mao, Wendy L.; Yalisove, Steven M.; Ewing, Rodney C.

    2018-01-01

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln =Er -Lu ), and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln =Tm -Lu , consistent with the material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln =Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.

  18. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  19. Temperature dependence of luminescence behavior in Er3+-doped BaY2F8 single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Ruan, Yongfeng; Tsuboi, Taiju; Tong, Hongshuang; Wang, Youfa; Zhang, Shouchao

    2013-12-01

    BaY2F8 single crystals doped with Er3+ ions have been grown by the temperature gradient method. The absorption, excitation and emission spectra for Er3+-doped BaY2F8 crystals were measured at room temperature (297 K) and 12 K. The effect of temperature on the luminescence intensity and effective bandwidth was investigated in the range of 12-297 K. The temperature dependence of the fluorescence intensity ratio (FIR) for the 522 nm emission (2H11/2→4I15/2 transition) and the 552 nm emission (4S3/2→4I15/2 transition) was also studied in the range of 12-297 K. Based on the fitting FIR curve, the value of the constant term B (2.25) was obtained. The fitting FIR curve and FIR equation may have a potential application in the temperature measurement. In addition, the up-conversion spectrum at room temperature was recorded under excitation of 980 nm and the up-conversion mechanism was analyzed in detail.

  20. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE PAGES

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; ...

    2018-01-10

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  1. Shear mode ER transfer function for robotic applications

    NASA Astrophysics Data System (ADS)

    Tan, K. P.; Stanway, R.; Bullough, W. A.

    2005-06-01

    Electro-rheological (ER) fluids are becoming popular in modern industrial applications. The advantage of employing ER devices is due to the ease of energizing the ER fluids at fast speeds of response. One innovation in ER applications could be in the positioning control of the robotic arm using an ER clutch. In order to actuate the manipulator, the ER output torque response is required. However, the behaviour of this ER torque response at different input conditions is not clearly understood. Therefore, in this paper, a sample study of the ER output torque is conducted. The ER output torque responses at different input parameters are studied carefully for the establishment of an appropriate ER transfer function in shear mode. This transfer function will serve as an important feature in future ER-actuated robot arm's control process.

  2. High efficiency upconversion nanophosphors for high-contrast bioimaging

    NASA Astrophysics Data System (ADS)

    Alkahtani, Masfer H.; Alghannam, Fahad S.; Sanchez, Carlos; Gomes, Carmen L.; Liang, Hong; Hemmer, Philip R.

    2016-12-01

    Upconversion nanoparticles (UCNPs) are of interest because they allow suppression of tissue autofluorescence and are therefore visible deep inside biological tissue. Compared to upconversion dyes, UCNPs have a lower pump intensity threshold, better photostability, and less toxicity. Recently, YVO4: Er+3, Yb+3 nanoparticles were shown to exhibit strong up-conversion luminescence with a relatively low 10 kW cm-2 excitation intensity even in water, which makes them excellent bio-imaging candidates. Herein, we investigate their use as internal probes in insects by injecting YVO4 : Er+3, Yb+3 nanoparticles into fire ants as a biological model, and obtain 2D optical images with 980 nm illumination. High-contrast images with high signal-to-noise ratio are observed by detecting the up-conversion fluorescence as the excitation laser is scanned.

  3. Intense infrared emission of Er(3+) in Ca(8)Mg(SiO(4))(4)Cl(2) phosphor from energy transfer of Eu(2+) by broadband down-conversion.

    PubMed

    Zhou, Jiajia; Teng, Yu; Liu, Xiaofeng; Ye, Song; Xu, Xiaoqiu; Ma, Zhijun; Qiu, Jianrong

    2010-10-11

    We report on conversion of near-ultraviolet and visible radiation ranging from 250 to 500 nm into near-infrared emission by a Ca(8)Mg(SiO(4))(4)Cl(2): Eu(2+), Er(3+) phosphor. Efficient 1530-1560 nm Er(3+) emission ((4)I(13/2)-->(4)I(15/2)) was detected under the excitation of Eu(2+) (4f?5d) absorption band as a result of energy transfer from Eu(2+) to Er(3+), which is confirmed by both steady state and time-resolved emission spectra. The laser power dependent emission intensity changes were investigated to analysis the energy transfer mechanism. Energy transfer from Eu(2+) to Er(3+) followed by a multi-photon quantum cutting of Er(3+) is proposed. The result indicates that the phosphor has potential application in enhancement of conversion efficient of germanium solar cells because the energy difference of Er(3+): (4)I(13/2)-->(4)I(15/2) transition matches well with the bandgap of Ge (Eg~0.785 eV).

  4. Spectroscopic and energy transfer studies of Er3+ ions in B2O3-TeO2-MgO-ZnO glasses

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Arunkumar, S.; Maheshvaran, K.; Marimuthu, K.

    2016-05-01

    Composition dependent spectroscopic behavior of Er3+ doped telluroborate glasses were prepared and the energy transfer mechanism in Er3+ ions were investigated for 1.532 µm amplification. The emission cross-section and gain coefficient for 4I13/2→4I15/2 level of Er3+ ions have been analysed through the Judd-Ofelt and McCumber theory. The excited state decay curves were measured and the effect of TeO2 on the lifetime for 4I13/2→4I15/2 level of Er3+ ions has been associated with the various energy transfer mechanism. Further the interaction between Er3+ and OH- were investigated and it was confirmed that the OH free radicals in the prepared glasses are dominant quenching center through the non-radiative relaxation that causes the quenching of 1.532 µm amplification. The non-radiative rate through the OH content were calculated and compared with the reported Er3+ doped glasses.

  5. The sdg interacting-boson model applied to 168Er

    NASA Astrophysics Data System (ADS)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1986-03-01

    The sdg interacting-boson model is applied to 168Er. Energy levels and E2 transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. The level scheme including the Kπ=3+ band is well reproduced and the calculated B(E2)'s are consistent with the experimental data.

  6. Microwave sol–gel synthesis and upconversion photoluminescence properties of CaGd{sub 2}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors with incommensurately modulated structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chang Sung; Aleksandrovsky, Aleksandr; Department of Photonics and Laser Technologies, Siberian Federal University, Krasnoyarsk 660079

    2015-08-15

    CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors with the doping concentrations of Er{sup 3+} and Yb{sup 3+} (x=Er{sup 3+}+Yb{sup 3+}, Er{sup 3+}=0.05, 0.1, 0.2 and Yb{sup 3+}=0.2, 0.45) have been successfully synthesized by the microwave sol–gel method. The crystal structure of CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} tungstates have been refined, and upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after the heat-treatment at 900 °C for 16 h, showed a well crystallized morphology. Under the excitation at 980 nm, CaGd{sub 2}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} particles exhibited a strong 525-nm and a weak 550-nm emission bandsmore » in the green region and a very weak 655-nm emission band in the red region. The Raman spectrum of undoped CaGd{sub 2}(WO{sub 4}){sub 4} revealed about 12 narrow lines. The strongest band observed at 903 cm{sup −1} was assigned to the ν{sub 1} symmetric stretching vibration of WO{sub 4} tetrahedrons. The spectra of the samples doped with Er and Yb obtained under the 514.5 nm excitation were dominated by Er{sup 3+} luminescence preventing the recording of these samples Raman spectra. Concentration quenching of the erbium luminescence at {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} transition is weak in the range of erbium doping level x{sub Er}=0.05–0.2, while, for transition {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2}, the signs of concentration quenching become pronounced at x{sub Er}=0.2. - Graphical abstract: CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors with the doping concentrations of Er{sup 3+} and Yb{sup 3+} (x=Er{sup 3+}+Yb{sup 3+}, Er{sup 3+}=0.05, 0.1, 0.2 and Yb{sup 3+}=0.2, 0.45) have been successfully synthesized by the microwave sol–gel method and the crystal structure refinement, and upconversion photoluminescence properties have been investigated. - Highlights: • CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors have been synthesized by the microwave sol–gel method. • The crystal structure of CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} tungstates have been refined. • The upconversion photoluminescence properties have been investigated.« less

  7. Latent fingermark detection for NaYF4:Er3+/Yb3+ upconversion phosphor synthesized by thermal decomposition route

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Tiwari, S. P.; Kumar, A.; Kumar, K.

    2018-04-01

    The synthesis and spectroscopy of the upconverting nanoparticles, cubic NaYF4:Er3+/Yb3+ phosphor is developed for latent fingermark detection. The cubic phase of NaYF4: Er3+/Yb3+ phosphor is synthesized by thermal decomposition method using trifluoroacetate precursor with coordinating ligand octadecene and oleic acid in a mixture of technical grade. The synthesized samples showed intense green emission using 976 nm diode laser as an excitation source. Because of excellent property of luminescence in green regime the sample is used to detect the latent fingermark on a porous glass surface.

  8. Effect of chemical pressure on the crystal electric field states of erbium pyrochlore magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudet, J; Hallas, A. A.; Kolesnikov, Alexander I.

    We have carried out a systematic study of the crystal electric field excitations in the family of cubic pyrochlores Er 2B 2O 7 with B=Ge, Ti, Pt, and Sn, using neutron spectroscopy. All members of this family are magnetic insulators based on 4f 11Er 3+ and nonmagnetic B 4+. At sufficiently low temperatures, long-range antiferromagnetic order is observed in each of these Er 2B 2O 7 pyrochlores. The different ionic sizes associated with different nonmagnetic B 4+ cations correspond to positive or negative chemical pressure, depending on the relative contraction or expansion of the crystal lattice, which gives rise tomore » different local environments at the Er 3+ site. Our results show that the g-tensor components are XY-like for all four members of the Er 2B 2O 7 series. However, the XY anisotropy is much stronger for Er 2Pt 2O 7 and Er 2Sn 2O 7(g⊥/gz>25) than for Er 2Ge 2O 7 and Er 2Ti 2O 7(g⊥/gz<4). The variation in the nature of the XY anisotropy in these systems correlates strongly with their ground states as Er 2Ge 2O 7 and Er 2Ti 2O 7 order into Γ 5 magnetic structures, whereas Er 2Pt 2O 7 and Er 2Sn 2O 7 order in the Γ 7 Palmer-Chalker structure.« less

  9. Effect of chemical pressure on the crystal electric field states of erbium pyrochlore magnets

    NASA Astrophysics Data System (ADS)

    Gaudet, J.; Hallas, A. M.; Kolesnikov, A. I.; Gaulin, B. D.

    2018-01-01

    We have carried out a systematic study of the crystal electric field excitations in the family of cubic pyrochlores Er2B2O7 with B =Ge , Ti, Pt, and Sn, using neutron spectroscopy. All members of this family are magnetic insulators based on 4 f11Er3 + and nonmagnetic B4 +. At sufficiently low temperatures, long-range antiferromagnetic order is observed in each of these Er2B2O7 pyrochlores. The different ionic sizes associated with different nonmagnetic B4 + cations correspond to positive or negative chemical pressure, depending on the relative contraction or expansion of the crystal lattice, which gives rise to different local environments at the Er3 + site. Our results show that the g -tensor components are X Y -like for all four members of the Er2B2O7 series. However, the X Y anisotropy is much stronger for Er2Pt2O7 and Er2Sn2O7(g⊥/gz>25 ) than for Er2Ge2O7 and Er2Ti2O7(g⊥/gz<4 ) . The variation in the nature of the X Y anisotropy in these systems correlates strongly with their ground states as Er2Ge2O7 and Er2Ti2O7 order into Γ5 magnetic structures, whereas Er2Pt2O7 and Er2Sn2O7 order in the Γ7 Palmer-Chalker structure.

  10. Effect of chemical pressure on the crystal electric field states of erbium pyrochlore magnets

    DOE PAGES

    Gaudet, J; Hallas, A. A.; Kolesnikov, Alexander I.; ...

    2018-01-17

    We have carried out a systematic study of the crystal electric field excitations in the family of cubic pyrochlores Er 2B 2O 7 with B=Ge, Ti, Pt, and Sn, using neutron spectroscopy. All members of this family are magnetic insulators based on 4f 11Er 3+ and nonmagnetic B 4+. At sufficiently low temperatures, long-range antiferromagnetic order is observed in each of these Er 2B 2O 7 pyrochlores. The different ionic sizes associated with different nonmagnetic B 4+ cations correspond to positive or negative chemical pressure, depending on the relative contraction or expansion of the crystal lattice, which gives rise tomore » different local environments at the Er 3+ site. Our results show that the g-tensor components are XY-like for all four members of the Er 2B 2O 7 series. However, the XY anisotropy is much stronger for Er 2Pt 2O 7 and Er 2Sn 2O 7(g⊥/gz>25) than for Er 2Ge 2O 7 and Er 2Ti 2O 7(g⊥/gz<4). The variation in the nature of the XY anisotropy in these systems correlates strongly with their ground states as Er 2Ge 2O 7 and Er 2Ti 2O 7 order into Γ 5 magnetic structures, whereas Er 2Pt 2O 7 and Er 2Sn 2O 7 order in the Γ 7 Palmer-Chalker structure.« less

  11. Near-barrier Fusion Evaporation and Fission of 28Si+174Yb and 32S+170Er

    NASA Astrophysics Data System (ADS)

    Wang, Dongxi; Lin, Chengjian; Jia, Huiming; Ma, Nanru; Sun, Lijie; Xu, Xinxing; Yang, Lei; Yang, Feng; Zhang, Huanqiao; Bao, Pengfei

    2017-11-01

    Fusion evaporation residues and fission fragments have been measured, respectively, at energies around the Coulomb barrier for the 28Si+174Yb and 32S+170Er systems forming the same compound nucleus 202Po. The excitation function of fusion evaporation, fission as well as capture reactions were deduced. Coupled-channels analyses reveal that couplings to the deformations of targets and the two-phonon states of projectiles contribute much to the enhancement of capture cross sections at sub-barrier energies. The mass and total kinetic energy of fission fragments were deduced by the time-difference method assuming full momentum transfer in a two-body kinematics. The mass-energy and mass-angle distributions were obtained and no obvious quasi-fission components were observed in this bombarding energy range. Further, mass distributions of fission fragments were fitted to extract their widths. Results show that the mass widths decrease monotonically with decreasing energy, but might start to increase when Ec.m./VB < 0.95 for both systems.

  12. Strong core hole in resonant inelastic x-ray scattering (RIXS)

    NASA Astrophysics Data System (ADS)

    Markiewicz, Robert; Rehr, John; Bansil, Arun

    2014-03-01

    We apply a lattice version of Mahan, Nozières, and de Dominicis theory1 to RIXS calculations to understand the role of the core hole. The model reproduces the decomposition of the RIXS spectrum into well- and poorly-screened components. While the calculation can reproduce the full multiband spectrum, single pair excitations contribute the dominant part to the RIXS spectrum, and they can be described as the dynamic structure function S(q , ω) dressed by matrix element effects. We find evidence for an edge singularity at the RIXS threshold, similar to that found in x-ray absorption. We will discuss comparisons with long core hole lifetime calculations, and extensions to a system with antiferromagnetic order. 1. G.D. Mahan, Phys. Rev. 163, 612 (1967); P. Nozières and C.T. De Dominicis, ibid. 178, 1097 (1969). Supported by DOE Grants DE-FG02-07ER46352 and DE-FG03-97ER45623 and facilitated by the DOE CMCSN, under grant number DE-SC0007091.

  13. Store-operated Ca2+ entry in muscle physiology and diseases

    PubMed Central

    Pan, Zui; Brotto, Marco; Ma, Jianjie

    2014-01-01

    Ca2+ release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled Ca2+ influx into cells is store-operated Ca2+ entry (SOCE), which is activated by the reduction of Ca2+ concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR Ca2+ sensors and Orai proteins as Ca2+ channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed. [BMB Reports 2014; 47(2): 69-79] PMID:24411466

  14. New results in low-energy fusion of 40Ca+Zr,9290

    NASA Astrophysics Data System (ADS)

    Stefanini, A. M.; Montagnoli, G.; Esbensen, H.; Čolović, P.; Corradi, L.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Soić, N.; Strano, E.; Szilner, S.

    2017-07-01

    Background: Near- and sub-barrier fusion of various Ca + Zr isotopic combinations have been widely investigated. A recent analysis of 40Ca+96Zr data has highlighted the importance of couplings to multiphonon excitations and to both neutron and proton transfer channels. Analogous studies of 40Ca+90Zr tend to exclude any role of transfer couplings. However, the lowest measured cross section for this system is rather high (840 μ b ). A rather complete data set is available for 40Ca+94Zr , while no measurement of 40Ca+92Zr fusion has been performed in the past. Purpose: Our aim is to measure the full excitation function of 40Ca+92Zr near the barrier and to extend downward the existing data on 40Ca+90Zr , in order to estimate the transfer couplings that should be used in coupled-channels calculations of the fusion of these two systems and of 40Ca+94Zr . Methods: 40Ca beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used, bombarding thin metallic 90Zr (50 μ g /cm2 ) and 92ZrO2 targets (same thickness) enriched to 99.36 % and 98.06 % in masses 90 and 92, respectively. An electrostatic beam deflector allowed the detection of fusion evaporation residues (ER) at very forward angles, and angular distributions of ER were measured. Results: The excitation function of 40Ca+92Zr has been measured down to the level of ≃60 μ b . Coupled-channels (CC) calculations using a standard Woods-Saxon (WS) potential and following the line of a previous analysis of 40Ca+96Zr fusion data give a good account of the new data, as well as of the existing data for 40Ca+94Zr . The previous excitation function of 40Ca+90Zr has been extended down to 40 μ b . Conclusions: Transfer couplings play an important role in explaining the fusion data for 40Ca+92Zr and 40Ca+94Zr . The strength of the pair-transfer coupling is deduced by applying a simple recipe based on the value obtained for 40Ca+96Zr . The logarithmic slopes and the S factors for fusion are reproduced fairly well for all three systems by the CC calculations, and there are no indications of a fusion hindrance at the lowest energies. In contrast, the new data for 40Ca+90Zr indicate the onset of a fusion hindrance at the lowest energies.

  15. Structural, optical and dielectric studies of Er substituted zinc ferrite nanospheres

    NASA Astrophysics Data System (ADS)

    Shoba, M.; Kaleemulla, S.

    2017-12-01

    The cationic distributions among tetrahedral and octahedral sites in spinel ferrites have a profound influence on their properties. Many studies were reported with various transition metal (TM) and rare earth (RE) cations distribution. We report the synthesis, structural, morphology, lattice vibrational, optical and dielectric properties of heavy RE cation (Er) substituted ZnFe2O4 as a function of different experimental parameters. The coprecipitated and calcined ZnFe2-xErxO4 (x = 0, 0.2, 0.4, 0.6 & 0.8) compounds crystallizes in cubic spinel structure and show narrow particle size distribution due to surfactant PEG. Particle size reduces (27-16 nm) with enhance of Er concentration (x = 0 to 0.8) in the compounds. The EDAX spectra of the samples incorporation Er3+ ions into the lattice and the cubic lattice parameter enhances with Er3+ concentration. The lattice vibrational spectra reveal that the particles surface were free from surfactant PEG. Optical excitation studies show that energy band gap (Eg) of compounds reduces (1.85-2.00 eV) with enhance of Er concentration. The temperature, as well as frequency dependent dielectric constant (εrʹ) of ZnFe2-xErxO4, shows enhanced εrʹ with Er concentration up to x = 0.4 and then reduces with further enhancing of Er concentration. The dielectric loss factor (εrʹʹ) show similar variation with Er concentration. Further, both εrʹ and εrʹʹ were reduced with enhancing of field frequency. In addition, both εrʹ and εrʹʹ were enhanced with temperature and showed exponential change at low frequencies and high temperature and is attributed magnetic transition at around 525 K. The interface polarization mechanism is the predominant one in the present samples. The ac impedance spectra show two semicircles and each semicircle results from dielectric relaxation due to either particle (grain) or particles interface (grain boundary) polarization. The ac impedance reduces with enhancing of temperature. From the above studies, it is concluded that ZnFe1.6Er0.4O4 composition was best for high εrʹ and εrʹʹ values at low frequencies. All samples could be used in high-frequency application.

  16. Fusion of 48Ti+58Fe and 58Ni+54Fe below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Stefanini, A. M.; Montagnoli, G.; Corradi, L.; Courtin, S.; Bourgin, D.; Fioretto, E.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Mijatović, T.; Montanari, D.; Pagliaroli, M.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Toniolo, N.; Torresi, D.

    2015-12-01

    Background: No data on the fusion excitation function of 48Ti+58Fe in the energy region near the Coulomb barrier existed prior to the present work, while fusion of 58Ni+54Fe was investigated in detail some years ago, down to very low energies, and clear evidence of fusion hindrance was noticed at relatively high cross sections. 48Ti and 58Fe are soft and have a low-lying quadrupole excitation lying at ≈800 -900 keV only. Instead, 58Ni and 54Fe have a closed shell (protons and neutrons, respectively) and are rather rigid. Purpose: We aim to investigate (1) the possible influence of the different structures of the involved nuclei on the fusion excitation functions far below the barrier and, in particular, (2) whether hindrance is observed in 48Ti+58Fe , and to compare the results with current coupled-channels models. Methods: 48Ti beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used. The experimental setup was based on an electrostatic beam separator, and fusion-evaporation residues (ERs) were detected at very forward angles. Angular distributions of ERs were measured. Results: Fusion cross sections of 48Ti+58Fe have been obtained in a range of nearly six orders of magnitude around the Coulomb barrier, down to σ ≃2 μ b . The sub-barrier cross sections of 48Ti+58Fe are much larger than those of 58Ni+54Fe . Significant differences are also observed in the logarithmic derivatives and astrophysical S factors. No evidence of hindrance is observed, because coupled-channels calculations using a standard Woods-Saxon potential are able to reproduce the data in the whole measured energy range. Analogous calculations for 58Ni+54Fe predict clearly too large cross sections at low energies. The two fusion barrier distributions are wide and display a complex structure that is only qualitatively fit by calculations. Conclusions: It is pointed out that all these different trends originate from the dissimilar low-energy nuclear structures of the involved nuclei. In particular, the strong quadrupole excitations in 48Ti and 58Fe produce the relative cross section enhancement and make the barrier distribution ≈2 MeV wider, thus probably pushing the threshold for hindrance below the measured limit.

  17. Placing pain on the sensory map: classic papers by Ed Perl and colleagues.

    PubMed

    Mason, Peggy

    2007-03-01

    This essay looks at two papers published by Ed Perl and co-workers that identified specifically nociceptive neurons in the periphery and superficial dorsal horn. Bessou P and Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32: 1025-1043 1969. Christensen BN and Perl ER. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol 33: 293-307 1970.

  18. An Avalanche Diode Electron Detector for Observing NEET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji

    2004-05-12

    Nuclear excitation by electron transition (NEET) occurs in atomic inner-shell ionization if the nuclear excitation and the electron transition have nearly the same energy and a common multipolarity. We successfully observed the NEET on 197Au and on 193Ir using a silicon avalanche diode electron detector. The detector was used to find internal conversion electrons emitted from excited nuclei in time spectroscopy with a time gate method. Some nuclear resonant levels, including 8.410 keV on 169Tm and 80.577 keV on 166Er, were also observed with the detector.

  19. Synthetic and spectroscopic studies of vanadate glaserites II: Photoluminescence studies of Ln:K{sub 3}Y(VO{sub 4}){sub 2} (Ln=Eu, Er, Sm, Ho, or Tm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimani, Martin M., E-mail: kimani@g.clemson.edu; McMillen, Colin D., E-mail: cmcmill@g.clemson.edu; Kolis, Joseph W., E-mail: kjoseph@clemson.edu

    2015-03-15

    Glaserite-type potassium yttrium double vanadates (K{sub 3}Y(VO{sub 4}){sub 2}) doped with Eu{sup 3+}, Er{sup 3+}, Sm{sup 3+}, Ho{sup 3+}, or Tm{sup 3+} have been synthesized by solid state reactions at 1000 °C for 48 h and their photoluminescence properties investigated. Efficient energy transfer from the vanadate group to the rare earth ion has been established by photoluminescence investigation. Ultraviolet excitation into the metal to ligand charge transfer band of the vanadate groups results in orange-red, blue and green emissions from Eu{sup 3+} (592 nm), Sm{sup 3+} (602 nm), Tm{sup 3+} (475 nm), Er{sup 3+} (553 nm), and Ho{sup 3+} (541–551more » nm) dopant ions. The emission intensities of the lanthanide-doped K{sub 3}Y(VO{sub 4}){sub 2} powders were studied as a function of dopant ion concentrations. Over the concentration ranges studied, no emission quenching was observed for Eu{sup 3+} or Ho{sup 3+} dopants, while Er{sup 3+}, Sm{sup 3+} and Tm{sup 3+} dopants did exhibit such effects for dopant ion concentrations greater than 5%, probably due to cross relaxation processes. - Graphical abstract: Synthesis and photoluminescence in vanadate glaserites. - Highlights: • K{sub 3}Y(VO{sub 4}){sub 2} doped with Eu, Er, Tm, Sm, or Ho were synthesized via solid-state reactions. • Photoluminescence properties are investigated. • The lanthanide doped K{sub 3}Y(VO{sub 4}){sub 2} compounds revealed efficient energy transfer from the vanadate group to the rare earth ions. • The presented compounds are promising materials for light display systems, lasers, and optoelectronic devices.« less

  20. Comparative thermometric properties of bi-functional Er3+-Yb3+ doped rare earth (RE = Y, Gd and La) molybdates

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Mahata, Manoj Kumar; Kumar, Kaushal

    2018-02-01

    The molybdate compounds as luminescent medium have received great attention of recent research due to their excellent intrinsic optical properties. Therefore, the investigation on the optical thermometry and nanoheating effect in Er3+-Yb3+ doped molybdates of yttrium (EYYMO), gadolinium (EYGMO) and lanthanum (EYLMO) nanophosphors is reported herein. The temperature dependent fluorescence intensity ratio of green (525 and 548 nm) emission bands of Er3+ ions were analyzed within 300-500 K temperature range to determine the thermal behavior. The comparative temperature sensitivity of the materials has been found to depend on the phonon energy of their own. The thermal sensitivity is higher in the materials with low phonon energy. The intensity ratio of the green emission bands has been found to alter with the laser excitation density, which can be used to estimate the induced temperature in the materials. Furthermore, the photothermal conversion efficiency is calculated in the water dispersed samples and the maximum photothermal conversion efficiency of 49.6% is achieved for EYGMO nanophosphor. Comparative experimental results explore unequal thermal sensing and induced optical heating in the three rare earth molybdates. The optical properties of the green emitting molybdates are interesting for temperature sensing and optical heating applications.

  1. Effect of various surfactants on changes in the emission color chromaticity in upconversion YVO4: Yb3+, Er3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Woźny, Przemysław; Szczeszak, Agata; Lis, Stefan

    2018-02-01

    YVO4: Yb3+,Er3+ upconverting nanocrystals were synthesized via a hydrothermal method using different compounds as surfactants. Structure and morphology of the nanocrystals were investigated by X-ray diffraction and transmission electron microscopy. Tetragonal crystal structure of the nanocrystals appeared irrespective of the type of surfactant used. The average crystallite size was estimated by TEM images. The obtained products were composed of small nanoparticles, in the size range of 10-60 nm, depending on the surfactant used. The morphology of the nanoparticles was also regulated by the type of surfactant. Spectroscopic analysis of the materials obtained was carried out by measuring the emission and excitation spectra and the intensity of luminescence as a function of laser energy and luminescence decays. The nanocrystals prepared exhibited a green upconversion emission attributed to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+, under NIR (985 nm) pulse laser irradiation, and their emission lifetimes were in the range 3.84-4.90 μs. On the basis of the spectroscopic investigation, the upconversion mechanism was proposed and chromaticity coordinates were calculated. Surfactants were found to influence on chromaticity of luminescence.

  2. White light generation via up-conversion and blue tone in Er3+/Tm3+/Yb3+-doped zinc-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Rivera, V. A. G.; Ferri, F. A.; Nunes, L. A. O.; Marega, E.

    2017-05-01

    Yb3+, Er3+ and Tm3+ triply doped zinc-tellurite glass have been prepared containing up to 3.23 wt% of rare-earth ion oxides, were characterized by absorption spectroscopy, excitation, emission and up-conversion spectra. Transparent and homogeneous glasses have been produced, managing the red, green and blue emission bands, in order to generate white light considering the human eye perception. The energy transfer (resonant or non-resonant) between those rare-earth ions provides a color balancing mechanism that maintains the operating point in the white region, generating warm white light, cool white light and artificial daylight through the increase of the 976/980 nm diode laser excitation power from 4 to 470 mW. A light source at 4000 K is obtained under the excitation at 980 nm with 15 mW, providing a white light environment that is comfortable to the human eye vision. The spectroscopic study presented in this work describes the white light generation by the triply-doped zinc-tellurite glass, ranging from blue, green and red, by controlling the laser excitation power and wavelength at 976/980 nm. Such white tuning provokes healthy effects on human health throughout the day, especially the circadian system.

  3. Spectroscopic and energy transfer studies of Er{sup 3+} ions in B{sub 2}O{sub 3}–TeO{sub 2}–MgO–ZnO glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Arunkumar, S.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com

    2016-05-23

    Composition dependent spectroscopic behavior of Er{sup 3+} doped telluroborate glasses were prepared and the energy transfer mechanism in Er{sup 3+} ions were investigated for 1.532 µm amplification. The emission cross-section and gain coefficient for {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} level of Er{sup 3+} ions have been analysed through the Judd-Ofelt and McCumber theory. The excited state decay curves were measured and the effect of TeO{sub 2} on the lifetime for {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} level of Er{sup 3+} ions has been associated with the various energy transfer mechanism. Further the interaction between Er{sup 3+} and OH{sup −} were investigatedmore » and it was confirmed that the OH free radicals in the prepared glasses are dominant quenching center through the non-radiative relaxation that causes the quenching of 1.532 µm amplification. The non-radiative rate through the OH content were calculated and compared with the reported Er{sup 3+} doped glasses.« less

  4. Enhanced 1.53 μm emission of Er{sup 3+} ions in phosphate glass via energy transfer from Cu{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, José A., E-mail: jose.jimenez@unf.edu; Sendova, Mariana

    2014-07-21

    Optimizing the efficiency of Er{sup 3+} emission in the near-infrared telecommunication window in glass matrices is currently a subject of great interest in photonics research. In this work, Cu{sup +} ions are shown to be successfully stabilized at a high concentration in Er-containing phosphate glass by a single-step melt-quench method, and demonstrated to transfer energy to Er{sup 3+} thereby enhancing the near-infrared emission about 15 times. The spectroscopic data indicate an energy conversion process where Cu{sup +} ions first absorb photons broadly around 360 nm and subsequently transfer energy from the Stokes-shifted emitting states to resonant Er{sup 3+} absorption transitions inmore » the visible. Consequently, the Er{sup 3+} electronic excited states decay and the {sup 4}I{sub 3/2} metastable state is populated, leading to the enhanced emission at 1.53 μm. Monovalent copper ions are thus recognized as sensitizers of Er{sup 3+} ions, suggesting the potential of Cu{sup +} co-doping for applications in the telecommunications, solar cells, and solid-state lasing realizable under broad band near-ultraviolet optical pumping.« less

  5. Color-tunable up-conversion emission in Y2O3:Yb3+, Er3+ nanoparticles prepared by polymer complex solution method

    PubMed Central

    2013-01-01

    Abstract Powders of Y2O3 co-doped with Yb3+ and Er3+ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb3+/Er3+ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties. PACS 42.70.-a, 78.55.Hx, 78.60.-b PMID:23522083

  6. Ion beam nano-engineering of erbium doped silicon for enhanced light emission at 1.54 microns

    NASA Astrophysics Data System (ADS)

    Naczas, Sebastian

    Erbium doped silicon is of great interest as a potential light source in Silicon Photonics research due to its light emission at 1.54 mum, which corresponds to the minimal loss of optical transmission in silica fibers for telecommunications. In this thesis a basic mechanism for excitation and de-excitation of Er in Si is reviewed. Based on such fundamental understanding, an innovative approach is proposed and implemented to improve Er luminescence properties through the formation of metal nanoparticles via impurity gettering in Si nanocavities. The first part of the work demonstrates the use of ion implantation combined with thermal treatments for forming Ag nanoparticles in the vicinity of Er luminescence centers in Si. The utilization of standard semiconductor fabrication equipment and moderate thermal budgets make this approach fully compatible with Si CMOS technologies. The presence of Ag nanoparticles leads to an enhancement in the Er photoluminescence intensity, its excitation cross section and the population of optically active Er, possibly due to the surface plasmon excitation effects related to Ag nanoparticles. The resulting structures were characterized by Hydrogen depth profiling (NRA), Rutherford backscattering spectroscopy (RBS), Photoluminescence (PL), Transmission electron microscopy (TEM). In order to optimize the Er luminescence properties in such a system it is necessary to understand how the sample conditions affect the formation of Ag nanoparticles in Si. Therefore in the second part of this project we investigate the role of surface oxide in point defect generation and recombination, and the consequence on nanocavity formation and defect retention in Si. Investigation of the surface oxide effects on nanocavity formation in hydrogen implanted silicon and the influence of resultant nanocavities on diffusion and gettering of implanted silver atoms. Two sets of Si samples were prepared, depending on whether the oxide layer was etched off before (Group-A) or after (Group-B) post-H-implantation annealing. As evidenced by transmission electron microscopy, Group-A samples exhibited an array of large-sized nanocavities in hexagon-like shape, whereas a narrow band of sphere-shaped nanocavities of small size was present below the surface in Group-B samples. These Si samples with pre-existing nanocavities were further implanted with Ag ions in the surface region and post-Ag-implantation annealing was conducted in the temperature range between 600 and 900 °C. Measurements based on RBS revealed much different behaviors for Ag redistribution and defect accumulation in these two sets of samples. Compared to the case for Group-B Si, Group-A Si exhibited a lower concentration of residual defects and a slower kinetics in Ag diffusion as well. The properties of nanocavities, e.g., their depth distribution, size, and even shape, are believed to be responsible for the observed disparities between the samples with and without surface oxides, including an interesting contrast of surface vs. bulk diffusion phenomena for implanted Ag atoms. Based on this thesis work, we believe that this approach is promising for achieving monolithically integrated room-temperature light emitting devices based on Er-doped Si, if the properties (e.g., density/size/type of nanoparticles) of these novel Si nanostructures could be further optimized in future studies.

  7. High resolution FTIR spectroscopy of BaY2F8 single crystals doped with trivalent Er

    NASA Astrophysics Data System (ADS)

    Baraldi, A.; Capelletti, R.; Cornelli, M.; Ponzoni, A.; Ruffini, A.; Sperzagni, A.; Tonelli, M.

    High resolution (0.04 cm-1) FTIR spectroscopy is applied to monoclinic Er3+-doped BaY2F8 single crystals in the wavenumber range 500-24000 cm-1 and temperature range 9-300 K to study the crystal field splitting of the fundamental 4I15/2 and of the excited 4I13/2, 4I11/2, 4I9/2, 4F9/2, 4S3/2, 2H11/2, 4F7/2, 4F5/2, and 4F3/2 states and the effects caused by increasing Er3+-concentrations (2-20% m.f.), such as inhomogeneous line-broadening and new lines due to Er3+-Er3+ interaction. In the framework of the electron-phonon interaction, the thermally induced line-broadening and -shift are detected and accounted for by the two-phonon Raman model and the vibronic replicas of a few lines are investigated.

  8. Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors.

    PubMed

    Chen, Xueyuan; Luo, Wenqin

    2010-03-01

    Trivalent rare-earth (RE3+) ion-doped TiO2 nanophosphors belong to one kind of novel optical materials and have attracted increasing attention. The luminescence properties of different RE3+ ions in various TiO2 nanomaterials have been reviewed. Much attention is paid to our recent progresses on the luminescence properties of RE3+ (RE = Eu, Er, Sm, Nd) ions in anatase TiO2 nanoparticles prepared by a sol-gel-solvothermal method. Using Eu3+ as a sensitive optical probe, three significantly different luminescence centers of Eu3+ in TiO2 nanoparticles were detected by means of site-selective spectroscopy at 10 K. Based on the crystal-field (CF) splitting of Eu3+ at each site, C2v and D2 symmetries were proposed for Eu3+ incorporated at two lattice sites. A structural model for the formation of multiple sites was proposed based on the optical behaviors of Eu3+ at different sites. Similar multi-site luminescence was observed in Sm(3+)- or Nd(3+)-doped TiO2 nanoparticles. In Eu(3+)-doped TiO2 nanoparticles, only weak energy transfer from the TiO2 host to the Eu3+ ions was observed at 10 K due to the mismatch of energy between the TiO2 band-gap and the Eu3+ excited states. On the contrary, efficient host-sensitized luminescences were realized in Sm(3+)- or Nd(3+)-doped anatase TiO2 nanoparticles due to the match of energy between TiO2 band-gap and the Sm3+ and Nd3+ excited states. The excitation spectra of both Sm(3+)- and Nd(3+)-doped samples exhibit a dominant broad peak centered at approximately 340 nm, which is associated with the band-gap of TiO2, indicating that sensitized emission is much more efficient than direct excitation of the Sm3+ and Nd3+ ions. Single lattice site emission of Er3+ in TiO2 nanocrystals can be achieved by modifying the experimental conditions. Upon excitation by a Ti: sapphire laser at 978 nm, intense green upconverted luminescence was observed. The characteristic emission of Er3+ ions was obtained both in the ultraviolet-visible (UV-vis) and near-infrared regions through the high-resolution experiments at 10 K. The CF experienced by Er3+ in TiO2 nanocrystal was systematically studied by means of the energy level fitting.

  9. Infrared spectroscopy and upconversion luminescence behaviour of erbium doped yttrium (III) oxide phosphor

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Tiwari, Ratnesh; Tamrakar, Raunak Kumar; Rathore, Gajendra Singh; Sharma, Chitrakant; Tiwari, Neha

    2014-11-01

    The paper reports upconversion luminescence behaviour and infra-red spectroscopic pattern of erbium doped yttrium (III) oxide phosphor. Sample was synthesized by solid state reaction method with variable concentration or erbium (0.5-2.5 mol%). The conventional solid state method is suitable for large scale production and eco-friendly method. The prepared sample was characterized by X-ray diffraction (XRD) technique. From structural analysis by XRD technique shows cubic structure of prepared sample with variable concentration of erbium and no impurity phase were found when increase the concentration of Er3+. Particle size was calculated by Scherer's formula and it varies from 67 nm to 120 nm. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM) technique. The surface morphology of the sample shows good connectivity with grains as well as some agglomerates formation occurs in sample. The functional group analysis was done by Fourier transform infra-red technique (FTIR) analysis which confirm the formation of Y2O3:Er3+ phosphor was prepared. The results indicated that the Y2O3:Er3+ phosphors might have high upconversion efficiency because of their low vibrational energy. Under 980 nm laser excitation sample shows intense green emission at 555 nm and orange emission at 590 nm wavelength. For green emission transition occurs 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 for upconversion emissions. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The near infrared luminescence spectra was recorded. The upconversion luminescence intensity increase with increasing the concentration or erbium up to 2 mol% after that luminescence intensity decreases due to concentration quenching occurs. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage (CIE) technique. From CIE technique the dominant peak of from PL spectra shows intense green emission so the prepared phosphor is may be useful for green light emitting diode (GLED) application.

  10. Bifunction in Er{sup 3+}/Yb{sup 3+} co-doped BaTi{sub 2}O{sub 5}–Gd{sub 2}O{sub 3} glasses prepared by aerodynamic levitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Minghui; University of Chinese Academy of Sciences, Beijing 100039; Yu, Jianding

    2013-11-15

    Graphical abstract: - Highlights: • Novel BaTi{sub 2}O{sub 5}–Gd{sub 2}O{sub 3} based glasses have been prepared by aerodynamic levitation. • The obtained glasses show high thermal stability with T{sub g} = 763.3 °C. • Er{sup 3+}/Yb{sup 3+} co-doped glasses show strong upconversion based on a two-photon process. • Red emission is stronger than green emissions for EBT by high Yb{sup 3+} concentration. • Magnetic ions are paramagnetic and the distribution is homogeneous in the glasses. - Abstract: Novel Er{sup 3+}/Yb{sup 3+} co-doped BaTi{sub 2}O{sub 5}–Gd{sub 2}O{sub 3} spherical glasses have been fabricated by aerodynamic levitation method. The thermal stability, upconversionmore » luminescence, and magnetic properties of the present glass have been studied. The glasses show high thermal stability with 763.3 °C of the onset temperature of the glass transition. Red and green emissions centered at 671 nm, 548 nm and 535 nm are obtained at 980 nm excitation. The upconversion is based on a two-photon process by energy transfer, excited-state absorption, and energy back transfer. Yb{sup 3+} ions are more than Er{sup 3+} ions in the glass, resulting in efficient energy back transfer from Er{sup 3+} to Yb{sup 3+}. So the red emission is stronger than the green emissions. Magnetization curves indicate that magnetic rare earth ions are paramagnetic and the distribution is homogeneous and random in the glass matrix. Aerodynamic levitation method is an efficient way to prepare glasses with homogeneous rare earth ions.« less

  11. Ultrafast time-resolved photoemission of a metallic tip/substrate junction

    NASA Astrophysics Data System (ADS)

    Meng, Xiang; Jin, Wencan; Yang, Hao; Dadap, Jerry; Osgood, Richard; Camillone, Nicholas, III

    The strong near-field enhancement of metallic-tip nanostructures has attracted great interest in scanning microscopy techniques, such as surface-enhanced Raman scattering, near-field scanning optical microscopy and tip-enhanced nonlinear imaging. In this talk, we use a full vectorial 3D-FDTD method to investigate the spatial characteristics of the optical field confinement and localization between a tungsten nanoprobe and an infinite planar silver substrate, with two-color ultrafast laser excitation scheme. The degree of two-color excited field enhancement, geometry dependence, the exact mechanism of optical tip-substrate coupling and tip-substrate plasmon resonances are significant in understanding the electrodynamical responses at tip-substrate junction. The demonstrated measurements with subpicosecond time and subnanometer spatial resolution suggest a new approach to ultrafast time-resolved measurements of surface electron dynamics. DE-FG 02-90-ER-14104; DE-FG 02-04-ER-46157.

  12. Fundamental Studies of Photothermal Properties of a Nanosystem and the Surrounding Medium Using Er3+ Photoluminescence Nanothermometry

    NASA Astrophysics Data System (ADS)

    Baral, Susil

    Unique properties exhibited by metal nanoparticles at nanoscale have attracted a large amount of research attention and application in various aspects of nanoscience and nanotechnology. In addition to several unique optical, electrical and physical properties; metal nanoparticles also exhibit "photothermal property" a special feature that makes them capable of absorbing an electromagnetic radiation and converting light energy into heat energy. As this heat generated by metal nanoparticles can be utilized to drive processes in numerous applications, understanding the heat generation and heat dissipation properties of a nanosystem and/or its surrounding is vital for its efficiency and performance. The research work presented in this dissertation explores the fundamental photothermal properties of optically excited gold nanostructures and the surrounding medium using trivalent erbium ion (Er3+) emission nanothermometry approach. Nanostructures are either fabricated or spin-coated on top of a thermal sensor film with Er3+, optically excited with 532 nm Continuous Wave (CW) laser and the relative photoluminescence intensities of Er3+ emission peaks are utilized for nanoscale temperature measurement and thermal imaging. The first project of this dissertation explores the fundamental aspects of application of photothermal property of plasmonic nanostructures for phase transformation of the surrounding water and hence steam generation. Two totally contrasting nucleation behavior of surrounding water is observed for the optical excitation of single gold nanostructures versus the colloidal solution of gold nanoparticles. The second project examines the effect of ions and ionic strength on surface plasmon extinction properties of single gold nanostructures. Performing nanoscale temperature measurement and single particle absorption and scattering measurements, we demonstrate how non-binding ions, even at the concentrations where they are not expected to bring about changes on local dielectric properties of nanostructures, lead to large changes on extinction properties by attenuating surface plasmon absorption and scattering of plasmonic gold nanostructures. As better spatial and temperature resolution is extremely important for nanothermometry, we also extend the scope Er3+ nanothermometry towards sub-diffraction temperature and thermal imaging measurements. We introduce two novel techniques to meet this objective. First, using the Nano-sized erbium oxide (Er2O3) particle as a nanothermometer where the spatial resolution is limited only by the size of the particle used for thermal measurements. Next, by performing near-field measurements on previously diffraction limited AlGaN:Er3+ thin film thermal sensor. The later technique can perform steady state thermal measurements with sub-diffraction spatial resolution. Several steady state measurements were performed on different sized Au nanoparticle clusters to probe the scaling laws for local and collective heating regimes that are applicable to any size systems.

  13. Suppression effect of silicon (Si) on Er{sup 3+} 1.54μm excitation in ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Bo; Lu, Fei, E-mail: lufei@sdu.edu.cn; Fan, Ranran

    2016-08-15

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO{sub 2}-on-silicon (SiO{sub 2}) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak atmore » 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er{sup 3+} 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er{sup 3+} was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.« less

  14. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging

    PubMed Central

    Fukushima, S.; Furukawa, T.; Niioka, H.; Ichimiya, M.; Sannomiya, T.; Tanaka, N.; Onoshima, D.; Yukawa, H.; Baba, Y.; Ashida, M.; Miyake, J.; Araki, T.; Hashimoto, M.

    2016-01-01

    This paper presents a new correlative bioimaging technique using Y2O3:Tm, Yb and Y2O3:Er, Yb nanophosphors (NPs) as imaging probes that emit luminescence excited by both near-infrared (NIR) light and an electron beam. Under 980 nm NIR light irradiation, the Y2O3:Tm, Yb and Y2O3:Er, Yb NPs emitted NIR luminescence (NIRL) around 810 nm and 1530 nm, respectively, and cathodoluminescence at 455 nm and 660 nm under excitation of accelerated electrons, respectively. Multimodalities of the NPs were confirmed in correlative NIRL/CL imaging and their locations were visualized at the same observation area in both NIRL and CL images. Using CL microscopy, the NPs were visualized at the single-particle level and with multicolour. Multiscale NIRL/CL bioimaging was demonstrated through in vivo and in vitro NIRL deep-tissue observations, cellular NIRL imaging, and high-spatial resolution CL imaging of the NPs inside cells. The location of a cell sheet transplanted onto the back muscle fascia of a hairy rat was visualized through NIRL imaging of the Y2O3:Er, Yb NPs. Accurate positions of cells through the thickness (1.5 mm) of a tissue phantom were detected by NIRL from the Y2O3:Tm, Yb NPs. Further, locations of the two types of NPs inside cells were observed using CL microscopy. PMID:27185264

  15. Explanation of the cw operation of the Er3+ 3-μm crystal laser

    NASA Astrophysics Data System (ADS)

    Pollnau, M.; Graf, Th.; Balmer, J. E.; Lüthy, W.; Weber, H. P.

    1994-05-01

    A computer simulation of the Er3+ 3-μm crystal laser considering the full rate-equation scheme up to the 4F7/2 level has been performed. The influence of the important system parameters on lasing and the interaction of these parameters has been clarified with multiple-parameter variations. Stimulated emission is fed mainly by up-conversion from the lower laser level and in many cases is reduced by the quenching of the lifetime of this level. However, also without up-conversion a set of parameters can be found that allows lasing. Up-conversion from the upper laser level is detrimental to stimulated emission but may be compensated by cross relaxation from the 4S3/2 level. For a typical experimental situation we started with the parameters of Er3+:LiYF4. In addition, the host materials Y3Al5O12 (YAG), YAlO3, Y3Sc2Al3O12 (YSGG), and BaY2F8, as well as the possibilities of codoping, are discussed. In view of the consideration of all excited levels up to 4F7/2, all lifetimes and branching ratios, ground-state depletion, excited-state absorption, three up-conversion processes as well as their inverse processes, stimulated emission, and a realistic resonator design, this is, to our knowledge, the most detailed investigation of the Er3+ 3-μm crystal laser performed so far.

  16. Lanthanide-doped upconversion nanocrystals: Synthesis and optical properties study

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    Upconversion phosphor materials have attracted considerable attention in recent years for their potential applications in a wide range of fields, including three-dimensional displays technologies, bio-imaging and photovoltaics. This dissertation aims to develop novel lanthanide-doped upconversion luminescent nanomaterials by using wet chemistry methods. Considerable efforts have been devoted to manipulating the optical properties of the synthesized lanthanide-doped nanoparticles under excitation of different wavelengths, for example, 808, 980 and 1532 nm. In the first research work, a novel core-shell-shell design has been developed for finely tuning of energy migration upconversion of activators without long-lived mediated states, such as Eu3+ and Tb3+ upon excitation at 808 nm by using Nd3+ as sensitizer. Exquisite control the composition of each layer gives rise to maximized upconversion emissions of the activators. For example, with the use of core layer for energy harvesting (NaGdF4:Yb/Nd, active core), the optimal doping concentrations of Eu3+ and Tb3+ is fixed to 15 and 15 mol%, respectively. In contrast, active shell can also provide access to strong upconversion of Eu3+ and Tb3+ by doping Nd (40 mol%) into the outmost layer. Note that the effect of active shell is much stronger than active core in generating upconversion emissions of Eu3+ and Tb3+. Next, upconversion emission tuning of Er/Tm/Yb-doped NaYF4 upconversion nanoparticles has been conducted under excitation at 1532 nm. The output color of the nanoparticles is tunable by changing the doping levels of the lanthanides. With the use of core-shell design, the optical properties of the doped nanoparticles can be further optimized, for example, strongest upconversion emission was observed for NaYF4:Er(10 mol%) NaYF4:Er(0.5 mol%) with a relative emission of green-to-red of 1.2. This work provides a new dimension to control the color output of upconversion nanoparticles. It should be noted that the emission profiles of upconversion nanoparticles will be further enriched by using a combination of different excitation wavelengths. Finally, the orthorhombic-phase K2YF5 nanobelts doped with upconverting lanthanide ions (Er3+ and Tm3+) were synthesized by using a coprecipitation method. The growth kinetics of the nanobelts can be regulated by either control of the volume ratio of oleic acid in the synthetic system or period of reaction time. It was found that desirable lanthanide-doped K2YF5 nanobelts were yielded through the use of long time high-temperature annealing treatment (270 °C, 6 h) in the presence of low content of oleic acid. The assynthesized lanthanide-doped K2YF5 nanobelts show intense upconversion emissions upon excitation at 980 nm. For example, bright yellow emission was observed from K2YF5:Yb/Er(18/2 mol%), resulting from weak optical transitions of 2H11/2 → 4I15/2 (520 nm) and 4S3/2 → 4I15/2 (540 nm) and a dominant transition of 4F9/2 → 4I15/2 (centered at 650 nm) of the doped Er3+. In the case of K2YF5:Yb/Tm(30/0.5 mol%) nanobelts, three main emission bands centered at 479 (blue), 650 (red) and 800 nm (NIR) corresponding to 1D2 → 3H6, 1D2 → 3H4, and 3H4 ¨ 3H6 transition of Tm3+ were observed.

  17. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er:SrF2 single crystal.

    PubMed

    Su, Liangbi; Guo, Xinsheng; Jiang, Dapeng; Wu, Qinghui; Qin, Zhipeng; Xie, Guoqiang

    2018-03-05

    3 at.% Er:SrF 2 laser crystals with high optical quality were successfully grown using the temperature gradient technique (TGT). The intense mid-infrared emission was observed around 2.7 μm with excitation by a 970 nm LD. Based on the Judd-Ofelt theory, the emission cross-sections of the 4 I 13/2 - 4 I 11/2 transition were calculated by using the Fuchtbauer-Ladenburg (FL) method. Efficient continuous-wave laser operation at 2.8 µm was achieved with the lightly-doped 3 at.% Er:SrF 2 crystal pumped by a 970 nm laser diode. The laser output power reached up to 1.06 W with a maximum slope efficiency of 26%.

  18. Optically active Er-Yb doped glass films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Serna, R.; Ballesteros, J. M.; Jiménez de Castro, M.; Solis, J.; Afonso, C. N.

    1998-08-01

    Active rare-earth Er3+-Yb3+ co-doped phosphate glass films are produced in a single step by pulsed laser deposition. The films are multimode waveguides and exhibit the highest refractive index, optical density and 1.54 μm photoluminescence intensity and lifetime when deposited at low oxygen pressure (Pox⩽4×10-5 Torr). The density of the films obtained under these conditions is higher than that of the target material as a consequence of the high kinetic energy of the species generated during ablation. Luminescent emission can be excited by optical pumping the Er3+ ions either directly or through cross-relaxation of the Yb3+. Post-deposition annealing allows us to improve the luminescence performance.

  19. Active media for up-conversion diode-pumped lasers

    NASA Astrophysics Data System (ADS)

    Tkachuk, Alexandra M.

    1996-03-01

    In this work, we consider the different methods of populating the initial and final working levels of laser transitions in TR-doped crystals under the selective 'up-conversion' and 'avalanche' diode laser pumping. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes rates obtained from the experimental data and theoretical calculations, we estimated the efficiency of the up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the output characteristics and up-conversion processes in YLF:Er; BaY2F8:Er; BaY2F8:Er,Yb and BaY2F8:Yb,Ho are determined.

  20. Role of Er3+ concentration in high-resolution spectra of BaY2 F8 single crystals

    NASA Astrophysics Data System (ADS)

    Baraldi, A.; Capelletti, R.; Mazzera, M.; Ponzoni, A.; Amoretti, G.; Magnani, N.; Toncelli, A.; Tonelli, M.

    2005-08-01

    Fourier transform absorption spectroscopy with a resolution as fine as 0.02cm-1 was applied to Er3+ -doped monoclinic BaY2F8 laser crystals in a wide wave number range (500-24000cm-1) and in the temperature range 9-300 K. The careful analysis of the complex narrow line spectra induced by Er3+ allowed us to determine with high accuracy the crystal field splitting of the fundamental I15/24 and of the excited I13/24 , I11/24 , I9/24 , F9/24 , S3/24 , H11/22 , F7/24 , F5/24 , and F3/24 manifolds. On the basis of the experimental data, the crystal-field parameters were determined and Newman’s superposition model was applied: in this way a slight displacement of Er3+ with respect to the Y3+ position was foreseen. The Judd-Ofelt parameters were evaluated: the lifetime values deduced from them were compared to the experimental ones and discussed. The effects caused by increasing Er3+ concentrations (0.5%, 2%, 12%, and 20% atomic fraction) were studied in detail. The new lines, the line broadening, and the line-shape changes were explained in terms of Er3+-Er3+ interaction.

  1. Intense 2.7 μm mid-infrared emission of Er{sup 3+} in oxyfluoride glass ceramic containing NaYF{sub 4} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yin; Liu, Xueyun; Wang, Weichao

    2016-04-15

    Highlights: • Transparent oxyfluoride glass-ceramics containing NaYF{sub 4}:Er{sup 3+} nanocrystals have been prepared. • Intense 2.7 μm emission of the glass-ceramics has been demonstrated. • Prolonged decay lifetimes of Er{sup 3+}:{sup 4}I{sub 11/2} and {sup 4}I{sub 13/2} levels have been achieved. - Abstract: Transparent oxyfluoride glass ceramics containing NaYF{sub 4}:Er{sup 3+} nanocrystals have been prepared by melt quenching and subsequent thermal treatment. X-ray diffraction and high-resolution transmission electron microscopy analysis confirmed the precipitation of NaYF{sub 4} nanocrystals in glass. Energy dispersive spectrometer results evidenced the preferential concentration of Er{sup 3+} ions in nanocrystals. Mid-infrared, upconversion, and near-infrared emissions were measuredmore » upon excitation with 980 nm laser diode and the luminescence mechanisms were discussed. Intense 2.7 μm emission originating from the Er{sup 3+}:{sup 4}I{sub 11/2} → {sup 4}I{sub 13/2} transition was achieved due to the incorporation of Er{sup 3+} ions into the precipitated low phonon energy fluoride nanocrystals. The results indicate that oxyfluoride glass ceramic containing NaYF{sub 4}:Er{sup 3+} nanocrystals is a promising candidate material for 2.7 μm laser.« less

  2. Visible upconversion emission and non-radiative direct Yb 3+ to Er 3+ energy transfer processes in nanocrystalline ZrO 2:Yb 3+,Er 3+

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, L. A.; Meza, O.; Solis, D.; Salas, P.; De la Rosa, E.

    2011-06-01

    Wide band gap Yb 3+ and Er 3+ codoped ZrO 2 nanocrystals have been synthesized by a modified sol-gel method. Under 967 nm excitation strong green and red upconversion emission is observed for several Er 3+ to Yb 3+ ions concentration ratios. A simple microscopic rate equation model is used to study the effects of non-radiative direct Yb 3+ to Er 3+ energy transfer processes on the visible and near infrared fluorescence decay trends of both Er 3+ and Yb 3+ ions. The microscopic rate equation model takes into account the crystalline phase as well as the size of nanocrystals. Nanocrystals phase and size were estimated from XRD patterns. The rate equation model succeeds to fit simultaneously all visible and near infrared fluorescence decay profiles. The dipole-dipole interaction parameters that drive the non-radiative energy transfer processes depend on doping concentration due to crystallite phase changes. In addition the non-radiative relaxation rate ( 4I11/2→ 4I13/2) is found to be greater than that estimated by the Judd-Ofelt parameters due to the action of surface impurities. Results suggest that non-radiative direct Yb 3+ to Er 3+ energy transfer processes in ZrO 2:Yb,Er are extremely efficient.

  3. Lifetime measurement in ^170Yb

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Krücken, R.; Beausang, C. W.; Casten, R. F.; Cooper, J. R.; Cederkäll, J.; Caprio, M.; Novak, J. R.; Zamfir, N. V.; Barton, C.

    1999-10-01

    The nature of the low lying K^π=0^+ excitations in deformed nuclei have recently been subject of intense discussion. In this context we present results from a Coulomb excitation experiment on ^170Yb using a 70MeV ^16O beam on a gold backed, 1.5 mg/cm^2 thick ^170Yb target. The beam was delivered by the ESTU tandem accelerator of WNSL at Yale University. Gamma rays were detected by the YRAST Ball array in coincidence with back-scattered ^16O particles, which were detected in an array of 8 solar cells. Lineshapes were observed for several transitions from collective states in ^170Yb and the lifetimes for those states were extracted using a standard DSAM analysis. The results will be presented together with a short introduction to the solar cell array at Yale (SCARY) that was used to make angular selection of the excited ^170Yb nuclei. This work is supported by the US-DOE under grant numbers DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  4. Fabrication and Luminescence Characterization of a Silica Nanomatrix Embedded with NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Thangaraju, Dheivasigamani; Santhana, Vedi; Matsuda, Satoshi; Hayakawa, Yasuhiro

    2018-05-01

    Hexagonal NaYF4:Yb:Er:Tm@NaGdF4 core-shell nanocrystals were synthesized using a seed mediated hot injection method, and monodispersed Fe3O4 (4 nm) nanoparticles were prepared from iron(II) actylacetonate by a precursor thermal decomposition method. Structural and morphology verified NaYF4:Yb:Er:Tm@NaGdF4 and Fe3O4 nanoparticles were utilized for the preparation of NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4@SiO2 nanocomposite using a micro-emulsion method. Existence of Fe3O4 in NaYF4:Yb:Er:Tm@NaGdF4 in SiO2 nano-spheres were confirmed with transmission electron microscopy. Luminescence measurement revealed that NaYF4:Yb:Er:Tm@NaGdF4 exhibited strong emissions at green and red regions, in addition to a weak blue emission also observed under 980 nm excitation. Up-conversion emission of the nanoparticle-embedded silica nanocomposite showed that the up-conversion emission was not affected by Fe3O4 nanoparticles.

  5. Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass.

    PubMed

    Guo, Yanyan; Li, Ming; Hu, Lili; Zhang, Junjie

    2012-01-15

    The 2.7 μm emission properties in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass were investigated in the present Letter. An intense 2.7 μm emission in Er3+-doped bismuthate glass was observed. It is found that Er3+-doped bismuthate glass possesses high spontaneous transition probability A (65.26 s(-1)) and large 2.7 μm emission cross section σ(em) (9.53×10(-21) cm2) corresponding to the stimulated emission of Er3+:4I11/2→4I13/2 transition. The emission characteristic and energy transfer process upon excitation of a conventional 980 nm laser diode in bismuthate glass were analyzed. Additionally, the structure of bismuthate glass was analyzed by the Raman spectrum. The advantageous spectroscopic characteristics of Er3+ single-doped bismuthate glass together with the prominent thermal property indicate that bismuthate glass might become an attractive host for developing solid-state lasers around 2.7 μm.

  6. Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO{sub 2} films on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Chunyan; Department of Chemistry, Huzhou University, Zhejiang, Huzhou 313000; Zhu, Chen

    2015-04-06

    We report on erbium (Er)-related electroluminescence (EL) in the visible and near-infrared (NIR) from metal-oxide-semiconductor (MOS) devices with Er-doped CeO{sub 2} (CeO{sub 2}:Er) films on silicon. The onset voltage of such EL under either forward or reverse bias is smaller than 10 V. Moreover, the EL quenching can be avoidable for the CeO{sub 2}:Er-based MOS devices. Analysis on the current-voltage characteristic of the device indicates that the electron transportation at the EL-enabling voltages under either forward or reverse bias is dominated by trap-assisted tunneling mechanism. Namely, electrons in n{sup +}-Si/ITO can tunnel into the conduction band of CeO{sub 2} host viamore » defect states at sufficiently high forward/reverse bias voltages. Then, a fraction of such electrons are accelerated by electric field to become hot electrons, which impact-excite the Er{sup 3+} ions, thus leading to characteristic emissions. It is believed that this work has laid the foundation for developing viable silicon-based emitters using CeO{sub 2}:Er films.« less

  7. Research on up- and down-conversion emissions of Er3+/Yb3+ co-doped phosphate glass ceramic

    NASA Astrophysics Data System (ADS)

    Ming, Chengguo; Song, Feng; An, Liqun; Ren, Xiaobin; Yuan, Yize; Cao, Yang; Wang, Gangzhi

    2012-12-01

    By high-temperature melting method and thermal treatment technology, Er3+/Yb3+ co-doped phosphate glass and glass ceramic samples were prepared. The luminescence spectra of the glass and glass ceramic samples were studied under 975 nm excitation. In visible and near-infrared bands, the emission intensity of the glass ceramic is stronger than that of the glass. The glass ceramic can comprehensively improve the luminous characters of the precursor glass. The phosphate glass ceramic will be valuable luminescence materials.

  8. Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals.

    PubMed

    Johnson, Craig M; Reece, Peter J; Conibeer, Gavin J

    2011-10-15

    We present an approach to realizing enhanced upconversion efficiency in erbium (Er)-doped photonic crystals. Slow-light-mode pumping of the first Er excited state transition can result in enhanced emission from higher-energy levels that may lead to finite subbandgap external quantum efficiency in crystalline silicon solar cells. Using a straightforward electromagnetic model, we calculate potential field enhancements of more than 18× within he slow-light mode of a one-dimensional photonic crystal and discuss design trade-offs and considerations for photovoltaics.

  9. Resonance between a Prolate and a Superprolate Structure of the Er Nucleus.

    PubMed

    Pauling, L; Blethen, J

    1974-07-01

    Observed energy levels of (162)Er from the normal state J = 0 to the excited rotational state J = 18 correspond to values of the moment of inertia and rotational frequency that indicate that a pronounced change in structure occurs at about J = 14. It is shown that the observed values agree well with the values calculated on the assumption that there is resonance between a more stable prolate structure with a core of two spherons and a less stable superprolate structure with a core of three spherons in line.

  10. Synthesis, Structural Characterization and Up-Conversion Luminescence Properties of NaYF4:Er3+,Yb3+@MOFs Nanocomposites

    NASA Astrophysics Data System (ADS)

    Giang, Lam Thi Kieu; Marciniak, Lukasz; Huy, Tran Quang; Vu, Nguyen; Le, Ngo Thi Hong; Binh, Nguyen Thanh; Lam, Tran Dai; Minh, Le Quoc

    2017-10-01

    This paper describes a facile synthesis of NaYF4:Er3+,Yb3+ nanoparticles embraced in metal-organic frameworks (MOFs), known as NaYF4:Er3+, Yb3+@MOFs core/shell nanostructures, by using iron(III) carboxylate (MIL-100) and zeolitic imidazolate frameworks (ZIF-8). Morphological, structural and optical characterization of these nanostructures were investigated by field emission-scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, and up-conversion luminescence measurements. Results showed that spherical-shaped NaYF4:Er3+,Yb3+@MIL-100 nanocomposites with diameters of 150-250 nm, and rod-shaped NaYF4:Er3+,Yb3+@ZIF-8 nanocomposites with lengths of 300-550 nm, were successfully synthesized. Under a 980-nm laser excitation at room temperature, the NaYF4:Er3+,Yb3+@MOFs nanocomposites exhibited strong up-conversion luminescence with two emission bands in the green part of spectrum at 520 nm and 540 nm corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ ions, respectively, and a red emission band at 655 nm corresponding to the 4F9/2 → 4I15/2 transition of Er3+ ions. The above properties of NaYF4:Er3+,Yb3+@MOFs make them promising candidates for applications in biotechnology.

  11. Chlamydiae interaction with the endoplasmic reticulum: contact, function and consequences.

    PubMed

    Derré, Isabelle

    2015-07-01

    Chlamydiae and chlamydiae-related organisms are obligate intracellular bacterial pathogens. They reside in a membrane-bound compartment termed the inclusion and have evolved sophisticated mechanisms to interact with cellular organelles. This review focuses on the nature, the function(s) and the consequences of chlamydiae-inclusion interaction with the endoplasmic reticulum (ER). The inclusion membrane establishes very close contact with the ER at specific sites termed ER-inclusion membrane contact sites (MCSs). These MCSs are constituted of a specific set of factors, including the C. trachomatis effector protein IncD and the host cell proteins CERT and VAPA/B. Because CERT and VAPA/B have a demonstrated role in the non-vesicular trafficking of lipids between the ER and the Golgi, it was proposed that Chlamydia establish MCSs with the ER to acquire host lipids. However, the recruitment of additional factors to ER-inclusion MCSs, such as the ER calcium sensor STIM1, may suggest additional functions unrelated to lipid acquisition. Finally, chlamydiae interaction with the ER appears to induce the ER stress response, but this response is quickly dampened by chlamydiae to promote host cell survival. © 2015 John Wiley & Sons Ltd.

  12. The Entangled ER-Mitochondrial axis as a potential therapeutic strategy in Neurodegeneration: A Tangled Duo Unchained

    PubMed Central

    Joshi, Amit U.; Kornfeld, Opher S.; Mochly-Rosen, Daria

    2016-01-01

    Endoplasmic reticulum (ER) and mitochondrial function have both been shown to be critical events in neurodegenerative diseases. The ER mediates protein folding, maturation, sorting as well acts as calcium storage. The unfolded protein response (UPR) is a stress response of the ER that is activated by the accumulation of misfolded proteins within the ER lumen. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Similarly, calcium-mediated mitochondrial function and dynamics not only contribute to ATP generation and calcium buffering but are also a linchpin in mediating cell fate. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintaining cellular homeostasis and determining cell fate under various pathophysiological conditions. Regulated Ca2+ transfer from the ER to the mitochondria is important in maintaining control of pro-survival/pro-death pathways. In this review, we summarize the latest therapeutic strategies that target these essential organelles in the context of neurodegenerative diseases. PMID:27212603

  13. Radiationless Transitions and Excited-State Absorption in Tunable Laser Materials

    DTIC Science & Technology

    1992-09-01

    chromium - doped halide elpasolites K2 NaGaF 6 , K2 NaScF6 and Cs2NaYCl 6 , and on the laser-active TI0 (l) color center in KCI. Luminescence lifetime...Non-radiative transitions, transition metals, chromium , ¶SLWmER o E tunable lasers, high pressure, luminescence, color centers ൙. SECURITY O...quenching and excited-state absorption are major loss mechanisms. Low-crystal-field chromium complexes in ordered perovskites of cubic elpasolite structure

  14. Effect of defect state on photon synergistic process in KLu2F7:Yb3+, Er3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Bian, Wenjuan; Lu, Wei; Qi, Yushuang; Yu, Xue; Zhou, Dacheng; Yang, Yong; Qiu, Jianbei; Xu, Xuhui

    2016-10-01

    The synergistic effect appeared due to the cooperative dual-wavelength excitation by near-infrared (NIR) and ultraviolet (UV) light in rare-earth doped nano-particles (NPs) is very important to improve solar cell efficiency. Herein, we studied the synergistic effect combined with the energy levels of Er3+ ions and the defect states in KLu2F7 NPs. The introduction of Ce3+ ions in KLu2F7:16%Yb3+, 2%Er3+ NPs results in significant improvement of synergistic effect by producing more vacancy defects (VK‧) which serves as shallow traps. We verify unambiguously that the control of the defects distribution exerts a facile approach to promote the synergistic effect with the assistance of Ce3+ ions doping.

  15. Resonant electronic Raman scattering of below-gap states in molecular-beam epitaxy grown and liquid-encapsulated Czochralski grown GaAs

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Rice, A. D.; Mascarenhas, A.

    2018-05-01

    Resonant electronic Raman (ER) scattering is used to compare the below-gap excitations in molecular-beam epitaxially grown GaAs and in undoped semi-insulating GaAs substrates. The measurement geometry was designed to eliminate common measurement artifacts caused by the high optical transmission below the fundamental absorption edge. In epitaxial GaAs, ER is a clear Raman signal from the two-electron transitions of donors, eliminating an ambiguity encountered in previous results. In semi-insulating GaAs, ER occurs in a much broader dispersive band well below the bound exciton energies. The difference in the two materials may be due to the occupation of the substrate acceptor states in the presence of the midgap state EL2.

  16. Tunable upconversion luminescence of monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Qibai; Lin, Shaoteng; Xie, Zhongxiang; Zhang, Liqing; Qian, Yannan; Wang, Yaodong; Zhang, Haiyan

    2017-12-01

    Monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles with various dopant concentrations have been synthesized successfully by a homogeneous precipitation method. Their phase structures and surface morphologies have been characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The diversities of upconversion luminescence spectra and CIE coordinates of prepared samples are investigated in detail at room temperature under 980 nm excitation. Through adjusting the concentrations of Yb3+, Tm3+ and Er3+ ions, three upconversion emission bands in red, green and blue region could be tunable to achieve the color of interest and near white light emission can be obtained in the tri-doped Y2O3 nanoparticles for a variety of application.

  17. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach.

    PubMed

    Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei

    2017-07-01

    Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.

  18. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress.

    PubMed

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d'Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.

  19. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    NASA Astrophysics Data System (ADS)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.

  20. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials.

    PubMed

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-07

    Transparent Er 3+ -doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH - ) content. Enhanced 2.7 μm emission was achieved from Er 3+ -doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO 2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er 3+ -doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10 -20  cm 2 ). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  1. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    PubMed Central

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-01-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570

  2. BaY2F8 doped with Er3+: An upconverter material for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Boccolini, A.; Faoro, R.; Favilla, E.; Veronesi, S.; Tonelli, M.

    2013-08-01

    Fluoride crystals (BaY2F8) doped with Er3+ ions with different doping level have been grown with a home-made Czochralski furnace. A spectroscopic characterization consisting in both absorption and fluorescence measurements were performed in order to investigate the upconversion mechanism occurring when the material is excited with a radiation at 1557 nm. The measured emission spectrum shows a photoluminescence mainly distributed in the Near Infrared (NIR) region at ≃1 μm. The spectral conversion due to the upconversion makes this material suitable for photovoltaic applications, especially if we combine it with a crystalline silicon solar cell. A device made of single face solar cell+upconverter material (PV-UC) was designed and his external quantum efficiency (EQE) at 1557 nm was measured. EQE values of 6.5% and 4.1% were reached under 8.5 W cm-2 power density illumination for the 30%Er3+ and 20%Er3+ samples, respectively.

  3. Experimental optimum design and luminescence properties of NaY(Gd)(MoO4)2:Er3+ phosphors

    NASA Astrophysics Data System (ADS)

    Jia-Shi, Sun; Sai, Xu; Shu-Wei, Li; Lin-Lin, Shi; Zi-Hui, Zhai; Bao-Jiu, Chen

    2016-06-01

    Three-factor orthogonal design (OD) of Er3+/Gd3+/T (calcination temperature) is used to optimize the luminescent intensity of NaY(Gd)(MoO4)2:Er3+ phosphor. Firstly, the uniform design (UD) is introduced to explore the doping concentration range of Er3+/Gd3+. Then OD and range analysis are performed based on the results of UD to obtain the primary and secondary sequence and the best combination of Er3+, Gd3+, and T within the experimental range. The optimum sample is prepared by the high temperature solid state method. Photoluminescence excitation and emission spectra of the optimum sample are detected. The intense green emissions (530 nm and 550 nm) are observed which originate from Er3+ 2H11/2→ 4I15/2 and 4S3/2→4I15/2, respectively. Thermal effect is investigated in the optimum NaY(Gd3+)(MoO4)2:Er3+ phosphors, and the green emission intensity decreases as temperature increases. Project supported by Education Reform Fund of Dalian Maritime University, China (Grant No. 2015Y37), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2015020190 and 2014025010), the Open Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2015KF27), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3132016121).

  4. Level Lifetime Measurements in ^150Sm

    NASA Astrophysics Data System (ADS)

    Barton, C. J.; Krücken, R.; Beausang, C. W.; Caprio, M. A.; Casten, R. F.; Cooper, J. R.; Hecht, A. A.; Newman, H.; Novak, J. R.; Pietralla, N.; Wolf, A.; Zyromski, K. E.; Zamfir, N. V.; Börner, H. G.

    2000-10-01

    Shape/phase coexistence and the evolution of structure in the region around ^152Sm have recently been of great interest. Experiments performed at WNSL, Yale University, measured the lifetime of low spin states in a target of ^150Sm with the recoil distance method (RDM) and the Doppler-shift attenuation method (DSAM). The low spin states, both yrast and non-yrast, were populated via Coulomb excitation with a beam of ^16O. The experiments were performed with the NYPD plunger in conjunction with the SPEEDY γ-ray array. The SCARY array of solar cells was used to detect backward scattered projectiles, selecting forward flying Coulomb excited target nuclei. The measured lifetimes yield, for example, B(E2) values for transitions such as the 2^+2 arrow 2^+1 and the 2^+3 arrow 0^+_1. Data from the RDM measurment and the DSAM experiment will be presented. This work was supported by the US DOE under grants DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  5. Can functional emotion regulation protect children's mental health from war trauma? A Palestinian study.

    PubMed

    Diab, Marwan; Peltonen, Kirsi; Qouta, Samir R; Palosaari, Esa; Punamäki, Raija-Leena

    2017-04-19

    Effective emotion regulation (ER) is expected to protect mental health in traumatic stress. We first analysed the protective (moderator) function of different ER strategies and the associations between ER and mental health. Second, we tested gender differences in the protective function of ER and the associations between ER strategies and mental health. Participants were 482 Palestinian children (girls 49.4%; 10-13 years, M = 11.29, SD = .68) whose ER was assessed by the Emotion Regulation Questionnaire and mental health by post-traumatic stress (Children's Impact Event Scale), depressive, and psychological distress (Strengths and Difficulties Questionnaire) symptoms, and by psychosocial well-being (Mental Health Continuum-Short Form). War trauma involved 42 events. Results showed, first, that none of the ER strategies could protect a child's mental health from negative impact of war trauma, but self-focused ER was associated with low depressive symptoms, and other-facilitated ER with high psychological well-being. However, controlling of emotions formed a comprehensive risk for children's mental health. Second, gender differences were found in the protective role of ER, as self-focused and distractive ER formed a vulnerability among boys. The results are discussed in the context of emotional and regulative demands of war and life-threat. © 2017 International Union of Psychological Science.

  6. Photocatalytic degradation of organic dyes by Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Lu, Chunxiao; Tang, Liang; Song, Yahui; Wei, Shengnan; Rong, Yang; Zhang, Zhaohong; Wang, Jun

    2016-12-01

    In this work, the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites were prepared by the sol-gel method. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). Photo-degradation of azo fuchsine (AF) as a model dye under solar light irradiation was studied to evaluate the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites. It was found that the photocatalytic activity of Co- and Fe-doped ZnO composites can be obviously enhanced by upconversion luminescence agent (Er3+: YAlO3). Besides, the photocatalytic activity of Er3+: YAlO3/Fe-doped ZnO is better than that of Er3+: YAlO3/Co-doped ZnO. The influence of experiment conditions, such as the concentration of Er3+: YAlO3, heat-treatment temperature and time on the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites was studied. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+: YAlO3/Co- and Fe-doped ZnO amount on the photocatalytic degradation of azo fuchsine in aqueous solution were investigated in detail. Simultaneously, some other organic dyes, such as Methyl Orange (MO), Rhodamine B (RM-B), Acid Red B (AR-B), Congo Red (CR), and Methyl Blue (MB) were also studied. The possible excitation principle of Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar light irradiation and the photocatalytic degradation mechanism of organic dyes were discussed.

  7. Resonance between a Prolate and a Superprolate Structure of the 162Er Nucleus

    PubMed Central

    Pauling, Linus; Blethen, John

    1974-01-01

    Observed energy levels of 162Er from the normal state J = 0 to the excited rotational state J = 18 correspond to values of the moment of inertia and rotational frequency that indicate that a pronounced change in structure occurs at about J = 14. It is shown that the observed values agree well with the values calculated on the assumption that there is resonance between a more stable prolate structure with a core of two spherons and a less stable superprolate structure with a core of three spherons in line. PMID:16592173

  8. Magneto- to electroactive transmutation of spin waves in ErMnO3.

    PubMed

    Chaix, L; de Brion, S; Petit, S; Ballou, R; Regnault, L-P; Ollivier, J; Brubach, J-B; Roy, P; Debray, J; Lejay, P; Cano, A; Ressouche, E; Simonet, V

    2014-04-04

    The low-energy dynamical properties of the multiferroic hexagonal perovskite ErMnO3 have been studied by inelastic neutron scattering as well as terahertz and far infrared spectroscopies on a synchrotron source. From these complementary techniques, we have determined the magnon and crystal field spectra and identified a zone center magnon excitable only by the electric field of an electromagnetic wave. Using a comparison with the isostructural YMnO3 compound and crystal field calculations, we propose that this dynamical magnetoelectric process is due to the hybridization of a magnon with an electroactive crystal field transition.

  9. Fabrication and characterization of III-nitride nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Dahal, Rajendra Prasad

    III-nitride photonic devices such as photodetectors (PDs), light emitting diode (LEDs), solar cells and optical waveguide amplifiers were designed, fabricated and characterized. High quality AlN epilayers were grown on sapphire and n-SiC substrates by metal organic chemical vapor deposition and utilized as active deep UV (DUV) photonic materials for the demonstration of metal-semiconductor-metal (MSM) detectors, Schottky barrier detectors, and avalanche photodetectors (APDs). AlN DUV PDs exhibited peak responsivity at 200 nm with a very sharp cutoff wavelength at 207 nm and extremely low dark current (<10 fA), very high breakdown voltages, high responsivity, and more than four orders of DUV to UV/visible rejection ratio. AlN Schottky PDs grown on n-SiC substrates exhibited high zero bias responsivity and a thermal energy limited detectivity of about 1.0 x 1015 cm Hz 1/2 W-1. The linear mode operation of AlN APDs with the shortest cutoff wavelength (210 nm) and a photocurrent multiplication of 1200 was demonstrated. A linear relationship between device size and breakdown field was observed for AlN APDs. Photovoltaic operation of InGaN solar cells in wavelengths longer than that of previous attainments was demonstrated by utilizing In xGa1-xN/GaN MQWs as the active layer. InxGa1-xN/GaN MQWs solar cells with x =0.3 exhibited open circuit voltage of about 2 V, a fill factor of about 60% and external quantum efficiency of 40% at 420 nm and 10% at 450 nm. The performance of InxGa1-xN/GaN MQWs solar cell was found to be highly correlated with the crystalline quality of the InxGa 1-xN active layer. The possible causes of poorer PV characteristics for higher In content in InGaN active layer were explained. Photoluminescence excitation studies of GaN:Er and In0.06Ga 0.94N:Er epilayers showed that Er emission intensity at 1.54 mum increases significantly as the excitation energy is tuned from below to above the energy bandgap of these epilayers. Current-injected 1.54 mum LEDs based on heterogeneous integration of Er-doped III-nitride epilayers with III-nitride UV LEDs were demonstrated. Optical waveguide amplifiers based on AlGaN/GaN:Er/AlGaN heterostructures was designed, fabricated, and characterized. The measured optical loss of the devices was ˜3.5 cm-1 at 1.54 mum. A relative signal enhancement of about 8 dB/cm under the excitation of a broadband 365 nm nitride LED was achieved. The advantages and possible applications of 1.54 mum emitters and optical amplifiers based on Er doped III-nitrides in optical communications have been discussed.

  10. Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses.

    PubMed

    Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb

    2010-01-01

    Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand-receptor interactions.

    PubMed

    Abrash, Emily B; Davies, Kelli A; Bergmann, Dominique C

    2011-08-01

    Core signaling pathways function in multiple programs during multicellular development. The mechanisms that compartmentalize pathway function or confer process specificity, however, remain largely unknown. In Arabidopsis thaliana, ERECTA (ER) family receptors have major roles in many growth and cell fate decisions. The ER family acts with receptor TOO MANY MOUTHS (TMM) and several ligands of the EPIDERMAL PATTERNING FACTOR LIKE (EPFL) family, which play distinct yet overlapping roles in patterning of epidermal stomata. Here, our examination of EPFL genes EPFL6/CHALLAH (CHAL), EPFL5/CHALLAH-LIKE1, and EPFL4/CHALLAH-LIKE2 (CLL2) reveals that this family may mediate additional ER-dependent processes. chal cll2 mutants display growth phenotypes characteristic of er mutants, and genetic interactions are consistent with CHAL family molecules acting as ER family ligands. We propose that different classes of EPFL genes regulate different aspects of ER family function and introduce a TMM-based discriminatory mechanism that permits simultaneous, yet compartmentalized and distinct, function of the ER family receptors in growth and epidermal patterning.

  12. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles.

    PubMed

    Zou, Qilin; Huang, Ping; Zheng, Wei; You, Wenwu; Li, Renfu; Tu, Datao; Xu, Jin; Chen, Xueyuan

    2017-05-18

    Lanthanide (Ln 3+ )-doped upconversion nanoparticles (UCNPs) have attracted tremendous interest owing to their potential bioapplications. However, the intrinsic photophysics responsible for upconversion (UC) especially the cooperative sensitization UC (CSU) in colloidal Ln 3+ -doped UCNPs has remained untouched so far. Herein, we report a unique strategy for the synthesis of high-quality LiYbF 4 :Ln 3+ core-only and core/shell UCNPs with tunable particle sizes and shell thicknesses. Energy transfer UC from Er 3+ , Ho 3+ and Tm 3+ and CSU from Tb 3+ were comprehensively surveyed under 980 nm excitation. Through surface passivation, we achieved efficient non-cooperative sensitization UC with absolute UC quantum yields (QYs) of 3.36%, 0.69% and 0.81% for Er 3+ , Ho 3+ and Tm 3+ , respectively. Particularly, we for the first time quantitatively determined the CSU efficiency for Tb 3+ with an absolute QY of 0.0085% under excitation at a power density of 70 W cm -2 . By means of temperature-dependent steady-state and transient UC spectroscopy, we unraveled the dominant mechanisms of phonon-assisted cooperative energy transfer (T > 100 K) and sequential dimer ground-state absorption/excited-state absorption (T < 100 K) for the CSU process in LiYbF 4 :Tb 3+ UCNPs.

  13. Spectroscopic Imaging of NIR to Visible Upconversion from NaYF4:Yb3+, Er3+ Nanoparticles on Au Nano-cavity Arrays

    NASA Astrophysics Data System (ADS)

    Fisher, Jon; Zhao, Bo; Lin, Cuikun; Berry, Mary; May, P. Stanley; Smith, Steve

    2015-03-01

    We use spectroscopic imaging to assess the spatial variations in upconversion luminescence from NaYF4:Er3+,Yb3+ nanoparticles embedded in PMMA on Au nano-cavity arrays. The nano-cavity arrays support a surface plasmon (SP) resonance at 980nm, coincident with the peak absorption of the Yb3+ sensitizer. Spatially-resolved upconversion spectra show a 30X to 3X luminescence intensity enhancement on the nano-cavity array compared to the nearby smooth Au surface, corresponding to excitation intensities from 1 W/cm2 to 300kW/cm2. Our analysis shows the power dependent enhancement in upconversion luminescence can be almost entirely accounted for by a constant shift in the effective excitation intensity, which is maintained over five orders of magnitude variation in excitation intensity. The variations in upconversion luminescence enhancement with power are modeled by a 3-level-system near the saturation limit, and by simultaneous solution of a system of coupled nonlinear differential equations, both analyses agree well with the experiments. Analysis of the statistical distribution of emission intensities in the spectroscopic images on and off the nano-cavity arrays provides an estimate of the average enhancement factor independent of fluctuations in nano-particle density. Funding provided by NSF Award # 0903685 (IGERT).

  14. Nuclear structure studies of 141Ce and 147Sm using deep-inelastic collisions

    NASA Astrophysics Data System (ADS)

    Gass, E. J.; McCutchan, E. A.; Sonzogni, A. A.; Loveland, W.; Barrett, J. S.; Yanez, R.; Chiara, C. J.; Harker, J. L.; Walters, W. B.; Zhu, S.; Ayangeakaai, A. D.; Carpenter, M. P.; Greene, J. P.; Janssens, R. V. F.; Lauritsen, T.; Naïdja, H.

    2017-09-01

    Nuclei with a few valence nucleons outside of the magic numbers are essential for testing the nuclear shell model and gathering information on the residual interactions and energies of single-particle levels. The present work focused on the high-spin structures of 141Ce (N = 83) and 147Sm (N = 85). These nuclei are not produced by heavy-ion fusion-evaporation or fission reactions, therefore little was known about their high-spin structure. A deep-inelastic reaction using a beam of 136Xe incident on a thick target of 208Pb was used to populate excited states in the nuclei. The Gammasphere array at Argonne National Laboratory was used to detect the resulting de-excitation -ray transitions. The level schemes of both nuclei were significantly extended to high angular momentum and high excitation energy. In 141Ce, this included a number of states built on the i13/2, 1369-keV level. Results of the present analysis will be compared to state-of-the-art shell model calculations. Supported by US DOE under the SULI Program and Grant Nos. DE-FG06-97ER41026 and DE-FG02-94ER40834 and Contract Nos. DE-AC02-06CH11357 and DE-AC02-06CH10886.

  15. Do inositol supplements enhance phosphatidylinositol supply and thus support endoplasmic reticulum function?

    PubMed

    Michell, Robert H

    2018-06-03

    This review attempts to explain why consuming extra myoinositol (Ins), an essential component of membrane phospholipids, is often beneficial for patients with conditions characterised by insulin resistance, non-alcoholic fatty liver disease and endoplasmic reticulum (ER) stress. For decades we assumed that most human diets provide an adequate Ins supply, but newer evidence suggests that increasing Ins intake ameliorates several disorders, including polycystic ovary syndrome, gestational diabetes, metabolic syndrome, poor sperm development and retinopathy of prematurity. Proposed explanations often suggest functional enhancement of minor facets of Ins Biology such as insulin signalling through putative inositol-containing 'mediators', but offer no explanation for this selectivity. It is more likely that eating extra Ins corrects a deficiency of an abundant Ins-containing cell constituent, probably phosphatidylinositol (PtdIns). Much of a cell's PtdIns is in ER membranes, and an increase in ER membrane synthesis, enhancing the ER's functional capacity, is often an important part of cell responses to ER stress. This review: (a) reinterprets historical information on Ins deficiency as describing a set of events involving a failure of cells adequately to adapt to ER stress; (b) proposes that in the conditions that respond to dietary Ins there is an overstretching of Ins reserves that limits the stressed ER's ability to make the 'extra' PtdIns needed for ER membrane expansion; and (c) suggests that eating Ins supplements increases the Ins supply to Ins-deficient and ER-stressed cells, allowing them to make more PtdIns and to expand the ER membrane system and sustain ER functions.

  16. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  17. Resonant electronic Raman scattering of below-gap states in molecular-beam epitaxy grown and liquid-encapsulated Czochralski grown GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, B.; Rice, A. D.; Mascarenhas, A.

    Resonant electronic Raman (ER) scattering is used to compare the below-gap excitations in molecular-beam epitaxially grown GaAs and in undoped semi-insulating GaAs substrates. The measurement geometry was designed to eliminate common measurement artifacts caused by the high optical transmission below the fundamental absorption edge. In epitaxial GaAs, ER is a clear Raman signal from the two-electron transitions of donors, eliminating an ambiguity encountered in previous results. In semi-insulating GaAs, ER occurs in a much broader dispersive band well below the bound exciton energies. Furthermore, the difference in the two materials may be due to the occupation of the substrate acceptormore » states in the presence of the midgap state EL2.« less

  18. Energy transfer and up-conversion in rare-earth doped dielectric crystals

    NASA Astrophysics Data System (ADS)

    Tkachuk, Alexandra M.

    1996-01-01

    In this work, we consider the prospects of development of the visible, and IR laser-diode pumped lasers based on TR3+-doped double-fluoride crystals. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes obtained from the experiments and theoretical calculations, the conclusions are drawn on the efficiency of up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the efficiency of up-conversion processes is demonstrated on the example of the YLF:Nd, YLF:Er, BaY2F8:Er, and BaY2F8:Er,Yb crystals. The transfer microparameters for most important cross-relaxation transitions are determined and the conclusions about interaction mechanisms are drawn.

  19. Regulation of Endoplasmic Reticulum-Mitochondria Ca2+ Transfer and Its Importance for Anti-Cancer Therapies.

    PubMed

    Pedriali, Gaia; Rimessi, Alessandro; Sbano, Luigi; Giorgi, Carlotta; Wieckowski, Mariusz R; Previati, Maurizio; Pinton, Paolo

    2017-01-01

    Inter-organelle membrane contact sites are emerging as major sites for the regulation of intracellular Ca 2+ concentration and distribution. Here, extracellular stimuli operate on a wide array of channels, pumps, and ion exchangers to redistribute intracellular Ca 2+ among several compartments. The resulting highly defined spatial and temporal patterns of Ca 2+ movement can be used to elicit specific cellular responses, including cell proliferation, migration, or death. Plasma membrane (PM) also can directly contact mitochondria and endoplasmic reticulum (ER) through caveolae, small invaginations of the PM that ensure inter-organelle contacts, and can contribute to the regulation of numerous cellular functions through scaffolding proteins such as caveolins. PM and ER organize specialized junctions. Here, many components of the receptor-dependent Ca 2+ signals are clustered, including the ORAI1-stromal interaction molecule 1 complex. This complex constitutes a primary mechanism for Ca 2+ entry into non-excitable cells, modulated by intracellular Ca 2+ . Several contact sites between the ER and mitochondria, termed mitochondria-associated membranes, show a very complex and specialized structure and host a wide number of proteins that regulate Ca 2+ transfer. In this review, we summarize current knowledge of the particular action of several oncogenes and tumor suppressors at these specialized check points and analyze anti-cancer therapies that specifically target Ca 2+ flow at the inter-organelle contacts to alter the metabolism and fate of the cancer cell.

  20. Upconversion improvement in KLaF4:Yb3+/Er3+ nanoparticles by doping Al3+ ions

    NASA Astrophysics Data System (ADS)

    Zhou, Haifang; Wang, Xiechun; Lai, Yunfeng; Cheng, Shuying; Zheng, Qiao; Yu, Jinlin

    2017-10-01

    Rare-earth ion-doped upconversion (UC) materials show great potential applications in optical and optoelectronic devices due to their novel optical properties. In this work, hexagonal KLaF4:Yb3+/Er3+ nanoparticles (NPs) were successfully synthesized by a hydrothermal method, and remarkably enhanced upconversion luminescence in green and red emission bands in KLaF4:Yb3+/Er3+ NPs has been achieved by doping Al3+ ions under 980 nm excitation. Compared to the aluminum-free KLaF4:Yb3+/Er3+ NPs sample, the UC fluorescence intensities of the green and red emissions of NPs doped with 10 at.% Al3+ ions were significantly enhanced by 5.9 and 7.3 times, respectively. Longer lifetimes of the doped samples were observed for the 4S3/2 state and 4F9/2 state. The underlying reason for the UC enhancement by doping Al3+ ions was mainly ascribed to distortion of the local symmetry around Er3+ ions and adsorption reduction of organic ligands on the surface of NPs. In addition, the influence of doping Al3+ ions on the structure and morphology of the NPs samples was also discussed.

  1. Highly efficient up-conversion and bright white light in RE co-doped KYF4 nanocrystals in sol-gel silica matrix

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Yanes, A. C.; Santana-Alonso, A.; del-Castillo, J.

    2013-01-01

    Transparent nano-glass-ceramics comprising Yb3+, Er3+ and Tm3+ co-doped KYF4 nanocrystals have been developed from sol-gel method. A structural analysis by means of X-ray diffraction confirmed the precipitation of cubic KYF4 nanocrystals into a silica matrix. Visible luminescence has been analyzed as function of treatment temperature of precursor sol-gel glasses. Highly efficient up-conversion emissions have been obtained under 980 nm excitation and studied by varying the doping level, processing temperature and pump power. Color tuneability has been quantified in terms of CIE diagram and in particular, a white-balanced overall emission has been achieved for a certain doping level and thermal treatment.

  2. Endoplasmic reticulum membrane potassium channel dysfunction in high fat diet induced stress in rat hepatocytes

    PubMed Central

    Khodaee, Naser; Ghasemi, Maedeh; Saghiri, Reza; Eliassi, Afsaneh

    2014-01-01

    In a previous study we reported the presence of a large conductance K+ channel in the membrane of endoplasmic reticulum (ER) from rat hepatocytes. The channel open probability (Po) appeared voltage dependent and reached to a minimum 0.2 at +50 mV. Channel activity in this case was found to be totally inhibited at ATP concentration 2.5 mM, glibenclamide 100 µM and tolbutamide 400 µM. Existing evidence indicates an impairment of endoplasmic reticulum functions in ER stress condition. Because ER potassium channels have been involved in several ER functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the ER potassium channel function is altered in a high fat diet model of ER stress. Male Wistar rats were made ER stress for 2 weeks with a high fat diet. Ion channel incorporation of ER stress model into the bilayer lipid membrane allowed the characterization of K+ channel. Our results indicate that the channel Po was significantly increased at voltages above +30 mV. Interestingly, addition of ATP 7.5 mM, glibenclamide 400 µM and tolbutamide 2400 µM totally inhibited the channel activities, 3-fold, 4-fold and 6-fold higher than that in the control groups, respectively. Our results thus demonstrate a modification in the ER K+ channel gating properties and decreased sensitivity to drugs in membrane preparations coming from ER high fat model of ER stress, an effect potentially linked to a change in ER K+ channel subunits in ER stress condition. Our results may provide new insights into the cellular mechanisms underlying ER dysfunctions in ER stress. PMID:26417322

  3. Human MI-ER1 Alpha and Beta Function as Transcriptional Repressors by Recruitment of Histone Deacetylase 1 to Their Conserved ELM2 Domain

    PubMed Central

    Ding, Zhihu; Gillespie, Laura L.; Paterno, Gary D.

    2003-01-01

    mi-er1 (previously called er1) was first isolated from Xenopus laevis embryonic cells as a novel fibroblast growth factor-regulated immediate-early gene. Xmi-er1 was shown to encode a nuclear protein with an N-terminal acidic transcription activation domain. The human orthologue of mi-er1 (hmi-er1) displays 91% similarity to the Xenopus sequence at the amino acid level and was shown to be upregulated in breast carcinoma cell lines and tumors. Alternative splicing at the 3′ end of hmi-er1 produces two major isoforms, hMI-ER1α and hMI-ER1β, which contain distinct C-terminal domains. In this study, we investigated the role of hMI-ER1α and hMI-ER1β in the regulation of transcription. Using fusion proteins of hMI-ER1α or hMI-ER1β tethered to the GAL4 DNA binding domain, we show that both isoforms, when recruited to the G5tkCAT minimal promoter, function to repress transcription. We demonstrate that this repressor activity is due to interaction and recruitment of a trichostatin A-sensitive histone deacetylase 1 (HDAC1). Furthermore, deletion analysis revealed that recruitment of HDAC1 to hMI-ER1α and hMI-ER1β occurs through their common ELM2 domain. The ELM2 domain was first described in the Caenorhabditis elegans Egl-27 protein and is present in a number of SANT domain-containing transcription factors. This is the first report of a function for the ELM2 domain, highlighting its role in the regulation of transcription. PMID:12482978

  4. Human MI-ER1 alpha and beta function as transcriptional repressors by recruitment of histone deacetylase 1 to their conserved ELM2 domain.

    PubMed

    Ding, Zhihu; Gillespie, Laura L; Paterno, Gary D

    2003-01-01

    mi-er1 (previously called er1) was first isolated from Xenopus laevis embryonic cells as a novel fibroblast growth factor-regulated immediate-early gene. Xmi-er1 was shown to encode a nuclear protein with an N-terminal acidic transcription activation domain. The human orthologue of mi-er1 (hmi-er1) displays 91% similarity to the Xenopus sequence at the amino acid level and was shown to be upregulated in breast carcinoma cell lines and tumors. Alternative splicing at the 3' end of hmi-er1 produces two major isoforms, hMI-ER1alpha and hMI-ER1beta, which contain distinct C-terminal domains. In this study, we investigated the role of hMI-ER1alpha and hMI-ER1beta in the regulation of transcription. Using fusion proteins of hMI-ER1alpha or hMI-ER1beta tethered to the GAL4 DNA binding domain, we show that both isoforms, when recruited to the G5tkCAT minimal promoter, function to repress transcription. We demonstrate that this repressor activity is due to interaction and recruitment of a trichostatin A-sensitive histone deacetylase 1 (HDAC1). Furthermore, deletion analysis revealed that recruitment of HDAC1 to hMI-ER1alpha and hMI-ER1beta occurs through their common ELM2 domain. The ELM2 domain was first described in the Caenorhabditis elegans Egl-27 protein and is present in a number of SANT domain-containing transcription factors. This is the first report of a function for the ELM2 domain, highlighting its role in the regulation of transcription.

  5. The reticulons: Guardians of the structure and function of the endoplasmic reticulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Sano, Federica; Bernardoni, Paolo; Piacentini, Mauro, E-mail: mauro.piacentini@uniroma2.it

    2012-07-01

    The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by a specific class of curvature stabilizing proteins, the reticulons and DP1; however it is still unclear how the sheets are assembled. The ER is the cellular compartment responsible for secretory and membrane protein synthesis. The reducing conditions of ER lead to the intra/inter-chain formation of new disulphide bonds into polypeptides during protein folding assessed by enzymatic or spontaneous reactions. Moreover, ER represents the main intracellular calcium storage site and it plays an important role in calcium signalingmore » that impacts many cellular processes. Accordingly, the maintenance of ER function represents an essential condition for the cell, and ER morphology constitutes an important prerogative of it. Furthermore, it is well known that ER undergoes prominent shape transitions during events such as cell division and differentiation. Thus, maintaining the correct ER structure is an essential feature for cellular physiology. Now, it is known that proper ER-associated proteins play a fundamental role in ER tubules formation. Among these ER-shaping proteins are the reticulons (RTN), which are acquiring a relevant position. In fact, beyond the structural role of reticulons, in very recent years new and deeper functional implications of these proteins are emerging in relation to their involvement in several cellular processes.« less

  6. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    PubMed

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Endoplasmic Reticulum Stress in Beta Cells and Development of Diabetes

    PubMed Central

    Fonseca, Sonya G.; Burcin, Mark; Gromada, Jesper; Urano, Fumihiko

    2009-01-01

    The endoplasmic reticulum (ER) is a cellular compartment responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. A myriad of pathological and physiological factors perturb ER function and cause dysregulation of ER homeostasis, leading to ER stress. ER stress elicits a signaling cascade to mitigate stress, the Unfolded Protein Response (UPR). As long as the UPR can relieve stress, cells can produce the proper amount of proteins and maintain ER homeostasis. If the UPR, however, fails to maintain ER homeostasis, cells will undergo apoptosis. Activation of the UPR is critical to the survival of insulin-producing pancreatic β-cells with high secretory protein production. Any disruption of ER homeostasis in β-cells can lead to cell death and contribute to the pathogenesis of diabetes. There are several models of ER stress-mediated diabetes. In this review, we outline the underlying molecular mechanisms of ER stress-mediated β-cell dysfunction and death during the progression of diabetes. PMID:19665428

  8. Synthesis and novel luminescence properties of one-dimension BaMoO{sub 4}:Ln{sup 3+} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuping; Li, Mingxia; Pan, Kai

    2015-12-15

    Highlights: • String BaMoO{sub 4}:Ln{sup 3+} nanobeans were prepared by a hydrothermal method. • The Decay dynamics were performed to study the photoluminescence of the BaMoO{sub 4}:Eu{sup 3+} nanobeans. • For BaMoO{sub 4}:Er{sup 3+}/Eu{sup 3+}, the {sup 2}P{sub 3/2} → {sup 4}I{sub 11/2} and {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transitions were observed. - Abstract: String BaMoO{sub 4}:Ln{sup 3+} (Ln = Eu, Tb, Er, and Gd) nanobeans were prepared by a hydrothermal method. The samples were characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscope, and Raman spectrometer. Under direct excitation in themore » charge transfer absorption band, concentration quenching phenomenon occurs and decay dynamics were performed to study the photoluminescence of the string BaMoO{sub 4}:Eu{sup 3+} nanobeans. In the emission spectra of BaMoO{sub 4}:Er{sup 3+}/Eu{sup 3+} under 274 nm excitation, the {sup 2}P{sub 3/2} → {sup 4}I{sub 11/2}, {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2}, and {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transitions from Er{sup 3+} ions were observed for the first time. In addition, the photoluminescence properties of BaMoO{sub 4}:Tb{sup 3+}/Eu{sup 3+} and BaMoO{sub 4}:Gd{sup 3+}/Eu{sup 3+} were also investigated.« less

  9. Rare Earth Doped Semiconductors, Symposium Held in San Francisco, California on April 13-15, 1993. Materials Research Society Symposium Proceedings, Volume 301

    DTIC Science & Technology

    1994-02-04

    LASERS 287 Jacques I. Pankove and Robert Feuerstein EXCITATION AND RELAXATION PROCESSES OF IMPACT EXCITATION EMISSION OF Er3+ IONS IN InP 293 T...Uwai, and K. Takahei, Appl. Phys. Lett., 53 (8), 1726-1728 (1988). 5. R. Boyn, phys. stat. sol. (b), 148 (11), 11-47 (1988). 6. F. Auzel, A. M. Jean ...Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699, Lisboa Codex, Portugal 3 FOM-lnstitute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Yohan; Chung, Kwang Chul, E-mail: kchung@yonsei.ac.kr

    Highlights: Black-Right-Pointing-Pointer ZNF131 directly interacts with ER{alpha}. Black-Right-Pointing-Pointer The binding affinity of ZNF131 to ER{alpha} increases upon E2 stimulation. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-dimerization and E2-induced breast cancer cell proliferation. Black-Right-Pointing-Pointer ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor. -- Abstract: Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ER{alpha} and ER{beta}. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of amore » DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ER{alpha} and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ER{alpha} inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ER{alpha}, which consequently inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor.« less

  11. A SAL1 Loss-of-Function Arabidopsis Mutant Exhibits Enhanced Cadmium Tolerance in Association with Alleviation of Endoplasmic Reticulum Stress.

    PubMed

    Xi, Hongmei; Xu, Hua; Xu, Wenxiu; He, Zhenyan; Xu, Wenzhong; Ma, Mi

    2016-06-01

    SAL1, as a negative regulator of stress response signaling, has been studied extensively for its role in plant response to environmental stresses. However, the role of SAL1 in cadmium (Cd) stress response and the underlying mechanism is still unclear. Using an Arabidopsis thaliana loss-of-function mutant of SAL1, we assessed Cd resistance and further explored the Cd toxicity mechanism through analysis of the endoplasmic reticulum (ER) stress response. The loss of SAL1 function greatly improved Cd tolerance and significantly attenuated ER stress in Arabidopsis. Exposure to Cd induced an ER stress response in Arabidopsis as evidenced by unconventional splicing of AtbZIP60 and up-regulation of ER stress-responsive genes. Damage caused by Cd was markedly reduced in the ER stress response double mutant bzip28 bzip60 or by application of the ER stress-alleviating chemical agents, tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (4-PBA), in wild-type plants. The Cd-induced ER stress in Arabidopsis was also alleviated by loss of function of SAL1. These results identified SAL1 as a new component mediating Cd toxicity and established the role of the ER stress response in Cd toxicity. Additionally, the attenuated ER stress in the sal1 mutant might also shed new light on the mechanism of diverse abiotic stress resistance in the SAL1 loss-of-function mutants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Endoplasmic reticulum turnover: ER-phagy and other flavors in selective and non-selective ER clearance.

    PubMed

    Fregno, Ilaria; Molinari, Maurizio

    2018-01-01

    The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells. It is deputed to lipid and protein biosynthesis, calcium storage, and the detoxification of various exogenous and endogenous harmful compounds. ER activity and size must be adapted rapidly to environmental and developmental conditions or biosynthetic demand. This is achieved on induction of thoroughly studied transcriptional/translational programs defined as "unfolded protein responses" that increase the ER volume and the expression of ER-resident proteins regulating the numerous ER functions. Less understood are the lysosomal catabolic processes that maintain ER size at steady state, that prevent excessive ER expansion during ER stresses, or that ensure return to physiologic ER size during recovery from ER stresses. These catabolic processes may also be activated to remove ER subdomains where proteasome-resistant misfolded proteins or damaged lipids have been segregated. Insights into these catabolic mechanisms have only recently emerged with the identification of so-called ER-phagy receptors, which label specific ER subdomains for selective lysosomal delivery for clearance. Here, in eight chapters and one addendum, we comment on recent advances in ER turnover pathways induced by ER stress, nutrient deprivation, misfolded proteins, and live bacteria. We highlight the role of yeast (Atg39 and Atg40) and mammalian (FAM134B, SEC62, RTN3, and CCPG1) ER-phagy receptors and of autophagy genes in selective and non-selective catabolic processes that regulate cellular proteostasis by controlling ER size, turnover, and function.

  13. ER-driven membrane contact sites: Evolutionary conserved machineries for stress response and autophagy regulation?

    PubMed Central

    Molino, Diana; Nascimbeni, Anna Chiara; Giordano, Francesca; Codogno, Patrice

    2017-01-01

    ABSTRACT Endoplasmic Reticulum (ER), spreading in the whole cell cytoplasm, is a central player in eukaryotic cell homeostasis, from plants to mammals. Beside crucial functions, such as membrane lipids and proteins synthesis and outward transport, the ER is able to connect to virtually every endomembrane compartment by specific tethering molecular machineries, which enables the establishment of membrane-membrane contact sites. ER-mitochondria contact sites have been shown to be involved in autophagosome biogenesis, the main organelle of the autophagy degradation pathway. More recently we demonstrated that also ER-plasma membrane contact sites are sites for autophagosomes assembly, suggesting that more generally ER-organelles contacts are involved in autophagy and organelle biogenesis. Here we aim to discuss the functioning of ER-driven contact sites in mammals and plants and more in particular emphasize on their recently highlighted function in autophagy to finally conclude on some key questions that may be useful for further research in the field. PMID:29259731

  14. A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy

    NASA Astrophysics Data System (ADS)

    Chen, Chunping; Yee, Lee Kim; Gong, Hua; Zhang, Yong; Xu, Rong

    2013-05-01

    In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after localization in cancer cells. A better anticancer efficiency was obtained over the nanovehicles than the free drug which can be attributed to their positively charged surfaces for favorable interaction with the negatively charged cell membranes. The multifunctional nanovehicles designed in this work are expected to be promising material candidates for simultaneous tumor optical imaging and therapy.In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after localization in cancer cells. A better anticancer efficiency was obtained over the nanovehicles than the free drug which can be attributed to their positively charged surfaces for favorable interaction with the negatively charged cell membranes. The multifunctional nanovehicles designed in this work are expected to be promising material candidates for simultaneous tumor optical imaging and therapy. Electronic supplementary information (ESI) available: TEM images of Y2O3:Er3+,Yb3+@SiO2 synthesized by using different amounts of TEOS, and confocal scanning laser microscopy images (Z stack) of MCF-7 cells incubated with Y2O3:Er3+,Yb3+@SiO2@LDH-5FU for 30 min and 24 h. See DOI: 10.1039/c3nr00781b

  15. Toward the realization of erbium-doped GaN bulk crystals as a gain medium for high energy lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z. Y.; Li, J.; Zhao, W. P.

    Er-doped GaN (Er:GaN) is a promising candidate as a gain medium for solid-state high energy lasers (HELs) at the technologically important and eye-safe 1.54 μm wavelength window, as GaN has superior thermal properties over traditional laser gain materials such as Nd:YAG. However, the attainment of wafer-scale Er:GaN bulk or quasi-bulk crystals is a prerequisite to realize the full potential of Er:GaN as a gain medium for HELs. We report the realization of freestanding Er:GaN wafers of 2-in. in diameter with a thickness on the millimeter scale. These freestanding wafers were obtained via growth by hydride vapor phase epitaxy in conjunction withmore » a laser-lift-off process. An Er doping level of 1.4 × 10{sup 20} atoms/cm{sup 3} has been confirmed by secondary ion mass spectrometry measurements. The freestanding Er:GaN wafers exhibit strong photoluminescent emission at 1.54 μm with its emission intensity increasing dramatically with wafer thickness under 980 nm resonant excitation. A low thermal quenching of 10% was measured for the 1.54 μm emission intensity between 10 K and 300 K. This work represents a significant step in providing a practical approach for producing Er:GaN materials with sufficient thicknesses and dimensions to enable the design of gain media in various geometries, allowing for the production of HELs with improved lasing efficiency, atmosphere transmission, and eye-safety.« less

  16. Ultrasmall, water dispersible, TWEEN80 modified Yb:Er:NaGd(WO4)2 nanoparticles with record upconversion ratiometric thermal sensitivity and their internalization by mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Cascales, Concepción; Paíno, Carlos L.; Bazán, Eulalia; Zaldo, Carlos

    2017-05-01

    This work presents the synthesis by coprecipitation of diamond shaped Yb:Er:NaGd(WO4)2 crystalline nanoparticles (NPs) with diagonal dimensions in the 5-7 nm × 10-12 nm range which have been modified with TWEEN80 for their dispersion in water, and their interaction with mesenchymal stem cells (MSCs) proposed as cellular NP vehicles. These NPs belong to a large family of tetragonal Yb:Er:NaT(XO4)2 (T = Y, La, Gd, Lu; X = Mo, W) compounds with green (2H11/2 + 4S3/2 → 4I15/2) Er-related upconversion (UC) efficiency comparable to that of Yb:Er:β-NaYF4 reference compound, but with a ratiometric thermal sensitivity (S) 2.5-3.5 times larger than that of the fluoride. At the temperature range of interest for biomedical applications (˜293-317 K/20-44 °C) S = 108-118 × 10-4 K-1 for 20 at%Yb:5 at%Er:NaGd(WO4)2 NPs, being the largest values so far reported using the 2H11/2/4S3/2 Er intensity ratiometric method. Cultured MSCs, incubated with these water NP emulsions, internalize and accumulate the NPs enclosed in endosomes/lysosomes. Incubations with up to 10 μg of NPs per ml of culture medium maintain cellular metabolism at 72 h. A thermal assisted excitation path is discussed as responsible for the UC behavior of Yb:Er:NaT(XO4)2 compounds.

  17. Optical temperature sensing behavior of Er3+/Yb3+/Tm3+:Y2O3 nanoparticles based on thermally and non-thermally coupled levels

    NASA Astrophysics Data System (ADS)

    Chen, Guangrun; Lei, Ruoshan; Huang, Feifei; Wang, Huanping; Zhao, Shilong; Xu, Shiqing

    2018-01-01

    Er3+/Yb3+/Tm3+ triply doped Y2O3 nanoparticles have been synthesized by solute combustion method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) demonstrate that the prepared particles are cubic Y2O3 phase with the average size of ∼49 nm. The blue (Tm3+: 1G4→3H6), green (Er3+: 2H11/2, 4S3/2→4I15/2) and red (Er3+: 4F9/2→4I15/2) upconversion (UC) emissions are observed upon a 980 nm excitation. Applying the fluorescence intensity ratio (FIR) technique, the optical temperature sensing behaviors are studied based on thermally coupled levels (2H11/2 and 4S3/2 of Er3+) and non-thermally coupled levels (1G4(b) (Tm3+) and 2H11/2 (Er3+)), respectively. The results show that the absolute sensing sensitivity is much higher in the entire experimental temperature range, when the non-thermally coupled levels with different temperature dependences (1G4(b) (Tm3+) and 2H11/2 (Er3+)) are selected as the thermometric index. The maximum absolute sensitivity is found to be as high as ∼1640 ×10-4 K-1 at 573 K. This demonstrates that an optical temperature sensor with high performance can be designed based on the Er3+/Yb3+/Tm3+:Y2O3 nanoparticles.

  18. The sigma-1 receptor chaperone as an inter-organelle signaling modulator

    PubMed Central

    Su, Tsung-Ping; Hayashi, Teruo; Maurice, Tangui; Buch, Shilpa; Ruoho, Arnold E.

    2010-01-01

    Inter-organelle signaling plays important roles in many physiological functions. Endoplasmic reticulum (ER)-mitochondrion signaling affects intra-mitochondrial calcium (Ca2+) homeostasis and cellular bioenergetics. ER-nucleus signaling attenuates ER stress. ER-plasma membrane signaling regulates cytosolic Ca2+ homeostasis, and ER-mitochondrion-plasma membrane signaling regulates hippocampal dendritic spine formation. Here we propose that the sigma-1 receptor (Sig-1R), an ER chaperone protein, acts as an inter-organelle signaling modulator. Sig-1Rs normally reside at the ER-mitochondrion contact called the MAM (mitochondrion-associated ER membrane), where Sig-1Rs regulate ER-mitochondrion signaling and the ER-nucleus cross-talk. When cells are stimulated by ligands or undergo prolonged stress, Sig-1Rs translocate from the MAM to the ER reticular network and plasmalemma/plasma membrane to regulate a variety of functional proteins, including ion channels, receptors, and kinases. Thus, the Sig-1R serves as an inter-organelle signaling modulator locally at the MAM and remotely at the plasmalemma/plasma membrane. Many pharmacological/physiological effects of Sig-1Rs may relate to this unique action of Sig-1Rs. PMID:20869780

  19. Functional characterization of estrogen receptor subtypes, ER{alpha} and ER{beta}, mediating vitellogenin production in the liver of rainbow trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leanos-Castaneda, Olga; Kraak, Glen van der

    2007-10-15

    The estrogen-dependent process of vitellogenesis is a key function on oviparous fish reproduction and it has been widely used as an indicator of xenoestrogen exposure. The two estrogen receptor (ER) subtypes, ER{alpha} and ER{beta}, are often co-expressed in the liver of fish. The relative contribution of each ER subtype to modulate vitellogenin production by hepatocytes was studied using selected compounds known to preferentially interact with specific ER subtypes: propyl-pyrazole-triol (PPT) an ER{alpha} selective agonist, methyl-piperidino-pyrazole (MPP) an ER{alpha} selective antagonist, and diarylpropionitrile (DPN) an ER{beta} selective agonist. First, the relative binding affinity of the test compounds to estradiol for rainbowmore » trout hepatic nuclear ER was determined using a competitive ligand binding assay. All the test ligands achieved complete displacement of specific [{sup 3}H]-estradiol binding from the nuclear ER extract. This indicates that the test ligands have the potential to modify the ER function in the rainbow trout liver. Secondly, the ability of the test compounds to induce or inhibit vitellogenin production by primary cultures of rainbow trout hepatocytes was studied. Estradiol and DPN were the only compounds that induced a dose-dependent increase on vitellogenin synthesis. The lack of vitellogenin induction by PPT indicates that ER{alpha} could not have a role on this reproductive process whereas the ability of DPN to induce vitellogenin production supports the participation of ER{beta}. In addition, this hypothesis is reinforced by the results obtained from MPP plus estradiol. On one hand, the absence of suppressive activity of MPP in the estradiol-induced vitellogenin production does not support the participation of ER{alpha}. On the other hand, once blocked ER{alpha} with MPP, the only manifestation of agonist activity of estradiol would be achieved via ER{beta}. In conclusion, the present results indicate that vitellogenin production is mainly mediated through ER{beta}, implying, furthermore that compounds which only exhibit ER{alpha} selectivity are not detected by vitellogenin bioassay.« less

  20. Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)

    NASA Astrophysics Data System (ADS)

    Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.

    2018-03-01

    Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

  1. A role for post-transcriptional control of endoplasmic reticulum dynamics and function in C. elegans germline stem cell maintenance.

    PubMed

    Maheshwari, Richa; Pushpa, Kumari; Subramaniam, Kuppuswamy

    2016-09-01

    Membrane-bound receptors, which are crucial for mediating several key developmental signals, are synthesized on endoplasmic reticulum (ER). The functional integrity of ER must therefore be important for the regulation of at least some developmental programs. However, the developmental control of ER function is not well understood. Here, we identify the C. elegans protein FARL-11, an ortholog of the mammalian STRIPAK complex component STRIP1/2 (FAM40A/B), as an ER protein. In the C. elegans embryo, we find that FARL-11 is essential for the cell cycle-dependent morphological changes of ER and for embryonic viability. In the germline, FARL-11 is required for normal ER morphology and for membrane localization of the GLP-1/Notch receptor involved in germline stem cell (GSC) maintenance. Furthermore, we provide evidence that PUF-8, a key translational regulator in the germline, promotes the translation of farl-11 mRNA. These findings reveal that ER form and function in the C. elegans germline are post-transcriptionally regulated and essential for the niche-GSC signaling mediated by GLP-1. © 2016. Published by The Company of Biologists Ltd.

  2. Endoplasmic-Reticulum Calcium Depletion and Disease

    PubMed Central

    Mekahli, Djalila; Bultynck, Geert; Parys, Jan B.; De Smedt, Humbert; Missiaen, Ludwig

    2011-01-01

    The endoplasmic reticulum (ER) as an intracellular Ca2+ store not only sets up cytosolic Ca2+ signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca2+ depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca2+ may no longer sustain essential cell functions. On the other hand, loss of luminal Ca2+ causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca2+ depletion. PMID:21441595

  3. ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function.

    PubMed

    Galmes, Romain; Houcine, Audrey; van Vliet, Alexander R; Agostinis, Patrizia; Jackson, Catherine L; Giordano, Francesca

    2016-06-01

    The oxysterol-binding protein (OSBP)-related proteins ORP5 and ORP8 have been shown recently to transport phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM) at ER-PM contact sites. PS is also transferred from the ER to mitochondria where it acts as precursor for mitochondrial PE synthesis. Here, we show that, in addition to ER-PM contact sites, ORP5 and ORP8 are also localized to ER-mitochondria contacts and interact with the outer mitochondrial membrane protein PTPIP51. A functional lipid transfer (ORD) domain was required for this localization. Interestingly, ORP5 and ORP8 depletion leads to defects in mitochondria morphology and respiratory function. © 2016 The Authors.

  4. Judd-Ofelt analysis and energy transfer processes of Er3+ and Nd3+ doped fluoroaluminate glasses with low phosphate content

    NASA Astrophysics Data System (ADS)

    Huang, Feifei; Zhang, Yu; Hu, Lili; Chen, Danping

    2014-12-01

    Spectroscopic property and energy transfer processes of singly doped and codoped Er3+ and Nd3+ fluoroaluminate glasses with low phosphate content are systematically analyzed. The absorption spectra of these glasses are tested, and the Judd-Ofelt (J-O) and radiative parameters are discussed based on J-O theory and the parameters changes substantially because of the other codoping ions. As for Nd3+: the main emission bands at 0.9 and 1.05 μm decrease in the codoped sample under the excitation of an 800 nm laser diode from the emission spectra because the Er3+: 4I11/2 level reduces the Nd3+: 4F3/2 level effectively through the energy transfer process Nd3+: 4F3/2 → Er3+: 4I11/2. For Er3+, the emission at 1.5 μm is restrained by codoping with Nd3+ ions from the energy transfer process Er3+: 4I13/2 → Nd3+: 4I15/2. The emission at 2.7 μm is enhanced because the Nd3+ ions deplete the lower level and exert a positive effect on the upper laser level. The microparameters of the energy transfer between the Er3+ and Nd3+ ions are calculated and discussed using Forster-Dexter theory. The energy transfer efficiencies of the Nd3+: 4F3/2 to the Er3+: 4I11/2 and the Er3+: 4I13/2 to the Nd3+: 4I15/2 are 28.8% and 74.5%, respectively. These results indicate that Nd3+ can be an efficient sensitizer for Er3+ to obtain Mid-infrared (Mid-IR) emission and the codoped Er3+/Nd3+ fluoroaluminate glass with low phosphate content is suitable to be used as the fiber optical gain media for 2.7 μm laser generation.

  5. L-type Calcium Channel Blockers Enhance Trafficking and Function of Epilepsy-associated α1(D219N) Subunits of GABA(A) Receptors.

    PubMed

    Han, Dong-Yun; Guan, Bo-Jhih; Wang, Ya-Juan; Hatzoglou, Maria; Mu, Ting-Wei

    2015-09-18

    Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 μM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)β2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and β2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that verapamil treatment enhances the calnexin-assisted forward trafficking and subunit assembly, which leads to substantially enhanced functional surface expression of the mutant receptors. Since verapamil is an FDA-approved drug that crosses blood-brain barrier and has been used as an additional medication for some epilepsies, our findings suggest that verapamil holds great promise to be developed to ameliorate IGE resulting from α1(D219N) subunit trafficking deficiency.

  6. Liganded and unliganded activation of estrogen receptor and hormone replacement therapies

    PubMed Central

    Maggi, Adriana

    2011-01-01

    Over the past two decades, our understanding of estrogen receptor physiology in mammals widened considerably as we acquired a deeper appreciation of the roles of estrogen receptor alpha and beta (ERα and ERβ) in reproduction as well as in bone and metabolic homeostasis, depression, vascular disorders, neurodegenerative diseases and cancer. In addition, our insights on ER transcriptional functions in cells increased considerably with the demonstration that ER activity is not strictly dependent on ligand availability. Indeed, unliganded ERs may be transcriptionally active and post-translational modifications play a major role in this context. The finding that several intracellular transduction molecules may regulate ER transcriptional programs indicates that ERs may act as a hub where several molecular pathways converge: this allows to maintain ER transcriptional activity in tune with all cell functions. Likely, the biological relevant role of ER was favored by evolution as a mean of integration between reproductive and metabolic functions. We here review the post-translational modifications modulating ER transcriptional activity in the presence or in the absence of estrogens and underline their potential role for ER tissue-specific activities. In our opinion, a better comprehension of the variety of molecular events that control ER activity in reproductive and non-reproductive organs is the foundation for the design of safer and more efficacious hormone-based therapies, particularly for menopause. PMID:21605666

  7. sdg interacting-boson model in the SU(3) scheme and its application to 168Er

    NASA Astrophysics Data System (ADS)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-07-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to 168Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model.

  8. The Er3+-Yb3+ codoped La2O3 phosphor in finger print detection and optical heating.

    PubMed

    Dey, Riya; Pandey, Anurag; Rai, Vineet Kumar

    2014-07-15

    The presence of impurities and morphological information about the Er(3+)-Yb(3+) codoped La2O3 phosphors prepared by two different synthesis techniques have been obtained with the help of Fourier transform infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) respectively. The effect of synthesis process on the frequency upconversion (UC) emission with an excitation at 980 nm from laser diode radiation has been performed. The use of codoped phosphor in latent finger print detection and laser induced heat generation has also been explored. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Inhibition of endoplasmic reticulum stress improves coronary artery function in type 2 diabetic mice.

    PubMed

    Choi, Soo-Kyoung; Lim, Mihwa; Yeon, Soo-In; Lee, Young-Ho

    2016-06-01

    What is the central question of this study? Endoplasmic reticulum (ER) stress has been reported to be involved in type 2 diabetes; however, the role of exacerbated ER stress in vascular dysfunction in type 2 diabetes remains unknown. What is the main finding and its importance? The main findings of this study are that ER stress is increased in the coronary arteries in type 2 diabetes, and inhibition of ER stress using taurine-conjugated ursodeoxycholic acid improves vascular function, which is associated with normalization of the myogenic response and endothelium-dependent relaxation. Vascular dysfunction is a major complication in type 2 diabetes. Although endoplasmic reticulum (ER) stress has been suggested to be a contributory factor in cardiovascular diseases, the relationship between ER stress and vascular dysfunction in type 2 diabetes remains unclear. Thus, in the present study, we examined whether ER stress contributes to coronary artery dysfunction and whether inhibition of ER stress ameliorates vascular function in type 2 diabetes. Type 2 diabetic mice and their control counterparts were treated with an ER stress inhibitor (taurine-conjugated ursodeoxycholic acid, 150 mg kg(-1)  day(-1) , by i.p. injection) for 2 weeks or not treated. The myogenic response and endothelium-dependent relaxation were measured in pressurized coronary arteries. In type 2 diabetic mice, blood glucose and body weight were elevated compared with control mice. The myogenic response was potentiated and endothelium-dependent relaxation impaired in coronary arteries from the type 2 diabetic mice. Interestingly, treatment with the ER stress inhibitor normalized the myogenic responses and endothelium-dependent relaxation. These data were associated with an increase in ER stress marker expression or phosphorylation (IRE1-XBP-1 and PERK-eIF2α) in type 2 diabetic mice, which were reduced by treatment with the ER stress inhibitor. Inhibition of ER stress normalizes the myogenic response and improves vascular function in type 2 diabetes. Therefore, ER stress could be a potential target for cardiovascular diseases in diabetes mellitus. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  10. 13th ERS Lung Science Conference. The most important take home messages: News from the Underground.

    PubMed

    Bikov, Andras; Boots, Agnes; Bjerg, Anders; Jacinto, Tiago; Olland, Anne; Skoczyński, Szymon

    2015-06-01

    The 13th ERS Lung Science Conference (LSC) was organised to bring academics together from all over the world to present and discuss the latest developments regarding lung infection and immunity. The conference took place in breathtaking Estoril, Portugal; however, it wasn't the beautiful surroundings that were our main motivation to attend, but instead the scientific merit of the conference and the chance to create new scientific collaborations. The scientific programme [1] was packed with the most up-to-date content in the field of lung infection and immunity and included some of the top researchers within this exciting area. Moreover, the convenient size of the LSC offered the opportunity to renew and intensify friendships and collaborations. In particular, for researchers at the start of their career, this is a great feature and we therefore warmly recommend the LSC to ERS Juniors Members!

  11. Up-conversion routines of Er{sup 3+}–Yb{sup 3+} doped Y{sub 6}O{sub 5}F{sub 8} and YOF phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sangmoon, E-mail: spark@silla.ac.kr; Yang, Wonseok; Park, Chu-Young

    2015-11-15

    Highlights: • Single-phase optical materials of Y{sub 6}O{sub 5}F{sub 8}:Er and YOF:Er were prepared. • Effective spectral converting properties were observed in Y{sub 6}O{sub 5}F{sub 8}:Er,Yb. • 980 nm diode laser was irradiated for up-converting analysis. • A multi-photon process in the phosphors was investigated. - Abstract: Optical materials composed of a Y{sub 6(1−p−q)}Er{sub 6p}Yb{sub 6q}O{sub 5}F{sub 8} (p = 0.001–0.1, q = 0.005–0.1) solid solution with Y{sub 0.99}Er{sub 0.01}OF were prepared via a solid-state reaction using excess NH{sub 4}F flux at 950 °C for 30 min. X-ray diffraction patterns of Y{sub 6(1−p−q)}Er{sub 6p}Yb{sub 6q}O{sub 5}F{sub 8} and Y{sub 0.99}Er{submore » 0.01}OF were compared upon altering the synthesis temperature and the molar ratio of the NH{sub 4}F flux to the Y{sup 3+} (Er{sup 3+}, Yb{sup 3+}) ions. The effective spectral-conversion properties of Er{sup 3+} and Er{sup 3+}–Yb{sup 3+} ions in Y{sub 6}O{sub 5}F{sub 8} phosphors were monitored during excitation with a 980 nm wavelength diode-laser. Selection of appropriate Er{sup 3+} and/or Yb{sup 3+} concentrations in the Y{sub 6}O{sub 5}F{sub 8} structure led to achievement of the desired up-conversion emission, from the green to the red regions of the spectra. Furthermore, the mechanism of up-conversion in the phosphors was described by an energy-level schematic. Up-conversion emission spectra and the dependence of the emission intensity on pump power (between 193 and 310 mW) in the Y{sub 6(0.995−q)}Er{sub 0.03}Yb{sub 6q}O{sub 5}F{sub 8} phosphors were also investigated.« less

  12. Optical response measurements of a new class of upconverting luminescent reporters

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong; Haushalter, Jeanne P.; Weiss, Michael; Faris, Gregory W.

    2004-06-01

    We have prepared and characterized several lanthanide ion complexes of multidentate ligands or chelates in an effort to develop new luminescent reporters that will be immune to autofluorescence and photobleaching. Our study has involved the characterization of various chelates of Eu, Er, and Tm with respect to relative luminescent efficiency and excited state lifetimes. Included in the list of chelates studied are TTFA, EDTA, DPA, DOTA and DTPA as well as mixed and double chelates. In addition to determining the relative efficiencies and luminescence lifetimes of the lanthanide chelates, we have explored various excitation mechanisms and determined optimum excitation wavelengths. This paper will address the various hurdles encountered in the development of this new class of reporters.

  13. The Effect of Glenohumeral Internal-Rotation Deficit on Functional Rotator-Strength Ratio in Adolescent Overhead Athletes.

    PubMed

    Guney, Hande; Harput, Gulcan; Colakoglu, Filiz; Baltaci, Gul

    2016-02-01

    Glenohumeral (GH) internal-rotation deficit (GIRD) and lower eccentric external-rotator (ER) to concentric internal-rotator (IR) strength (ER:IR) ratio have been documented as risk factors for shoulder injuries, but there is no information on whether GIRD has an adverse effect on ER:IR ratio in adolescent overhead athletes. The aim of this study was to investigate the effects of GIRD on functional ER:IR ratio of the adolescent overhead athletes. Cross-sectional study. University research laboratory. 52 adolescent overhead athletes. To determine GIRD, the range of GH IR and ER motion was measured with a digital inclinometer. An isokinetic dynamometer was used to assess eccentric and concentric IR and ER muscle strength of the dominant and nondominant shoulders. One-way ANCOVA where sport type was set as a covariate was used to analyze the difference between athletes with and without GIRD. After standardized examinations of all shoulders, the athletes were divided into 2 groups, shoulders with (n = 27) and without GIRD (n = 25). There was a significant difference between groups in functional ER:IR ratio (P < .001). Athletes with GIRD had lower ER:IR ratio (0.56) than athletes without GIRD (0.83). As GIRD has an adverse effect on functional ratio of the shoulder-rotator muscles, interventions for adolescent overhead athletes should include improving GH-rotation range of motion.

  14. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Wang, Shoujun; Oliva, E

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionallymore » excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.« less

  15. Highly efficient saturated visible up-conversion photoluminescent Y 2 O 3 :Er 3+ microspheres pumped with a 1.55 μm laser diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jinbo; Wu, Lili; Zhang, Chuanjiang

    2017-01-01

    Highly efficient saturation up-conversion (UC) luminescent Y2O3:Er3+ microspheres have been successfully prepared via a hydrothermal-homogeneous precipitation method. Bright visible luminescence can be clearly seen with a 1.55 mu m laser diode excitation power as low as similar to 0.03 W cm(-2). The up-conversion (UC) emission spectra indicate that the strongest red emission with a peak situated at similar to 660 nm originated from the I-4(9/2) -> I-4(15/2) transition of Er3+. The peaks situated at similar to 520 and 550 nm can be assigned to the transition from H-2(11/2)/S-4(3/2) state to the ground state of Er3+. The high efficient saturation up-conversionmore » emission is related to the highly crystalline structure. These results indicate a new way to enhance UC radiation in rare-earth ion-doped materials prepared using a hydrothermal-homogeneous precipitation method.« less

  16. Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies.

    PubMed

    Rath, Eva; Haller, Dirk

    2011-06-01

    Multiple cellular stress responses have been implicated in chronic diseases such as obesity, diabetes, cardiovascular, and inflammatory bowel diseases. Even though phenotypically different, chronic diseases share cellular stress signaling pathways, in particular endoplasmic reticulum (ER) unfolded protein response (UPR). The purpose of the ER UPR is to restore ER homeostasis after challenges of the ER function. Among the triggers of ER UPR are changes in the redox status, elevated protein synthesis, accumulation of unfolded or misfolded proteins, energy deficiency and glucose deprivation, cholesterol depletion, and microbial signals. Numerous mouse models have been used to characterize the contribution of ER UPR to several pathologies, and ER UPR-associated signaling has also been demonstrated to be relevant in humans. Additionally, recent evidence suggests that the ER UPR is interrelated with metabolic and inflammatory pathways, autophagy, apoptosis, and mitochondrial stress signaling. Furthermore, microbial as well as nutrient sensing is integrated into the ER-associated signaling network. The data discussed in the present review highlight the interaction of ER UPR with inflammatory pathways, metabolic processes and mitochondrial function, and their interrelation in the context of chronic diseases.

  17. Endoplasmic Reticulum Stress and Type 2 Diabetes

    PubMed Central

    Back, Sung Hoon; Kaufman, Randal J.

    2013-01-01

    Given the functional importance of the endoplasmic reticulum (ER), an organelle that performs folding, modification, and trafficking of secretory and membrane proteins to the Golgi compartment, the maintenance of ER homeostasis in insulin-secreting β-cells is very important. When ER homeostasis is disrupted, the ER generates adaptive signaling pathways, called the unfolded protein response (UPR), to maintain homeostasis of this organelle. However, if homeostasis fails to be restored, the ER initiates death signaling pathways. New observations suggest that both chronic hyperglycemia and hyperlipidemia, known as important causative factors of type 2 diabetes (T2D), disrupt ER homeostasis to induce unresolvable UPR activation and β-cell death. This review examines how the UPR pathways, induced by high glucose and free fatty acids (FFAs), interact to disrupt ER function and cause β-cell dysfunction and death. PMID:22443930

  18. Golgi-to-Endoplasmic Reticulum (ER) Retrograde Traffic in Yeast Requires Dsl1p, a Component of the ER Target Site that Interacts with a COPI Coat Subunit

    PubMed Central

    Reilly, Barbara A.; Kraynack, Bryan A.; VanRheenen, Susan M.; Waters, M. Gerard

    2001-01-01

    DSL1 was identified through its genetic interaction with SLY1, which encodes a t-SNARE-interacting protein that functions in endoplasmic reticulum (ER)-to-Golgi traffic. Conditional dsl1 mutants exhibit a block in ER-to-Golgi traffic at the restrictive temperature. Here, we show that dsl1 mutants are defective for retrograde Golgi-to-ER traffic, even under conditions where no anterograde transport block is evident. These results suggest that the primary function of Dsl1p may be in retrograde traffic, and that retrograde defects can lead to secondary defects in anterograde traffic. Dsl1p is an ER-localized peripheral membrane protein that can be extracted from the membrane in a multiprotein complex. Immunoisolation of the complex yielded Dsl1p and proteins of ∼80 and ∼55 kDa. The ∼80-kDa protein has been identified as Tip20p, a protein that others have shown to exist in a tight complex with Sec20p, which is ∼50 kDa. Both Sec20p and Tip20p function in retrograde Golgi-to-ER traffic, are ER-localized, and bind to the ER t-SNARE Ufe1p. These findings suggest that an ER-localized complex of Dsl1p, Sec20p, and Tip20p functions in retrograde traffic, perhaps upstream of a Sly1p/Ufe1p complex. Last, we show that Dsl1p interacts with the δ-subunit of the retrograde COPI coat, Ret2p, and discuss possible roles for this interaction. PMID:11739780

  19. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  20. The endoplasmic reticulum in plant immunity and cell death

    PubMed Central

    Eichmann, Ruth; Schäfer, Patrick

    2012-01-01

    The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants. PMID:22936941

  1. The endoplasmic reticulum in plant immunity and cell death.

    PubMed

    Eichmann, Ruth; Schäfer, Patrick

    2012-01-01

    The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants.

  2. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.

  3. Experiments on Helicon Excitation and Off-Axis Current Drive on DIII-D: Status and Plans

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Prater, R.; Moeller, C. P.; Degrassie, J. S.; Tooker, J. F.; Anderson, J. P.; Torreblanca, H.; Hansink, M.; Nagy, A.; Porkolab, M.

    2015-11-01

    Fast waves in the LHRF, also called ``whistlers'' or ``helicons,'' will be studied in experiments on the DIII-D tokamak beginning in autumn 2015. In the first stage, a 12-element traveling wave antenna (``comb-line'') is installed in the DIII-D vessel for operation at very low power (~ 0.1 kW) at 476 MHz, with a well-defined launched n| | spectrum peaked at 3.0. The goals of the low-power experiment include: (1) determining the efficiency with which the desired fast waves can be excited under a variety of plasma conditions in discharges relevant to the subsequent high-power current drive experiments and (2) proving that the radial and poloidal location at which the antenna will be mounted does not cause deleterious effects in the DIII-D discharges with high neutral beam power, and that the antenna is not damaged by fast ion losses, etc. Plans for 1 MW-level experiments with a single klystron beginning in FY17 are discussed. In addition to demonstrating off-axis current drive at an efficiency of ~ 60 kA/MW in high-performance plasmas, these experiments will explore non-linear aspects of wave excitation, propagation and absorption such as ponderomotive effects and parametric decay instabilities. Supported by US DOE DE-FC02-04ER54698, DE-AC02-09CH11466 and DE-FG02-94ER54084.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, Hssen, E-mail: fares.hssen@gmail.com; Férid, Mokhtar; Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn

    The melt quenching method is used to prepare tellurite glasses co-activated with erbium ions and silver nanoparticles (Ag NPs). The glass samples are characterized by x-ray diffraction, UV-vis-NIR absorption, transmission electron microscopy (TEM) imaging, and photoluminescence spectroscopy. The XRD pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from TEM micrograph. The absorption spectra reveal not only the peaks due to Er{sup 3+} ions, but also the surface plasmon resonance band of silver NPs in the 510–535 nm range. The J-O model has been applied to the room temperature absorption intensitiesmore » of Er{sup 3+} (4f{sup 11}) transitions to establish the so-called J-O intensity parameters: Ω{sub 2}, Ω{sub 4}, and Ω{sub 6}. The intensity parameters are used to determine the radiative decay rates (emission probabilities of transitions) and branching ratios of the Er{sup 3+} transitions from the excited state J manifolds to the lower-lying J' manifolds. Intensified of 1.53 μm band is obtained for the sample containing 0.5 mol. % of AgNO{sub 3} (Ag0.5 glass) using for excitation a laser operating at 980 nm. The simultaneous influence of the Ag NPs → Er{sup 3+} energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of both the Photoluminescence (PL) intensity and the PL lifetime relative to the {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition, whereas the quenching is ascribed to the energy transfer from Er{sup 3+} ions to silver NPs. Based on the analysis of the temperature dependence of the PL intensity and decay time, we identified a weak back transfer process from Er to the glass host that makes the quenching of the PL intensity weak. Large magnitudes of calculated emission cross-section (σ{sub e}), effective bandwidth (Δλ{sub eff}), and bandwidth quality factor (FWHM × σ{sub e}) relatives to {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition in Er doped Ag0.5 glass have been shown. They indicate that this glass sample has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.« less

  5. Studies of radar backscatter as a function of wave properties and the winds in the turbulent marine atmosphere

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.; Sylvester, Winfield B.

    1995-01-01

    The research on model functions for ADEOS and ERS-1 are summarized and an analysis of the differences between the three kinds of models is provided in this final report. The success of the AMI on ERS-1 obtained at GSFC and NMC is highlighted. The problem of wind stress description is reviewed within and the scatterometer model being developed for high winds monitoring for the AMI on ERS-1 and ERS-2 is described.

  6. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew.

    PubMed

    Sun, Suli; Deng, Dong; Wang, Zhongyi; Duan, Canxing; Wu, Xiaofei; Wang, Xiaoming; Zong, Xuxiao; Zhu, Zhendong

    2016-05-01

    A novel er1 allele, er1 -7, conferring pea powdery mildew resistance was characterized by a 10-bp deletion in PsMLO1 cDNA, and its functional marker was developed and validated in pea germplasms. Pea powdery mildew caused by Erysiphe pisi DC is a major disease worldwide. Pea cultivar 'DDR-11' is an elite germplasm resistant to E. pisi. To identify the gene conferring resistance in DDR-11, the susceptible Bawan 6 and resistant DDR-11 cultivars were crossed to produce F1, F2, and F(2:3) populations. The phenotypic segregation patterns in the F2 and F(2:3) populations fit the 3:1 (susceptible:resistant) and 1:2:1 (susceptible homozygotes:heterozygotes:resistant homozygotes) ratios, respectively, indicating that resistance was controlled by a single recessive gene. Analysis of er1-linked markers in the F2 population suggested that the recessive resistance gene in DDR-11 was an er1 allele, which was mapped between markers ScOPE16-1600 and c5DNAmet. To further characterize er1 allele, the cDNA sequences of PsMLO1 from the parents were obtained and a novel er1 allele in DDR-11 was identified and designated as er1-7, which has a 10-bp deletion in position 111-120. The er1-7 allele caused a frame-shift mutation, resulting in a premature termination of translation of PsMLO1 protein. A co-dominant functional marker specific for er1-7 was developed, InDel111-120, which co-segregated with E. pisi resistance in the mapping population. The marker was able to distinguish between pea germplasms with and without the er1-7. Of 161 pea germplasms tested by InDel111-120, seven were detected containing resistance allele er1-7, which was verified by sequencing their PsMLO1 cDNA. Here, a novel er1 allele was characterized and its an ideal functional marker was validated, providing valuable genetic information and a powerful tool for breeding pea resistance to powdery mildew.

  7. Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice.

    PubMed

    Herold, M J; Stuchbery, R; Mérino, D; Willson, T; Strasser, A; Hildeman, D; Bouillet, P

    2014-10-09

    The pro-apoptotic BH3-only BCL-2 family member BIM is a critical determinant of hematopoietic cell development and homeostasis. It has been argued that the striking hematopoietic abnormalities of BIM-deficient mice (accumulation of lymphocytes and granulocytes) may be the result of the loss of the protein throughout the whole animal rather than a consequence intrinsic to the loss of BIM in hematopoietic cells. To address this issue and allow the deletion of BIM in specific cell types in future studies, we have developed a mouse strain with a conditional Bim allele as well as a new Cre transgenic strain, Vav-CreER, in which the tamoxifen-inducible CreER recombinase (fusion protein) is predominantly expressed in the hematopoietic system. We show that acute loss of BIM in the adult mouse rapidly results in the hematopoietic phenotypes previously observed in mice lacking BIM in all tissues. This includes changes in thymocyte subpopulations, increased white blood cell counts and resistance of lymphocytes to BIM-dependent apoptotic stimuli, such as cytokine deprivation. We have validated this novel conditional Bim knockout mouse model using established and newly developed CreER strains (Rosa26-CreER and Vav-CreER) and will make these exciting new tools for studies on cell death and cancer available.

  8. Clad-pumped Er-nanoparticle-doped fiber laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Baker, Colin C.; Friebele, E. Joseph; Rhonehouse, Daniel L.; Marcheschi, Barbara A.; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder S.; Zhang, Jun; Chen, Youming; Pattnaik, Radha K.; Dubinskii, Mark

    2017-03-01

    Erbium-doped fiber lasers are attractive for directed energy weapons applications because they operate in a wavelength region that is both eye-safer and a window of high atmospheric transmission. For these applications a clad-pumped design is desirable, but the Er absorption must be high because of the areal dilution of the doped core vs. the pump cladding. High Er concentrations typically lead to Er ion clustering, resulting in quenching and upconversion. Nanoparticle (NP) doping of the core overcomes these problems by physically surrounding the Er ions with a cage of Al and O in the NP, which keeps them separated to minimize excited state energy transfer. A significant issue is obtaining high Er concentrations without the NP agglomeration that degrades the optical properties of the fiber core. We have developed the process for synthesizing stable Er-NP suspension which have been used to fabricate EDFs with Er concentrations >90 dB/m at 1532 nm. Matched clad fibers have been evaluated in a core-pumped MOPA with pump and signal wavelengths of 1475 and 1560 nm, respectively, and efficiencies of 72% with respect to absorbed pump have been obtained. We have fabricated both NP- and solution-doped double clad fibers, which have been measured in a clad-pumped laser testbed using a 1532 nm pump. The 1595 nm laser efficiency of the NP-doped fiber was 47.7%, which is high enough for what is believed to be the first laser experiment with the cladding pumped, NP-doped fiber. Further improvements are likely with a shaped cladding and new low-index polymer coatings with lower absorption in the 1500 - 1600 nm range.

  9. Liganded and unliganded activation of estrogen receptor and hormone replacement therapies.

    PubMed

    Maggi, Adriana

    2011-08-01

    Over the past two decades, our understanding of estrogen receptor physiology in mammals widened considerably as we acquired a deeper appreciation of the roles of estrogen receptor alpha and beta (ERα and ERβ) in reproduction as well as in bone and metabolic homeostasis, depression, vascular disorders, neurodegenerative diseases and cancer. In addition, our insights on ER transcriptional functions in cells increased considerably with the demonstration that ER activity is not strictly dependent on ligand availability. Indeed, unliganded ERs may be transcriptionally active and post-translational modifications play a major role in this context. The finding that several intracellular transduction molecules may regulate ER transcriptional programs indicates that ERs may act as a hub where several molecular pathways converge: this allows to maintain ER transcriptional activity in tune with all cell functions. Likely, the biological relevant role of ER was favored by evolution as a mean of integration between reproductive and metabolic functions. We here review the post-translational modifications modulating ER transcriptional activity in the presence or in the absence of estrogens and underline their potential role for ER tissue-specific activities. In our opinion, a better comprehension of the variety of molecular events that control ER activity in reproductive and non-reproductive organs is the foundation for the design of safer and more efficacious hormone-based therapies, particularly for menopause. This article is part of a Special Issue entitled: Translating Nuclear receptors from health to disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Simultaneous synthesis and functionalization of water-soluble up-conversion nanoparticles for in-vitro cell and nude mouse imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Ling; Hao, Jianhua; Chan, Helen L. W.; Law, Ga-Lai; Wong, Wing-Tak; Wong, Ka-Leung; Murphy, Margaret B.; Su, T.; Zhang, Z. H.; Zeng, S. Q.

    2011-05-01

    Water-solubility and biocompatibility are prerequisites for rare-earth up-converting nanophosphors applied to biological imaging. In this work, we have developed a facile and one-step synthesis technique, through which water-soluble NaYF4: Yb3+, Er3+ nanoparticles (NPs) with functional groups including 3-mercaptopropionic acid, 6-aminocaproic acid and poly(ethylene glycol)methyl ether on their surface can be directly prepared without any further surface treatment. Some inorganic salts will be selected as starting materials, water and some low toxic organic agents have been used as reaction media, which differs from earlier works. Structural and up-converting fluorescence are characterized by a variety of techniques. Cell uptake and in-vitro imaging of the as-synthesized NPs have been investigated using a multiphoton con-focal laser scanning microscope with a near-infrared excitation source. Internalization of the bare and functionalized NPs in human lung carcinoma A549 and human cervical carcinoma HeLa cells are studied at a nanoparticle loading of 10 µg mL-1 over an exposure period from 30 min to 24 h. The cytotoxicity of modified NPs in HeLa cells is found to be low. In addition, the feasibility of the NPs in animal imaging has been demonstrated by subcutaneously injecting these NPs into nude mouse. The results indicated that our directly synthesized NPs coated with various functional groups are promising as bio-imaging agents due to their easy uptake, long lasting, low cytotoxicity, emissive in various human carcinoma cell lines and small animals through up-conversion with near-infrared excitation.

  11. X-ray edge singularity in resonant inelastic x-ray scattering (RIXS)

    NASA Astrophysics Data System (ADS)

    Markiewicz, Robert; Rehr, John; Bansil, Arun

    2013-03-01

    We develop a lattice model based on the theory of Mahan, Noziéres, and de Dominicis for x-ray absorption to explore the effect of the core hole on the RIXS cross section. The dominant part of the spectrum can be described in terms of the dynamic structure function S (q , ω) dressed by matrix element effects, but there is also a weak background associated with multi-electron-hole pair excitations. The model reproduces the decomposition of the RIXS spectrum into well- and poorly-screened components. An edge singularity arises at the threshold of both components. Fairly large lattice sizes are required to describe the continuum limit. Supported by DOE Grant DE-FG02-07ER46352 and facilitated by the DOE CMCSN, under grant number DE-SC0007091.

  12. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    PubMed

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  13. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs

    PubMed Central

    Fox, Philip D.; Haberkorn, Christopher J.; Weigel, Aubrey V.; Higgins, Jenny L.; Akin, Elizabeth J.; Kennedy, Matthew J.; Krapf, Diego; Tamkun, Michael M.

    2013-01-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking. PMID:23864710

  14. Frequency upconversion and fluorescence intensity ratio method in Yb3+-ion-sensitized Gd2O3:Er3+-Eu3+ phosphors for display and temperature sensing

    NASA Astrophysics Data System (ADS)

    Ranjan, Sushil Kumar; Soni, Abhishek Kumar; Rai, Vineet Kumar

    2017-09-01

    Near infrared (NIR) to visible frequency upconversion emission studies in Er3+-Eu3+/Er3+-Eu3+-Yb3+ co-doped/tri-doped Gd2O3 phosphors prepared by the co-precipitation technique have been explored under 980 nm laser diode radiation. The developed phosphors were characterized with the help of XRD, FE-SEM and FTIR analysis. No upconversion (UC) emission was found in the Eu3+-doped Gd2O3 phosphor. UC emission from Eu3+ ions along with Er3+ ions was observed in Er3+-Eu3+ and Er3+-Eu3+-Yb3+ co-doped/tri-doped phosphors. The UC emission arising from the Er3+ and Eu3+ ions was enhanced several times due to the incorporation of Yb3+ ions. The processes involved in the UC emission were obtained on the basis of the effect of energy transfer/sensitization through the Yb3+ → Er3+ → Eu3+ process. The red/green intensity ratio was improved from 0.16 to 1.50 and 1.01 to 1.50 for Er3+-Eu3+-Yb3+ tri-doped phosphors as compared to the Er3+-doped and Er3+-Yb3+ co-doped phosphors, respectively, at a fixed pump power density. A UC fluorescence intensity ratio (FIR)-based temperature sensing study was performed in the prepared Er3+-Eu3+-Yb3+ tri-doped Gd2O3 phosphors for green upconversion emission bands in the 300 K-443 K temperature range. A maximum sensor sensitivity of about ˜0.0043 K-1 at 300 K was achieved for the synthesized tri-doped phosphors upon excitation with a 980 nm laser diode. The colour coordinates lying in the green-yellow region are invariant, with variation in pump power density and temperature. The observed results support the utility of the prepared tri-doped phosphors in optical temperature sensing, display devices and NIR to visible upconverters.

  15. Sequestration of Mutated α1-Antitrypsin into Inclusion Bodies Is a Cell-protective Mechanism to Maintain Endoplasmic Reticulum Function

    PubMed Central

    Granell, Susana; Baldini, Giovanna; Mohammad, Sameer; Nicolin, Vanessa; Narducci, Paola; Storrie, Brian

    2008-01-01

    A variant α1-antitrypsin with E342K mutation has a high tendency to form intracellular polymers, and it is associated with liver disease. In the hepatocytes of individuals carrying the mutation, α1-antitrypsin localizes both to the endoplasmic reticulum (ER) and to membrane-surrounded inclusion bodies (IBs). It is unclear whether the IBs contribute to cell toxicity or whether they are protective to the cell. We found that in hepatoma cells, mutated α1-antitrypsin exited the ER and accumulated in IBs that were negative for autophagosomal and lysosomal markers, and contained several ER components, but not calnexin. Mutated α1-antitrypsin induced IBs also in neuroendocrine cells, showing that formation of these organelles is not cell type specific. In the presence of IBs, ER function was largely maintained. Increased levels of calnexin, but not of protein disulfide isomerase, inhibited formation of IBs and lead to retention of mutated α1-antitrypsin in the ER. In hepatoma cells, shift of mutated α1-antitrypsin localization to the ER by calnexin overexpression lead to cell shrinkage, ER stress, and impairment of the secretory pathway at the ER level. We conclude that segregation of mutated α1-antitrypsin from the ER to the IBs is a protective cell response to maintain a functional secretory pathway. PMID:18045994

  16. Endoplasmic reticulum stress in the pathogenesis of hypertension.

    PubMed

    Young, Colin N

    2017-08-01

    What is the topic of this review? This review highlights the emerging role of disruptions in endoplasmic reticulum (ER) function, namely ER stress, as a contributor to hypertension. What advances does it highlight? This review presents an integrative view of ER stress in cardiovascular control systems, including systems within the brain, kidney and peripheral vasculature, as related to development of hypertension. The endoplasmic reticulum (ER) is a cellular organelle specialized in the synthesis, folding, assembly and modification of proteins. In situations of increased protein demand, complex signalling pathways, termed the unfolded protein response, influence a series of cellular feedback loops to control ER function strictly. Although this is initially a compensatory attempt to maintain cellular homeostasis, chronic activation of the unfolded protein response, known as ER stress, leads to sustained changes in cellular function. A growing body of literature points to ER stress in diverse cardioregulatory systems, including the brain, kidney and vasculature, as central to the development of hypertension. Here, these recent findings from essential and obesity-related forms of hypertension are highlighted in an integrative manner, with discussion of the potential upstream causes and downstream consequences of ER stress. Given that hypertension is a leading medical and socio-economic global challenge, emerging findings suggest that targeting ER stress might represent a viable strategy for the treatment of hypertensive disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  17. ApoER2 Function in the Establishment and Maintenance of Retinal Synaptic Connectivity

    PubMed Central

    Trotter, Justin H.; Klein, Martin; Jinwal, Umesh K.; Abisambra, Jose F.; Dickey, Chad A.; Tharkur, Jeremy; Masiulis, Irene; Ding, Jindong; Locke, Kirstin G.; Rickman, Catherine Bowes; Birch, David G.; Weeber, Edwin J.; Herz, Joachim

    2011-01-01

    The cellular and molecular mechanisms responsible for the development of inner retinal circuitry are poorly understood. Reelin and apolipoprotein E (apoE), ligands of apoE receptor 2 (ApoER2), are involved in retinal development and degeneration, respectively. Here we describe the function of ApoER2 in the developing and adult retina. ApoER2 expression was highest during postnatal inner retinal synaptic development and was considerably lower in the mature retina. Both during development and in the adult ApoER2 was expressed by A-II amacrine cells. ApoER2 knockout (KO) mice had rod bipolar morphogenic defects, altered A-II amacrine dendritic development, and impaired rod-driven retinal responses. The presence of an intact ApoER2 NPxY motif, necessary for binding disabled-1 (Dab1) and transducing the Reelin signal, was also necessary for development of the rod bipolar pathway while the alternatively-spliced exon19 was not. Mice deficient in another Reelin receptor, very low-density lipoprotein receptor (VLDLR), had normal rod bipolar morphology but altered A-II amacrine dendritic development. VLDLR KO mice also had reductions in oscillatory potentials and delayed synaptic response intervals. Interestingly, age-related reductions in rod and cone function were observed in both ApoER2 and VLDLR KOs. These results support a pivotal role for ApoER2 in the establishment and maintenance of normal retinal synaptic connectivity. PMID:21976526

  18. Enhanced red emission of 808 nm excited upconversion nanoparticles by optimizing the composition of shell for efficient generation of singlet oxygen

    NASA Astrophysics Data System (ADS)

    Liu, Jinxue; Zhang, Tingbin; Song, Xiaoyan; Xing, Jinfeng

    2018-01-01

    With the aim to enhance the upconversion luminescence (UCL) intensity, much attention was paid to reduce the energy-back transfer from Er3+ ions to Nd3+ ions by constructing various kinds of multilayer upconversion nanoparticles (UCNPs). However, the energy-back transfer was difficult to be completely eliminated. Also, the thick shell of multilayer UCNPs is not favourable for effective Förster resonance energy transfer (FRET) in photodynamic therapy (PDT) system. Herein, an effective and facile method was applied to prepare UCNPs by optimizing the composition to largely enhance the red emission (at 660 nm) for efficient generation of singlet oxygen (1O2). In detail, the concentrations of Nd3+ ions and Yb3+ ions doped in the sensitizing shell were systematically researched to balance the energy back-transfer and the light harvest ability. The optimal emission and a relatively high Red/Green (R/G) ratio of NaYF4:Yb,Er,Nd@NaYF4:Yb0.1Nd0.2 UCNPs were obtained simultaneously. Furthermore, the emission under 980 nm excitation demonstrated the energy back-transfer from Er3+ to Yb3+ ions was also notable which was largely ignored previously. Then, UCNPs were encapsulated into mesoporous silica shell, and the photosensitizer Chlorin e6 (Ce6) was covalently conjugated to form a non-leaking nanoplatform. The efficiency of 1O2 generation obviously increased with the enhanced emission of UCNPs.

  19. ER stress upregulated PGE2/IFNγ-induced IL-6 expression and down-regulated iNOS expression in glial cells

    NASA Astrophysics Data System (ADS)

    Hosoi, Toru; Honda, Miya; Oba, Tatsuya; Ozawa, Koichiro

    2013-12-01

    The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.

  20. Relativistic many-body calculations of excitation energies, oscillator strengths, transition rates, and lifetimes in samarium like ions

    NASA Astrophysics Data System (ADS)

    Safronova, Ulyana; Safronova, Alla; Beiersdorfer, Peter

    2013-05-01

    Excitation energies, oscillator strengths, transition probabilities, and lifetimes are calculated for (5s2 + 5p2 + 5d2 + 5 s 5 d + 5 s 5 g + 5 p 5 f) - (5 s 5 p + 5 s 5 f + 5 p 5 d + 5 p 5 g) electric dipole transitions in Sm-like ions with nuclear charge Z ranging from 74 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate coupling coefficients, and the second-order RMBPT is used to determine the matrix elements. The contributions from negative-energy states are included in the second-order E1 matrix elements to achieve agreement between length-form and velocity-form amplitudes. The resulting transition energies and transition probabilities, and lifetimes for Sm-like W12+ are compared with results obtained by the relativistic Hartree-Fock approximation (COWAN code) to estimate contribution of the 4 f -core-excited states. Trends of excitation energies and oscillator strengths as function of nuclear charge Z are shown graphically for selected states and transitions. This work provides a number of yet unmeasured properti. This research was sponsored by the grant DE-FG02-08ER54951.

  1. Characterizing Droplet Formation from Non-Linear Slosh in a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Yang, Hong; West, Jeffrey

    2015-01-01

    The Fluid Dynamics Branch (ER42) at the Marshall Space Flight Center (MSFC) was tasked with characterizing the formation and evolution of liquid droplets resulting from nonlinear propellant slosh in a storage tank. Lateral excitation of propellant tanks can produce high amplitude nonlinear slosh waves through large amplitude excitations and or excitation frequencies near a resonance frequency of the tank. The high amplitude slosh waves become breaking waves upon attaining a certain amplitude or encountering a contracting geometry such as the upper dome section of a spherical tank. Inherent perturbations in the thinning regions of breaking waves result in alternating regions of high and low pressure within the fluid. Droplets form once the force from the local pressure differential becomes larger than the force maintaining the fluid interface shape due to surface tension. Droplets released from breaking waves in a pressurized tank may lead to ullage collapse given the appropriate conditions due to the increased liquid surface area and thus heat transfer between the fluids. The goal of this project is to create an engineering model that describes droplet formation as a function of propellant slosh for use in the evaluation of ullage collapse during a sloshing event. The Volume of Fluid (VOF) model in the production level Computational Fluid Dynamics (CFD) code Loci-Stream was used to predict droplet formation from breaking waves with realistic surface tension characteristics. Various excitation frequencies and amplitudes were investigated at multiple fill levels for a single storage tank to create the engineering model of droplet formation from lateral propellant slosh.

  2. Fusion hindrance for the positive Q -value system 12C+30Si

    NASA Astrophysics Data System (ADS)

    Montagnoli, G.; Stefanini, A. M.; Jiang, C. L.; Hagino, K.; Galtarossa, F.; Colucci, G.; Bottoni, S.; Broggini, C.; Caciolli, A.; Čolović, P.; Corradi, L.; Courtin, S.; Depalo, R.; Fioretto, E.; Fruet, G.; Gal, A.; Goasduff, A.; Heine, M.; Hu, S. P.; Kaur, M.; Mijatović, T.; Mazzocco, M.; Montanari, D.; Scarlassara, F.; Strano, E.; Szilner, S.; Zhang, G. X.

    2018-02-01

    Background: The fusion reaction 12C+30Si is a link between heavier cases studied in recent years, and the light heavy-ion systems, e.g., 12C+12C , 16O+16O that have a prominent role in the dynamics of stellar evolution. 12C+30Si fusion itself is not a relevant process for astrophysics, but it is important to establish its behavior below the barrier, where couplings to low-lying collective modes and the hindrance phenomenon may determine the cross sections. The excitation function is presently completely unknown below the barrier for the 12C+30Si reaction, thus no reliable extrapolation into the astrophysical regime for the C+C and O+O cases can be performed. Purpose: Our aim was to carry out a complete measurement of the fusion excitation function of 12C+30Si from well below to above the Coulomb barrier, so as to clear up the consequence of couplings to low-lying states of 30Si, and whether the hindrance effect appears in this relatively light system which has a positive Q value for fusion. This would have consequences for the extrapolated behavior to even lighter systems. Methods: The inverse kinematics was used by sending 30Si beams delivered from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro onto thin 12C (50 μ g /cm2 ) targets enriched to 99.9 % in mass 12. The fusion evaporation residues (ER) were detected at very forward angles, following beam separation by means of an electrostatic deflector. Angular distributions of ER were measured at Ebeam=45 , 59, and 80 MeV, and they were angle integrated to derive total fusion cross sections. Results: The fusion excitation function of 12C+30Si was measured with high statistical accuracy, covering more than five orders of magnitude down to a lowest cross section ≃3 μ b . The logarithmic slope and the S factor have been extracted and we have convincing phenomenological evidence of the hindrance effect. These results have been compared with the calculations performed within the model that considers a damping of the coupling strength well inside the Coulomb barrier. Conclusions: The experimental data are consistent with the coupled-channels calculations. A better fit is obtained by using the Yukawa-plus-exponential potential and a damping of the coupling strengths inside the barrier. The degree of hindrance is much smaller than the one in heavier systems. Also a phenomenological estimate reproduces quite closely the hindrance threshold for 12C+30Si , so that an extrapolation to the C+C and O+O cases can be reliably performed.

  3. Magnetic Excitations in Polyoxotungstate-Supported Lanthanoid Single-Molecule Magnets: An Inelastic Neutron Scattering and ab Initio Study.

    PubMed

    Vonci, Michele; Giansiracusa, Marcus J; Van den Heuvel, Willem; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette

    2017-01-03

    Inelastic neutron scattering (INS) has been used to investigate the crystal field (CF) magnetic excitations of the analogs of the most representative lanthanoid-polyoxometalate single-molecule magnet family: Na 9 [Ln(W 5 O 18 ) 2 ] (Ln = Nd, Tb, Ho, Er). Ab initio complete active space self-consistent field/restricted active space state interaction calculations, extended also to the Dy analog, show good agreement with the experimentally determined low-lying CF levels, with accuracy better in most cases than that reported for approaches based only on simultaneous fitting to CF models of magnetic or spectroscopic data for isostructural Ln families. In this work we demonstrate the power of a combined spectroscopic and computational approach. Inelastic neutron scattering has provided direct access to CF levels, which together with the magnetometry data, were employed to benchmark the ab initio results. The ab initio determined wave functions corresponding to the CF levels were in turn employed to assign the INS transitions allowed by selection rules and interpret the observed relative intensities of the INS peaks. Ultimately, we have been able to establish the relationship between the wave function composition of the CF split Ln III ground multiplets and the experimentally measured magnetic and spectroscopic properties for the various analogs of the Na 9 [Ln(W 5 O 18 ) 2 ] family.

  4. The Role of Estrogens in Pancreatic Islet Physiopathology.

    PubMed

    Mauvais-Jarvis, Franck; Le May, Cedric; Tiano, Joseph P; Liu, Suhuan; Kilic-Berkmen, Gamze; Kim, Jun Ho

    2017-01-01

    In rodent models of insulin-deficient diabetes, 17β-estradiol (E2) protects pancreatic insulin-producing β-cells against oxidative stress, amyloid polypeptide toxicity, gluco-lipotoxicity, and apoptosis. Three estrogen receptors (ERs)-ERα, ERβ, and the G protein-coupled ER (GPER)-have been identified in rodent and human β-cells. This chapter describes recent advances in our understanding of the role of ERs in islet β-cell function, nutrient homeostasis, survival from pro-apoptotic stimuli, and proliferation. We discuss why and how ERs represent potential therapeutic targets for the maintenance of functional β-cell mass.

  5. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis

    PubMed Central

    Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C

    2012-01-01

    Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane. PMID:22240901

  6. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis.

    PubMed

    Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C

    2012-06-01

    Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.

  7. Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly.

    PubMed

    Cunard, Robyn

    2015-04-20

    Diabetic kidney disease is the leading worldwide cause of end stage kidney disease and a growing public health challenge. The diabetic kidney is exposed to many environmental stressors and each cell type has developed intricate signaling systems designed to restore optimal cellular function. The unfolded protein response (UPR) is a homeostatic pathway that regulates endoplasmic reticulum (ER) membrane structure and secretory function. Studies suggest that the UPR is activated in the diabetic kidney to restore normal ER function and viability. However, when the cell is continuously stressed in an environment that lies outside of its normal physiological range, then the UPR is known as the ER stress response. The UPR reduces protein synthesis, augments the ER folding capacity and downregulates mRNA expression of genes by multiple pathways. Aberrant activation of ER stress can also induce inflammation and cellular apoptosis, and modify signaling of protective processes such as autophagy and mTORC activation. The following review will discuss our current understanding of ER stress in the diabetic kidney and explore novel means of modulating ER stress and its interacting signaling cascades with the overall goal of identifying therapeutic strategies that will improve outcomes in diabetic nephropathy.

  8. Er{sup 3+}/Yb{sup 3+}co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Rajesh; Gyawali, Gobinda; Cho, Sung Hun

    2014-01-15

    In this paper, we report the microwave hydrothermal synthesis of Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst. Crystal structure, morphology, elemental composition, optical properties and BET surface area were analyzed in detail. Infrared to visible upconversion luminescence at 532 nm and 546 nm of the co-doped samples was investigated under excitation at 980 nm. The results revealed that the co-doping of Er{sup 3+}/Yb{sup 3+} into Bi{sub 2}MoO{sub 6} exhibited enhanced photocatalytic activity for the decomposition of rhodamine B under simulated solar light irradiation. Enhanced photocatalytic activity can be attributed to the energy transfer between Er{sup 3+}/Yb{sup 3+} andmore » Bi{sub 2}MoO{sub 6} via infrared to visible upconversion from Er{sup 3+}/Yb{sup 3+} ion and higher surface area of the Bi{sub 2}MoO{sub 6} nanosheets. Therefore, this synthetic approach may exhibit a better alternative to fabricate upconversion photocatalyst for integral solar light absorption. - Graphical abstract: Schematic illustration of the upconversion photocatalysis. Display Omitted - Highlights: • Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst is successfully synthesized. • We obtained the nanosheets having high surface area. • Upconversion of IR to visible light was confirmed. • Upconversion phenomena can be utilized for effective photocatalysis.« less

  9. The endoplasmic reticulum: structure, function and response to cellular signaling.

    PubMed

    Schwarz, Dianne S; Blower, Michael D

    2016-01-01

    The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle.

  10. Recovery from temporary endoplasmic reticulum stress in plants relies on the tissue-specific and largely independent roles of bZIP28 and bZIP60, as well as an antagonizing function of BAX-Inhibitor 1 upon the pro-adaptive signaling mediated by bZIP28.

    PubMed

    Ruberti, Cristina; Lai, YaShiuan; Brandizzi, Federica

    2018-01-01

    The unfolded protein response (UPR) is an ancient signaling pathway that commits to life-or-death outcomes in response to proteotoxic stress in the endoplasmic reticulum (ER). In plants, the membrane-tethered transcription factor bZIP28 and the ribonuclease-kinase IRE1 along with its splicing target, bZIP60, govern the two cytoprotective UPR signaling pathways known to date. The conserved ER membrane-associated BAX inhibitor 1 (BI1) modulates ER stress-induced programmed cell death through yet-unknown mechanisms. Despite the significance of the UPR for cell homeostasis, in plants the regulatory circuitry underlying ER stress resolution is still largely unmapped. To gain insights into the coordination of plant UPR strategies, we analyzed the functional relationship of the UPR modulators through the analysis of single and higher order mutants of IRE1, bZIP60, bZIP28 and BI1 in experimental conditions causing either temporary or chronic ER stress. We established a functional duality of bZIP28 and bZIP60, as they exert partially independent tissue-specific roles in recovery from ER stress, but redundantly actuate survival strategies in chronic ER stress. We also discovered that BI1 attenuates the pro-survival function of bZIP28 in ER stress resolution and, differently to animal cells, it does not temper the ribonuclease activity of inositol-requiring enzyme 1 (IRE1) under temporary ER stress. Together these findings reveal a functional independence of bZIP28 and bZIP60 in plant UPR, and identify an antagonizing role of BI1 in the pro-adaptive signaling mediated by bZIP28, bringing to light the distinctive complexity of the unfolded protein response (UPR) in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Temperature measurement based on photoluminescence of Er3+ doped Sr0.3Cd0.7F2 microcrystal coupled to scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Trannoy, N.; Sayoud, A.; Diaf, M.; Duvaut, Th.; Jouart, J. P.; Grossel, Ph.

    2015-04-01

    Rare earth doped sub-micrometric luminescent materials are promising candidates for temperature sensing and play an efficient role in many technological fields. In this paper, a new optical sensor is developed for measuring local temperatures. This sensor is based on a thermal-resistive probe and on photoluminescence of a luminescent fluoride microcrystal. The final purpose is to develop a device calibrated in temperature and capable of acquiring images of local temperature at sub-micrometric scale. Indeed, the sensor temperature can be obtained in two distinct ways: one from the thermal probe parameters and the other from the green photoluminescence generated in the anti-Stokes mode by the active Er ions directly excited by a red laser. The thermal probe is based on Wollaston wire whose thermal-resistive element is in platinum/rhodium. Its temperature is estimated from the probe electrical characteristics and a modeling. A microcrystal of Sr0.3Cd0.7F2: Er3+(4%)-Yb3+(6%) of about 25 μm in diameter is glued at the probe extremity. This luminescent material has the particularity to give a green emission spectrum with intensities sensitive to small temperature variations. Using the fluorescence intensity ratio (FIR) technique, the crystal temperature is estimated from the intensity measurements at green wavelengths 522, 540 and 549 nm by taking advantage of particular optical properties due to the crystalline nature of Sr0.3Cd0.7F2: Er3+-Yb3+. The microcrystal temperature is then assessed as a function of electric current in the thermal probe by applying the Boltzmann's equations. The coupling of the scanning thermal microscope (SThM) with the photoluminescence probe reveals that the particle fluorescence signal is affected by the temperature rise of an electrical microsystem submitted to a Joule heating. The first results are presented and discussed.

  12. Enhanced infrared-to-visible up-conversion emission and temperature sensitivity in (Er3+,Yb3+, and W6+) tri-doped Bi4Ti3O12 ferroelectric oxide

    NASA Astrophysics Data System (ADS)

    Bokolia, Renuka; Mondal, Manisha; Rai, V. K.; Sreenivas, K.

    2017-02-01

    Strong up conversion (UC) luminescence at 527, 550, and 662 nm is compared under an excitation of 980 nm in single doped (Er3+), co-doped (Er3+/Yb3+), and (Er3+/Yb3+/W6+) tri-doped bismuth titanate (Bi4Ti3O12). For the co-doped system, the frequency (UC) emission intensity due to Er3+ ions is enhanced significantly in the green bands due to the efficient energy transfer from Yb3+ to Er3+ ions. Further increase in the emission intensity is seen with non-luminescent W6+ ions in the tri-doped system due to the modification in the local crystal field around the Er3+ ions, and is evidenced through a gradual change in the crystal structure of the host lattice with increasing W6+ content. The observed changes in the fluorescence lifetime and the associated energy transfer mechanisms are discussed. A progressive reduction of the lifetime of the 4S3/2 levels of Er3+ ions from 72 to 58.7 μs with the introduction of Yb3+ and W6+ dopant increases the transition probability and enhances the UC emission intensity. The efficiency of the energy transfer process ( η ) in the co-doped and tri-doped systems is found to be 9.4% and 18.6%, respectively, in comparison to the single doped system. Temperature sensing based on the fluorescence intensity ratio (FR) technique shows high sensitivity (0.0123 K-1) in the high temperature range (293 to 523 K) for an optimum content of Er3+, Yb3+, and W6+ with x = 0.03, y = 0.18, and z = 0.06 at. % in the tri-doped Bi4-x-yErxYbyTi3-zWzO12 ferroelectric composition, and is found useful for potential applications in optical thermometry.

  13. Internal versus external fixation of the anterior component in unstable fractures of the pelvic ring: pooled results from a systematic review.

    PubMed

    Wardle, B; Eslick, G D; Sunner, P

    2016-10-01

    Improving reduction of the pelvic ring improves long-term functional outcomes for patients. It has been demonstrated that posterior internal fixation is necessary to adequately control fractures to the posterior ring and there is evidence that supplementing this with fixation of the anterior ring improves stability. It is accepted that internal fixation provides greater stability than external fixation of the anterior ring but long-term differences in radiographic and functional outcomes have not yet been quantified. A search of electronic databases, reference lists and review articles from 1989 to 2015 yielded 18 studies (n = 884) that met our inclusion criteria. We included studies that discussed pelvic ring injuries in adults, reported functional or radiological outcomes or complications by anterior ring intervention and exceeded 14 patients. We excluded biomechanical and cadaver studies. Internal fixation of the anterior pelvic ring had better functional and radiographic outcomes. Residual displacement of >10 mm was less common with internal fixation (ER 0.12, 95 % CI 0.06-0.24) than external fixation (ER 0.31, 95 % CI 0.11-0.62). Unsatisfactory outcomes also occurred at a lower rate (ER 0.09, 95 % CI 0.03-0.22) compared to external fixation (ER 0.32, 95 % CI 0.18-0.50). Losses of reduction (ER 0.02, 95 % CI 0.01-0.04 versus ER 0.07, 95 % CI 0.02-0.21), malunions (ER 0.03, 95 % CI 0.01-0.08 versus ER 0.07, 95 % CI 0.02-0.21) and delayed/non-unions (ER 0.02, 95 % CI 0.01-0.05 versus ER 0.04, 95 % CI 0.02-0.07). Internal fixation of the anterior pelvic ring as supplementary fixation for unstable injuries to the pelvic ring appears to result in better radiographic and functional outcomes as well as fewer complications. However, data that separated outcomes and complications in relation to interventions of the anterior pelvic ring were limited. More studies looking specifically at outcomes in relation to the type of anterior ring intervention are needed.

  14. Semiclassical unified description of wobbling motion in even-even and even-odd nuclei

    NASA Astrophysics Data System (ADS)

    Raduta, A. A.; Poenaru, R.; Ixaru, L. Gr.

    2017-11-01

    A unitary description for wobbling motion in even-even and even-odd nuclei is presented. In both cases compact formulas for wobbling frequencies are derived. The accuracy of the harmonic approximation is studied for the yrast as well as for the excited bands in the even-even case. Important results for the structure of the wave function and its behavior inside the two wells of the potential energy function corresponding to the Bargmann representation are pointed out. Applications to 158Er and 163Lu reveal a very good agreement with available data. Indeed, the yrast energy levels in the even-even case and the first four triaxial superdeformed bands, TSD1, TSD2, TSD3, and TSD4, are realistically described. Also, the results agree with the data for the E 2 and M 1 intra- as well as interband transitions. Perspectives for the formalism development and an extensive application to several nuclei from various regions of the nuclides chart are presented.

  15. Chronic Intermittent Hypobaric Hypoxia Improves Cardiac Function through Inhibition of Endoplasmic Reticulum Stress.

    PubMed

    Yuan, Fang; Zhang, Li; Li, Yan-Qing; Teng, Xu; Tian, Si-Yu; Wang, Xiao-Ran; Zhang, Yi

    2017-08-11

    We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.

  16. Rare earth niobate coordination polymers

    NASA Astrophysics Data System (ADS)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  17. Oestrogen and progesterone receptor assays in breast tumours. The Prince Henry's Hospital experience, 1983-1990.

    PubMed

    Pearce, P T; Myles, K M; Funder, J W

    1993-08-16

    To present and analyse the results of eight years of experience (1983-1990) in breast tumour receptor analysis. All female primary breast tumour samples received (4683) were analysed for seasonal variation, patient age, relative risk index, oestrogen receptor (ER) and progesterone receptor (PR) status, ER and PR status as a function of age, ER and PR levels as a function of age, and ER and PR levels as a function of month of analysis. The assays were done at the Medical Research Centre, Prince Henry's Hospital, Melbourne, as a non-profit service to surgeons, oncologists and pathologists. The numbers of samples referred for assay increased progressively each year, from 473 in 1983 to 1097 in 1990, but the receptor status (ER +/-, PR +/-) appeared not to vary from year to year. ER+PR+ tumours were the most common in all age groups, steadily increasing from between 50% and 60% in premenopausal women to 70% or more in those aged over 80. In postmenopausal women, levels of ER in ER+ tumours were three times those in premenopausal women; PR levels in PR+ tumours, however, were bimodal, with higher levels in the age groups 35-49 and 70-89 years than in women aged 50-69 years. No significant seasonal variation was seen, and the overall patterns of receptor status are similar to those seen in Northern hemisphere studies.

  18. Dynamics of large-wave-vector magnons and phonons in MnF2:Er3+ using a far-infrared quantum-counter technique

    NASA Astrophysics Data System (ADS)

    Rotter, L. D.; Dennis, W. M.; Yen, W. M.

    1990-07-01

    Magnons near the Brillouin zone-edge were generated in antiferromagnetic MnF2:Er3+ at 1.9 K by exciting the intrinsic two-magnon absorption band using a pulsed far-infrared laser. The lowest Stark level of the Er3+ ground state was used as a 36-cm-1 magnon and phonon detector in a quantum-counter scheme. A simple set of rate equations was used to model the system. The decay time was found to be 2.9+/-0.6 μs for 55-cm-1, 3+/-2 μs for 47.6-cm-1 magnons, and 40+/-20 ns for 36-cm-1 phonons. The sum of the 36-cm-1 magnon decay rate and the Er3+-magnon decay rate was 0.9+/-0.2 μs-1. Possible mechanisms of magnon decay are discussed. The dominant mechanism is most likely thermal magnon-magnon scattering. No evidence of large-wave-vector magnon decay to 36-cm-1 phonons was found. We suggest that magnons do not decay to phonons until they scatter into the magnetoelastic modes. Implications with respect to recent magnon-transport experiments are discussed.

  19. Theoretical studies of the dependence of EPR parameters on local structure for the tetragonal Er(3+) centres in YVO4 and ScVO4.

    PubMed

    Chai, Rui-Peng; Hao, Dan-Hui; Kuang, Xiao-Yu; Liang, Liang

    2015-11-05

    The dependences of the EPR parameters on the local distortion parameters Δθ and ΔR as well as the crystal-field parameters have been studied by diagonalizing the 364×364 complete energy matrices for a tetragonal Er(3+) centre in the YVO4 and ScVO4 crystals. The results show that the local distortion angle Δθ and the fourth-order crystal-field parameter Ā4 are most sensitive to the EPR g-factors g// and g⊥, whereas the local distortion length ΔR and the second-order parameter Ā2 are less sensitive to the g-factors. Furthermore, we found that the abnormal EPR g-factors for the Er(3+) ion in the ScVO4 may be ascribed to the stronger nephelauxetic effect and covalent bonding effect, as a result of an expanded local distortion for the Er(3+) centre in the ScVO4 crystal. Simultaneously, the contributions of the J-J mixing effects from the terms of excited states to the EPR parameters have been evaluated quantitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    NASA Astrophysics Data System (ADS)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  1. Enhanced frequency upconversion study in Er3+/Yb3+ doped/codoped TWTi glasses

    NASA Astrophysics Data System (ADS)

    Azam, Mohd; Rai, Vineet Kumar

    2018-04-01

    Er3+/Yb3+ doped/codoped TeO2-WO3-TiO2 (TWTi) glasses have been prepared by using the melt-quenching technique. The upconversion (UC) emission spectra of the developed glasses have been recorded upon 980 nm laser excitation. Three intense UC emission bands have been observed within the green and red region centered at ˜532 nm, ˜553 nm and ˜669 nm corresponding to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions respectively in the singly Er3+ doped glass. On introducing Yb3+ ions in the singly Er3+ doped glass, an enhancement of about ˜ 12 times and ˜50 times in the green and red bands respectively have been observed even at low pump power ˜ 364 mW followed by two photon absorption process. Colour tunability from yellowish green to pure green colour region has been observed on varying the pump power. The prepared glass can be used to produce NIR to green upconverter and colour tunable display devices.

  2. Efficient Ti:LiNbO3 ridge waveguide lasers: investigation of Er and Yb:Er doped waveguides pumped at 980nm and 1486nm

    NASA Astrophysics Data System (ADS)

    Brüske, Dominik; Suntsov, Sergiy; Volk, Martin F.; Rüter, Christian E.; Kip, Detlef

    2018-02-01

    Erbium-ytterbium-codoped titanium in-diffused ridge waveguides optical amplifiers in x-cut congruent LiNbO3 substrates pumped at 980.5 nm and 1486 nm are reported for the first time. An internal gain of 2.8 dB/cm has been measured in 2.3 cm long Yb:Er:Ti:LiNbO3 ridge waveguides for the coupled pump power of 145 mW at 980.5 nm, which is the highest gain ever reported, to the best of our knowledge, for erbium-based LiNbO3 waveguide amplifiers under 980 nm excitation. Furthermore, we realized an internal gain of 3.2 dB/cm for the coupled pump power of 200 mW at 1486 nm, which also exceeds the best literature values for Er:Ti:LiNbO3 waveguide amplifiers pumped at this wavelength. In addition, we report on a method for local periodic poling (periods of 30 μm and 18.4 μm) of ridge waveguides in LiNbO3, which allows for future integration of waveguide lasers and nonlinear frequency converters on the same substrate.

  3. Up-converted ultraviolet luminescence of Er3+:BaGd2ZnO5 phosphors for healthy illumination

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Cui, Qingzhi; Wang, Zhanyong; Liu, Gan; Tian, Tian; Xu, Jiayue

    2016-09-01

    Moderate level of exposure to the solar irradiation containing UV component is essential for health care. To incorporate the UV-emitting phosphors into the commercial YAG-based white light-emitting diode introduces the possibilities of healthy illumination to individuals' daily lives. 1 mol.% Er3+-doped BaGd2ZnO5 (BGZ) particles were synthesized via sol-gel method and efficient up-converted luminescence peaked at 380 nm was detected under 480 nm excitation. The mixed phosphors with varied mass ratio of Er3+:BGZ and Ce3+:YAG particles were encapsulated to form LEDs. The study of the LEDs indicated that the introduction of BGZ component favored the enhancement of color-rendering index and the neutralization of the white light emitting. The WLED with the BGZ/YAG ratio of 8:2 was recommendable for its excellent overall white light luminous performances and UV intensity of 84.55 mW/cm2. The UV illumination dose of the WLEDs with mixed YAG and BGZ was controllable by adjusting the ratio, the illumination distance and the illumination time. Er3+:BGZ phosphors are promising UVemitting phosphors for healthy indoor illumination.

  4. Skyrme forces and decay of the Rf266*104 nucleus synthesized via different incoming channels

    NASA Astrophysics Data System (ADS)

    Niyti, Deep, Aman; Kharab, Rajesh; Chopra, Sahila; Gupta, Raj K.

    2017-03-01

    The excitation functions for the production of 262Rf, 261Rf, and 260Rf isotopes via 4 n -, 5 n -, and 6 n -decay channels from the *266Rf compound nucleus are studied within the dynamical cluster-decay model (DCM), including deformations β2 i and so-called hot-optimum orientations θi which support symmetric fission, in agreement with experiments. The data are available for 18O+248Cm and 22Ne+244Pu reactions, respectively, at the energy ranges of Elab=88.2 to 101.3 and 109.0 to 124.8 MeV. For the nuclear interaction potentials, we use the Skyrme energy density functional (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach, which means an extension of the earlier study of excitation functions of *266Rf formed in 18O+248Cm reaction, based on the DCM using the pocket formula for nuclear proximity potential, showing interaction dependence. The Skyrme forces used here are the old SIII and SIV and new GSkI and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in frozen density approximation. Interestingly, the DCM gives an excellent fit to the measured data on fusion evaporation residue (ER) for both the incoming channels (18O+248Cm and 22Ne+244Pu ) at the energy range Elab=88.2 to 124.8 MeV, independent of the entrance channel and Skyrme force used. The possible fusion-fission (ff) and quasifission (qf) mass regions of fragments on DCM are also predicted. The DCM with Skyrme forces is further used to look for all the possible target-projectile (t-p) combinations forming the cold compound nucleus (CN) *266Rf at the CN excitation energy of Elab for hot compact configurations. The fusion evaporation residue cross sections, for the proposed new reactions in synthesizing the CN *266Rf, are also estimated for the future experiments, and role of mass asymmetry of nuclei is indicated.

  5. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide.

    PubMed

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-03

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  6. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  7. Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis

    PubMed Central

    Han, Jaeseok; Song, Benbo; Kim, Jiun; Kodali, Vamsi K.; Pottekat, Anita; Wang, Miao; Hassler, Justin; Wang, Shiyu; Pennathur, Subramaniam; Back, Sung Hoon; Katze, Michael G.

    2015-01-01

    Proinsulin misfolding in the endoplasmic reticulum (ER) initiates a cell death response, although the mechanism(s) remains unknown. To provide insight into how protein misfolding may cause β-cell failure, we analyzed mice with the deletion of P58IPK/DnajC3, an ER luminal co-chaperone. P58IPK−/− mice become diabetic as a result of decreased β-cell function and mass accompanied by induction of oxidative stress and cell death. Treatment with a chemical chaperone, as well as deletion of Chop, improved β-cell function and ameliorated the diabetic phenotype in P58IPK−/− mice, suggesting P58IPK deletion causes β-cell death through ER stress. Significantly, a diet of chow supplemented with antioxidant dramatically and rapidly restored β-cell function in P58IPK−/− mice and corrected abnormal localization of MafA, a critical transcription factor for β-cell function. Antioxidant feeding also preserved β-cell function in Akita mice that express mutant misfolded proinsulin. Therefore defective protein folding in the β-cell causes oxidative stress as an essential proximal signal required for apoptosis in response to ER stress. Remarkably, these findings demonstrate that antioxidant feeding restores cell function upon deletion of an ER molecular chaperone. Therefore antioxidant or chemical chaperone treatment may be a promising therapeutic approach for type 2 diabetes. PMID:25795214

  8. Cloning, in Vitro expression, and novel phylogenetic classification of a channel catfish estrogen receptor

    USGS Publications Warehouse

    Xia, Z.; Patino, R.; Gale, W.L.; Maule, A.G.; Densmore, L.D.

    1999-01-01

    We obtained two channel catfish estrogen receptor (ccER) cDNA from liver of female fish using RT–PCR. The two fragments were identical in sequence except that the smaller one had an out-of-frame deletion in the E domain, suggesting the existence of ccER splice variants. The larger fragment was used to screen a cDNA library from liver of a prepubescent female. A cDNA was obtained that encoded a 581-amino-acid ER with a deduced molecular weight of 63.8 kDa. Extracts of COS-7 cells transfected with ccER cDNA bound estrogen with high affinity (Kd = 4.7 nM) and specificity. Maximum parsimony and Neighbor Joining analyses were used to generate a phylogenetic classification of ccER on the basis of 18 full-length ER sequences. The tree suggested the existence of two major ER branches. One branch contained two clearly divergent clades which included all piscine ER (except Japanese eel ER) and all tetrapod ERα, respectively. The second major branch contained the eel ER and the mammalian ERβ. The high degree of divergence between the eel ER and mammalian ERβ suggested that they also represent distinct piscine and tetrapod ER. These data suggest that ERα and ERβ are present throughout vertebrates and that these two major ER types evolved by duplication of an ancestral ER gene. Sequence alignments with other members of the nuclear hormone receptor superfamily indicated the presence of 8 amino acids in the E domain that align exclusively among ER. Four of these amino acids have not received prior research attention and their function is unknown. The novel finding of putative ER splice variants in a nonmammalian vertebrate and the novel phylogenetic classification of ER offer new perspectives in understanding the diversification and function of ER.

  9. Toward Rechargeable Persistent Luminescence for the First and Third Biological Windows via Persistent Energy Transfer and Electron Trap Redistribution.

    PubMed

    Xu, Jian; Murata, Daisuke; Ueda, Jumpei; Viana, Bruno; Tanabe, Setsuhisa

    2018-05-07

    Persistent luminescence (PersL) imaging without real-time external excitation has been regarded as the next generation of autofluorescence-free optical imaging technology. However, to achieve improved imaging resolution and deep tissue penetration, developing new near-infrared (NIR) persistent phosphors with intense and long duration PersL over 1000 nm is still a challenging but urgent task in this field. Herein, making use of the persistent energy transfer process from Cr 3+ to Er 3+ , we report a novel garnet persistent phosphor of Y 3 Al 2 Ga 3 O 12 codoped with Er 3+ and Cr 3+ (YAG G:Er-Cr), which shows intense Cr 3+ PersL (∼690 nm) in the deep red region matching well with the first biological window (NIR-I, 650-950 nm) and Er 3+ PersL (∼1532 nm) in the NIR region matching well with the third biological window (NIR-III, 1500-1800 nm). The optical imaging through raw-pork tissues (thickness of 1 cm) suggests that the emission band of Er 3+ can achieve higher spatial resolution and more accurate signal location than that of Cr 3+ due to the reduced light scattering at longer wavelengths. Furthermore, by utilizing two independent electron traps with two different trap depths in YAG G:Er-Cr, the Cr 3+ /Er 3+ PersL can even be recharged in situ by photostimulation with 660 nm LED thanks to the redistribution of trapped electrons from the deep trap to the shallow one. Our results serve as a guide in developing promising NIR (>1000 nm) persistent phosphors for long-term optical imaging.

  10. Extending fullwave core ICRF simulation to SOL and antenna regions using FEM solver

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Wright, J. C.

    2016-10-01

    A full wave simulation approach to solve a driven RF waves problem including hot core, SOL plasmas and possibly antenna is presented. This approach allows for exploiting advantages of two different way of representing wave field, namely treating spatially dispersive hot conductivity in a spectral solver and handling complicated geometry in SOL/antenna region using an unstructured mesh. Here, we compute a mode set in each region with the RF electric field excitation on the connecting boundary between core and edge regions. A mode corresponding to antenna excitation is also computed. By requiring the continuity of tangential RF electric and magnetic fields, the solution is obtained as unique superposition of these modes. In this work, TORIC core spectral solver is modified to allow for mode excitation, and the edge region of diverted Alcator C-Mod plasma is modeled using COMSOL FEM package. The reconstructed RF field is similar in the core region to TORIC stand-alone simulation. However, it contains higher poloidal modes near the edge and captures a wave bounced and propagating in the poloidal direction near the vacuum-plasma boundary. These features could play an important role when the single power pass absorption is modest. This new capability will enable antenna coupling calculations with a realistic load plasma, including collisional damping in realistic SOL plasma and other loss mechanisms such as RF sheath rectification. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  11. Insulin protects against hepatic damage postburn.

    PubMed

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.

  12. Insulin Protects against Hepatic Damage Postburn

    PubMed Central

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  13. Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1α/XBP1 pathway.

    PubMed

    Namba, Takushi; Chu, Kiki; Kodama, Rika; Byun, Sanguine; Yoon, Kyoung Wan; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W

    2015-08-21

    Altered regulation of ER stress response has been implicated in a variety of human diseases, such as cancer and metabolic diseases. Excessive ER function contributes to malignant phenotypes, such as chemoresistance and metastasis. Here we report that the tumor suppressor p53 regulates ER function in response to stress. We found that loss of p53 function activates the IRE1α/XBP1 pathway to enhance protein folding and secretion through upregulation of IRE1α and subsequent activation of its target XBP1. We also show that wild-type p53 interacts with synoviolin (SYVN1)/HRD1/DER3, a transmembrane E3 ubiquitin ligase localized to ER during ER stress and removes unfolded proteins by reversing transport to the cytosol from the ER, and its interaction stimulates IRE1α degradation. Moreover, IRE1α inhibitor suppressed protein secretion, induced cell death in p53-deficient cells, and strongly suppressed the formation of tumors by p53-deficient human tumor cells in vivo compared with those that expressed wild-type p53. Therefore, our data imply that the IRE1α/XBP1 pathway serves as a target for therapy of chemoresistant tumors that express mutant p53.

  14. Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1α/XBP1 pathway

    PubMed Central

    Kodama, Rika; Byun, Sanguine; Yoon, Kyoung Wan; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W.

    2015-01-01

    Altered regulation of ER stress response has been implicated in a variety of human diseases, such as cancer and metabolic diseases. Excessive ER function contributes to malignant phenotypes, such as chemoresistance and metastasis. Here we report that the tumor suppressor p53 regulates ER function in response to stress. We found that loss of p53 function activates the IRE1α/XBP1 pathway to enhance protein folding and secretion through upregulation of IRE1α and subsequent activation of its target XBP1. We also show that wild-type p53 interacts with synoviolin (SYVN1)/HRD1/DER3, a transmembrane E3 ubiquitin ligase localized to ER during ER stress and removes unfolded proteins by reversing transport to the cytosol from the ER, and its interaction stimulates IRE1α degradation. Moreover, IRE1α inhibitor suppressed protein secretion, induced cell death in p53-deficient cells, and strongly suppressed the formation of tumors by p53-deficient human tumor cells in vivo compared with those that expressed wild-type p53. Therefore, our data imply that the IRE1α/XBP1 pathway serves as a target for therapy of chemoresistant tumors that express mutant p53. PMID:26254280

  15. Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er³⁺.

    PubMed

    Cao, Baosheng; Wu, Jinlei; Wang, Xuehan; He, Yangyang; Feng, Zhiqing; Dong, Bin

    2015-12-10

    Upconversion luminescence properties from the emissions of Stark sublevels of Er(3+) were investigated in Er(3+)-Yb(3+)-Mo(6+)-codoped TiO₂ phosphors in this study. According to the energy levels split from Er(3+), green and red emissions from the transitions of four coupled energy levels, ²H11/2(I)/²H11/2(II), ⁴S3/2(I)/⁴S3/2(II), ⁴F9/2(I)/⁴F9/2(II), and ²H11/2(I) + ²H11/2(II)/⁴S3/2(I) + ⁴S3/2(II), were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR) technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er(3+)-Yb(3+)-Mo(6+)-codoped TiO₂ phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.

  16. Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses.

    PubMed

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-05-23

    Er3+-doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+:4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+-doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials.

  17. Structural, optical and photo thermal properties of Er3+:Y2O3 doped PMMA nanocomposite

    NASA Astrophysics Data System (ADS)

    Tabanli, Sevcan; Eryurek, Gonul

    2018-02-01

    Thermal decomposition technique was employed to synthesize of phosphors of yttria (Y2O3) doped with erbium (Er3+) ions. After the synthesized procedure, the nano-sized crystalline powders were annealed at 800oC for 24 h. Annealed powders were embedded in poly(methyl methacrylate) (PMMA) by free radical polymerization to fabricate nanocomposite polymer materials. The crystalline structure of the powder and doped PMMA nanocomposite samples were determined using X-ray diffraction technique. Scherrer's equation and the FW1/5/4/5M method were used to determine average crystalline size and grain size distributions, respectively. The spectroscopic properties of the powders and doped PMMA nanocomposites were studied by measuring the upconversion emission spectra under near-infrared laser excitation at room temperature. The laser-induced photo thermal behaviors of Er3+:Y2O3 nano-powders and doped PMMA nanocomposite were investigated using the fluorescence intensity ratio (FIR) technique.

  18. Er3+-Tm3+-Yb3+:CaMoO4 phosphor as an outstanding upconversion-based optical temperature sensor and optical heater.

    PubMed

    Dey, Riya; Kumar Rai, Vineet

    2017-03-22

    Optical temperature sensing in Er 3+ -Tm 3+ -Yb 3+ codoped CaMoO 4 phosphor prepared by chemical co-precipitation route based on the near infrared (NIR) to green upconversion emission from Er 3+ ion is reported. The variation with respect to external temperature in emission intensity ratio of the green emissions around 530 nm and 552 nm, corresponding to the 2 H 11/2  →  4 I 15/2 and 4 S 3/2  →  4 I 15/2 transitions respectively, under 980 nm excitation has been studied in detail, to report the sensing property of the prepared material; the maximum sensor sensitivity ∼0.0182 K -1 was attained at 413 K. The laser induced optical heating within the prepared phosphor has been explored and the heat generation caused by the laser effect has been verified by comparison of experimental and calculated data.

  19. Security writing application of thermal decomposition assisted NaYF4:Er3+/Yb3+ upconversion phosphor

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Tiwari, S. P.; Esteves da Silva, Joaquim C. G.; Kumar, K.

    2018-07-01

    The authors have synthesized water-dispersible NaYF4:Er3+/Yb3+ upconversion particles via a thermal decomposition route and optimized the green upconversion emission through a concentration variation of the Yb3+ sensitizer. The prepared particles were found to be ellipsoid in shape having an average particle dimension of 600  ×  150 nm. It is observed that the sample with 18 mmol% Yb3+ ion concentration and 2 mmol% Er3+ ion gives optimum upconversion intensity in the green region under 980 nm excitation. Colloidal dispersibility of the sample in different solvents was checked and hexane was found to be the best medium for the prepared particles. The particle size of the sample was found to be suitable for the preparation of colloidal ink and security writing on a plain sheet of paper. This was demonstrated successfully using ink prepared in polyvinyl chloride gold medium.

  20. Hepatic ZIP14-mediated zinc transport is required for adaptation to endoplasmic reticulum stress

    PubMed Central

    Kim, Min-Hyun; Aydemir, Tolunay B.; Kim, Jinhee; Cousins, Robert J.

    2017-01-01

    Extensive endoplasmic reticulum (ER) stress damages the liver, causing apoptosis and steatosis despite the activation of the unfolded protein response (UPR). Restriction of zinc from cells can induce ER stress, indicating that zinc is essential to maintain normal ER function. However, a role for zinc during hepatic ER stress is largely unknown despite important roles in metabolic disorders, including obesity and nonalcoholic liver disease. We have explored a role for the metal transporter ZIP14 during pharmacologically and high-fat diet–induced ER stress using Zip14−/− (KO) mice, which exhibit impaired hepatic zinc uptake. Here, we report that ZIP14-mediated hepatic zinc uptake is critical for adaptation to ER stress, preventing sustained apoptosis and steatosis. Impaired hepatic zinc uptake in Zip14 KO mice during ER stress coincides with greater expression of proapoptotic proteins. ER stress-induced Zip14 KO mice show greater levels of hepatic steatosis due to higher expression of genes involved in de novo fatty acid synthesis, which are suppressed in ER stress-induced WT mice. During ER stress, the UPR-activated transcription factors ATF4 and ATF6α transcriptionally up-regulate Zip14 expression. We propose ZIP14 mediates zinc transport into hepatocytes to inhibit protein-tyrosine phosphatase 1B (PTP1B) activity, which acts to suppress apoptosis and steatosis associated with hepatic ER stress. Zip14 KO mice showed greater hepatic PTP1B activity during ER stress. These results show the importance of zinc trafficking and functional ZIP14 transporter activity for adaptation to ER stress associated with chronic metabolic disorders. PMID:28673968

  1. Hepatic ZIP14-mediated zinc transport is required for adaptation to endoplasmic reticulum stress.

    PubMed

    Kim, Min-Hyun; Aydemir, Tolunay B; Kim, Jinhee; Cousins, Robert J

    2017-07-18

    Extensive endoplasmic reticulum (ER) stress damages the liver, causing apoptosis and steatosis despite the activation of the unfolded protein response (UPR). Restriction of zinc from cells can induce ER stress, indicating that zinc is essential to maintain normal ER function. However, a role for zinc during hepatic ER stress is largely unknown despite important roles in metabolic disorders, including obesity and nonalcoholic liver disease. We have explored a role for the metal transporter ZIP14 during pharmacologically and high-fat diet-induced ER stress using Zip14 -/- (KO) mice, which exhibit impaired hepatic zinc uptake. Here, we report that ZIP14-mediated hepatic zinc uptake is critical for adaptation to ER stress, preventing sustained apoptosis and steatosis. Impaired hepatic zinc uptake in Zip14 KO mice during ER stress coincides with greater expression of proapoptotic proteins. ER stress-induced Zip14 KO mice show greater levels of hepatic steatosis due to higher expression of genes involved in de novo fatty acid synthesis, which are suppressed in ER stress-induced WT mice. During ER stress, the UPR-activated transcription factors ATF4 and ATF6α transcriptionally up-regulate Zip14 expression. We propose ZIP14 mediates zinc transport into hepatocytes to inhibit protein-tyrosine phosphatase 1B (PTP1B) activity, which acts to suppress apoptosis and steatosis associated with hepatic ER stress. Zip14 KO mice showed greater hepatic PTP1B activity during ER stress. These results show the importance of zinc trafficking and functional ZIP14 transporter activity for adaptation to ER stress associated with chronic metabolic disorders.

  2. Asna1/TRC40 Controls β-Cell Function and Endoplasmic Reticulum Homeostasis by Ensuring Retrograde Transport.

    PubMed

    Norlin, Stefan; Parekh, Vishal S; Naredi, Peter; Edlund, Helena

    2016-01-01

    Type 2 diabetes (T2D) is characterized by insulin resistance and β-cell failure. Insulin resistance per se, however, does not provoke overt diabetes as long as compensatory β-cell function is maintained. The increased demand for insulin stresses the β-cell endoplasmic reticulum (ER) and secretory pathway, and ER stress is associated with β-cell failure in T2D. The tail recognition complex (TRC) pathway, including Asna1/TRC40, is implicated in the maintenance of endomembrane trafficking and ER homeostasis. To gain insight into the role of Asna1/TRC40 in maintaining endomembrane homeostasis and β-cell function, we inactivated Asna1 in β-cells of mice. We show that Asna1(β-/-) mice develop hypoinsulinemia, impaired insulin secretion, and glucose intolerance that rapidly progresses to overt diabetes. Loss of Asna1 function leads to perturbed plasma membrane-to-trans Golgi network and Golgi-to-ER retrograde transport as well as to ER stress in β-cells. Of note, pharmacological inhibition of retrograde transport in isolated islets and insulinoma cells mimicked the phenotype of Asna1(β-/-) β-cells and resulted in reduced insulin content and ER stress. These data support a model where Asna1 ensures retrograde transport and, hence, ER and insulin homeostasis in β-cells. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Functional shoulder ratios with high velocities of shoulder internal rotation are most sensitive to determine shoulder rotation torque imbalance: a cross-sectional study with elite handball players and controls.

    PubMed

    Castro, Marcelo Peduzzi de; Fonseca, Pedro; Morais, Sara Tribuzi; Borgonovo-Santos, Márcio; Coelho, Eduardo Filipe Cruz; Ribeiro, Daniel Cury; Vilas-Boas, João Paulo

    2017-12-04

    The aim of the present study was to determine which approach to calculating shoulder ratios is the most sensitive for determining shoulder torque imbalance in handball players. Twenty-six participants (handball athletes, n = 13; healthy controls, n = 13) performed isokinetic concentric and eccentric shoulder internal rotation (IR) and external rotation (ER) assessment at 60, 180 and 300°/s. We used eight approaches to calculating shoulder ratios: four concentric (i.e. concentric ER torque divided by concentric IR torque), and four functional (i.e. eccentric ER torque divided by concentric IR torque) at the velocities of 60, 180 and 300°/s for both IR and ER, and combining 60°/s of ER and 300°/s of IR. A three factorial ANOVA (factors: shoulder ratios, upper limb sides, and groups) along with Tukey's post-hoc analysis, and effect sizes were calculated. The findings suggested the functional shoulder ratio combining 60°/s of ER and 300°/s of IR is the most sensitive to detect differences between upper limbs for handball players, and between players and controls for the dominant side. The functional shoulder ratio combining 60°/s of ER with 300°/s of IR seems to present advantages over the other approaches for identifying upper limb asymmetries and differences in shoulder torque balance related to throwing.

  4. Size and shape dependence of electronic and optical excitations in TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar

    2013-03-01

    We present results for the electronic structures, quasi-particle gaps, and the absorption spectra of TiO2 nanocrystals of both rutile and anatase phases with various shapes, sizes, and surfaces exposed. We study the size and shape dependences of these electronic and optical properties, computed both within time-dependent density functional theory and many-body perturbation methods such as the GW-BSE, using appropriately passivated nanocrystals to mimic bulk termination. Surface effects are examined by using nanocrystals of various sizes with particular surfaces, such as (110) in rutile and (101) in anatase phases, exposed. We interpret the resulting optical absorption spectra of these nanocrystals in terms of the bulk spectra and compare them with predictions from classical Mie-Gans theory. This work was supported by the DOE Grant No. DE-FG02-09ER16072.

  5. Laser and gain parameters at 2.7 μm of Er 3+-doped oxyfluoride transparent glass-ceramics

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. K.; Méndez-Ramos, J.; Rodríguez, V. D.; Furniss, D.; Seddon, A. B.

    2006-07-01

    The room temperature emission spectrum at about 2.7 μm corresponding to the laser transition 4I 11/2 → 4I 13/2 in Er 3+-doped nano-scaled transparent oxyfluoride glass-ceramic has been measured and stimulated emission cross-section for the transition has been calculated. The intensity of the transition has been found to be 40 times stronger and lifetime 50 times longer in the glass-ceramics compared to the precursor glass, which we show to be due to a change of frequency of the phonon involved in non-radiative de-excitation of the 4I 11/2 level from 900 cm -1 in the precursor glass to 240 cm -1 in the ensuing glass-ceramics. The absorption cross-section for the excited state absorption 4I 13/2 → 4I 11/2 has been calculated based on the experimental reciprocal emission spectrum and wavelength dependence of the gain cross-section for the lasing transition 4I 11/2 → 4I 13/2 vs population inversion has been derived. The lasing/optical amplification gain parameters, such as population inversion, pump saturation intensity and product of emission cross-section and fluorescence lifetime have been obtained at the 2.7 μm wavelength. A noteworthy result is that laser action at 2.7 μm is possible in these Er 3+-doped glass-ceramics, already not taking into account energy transfer or up-conversion processes, related to the 4I 13/2 level, which favour the population inversion.

  6. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors.

    PubMed

    Pan, Yuan; Laird, Joseph G; Yamaguchi, David M; Baker, Sheila A

    2015-06-01

    Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.

  7. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors

    PubMed Central

    Pan, Yuan; Laird, Joseph G.; Yamaguchi, David M.; Baker, Sheila A.

    2015-01-01

    Purpose. Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. Methods. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. Results. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. Conclusions. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane. PMID:26030105

  8. Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths

    PubMed Central

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-01-01

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8–1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas. PMID:28368041

  9. SNX14 mutations affect endoplasmic reticulum-associated neutral lipid metabolism in autosomal recessive spinocerebellar ataxia 20.

    PubMed

    Bryant, Dale; Liu, Yang; Datta, Sanchari; Hariri, Hanaa; Seda, Marian; Anderson, Glenn; Peskett, Emma; Demetriou, Charalambos; Sousa, Sergio; Jenkins, Dagan; Clayton, Peter; Bitner-Glindzicz, Maria; Moore, Gudrun E; Henne, W Mike; Stanier, Philip

    2018-06-01

    Mutations in SNX14 cause the autosomal recessive cerebellar ataxia 20 (SCAR20). Mutations generally result in loss of protein although several coding region deletions have also been reported. Patient-derived fibroblasts show disrupted autophagy, but the precise function of SNX14 is unknown. The yeast homolog, Mdm1, functions in endoplasmic reticulum (ER)-lysosome/vacuole inter-organelle tethering, but functional conservation in mammals is still required. Here, we show that loss of SNX14 alters but does not block autophagic flux. In addition, we find that SNX14 is an ER-associated protein that functions in neutral lipid homeostasis and inter-organelle crosstalk. SNX14 requires its N-terminal transmembrane helices for ER localization, while the Phox homology (PX) domain is dispensable for subcellular localization. Both SNX14-mutant fibroblasts and SNX14KO HEK293 cells accumulate aberrant cytoplasmic vacuoles, suggesting defects in endolysosomal homeostasis. However, ER-late endosome/lysosome contact sites are maintained in SNX14KO cells, indicating that it is not a prerequisite for ER-endolysosomal tethering. Further investigation of SNX14- deficiency indicates general defects in neutral lipid metabolism. SNX14KO cells display distinct perinuclear accumulation of filipin in LAMP1-positive lysosomal structures indicating cholesterol accumulation. Consistent with this, SNX14KO cells display a slight but detectable decrease in cholesterol ester levels, which is exacerbated with U18666A. Finally, SNX14 associates with ER-derived lipid droplets (LD) following oleate treatment, indicating a role in ER-LD crosstalk. We therefore identify an important role for SNX14 in neutral lipid homeostasis between the ER, lysosomes and LDs that may provide an early intervention target to alleviate the clinical symptoms of SCAR20.

  10. Color-tunable up-conversion emission from Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped T-AgGd(W,Mo){sub 2}O{sub 8} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jijian; Liu, Ni; Xu, Ling, E-mail: xuling@snnu.edu.cn

    Graphical abstract: The doping ions tune the UC luminescence of the T- AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} material. - Highlights: • AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} phosphors show color-tunable blue, green, and red UC emissions. • The samples’ UC emission color can be switched with the concentrations of doped ions. • The blue, green and red UC mechanisms are interpreted reasonably as three- and two- photon process. - Abstract: Tetragonal Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGd(W,Mo){sub 2}O{sub 8} phosphors were prepared by the high-temperature solid-state method. When the phosphors were excited at 980 nm, the UC emission ofmore » blue at 475 nm, green at 525 and 550 nm, and red at 656 nm were corresponding to the {sup 1}G{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} ions, the {sup 2}H{sub 11/2},{sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, and the {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transition of Er{sup 3+} ions, respectively. The blue UC emissions originate from a three-photon mechanism, while the green and red ones of Er{sup 3+} from two-photon process. The UC emission color of the Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGdW{sub 2}O{sub 8} samples switched from green to white, and then to red depending on the concentrations of Er{sup 3+} and Tm{sup 3+}. After doping with Mo(VI), tetragonal AgGdW{sub 2}O{sub 8} was transformed into tetragonal AgGdMo{sub 2}O{sub 8}, resulting in a slightly enhanced UC luminescence intensity with the favor of the red emission of Er{sup 3+} ion.« less

  11. [Multiply upconversion emission in oxyfluoride ceramics].

    PubMed

    Xiao, Si-guo; Yang, Xiao-liang; Liu, Zhen-wei

    2003-02-01

    Oxyfluoride ceramics with the host composition of SiO2 and PbF2 have been prepared. X-ray diffraction analysis of the ceramics revealed that fluoride type beta-PbF2 solid solution regions are precipitated in the glass matrix. Rare earth ions in the beta-PbF2 solid solution show highly efficient upconversion performance due to the very small multi-phonon relaxation rates. Eight upconversion emission bands whose central wavelength are 846, 803, 665, 549, 523, 487, 456 and 411 nm have been observed when the sample was excited with 930 nm diode light. Four possible energy transfer processes between Er3+ and Yb3+ cause the electronic population of high energy level of Er3+ and realize the abound upconversion luminescence bands.

  12. Efficient carrier-envelope offset frequency stabilization through gain modulation via stimulated emission.

    PubMed

    Karlen, Lauriane; Buchs, Gilles; Portuondo-Campa, Erwin; Lecomte, Steve

    2016-01-15

    A novel scheme for intracavity control of the carrier-envelope offset (CEO) frequency of a 100 MHz mode-locked Er:Yb:glass diode-pumped solid-state laser (DPSSL) based on the modulation of the laser gain via stimulated emission of the excited Er(3+) ions is demonstrated. This method allows us to bypass the ytterbium system few-kHz low-pass filter in the f(CEO) stabilization loop and thus to push the phase lock bandwidth up to a limit close to the relaxation oscillations frequency of the erbium system. A phase lock bandwidth above 70 kHz has been achieved with the fully stabilized laser, leading to an integrated phase noise [1 Hz-1 MHz] of 120 mrad.

  13. Late-onset of spinal neurodegeneration in knock-in mice expressing a mutant BiP.

    PubMed

    Jin, Hisayo; Mimura, Naoya; Kashio, Makiko; Koseki, Haruhiko; Aoe, Tomohiko

    2014-01-01

    Most human neurodegenerative diseases are sporadic, and appear later in life. While the underlying mechanisms of the progression of those diseases are still unclear, investigations into the familial forms of comparable diseases suggest that endoplasmic reticulum (ER) stress is involved in the pathogenesis. Binding immunoglobulin protein (BiP) is an ER chaperone that is central to ER function. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence in order to evaluate the effect of a functional defect in an ER chaperone in multi-cellular organisms. Here we report that heterozygous mutant BiP mice revealed motor disabilities in aging. We found a degeneration of some motoneurons in the spinal cord accompanied by accumulations of ubiquitinated proteins. The defect in retrieval of BiP by the KDEL receptor leads to impaired activities in quality control and autophagy, suggesting that functional defects in the ER chaperones may contribute to the late onset of neurodegenerative diseases.

  14. The proprioceptive reflex control of the intercostal muscles during their voluntary activation

    PubMed Central

    Davis, J. Newsom; Sears, T. A.

    1970-01-01

    1. A quantitative study has been made of the reflex effects of sudden changes in mechanical load on contracting human intercostal muscles during willed breathing movements involving the chest wall. Averaging techniques were applied to recordings of electromyogram (EMG) and lung volume, and to other parameters of breathing. 2. Load changes were effected for brief periods (10-150 msec) at any predetermined lung volume by sudden connexion of the airway to a pressure source variable between ± 80 cm H2O so that respiratory movement could be either assisted or opposed. In some experiments airway resistance was suddenly reduced by porting from a high to a low resistance external airway. 3. Contracting inspiratory and expiratory intercostal muscles showed a `silent period' with unloading which is attributed to the sudden withdrawal from intercostal motoneurones of monosynaptic excitation of muscle spindle origin. 4. For both inspiratory and expiratory intercostal muscles the typical immediate effect of an increase in load was an inhibitory response (IR) with a latency of about 22 msec followed by an excitatory response (ER) with a latency of 50-60 msec. 5. It was established using brief duration stimuli (< 40 msec) that the IR depended on mechanical events associated with the onset of stimulation, whereas stimuli greater than 40 msec in duration were required to evoke the ER. 6. For constant expiratory flow rate and a constant load, the ER of expiratory intercostal muscles increased as lung volume decreased within the limits set by maximal activation of the motoneurone pool as residual volume was approached. 7. The ER to a constant load increased directly with the expiratory flow rate at which the load applied, also within limits set by maximal activation of the motoneurone pool. 8. For a given load, the ER during phonation was greater than that occurring at a similar expiratory flow rate without phonation when the resistance of the phonating larynx was mimicked by an external airway resistance. 9. It is argued that the IR is due to autogenetic inhibition arising from tendon organs and that the ER is due to autogenetic excitation arising from intercostal muscle spindles. 10. The initial dominance of inhibition in this dual proprioceptive reflex control was not predicted by the servo theory. It is proposed that the reflex pathways subserving autogenetic inhibition are under a centrifugal control which determines in relation to previous experience (learning) the conditions under which autogenetic facilitation is allowed. PMID:5499805

  15. Neurotrophins regulate ApoER2 proteolysis through activation of the Trk signaling pathway.

    PubMed

    Larios, Jorge A; Jausoro, Ignacio; Benitez, Maria-Luisa; Bronfman, Francisca C; Marzolo, Maria-Paz

    2014-09-19

    ApoER2 and the neurotrophin receptors Trk and p75(NTR) are expressed in the CNS and regulate key functional aspects of neurons, including development, survival, and neuronal function. It is known that both ApoER2 and p75(NTR) are processed by metalloproteinases, followed by regulated intramembrane proteolysis. TrkA activation by nerve growth factor (NGF) increases the proteolytic processing of p75(NTR) mediated by ADAM17. Reelin induces the sheeding of ApoER2 ectodomain depending on metalloproteinase activity. However, it is not known if there is a common regulation mechanism for processing these receptors. We found that TrkA activation by NGF in PC12 cells induced ApoER2 processing, which was dependent on TrkA activation and metalloproteinases. NGF-induced ApoER2 proteolysis was independent of mitogen activated protein kinase activity and of phosphatidylinositol-3 kinase activity. In contrast, the basal proteolysis of ApoER2 increased when both kinases were pharmacologically inhibited. The ApoER2 ligand reelin regulated the proteolytic processing of its own receptor but not of p75(NTR). Finally, in primary cortical neurons, which express both ApoER2 and TrkB, we found that the proteolysis of ApoER2 was also regulated by brain-derived growth factor (BDNF). Our results highlight a novel relationship between neurotrophins and the reelin-ApoER2 system, suggesting that these two pathways might be linked to regulate brain development, neuronal survival, and some pathological conditions.

  16. Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1.

    PubMed

    Nelson, Omar; Tu, Huiping; Lei, Tianhua; Bentahir, Mostafa; de Strooper, Bart; Bezprozvanny, Ilya

    2007-05-01

    Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of the amyloid precursor protein by gamma-secretase. Recently, we discovered that presenilins also function as passive ER Ca(2+) leak channels. Here we used planar lipid bilayer reconstitution assays and Ca(2+) imaging experiments with presenilin-null mouse embryonic fibroblasts to analyze ER Ca(2+) leak function of 6 FAD-linked PS1 mutants and 3 known FTD-associated PS1 mutants. We discovered that L166P, A246E, E273A, G384A, and P436Q FAD mutations in PS1 abolished ER Ca(2+) leak function of PS1. In contrast, A79V FAD mutation or FTD-associated mutations (L113P, G183V, and Rins352) did not appear to affect ER Ca(2+) leak function of PS1 in our experiments. We validated our findings in Ca(2+) imaging experiments with primary fibroblasts obtained from an FAD patient possessing mutant PS1-A246E. Our results indicate that many FAD mutations in presenilins are loss-of-function mutations affecting ER Ca(2+) leak activity. In contrast, none of the FTD-associated mutations affected ER Ca(2+) leak function of PS1, indicating that the observed effects are disease specific. Our observations are consistent with the potential role of disturbed Ca(2+) homeostasis in Alzheimer disease pathogenesis.

  17. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.

    PubMed

    Fang, Jingye; Liu, Ming; Zhang, Xuebao; Sakamoto, Takeshi; Taatjes, Douglas J; Jena, Bhanu P; Sun, Fei; Woods, James; Bryson, Tim; Kowluru, Anjaneyulu; Zhang, Kezhong; Chen, Xuequn

    2015-08-01

    Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.

  18. Endoplasmic Reticulum - Plasma Membrane Crosstalk Mediated by the Extended Synaptotagmins.

    PubMed

    Saheki, Yasunori

    2017-01-01

    The endoplasmic reticulum (ER) possesses multiplicity of functions including protein synthesis, membrane lipid biogenesis, and Ca 2+ storage and has broad localization throughout the cell. While the ER and most other membranous organelles are highly interconnected via vesicular traffic that relies on membrane budding and fusion reactions, the ER forms direct contacts with virtually all other membranous organelles, including the plasma membrane (PM), without membrane fusion. Growing evidence suggests that these contacts play major roles in cellular physiology, including the regulation of Ca 2+ homeostasis and signaling and control of cellular lipid homeostasis. Extended synaptotagmins (E-Syts) are evolutionarily conserved family of ER-anchored proteins that tether the ER to the PM in PM PI(4,5)P 2 -dependent and cytosolic Ca 2+ -regulated manner. In addition, E-Syts possess a cytosolically exposed lipid-harboring module that confers the ability to transfer/exchange glycerolipids between the ER and the PM at E-Syts-mediated ER-PM contacts. In this chapter, the functions of ER-PM contacts and their role in non-vesicular lipid transport with special emphasis on the crosstalk between the two bilayers mediated by E-Syts will be discussed.

  19. Generation of ER{alpha}-floxed and knockout mice using the Cre/LoxP system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonson, P., E-mail: per.antonson@ki.se; Omoto, Y.; Humire, P.

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer ER{alpha} floxed and knockout mice were generated. Black-Right-Pointing-Pointer Disruption of the ER{alpha} gene results in sterility in both male and female mice. Black-Right-Pointing-Pointer ER{alpha}{sup -/-} mice have ovaries with hemorrhagic follicles and hypoplastic uterus. Black-Right-Pointing-Pointer Female ER{alpha}{sup -/-} mice develop obesity. -- Abstract: Estrogen receptor alpha (ER{alpha}) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ER{alpha} mouse line that can be used to knock out ER{alpha} in selected tissues by using the Cre/LoxP system. In this study, we established amore » new ER{alpha} knockout mouse line by crossing the floxed ER{alpha} mice with Cre deleter mice. Here we show that genetic disruption of the ER{alpha} gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ER{alpha} is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.« less

  20. Chemotherapeutic Potential of G1 Cell Cycle Inhibitor Indole-3-Carbinol and Its More Potent N-Alkoxy Derivatives in Human Breast Cancer Xenografts in Mice

    DTIC Science & Technology

    2004-08-01

    Results a. Indole-3-Carbinol treatment selectively downregulates ER- a levels in MCF 7 cells. It has been demonstrated that 13C treatment causes a marked...of ER a• is not a side effect of Gi1 cell cycle arrest in these cells, and that I3C can cause a decrease in ER a levels induced by tamoxifen. c. I3C... a levels and increases functional ER P3 levels as assessed by binding to a consensus ERE in vitro: As a step towards evaluating functional

  1. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells

    PubMed Central

    Caballano-Infantes, Estefania; Terron-Bautista, José; Beltrán-Povea, Amparo; Cahuana, Gladys M; Soria, Bernat; Nabil, Hajji; Bedoya, Francisco J; Tejedo, Juan R

    2017-01-01

    Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies. PMID:28289506

  2. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells.

    PubMed

    Caballano-Infantes, Estefania; Terron-Bautista, José; Beltrán-Povea, Amparo; Cahuana, Gladys M; Soria, Bernat; Nabil, Hajji; Bedoya, Francisco J; Tejedo, Juan R

    2017-02-26

    Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca 2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies.

  3. Up-conversion monodispersed spheres of NaYF4:Yb3+/Er3+: green and red emission tailoring mediated by heating temperature, and greatly enhanced luminescence by Mn2+ doping.

    PubMed

    Zhu, Qi; Song, Caiyun; Li, Xiaodong; Sun, Xudong; Li, Ji-Guang

    2018-04-09

    Submicron sized, monodispersed spheres of Mn2+, Yb3+/Er3+ and Mn2+/Yb3+/Er3+ doped α-NaYF4 were easily autoclaved from mixed solutions of the component nitrates and ammonium fluoride (NH4F), in the presence of EDTA-2Na. Detailed characterizations of the resultant phosphors were obtained using XRD, Raman spectroscopy, FE-SEM, HR-TEM, STEM, PLE/PL spectroscopy, and fluorescence decay analysis. Finer structure and better crystal perfection was observed at a higher calcination temperature, and the spherical shape and excellent dispersion of the original particles was retained at temperatures up to 600 °C. Under the 980 nm infrared excitation, the Yb3+/Er3+-doped sample (calcined at 400 °C) exhibits a stronger green emission centered at ∼524 nm (2H11/2 → 4I15/2 transition of Er3+) and a weaker red emission centered at ∼657 nm (4F9/2 → 4I15/2 transition of Er3+). A 200 °C increase in the temperature from 400 °C to 600 °C resulted in the dominant red emission originating from the 4F9/2 → 4I15/2 transition of Er3+, instead of the previously dominant green one. Mn2+ doping induced a remarkable more enhanced intensity at ∼657 nm and ∼667 nm (red emission area) than that at ∼524 nm and ∼546 nm (green emission area), because of the non-radiative energy transfer between Mn2+ and Er3+. However, a poor thermal stability was induced by Mn2+ doping. The observed upconversion luminescence of the samples calcined at 400 °C and 600 °C followed the two photon process and the four photon process, respectively.

  4. Effect of cryogenic temperature on spectroscopic and laser properties of Er,La:SrF2-CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Nakladov, Andrei N.; Osiko, Vjatcheslav V.

    2016-03-01

    The laser and spectroscopic properties of crystal Er,La:SrF2-CaF2 at temperature range 80 - 300 K, which is appropriate for generation of radiation around 2.7 um is presented. The sample of Er,La:SrF2-CaF2 (concentration Er(0.04), La(0.12):Ca(0.77)Sr(0.07)) had plan-parallel face-polished faces without anti-reflection coatings (thickness 8.2 mm). During spectroscopy and laser experiments the Er,La:SrF2-CaF2 was attached to temperature controlled copper holder and it was placed in vacuum chamber. The transmission and emission spectra of Er,La:SrF2-CaF2 together with the fluorescence decay time were measured in dependence on temperature. The excitation of Er,La:SrF2-CaF2 was carried out by a laser diode radiation (pulse duration 5 ms, repetition rate 20 Hz, pump wavelength 973 nm). Laser resonator was hemispherical, 140 mm in length with at pumping mirror (HR @ 2.7 µm) and spherical output coupler (r = 150 mm, R = 95 % @ 2.5 - 2.8 µm). Tunability of laser at 80 K in range 2690 - 2765 nm was obtained using MgF2 birefringent filter. With decreasing temperature of sample the fluorescence lifetime of manifold 4I11/2 (upper laser level) became shorter and intensity of up-conversion radiation was increasing. The highest slope efficiency with respect to absorbed power was 2.3 % at 80 K. The maximum output of peak amplitude power was 0.3 W at 80 K, i.e. 1.5 times higher than measured this value at 300 K. The wavelength generated by Er,La:SrF2-CaF2 laser (2.7 µm) is relatively close to absorption peak of water (3 µm) and so, one of the possible usage should be in medicine and spectroscopy.

  5. Identification of ER Proteins Involved in the Functional Organisation of the Early Secretory Pathway in Drosophila Cells by a Targeted RNAi Screen

    PubMed Central

    Kondylis, Vangelis; Tang, Yang; Fuchs, Florian; Boutros, Michael; Rabouille, Catherine

    2011-01-01

    Background In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation. Results To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for “more and smaller Golgi”) upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER. Conclusions This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation. PMID:21383842

  6. Identification of ER proteins involved in the functional organisation of the early secretory pathway in Drosophila cells by a targeted RNAi screen.

    PubMed

    Kondylis, Vangelis; Tang, Yang; Fuchs, Florian; Boutros, Michael; Rabouille, Catherine

    2011-02-23

    In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation. To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for "more and smaller Golgi") upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER. This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation.

  7. Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function.

    PubMed Central

    Poon, P P; Cassel, D; Spang, A; Rotman, M; Pick, E; Singer, R A; Johnston, G C

    1999-01-01

    ARF proteins, which mediate vesicular transport, have little or no intrinsic GTPase activity. They rely on the actions of GTPase-activating proteins (GAPs) for their function. The in vitro GTPase activity of the Saccharomyces cerevisiae ARF proteins Arf1 and Arf2 is stimulated by the yeast Gcs1 protein, and in vivo genetic interactions between arf and gcs1 mutations implicate Gcs1 in vesicular transport. However, the Gcs1 protein is dispensable, indicating that additional ARF GAP proteins exist. We show that the structurally related protein Glo3, which is also dispensable, also exhibits ARF GAP activity. Genetic and in vitro approaches reveal that Glo3 and Gcs1 have an overlapping essential function at the endoplasmic reticulum (ER)-Golgi stage of vesicular transport. Mutant cells deficient for both ARF GAPs cannot proliferate, undergo a dramatic accumulation of ER and are defective for protein transport between ER and Golgi. The glo3Delta and gcs1Delta single mutations each interact with a sec21 mutation that affects a component of COPI, which mediates vesicular transport within the ER-Golgi shuttle, while increased dosage of the BET1, BOS1 and SEC22 genes encoding members of a v-SNARE family that functions within the ER-Golgi alleviates the effects of a glo3Delta mutation. An in vitro assay indicates that efficient retrieval from the Golgi to the ER requires these two proteins. These findings suggest that Glo3 and Gcs1 ARF GAPs mediate retrograde vesicular transport from the Golgi to the ER. PMID:9927415

  8. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress.

    PubMed

    Kim, Jinhwan; Choi, Tae Gyu; Ding, Yan; Kim, Yeonghwan; Ha, Kwon Soo; Lee, Kyung Ho; Kang, Insug; Ha, Joohun; Kaufman, Randal J; Lee, Jinhwa; Choe, Wonchae; Kim, Sung Soo

    2008-11-01

    Prolonged accumulation of misfolded proteins in the endoplasmic reticulum (ER) results in ER stress-mediated apoptosis. Cyclophilins are protein chaperones that accelerate the rate of protein folding through their peptidyl-prolyl cis-trans isomerase (PPIase) activity. In this study, we demonstrated that ER stress activates the expression of the ER-localized cyclophilin B (CypB) gene through a novel ER stress response element. Overexpression of wild-type CypB attenuated ER stress-induced cell death, whereas overexpression of an isomerase activity-defective mutant, CypB/R62A, not only increased Ca(2+) leakage from the ER and ROS generation, but also decreased mitochondrial membrane potential, resulting in cell death following exposure to ER stress-inducing agents. siRNA-mediated inhibition of CypB expression rendered cells more vulnerable to ER stress. Finally, CypB interacted with the ER stress-related chaperones, Bip and Grp94. Taken together, we concluded that CypB performs a crucial function in protecting cells against ER stress via its PPIase activity.

  9. Modulation of Endoplasmic Reticulum Stress Controls CD4+ T-cell Activation and Antitumor Function.

    PubMed

    Thaxton, Jessica E; Wallace, Caroline; Riesenberg, Brian; Zhang, Yongliang; Paulos, Chrystal M; Beeson, Craig C; Liu, Bei; Li, Zihai

    2017-08-01

    The endoplasmic reticulum (ER) is an energy-sensing organelle with intimate ties to programming cell activation and metabolic fate. T-cell receptor (TCR) activation represents a form of acute cell stress and induces mobilization of ER Ca 2+ stores. The role of the ER in programming T-cell activation and metabolic fate remains largely undefined. Gp96 is an ER protein with functions as a molecular chaperone and Ca 2+ buffering protein. We hypothesized that the ER stress response may be important for CD4 + T-cell activation and that gp96 may be integral to this process. To test our hypothesis, we utilized genetic deletion of the gp96 gene Hsp90b1 in a CD4 + T cell-specific manner. We show that gp96-deficient CD4 + T cells cannot undergo activation-induced glycolysis due to defective Ca 2+ mobilization upon TCR engagement. We found that activating naïve CD4 + T cells while inhibiting ER Ca 2+ exchange, through pharmacological blockade of the ER Ca 2+ channel inositol trisphosphate receptor (IP 3 R), led to a reduction in cytosolic Ca 2+ content and generated a pool of CD62L high /CD44 low CD4 + T cells compared with wild-type (WT) matched controls. In vivo IP 3 R-inhibited CD4 + T cells exhibited elevated tumor control above WT T cells. Together, these data show that ER-modulated cytosolic Ca 2+ plays a role in defining CD4 + T-cell phenotype and function. Factors associated with the ER stress response are suitable targets for T cell-based immunotherapies. Cancer Immunol Res; 5(8); 666-75. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players.

    PubMed

    Bahar, Entaz; Kim, Hyongsuk; Yoon, Hyonok

    2016-09-15

    The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis.

  11. MicroRNAs meet calcium: joint venture in ER proteostasis.

    PubMed

    Finger, Fabian; Hoppe, Thorsten

    2014-11-04

    The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. Copyright © 2014, American Association for the Advancement of Science.

  12. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    PubMed

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  13. [Preparation and photoluminescence study of Er3+ : Y2O3 transparent ceramics].

    PubMed

    Luo, Jun-ming; Li, Yong-xiu; Deng, Li-ping

    2008-10-01

    Y2O3 acted as the matrix material, which was doped with different concentrations of Er3+, Er3+ : Y2O3 nanocrystalline powder was prepared by co-precipitation method, and Er3+ : Y2O3 transparent ceramics was fabricated by vacuum sintering at 1700 degrees C, 1 x 10(-3) Pa for 8 h. By using the X-ray diffraction (D/MAX-RB), transmission electron microscopy(Philips EM420), automatic logging spectrophotometer(DMR-22), fluorescence analyzer (F-4500) and 980 nm diode laser, the structural, morphological and luminescence properties of the sample were investigated. The results show that Er3+ dissolved completely in the Y2O3 cubic phase, the precursor was amorphous, weak diffraction peaks appeared after calcination at 400 degrees C, and if calcined at 700 degrees C, the precursor turned to pure cubic phase. With increasing the calcining temperature, the diffraction peaks became sharp quickly, and when the calcining temperature reached 1100 degrees C, the diffraction peaks became very sharp, indicating that the grains were very large. The particles of Er+ : Y2O3 is homogeneous and nearly spherical, the average diameter of the particles is in the range of 40-60 nm after being calcined at 1000 degrees C for 2 h. The relative density of Er3+ : Y2O3 transparent ceramics is 99.8%, the transmittance of the Er2+ : Y2O3 transparent ceramics is markedly lower than the single crystal at the short wavelength, but the transmittance is improved noticeably with increasing the wavelength, and the transmittance exceeds 60% at the wavelength of 1200 nm. Excited under the 980 nm diode laser, there are two main up-conversion emission bands, green emission centers at 562 nm and red emission centers at 660 nm, which correspond to (4)S(3/2) / (2)H(11/2) - (4)I(15/2) and (4)F(9/2) - (4)I(15/2) radiative transitions respectively. By changing the doping concentrations of Er3+, the color of up-conversion luminescence can be tuned from green to red gradually. The luminescence intensity is not reinforce with the increase in the concentration, so the doping concentration of Er3+ should not exceed 2%. If the doping concentration of Er3+ exceeds the range, the concentration has very small effect on the improvement of luminescence intensity.

  14. Enhancement of luminescence properties in Er3+ doped TeO2-Na2O-PbX (X=O and F) ternary glasses.

    PubMed

    Kumar, Kaushal; Rai, S B; Rai, D K

    2007-04-01

    An enhancement of luminescence properties in Er3+ doped ternary glasses is observed on the addition of PbO/PbF2. The infrared to visible upconversion emission bands are observed at 410, 525, 550 and 658 nm, due to the 2H9/2-->4I15/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 transitions respectively, on excitation with 797 nm laser line. A detailed study reveals that the 2H9/2-->4I15/2 transition arises due to three step upconversion process while other transitions arise due to two step absorption. On excitation with 532 nm radiation, ultraviolet and violet upconversion bands centered at 380, 404, 410 and 475 nm wavelengths are observed along with one photon luminescence bands at 525, 550, 658 and 843 nm wavelengths. These bands are found due to the 4G11/2-->4I15/2, 2P3/2-->4I13/2, 2H9/2-->4I15/2, 2P3/2-->4I11/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 and 4S3/2-->4I13/2 transitions, respectively. Though incorporation of PbO and PbF2 both enhances fluorescence intensities however, PbF2 content has an important influence on upconversion luminescence emission. The incorporation of PbF2 enhances the red emission (658 nm) intensity by 1.5 times and the violet emission (410 nm) intensity by 2.0 times. A concentration dependence study of fluorescence reveals the rapid increase in the red (4F9/2-->4I15/2) emission intensity relative to the green (4S3/2-->4I15/2) emission with increase in the Er3+ ion concentration. This behaviour has been explained in terms of an energy transfer by relaxation between excited ions.

  15. Role of ERRF, a Novel ER-Related Nuclear Factor, in the Growth Control of ER-Positive Human Breast Cancer Cells

    PubMed Central

    Su, Dan; Fu, Xiaoying; Fan, Songqing; Wu, Xiao; Wang, Xin-Xin; Fu, Liya; Dong, Xue-Yuan; Ni, Jianping Jenny; Fu, Li; Zhu, Zhengmao; Dong, Jin-Tang

    2012-01-01

    Whereas estrogen–estrogen receptor α (ER) signaling plays an important role in breast cancer growth, it is also necessary for the differentiation of normal breast epithelial cells. How this functional conversion occurs, however, remains unknown. Based on a genome-wide sequencing study that identified mutations in several breast cancer genes, we examined some of the genes for mutations, expression levels, and functional effects on cell proliferation and tumorigenesis. We present the data for C1orf64 or ER-related factor (ERRF) from 31 cell lines and 367 primary breast cancer tumors. Whereas mutation of ERRF was infrequent (1 of 79 or 1.3%), its expression was up-regulated in breast cancer, and the up-regulation was more common in lower-stage tumors. In addition, increased ERRF expression was significantly associated with ER and/or progesterone receptor (PR) positivity, which was still valid in human epidermal growth factor receptor 2 (HER2)–negative tumors. In ER-positive tumors, ERRF expression was inversely correlated with HER2 status. Furthermore, higher ERRF protein expression was significantly associated with better disease-free survival and overall survival, particularly in ER- and/or PR-positive and HER2-negative tumors (luminal A subtype). Functionally, knockdown of ERRF in two ER-positive breast cancer cell lines, T-47D and MDA-MB-361, suppressed cell growth in vitro and tumorigenesis in xenograft models. These results suggest that ERRF plays a role in estrogen-ER–mediated growth of breast cancer cells and could, thus, be a potential therapeutic target. PMID:22341523

  16. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dan, E-mail: danw@bjmu.edu.cn; Liu, Jing; Wu, Baiyan

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway,more » we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.« less

  17. Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology.

    PubMed

    Guzel, Elif; Arlier, Sefa; Guzeloglu-Kayisli, Ozlem; Tabak, Mehmet Selcuk; Ekiz, Tugba; Semerci, Nihan; Larsen, Kellie; Schatz, Frederick; Lockwood, Charles Joseph; Kayisli, Umit Ali

    2017-04-08

    The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition. Conversely, the contribution of impaired ER homeostasis by severe/prolong ER stress-mediated UPR signaling pathways to several reproductive tissue pathologies including endometriosis, cancers, recurrent pregnancy loss and pregnancy complications associated with pre-term birth have been reported. This review focuses on ER stress and UPR signaling mechanisms, and their potential roles in female and male reproductive physiopathology involving in menstrual cycle changes, gametogenesis, preimplantation embryo development, implantation and placentation, labor, endometriosis, pregnancy complications and preterm birth as well as reproductive system tumorigenesis.

  18. Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology

    PubMed Central

    Guzel, Elif; Arlier, Sefa; Guzeloglu-Kayisli, Ozlem; Tabak, Mehmet Selcuk; Ekiz, Tugba; Semerci, Nihan; Larsen, Kellie; Schatz, Frederick; Lockwood, Charles Joseph; Kayisli, Umit Ali

    2017-01-01

    The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition. Conversely, the contribution of impaired ER homeostasis by severe/prolong ER stress-mediated UPR signaling pathways to several reproductive tissue pathologies including endometriosis, cancers, recurrent pregnancy loss and pregnancy complications associated with pre-term birth have been reported. This review focuses on ER stress and UPR signaling mechanisms, and their potential roles in female and male reproductive physiopathology involving in menstrual cycle changes, gametogenesis, preimplantation embryo development, implantation and placentation, labor, endometriosis, pregnancy complications and preterm birth as well as reproductive system tumorigenesis. PMID:28397763

  19. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    PubMed Central

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  20. Structural and light up-conversion luminescence properties of Er3+-Yb3+-W6+ substituted Bi4Ti3O12

    NASA Astrophysics Data System (ADS)

    Bokolia, Renuka; Rai, Vineet K.; Chauhan, Lalita; Sreenivas, K.

    2016-05-01

    The structural and light up-conversion (UC) luminescence properties of W6+ substituted Bi3.79Er0.03Yb0.18Ti3-xWxO12 (0 ≤ x ≤ 0.10) ceramics prepared by solid state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of single phase material with orthorhombic structure. A decrease in the lattice parameters and unit cell volume is observed with increasing W content. Strong UC luminescence at 527, 548 and 662 nm is seen under an excitation of 980 nm for an optimum W content (x = 0.06) and is attributed to the transitions 2H11/2 →4I15/2, 4S3/2 →4I15/2 and 4F9/2 →4I15/2 respectively. The improved UC luminescence is ascribed to the reduced defects such as oxygen vacancies and change in the crystal field around Er3+ ions due to B-site (Ti4+) substitution with W6+ ions. Enhanced UC emission is observed for an optimum content of w6+ in the prepared composition Bi3.79Er0.03Yb0.18Ti3-xWxO12 for x = 0.06.

  1. Luminescent LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres for encapsulation of biomolecules

    NASA Astrophysics Data System (ADS)

    Li, Dan; Liu, Chunlei; Jiang, Lianzhou

    2015-10-01

    In this study, LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres, synthesized via self-sacrificing templated route, are developed for enzyme immobilization and protein adsorption. The four LuVO4 hollow spheres with diameter of 180 nm, 280 nm, 370 nm and 480 nm were obtained. The size of LuVO4 hollow sphere is dependent on Lu(OH)CO3 template. Upon excitation by UV light, hollow LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) spheres exhibit red (Eu3+), orange (Sm3+), yellow-green (Dy3+), and green (Er3+) emissions. The good biocompatibility of sample is validated by MTT assay. Due to structure feature and size of obtained sample, the rapid encapsulation of biomolecules within samples has been achieved. Furthermore, the hollow spheres show different biomolecules adsorption capacities at different buffer solution pH values. The release behaviors of two kinds of biomolecules (lysozyme and bovine serum albumin) are also investigated. LuVO4 hollow spheres are suitable carriers for biomolecules. The emission intensity of Eu3+ in the LuVO4:Eu3+ varies with the released amount of LYZ. This enables the monitoring of release process by the change in the luminescence intensity.

  2. Isotopic effects in sub-barrier fusion of Si + Si systems

    NASA Astrophysics Data System (ADS)

    Colucci, G.; Montagnoli, G.; Stefanini, A. M.; Esbensen, H.; Bourgin, D.; Čolović, P.; Corradi, L.; Faggian, M.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Scarlassara, F.; Stefanini, C.; Strano, E.; Szilner, S.; Urbani, M.; Zhang, G. L.

    2018-04-01

    Background: Recent measurements of fusion cross sections for the 28Si+28Si system revealed a rather unsystematic behavior; i.e., they drop faster near the barrier than at lower energies. This was tentatively attributed to the large oblate deformation of 28Si because coupled-channels (CC) calculations largely underestimate the 28Si+28Si cross sections at low energies, unless a weak imaginary potential is applied, probably simulating the deformation. 30Si has no permanent deformation and its low-energy excitations are of a vibrational nature. Previous measurements of this system reached only 4 mb, which is not sufficient to obtain information on effects that should show up at lower energies. Purpose: The aim of the present experiment was twofold: (i) to clarify the underlying fusion dynamics by measuring the symmetric case 30Si+30Si in an energy range from around the Coulomb barrier to deep sub-barrier energies, and (ii) to compare the results with the behavior of 28Si+28Si involving two deformed nuclei. Methods: 30Si beams from the XTU tandem accelerator of the Laboratori Nazionali di Legnaro of the Istituto Nazionale di Fisica Nucleare were used, bombarding thin metallic 30Si targets (50 μ g /cm2) enriched to 99.64 % in mass 30. An electrostatic beam deflector allowed the detection of fusion evaporation residues (ERs) at very forward angles, and angular distributions of ERs were measured. Results: The excitation function of 30Si+30Si was measured down to the level of a few microbarns. It has a regular shape, at variance with the unusual trend of 28Si+28Si . The extracted logarithmic derivative does not reach the LCS limit at low energies, so that no maximum of the S factor shows up. CC calculations were performed including the low-lying 2+ and 3- excitations. Conclusions: Using a Woods-Saxon potential the experimental cross sections at low energies are overpredicted, and this is a clear sign of hindrance, while the calculations performed with a M3Y + repulsion potential nicely fit the data at low energies, without the need of an imaginary potential. The comparison with the results for 28Si+28Si strengthens the explanation of the oblate shape of 28Si being the reason for the irregular behavior of that system.

  3. Singlet-to-triplet intermediates and triplet exciton dynamics in pentacene thinfilms

    NASA Astrophysics Data System (ADS)

    Thorsmolle, Verner; Korber, Michael; Obergfell, Emanuel; Kuhlman, Thomas; Campbell, Ian; Crone, Brian; Taylor, Antoinette; Averitt, Richard; Demsar, Jure

    Singlet-to-triplet fission in organic semiconductors is a spin-conserving multiexciton process in which one spin-zero singlet excitation is converted into two spin-one triplet excitations on an ultrafast timescale. Current scientific interest into this carrier multiplication process is largely driven by prospects of enhancing the efficiency in photovoltaic applications by generating two long-lived triplet excitons by one photon. The fission process is known to involve intermediate states, known as correlated triplet pairs, with an overall singlet character, before being interchanged into uncorrelated triplets. Here we use broadband femtosecond real-time spectroscopy to study the excited state dynamics in pentacene thin films, elucidating the fission process and the role of intermediate triplet states. VKT and AJT acknowledge support by the LDRD program at Los Alamos National Laboratory and the Department of Energy, Grant No. DE-FG02-04ER118. MK, MO and JD acknowledge support by the Alexander von Humboldt Foundation.

  4. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect

    PubMed Central

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-01-01

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb3+/Er3+ microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser. PMID:26926491

  5. Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses

    PubMed Central

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-01-01

    Er3+- doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+: 4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+- doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials. PMID:24852112

  6. Spectroscopic and laser properties of Er{sup 3+} doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, S.; Seshadri, M.; Reddy Prasad, V.

    2015-10-15

    Highlights: • Erbium doped different fluoro-phosphate glasses are prepared and characterized. • Spectroscopic properties have been determined using Judd–Ofelt and Mc-Cumber theory. • Prominent laser transition Er{sup 3+}:{sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} is observed at 1.53 μm. - Abstract: Different fluoro-phosphate glasses doped with 0.5 mol% Er{sup 3+} doped are prepared by melt quenching method. Both structural and spectroscopic properties have been characterized in order to evaluate their potential as both laser source and amplifier materials. Optical absorption measurements are carried out and analyzed through Judd–Ofelt and Mc-Cumber theories where spectroscopic parameters such as intensity parameters Ω{sub l}more » (λ = 2,4,6), transition probabilities, radiative lifetimes, stimulated absorption cross-sections and emission cross-sections at 1.5 μm have been evaluated for Er{sup 3+} doped different fluorophosphate glasses. The various luminescence and gain properties are explained from photoluminescence studies. The decay curve analysis have been done for obtaining the decay time constants of Er{sup 3+} excited level {sup 4}I{sub 13/2} in all the fluoro-phosphate glasses. The obtained results of each glass matrix are compared with the equivalent parameters for several other host glasses. These fluoro-phosphate glasses are found to be suitable candidates for laser and amplifier applications.« less

  7. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  8. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology.

    PubMed

    Manford, Andrew G; Stefan, Christopher J; Yuan, Helen L; Macgurn, Jason A; Emr, Scott D

    2012-12-11

    Endoplasmic reticulum-plasma membrane (ER-PM) junctions are conserved structures defined as regions of the ER that tightly associate with the plasma membrane. However, little is known about the mechanisms that tether these organelles together and why such connections are maintained. Using a quantitative proteomic approach, we identified three families of ER-PM tethering proteins in yeast: Ist2 (related to mammalian TMEM16 ion channels), the tricalbins (Tcb1/2/3, orthologs of the extended synaptotagmins), and Scs2 and Scs22 (vesicle-associated membrane protein-associated proteins). Loss of all six tethering proteins results in the separation of the ER from the PM and the accumulation of cytoplasmic ER. Importantly, we find that phosphoinositide signaling is misregulated at the PM, and the unfolded protein response is constitutively activated in the ER in cells lacking ER-PM tether proteins. These results reveal critical roles for ER-PM contacts in cell signaling, organelle morphology, and ER function. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Genomic organization of the human mi-er1 gene and characterization of alternatively spliced isoforms: regulated use of a facultative intron determines subcellular localization.

    PubMed

    Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L

    2002-07-24

    mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.

  10. Expression pattern and signalling pathways in neutrophil like HL-60 cells after treatment with estrogen receptor selective ligands.

    PubMed

    Blesson, Chellakkan Selvanesan; Sahlin, Lena

    2012-09-25

    Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function.

    PubMed

    Ryan, Scott D; Ferrier, Andrew; Sato, Tadasu; O'Meara, Ryan W; De Repentigny, Yves; Jiang, Susan X; Hou, Sheng T; Kothary, Rashmi

    2012-02-01

    Dystonin/Bpag1 is a cytoskeletal linker protein whose loss of function in dystonia musculorum (dt) mice results in hereditary sensory neuropathy. Although loss of expression of neuronal dystonin isoforms (dystonin-a1/dystonin-a2) is sufficient to cause dt pathogenesis, the diverging function of each isoform and what pathological mechanisms are activated upon their loss remains unclear. Here we show that dt(27) mice manifest ultrastructural defects at the endoplasmic reticulum (ER) in sensory neurons corresponding to in vivo induction of ER stress proteins. ER stress subsequently leads to sensory neurodegeneration through induction of a proapoptotic caspase cascade. dt sensory neurons display neurodegenerative pathologies, including Ca(2+) dyshomeostasis, unfolded protein response (UPR) induction, caspase activation, and apoptosis. Isoform-specific loss-of-function analysis attributes these neurodegenerative pathologies to specific loss of dystonin-a2. Inhibition of either UPR or caspase signaling promotes the viability of cells deficient in dystonin. This study provides insight into the mechanism of dt neuropathology and proposes a role for dystonin-a2 as a mediator of normal ER structure and function.

  12. Nuclear pore complex integrity requires Lnp1, a regulator of cortical endoplasmic reticulum

    PubMed Central

    Casey, Amanda K.; Chen, Shuliang; Novick, Peter; Ferro-Novick, Susan; Wente, Susan R.

    2015-01-01

    The nuclear envelope (NE) and endoplasmic reticulum (ER) are components of the same contiguous membrane system and yet have distinct cellular functions. Mounting evidence suggests roles for some ER proteins in the NE for proper nuclear pore complex (NPC) structure and function. In this study, we identify a NE role in Saccharomyces cerevisiae for Lnp1 and Sey1, proteins required for proper cortical ER formation. Both lnp1Δ and sey1Δ mutants exhibit synthetic genetic interactions with mutants in genes encoding key NPC structural components. Both Lnp1 and Sey1 physically associate with other ER components that have established NPC roles, including Rtn1, Yop1, Pom33, and Per33. Of interest, lnp1Δ rtn1Δ mutants but not rtn1Δ sey1Δ mutants exhibit defects in NPC distribution. Furthermore, the essential NPC assembly factor Ndc1 has altered interactions in the absence of Sey1. Lnp1 dimerizes in vitro via its C-terminal zinc finger motif, a property that is required for proper ER structure but not NPC integrity. These findings suggest that Lnp1's role in NPC integrity is separable from functions in the ER and is linked to Ndc1 and Rtn1 interactions. PMID:26041935

  13. Reduction of Endoplasmic Reticulum Stress Improves Angiogenic Progenitor Cell function in a Mouse Model of Type 1 Diabetes.

    PubMed

    Bhatta, Maulasri; Chatpar, Krishna; Hu, Zihua; Wang, Joshua J; Zhang, Sarah X

    2018-04-27

    Persistent vascular injury and degeneration in diabetes are attributed in part to defective reparatory function of angiogenic cells. Our recent work implicates endoplasmic reticulum (ER) stress in high-glucose-induced bone marrow (BM) progenitor dysfunction. Herein, we investigated the in vivo role of ER stress in angiogenic abnormalities of streptozotocin-induced diabetic mice. Our data demonstrate that ER stress markers and inflammatory gene expression in BM mononuclear cells and hematopoietic progenitor cells increase dynamically with disease progression. Increased CHOP and cleaved caspase- 3 levels were observed in BM--derived early outgrowth cells (EOCs) after 3 months of diabetes. Inhibition of ER stress by ex vivo or in vivo chemical chaperone treatment significantly improved the generation and migration of diabetic EOCs while reducing apoptosis of these cells. Chemical chaperone treatment also increased the number of circulating angiogenic cells in peripheral blood, alleviated BM pathology, and enhanced retinal vascular repair following ischemia/reperfusion in diabetic mice. Mechanistically, knockdown of CHOP alleviated high-glucose-induced EOC dysfunction and mitigated apoptosis, suggesting a pivotal role of CHOP in mediating ER stress-associated angiogenic cell injury in diabetes. Together, our study suggests that targeting ER signaling may provide a promising and novel approach to enhancing angiogenic function in diabetes.

  14. Efficient GW calculations using eigenvalue-eigenvector decomposition of the dielectric matrix

    NASA Astrophysics Data System (ADS)

    Nguyen, Huy-Viet; Pham, T. Anh; Rocca, Dario; Galli, Giulia

    2011-03-01

    During the past 25 years, the GW method has been successfully used to compute electronic quasi-particle excitation spectra of a variety of materials. It is however a computationally intensive technique, as it involves summations over occupied and empty electronic states, to evaluate both the Green function (G) and the dielectric matrix (DM) entering the expression of the screened Coulomb interaction (W). Recent developments have shown that eigenpotentials of DMs can be efficiently calculated without any explicit evaluation of empty states. In this work, we will present a computationally efficient approach to the calculations of GW spectra by combining a representation of DMs in terms of its eigenpotentials and a recently developed iterative algorithm. As a demonstration of the efficiency of the method, we will present calculations of the vertical ionization potentials of several systems. Work was funnded by SciDAC-e DE-FC02-06ER25777.

  15. ZnMoO4:Er3+,Yb3+ phosphor with controlled morphology and enhanced upconversion through alkali ions doping

    NASA Astrophysics Data System (ADS)

    Luitel, Hom Nath; Chand, Rumi; Watari, Takanori

    2018-04-01

    A facile hydrothermal method was used to synthesize ZnMoO4:Er3+,Yb3+ nanoparticles. The shapes and sizes of the nanoparticles were well tuned by simply monitoring the pH of the starting solution. Microballs consisting of agglomerated nanograins were observed at strong acidic condition. At mild pH, plates and rectangular particles were realized, while strong basic pH stabilized rods. Further increasing pH to extremely basic conditions (pH > 13), rods changed to fragile hairy structures. The nucleation and growth mechanism of nanograins to form different morphology nanoparticles were studied and illustrated. XRD patterns confirmed well crystalline, triclinic structure despite small amount of aliovalent metal ions doping. Under 980 nm excitation, the ZnMoO4:Er3+,Yb3+ nanophosphor exhibited strong green (centered at 530 and 560 nm) and weak red (centered at 660 nm) upconversion (UC) emissions. Substitution of part of the Zn2+ ions by monovalent alkali ions intensified the UC emission intensities drastically. The order of intensification was K+>Na+>Li+>Rb+>no alkali ion. When Zn2+ ions were substituted with 10 at% K+ ions, the green and red UC emissions intensities increased by more than 50 and 15 folds, respectively. Time dependent measurements confirmed efficient Yb to Er energy transfer in the ZnMoO4:Er3+,Yb3+,K+ nanophosphor. The optimized ZnMoO4:Er3+,Yb3+,K+ phosphor exhibited intense UC emissions with 0.31% quantum yield. The upconverted light is visible to naked eye while pumping by laser of less than 1 mW power and opens door for variety of novel applications.

  16. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    PubMed

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  17. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease.

    PubMed

    Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R

    2016-09-01

    Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.

  18. Rab7a modulates ER stress and ER morphology.

    PubMed

    Mateus, Duarte; Marini, Elettra Sara; Progida, Cinzia; Bakke, Oddmund

    2018-05-01

    The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called "ER matrices" together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22 N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. On the accuracy of ERS-1 orbit predictions

    NASA Technical Reports Server (NTRS)

    Koenig, Rolf; Li, H.; Massmann, Franz-Heinrich; Raimondo, J. C.; Rajasenan, C.; Reigber, C.

    1993-01-01

    Since the launch of ERS-1, the D-PAF (German Processing and Archiving Facility) provides regularly orbit predictions for the worldwide SLR (Satellite Laser Ranging) tracking network. The weekly distributed orbital elements are so called tuned IRV's and tuned SAO-elements. The tuning procedure, designed to improve the accuracy of the recovery of the orbit at the stations, is discussed based on numerical results. This shows that tuning of elements is essential for ERS-1 with the currently applied tracking procedures. The orbital elements are updated by daily distributed time bias functions. The generation of the time bias function is explained. Problems and numerical results are presented. The time bias function increases the prediction accuracy considerably. Finally, the quality assessment of ERS-1 orbit predictions is described. The accuracy is compiled for about 250 days since launch. The average accuracy lies in the range of 50-100 ms and has considerably improved.

  20. An overview on incomplete fusion reaction dynamics at energy range ∼ 3-8 MeV/A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Rahbar, E-mail: rahbarali1@rediffmail.com; Singh, D.; Ansari, M. Afzal

    2014-08-14

    The information of ICF reaction has been obtained from the measurement of excitation function (EF) of ERs populated in the interaction of {sup 20}Ne and {sup 16}O on {sup 55}Mn, {sup 159}Tb and {sup 156}Gd targets. Sizable enhancement in the measured cross-sections has been observed in α-emitting channels over theoretical predictions, which has been attributed to ICF of the projectile. In order to confirm the findings of the measurements and analysis of EFs, the forward recoil range distributions of ERs populated in {sup 20}Ne+{sup 159}Tb (E ∼165MeV) and {sup 16}O+{sup 156}Gd (E ∼ 72, 82 and 93MeV) systems, have beenmore » measured. It has been observed that peaks appearing at different cumulative thicknesses in the stopping medium are related with different degree of linear momentum transfer from projectile to target nucleus by adopting the break-up fusion model consideration. In order to deduce the angular momentum involved in various CF and / or ICF reaction products, spin distribution and side-feeding intensity profiles of radio-nuclides populated via CF and ICF channels in {sup 16}O+{sup 160}Gd system at energy, E ∼ 5.6 MeV/A, have been studied. Spin distribution of ICF products are found to be distinctly different than that observed from CF products.« less

  1. Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies - potential role of ER stress pathways.

    PubMed

    Lightfoot, Adam P; Nagaraju, Kanneboyina; McArdle, Anne; Cooper, Robert G

    2015-11-01

    Discussion of endoplasmic reticulum (ER) stress pathway activation in idiopathic inflammatory myopathies (IIM), and downstream mechanisms causative of muscle weakness. In IIM, ER stress is an important pathogenic process, but how it causes muscle dysfunction is unknown. We discuss relevant pathways modified in response to ER stress in IIM: reactive oxygen species (ROS) generation and mitochondrial dysfunction, and muscle cytokine (myokine) generation. First, ER stress pathway activation can induce changes in mitochondrial bioenergetics and ROS production. ROS can oxidize cellular components, causing muscle contractile dysfunction and energy deficits. Novel compounds targeting ROS generation and/or mitochondrial dysfunction can improve muscle function in several myopathologies. Second, recent research has demonstrated that skeletal muscle produces multiple myokines. It is suggested that these play a role in causing muscle weakness. Myokines are capable of immune cell recruitment, thus contributing to perturbed muscle function. A characterization of myokines in IIM would clarify their pathogenic role, and so identify new therapeutic targets. ER stress pathway activation is clearly of etiological relevance in IIM. Research to better understand mechanisms of weakness downstream of ER stress is now required, and which may discover new therapeutic targets for nonimmune cell-mediated weakness.

  2. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    PubMed Central

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  4. New limits for the 2 νββ decay of 96Zr to excited nuclear states of 96Mo

    NASA Astrophysics Data System (ADS)

    Finch, Sean; Tornow, Werner

    2015-10-01

    The final results from our search for the 2 νββ decay of 96Zr to excited 0+ and 2+ states of 96Mo are presented. Such measurements provide valuable test cases for 2 νββ -decay nuclear matrix element calculations, which in turn are used to tune 0 νββ -decay nuclear matrix element calculations. After undergoing double- β decay to an excited state, the excited daughter nucleus decays to the ground state, emitting two coincident γ rays. These two γ rays are detected in coincidence by two HPGe detectors sandwiching the 96Zr sample, with a NaI veto in anti-coincidence. This experimental apparatus, located at the Kimballton Underground Research Facility (KURF), has previously measured the 2 νββ decay of 100Mo and 150Nd to excited nuclear states. Experimental limits on the T1 / 2 and corresponding nuclear matrix element are presented for each of these decays. As a byproduct of this experiment, limits were also set on the single- β decay of 96Zr. Supported by DOE Grant: DE-FG02-97ER41033.

  5. Differentials in Turnout Among Professional Classical Ballet Dancers.

    PubMed

    Washington, Isobel; Mayes, Susan; Ganderton, Charlotte; Pizzari, Tania

    2016-09-01

    Screening and training of professional dancers is commonly based around beliefs that a large range of turnout is more advantageous in the ballet industry. This belief leads dancers who have limited hip external rotation to compensate by forcing turnout at the knee and ankle, which has been linked to injury. To examine if there is a difference in degree of turnout between three levels of dancers (corps, soloist, principal) in a professional classical ballet company. An additional aim was to establish average values for the range of turnout and hip rotation present in the dancers. Forty-five professional dancers from The Australian Ballet (25 female, 20 male) participated in the study. Active and passive hip external rotation (hip ER) was measured in supine using inclinometers, and functional turnout in ballet first position (lower limb external rotation, LLER) was measured using foot traces utilising bony landmarks. Below-hip external rotation (BHER) was also calculated. No relationship was found among level of dancer and passive hip ER, active hip ER, LLER, and BHER. Professional dancers had on average 50.2° of passive hip ER range, 35.2° of active hip ER, and 133.6° of functional turnout position. In addition, no correlation was found between LLER and hip ER, but significant correlations were found between LLER and BHER. Hip rotation range of motion is similar across all levels of professional dancers. Average values for passive and active hip ER and functional turnout were established.

  6. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Wen Min; Doucet, Michele; Huang, David

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found thatmore » CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator of ER in breast cancer cells and that its increased expression in tumors may result in estrogen-independent ER activation, thereby reducing estrogen dependence and response to anti-estrogen therapy.« less

  7. Core-shell-shell heterostructures of α-NaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) with remarkably enhanced upconversion luminescence.

    PubMed

    Su, Yue; Liu, Xiuling; Lei, Pengpeng; Xu, Xia; Dong, Lile; Guo, Xianmin; Yan, Xingxu; Wang, Peng; Song, Shuyan; Feng, Jing; Zhang, Hongjie

    2016-07-05

    Core-shell-shell heterostructures of α-NaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) have been successfully fabricated via the thermal decomposition method. Upconversion nanoparticles (UCNPs) were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), upconversion luminescence (UCL) spectroscopy, etc. Under 980 nm excitation, the emission intensities of the UCNPs are remarkably enhanced after coating the MF2 (M = Ca, Sr, and Ba) shell. Among these samples, CaF2 coated UCNPs show the strongest overall emission, while BaF2 coated UCNPs exhibit the longest lifetime. These results demonstrate that alkaline earth metal fluorides are ideal materials to improve the UCL properties. Meanwhile, although the lattice mismatch between the ternary NaREF4 core and the binary MF2 (M = Sr and Ba) shell is relatively large, the successfully synthesized NaLuF4:Yb/Er@NaLuF4:Yb@MF2 indicates a new outlook on the fabrication of heterostructural core-shell UCNPs.

  8. Rare earth niobate coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less

  9. Rare earth niobate coordination polymers

    DOE PAGES

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; ...

    2018-01-03

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less

  10. The SANT domain of human MI-ER1 interacts with Sp1 to interfere with GC box recognition and repress transcription from its own promoter.

    PubMed

    Ding, Zhihu; Gillespie, Laura L; Mercer, F Corinne; Paterno, Gary D

    2004-07-02

    To gain insight into the regulation of hmi-er1 expression, we cloned a human genomic DNA fragment containing one of the two hmi-er1 promoters and consisting of 1460 bp upstream of the translation initiation codon of hMI-ER1. Computer-assisted sequence analysis revealed that the hmi-er1 promoter region contains a CpG island but lacks an identifiable TATA element, initiator sequence and downstream promoter element. This genomic DNA was able to direct transcription of a luciferase reporter gene in a variety of human cell lines, and the minimal promoter was shown to be located within-68/+144 bp. Several putative Sp1 binding sites were identified, and we show that Sp1 can bind to the hmi-er1 minimal promoter and increase transcription, suggesting that the level of hmi-er1 expression may depend on the availability of Sp1 protein. Functional analysis revealed that hMI-ER1 represses Sp1-activated transcription from the minimal promoter by a histone deacetylase-independent mechanism. Chromatin immunoprecipitation analysis demonstrated that both Sp1 and hMI-ER1 are associated with the chromatin of the hmi-er1 promoter and that overexpression of hMI-ER1 in cell lines that allow Tet-On-inducible expression resulted in loss of detectable Sp1 from the endogenous hmi-er1 promoter. The mechanism by which this occurs does not involve binding of hMI-ER1 to cis-acting elements. Instead, we show that hMI-ER1 physically associates with Sp1 and that endogenous complexes containing the two proteins could be detected in vivo. Furthermore, hMI-ER1 specifically interferes with binding of Sp1 to the hmi-er1 minimal promoter as well as to an Sp1 consensus oligonucleotide. Deletion analysis revealed that this interaction occurs through a region containing the SANT domain of hMI-ER1. Together, these data reveal a functional role for the SANT domain in the action of co-repressor regulatory factors and suggest that the association of hMI-ER1 with Sp1 represents a novel mechanism for the negative regulation of Sp1 target promoters.

  11. Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations.

    PubMed

    Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew; Cornwell, MacIntosh; Liu, Weihan; Nardone, Agostina; Xiao, Tengfei; Li, Wei; Qiu, Xintao; Buchwalter, Gilles; Feiglin, Ariel; Abell-Hart, Kayley; Fei, Teng; Rao, Prakash; Long, Henry; Kwiatkowski, Nicholas; Zhang, Tinghu; Gray, Nathanael; Melchers, Diane; Houtman, Rene; Liu, X Shirley; Cohen, Ofir; Wagle, Nikhil; Winer, Eric P; Zhao, Jean; Brown, Myles

    2018-02-12

    Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER + ) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Energy requirements in preschool-age children with cerebral palsy.

    PubMed

    Walker, Jacqueline L; Bell, Kristie L; Boyd, Roslyn N; Davies, Peter S W

    2012-12-01

    There is a paucity of data concerning the energy requirements (ERs) of preschool-age children with cerebral palsy (CP), the knowledge of which is essential for early nutritional management. We aimed to determine the ERs for preschool-age children with CP in relation to functional ability, motor type, and distribution and compared with typically developing children (TDC) and published estimation equations. Thirty-two children with CP (63% male) of all functional abilities, motor types, and distributions and 16 TDC (63% male) aged 2.9-4.4 y participated in this study. The doubly labeled water method was used to determine ERs. Statistical analyses were conducted by 1-factor ANOVA and post hoc Tukey honestly significant difference tests, independent and paired t tests, Bland and Altman analyses, correlations, and multivariable regressions. As a population, children with CP had significantly lower ERs than did TDC (P < 0.05). No significant difference in ERs was found between ambulant children and TDC. Marginally ambulant and nonambulant children had ERs that were ∼18% lower than those of ambulant children and 31% lower than those of TDC. A trend toward lower ERs with greater numbers of limbs involved was observed. The influence of motor type could not be determined statistically. Published equations substantially underestimated ERs in the nonambulant children by ∼22%. In preschool-age children with CP, ERs decreased as ambulatory status declined and more limbs were involved. The greatest predictor of ERs was fat-free mass, then ambulatory status. Future research should build on the information presented to expand the knowledge base regarding ERs in children with CP. This trial was registered with the Australian New Zealand Clinical Trials Registry as ACTRN 12612000686808.

  13. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins

    PubMed Central

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-01-01

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function. DOI: http://dx.doi.org/10.7554/eLife.23882.001 PMID:28742022

  14. Endoplasmic Reticulum Stress in Sepsis

    PubMed Central

    Khan, Mohammad Moshahid; Yang, Weng-Lang; Wang, Ping

    2015-01-01

    Sepsis is an enormous public health issue and the leading cause of death in critically ill patients in intensive care units (ICU). Overwhelming inflammation, characterized by cytokine storm, oxidative threats, and neutrophil sequestration is an underlying component of sepsis-associated organ failure. Despite recent advances in sepsis research, there is still no effective treatment available beyond the standard of care and supportive therapy. To reduce sepsis-related mortality, a better understanding of the biological mechanism associated with the sepsis is essential. Endoplasmic reticulum (ER), a subcellular organelle is responsible for the facilitation of protein folding and assembly and involved in several other physiological activities. Under the stress and inflammation condition, ER loses the homeostasis in its function, which is termed as ER stress. During ER stress, unfolded protein response (UPR) is activated to restore ER function to its normal balance. However, once the stress is beyond the compensatory capacity of UPR or protracted, the apoptosis would be initiated by triggering cell injuries, even to cell death. As such, ER stress and UPR are reported to be implicated in several pathological and inflammatory conditions. Although the detrimental role of ER stress during infections has been demonstrated, there is growing evidences that ER stress participate in the pathogenesis of sepsis. In this review, we summarize the current research in the context of ER stress and UPR signaling associated with sepsis and its related clinical conditions, such as trauma- hemorrhage, and ischemia/reperfusion (I/R) injury. We also discuss the potential implication of ER stress as a novel therapeutic target and prognostic marker in patients with sepsis. PMID:26125088

  15. HER4 selectively coregulates estrogen stimulated genes associated with breast tumor cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Wen; Jones, Frank E., E-mail: fjones3@tulane.edu

    2014-01-10

    Highlights: •HER4/4ICD is an obligate coactivator for 37% of estrogen regulated genes. •HER4/4ICD coactivated genes selectively regulate estrogen stimulated proliferation. •Estrogen stimulated tumor cell migration occurs independent of HER4/4ICD. •Disrupting HER4/4ICD and ER coactivated gene expression may suppress breast cancer. -- Abstract: The EGFR-family member HER4 undergoes regulated intramembrane proteolysis (RIP) to generate an intracellular domain (4ICD) that functions as a transcriptional coactivator. Accordingly, 4ICD coactivates the estrogen receptor (ER) and associates with ER at target gene promoters in breast tumor cells. However, the extent of 4ICD coactivation of ER and the functional significance of the 4ICD/ER transcriptional complex ismore » unclear. To identify 4ICD coactivated genes we performed a microarray gene expression analysis of β-estradiol treated cells comparing control MCF-7 breast cancer cells to MCF-7 cells where HER4 expression was stably suppressed using a shRNA. In the MCF-7 cell line, β-estradiol significantly stimulated or repressed by 2-fold or more 726 or 53 genes, respectively. Significantly, HER4/4ICD was an obligate coactivator for 277 or 38% of the β-estradiol stimulated genes. Ingenuity Pathway Analysis of β-estradiol regulated genes identified significant associations with multiple cellular functions regulating cellular growth and proliferation, cell cycle progression, cancer metastasis, decreased hypoplasia, tumor cell migration, apoptotic resistance of tumor cells, and increased transcription. Genes coactivated by 4ICD displayed functional specificity by only significantly contributing to cellular growth and proliferation, cell cycle progression, and decreased hypoplasia. In direct concordance with these in situ results we show that HER4 knockdown in MCF-7 cells results in a loss of estrogen stimulated tumor cell proliferation and cell cycle progression, whereas, estrogen stimulated tumor cell migration was unaffected by loss of HER4 expression. In summary, we demonstrate for the first time that a cell surface receptor functions as an obligate ER coactivator with functional specificity associated with breast tumor cell proliferation and cell cycle progression. Nearly 90% of ER positive tumors coexpress HER4, therefore we predict that the majority of breast cancer patients would benefit from a strategy to therapeutic disengage ER/4ICD coregulated tumor cell proliferation.« less

  16. Nd3+/Yb3+ cascade-sensitized single-band red upconversion emission in active-core/active-shell nanocrystals.

    PubMed

    Ding, M Y; Hou, J J; Yuan, Y J; Bai, W F; Lu, C H; Xi, J H; Ji, Z G; Chen, D Q

    2018-08-24

    Lanthanide-doped upconversion nanomaterials (UCNMs) have promoted extensive interest for its biological research and biomedical applications, benefiting from low autofluorescence background, deep light penetration depth, and minimal photo-damage to biological tissues. However, owing to the 980 nm laser-induced overheating issue and the attenuation effect associated with conventional multi-peak emissions, the usage of UCNMs as fluorescent bioprobes is still limited. To address these issues, an effective strategy has been proposed to tune both the excitation and emission peaks of UCNMs into the first biological window (650 ∼ 900 nm), where the light absorption by water and hemoglobin in biological tissues is minimal. Based on the Nd 3+ /Yb 3+ cascade-sensitized upconversion process and efficient exchange-energy transfer between Mn 2+ and Er 3+ in conjunction with the active-core@active-shell nanostructured design, we have developed a new class of upconversion nanoparticles (UCNPs) that exhibit strong single-band red emission upon excitation of an 808 nm near-infrared laser. Hopefully, the well-designed KMnF 3 :Yb/Er/Nd@ KMnF 3 :Yb/Nd core-shell nanocrystals will be considered a promising alternative to conventionally used UCNPs for biolabeling applications without the concern of the overheating issue and the attenuation constraints.

  17. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    PubMed Central

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement. PMID:26739230

  18. High-Dose Estrogen and Clinical Selective Estrogen Receptor Modulators Induce Growth Arrest, p21, and p53 in Primate Ovarian Surface Epithelial Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2005-06-09

    Ovarian cancer is the most lethal gynecological cancer affecting women. Hormone-based therapies are variably successful in treating ovarian cancer, but the reasoning behind these therapies is paradoxical. Clinical reagents such as tamoxifen are considered to inhibit or reverse tumor growth by competitive inhibition of the estrogen receptor (ER); however high dose estrogen is as clinically effective as tamoxifen, and it is unlikely that estrogen is acting by blocking ER activity; however, it may be activating a unique function of the ER that is nonmitogenic. For poorly defined reasons, 90% of varian cancers derive from the ovarian surface epithelium (OSE). Inmore » vivo the ER-positive OSE is exposed to high estrogen levels, reaching micromolar concentrations in dominant ovarian follicles. Using cultured OSE cells in vitro, we show that these levels of estradiol (1 ug/ml; {approx}3um) block the actions of serum growth factors, activate the G1 phase retinoblastoma AQ:A checkpoint, and induce p21, an inhibitor of kinases that normally inactivate the retinoblastoma checkpoint. We also show that estradiol increases p53 levels, which may contribute to p21 induction. Supporting the hypothesis that clinical selective ER modulators activate this novel ER function, we find that micromolar doses of tamoxifen and the ''pure antiestrogen'' ICI 182,780 elicit the same effects as estradiol. We propose that, in the context of proliferation, these data clarify some paradoxical aspects of hormone-based therapy and suggest that fuller understanding of normal ER function is necessary to improve therapeutic strategies that target the ER. (J Clin Endocrinol Metab 90: 0000-0000, 2005)« less

  19. Arsenic induces functional re-expression of estrogen receptor α by demethylation of DNA in estrogen receptor-negative human breast cancer.

    PubMed

    Du, Juan; Zhou, Nannan; Liu, Hongxia; Jiang, Fei; Wang, Yubang; Hu, Chunyan; Qi, Hong; Zhong, Caiyun; Wang, Xinru; Li, Zhong

    2012-01-01

    Estrogen receptor α (ERα) is a marker predictive for response of breast cancers to endocrine therapy. About 30% of breast cancers, however, are hormone- independent because of lack of ERα expression. New strategies are needed for re-expression of ERα and sensitization of ER-negative breast cancer cells to selective ER modulators. The present report shows that arsenic trioxide induces reactivated ERα, providing a target for therapy with ER antagonists. Exposure of ER-negative breast cancer cells to arsenic trioxide leads to re-expression of ERα mRNA and functional ERα protein in in vitro and in vivo. Luciferase reporter gene assays and 3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays show that, upon exposure to arsenic trioxide, formerly unresponsive, ER-negative MDA-MB-231 breast cancer cells become responsive to ER antagonists, 4-hydroxytamoxifen and ICI 182,780. Furthermore, methylation- specific PCR and bisulfite-sequencing PCR assays show that arsenic trioxide induces partial demethylation of the ERα promoter. A methyl donor, S-adenosylmethionine (SAM), reduces the degree of arsenic trioxide-induced re-expression of ERα and demethylation. Moreover, Western blot and ChIP assays show that arsenic trioxide represses expression of DNMT1 and DNMT3a along with partial dissociation of DNMT1 from the ERα promoter. Thus, arsenic trioxide exhibits a previously undefined function which induces re-expression ERα in ER-negative breast cancer cells through demethylation of the ERα promoter. These findings could provide important information regarding the application of therapeutic agents targeting epigenetic changes in breast cancers and potential implication of arsenic trioxide as a new drug for the treatment of ER-negative human breast cancer.

  20. Plant Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    PubMed

    Wang, Pengwei; Hawes, Chris; Hussey, Patrick J

    2017-04-01

    The endoplasmic reticulum (ER) acts as a superhighway with multiple sideroads that connects the different membrane compartments including the ER to the plasma membrane (PM). ER-PM contact sites (EPCSs) are a common feature in eukaryotic organisms, but have not been studied well in plants owing to the lack of molecular markers and to the difficulty in resolving the EPCS structure using conventional microscopy. Recently, however, plant protein complexes required for linking the ER and PM have been identified. This is a further step towards understanding the structure and function of plant EPCSs. We highlight some recent studies in this field and suggest several hypotheses that relate to the possible function of EPCSs in plants. Copyright © 2016. Published by Elsevier Ltd.

  1. Emotion Regulation and Academic Perceptions in Adolescence

    ERIC Educational Resources Information Center

    Oram, Rylee; Ryan, Julia; Rogers, Maria; Heath, Nancy

    2017-01-01

    Although studied extensively in the field of adolescent mental health, the role of emotion regulation (ER) in the academic functioning of adolescents is not well understood. This study examined the role of ER in adolescents' perceptions of themselves and their learning environments. We compared adolescents with high and low levels of ER on…

  2. Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury

    PubMed Central

    Folch-Puy, Emma; Panisello, Arnau; Oliva, Joan; Lopez, Alexandre; Castro Benítez, Carlos; Adam, René; Roselló-Catafau, Joan

    2016-01-01

    The endoplasmic reticulum (ER) is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS). This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR), which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI) of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes. PMID:27231901

  3. Synthesis of magnetic and upconversion nanocapsules as multifunctional drug delivery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shanshan; Chen, Yinyin; Liu, Bei

    Multifunctional hollow nanocapsules with magnetic and upconversion luminescence properties were synthesized. Hollow Fe{sub 3}O{sub 4}@SiO{sub 2} was firstly prepared by using rodlike β-FeOOH as the template followed by silica coating, calcinations and reduction. Then Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules (FeSiUCNP) were synthesized by the hydrothermal transformation of the Y(Yb{sup 3+}, Er{sup 3+})(OH)CO{sub 3} (YOC) deposited onto the surface of nanocapsules through a urea-assisted homogeneous precipitation method. The hollow nanocapsules with porous structure provide space and entrance for the drug molecules. Due to the outside shell of α-NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+}, the nanomaterial shows upconverting red emissionmore » upon 980 nm NIR-light excitation. Moreover, the nanocomposites with hollow magnetite core exhibit a high relaxivity with r{sub 2} value of 183 mM{sup −1} s{sup −1}, which reveal the potential as T{sub 2}-weighted contrast agents for magnetic resonance imaging (MRI). The as-prepared nanocapsules can be performed as anti-cancer drug carriers for investigation of drug loading/release properties, which demonstrated a sustained drug release pattern and a comparable cytotoxicity with free doxorubicin (DOX). The multifunctional nanocapsules incorporated upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities have great potential for theranostic applications in cancer treatment. - Graphical abstract: Multifunctional hollow nanocapsules with upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities were synthesized for cancer treatment. - Highlights: • Multifunctional porous Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules were synthesized. • The nanocapsules show upconverting red emission upon 980 nm NIR-light excitation. • The nanocapsules exihibit potential as T{sub 2}-weighted contrast agents for MRI. • The DOX loaded nanocapsules demonstrated a comparable cytotoxicity with free DOX.« less

  4. A Separable Insertion Method to Calculate Atomic and Molecular Resonances on a FE-DVR Grid using Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Abeln, Brant Anthony

    The study of metastable electronic resonances, anion or neutral states of finite lifetime, in molecules is an important area of research where currently no theoretical technique is generally applicable. The role of theory is to calculate both the position and width, which is proportional to the inverse of the lifetime, of these resonances and how they vary with respect to nuclear geometry in order to generate potential energy surfaces. These surfaces are the basis of time-dependent models of the molecular dynamics where the system moves towards vibrational excitation or fragmentation. Three fundamental electronic processes that can be modeled this way are dissociative electronic attachment, vibrational excitation through electronic impact and autoionization. Currently, experimental investigation into these processes is being preformed on polyatomic molecules while theoreticians continue their fifty-year-old search for robust methods to calculate them. The separable insertion method, investigated in this thesis, seeks to tackle the problem of calculating metastable resonances by using existing quantum chemistry tools along with a grid-based method employing exterior complex scaling (ECS). Modern quantum chemistry methods are extremely efficient at calculating ground and (bound) excited electronic states of atoms and molecules by utilizing Gaussian basis functions. These functions provide both a numerically fast and analytic solution to the necessary two-electron, six-dimensional integrals required in structure calculations. However, these computer programs, based on analytic Gaussian basis sets, cannot construct solutions that are not square-integrable, such as resonance wavefunctions. ECS, on the other hand, can formally calculate resonance solutions by rotating the asymptotic electronic coordinates into the complex plane. The complex Siegert energies for resonances, Eres = ER - iGamma/2 where ER is the real-valued position of the resonance and Gamma is the width of the resonance, can be found directly as an isolated pole in the complex energy plane. Unlike the straight complex scaling, ECS on the electronic coordinates overcomes the non-analytic behavior of the nuclear attraction potential, as a function of complex [special characters omitted] where the sum is over each nucleus in a molecular system. Discouragingly, the Gaussian basis functions, which are computationally well-suited for bound electronic structure, fail at forming an effective basis set for ECS due to the derivative discontinuity generated by the complex coordinate rotation and the piecewise defined contour. This thesis seeks to explore methods for implementing ECS indirectly without losing the numerical simplicity and power of Gaussian basis sets. The separable insertion method takes advantage of existing software by constructing a N2-term separable potential of the target system using Gaussian functions to be inserted into a finite-element discrete variable representation (FE-DVR) grid that implements ECS. This work reports an exhaustive investigation into this approach for calculating resonances. This thesis shows that this technique is successful at describing an anion shape resonance of a closed-shell atom or molecule in the static-exchange approximation. This method is applied to the 2P Be-, 2pig N2- and 2pi u CO2- shape resonances to calculate their complex Seigert energies. Additionally, many details on the exact construction of the separable potential and of the expansion basis are explored. The future work considers methods for faster convergence of the resonance energy, moving beyond the static-exchange approximation and applying this technique to polyatomic systems of interest.

  5. ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology

    PubMed Central

    2009-01-01

    The endoplasmic reticulum (ER) is involved in several crucial cellular functions, e.g. protein folding and quality control, maintenance of Ca2+ balance, and cholesterol synthesis. Many genetic and environmental insults can disturb the function of ER and induce ER stress. ER contains three branches of stress sensors, i.e. IRE1, PERK and ATF6 transducers, which recognize the misfolding of proteins in ER and activate a complex signaling network to generate the unfolded protein response (UPR). Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving misfolding and aggregation of proteins in conjunction with prolonged cellular stress, e.g. in redox regulation and Ca2+ homeostasis. Emerging evidence indicates that the UPR is activated in neurons but not in glial cells in AD brains. Neurons display pPERK, peIF2α and pIRE1α immunostaining along with abundant diffuse staining of phosphorylated tau protein. Recent studies have demonstrated that ER stress can also induce an inflammatory response via different UPR transducers. The most potent pathways are IRE1-TRAF2, PERK-eIF2α, PERK-GSK-3, ATF6-CREBH, as well as inflammatory caspase-induced signaling pathways. We will describe the mechanisms which could link the ER stress of neurons to the activation of the inflammatory response and the evolution of pathological changes in AD. PMID:20035627

  6. Glutathione S-Transferase P-Mediated Protein S-Glutathionylation of Resident Endoplasmic Reticulum Proteins Influences Sensitivity to Drug-Induced Unfolded Protein Response

    PubMed Central

    Ye, Zhi-Wei; Zhang, Jie; Ancrum, Tiffany; Manevich, Yefim; Townsend, Danyelle M.

    2017-01-01

    Abstract Aims: S-glutathionylation of cysteine residues, catalyzed by glutathione S-transferase Pi (GSTP), alters structure/function characteristics of certain targeted proteins. Our goal is to characterize how S-glutathionylation of proteins within the endoplasmic reticulum (ER) impact cell sensitivity to ER-stress inducing drugs. Results: We identify GSTP to be an ER-resident protein where it demonstrates both chaperone and catalytic functions. Redox based proteomic analyses identified a cluster of proteins cooperatively involved in the regulation of ER stress (immunoglobulin heavy chain-binding protein [BiP], protein disulfide isomerase [PDI], calnexin, calreticulin, endoplasmin, sarco/endoplasmic reticulum Ca2+-ATPase [SERCA]) that individually co-immunoprecipitated with GSTP (implying protein complex formation) and were subject to reactive oxygen species (ROS) induced S-glutathionylation. S-glutathionylation of each of these six proteins was attenuated in cells (liver, embryo fibroblasts or bone marrow dendritic) from mice lacking GSTP (Gstp1/p2−/−) compared to wild type (Gstp1/p2+/+). Moreover, Gstp1/p2−/− cells were significantly more sensitive to the cytotoxic effects of the ER-stress inducing drugs, thapsigargin (7-fold) and tunicamycin (2-fold). Innovation: Within the family of GST isozymes, GSTP has been ascribed the broadest range of catalytic and chaperone functions. Now, for the first time, we identify it as an ER resident protein that catalyzes S-glutathionylation of critical ER proteins within this organelle. Of note, this can provide a nexus for linkage of redox based signaling and pathways that regulate the unfolded protein response (UPR). This has novel importance in determining how some drugs kill cancer cells. Conclusions: Contextually, these results provide mechanistic evidence that GSTP can exert redox regulation in the oxidative ER environment and indicate that, within the ER, GSTP influences the cellular consequences of the UPR through S-glutathionylation of a series of key interrelated proteins. Antioxid. Redox Signal. 26, 247–261. PMID:26838680

  7. The Unfolded Protein Response: At the Intersection between Endoplasmic Reticulum Function and Mitochondrial Bioenergetics.

    PubMed

    Carreras-Sureda, Amado; Pihán, Philippe; Hetz, Claudio

    2017-01-01

    Endoplasmic reticulum (ER) to mitochondria communication has emerged in recent years as a signaling hub regulating cellular physiology with a relevant contribution to diseases including cancer and neurodegeneration. This functional integration is exerted through discrete interorganelle structures known as mitochondria-associated membranes (MAMs). At these domains, ER/mitochondria physically associate to dynamically adjust metabolic demands and the response to stress stimuli. Here, we provide a focused overview of how the ER shapes the function of the mitochondria, giving a special emphasis to the significance of local signaling of the unfolded protein response at MAMs. The implications to cell fate control and the progression of cancer are also discussed.

  8. NIR-to-NIR Deep Penetrating Nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S toward Highly Efficient Photothermal Ablation.

    PubMed

    Zhang, Zhiyu; Suo, Hao; Zhao, Xiaoqi; Sun, Dan; Fan, Li; Guo, Chongfeng

    2018-05-02

    A difunctional nano-photothermal therapy (PTT) platform with near-infrared excitation to near-infrared emission (NIR-to-NIR) was constructed through core-shell structures Y 2 O 3 :Nd 3+ /Yb 3+ @SiO 2 @Cu 2 S (YRSC), in which the core Y 2 O 3 :Nd 3+ /Yb 3+ and shell Cu 2 S play the role of bioimaging and photothermal conversion function, respectively. The structure and composition of the present PTT agents (PTAs) were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. The NIR emissions of samples in the biological window area were measured by photoluminescence spectra under the excitation of 808 nm laser; further, the penetration depth of NIR emission at different wavelengths in biological tissue was also demonstrated by comparing with visible (vis) emission from Y 2 O 3 :Yb 3+ /Er 3+ @SiO 2 @Cu 2 S and NIR emission from YRSC through different injection depths in pork muscle tissues. The photo-thermal conversion effects were achieved through the outer ultrasmall Cu 2 S nanoparticles simultaneously absorb NIR light emission from the core Y 2 O 3 :Nd 3+/ Yb 3+ and the 808 nm excitation source to generate heat. Further, the heating effect of YRSC nanoparticles was confirmed by thermal imaging and ablation of YRSC to Escherichia coli and human hepatoma (HepG-2) cells. Results indicate that the YRSC has potential applications in PTT and NIR imaging in biological tissue.

  9. ER-PM Contacts Define Actomyosin Kinetics for Proper Contractile Ring Assembly.

    PubMed

    Zhang, Dan; Bidone, Tamara C; Vavylonis, Dimitrios

    2016-03-07

    The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction process for proper actomyosin ring assembly in Schizosaccharomyces pombe. We show that fission yeast cells deficient in ER-PM contacts exhibit aberrant equatorial clustering of actin cables during ring assembly and are particularly susceptible to compromised actin filament crosslinking activity. Using quantitative image analyses and computer simulation, we demonstrate that ER-PM contacts function to modulate the distribution of ring components and to constrain their compaction kinetics. We propose that ER-PM contacts have evolved as important physical modulators to ensure robust ring assembly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The G protein alpha subunit (GP alpha1) is associated with the ER and the plasma membrane in meristematic cells of Arabidopsis and cauliflower.

    PubMed

    Weiss, C A; White, E; Huang, H; Ma, H

    1997-05-05

    Towards the elucidation of the cellular function(s) of GP alpha1, we have characterized its subcellular localization using immunofluorescence and cell fractionation. GP alpha1 is not present in nuclei or chloroplasts. It is a membrane-bound protein, and analysis of isolated endoplasmic and plasma membranes indicates a good correlation between GP alpha1 in both the plasma membrane and the ER compartment. Interestingly, these results may suggest more different functions for GP alpha1: it might be involved in transmission of extracellular signals across the plasma membrane and in the cytoplasm, and/or it may also be involved in regulating some aspects of the ER functions or membrane trafficking between both membranes.

  11. Kinematic analysis of hip and knee rotation and other contributors to ballet turnout.

    PubMed

    Quanbeck, Amy E; Russell, Jeffrey A; Handley, Sara C; Quanbeck, Deborah S

    2017-02-01

    Turnout, or external rotation (ER) of the lower extremities, is essential in ballet. The purpose of this study was to utilise physical examination and a biomechanical method for obtaining functional kinematic data using hip and knee joint centres to identify the relative turnout contributions from hip rotation, femoral anteversion, knee rotation, tibial torsion, and other sources. Ten female dancers received a lower extremity alignment assessment, including passive hip rotation, femoral anteversion, tibial torsion, weightbearing foot alignment, and Beighton hypermobility score. Next, turnout was assessed using plantar pressure plots and three-dimensional motion analysis; participants performed turnout to ballet first position on both a plantar pressure mat and friction-reducing discs. A retro-reflective functional marker motion capture system mapped the lower extremities and hip and knee joint centres. Mean total turnout was 129±15.7° via plantar pressure plots and 135±17.8° via kinematics. Bilateral hip ER during turnout was 49±10.2° (36% of total turnout). Bilateral knee ER during turnout was 41±5.9° (32% of total turnout). Hip ER contribution to total turnout measured kinematically was less than expected compared to other studies, where hip ER was determined without functional kinematic data. Knee ER contributed substantially more turnout than expected or previously reported. This analysis method allows precise assessment of turnout contributors.

  12. Effect of silver nanoparticles on the 1.53 μm fluorescence in Er3+/Yb3+ codoped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Wu, Libo; Zhou, Yaxun; Zhou, Zizhong; Cheng, Pan; Huang, Bo; Yang, Fengjing; Li, Jun

    2016-07-01

    Improving the spectroscopic properties of rare earth (RE) doped glass materials is a challenging task. In the present work the metallic silver nanoparticles (Ag NPs) were embedded into Er3+/Yb3+ codoped tellurite glasses with composition TeO2-Bi2O3-TiO2, prepared using melt-quenching and subsequent heat-treated techniques, and the improved effect of Ag NPs on the 1.53 μm band fluorescence of Er3+ ions was investigated. About 24 h heat-treatment of Er3+/Yb3+ codoped tellurite glass containing 1 mol % amount of AgNO3 at the temperature 370 °C yielded the well-dispersed and near-spherical Ag NPs with ∼11.4 nm average diameter as evidenced by transmission electron microscopy (TEM) image. The intense 1.53 μm band fluorescence was observed in the prepared Er3+/Yb3+ codoped tellurite glasses under the excitation of 980 nm and was further improved with the presence of Ag NPs in the glass matrix, which is attributed to the enhanced local electric field around doped RE ions induced by Ag NPs and the possible energy transfer from Ag NPs to Er3+ ions. The enhanced local electric field was well demonstrated by comparing the variation of emission spectra of hypersensitive probe Eu3+ ions in tellurite glasses with and without Ag NPs. From the Judd-Ofelt analysis, it was also found that the value of Ω6 intensity parameter increased slightly with the increase of Ag NPs concentration in a certain range, also confirming the possibility of realizing strong fluorescence emission. In addition, the amorphous structural nature was demonstrated by the measured X-ray diffraction (XRD) patterns with no sharp diffraction peak. The enhanced 1.53 μm band fluorescence indicates that the Er3+/Yb3+ codoped tellurite glass with an appropriate amount of Ag NPs is a promising candidate for the development of Er3+-doped fiber amplifiers (EDFAs) applied in the WDM systems.

  13. The Local Electronic Structure of Dicarba-closo-dodecaboranes C2B10H12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fister, Timothy T.; Vila, Fernando D.; Seidler, Gerald T.

    2008-01-16

    We report nonresonant inelastic x-ray scattering (NRIXS) measurement of core-shell excitations from both B 1s and C 1s initial states in all three isomers of the dicarba-closo-dodecaboranes C2B10H12. First, this data yields an experimental determination of the angular-momentum-projected final local density of states (l-DOS). We find low-energy resonances with distinctive local s- or p-type character, providing a more complete experimental characterization of bond hybridization than is available from dipole-transition limited techniques, such as x-ray absorption spectroscopies. This analysis is supported by independent density functional theory and real-space full multiple scattering calculation of the l-DOS which yield a clear distinction betweenmore » tangential and radial contributions. Second, we investigate the isomer-sensitivity of the NRIXS signal, and compare and contrast these results with prior electron energy loss spectroscopy measurements. This work establishes NRIXS as a valuable tool for borane chemistry, not only for the unique spectroscopic capabilities of the technique, but also through its compatibility with future studies in solution or in high pressure environments. In addition, this work also establishes the real-space full multiple scattering approach as a useful alternative to traditional approaches for the excited states calculations for aromatic polyhedral boranes and related systems. This research was supported by DOE, Basic Energy Science, Office of Science, Contract Nos. DE-FGE03-97ER45628 and W-31-109-ENG-38, ONR Grant No. N00014-05-1-0843, Grant DE-FG03-97ER5623, NIH NCRR BTP Grant RR-01209, the Leonard X. Bosack and Bette M. Kruger Foundation, the Hydrogen Fuel Cell Initiative of DOE Office of Basic Energy Sciences, and the Summer Research Institute Program at the Pacific Northwest National Lab. Battelle operates the Pacific Northwest National Lab for DOE. The operation of Sector 20 PNC-CAT/XOR is supported by DOE Basic Energy Science, Office of Science, Contract No. DE-FG03-97ER45629, the University of Washington, and grants from the Natural Sciences and Engineering Research Council of Canada. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract W-31-109-Eng-38. We thank Mark Lee and Fred Hawthorne for providing some of the samples used in this study. We thank John Rehr, Aleksi Soininen, Adam Hitchcock, and Ed Stern for stimulating discussions.« less

  14. ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER.

    PubMed

    Costello, Joseph L; Castro, Inês G; Hacker, Christian; Schrader, Tina A; Metz, Jeremy; Zeuschner, Dagmar; Azadi, Afsoon S; Godinho, Luis F; Costina, Victor; Findeisen, Peter; Manner, Andreas; Islinger, Markus; Schrader, Michael

    2017-02-01

    Peroxisomes (POs) and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism and form tight structural associations, which were first observed in ultrastructural studies decades ago. PO-ER associations have been suggested to impact on a diverse number of physiological processes, including lipid metabolism, phospholipid exchange, metabolite transport, signaling, and PO biogenesis. Despite their fundamental importance to cell metabolism, the mechanisms by which regions of the ER become tethered to POs are unknown, in particular in mammalian cells. Here, we identify the PO membrane protein acyl-coenzyme A-binding domain protein 5 (ACBD5) as a binding partner for the resident ER protein vesicle-associated membrane protein-associated protein B (VAPB). We show that ACBD5-VAPB interaction regulates PO-ER associations. Moreover, we demonstrate that loss of PO-ER association perturbs PO membrane expansion and increases PO movement. Our findings reveal the first molecular mechanism for establishing PO-ER associations in mammalian cells and report a new function for ACBD5 in PO-ER tethering. © 2017 Costello et al.

  15. ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER

    PubMed Central

    Costello, Joseph L.; Hacker, Christian; Schrader, Tina A.; Zeuschner, Dagmar; Findeisen, Peter

    2017-01-01

    Peroxisomes (POs) and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism and form tight structural associations, which were first observed in ultrastructural studies decades ago. PO–ER associations have been suggested to impact on a diverse number of physiological processes, including lipid metabolism, phospholipid exchange, metabolite transport, signaling, and PO biogenesis. Despite their fundamental importance to cell metabolism, the mechanisms by which regions of the ER become tethered to POs are unknown, in particular in mammalian cells. Here, we identify the PO membrane protein acyl-coenzyme A–binding domain protein 5 (ACBD5) as a binding partner for the resident ER protein vesicle-associated membrane protein-associated protein B (VAPB). We show that ACBD5–VAPB interaction regulates PO–ER associations. Moreover, we demonstrate that loss of PO–ER association perturbs PO membrane expansion and increases PO movement. Our findings reveal the first molecular mechanism for establishing PO–ER associations in mammalian cells and report a new function for ACBD5 in PO–ER tethering. PMID:28108524

  16. INTER-REGULATION OF THE UNFOLDED PROTEIN RESPONSE AND AUXIN SIGNALING

    PubMed Central

    Chen, Yani; Aung, Kyaw; Rolčík, Jakub; Walicki, Kathryn; Friml, Jiří; Brandizzi, Federica

    2013-01-01

    SUMMARY The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin sensors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes. PMID:24180465

  17. Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress.

    PubMed

    Han, Kim; Hassanzadeh, Shahin; Singh, Komudi; Menazza, Sara; Nguyen, Tiffany T; Stevens, Mark V; Nguyen, An; San, Hong; Anderson, Stasia A; Lin, Yongshun; Zou, Jizhong; Murphy, Elizabeth; Sack, Michael N

    2017-05-18

    The regulatory control of cardiac endoplasmic reticulum (ER) stress is incompletely characterized. As ER stress signaling upregulates the E3-ubiquitin ligase Parkin, we investigated the role of Parkin in cardiac ER stress. Parkin knockout mice exposed to aortic constriction-induced cardiac pressure-overload or in response to systemic tunicamycin (TM) developed adverse ventricular remodeling with excessive levels of the ER regulatory C/EBP homologous protein CHOP. CHOP was identified as a Parkin substrate and its turnover was Parkin-dose and proteasome-dependent. Parkin depletion in cardiac HL-1 cells increased CHOP levels and enhanced susceptibility to TM-induced cell death. Parkin reconstitution rescued this phenotype and the contribution of excess CHOP to this ER stress injury was confirmed by reduction in TM-induced cell death when CHOP was depleted in Parkin knockdown cardiomyocytes. Isogenic Parkin mutant iPSC-derived cardiomyocytes showed exaggerated ER stress induced CHOP and apoptotic signatures and myocardium from subjects with dilated cardiomyopathy showed excessive Parkin and CHOP induction. This study identifies that Parkin functions to blunt excessive CHOP to prevent maladaptive ER stress-induced cell death and adverse cardiac ventricular remodeling. Additionally, Parkin is identified as a novel post-translational regulatory moderator of CHOP stability and uncovers an additional stress-modifying function of this E3-ubiquitin ligase.

  18. PDILT, a divergent testis-specific protein disulfide isomerase with a non-classical SXXC motif that engages in disulfide-dependent interactions in the endoplasmic reticulum.

    PubMed

    van Lith, Marcel; Hartigan, Nichola; Hatch, Jennifer; Benham, Adam M

    2005-01-14

    Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.

  19. Comparison of the hydrological excitation functions HAM of polar motion for the period 1980.0-2007.0

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Pasnicka, M.; Kolaczek, B.

    2011-10-01

    In this study we compared contributions of polar motion excitation determined from hydrological models and harmonic coefficients of the Earth gravity field obtained from Gravity Recovery and Climate Experiment (GRACE). Hydrological excitation function (hydrological angular momentum - HAM) has been estimated from models of global hydrology, based on the observed distribution of surface water, snow, ice and soil moisture. All of them were compared with observed Geodetic Angular Momentum (GAM), excitations of polar motion. The spectra of these excitation functions of polar motion and residual geodetic excitation function G-A-O obtained from GAM by elimination of atmospheric and oceanic excitation functions were computed too. Phasor diagrams of the seasonal components of the polar motion excitation functions of all HAM excitation functions as well as of two GRACE solutions: CSR, CNES were determined and discussed.

  20. Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3β-mediated suppression of mitochondrial permeation pore opening.

    PubMed

    Zhang, Yingmei; Xia, Zhi; La Cour, Karissa H; Ren, Jun

    2011-11-01

    The present study was designed to examine the impact of chronic Akt activation on endoplasmic reticulum (ER) stress-induced cardiac mechanical anomalies, if any, and the underlying mechanism involved. Wild-type and transgenic mice with cardiac-specific overexpression of the active mutant of Akt (Myr-Akt) were subjected to the ER stress inducer tunicamycin (1 or 3 mg/kg). ER stress led to compromised echocardiographic (elevated left ventricular end-systolic diameter and reduced fractional shortening) and cardiomyocyte contractile function, intracellular Ca(2+) mishandling, and cell survival in wild-type mice associated with mitochondrial damage. In vitro ER stress induction in murine cardiomyocytes upregulated the ER stress proteins Gadd153, GRP78, and phospho-eIF2α, and promoted reactive oxygen species production, carbonyl formation, apoptosis, mitochondrial membrane potential loss, and mitochondrial permeation pore (mPTP) opening associated with overtly impaired cardiomyocyte contractile and intracellular Ca(2+) properties. Interestingly, these anomalies were mitigated by chronic Akt activation or the ER chaperon tauroursodeoxycholic acid (TUDCA). Treatment with tunicamycin also dephosphorylated Akt and its downstream signal glycogen synthase kinase 3β (GSK3β) (leading to activation of GSK3β), the effect of which was abrogated by Akt activation and TUDCA. The ER stress-induced cardiomyocyte contractile and mitochondrial anomalies were obliterated by the mPTP inhibitor cyclosporin A, GSK3β inhibitor SB216763, and ER stress inhibitor TUDCA. This research reported the direct relationship between ER stress and cardiomyocyte contractile and mitochondrial anomalies for the first time. Taken together, these data suggest that ER stress may compromise cardiac contractile and intracellular Ca(2+) properties, possibly through the Akt/GSK3β-dependent impairment of mitochondrial integrity.

  1. A Role for MEK-Interacting Protein 1 in Hormone Responsiveness of ER Positive Breast Cancer Cells

    DTIC Science & Technology

    2010-07-01

    positive, but not ER-negative, breast cancer cell lines. 2) The cell death observed in ER- positiv e cell lin es was associated with an a pproximate...and stained after 24 h, then counted. Top panel: photographs of stained cells. Bottom panel: Quantitation of migrated cells, normalized to control...function and breast cancer biology. W e therefore hypothesized that MP1 m ight play an im portant role in ER positiv e breast cancer cells. To test this

  2. Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders

    PubMed Central

    Ozcan, Lale; Tabas, Ira

    2012-01-01

    Perturbations in the normal functions of the endoplasmic reticulum (ER) trigger a signaling network that coordinates adaptive and apoptotic responses. There is accumulating evidence implicating prolonged ER stress in the development and progression of many diseases, including neurodegeneration, atherosclerosis, type 2 diabetes, liver disease, and cancer. With the improved understanding of the underlying molecular mechanisms, therapeutic interventions that target the ER stress response would be potential strategies to treat various diseases driven by prolonged ER stress. PMID:22248326

  3. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Wei, Daixu; Cheng, Jiejun; Xu, Jianrong; Zhu, Jun

    2012-08-01

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T1-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and both high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future.

  4. Research on degradation of omethoate with Y2O3:Er3+ and TiO2

    NASA Astrophysics Data System (ADS)

    Liu, Zhiping; Mai, Yanling; Yan, Aiguo; Fan, Hailu; Yuan, Taidou

    2018-06-01

    Application of visible light excited photocatalytic degradation reagent of pesticide residues is not only suitable for the farmers, can also be used for city residents for daily use. Up conversion material Y2O3:Er3+ was prepared by sol gel method, then mixed with anatase TiO2 sol solution, to carry out the research of omethoate degradation under visible light. In order to get the higher degradability, it's important to study the technological parameters. Among so many parameters, four parameters were selected. They were vegetable surface omethoate concentration, photocatalytic degradation reagent dosage, pH value and degradation time. Utilizing orthogonal experimental design program, all parameters were optimized. The results showed that: the degradation rate was the largest concerned with the vegetable surface omethoate concentration, and then the degradation time.

  5. Terasaki Ramps in the Endoplasmic Reticulum: Structure, Function and Formation

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Guven, Jemal; Valencia, Dulce-Maria

    2015-03-01

    The endoplasmic reticulum (ER) has long been considered an exceedingly important and complex cellular organelle in eukaryotes (like you). It is a membrane structure, part folded lamellae, part tubular network, that both envelopes the nucleus and threads its way outward, all the way to the cell's periphery. Despite the elegant mechanics of bilayer membranes offered by the work of Helfrich and Canham, as far as the ER is concerned, theory has mostly sat on the sidelines. However, refined imaging of the ER has recently revealed beautiful and subtle geometrical forms - simple geometries, from the mathematical point of view - which some have called a ``parking garage for ribosomes.'' I'll review the discovery and physics of Terasaki ramps and discuss their relation to cell-biological questions, such as ER and nuclear-membrane re-organization during mitosis. Rather than being a footnote in a textbook on differential geometry, these structures suggest answers to a number of the ER's structure-function problems.

  6. Endoplasmic Reticulum Stress Response and Mutant Protein Degradation in CHO Cells Accumulating Antithrombin (C95R) in Russell Bodies.

    PubMed

    Kimura, Koji; Inoue, Kengo; Okubo, Jun; Ueda, Yumiko; Kawaguchi, Kosuke; Sakurai, Hiroaki; Wada, Ikuo; Morita, Masashi; Imanaka, Tsuneo

    2015-01-01

    Newly synthesized secretory proteins are folded and assembled in the endoplasmic reticulum (ER), where an efficient protein quality control system performs a critically important function. When unfolded or aggregated proteins accumulate in the ER, certain signaling pathways such as the unfolded protein response (UPR) and ER-overload response (EOR) are functionally active in maintaining cell homeostasis. Recently we prepared Chinese hamster ovary (CHO) cells expressing mutant antithrombin (AT)(C95R) under control of the Tet-On system and showed that AT(C95R) accumulated in Russell bodies (RB), large distinctive structures derived from the ER. To characterize whether ER stress takes place in CHO cells, we examined characteristic UPR and EOR in ER stress responses. We found that the induction of ER chaperones such as Grp97, Grp78 and protein disulfide isomerase (PDI) was limited to a maximum of approximately two-fold. The processing of X-box-binding protein-1 (XBP1) mRNA and the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) subunit were not induced. Furthermore, the activation of nuclear factor-kappa B (NF-κB) was not observed. In contrast, CHO cells displayed UPR and EOR when the cells were treated with thapsigargin and tumor necrosis factor (TNF)-α, respectively. In addition, a portion of the mutant AT(C95R) was degraded through proteasomes and autophagy. CHO cells do respond to ER stress but the folding state of mutant AT(C95R) does not appear to activate the ER stress signal pathway.

  7. The ER in 3D: a multifunctional dynamic membrane network.

    PubMed

    Friedman, Jonathan R; Voeltz, Gia K

    2011-12-01

    The endoplasmic reticulum (ER) is a large, singular, membrane-bound organelle that has an elaborate 3D structure with a diversity of structural domains. It contains regions that are flat and cisternal, ones that are highly curved and tubular, and others adapted to form contacts with nearly every other organelle and with the plasma membrane. The 3D structure of the ER is determined by both integral ER membrane proteins and by interactions with the cytoskeleton. In this review, we describe some of the factors that are known to regulate ER structure and discuss how this structural organization and the dynamic nature of the ER membrane network allow it to perform its many different functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. RINT1 functions as a multitasking protein at the crossroads between genomic stability, ER homeostasis, and autophagy.

    PubMed

    Grigaravicius, Paulius; von Deimling, Andreas; Frappart, Pierre-Olivier

    2016-08-02

    RINT1 was first identified as an RAD50-interacting protein and its function was therefore linked to the maintenance of genomic stability. It was also shown that RINT1 was a key player in ER-Golgi trafficking as a member of an ER tethering complex interacting with STX18. However, due to early embryonic lethality of rint1-null mice, the in vivo functions of RINT1 remained for the most part elusive. We recently described the consequences of Rint1 inactivation in various neuronal cells of the central nervous system. We observed that lack of RINT1 in vivo triggers genomic instability and ER stress leading to depletion of the neural progenitor pool and neurodegeneration. Surprisingly, we also observed inhibition of autophagy in RINT1-deficient neurons, indicating an involvement of RINT1 in the regulation of neuronal autophagy. Here, we summarize our main RINT1 findings and discuss its putative roles in autophagy.

  9. Selenoprotein K Binds Multiprotein Complexes and Is Involved in the Regulation of Endoplasmic Reticulum Homeostasis*

    PubMed Central

    Shchedrina, Valentina A.; Everley, Robert A.; Zhang, Yan; Gygi, Steven P.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Selenoprotein K (SelK) is an 11-kDa endoplasmic reticulum (ER) protein of unknown function. Herein, we defined a new eukaryotic protein family that includes SelK, selenoprotein S (SelS), and distantly related proteins. Comparative genomics analyses indicate that this family is the most widespread eukaryotic selenoprotein family. A biochemical search for proteins that interact with SelK revealed ER-associated degradation (ERAD) components (p97 ATPase, Derlins, and SelS). In this complex, SelK showed higher affinity for Derlin-1, whereas SelS had higher affinity for Derlin-2, suggesting that these selenoproteins could determine the nature of the substrate translocated through the Derlin channel. SelK co-precipitated with soluble glycosylated ERAD substrates and was involved in their degradation. Its gene contained a functional ER stress response element, and its expression was up-regulated by conditions that induce the accumulation of misfolded proteins in the ER. Components of the oligosaccharyltransferase complex (ribophorins, OST48, and STT3A) and an ER chaperone, calnexin, were found to bind SelK. A glycosylated form of SelK was also detected, reflecting its association with the oligosaccharyltransferase complex. These data suggest that SelK is involved in the Derlin-dependent ERAD of glycosylated misfolded proteins and that the function defined by the prototypic SelK is the widespread function of selenium in eukaryotes. PMID:22016385

  10. Role of ER Export Signals in Controlling Surface Potassium Channel Numbers

    NASA Astrophysics Data System (ADS)

    Ma, Dzwokai; Zerangue, Noa; Lin, Yu-Fung; Collins, Anthony; Yu, Mei; Jan, Yuh Nung; Yeh Jan, Lily

    2001-01-01

    Little is known about the identity of endoplasmic reticulum (ER) export signals and how they are used to regulate the number of proteins on the cell surface. Here, we describe two ER export signals that profoundly altered the steady-state distribution of potassium channels and were required for channel localization to the plasma membrane. When transferred to other potassium channels or a G protein-coupled receptor, these ER export signals increased the number of functional proteins on the cell surface. Thus, ER export of membrane proteins is not necessarily limited by folding or assembly, but may be under the control of specific export signals.

  11. Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress-induced gene transcription.

    PubMed

    Marza, Esther; Taouji, Saïd; Barroso, Kim; Raymond, Anne-Aurélie; Guignard, Léo; Bonneu, Marc; Pallares-Lupon, Néstor; Dupuy, Jean-William; Fernandez-Zapico, Martin E; Rosenbaum, Jean; Palladino, Francesca; Dupuy, Denis; Chevet, Eric

    2015-03-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes. © 2015 The Authors.

  12. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity

    PubMed Central

    2013-01-01

    Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560

  13. Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock.

    PubMed

    Duvigneau, Johanna Catharina; Kozlov, Andrey V; Zifko, Clara; Postl, Astrid; Hartl, Romana T; Miller, Ingrid; Gille, Lars; Staniek, Katrin; Moldzio, Rudolf; Gregor, Wolfgang; Haindl, Susanne; Behling, Tricia; Redl, Heinz; Bahrami, Soheyl

    2010-03-01

    Oxidative stress is believed to accompany reperfusion and to mediate dysfunction of the liver after traumatic-hemorrhagic shock (THS). Recently, endoplasmic reticulum (ER) stress has been suggested as an additional factor. This study investigated whether reperfusion after THS leads to increased oxidative and/or ER stress in the liver. In a rat model, including laparotomy, bleeding until decompensation, followed by inadequate or adequate reperfusion phase, three time points were investigated: 40 min, 3 h, and 18 h after shock. The reactive oxygen and nitrogen species and its scavenging capacity (superoxide dismutase 2), the nitrotyrosine formation in proteins, and the lipid peroxidation together with the status of endogenous antioxidants (alpha-tocopherylquinone-alpha-tocopherol ratio) were investigated as markers for oxidative or nitrosylative stress. Mitochondrial function and cytochrome P450 isoform 1A1 activity were analyzed as representatives for hepatocyte function. Activation of the inositol-requiring enzyme 1/X-box binding protein pathway and up-regulation of the 78-kDa glucose-regulated protein were recorded as ER stress markers. Plasma levels of alanine aminotransferase and Bax/Bcl-XL messenger RNA (mRNA) ratio were used as indicators for hepatocyte damage and apoptosis induction. Oxidative or nitrosylative stress markers or representatives of hepatocyte function were unchanged during and short after reperfusion (40 min, 3 h after shock). In contrast, ER stress markers were elevated and paralleled those of hepatocyte damage. Incidence for sustained ER stress and subsequent apoptosis induction were found at 18 h after shock. Thus, THS or reperfusion induces early and persistent ER stress of the liver, independent of oxidative or nitrosylative stress. Although ER stress was not associated with depressed hepatocyte function, it may act as an early trigger of protracted cell death, thereby contributing to delayed organ failure after THS.

  14. Evaluation of functional health and well-being in patients receiving levomilnacipran ER for the treatment of major depressive disorder.

    PubMed

    Blum, Steven I; Tourkodimitris, Stavros; Ruth, Adam

    2015-01-01

    Levomilnacipran extended-release (ER) is an FDA-approved serotonin norepinephrine reuptake inhibitor (SNRI) for treating major depressive disorder (MDD). SF-36v2 Health Survey outcomes from a Phase III, randomized, double-blind, placebo-controlled study (NCT00969709) were evaluated. Prospective and post hoc analyses of SF-36 Mental and Physical Component Summaries (MCS, PCS), and individual domains compared pooled levomilnacipran ER doses (40, 80, 120 mg/day) with placebo. Patients (18-65 years) had MDD, depressive episode ≥ 8 weeks, and Montgomery-Åsberg Depression Rating Scale total score ≥ 30. SF-36 score changes from baseline to Week 8 were analyzed using ANCOVA and the observed cases approach (Intent-to-Treat [ITT] Population). Minimally important differences (MID) evaluated clinical relevance. Baseline MCS scores reflected marked mental deficits in the ITT Population (levomilnacipran ER = 529; placebo = 175). MCS change at Week 8 was significantly greater for levomilnacipran ER than placebo (LSMD [SE] = 4.8 [1.5]; P = 0.0011); MID exceeded the 3-point threshold. Baseline PCS scores suggested minimal physical deficits; no between-group difference at Week 8 was noted. LSMD was nominally statistically significant (P < 0.05) for levomilnacipran ER versus placebo in 5 domains (General Health [2.44; P = 0.0010], Vitality [2.48; P = 0.0307], Social Functioning [3.25; P = 0.0097], Role-Emotional [3.38; P = 0.0078], Mental Health [4.34; P = 0.0005]); changes in Vitality, Social Functioning, and Mental Health exceeded MID. The trial was limited by short duration; analyses were post hoc and adjustments were not made for multiplicity. Statistically significant and clinically meaningful improvement on the MCS and several individual domains suggest overall and dimensional improvement in health-related functioning for patients with MDD treated with levomilnacipran ER versus placebo. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Effects of levomilnacipran ER on noradrenergic symptoms, anxiety symptoms, and functional impairment in adults with major depressive disorder: Post hoc analysis of 5 clinical trials.

    PubMed

    Blier, Pierre; Gommoll, Carl; Chen, Changzheng; Kramer, Kenneth

    2017-03-01

    To evaluate the effects of levomilnacipran extended-release (LVM-ER; 40-120mg/day) on noradrenergic (NA) and anxiety-related symptoms in adults with major depressive disorder (MDD) and explore the relationship between these symptoms and functional impairment. Data were pooled from 5 randomized, double-blind, placebo-controlled trials (N=2598). Anxiety and NA Cluster scores were developed by adding selected item scores from the Montgomery-Åsberg Depression Rating Scale (MADRS) and 17-item Hamilton Depression Rating Scale (HAMD 17 ). A path analysis was conducted to estimate the direct effects of LVM-ER on functional impairment (Sheehan Disability Scale [SDS] total score) and the indirect effects through changes in NA and Anxiety Cluster scores. Mean improvements from baseline in NA and Anxiety Cluster scores were significantly greater with LVM-ER versus placebo (both P<0.001), as were the response rates (≥50% score improvement): NA Cluster (44% vs 34%; odds ratio=1.56; P<0.0001); Anxiety Cluster (39% vs 36%; odds ratio=1.19; P=0.041). Mean improvement in SDS total score was also significantly greater with LVM-ER versus placebo (-7.3 vs -5.6; P<0.0001). LVM-ER had an indirect effect on change in SDS total score that was mediated more strongly through NA Cluster score change (86%) than Anxiety Cluster score change (18%); the direct effect was negligible. NA and Anxiety Cluster scores, developed based on the face validity of individual MADRS and HAMD 17 items, were not predefined as efficacy outcomes in any of the studies. In adults with MDD, LVM-ER indirectly improved functional impairment mainly through improvements in NA symptoms and less so via anxiety symptoms. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis

    PubMed Central

    Liu, Yidan; Zhang, Congcong; Wang, Dinghe; Su, Wei; Liu, Linchuan; Wang, Muyang; Li, Jianming

    2015-01-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroid-insensitive 1 suppressor 7 (EBS7) gene encodes an ER membrane-localized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMG-CoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function. PMID:26371323

  17. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation.

    PubMed

    Xue, Peng; Li, Bei; An, Ying; Sun, Jin; He, Xiaoning; Hou, Rui; Dong, Guangying; Fei, Dongdong; Jin, Fang; Wang, Qintao; Jin, Yan

    2016-11-01

    The association between inflammation and endoplasmic reticulum (ER) stress has been described in many diseases. However, if and how chronic inflammation governs the unfolded protein response (UPR) and promotes ER homeostasis of chronic inflammatory disease remains elusive. In this study, chronic inflammation resulted in ER stress in mesenchymal stem cells in the setting of periodontitis. Long-term proinflammatory cytokines induced prolonged ER stress and decreased the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Interestingly, we showed that chronic inflammation decreases the expression of lysine acetyltransferase 6B (KAT6B, also called MORF), a histone acetyltransferase, and causes the upregulation of a key UPR sensor, PERK, which lead to the persistent activation of the UPR in PDLSCs. Furthermore, we found that the activation of UPR mediated by MORF in chronic inflammation contributes to the PERK-related deterioration of the osteogenic differentiation of PDLSCs both in vivo and in vitro. Taken together, our results suggest that chronic inflammation compromises UPR function through MORF-mediated-PERK transcription, which is a previously unrecognized mechanism that contributes to impaired ER function, prolonged ER stress and defective osteogenic differentiation of PDLSCs in periodontitis.

  18. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro

    NASA Astrophysics Data System (ADS)

    Qiao, Xiao-Fei; Zhou, Jia-Cai; Xiao, Jia-Wen; Wang, Ye-Fu; Sun, Ling-Dong; Yan, Chun-Hua

    2012-07-01

    Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical fields, due to their characteristic large anti-Stokes shifts, narrow emission bands, deep tissue penetration and minimal background interference. UCNPs-derived multifunctional materials that integrate the merits of UCNPs and other functional entities have also attracted extensive attention. Here in this paper we present a core-shell structured nanomaterial, namely, NaGdF4:Yb,Er@CaF2@SiO2-PS, which is multifunctional in the fields of photodynamic therapy (PDT), magnetic resonance imaging (MRI) and fluorescence/luminescence imaging. The NaGdF4:Yb,Er@CaF2 nanophosphors (10 nm in diameter) were prepared via sequential thermolysis, and mesoporous silica was coated as shell layer, in which photosensitizer (PS, hematoporphyrin and silicon phthalocyanine dihydroxide) was covalently grafted. The silica shell improved the dispersibility of hydrophobic PS molecules in aqueous environments, and the covalent linkage stably anchored the PS molecules in the silica shell. Under excitation at 980 nm, the as-fabricated nanomaterial gave luminescence bands at 550 nm and 660 nm. One luminescent peak could be used for fluorescence imaging and the other was suitable for the absorption of PS to generate singlet oxygen for killing cancer cells. The PDT performance was investigated using a singlet oxygen indicator, and was investigated in vitro in HeLa cells using a fluorescent probe. Meanwhile, the nanomaterial displayed low dark cytotoxicity and near-infrared (NIR) image in HeLa cells. Further, benefiting from the paramagnetic Gd3+ ions in the core, the nanomaterial could be used as a contrast agent for magnetic resonance imaging (MRI). Compared with the clinical commercial contrast agent Gd-DTPA, the as-fabricated nanomaterial showed a comparable longitudinal relaxivities value (r1) and similar imaging effect.Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical fields, due to their characteristic large anti-Stokes shifts, narrow emission bands, deep tissue penetration and minimal background interference. UCNPs-derived multifunctional materials that integrate the merits of UCNPs and other functional entities have also attracted extensive attention. Here in this paper we present a core-shell structured nanomaterial, namely, NaGdF4:Yb,Er@CaF2@SiO2-PS, which is multifunctional in the fields of photodynamic therapy (PDT), magnetic resonance imaging (MRI) and fluorescence/luminescence imaging. The NaGdF4:Yb,Er@CaF2 nanophosphors (10 nm in diameter) were prepared via sequential thermolysis, and mesoporous silica was coated as shell layer, in which photosensitizer (PS, hematoporphyrin and silicon phthalocyanine dihydroxide) was covalently grafted. The silica shell improved the dispersibility of hydrophobic PS molecules in aqueous environments, and the covalent linkage stably anchored the PS molecules in the silica shell. Under excitation at 980 nm, the as-fabricated nanomaterial gave luminescence bands at 550 nm and 660 nm. One luminescent peak could be used for fluorescence imaging and the other was suitable for the absorption of PS to generate singlet oxygen for killing cancer cells. The PDT performance was investigated using a singlet oxygen indicator, and was investigated in vitro in HeLa cells using a fluorescent probe. Meanwhile, the nanomaterial displayed low dark cytotoxicity and near-infrared (NIR) image in HeLa cells. Further, benefiting from the paramagnetic Gd3+ ions in the core, the nanomaterial could be used as a contrast agent for magnetic resonance imaging (MRI). Compared with the clinical commercial contrast agent Gd-DTPA, the as-fabricated nanomaterial showed a comparable longitudinal relaxivities value (r1) and similar imaging effect. Electronic supplementary information (ESI) available: More TEM, emission spectra, longitudinal and transverse relaxation times, t2-weighted MR images of the as-prepared nanomaterial, and confocal fluorescent images of HeLa cells. See DOI: 10.1039/c2nr30938f

  19. The Role of Defect Complexes in the Magneto-Optical Properties of Rare Earth Doped Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon

    Wide band gap semiconductors doped with rare earth ions (RE) have shown great potential for applications in optoelectronics, photonics, and spintronics. The 1.54mum Erbium (Er) emission has been extensively utilized in optical fiber communications, and Europium (Eu) is commonly used as a red color component for LEDs and fluorescence lamps. For the realization of spintronic-type devices, a dilutely doped semiconductor that exhibits room temperature ferromagnetic behavior would be desirable. Such behavior has been observed in GaN:Er. Furthermore, it was demonstrated that strain may play an important role in the control of this ferromagnetism; however, this requires further investigation. One motivation of this work is the realization of an all solid state white light source monolithically integrated into III/V nitride semiconductor materials, ideally GaN. For this, the current AlGaAs-based LEDs need to be replaced. One approach for achieving efficient red emission from GaN is dilute doping with fluorescent ions. In this regard, Eu has consistently been the most promising candidate as a dopant in the active layer for a red, GaN based, LED due to the sharp 5D0 to 7F2 transitions that result in red emission around 620nm. The success of GaN:Eu as the active layer for a red LED is based on the ability for the Eu ions to be efficiently excited by electron hole pairs. Thus, the processes by which energy is transferred from the host to the Eu ions has been studied. Complications arise, however, from the fact that Eu ions incorporate into multiple center environments, the structures of which are found to have a profound influence on the excitation pathways and efficiencies of the Eu ion. Therefore the nature of Eu incorporation and the resulting luminescence efficiency in GaN has been extensively investigated. By performing a comparative study on GaN:Eu samples grown under a variety of controlled conditions and using a variety of experimental techniques, the majority site has been concluded to contain a nitrogen vacancy (V N) in its immediate structure. The nitrogen vacancy can appear in two symmetries, which has a profound impact on the luminescence and magnetic properties of the sample. The structure of the minority site has also been identified. For both sites, we give substantial evidence that the excitation efficiency of the red Eu emission is improved by the presence of donor-acceptor pairs in the vicinity of the Eu. Furthermore, when Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature. These have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H, while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels. We identify, experimentally, a two-step process in the dissociation of Mg-H complexes and propose, based on density functional theory, that the presence of minority carriers and the resulting charge states of complexes can also influence this process. In GaN:Er, we have given a more thorough overview of the optical and magneto-optical properties by extending to the 800nm excitation range and drastically improving the signal-to-noise ratio in the magnetic measurements, as well as applying a perpendicular magnetic field. This has allowed us to calculate g-factors for the parallel case, but revealed that the Zeeman interaction is not quite linear for perpendicular magnetic fields. We were able to assign crystal field numbers of mu = 3/2 to two crystal field levels. We have also given strong evidence that the strain in the sample, which results from lattice mismatch, enhances its magnetization, as seen through fluorescence line narrowing and asymmetry between the Zeeman transition intensities, under application of magnetic fields in anti-parallel directions.

  20. Combining autophagy-inducing peptides and brefeldin A delivered by perinuclear-localized mesoporous silica nanoparticles: a manipulation strategy for ER-phagy.

    PubMed

    Wang, Yimin; Zhao, Zhao; Wei, Fujing; Luo, Zewei; Duan, Yixiang

    2018-05-10

    Autophagic degradation of the endoplasmic reticulum (ER-phagy) has been found to play a critical role in human sensory neuropathy. So far, however, specific and efficient intervention means for ER-phagy remain unexplored. Herein, brefeldin A (BFA), a blocking agent on protein transport between the ER and Golgi, was screened from ER stress inducers. BFA was then delivered to the perinuclear area co-localized with the ER by a mesoporous silica nanoparticle-based drug-carrier functionalized with autophagy-inducing peptides of TAT-beclin 1 (MSNs-BFA), to evoke a perturbation of ER-phagy. The molecular mechanism of ER-phagy regulated by BFA was explored by biochemical evaluation including time-lapse live-cell fluorescence imaging. We found that MSNs-BFA treatment caused a lower mRNA/protein expression level of FAM134b even under a compensation of autophagic flux in U2OS cells, and resulted in ER-expansion. The fragmentation of the ER was blocked as a response to ER stress mediated by inactivation of the AKT/TSC/mTOR pathway. Our work developed an efficient external manipulation strategy to regulate ER-phagy and may contribute to the therapeutic application of autophagy-related major human diseases.

  1. ER signaling is activated to protect human HaCaT keratinocytes from ER stress induced by environmental doses of UVB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mera, Kentaro; Kawahara, Ko-ichi; Tada, Ko-ichi

    Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-L{alpha}, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10more » mJ/cm{sup 2} irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm{sup 2} UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.« less

  2. High-spin states in the N=50 nucleus ^87Rb

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Cizewski, J. A.; Krücken, R.; Clark, R. M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O.; Becker, J. A.; Bernstein, L. A.; McNabb, D. P.; Younes, W.

    2001-10-01

    High-spin states in ^87Rb have been studied following the fission of two compound nuclei (^199Tl and ^197Pb) formed in different fusion-evaporation reactions. The Gammasphere array at LBNL was used to detect γ-ray coincidences. The level scheme has been extended above the previously known 1578 keV, 9/2^+ isomer by observation of many states up to ~7.2 MeV excitation energy. Coupling of the odd g_9/2 proton to the yrast states in the ^86Kr core accounts for the first excited states observed above the 9/2^+ isomer. The level scheme of ^87Rb is also compared to excitations in ^85Kr and the ^89Y isotone. This work has been supported in part by the U.S. Department of Energy under Contracts No. W-7405-ENG-36 (LANL), FG02-91ER-40609 (Yale), W-7405-ENG-48 (LLNL) and AC03-76SF00098 (LBNL) and by the National Science Foundation (Rutgers).

  3. Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques

    NASA Astrophysics Data System (ADS)

    Ščajev, Patrik; Miasojedovas, Saulius; Mekys, Algirdas; Kuciauskas, Darius; Lynn, Kelvin G.; Swain, Santosh K.; JarašiÅ«nas, Kestutis

    2018-01-01

    We applied time-resolved pump-probe spectroscopy based on free carrier absorption and light diffraction on a transient grating for direct measurements of the carrier lifetime and diffusion coefficient D in high-resistivity single crystal CdTe (codoped with In and Er). The bulk carrier lifetime τ decreased from 670 ± 50 ns to 60 ± 10 ns with increase of excess carrier density N from 1016 to 5 × 1018 cm-3 due to the excitation-dependent radiative recombination rate. In this N range, the carrier diffusion length dropped from 14 μm to 6 μm due to lifetime decrease. Modeling of in-depth (axial) and in-plane (lateral) carrier diffusion provided the value of surface recombination velocity S = 6 × 105 cm/s for the untreated surface. At even higher excitations, in the 1019-3 × 1020 cm-3 density range, D increase from 5 to 20 cm2/s due to carrier degeneracy was observed.

  4. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation*

    PubMed Central

    Zattas, Dimitrios; Berk, Jason M.; Kreft, Stefan G.; Hochstrasser, Mark

    2016-01-01

    Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates. PMID:27068744

  5. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha.

    PubMed

    Mosquera, Laurivette; Colón, Jennifer M; Santiago, José M; Torrado, Aranza I; Meléndez, Margarita; Segarra, Annabell C; Rodríguez-Orengo, José F; Miranda, Jorge D

    2014-05-02

    17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Glucose Regulation of Load‐Induced mTOR Signaling and ER Stress in Mammalian Heart

    PubMed Central

    Sen, Shiraj; Kundu, Bijoy K.; Wu, Henry Cheng‐Ju; Hashmi, S. Shahrukh; Guthrie, Patrick; Locke, Landon W.; Roy, R. Jack; Matherne, G. Paul; Berr, Stuart S.; Terwelp, Matthew; Scott, Brian; Carranza, Sylvia; Frazier, O. Howard; Glover, David K.; Dillmann, Wolfgang H.; Gambello, Michael J.; Entman, Mark L.; Taegtmeyer, Heinrich

    2013-01-01

    Background Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose‐6‐phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via glucose 6‐phosphate (G6P) accumulation. Methods and Results We subjected the working rat heart ex vivo to a high workload in the presence of different energy‐providing substrates including glucose, glucose analogues, and noncarbohydrate substrates. We observed an association between G6P accumulation, mTOR activation, endoplasmic reticulum (ER) stress, and impaired contractile function, all of which were prevented by pretreating animals with rapamycin (mTOR inhibition) or metformin (AMPK activation). The histone deacetylase inhibitor 4‐phenylbutyrate, which relieves ER stress, also improved contractile function. In contrast, adding the glucose analogue 2‐deoxy‐d‐glucose, which is phosphorylated but not further metabolized, to the perfusate resulted in mTOR activation and contractile dysfunction. Next we tested our hypothesis in vivo by transverse aortic constriction in mice. Using a micro‐PET system, we observed enhanced glucose tracer analog uptake and contractile dysfunction preceding dilatation of the left ventricle. In contrast, in hearts overexpressing SERCA2a, ER stress was reduced and contractile function was preserved with hypertrophy. Finally, we examined failing human hearts and found that mechanical unloading decreased G6P levels and ER stress markers. Conclusions We propose that glucose metabolic changes precede and regulate functional (and possibly also structural) remodeling of the heart. We implicate a critical role for G6P in load‐induced mTOR activation and ER stress. PMID:23686371

  7. Emotion dysregulation and functional connectivity in children with and without a history of major depressive disorder.

    PubMed

    Lopez, Katherine C; Luby, Joan L; Belden, Andy C; Barch, Deanna M

    2018-04-01

    Recent interest has emerged in understanding the neural mechanisms by which deficits in emotion regulation (ER) early in development may relate to later depression. Corticolimbic alterations reported in emotion dysregulation and depression may be one possible link. We examined the relationships between emotion dysregulation in school age, corticolimbic resting-state functional connectivity (rs-FC) in preadolescence, and depressive symptoms in adolescence. Participants were 143 children from a longitudinal preschool onset depression study who completed the Children Sadness Management Scale (CSMS; measuring ER), Child Depression Inventory (CDI-C; measuring depressive symptoms), and two resting-state MRI scans. Rs-FC between four primary regions of interest (ROIs; bilateral dorsolateral prefrontal cortex [dlPFC] and amygdala) and six target ROIs thought to contribute to ER were examined. Findings showed that ER in school age did not predict depressive symptoms in adolescence, but did predict preadolescent increases in dlPFC-insula and dlPFC-ventromedial PFC rs-FC across diagnosis, as well as increased dlPFC-dorsal anterior cingulate cortex (dACC) rs-FC in children with a history of depression. Of these profiles, only dlPFC-dACC rs-FC in preadolescence predicted depressive symptoms in adolescence. However, dlPFC-dACC connectivity did not mediate the relationship between ER in school age and depressive symptoms in adolescence. Despite the absence of a direct relationship between ER and depressive symptoms and no significant rs-FC mediation, the rs-FC profiles predicted by ER are consistent with the hypothesis that emotion dysregulation is associated with abnormalities in top-down control functions. The extent to which these relationships might confer greater risk for later depression, however, remains unclear.

  8. Relationship between CYP1A2 Localization and Lipid Microdomain Formation as a Function of Lipid Composition

    PubMed Central

    Brignac-Huber, Lauren M.; Reed, James R.; Eyer, Marilyn K.

    2013-01-01

    Cytochrome P450 (P450) function requires the interaction of P450 and NADPH-cytochrome P450 reductase (CPR) in membranes, and is frequently studied using reconstituted systems composed solely of phosphatidylcholine. There is increasing evidence that other endoplasmic reticulum (ER) lipids can affect P450 structure, activity, and interactions with CPR. Some of these lipid effects have been attributed to the formation of organized liquid-ordered (lo) domains. The goal of this study was to determine if lo domains were formed in P450 reconstituted systems mimicking the ER membrane. CYP1A2, when incorporated in “ER-like” lipid vesicles, displayed detergent insolubility after treatment with Brij 98 and centrifugation in a sucrose gradient. Lipid probes were employed to identify domain formation in both ER-like vesicles and model membranes known to form lo domains. Changes in fluorescence resonance energy transfer (FRET) using an established donor/acceptor FRET pair in both ER-like and model lo-forming systems demonstrated the coexistence of lo- and liquid-disordered domains as a function of cholesterol and sphingomyelin content. Similarly, 6-dodecanoyl-2-dimethylaminonaphthalene (laurdan), a probe that reports on membrane organization, showed that cholesterol and sphingomyelin increased membrane order. Finally, brominated-phosphatidylcholine allowed for monitoring of the location of both CPR and CYP1A2 within the lo regions of ER-like systems. Taken together, the results demonstrate that ER-like vesicles generate microdomains, and both CYP1A2 and CPR predominantly localize into lo membrane regions. Probe fluorescent responses suggest that lipid microdomains form in these vesicles whether or not enzymes are included in the reconstituted systems. Thus, it does not appear that the proteins are critical for stabilizing lo domains. PMID:23963955

  9. Dominant gain-of-function mutations in transmembrane domain III of ERS1 and ETR1 suggest a novel role for this domain in regulating the magnitude of ethylene response in Arabidopsis.

    PubMed

    Deslauriers, Stephen D; Alvarez, Ashley A; Lacey, Randy F; Binder, Brad M; Larsen, Paul B

    2015-10-01

    Prior work resulted in identification of an Arabidopsis mutant, eer5-1, with extreme ethylene response in conjunction with failure to induce a subset of ethylene-responsive genes, including AtEBP. EER5, which is a TREX-2 homolog that is part of a nucleoporin complex, functions as part of a cryptic aspect of the ethylene signaling pathway that is required for regulating the magnitude of ethylene response. A suppressor mutagenesis screen was carried out to identify second site mutations that could restore the growth of ethylene-treated eer5-1 to wild-type levels. A dominant gain-of-function mutation in the ethylene receptor ETHYLENE RESPONSE SENSOR 1 (ERS1) was identified, with the ers1-4 mutation being located in transmembrane domain III at a point nearly equivalent to the previously described etr1-2 mutation in the other Arabidopsis subfamily I ethylene receptor, ETHYLENE RESPONSE 1 (ETR1). Although both ers1-4 and etr1-2 partially suppress the ethylene hypersensitivity of eer5-1 and are at least in part REVERSION TO ETHYLENE SENSITIVITY 1 (RTE1)-dependent, ers1-4 was additionally found to restore the expression of AtEBP in ers1-4;eer5-1 etiolated seedlings after ethylene treatment in an EIN3-dependent manner. Our work indicates that ERS1-regulated expression of a subset of ethylene-responsive genes is related to controlling the magnitude of ethylene response, with hyperinduction of these genes correlated with reduced ethylene-dependent growth inhibition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Automatic control of negative emotions: evidence that structured practice increases the efficiency of emotion regulation.

    PubMed

    Christou-Champi, Spyros; Farrow, Tom F D; Webb, Thomas L

    2015-01-01

    Emotion regulation (ER) is vital to everyday functioning. However, the effortful nature of many forms of ER may lead to regulation being inefficient and potentially ineffective. The present research examined whether structured practice could increase the efficiency of ER. During three training sessions, comprising a total of 150 training trials, participants were presented with negatively valenced images and asked either to "attend" (control condition) or "reappraise" (ER condition). A further group of participants did not participate in training but only completed follow-up measures. Practice increased the efficiency of ER as indexed by decreased time required to regulate emotions and increased heart rate variability (HRV). Furthermore, participants in the ER condition spontaneously regulated their negative emotions two weeks later and reported being more habitual in their use of ER. These findings indicate that structured practice can facilitate the automatic control of negative emotions and that these effects persist beyond training.

  11. A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells

    NASA Astrophysics Data System (ADS)

    Tang, Yonghe; Ma, Yanyan; Xu, An; Xu, Gaoping; Lin, Weiying

    2017-06-01

    As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.

  12. Natural products targeting ER stress pathway for the treatment of cardiovascular diseases.

    PubMed

    Choy, Ker Woon; Murugan, Dharmani; Mustafa, Mohd Rais

    2018-04-21

    Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The Endoplasmic Reticulum Membrane Is Permeable to Small Molecules

    PubMed Central

    Le Gall, Sylvie; Neuhof, Andrea; Rapoport, Tom

    2004-01-01

    The lumen of the endoplasmic reticulum (ER) differs from the cytosol in its content of ions and other small molecules, but it is unclear whether the ER membrane is as impermeable as other membranes in the cell. Here, we have tested the permeability of the ER membrane to small, nonphysiological molecules. We report that isolated ER vesicles allow different chemical modification reagents to pass from the outside into the lumen with little hindrance. In permeabilized cells, the ER membrane allows the passage of a small, charged modification reagent that is unable to cross the plasma membrane or the lysosomal and trans-Golgi membranes. A larger polar reagent of ∼5 kDa is unable to pass through the ER membrane. Permeation of the small molecules is passive because it occurs at low temperature in the absence of energy. These data indicate that the ER membrane is significantly more leaky than other cellular membranes, a property that may be required for protein folding and other functions of the ER. PMID:14617815

  14. Deletion of protein tyrosine phosphatase 1B obliterates endoplasmic reticulum stress-induced myocardial dysfunction through regulation of autophagy.

    PubMed

    Wang, Shuyi; Chen, Xiyao; Nair, Sreejayan; Sun, Dongdong; Wang, Xiaoming; Ren, Jun

    2017-12-01

    Endoplasmic reticulum (ER) stress has been demonstrated to prompt various cardiovascular risks although the underlying mechanism remains elusive. Protein tyrosine phosphatase-1B (PTP1B) serves as an essential negative regulator for insulin signaling. This study examined the role of PTP1B in ER stress-induced myocardial anomalies and underlying mechanism involved with a focus on autophagy. WT and PTP1B knockout mice were subjected to the ER stress inducer tunicamycin (1mg/kg). Cardiac function was evaluated with echocardiography and an Ion-Optix MyoCam system. Western blot analysis was used to monitor the levels of ER stress, autophagy and insulin signaling including insulin receptor substrate (IRS), tribbles homolog 3 (TRIB3), Atg5/7, p62 and LC3-II. Our results showed that ER stress resulted in compromised echocardiographic and cardiomyocyte contractile function, intracellular Ca 2+ mishandling, ER stress, O 2 - production, apoptosis, the effects of which (with the exception of ER stress) were significantly attenuated or negated by PTP1B ablation. Levels of serine phosphorylation of IRS-1, TRIB3, Atg5/7, LC3B and the autophagy adaptor p62 were significantly upregulated while IRS-1 tyrosine phosphorylation was reduced by tunicamycin, the effect of which were obliterated by PTP1B ablation. In vitro study revealed that the autophagy inducer rapamycin and TRIB3 overexpression cancelled PTP1B ablation-offered beneficial effects on cardiomyocyte function or O 2 - production in murine cardiomyocytes or H9C2 myoblasts. Antioxidant or gene silencing of TRIB3 mimicked PTP1B ablation-induced protective effects. These findings collectively suggested that PTP1B ablation protects against ER stress-induced cardiac anomalies through regulation of autophagy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity.

    PubMed

    Xu, Guoyong; Li, Sizhun; Xie, Ke; Zhang, Qiang; Wang, Yan; Tang, Yang; Liu, Dong; Hong, Yiguo; He, Chenyang; Liu, Yule

    2012-10-01

    The hypersensitive response (HR), a form of programmed cell death (PCD), is a tightly regulated innate immune response in plants that is hypothesized to restrict pathogen growth and disease development. Although considerable efforts have been made to understand HR PCD, it remains unknown whether the retrograde pathway from the Golgi to the endoplasmic reticulum (ER) is involved. Here we provide direct genetic evidence that two Nicotiana benthamiana homologs, ERD2a and ERD2b, function as ER luminal protein receptors and participate in HR PCD. Virus-induced gene silencing (VIGS) of ERD2a and/or ERD2b caused escape of ER-resident proteins from the ER, and resulted in plants that were more sensitive to ER stress. Silencing of ERD2b delayed HR PCD induced by the non-host pathogens Xanthomonas oryzae pv. oryzae and Pseudomonas syringae pv. tomato DC3000. However, both silencing of ERD2a and co-silencing of ERD2a and ERD2b exacerbated HR PCD. Individual and combined suppression of ERD2a and ERD2b exaggerated R gene-mediated cell death. Nevertheless, silencing of ERD2a and/or ERD2b had no detectable effects on bacterial growth. Furthermore, VIGS of several putative ligands of ERD2a/2b, including the ER quality control (ERQC) component genes BiP, CRT3 and UGGT, had different effects on HR PCD induced by different pathogens. This indicates that immunity-related cell death pathways are separate with respect to the genetic requirements for these ERQC components. These results suggest that ERD2a and ERD2b function as ER luminal protein receptors to ensure ERQC and alleviate ER stress, thus affecting HR PCD during the plant innate immune response. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  16. Ferrocene functionalized graphene based electrode for the electro-Fenton oxidation of ciprofloxacin.

    PubMed

    Divyapriya, Govindaraj; Nambi, Indumathi; Senthilnathan, Jaganathan

    2018-05-26

    Ferrocene functionalized graphene based graphite felt electrode was firstly investigated for heterogeneous electro-Fenton oxidation of ciprofloxacin in neutral pH condition. Electrochemical reduction of Ferrocene functionalized graphene oxide (Fc-ErGO) was performed by cyclic voltammetry technique. At neutral pH condition, Fc-ErGO electrode (0.035 min ─1 ) exhibited ∼3 times and ∼9 times higher removal rates in comparison with plane ErGO (0.010 min ─1 ) and plane graphite felt (0.004 min ─1 ) electrodes respectively. The effect of pH and applied potential were studied for the degradation of ciprofloxacin in Fc-ErGO based electrode. Higher removal rate was observed at acidic pH (0.222 min ─1 ), whereas alkaline pH showed lower removal efficiency (0.014 min ─1 ). > 99% removal of ciprofloxacin was achieved with in 15 min and 120 min of reactions period at pH 3.0 and pH 7.0, respectively. H 2 O 2 generation was found to be high in plane ErGO electrode system in all of the pH conditions. Owing to the high redox ability of ferrocene, Fc-ErGO electrode generated high concentration of OH radicals (426 μM pH 3.0; 247 μM pH 7.0; 210 μM pH 9.0) than ErGO and plane graphite felt electrodes; The electrode reusability study was performed to understand the electrode stability. There was no significant change in removal efficiency even after the 5th cycle of reusability study at both acidic and neutral conditions. The possible mechanism of oxidation in Fc-ErGO based electro-Fenton process was also proposed based on the continuous monitoring of H 2 O 2 and OH radicals generated in the system. Copyright © 2018. Published by Elsevier Ltd.

  17. Recent Advances in Understanding the Control of Secretory Proteins by the Unfolded Protein Response in Plants

    PubMed Central

    Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio

    2013-01-01

    The membrane transport system is built on the proper functioning of the endoplasmic reticulum (ER). The accumulation of unfolded proteins in the ER lumen (ER stress) disrupts ER homeostasis and disturbs the transport system. In response to ER stress, eukaryotic cells activate intracellular signaling (named the unfolded protein response, UPR), which contributes to the quality control of secretory proteins. On the other hand, the deleterious effects of UPR on plant health and growth characteristics have frequently been overlooked, due to limited information on this mechanism. However, recent studies have shed light on the molecular mechanism of plant UPR, and a number of its unique characteristics have been elucidated. This study briefly reviews the progress of understanding what is happening in plants under ER stress conditions. PMID:23629671

  18. SR/ER-mitochondrial local communication: Calcium and ROS

    PubMed Central

    Csordás, György; Hajnóczky, György

    2009-01-01

    Mitochondria form junctions with the sarco/endoplasmic reticulum (SR/ER), which support signal transduction and biosynthetic pathways and affect organellar distribution. Recently, these junctions have received attention because of their pivotal role in mediating calcium signal propagation to the mitochondria, which is important for both ATP production and mitochondrial cell death. Many of the SR/ER-mitochondrial calcium transporters and signaling proteins are sensitive to redox regulation and are directly exposed to the reactive oxygen species (ROS) produced in the mitochondria and SR/ER. Although ROS has been emerging as a novel signaling entity, the redox signaling of the SR/ER-mitochondrial interface is yet to be elucidated. We describe here possible mechanisms of the mutual interaction between local Ca2+ and ROS signaling in the control of SR/ER-mitochondrial function. PMID:19527680

  19. Spatial and Functional Aspects of ER-Golgi Rabs and Tethers

    PubMed Central

    Saraste, Jaakko

    2016-01-01

    Two conserved Rab GTPases, Rab1 and Rab2, play important roles in biosynthetic-secretory trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus in mammalian cells. Both are expressed as two isoforms that regulate anterograde transport via the intermediate compartment (IC) to the Golgi, but are also required for transport in the retrograde direction. Moreover, Rab1 has been implicated in the formation of autophagosomes. Rab1 and Rab2 have numerous effectors or partners that function in membrane tethering, but also have other roles. These include the coiled-coil proteins p115, GM130, giantin, golgin-84, and GMAP-210, as well as the multisubunit COG (conserved oligomeric Golgi) and TRAPP (transport protein particle) tethering complexes. TRAPP also acts as the GTP exchange factor (GEF) in the activation of Rab1. According to the traditional view of the IC elements as motile, transient structures, the functions of the Rabs could take place at the two ends of the ER-Golgi itinerary, i.e., at ER exit sites (ERES) and/or cis-Golgi. However, there is considerable evidence for their specific association with the IC, including its recently identified pericentrosomal domain (pcIC), where many of the effectors turn out to be present, thus being able to exert their functions at the pre-Golgi level. The IC localization of these proteins is of particular interest based on the imaging of Rab1 dynamics, indicating that the IC is a stable organelle that bidirectionally communicates with the ER and Golgi, and is functionally linked to the endosomal system via the pcIC. PMID:27148530

  20. 2D Layered Materials of Rare-Earth Er-Doped MoS2 with NIR-to-NIR Down- and Up-Conversion Photoluminescence.

    PubMed

    Bai, Gongxun; Yuan, Shuoguo; Zhao, Yuda; Yang, Zhibin; Choi, Sin Yuk; Chai, Yang; Yu, Siu Fung; Lau, Shu Ping; Hao, Jianhua

    2016-09-01

    A 2D system of Er-doped MoS2 layered nanosheets is developed. Structural studies indicate that the Er atoms can be substitutionally introduced into MoS2 to form stable doping. Density functional theory calculation implies that the system remains stable. Both NIR-to-NIR up-conversion and down-conversion light-emissions are observed in 2D transition metal dichalcogenides, ascribed to the energy transition from Er(3+) dopants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Role of Hypothalamic Estrogen Receptors in Metabolic Regulation

    PubMed Central

    Frank, Aaron; Brown, Lynda M.; Clegg, Deborah J.

    2014-01-01

    Estrogens regulate key features of metabolism, including food intake, body weight, energy expenditure, insulin sensitivity, leptin sensitivity, and body fat distribution. There are two ”classical“ estrogen receptors (ERs): estrogen receptor alpha (ERS1) and estrogen receptor beta (ERS2). Human and murine data indicate ERS1 contributes to metabolic regulation more so than ESR2. For example, there are human inactivating mutations of ERS1 which recapitulate aspects of the metabolic syndrome in both men and women. Much of our understanding of the metabolic roles of ERS1 was initially uncovered in estrogen receptor α-null mice (ERS1−/−); these mice display aspects of the metabolic syndrome, including increased body weight, increased visceral fat deposition and dysregulated glucose intolerance. Recent data further implicate ERS1 in specific tissues and neuronal populations as being critical for regulating food intake, energy expenditure, body fat distribution and adipose tissue function. This review will focus predominantly on the role of hypothalamic ERs and their critical role in regulating all aspects of energy homeostasis and metabolism. PMID:24882636

  2. The role of hypothalamic estrogen receptors in metabolic regulation.

    PubMed

    Frank, Aaron; Brown, Lynda M; Clegg, Deborah J

    2014-10-01

    Estrogens regulate key features of metabolism, including food intake, body weight, energy expenditure, insulin sensitivity, leptin sensitivity, and body fat distribution. There are two 'classical' estrogen receptors (ERs): estrogen receptor alpha (ERS1) and estrogen receptor beta (ERS2). Human and murine data indicate ERS1 contributes to metabolic regulation more so than ESR2. For example, there are human inactivating mutations of ERS1 which recapitulate aspects of the metabolic syndrome in both men and women. Much of our understanding of the metabolic roles of ERS1 was initially uncovered in estrogen receptor α-null mice (ERS1(-/-)); these mice display aspects of the metabolic syndrome, including increased body weight, increased visceral fat deposition and dysregulated glucose intolerance. Recent data further implicate ERS1 in specific tissues and neuronal populations as being critical for regulating food intake, energy expenditure, body fat distribution and adipose tissue function. This review will focus predominantly on the role of hypothalamic ERs and their critical role in regulating all aspects of energy homeostasis and metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Store-Operated Calcium Channels

    PubMed Central

    Lewis, Richard S.

    2015-01-01

    Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca2+ from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca2+ sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca2+ from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca2+ depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease. PMID:26400989

  4. Preliminary X-ray crystallographic studies of mouse UPR responsive protein P58(IPK) TPR fragment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jiahui; Wu, Yunkun; Ron, David

    2008-02-01

    To investigate the mechanism by which P58(IPK) functions to promote protein folding within the ER, a P58(IPK) TPR fragment without the C-terminal J-domain has been crystallized. Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), which can promote protein folding and misfolded protein degradation and attenuate protein translation and protein translocation into the ER. P58(IPK) has been proposed to function as a molecular chaperone to maintain protein-folding homeostasis in the ER under normal and stressed conditions. P58(IPK) contains nine TPR motifs and a C-terminal J-domain within its primary sequence. To investigate the mechanism by which P58(IPK) functions to promotemore » protein folding within the ER, a P58(IPK) TPR fragment without the C-terminal J-domain was crystallized. The crystals diffract to 2.5 Å resolution using a synchrotron X-ray source. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 83.53, b = 92.75, c = 84.32 Å, α = 90.00, β = 119.36, γ = 90.00°. There are two P58(IPK) molecules in the asymmetric unit, which corresponds to a solvent content of approximately 60%. Structure determination by MAD methods is under way.« less

  5. PIGN prevents protein aggregation in the endoplasmic reticulum independently of its function in the GPI synthesis.

    PubMed

    Ihara, Shinji; Nakayama, Sohei; Murakami, Yoshiko; Suzuki, Emiko; Asakawa, Masayo; Kinoshita, Taroh; Sawa, Hitoshi

    2017-02-01

    Quality control of proteins in the endoplasmic reticulum (ER) is essential for ensuring the integrity of secretory proteins before their release into the extracellular space. Secretory proteins that fail to pass quality control form aggregates. Here we show the PIGN-1/PIGN is required for quality control in Caenorhabditis elegans and in mammalian cells. In C. elegans pign-1 mutants, several proteins fail to be secreted and instead form abnormal aggregation. PIGN-knockout HEK293 cells also showed similar protein aggregation. Although PIGN-1/PIGN is responsible for glycosylphosphatidylinositol (GPI)-anchor biosynthesis in the ER, certain mutations in C. elegans pign-1 caused protein aggregation in the ER without affecting GPI-anchor biosynthesis. These results show that PIGN-1/PIGN has a conserved and non-canonical function to prevent deleterious protein aggregation in the ER independently of the GPI-anchor biosynthesis. PIGN is a causative gene for some human diseases including multiple congenital seizure-related syndrome (MCAHS1). Two pign-1 mutations created by CRISPR/Cas9 that correspond to MCAHS1 also cause protein aggregation in the ER, implying that the dysfunction of the PIGN non-canonical function might affect symptoms of MCAHS1 and potentially those of other diseases. © 2017. Published by The Company of Biologists Ltd.

  6. Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS).

    PubMed

    Keil, Jeffrey M; Shen, Zhouxin; Briggs, Steven P; Patrick, Gentry N

    2010-10-18

    The ubiquitin proteasome system (UPS) mediates the majority of protein degradation in eukaryotic cells. The UPS has recently emerged as a key degradation pathway involved in synapse development and function. In order to better understand the function of the UPS at synapses we utilized a genetic and proteomic approach to isolate and identify novel candidate UPS substrates from biochemically purified synaptic membrane preparations. Using these methods, we have identified Stromal interacting molecule 1 (STIM1). STIM1 is as an endoplasmic reticulum (ER) calcium sensor that has been shown to regulate store-operated Ca(2+) entry (SOCE). We have characterized STIM1 in neurons, finding STIM1 is expressed throughout development with stable, high expression in mature neurons. As in non-excitable cells, STIM1 is distributed in a membranous and punctate fashion in hippocampal neurons. In addition, a population of STIM1 was found to exist at synapses. Furthermore, using surface biotinylation and live-cell labeling methods, we detect a subpopulation of STIM1 on the surface of hippocampal neurons. The role of STIM1 as a regulator of SOCE has typically been examined in non-excitable cell types. Therefore, we examined the role of the UPS in STIM1 and SOCE function in HEK293 cells. While we find that STIM1 is ubiquitinated, its stability is not altered by proteasome inhibitors in cells under basal conditions or conditions that activate SOCE. However, we find that surface STIM1 levels and thapsigargin (TG)-induced SOCE are significantly increased in cells treated with proteasome inhibitors. Additionally, we find that the overexpression of POSH (Plenty of SH3's), an E3 ubiquitin ligase recently shown to be involved in the regulation of Ca(2+) homeostasis, leads to decreased STIM1 surface levels. Together, these results provide evidence for previously undescribed roles of the UPS in the regulation of STIM1 and SOCE function.

  7. Shoulder functional ratio in elite junior tennis players.

    PubMed

    Saccol, Michele Forgiarini; Gracitelli, Guilherme Conforto; da Silva, Rogério Teixeira; Laurino, Cristiano Frota de Souza; Fleury, Anna Maria; Andrade, Marília dos Santos; da Silva, Antonio Carlos

    2010-02-01

    To evaluate shoulder rotation strength and compare the functional ratio between shoulders of elite junior tennis players. This cross-sectional study evaluated muscular rotation performance of 40 junior tennis players (26 male and 14 female) with an isokinetic dynamometer. Strength variables of external (ER) and internal rotators (IR) in concentric and eccentric modes were considered. For the peak torque functional ratio, the eccentric strength of the ER and the concentric strength of the IR were calculated. All variables related to IR were significantly higher on the dominant compared to the non-dominant side in males and females (p<0.05), but only boys exhibited this dominance effect in ER (p<0.05 and p<0.001). Regarding functional ratios, they were significantly lower for the dominant shoulder (p<0.001) and below 1.00 for both groups, indicating that the eccentric strength of the ER was not greater than the concentric strength of the IR. Elite junior tennis players without shoulder injury have shoulder rotation muscle strength imbalances that alter the normal functional ratio between rotator cuff muscles. Although these differences do not seem to affect the athletic performance, detection and prevention with exercise programs at an early age are recommended. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  8. Sirtuin1 protects endothelial Caveolin-1 expression and preserves endothelial function via suppressing miR-204 and endoplasmic reticulum stress.

    PubMed

    Kassan, M; Vikram, A; Kim, Y R; Li, Q; Kassan, A; Patel, H H; Kumar, S; Gabani, M; Liu, J; Jacobs, J S; Irani, K

    2017-02-09

    Sirtuin1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including endothelial function. Caveolin1 (Cav1) is also an important determinant of endothelial function. We asked if Sirt1 governs endothelial Cav1 and endothelial function by regulating miR-204 expression and endoplasmic reticulum (ER) stress. Knockdown of Sirt1 in endothelial cells, and in vivo deletion of endothelial Sirt1, induced endothelial ER stress and miR-204 expression, reduced Cav1, and impaired endothelium-dependent vasorelaxation. All of these effects were reversed by a miR-204 inhibitor (miR-204 I) or with overexpression of Cav1. A miR-204 mimic (miR-204 M) decreased Cav1 in endothelial cells. In addition, high-fat diet (HFD) feeding induced vascular miR-204 and reduced endothelial Cav1. MiR-204-I protected against HFD-induced downregulation of endothelial Cav1. Moreover, pharmacologic induction of ER stress with tunicamycin downregulated endothelial Cav1 and impaired endothelium-dependent vasorelaxation that was rescued by overexpressing Cav1. In conclusion, Sirt1 preserves Cav1-dependent endothelial function by mitigating miR-204-mediated vascular ER stress.

  9. Advances in spectral conversion for photovoltaics: up-converting Er3+ doped YF3 nano-crystals in transparent glass ceramic

    NASA Astrophysics Data System (ADS)

    Marques-Hueso, Jose; Chen, Daqin; MacDougall, Sean K. W.; Wang, Yuansheng; Richards, Bryce S.

    2011-09-01

    Up- and down-conversion (UC, DC) constitute two singular routes to achieve improved energy harvesting of sunlight by changing its shape of the solar spectrum. To obtain a significant conversion rate two main challenges have to be overcome: i) the excited lanthanide ions have to emit efficiently, a target which has been better accomplished for DC materials; ii) the absorption in the lanthanide-based UC and DC layers has to be high to ensure a sizeable fraction of photons can be harvested. In this paper, we review such materials and their use as spectral converters for photovoltaics (PV), paying special attention to the UC and DC processes in lanthanide glasses in fluoride matrices. We discuss the challenges that need to be overcome in order to implement these materials in real PV devices. Finally, we will present the synthesis of erbium (Er3+) doped YF3 nano-crystals embedded in transparent glass ceramic (TGC) by melt quenching. This material presents a low phonon energy environment for the Er3+ ions due to the fluoride crystals, while the silica glass provides chemical and mechanical stability to the compound.

  10. Effect of Bi2O3 on spectroscopic and structural properties of Er3+ doped cadmium bismuth borate glasses.

    PubMed

    Sanghi, S; Pal, I; Agarwal, A; Aggarwal, M P

    2011-12-01

    Glasses with composition 20CdO·xBi(2)O(3)·(79.5-x)B(2)O(3) (15≤x≤35, x in mol%) containing 0.5 mol% of Er(3+) ions were prepared by melt-quench technique (1150°C in air). The amorphous nature of the glasses was confirmed by X-ray diffraction. The spectroscopic properties of the glasses were investigated using optical absorption spectra and fluorescence spectra. The phenomenological Judd-Ofelt intensity parameters Ω(λ) (λ=2, 4, 6) were determined from the spectral intensities of absorption bands in order to calculate the radiative transition probability (A(R)), radiative life time (τ(R)), branching ratios (β(R)) for various excited luminescent states. Using the near infrared emission spectra, full width at half maxima (FWHM), stimulated emission cross-section (σ(e)) and figure of merit (FOM) were evaluated and compared with other hosts. Especially, the numerical values of these parameters indicate that the emission transition (4)I(13/2)→(4)I(15/2) at 1.506 μm in Er(3+)-doped cadmium bismuth borate glasses may be useful in optical communication. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Loss-of-function PCSK9 mutants evade the unfolded protein response sensor GRP78 and fail to induce endoplasmic reticulum stress when retained.

    PubMed

    Lebeau, Paul; Platko, Khrystyna; Al-Hashimi, Ali A; Byun, Jae Hyun; Lhoták, Šárka; Holzapfel, Nicholas; Gyulay, Gabriel; Igdoura, Suleiman A; Cool, David R; Trigatti, Bernardo; Seidah, Nabil G; Austin, Richard C

    2018-05-11

    The proprotein convertase subtilisin/kexin type-9 (PCSK9) plays a central role in cardiovascular disease (CVD) by degrading hepatic low-density lipoprotein receptor (LDLR). As such, loss-of-function (LOF) PCSK9 variants that fail to exit the endoplasmic reticulum (ER) increase hepatic LDLR levels and lower the risk of developing CVD. The retention of misfolded protein in the ER can cause ER stress and activate the unfolded protein response (UPR). In this study, we investigated whether a variety of LOF PCSK9 variants that are retained in the ER can cause ER stress and hepatic cytotoxicity. Although overexpression of these PCSK9 variants caused an accumulation in the ER of hepatocytes, UPR activation or apoptosis was not observed. Furthermore, ER retention of endogenous PCSK9 via splice switching also failed to induce the UPR. Consistent with these in vitro studies, overexpression of PCSK9 in the livers of mice had no impact on UPR activation. To elucidate the cellular mechanism to explain these surprising findings, we observed that the 94-kDa glucose-regulated protein (GRP94) sequesters PCSK9 away from the 78-kDa glucose-regulated protein (GRP78), the major activator of the UPR. As a result, GRP94 knockdown increased the stability of GRP78-PCSK9 complex and resulted in UPR activation following overexpression of ER-retained PCSK9 variants relative to WT secreted controls. Given that overexpression of these LOF PCSK9 variants does not cause UPR activation under normal homeostatic conditions, therapeutic strategies aimed at blocking the autocatalytic cleavage of PCSK9 in the ER represent a viable strategy for reducing circulating PCSK9. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Hereditary Spastic Paraplegia-Linked REEP1 Modulates ER-Mitochondria Contacts

    PubMed Central

    Lim, Youngshin; Cho, Il-Taeg; Schoel, Leah J.; Cho, Ginam; Golden, Jeffrey A.

    2015-01-01

    Objective Mutations in receptor expression enhancing protein 1 (REEP1) are associated with hereditary spastic paraplegias (HSPs). Although axonal degeneration is thought to be a predominant feature in HSP, the role of REEP1 mutations in degeneration is largely unknown. Previous studies have implicated a role for REEP1 in the ER, whereas others localized REEP1 with mitochondria. We sought to resolve the cellular localization of REEP1 and to further elucidate the pathobiology underlying REEP1 mutations in patients. Methods A combination of cellular imaging and biochemical approaches was used to refine the cellular localization of REEP1. Next, Reep1 mutations associated with HSP were functionally tested in neuritic growth and degeneration assays using mouse cortical culture. Finally, a novel assay was developed and used with wild type and mutant Reep1s to measure the interactions between the ER and mitochondria. Results We found that REEP1 is present at the ER-mitochondria interface, and it contains subdomains for mitochondrial as well as ER localization. Knockdown of Reep1 and the expression of pathological Reep1 mutations resulted in neuritic growth defects and degeneration. Finally, using our novel split-RLuc8 assay, we show REEP1 facilitates ER-mitochondria interactions, a function diminished by disease-associated mutations. Interpretation Our data potentially reconcile the current conflicting reports regarding REEP1 being either an ER or a mitochondrial protein. Furthermore, our results connect, for the first time, the disrupted ER-mitochondria interactions to a failure in maintaining health of long axons in HSPs. Finally, the split-RLuc8 assay offers a new tool to identify potential drugs for multiple neurodegenerative diseases with ER-mitochondria interaction defects. PMID:26201691

  13. Hydrological excitation of polar motion

    NASA Astrophysics Data System (ADS)

    Nastula, Y.; Kolaczek, B.

    2006-08-01

    Hydrological excitation of the polar motion (HAM) were computed from the available recently hydrological data series (NCEP, ECMWF, CPC water storage and LaD World simulations of global continental water) and compared. Time variable seasonal spectra of these hydrological excitation functions and of the geodetic excitation function of polar motion computed from the polar motion COMB03 data were compared showing big differences in their temporal characteristics and the necessity of the further improvement of the HAM models. Seasonal oscillations of the global geophysical excitation functions (AAM + OAM + HAM) and their time variations were compared also. These hydrological excitation functions do not close the budget of the global geophysical excitation function of polar motion.

  14. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: Functional divergence of the dilysine ER retrieval motif in plant cells

    USDA-ARS?s Scientific Manuscript database

    Glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the committed step in the production of glycerolipids, which are major components of cellular membranes, seed storage oils, and epicuticular wax coatings. While the biochemical activities of GPATs have been characterized in detail, t...

  15. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells

    USDA-ARS?s Scientific Manuscript database

    Glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the committed step in the production of glycerolipids, which are major components of cellular membranes, seed storage oils, and epicuticular wax coatings. While the biochemical activities of GPATs have been characterized in detail, ...

  16. Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy.

    PubMed

    Shchors, Ksenya; Persson, Anders I; Rostker, Fanya; Tihan, Tarik; Lyubynska, Natalya; Li, Nan; Swigart, Lamorna Brown; Berger, Mitchel S; Hanahan, Douglas; Weiss, William A; Evan, Gerard I

    2013-04-16

    Based on clinical presentation, glioblastoma (GBM) is stratified into primary and secondary types. The protein 53 (p53) pathway is functionally incapacitated in most GBMs by distinctive type-specific mechanisms. To model human gliomagenesis, we used a GFAP-HRas(V12) mouse model crossed into the p53ER(TAM) background, such that either one or both copies of endogenous p53 is replaced by a conditional p53ER(TAM) allele. The p53ER(TAM) protein can be toggled reversibly in vivo between wild-type and inactive conformations by administration or withdrawal of 4-hydroxytamoxifen (4-OHT), respectively. Surprisingly, gliomas that develop in GFAP-HRas(V12);p53(+/KI) mice abrogate the p53 pathway by mutating p19(ARF)/MDM2 while retaining wild-type p53 allele. Consequently, such tumors are unaffected by restoration of their p53ER(TAM) allele. By contrast, gliomas arising in GFAP-HRas(V12);p53(KI/KI) mice develop in the absence of functional p53. Such tumors retain a functional p19(ARF)/MDM2-signaling pathway, and restoration of p53ER(TAM) allele triggers p53-tumor-suppressor activity. Congruently, growth inhibition upon normalization of mutant p53 by a small molecule, Prima-1, in human GBM cultures also requires p14(ARF)/MDM2 functionality. Notably, the antitumoral efficacy of p53 restoration in tumor-bearing GFAP-HRas(V12);p53(KI/KI) animals depends on the duration and frequency of p53 restoration. Thus, intermittent exposure to p53ER(TAM) activity mitigated the selective pressure to inactivate the p19(ARF)/MDM2/p53 pathway as a means of resistance, extending progression-free survival. Our results suggest that intermittent dosing regimes of drugs that restore wild-type tumor-suppressor function onto mutant, inactive p53 proteins will prove to be more efficacious than traditional chronic dosing by similarly reducing adaptive resistance.

  17. Relativistic many-body calculations of energies in a broad range of Lu-like ions from W^3+ to Fm^29+

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Safronova, A. S.

    2012-06-01

    Energies of the [Xe]4f^145d^3, [Xe]4f^145d^26s, [Xe]4f^145d^26p, and [Xe]4f^145d6s6p states of lutetiumlike ions with Z = 74-100 are determined using second-order relativistic many-body perturbation theory (RMBPT). Our calculations start from a Er-like Dirac-Fock potential ([Xe]4f^14 where [Xe]=1s^22s^22p^63s^23p^63d^104s^24p^64d^105s^25p^6). Second-order Coulomb and Breit-Coulomb interactions are included. Correction for the frequency-dependence of the Breit interaction as well as Lamb shift correction to energies are taken into account in lowest order. The three-electron contributions to the energy are compared with the one- and two-electron contributions. They are found to contribute about 10-20% of the total second-order energy. The ratio of the third-order and second-order corrections to the one-electron contributions is found to be about 5-10%. A detailed discussion of the various contributions to the energy levels is given for Lu-like tungsten (Z=74). Trends of excitation energies including splitting of the doublet and quartet terms as functions of nuclear charge Z = 71--100 are illustrated graphically for some states. This research was sponsored by DOE under the OFES grant DE-FG02-08ER54951.

  18. The involvement of the sigma-1 receptor in neurodegeneration and neurorestoration.

    PubMed

    Ruscher, Karsten; Wieloch, Tadeusz

    2015-01-01

    The sigma-1 receptor (Sig-1R) is a single 25 kD polypeptide and a chaperone protein immersed in lipid rafts of the endoplasmic reticulum (ER) where it interacts with mitochondria at the mitochondria-associated ER membrane domain (MAM). Upon activation, the Sig-1R binds to the inositol trisphosphate receptor (IP3R), and modulates cellular calcium (Ca(2+)) homeostasis. Also, the activated Sig-1R modulates plasma membrane receptor and ion channel functions, and may regulate cellular excitability. Further, the Sig-1R promotes trafficking of lipids and proteins essential for neurotransmission, cell growth and motility. Activation of the Sig-1R provides neuroprotection and is neurorestorative in cellular and animal models of neurodegenerative diseases and brain ischaemia. Neuroprotection appears to be due to inhibition of cellular Ca(2+) toxicity and/or inflammation, and neurorestoration may include balancing abberant neurotransmission or stimulation of synaptogenesis, thus remodelling brain connectivity. Single nucleotide polymorphisms and mutations of the SIGMAR1 gene worsen outcome in Alzheimer's disease and myotrophic lateral sclerosis supporting a role of Sig-1R in neurodegenerative disease. The combined neuroprotective and neurorestorative actions of the Sig-1R, provide a broad therapeutic time window of Sig-1R agonists. The Sig-1R is therefore a strong therapeutic target for the development of new treatments for neurodegenerative diseases and stroke. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  19. Rare earth crystal field spectra as a probe of librational motions in BaY2F8 solid state laser crystals

    NASA Astrophysics Data System (ADS)

    Capelletti, R.; Baraldi, A.; Buffagni, E.; Magnani, N.; Mazzera, M.

    2010-11-01

    The fine structure (FS) accompanying a few lines, originated by crystal field (CF) transitions of rare earths (RE), as Er3+ and Tm3+, in BaY2F8 single crystals, is analyzed as a function of the RE3+ concentration (0.5÷20 at%) and temperature (9-300 K), by using high resolution (as fine as 0.02 cm-1) Fourier transform spectroscopy and linear dichroism measurements. The 9 K absorption spectra show that FS includes weak, narrow, and closely spaced (0.4÷0.8 cm-1) lines, covering a few cm-1 range on both sides of the narrowest among the CF lines. The FS increases by increasing the RE3+ concentration and vanishes at rather low temperature (40 and 60 K for Er3+ and Tm3+, respectively). The polarized light spectra confirm the association of a given set of FS lines to a specific CF line. The FS is ascribed to the simultaneous excitation of an electronic CF transition and of a local librational (or hindered rotation) mode of the RE3+-F- group. The attribution is supported 1) by specific features of the host matrix and guest rare earths, which allow some mobility of F- ions, and 2) by the spacing of the FS lines, which is in excellent agreement with the calculated RE3+-F- group rotational constant.

  20. Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties.

    PubMed

    Bui, Michael; Gilady, Susanna Y; Fitzsimmons, Ross E B; Benson, Matthew D; Lynes, Emily M; Gesson, Kevin; Alto, Neal M; Strack, Stefan; Scott, John D; Simmen, Thomas

    2010-10-08

    The mitochondria-associated membrane (MAM) has emerged as an endoplasmic reticulum (ER) signaling hub that accommodates ER chaperones, including the lectin calnexin. At the MAM, these chaperones control ER homeostasis but also play a role in the onset of ER stress-mediated apoptosis, likely through the modulation of ER calcium signaling. These opposing roles of MAM-localized chaperones suggest the existence of mechanisms that regulate the composition and the properties of ER membrane domains. Our results now show that the GTPase Rab32 localizes to the ER and mitochondria, and we identify this protein as a regulator of MAM properties. Consistent with such a role, Rab32 modulates ER calcium handling and disrupts the specific enrichment of calnexin on the MAM, while not affecting the ER distribution of protein-disulfide isomerase and mitofusin-2. Furthermore, Rab32 determines the targeting of PKA to mitochondrial and ER membranes and through its overexpression or inactivation increases the phosphorylation of Bad and of Drp1. Through a combination of its functions as a PKA-anchoring protein and a regulator of MAM properties, the activity and expression level of Rab32 determine the speed of apoptosis onset.

Top